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Fig. 1. A: Participant performing tasks in VR wearing Head Mounted Display and Physiological Sensors. B: Participant completing
the Self-Assessment Manikin (SAM) subjective questionnaire in VR

Our memories and past experiences contribute to guiding our perception and action of future affective experiences. Virtual Reality (VR)
experiences are more vividly memorized and recalled than non-VR ones, but there is little research on how to detect this recall in VR.
We investigate the feasibility of recognizing autobiographical memory (AM) recall in VR using physiological cues: skin conductance,
heart-rate variability, eye gaze, and pupillary response. We devised a methodology replicating an existing AM Test in VR. We conducted
a user study with 20 participants recalling AM using three valence categories cue words: positive, negative, and neutral. We found
a significant effect of AM recalls on EDA peak, and eye blink rate, with a generalized recognition accuracy of 77.1% and person
dependent accuracy of up to 95.1%. This shows a promising approach for detecting AM recall in VR and we discuss the implications
for VR experience design.

CCS Concepts: • Human-centered computing → Empirical studies in HCI; Virtual reality.
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1 INTRODUCTION

Autobiographical memories (AM) can be defined as the collection of past experiences remembered by people about their
own life and are of self-relevance [15]. These memories are essential in forming individual’s identity [6] and contribute
as the directive function, helping in educating current and future activities and decisions based on past experiences
[82]. For example, memories associated while remembering your first breakup, your visit to Taj Mahal when you were
8, or presenting your work at the Ubicomp conference.

AM recall lead to re-experiencing past events involving emotions, intention, thoughts, and actions [35]. In addition,
AM recall advances mental health and well-being by supporting crucial elements of emotional and cognitive functioning
like emotion regulation, positive mood, and feelings of the meaning of life [47, 55, 84]. Usually, the recall of more
personal autobiographical memories results in higher empathic concern, the component of empathy which is focused on
the comprehension of others’ emotional states including feelings of sympathy, compassion, and warmth [80]. Previous
research demonstrated that AM recall is an appropriate emotion elicitation method for the emotion recognition study
[28, 58]. These research indicates that detecting AM recall and its associated emotions could potentially augment
empathy, enable the design of better personalized human-computer interactions, and overall improve the user experience.

Emotional autobiographical memories recall has displayed reliable activation of the Autonomic Nervous System
of our body [67], responsible to regulate involuntary physiological processes such as heart rate, respiration, pupil
responses, blood pressure, and sweat responses. These physiological changes are measured using electrodermal activity
(EDA) for sweat responses, heart rate variability (HRV) for heart rate, pupillometry sensing (eye response and gaze
behavior) for pupil responses during recall. Having demonstrated a link between change in physiology and self-reports
of emotional AM characteristics as compared to the neutral AM [20, 24, 67], the notion of using machine learning
techniques to find physiological patterns of emotional AM seems promising.

With the advances in experiential technologies, immersive platforms such as virtual reality (VR) are suggested as
a powerful tool to reproduce real, complex situations and environments, creating unique opportunities to explore
human behavior and psychology in closely controlled conventional laboratory conditions [18]. A VR experiment
enables verisimilitude (i.e. the extent to which experiment task replicates real-life) as well as its veridicality (i.e. the
extent to which experiment results accurately indicate the psychological event) [32, 68]. Researchers have successfully
investigated memory recall in VR using techniques involving various cues such as words [40], environmental lighting
[44], objects [45], auditory cues [1], and visual cues [12]. Rivu et al. [63] demonstrated that stronger emotions can be
induced in VR using AM, yet, there has been very little research on understanding how emotional AM recall responds
in VR, its physiological implications and if it can be recognized. The knowledge of past experience and it’s associated
emotions could be helpful in designing more engaging and personalized emotional VR experiences tailored to user’s
AM. This motivated us to ask the following research questions:
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RQ1: What is the relationship between emotional autobiographical memory recall with elicited emotions
in VR?

RQ2: How does the recalled emotional AM impacts the physiological signals such as EDA, HRV, and
Pupil responses in VR?

RQ3: How can we detect if the experience being recalled is autobiographical memory using physiological
signals?

RQ3a: How can we detect if the recalled autobiographical memory in VR elicits positive, negative
or neutral valence emotional states?

In order to answer these RQs, we investigated the effects of emotional autobiographical memory recall on human
physiology by conducting a traditional Autobiographical Memory Test (AMT) in a VR setting. As being one of the
first studies focused on the attempt to detect AM recall and the emotions associated with it, we wanted to introduce
the least number of independent factors such as images, videos, or other visual, and auditory cues that could affect
the induced emotions. To get a better understanding through this early procedure, we chose to display an emotional
word in the neutral valence virtual room since it is the least noisy and proven. Section 2 provides an overview of the
related literature. In section 3, we discusses the experimental evaluation where we collected physiological signals such
as electrodermal activity (EDA), photoplethysmography (PPG)/ heart rate variability (HRV), pupil responses, and eye
movement from the participants while they were recalling their AM using positive, negative, and neutral valence words
as stimuli cues from a database. The participants self-reported their subjective measures of emotion and recalled AM
feedback using self-reported affective and memory experience questionnaires.

Section 4 explains the analysis methods for the AM recall experiences, collected physiological data, and machine
learning workflow.When participants were recalling AM as compared to no recall, the analysis results show a significant
main effect in physiological cues, such as EDA peak number (EDA-PN), EDA mean peak amplitude (EDA-PA), HRV
Standard Deviation of NN intervals (SDNN), mean pupil diameter (mean PD), blink count, and mean blink duration. No
significant difference was reported between positive, negative and neutral emotional words recall using physiological
data. However, Personalized AM recall and emotions in AM recall (EAMR) were detected up to an accuracy of 95.1%
and 84.1% respectively using machine learning techniques. Finally, these results are reported and further discussed in
Section 5 and 6; and Section 7 proposes the potential applications of the system. Section 8 and 9 provides the limitations,
future work, and concluding remarks.

To our knowledge, this work is among the first to model emotional AM recall in VR using physiological signals.
The main contributions of this work are three-fold: (1) an empirical experimental paradigm to investigate emotional
AM recall and its relationship with physiological information in VR using a simple text-based visual stimulus; (2)
introduction of the analysis of physiological information such as EDA, HRV, and pupil responses as encouraging
modalities to infer the emotional autobiographical memory recall status in VR; (3) a user study in VR to investigate the
automatic recognition of emotional autobiographical memory recall status.

2 RELATEDWORK

This section discusses how our work builds on previous research on emotional autobiographical memory with respect
to physiological signals and virtual environments.

3
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2.1 Autobiographical Memories and Emotions

In affective computing research, emotional experiences are generally examined using continuous dimensions primarily
as valence and arousal responses [59, 64]. Valence dimension indicates the pleasantness or unpleasantness of the
experience and usually reported in terms of it’s positive or negative emotional state. On the other hand, arousal
dimension refers to the emotional intensity of the experience showing the level of arousal experienced by the person
while going through the event. Several multi-disciplinary studies including psychology [38], computer science [61], and
neuroscience [46, 66] have demonstrated that subjective experience of valence and arousal are linked to the physiological
changes in the person while they experience the emotional events [37].

Autobiographical memories (AM) includes both emotionally intense events and marginal episodes as a recollection
of self-relevant and meaningful experiences in one’s own life [15, 16]. Notably, an influence on the memory encoding
and subsequent phenomenological characteristics during recollection has been shown by the emotional characteristics
associated with the event [48]. Previous AM research suggested that highly emotional experiences tends to be better
remembered with more sense of reliving and re-experiencing by the individuals as compared to the events devoid
of emotion or of neutral emotional states [13]. Numerous studies have found that retrieval of central details in an
autobiographical memory was enhanced [9] and vivid [2] when the memories were highly arousing . Researchers also
found a greater recall of peripheral and sensory details of positive memories [17, 78, 79] whereas negative memories
correlate with an enhanced recall of better accuracy [77] and central features [51, 62].

Previous works in the field of mnemonics or memory research have investigated memory recall in a conventional
laboratory setting using various paradigms such as inducing micro-events before the memory recognition tests [7].
However, this challenges the ecological validity of the test, especially for self-relevant past experience recall [49], so VR
environments could be a good option for memory studies [56, 57]. There is an ample amount of research focused on
understanding and exploiting AM in VR [34]. For example, the recollection stimulation of autobiographical memory in
VR has been suggested to be effective for the early-stage Alzheimer’s patients’ reminiscence rehabilitation therapy
[5, 71, 87]. Mira et al. [52] suggested that the use of positive specific memories enhances mindfulness trait with an
objective to promote highly adaptive emotion regulation. When participants wrote their positive AMwhile experiencing
negative emotions and vice versa in VR, their reported general wellbeing was reported elevated [36]. The primary
explanation for this insight was positive mood being able to update previous experience’s emotional appraisal by
developing an adaptive perspective of the past. Javier demonstrated the VR procedure to be a promising tool to activate
positive mood consequently augment positive emotion regulation approaches in the short term [21].

Insights from these studies provide strong evidence suggesting a connection between AM and emotions in VR.
However, the current literature on the effects of the emotional AM recall on elicited emotional dimensions (valence
and arousal) in VR is still underdeveloped and would require further examination. Thus, to properly investigate the
relationship between emotional AM recall in VR and perceived emotions, we replicated conventional laboratory based
well-cited Autobiographical Memory Test (AMT) in VR.

2.2 Emotional Autobiographical Memory and Physiological Signals

According to Conway et al. [15], autobiographical memories (AM) consists of emotional content providing a meaningful
and significant information during its recall. The neural correlation of AM recall process has been extensively examined
through neuropsychological and neuroimaging studies using Electroencephalogram (EEG), and Functional Magnetic
Resonance Imaging (fMRI) in various contexts such as in empathy [50], in depression [85, 88, 89], and dementia
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[23, 43, 81]. Cabeza et al. [8] linked the contribution of emotion and vividness of AM to the amygdala, and visual cortex
of the brain respectively. Hur et al.’s fMRI study reported enhanced cognitive and physiological processing in people
with social anxiety order through a VR-based exposure therapy where they were asked to report if the emotional words
shown to them were self-relevant [29]. Even though fMRI provides a deeper understanding of AM recall process but
due to non-mobile, large and complex setup, it becomes challenging to use it for mobile and interactive VR applications.
On the other hand, setting up EEG requires a specialist researcher and close proximity to the participant. In order to
comply with COVID-19 pandemic social distancing restrictions, we chose to opt for non-invasive sensors that can be
setup by the participants themselves through remote assistance and left EEG for future studies.

The relationship between emotional states and changing physiological responses has been well studied, especially
using electrodermal activity (EDA), heart rate variability (HRV), respiration, skin temperature, electromyography (EMG),
electroencephalogram (EEG), and pupil responses [3, 26]. This led to many studies specifically investigating connection
between AM and emotional states using physiological measures [20, 65, 67]. Electrodermal Activity (EDA) and facial
expressions have been used to investigate the emotional biases with the vivid elaboration and accessibility of AM
using music-based retrieval cues [74]. While examining cardiac activities during AM recall in response to emotional
words, Labouvie-Vief et al. [39] reported variations in physiological arousal. Emotional AM recall in an event narration
task was investigated using EDA and HRV [67] and reported that the emotional memories were vividly narrated but
not specific in detail as compared to the neutral ones. They reported that the recollection of emotional AM (with
positive and negative valence) elicited an increase in mean EDA and decrease in HRV measures compared to AM with
neutral valence. Furthermore, the mean EDA and HRV were equivalent (no significant difference) between positive and
negative valence conditions. A study reported an increase in pupil diameter during AM recall but no significant effect
in differentiating emotional AM from neutral ones [20]. These studies provide substantial evidence that the emotional
AM recall accompanies with physiological changes, however these studies are conducted in conventional laboratory
setting and not in VR.

There have been few research trying to validate the efficacy of autobiographical memory recall in VR. By comparing
2-D desktop video and the 360-degree videos in VR, Benjamin et al. [69] demonstrated that VR contributes to an
autobiographical associative network and enhances the AM recall. Later, Kisker et al. used physiological information
such as EEG to investigate the traditional laboratory-based and 3D-360 degree VR AM retrieval process and suggested
that events retrieved in laboratory might not reflect real-life memory mechanism [33]. Neilson et al. [54] used EDA
as a physiological measure to investigate the anxiety level by experiencing VR traumatic event consists of real-life
involuntary autobiographical memories. The authors found an increase in EDA during event’s most dramatic part and
its correlation with emotional reactions and memories suggested it to be potential measure.

From past research, we can see that VR plays a crucial role in emotional AM retrieval and a combination of EDA,
HRV, and pupil responses could provide useful insights about emotional AM recall. However, understanding the role
of emotional AM these physiological responses specifically in VR is an under explored area. Therefore, we aim to
fill this research gap by measuring emotional state during AM recall using physiological changes in an immersive
and interactive 3D VR space and further extending it to detect this phenomenon with an objective to bring out its
applicability to VR experiences.

2.3 Hypotheses

Based on literature review, we formulated the following hypotheses:
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H1: Recalling emotional autobiographical memories in virtual reality elicits similar perceived emotional responses.
H2: Positive, negative, and neutral autobiographical memory recall in virtual reality have a significant effect on the

physiological emotional states measured using electrodermal activity (EDA), heart rate variability (HRV), and
pupil responses.

H3: The recall of emotional autobiographical memories can be reliably classified into binary-label (recall/no-recall),
and multi-label (positive/ negative/ neutral) classes using physiological information such as EDA.

3 EXPERIMENTAL EVALUATION

In this research, we set out to understand how emotional autobiographical memory recall in VR impacts physiological
signals using positive, negative, and neutral valence words. For this, we used a within-subject user study design with a
total of 15 words shown in a randomized order with respect to the three valence categories i.e. positive (SAM Valence
ratings > 4 out of 7), negative (SAM Valence ratings < 3 out of 7), and neutral (SAM Valence ratings between 3-4 out of
7). In order to reduce the carry-forward effect, we asked the participants to relax for 30 seconds before the start of each
trial which is longer than ’4 seconds’, the time interval required to wear off the effect of emotions [19]. We decided on
30 seconds for the relax phase same as time provided for AM recall to keep the data points consistent for analysis. Later,
the data collected during this relaxation phase was labelled as ’no AM recall’. We describe the system design, and the
procedure in more detail below in this section.

3.1 System Design

The system primarily consists of an HTC Vive Pro Eye1 Head Mounted Display (HMD), Shimmer3 GSR+2 sensor for
measuring EDA and HRV, and SRanipal SDK3 to track eye-movements as shown in Figure 2.

The VR environment was developed in the Unity 3D game engine, with two main functions 4. Firstly, we replicated
the laboratory setup used by Haj et al. [20] where the participants were placed in a virtual room with white walls and
asked to sit on a chair placed 40cm from one of the walls where the cue words were displayed (visualised in figure 1).
The other function of the VRE was to collect EDA, eye gaze, and Photoplethysmography (PPG) physiological signals
from the Shimmer3 and Vive eye tracker at a sampling rate of 128 Hz and 60 Hz respectively using the Lab streaming
Layer (LSL) protocol while the participant was performing the main task.

For the main task, we implemented a modified Autobiographical Memory Test (AMT) [86] where the participants
recalled any self-relevant past experience associated with the displayed cue word. We selected five emotional words
each for neutral (hard work, election, huge, fork, and fast), positive (happy, energetic, loved, successful, and brave), and
negative (hopeless, lonely, sad, afraid, and angry) valence emotions from previous emotional AMT research [31, 53].
For the subjective measures, we used the self-assessment manikin (SAM) [4] scale, consists of two 9-point sub-scales
to get the perceived valence (rating 1: Unpleasant; 5: Neutral; 9: Pleasant), and arousal (rating 1: Calm; 5: Neutral;
9: Excited) ratings and Memory Experiences Questionnaire - Short Form (MEQ-SF) [41] to collect seven subjective
AM characteristics such as vividness, accessibility, time perspective, sensory, visual, emotion, and valence. These
questionnaires were integrated into the VRE both to avoid any negative impact on presence [70] and for the participants’
comfort, which may effect their physiological state.
1https://www.vive.com/us/product/vive-pro-eye/overview/
2https://www.shimmersensing.com/products/shimmer3-wireless-gsr-sensor
3https://developer.vive.com/resources/vive-sense/sdk/vive-eye-and-facial-tracking-sdk/
4https://unity.com/
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Shimmer3 GSR+ VR HMD

VR View Display

Fig. 2. The Experiment Setup: Participant in VR Lab, wearing HTC Vive Pro Eye VR HMD, and Shimmer3 GSR+ sensor recalling AM
associated with the displayed word in VRE

3.2 Participants

22 participants between the age of 20 to 36 (8 Females, 14 males, mean age = 27, SD age = 4) were recruited and screened
for neurological or psychological disorders. This sample size was determined by considering the experimental design
involving two independent variables (i.e. AM Recall and Emotional Words) with five levels measured within subjects
(i.e. AM recall, No AM recall, positive, negative, and neutral). All of the participants had normal or corrected to normal
vision to ensure sharp visibility on the HMD, and had experienced VR environments more than once. Two participants
were excluded to avoid any negative mood-induced biases as they reported negative affect to Positive and Negative
Affect Schedule (PANAS) questionnaire [83]. We attained ethics approval and participants’ consent, and informed them
that they could withdraw from the experiment anytime they want.

3.3 Procedure

The participants were briefed about the experiment protocol on their arrival by the moderator and were asked to
complete the pre-experiment questionnaire consisting of demography, past VR usage, history of epilepsy, and PANAS
questionnaire. Next, the moderator confirmed with the participants if they had washed their hands in order to get clean
EDA data and then asked them to put on the Shimmer3 GSR+ sensor on the non-dominant hand and Vive HMD by
showing the procedure from distance. Once the participant was ready, they were given a sample task to get familiar
with the main task and VR environment.

We followed the procedure (shown in figure 3) with each trial consisted of four phases: relaxation, counting, recalling,
and speaking. During the “relaxation” (No AM Recall) phase, participants were asked to relax for 30 seconds where they
should not think about anything and keep their mind as clear as possible. This concluded with a bell sound after which
they had to start counting as part of the “count” phase for the next 60 seconds which was indicated by another bell
sound. Next, the cue word appeared for 3 seconds and they were asked to recall any past experience associated with
that word for the next 30 seconds as part of the “recall” phase. The moderator instructed the participant to keep their
dominant hand’s thumb on the touchpad of the Vive controller when they are recalling the memory to tag the actual
recall event. After that 30 seconds indicated by a bell sound, the “speak” phase was started where participants had to

7
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Fig. 3. Experiment Procedure: Participants wearing the VR HMD and Shimmer Sensor performing a total of 15 trials each in VR with
the following sequence: rest (30 seconds), count(60 seconds), word (3 seconds), recall (30 seconds), speak (120 seconds), and rating
subjective questionnaire.

narrate their recalled experience for 120 seconds which was audio-recorded. At the end of each trial, they were asked to
report their subjective experiences related to the recalled memory using the SAM scale, and the MEQ-SF in VR.

4 METHOD

In this section, we first describe the methods used to analyse recalled experiences, and physiological signals. Next, we
introduce the machine learning workflow including data preparation, feature selection, classification algorithms, model
evaluation, parameter tuning, and training procedures.

4.1 Analysis of Recalled Experiences

The audio recordings of the recalled memory experiences were transcribed automatically using otter.ai5 and further
edited manually to match the recordings. The transcripts were coded according to a coding scheme with variables of
emotional valence (negative, positive, and neutral) and memory type (autobiographical and non-autobiographical).
A transcribed experience was coded as non-autobiographical if it was not a specific experience and had no personal
relevance (e.g., commentary on a witnessed event or other people). The coding scheme included two emergent codes
from examining the transcripts: (1) if the experience contained ‘mixed valence’ (combination of more than one type of
valence, e.g., negative and positive), and (2) if the experience had an overall valence that was ‘inconsistent’ with the
intended valence of the cued word (e.g., experience coded as having negative valence for the neutral word, ‘hardwork’).

4.2 Physiological Analysis

First, any sudden motion peaks and general drift in EDA, PPG, and Pupil data were removed using visual inspection or
an eye-balling technique. We used the Neurokit2 python package6 for EDA and PPG processing and analysis. For EDA,
5https://otter.ai/
6https://neurokit2.readthedocs.io/en/latest/index.html
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we downsampled the data to 4 Hz, and decomposed the signals into fast-changing (Phasic) and slow-changing (Tonic)
components [25]. Our analysis used the calculated total peak numbers (EDA-PN) and mean peak amplitudes (EDA-PA)
of the EDA signals. We converted PPG data to HRV measures using Neurokit2. As our recall and no-recall data was for
30 seconds each, we considered only the measures relevant to ultra short-term HRV measurement norms (<5 minutes
data) such as RMSSD, SDNN, High Frequency relative power in normal units (HFnu) (0.14—0.4 Hz).

For pupil responses and eye-movement analysis, we extracted measures related to pupil diameter and blinks. The
pupil diameter was calculated from the eye tracker’s “Pupil Size” data. We followed the pupil analysis pipeline for
GazeR [22] and implemented it in Python [11]. The first step was “deblinking” the data by removing missing pupil size
data (when values were -1.0) and removing data during low “Eye Openness” (when values were < 0.6). Next, we applied
a Hanning Window moving average filter (window size of 5) to smooth the data and applied cubic-spline interpolation.
Finally, artefacts and outliers were filtered out using a Hampel filter (window size of 10, implementation code7) and a
subtractive baseline correction was applied. Blink count and blink duration were calculated from the eye tracker’s “Eye
Openness” and “Timestamp” data.

4.3 Machine Learning Workflow

We extracted 12 EDA features (peak numbers (EDA-PN), amplitudes (EDA-PA), 10 statistical features (e.g., mean, median
and maximum)) but by framing a sliding 10-seconds window data with 5-seconds overlapping to provide the most
complete information possible to the machine learning model to predict accurately. We decided on sliding window
size through hit and trial method to determine the smallest window size with best cross-validation accuracy. First, to
understand if we can recognize when the participant was recalling AM, we considered a two-class “AM recall detection”
problem with No AM recall (the state when no AM was recalled) and AM recall (the state when the participant saw
the word and trying to recall self-relevant memory associated with the word) as classes. Then, to understand if we
can recognize if the AM being recalled is positive, negative or neutral valence, we used three-class “Emotions in AM
detection”. Next, we considered this as a two-class and three-class recognition problem of differentiating between No
AM recall (the state when no AM was recalled) and AM recall. We labelled the data with the target classes as 0-No
AM recall and 1-AM recall for AM recall recognition. For Emotion in AM recognition, we labelled the target classes
as 0-Neutral, 1-Positive, and 2-Negative, but modified the classes based on the analyzed recalled AM’s emotion. For
example, even if the cue word was of neutral valence, but if the recalled AM was positive, we assigned it as 1 for positive.

For feature reduction, we standardized the data and applied Principal Component Analysis (PCA) with a variance
threshold to 95% as it helps in dimensionality reduction by selecting principal components that best characterises
the dataset while keeping the information loss to the lowest. This also helped us in listing down the features that
contributed to the relevant principle components with high variance. We randomly split our data into 70% training and
30% test sets per participant for personalized classifiers and from overall data for the generalized ones.

We evaluated the classification performance of 4 classifier algorithms namely, K-Nearest Neighbor (KNN), Random
Forest (RF), Support Vector Classifier (SVC), Naive Bayes (NB) and lastly ensemble classifier (EC). For EC, we stacked a
set of base-level estimators (KNN, RF, SVC, and NB) to get their average prediction but with reduced variance. For every
machine learning algorithm, we trained two models, a generalized model that used the data from all the participants,
and a personalized model that used the data from a specific participant. We selected the best model by performing
7https://towardsdatascience.com/outlier-detection-with-hampel-filter-85ddf523c73d
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10-fold random stratified cross-validation on training data and used exhaustive grid search approach to identify the
best hyper-parameters matching set.

5 RESULTS

This section reports on the results from the experiment data analysis into four parts. First, we report the results of our
analysis of the recalled experiences. Then, we report on the subjective questionnaire data gathered from the participants.
Next, we report the physiological measurements including EDA, HRV, and pupil responses. Finally, we describe our
findings of detecting emotional autobiographical memory recall through machine learning algorithms.

Overall, our key findings are:
• Recalled experiences were mainly autobiographical (265 out of 287) with 22 having ‘mixed valence’ and 47 being
‘inconsistent’ with intended valence. Our analysis of physiological measures and machine learning algorithms
were updated based on these results.

• Subjective SAM-Valence and MEQ-SF valence ratings corresponded to the intended valences with significant
differences between all valences. There were significant differences in SAM-Arousal ratings between emotional
(positive and negative valence) and neutral valences. Subjective MEQ-SF ratings showed significant difference
in vividness between emotional (positive and negative valence) and neutral valences, in accessibility between
negative and neutral valences, and in emotion ratings between all valences.

• Physiological measures: EDA peak number and amplitude were higher, HRV measures of RMSSD and HFnu
were lower, pupil diameter and blink count were higher, while blink duration was lower in recall condition
compared to no-recall condition.

• AM Recall Detection through machine learning attained generalized recognition accuracy of 77.1% and person-
dependent accuracy of up to 95.1%. Emotion in AM Detection through machine learning attained generalized
recognition accuracy of 50.3% and person-dependent accuracy of up to 70.7%.

5.1 Recalled Experiences

We collected 287 audio recordings of recalled memory experiences. Most of the experiences were autobiographical (n =
265). However, 22 were non-autobiographical, for example, “...being loved is [a] very nice and powerful thing. Because it

kind of gives you some solid ways to place [sic] [and] to engage with someone and also do something because you know it’s

something we’re feeling (...).” (P2, positive word, ‘Loved’). This was more of a commentary on the feeling of being loved
than an autobiographical experience of feeling loved. Only the physiological data associated to the autobiographical
experiences were used in our analysis of physiological measures.

We found that 22 experiences had ‘mixed valence’. For example, “...It was a result announcement day from my high

school (...) So I was so afraid before the result was announced (...) I ended up getting a decent mark and I was then happy

about it [sic] (...).” (P6, negative word, ‘Afraid’). The valence indicated in this experience was negative at the start and
positive in the end. The physiological data associated to these experiences were excluded from our analysis to avoid
confounding the results.

There were 47 recalled experiences which were ‘inconsistent’ with the intended valence of the cued word. An
example would be P7 describing a positive experience for ‘Fast’, a neutral word, “...we used to go go-karting with people

from work, and I enjoy how fast I’m driving this go-kart ... Though we’re not supposed to crash into each other but it was

still fun (...).” These experiences were re-labelled to the coded valence before we conducted the physiological measures
analysis.
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*: p<0.05; **: p<0.01; ***: p<0.001

Questionnaire Category

SAM Valence *** χ² (2) = 97.975, p<0.001 Z = -7.812, p<0.001 Z = -4.877, p<0.001 Z= -7.086, p<0.001

χ² (2) = 8.615, p = 0.013 Z = -0.174, p = 0.862 Z = -2.557, p = 0.011 Z= -2.508, p = 0.012

χ² (2) = 10.347, p = 0.006 Z = -0.398, p = 0.691 Z = -2.568, p = 0.01 Z= -3.134, p = 0.002

χ² (2) = 25.084, p<0.001 Z = -1.788, p = 0.078 Z = -2.963, p = 0.003 Z= -4.545, p<0.001

χ² (2) = 107.512, p<0.001 Z = -8.243, p<0.001 Z = -3.776, p = 0.218 Z= -7.23, p<0.001

SAM Arousal *

Vividness **

Emotion ***

MEQ-SF Valence ***

Overall Main Effect Positive- Negative Positive- Neutral Negative- Neutral

Positive Negative Neutral Vividness **

MEQ-SFSAM
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Time 
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SensoryVisual

Emotion ***

MEQ-SF 
Valence ***

1

2

3

4
59

8

7

6

5

4

3

2

1
1 2 3 4 5 6 7 8 9

SAM - Valence ***

SA
M

 -
 A

ro
us

al
 *

Fig. 4. [Left: Self-Assessment Manikin (SAM)] Average valence and arousal of the perceived emotional states during positive, negative,
and neutral AM recall. [Right: Memory Experience Questionnaire - Short Form] Average vividness, accessibility, time perception,
sensory, visual, emotion, and MEQ-SF valence associated with Positive, Negative, and Neutral AM. [Bottom Table] Statistical analysis
results of SAM-Valence, Arousal, MEQ-SF vividness, emotions, and MEQ-SF valence indicating main and interaction effects.

5.2 Subjective Measures

Three hundred post-trial subjective responses (15 trials x 20 participants) were recorded and analysed. These responses
includes the "Self-Assessment Manikin" (SAM) with valence and arousal as perceived emotional dimensions, and
"Memory Experience Questionnaire - Short Form" (MEQ-SF) with vividness, accessibility, time perspective, sensory,
visual, emotion, and valence dimension of the recalled autobiographical memory. First, we used Shapiro-Wilk test [72]
to determine if the data is normally distributed i.e. p-value more than 0.05. We identified our subjective data to be
non-parametric (not-normally distributed) and based on the within-subject experiment design with three emotional
valence (positive, negative, and neutral) as repeated measures, we used Friedman test [73] to understand its effect. For
the measures with Friedman test reporting main effect i.e. p-value < 0.05, we used Wilcoxon signed-rank test [14] for
pairwise comparison between positive, negative, and neutral AM recall conditions.
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5.2.1 Self-Assessment Manikin (SAM) Ratings. SAM - Valence and SAM - Arousal ratings were not normally distributed
(Shapiro-Wilk test, 𝑝<.05). Friedman tests showed significantmain effect of emotional recall (i.e. positive, negative,
and neutral) on valence (𝜒2 (2)=108.07, 𝑝<.001), and arousal scale (𝜒2 (2)=10.23, 𝑝=.005). Post-hoc analysis with
Wilcoxon signed-rank tests revealed significant differences in valence ratings between positive and negative
(𝑍=14.62, 𝑝<.001), positive and neutral (𝑍=5.72, 𝑝<.001), and negative and neutral (𝑍=−10.69, 𝑝<.001). There were
significant differences in arousal ratings between positive and neutral (𝑍=2.48, 𝑝=0.014), and negative and
neutral (𝑍=2.45, 𝑝=.015), but not between positive and negative (𝑍=0.19, 𝑝=.844). The mean (standard deviation, SD)
valence ratings for positive, negative, and neutral emotional recall were 7.04 (SD = 1.68), 3.3 (SD = 1.85), and 5.8 (SD =
2.03) respectively. Mean (SD) arousal ratings for positive, negative, and neutral recall were 5.37 (SD = 2.41), 5.35 (SD =
2.55), and 4.57 (SD = 2.34) respectively.

5.2.2 Memory Experience Questionnaire - Short Form (MEQ-SF). Vividness (1: not vivid, 5: very vivid): There was
a significant main effect on vividness (𝜒2 (2) = 10.47, 𝑝 = .005). There were significant differences between
positive and neutral (𝑍=2.17, 𝑝=.03), and negative and neutral (𝑍=2.96, 𝑝=.003), but no significant difference
between positive and negative valences (𝑍=−0.30, 𝑝=.76). Mean (SD) ratings for positive, negative, and neutral were
3.78 (SD = 0.93), 3.82 (SD = 0.76), and 3.48 (SD = 0.89) respectively.

Accessibility (1: not accessible, 5: very accessible): There was a significant main effect on accessibility (𝜒2 (2) =
7.96, 𝑝 = .018). There were significant differences between negative and neutral (𝑍=2.87, 𝑝=.004), no significant
difference between positive and negative (𝑍=−0.62, 𝑝=.53) and positive and neutral (𝑍=1.43, 𝑝=.15); Mean (SD) ratings
for positive, negative, and neutral were 3.6 (SD = 1.12), 3.7 (SD = 0.86), and 3.4 (SD = 0.96) respectively.

Time Perspective (1: memory of event was vague, 5: memory of event was clear): There were no significant
differences (𝜒2 (2)=.75, 𝑝=.68) in time perspective ratings between valences for emotional recall. The mean (SD) ratings
for positive, negative, and neutral recall were 3.34 (SD = 0.943), 3.33 (SD = 0.94), and 3.30 (SD = 0.965) respectively.

Sensory (1: memory did not involve strong sensory information, 5: memory involved strong sensory information):
There were no significant differences (𝜒2 (2)=1.53, 𝑝=.23) in sensory ratings between valences for emotional recall. The
mean (SD) ratings for positive, negative, and neutral recall were 3.33 (SD = 0.84), 3.38 (SD = 0.83), and 3.20 (SD = 0.72)
respectively.

Visual (1: memory was recalled from an observer’s perspective, 5: memory was recalled from own perspective):
There were no significant differences (𝜒2 (2)=0.89, 𝑝=.64) in visual ratings between valences for emotional recall. The
mean (SD) ratings for positive, negative, and neutral recall were 3.53 (SD = 0.85), 3.59 (SD = 0.86), and 3.5 (SD = 0.78)
respectively.

Emotion (1: memory did not evoke intense emotions, 5: memory evoked intense emotions): There was a significant
main effect on emotion ratings (𝜒2 (2) = 31.39, 𝑝 < .001). There were significant differences between positive
and negative valences (𝑍=−2.02, 𝑝=0.04), positive and neutral (𝑍=3.52, 𝑝<.001), and negative and neutral (𝑍=5.89,
𝑝<.001). Mean (SD) ratings for positive, negative, and neutral were 3.37 (SD = 1.01), 3.6 (SD = 0.94), and 2.95 (SD = 1.00)
respectively.

Valence (1: memory was negative, 5: memory was positive): There was a significant main effect on valence
ratings (𝜒2 (2) = 123.63, 𝑝 < .001). There were significant differences between positive and negative valences
(𝑍=17.11, 𝑝=< 0.001), positive and neutral (𝑍=4.42, 𝑝<0.001), and negative and neutral (𝑍=−12.85, 𝑝<.001). Mean
(SD) ratings for positive, negative, and neutral were 4.16 (SD = 0.86), 2.1 (SD = 0.89), and 3.6 (SD = 0.97) respectively.
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5.2.3 Relationship between Emotional AM (MEQ-SF) and Elicited Emotional States (SAM). In order to determine the
relationship between the emotional states of AM i.e. MEQ-SF-Valence and elicited emotional states (SAM-Valence)
during the AM recall, we performed Spearman’s rank-order correlation test for non-parametric data. This reported
a strong positive correlation (𝜌 = 0.49, 𝑃 <0.001). We also attempted to find any correlation between the MEQ-SF
Emotion characteristic with SAM-Valence and SAM-Arousal emotional dimensions to determine any relationship
between emotions associated with the memory and the elicited emotions while recalling those memories. Spearman’s
rank-order test reported a strong positive correlation between MEQ-SF Emotion and SAM-Arousal (𝜌 = 0.401, 𝑃 <0.001),
but no correlation between MEQ-SF Emotion and SAM-Valence (𝜌 = 0.005, 𝑃 =0.96). We didn’t find any correlation
between MEQ-SF Valence and SAM-Arousal (𝜌 = 0.139, 𝑃 =0.190).

5.3 Physiological Measures

For physiological measures analysis, we first tested the normal distribution of the EDA, HRV, and Pupil data using
Shapiro-Wilk test and found all of the features to be non-parametric (p<0.05). Next, we were interested in understanding
the impacts of emotional AM recall on physiology, i.e. two conditions - recall vs no-recall. Due to the non-parametric data
and two conditions, we used Wilcoxon signed-rank test on physiological data. We were also interested in investigating
the impact of positive, negative, and neutral AM recall on physiology. So, after testing the data normality using Shapiro-
Wilk test, we found the data to be non-parametric. We used Friedman test for the repeated measures (positive, negative,
and neutral) followed by Wilcoxon signed-rank test for pairwise comparison.

5.3.1 Electrodermal Activity (EDA) . The EDA features were not normally distributed (Shapiro-Wilk test, 𝑝<.001).
Wilcoxon signed-rank tests showed that EDA-PN (Median = 4.0, SD = 17.2) and EDA-PA (Median = 0.15, SD =

2.05) in the recall condition were significantly higher than in the no-recall condition (EDA-PN : Median = 2.0,
SD = 11.35, 𝑍=−11.5, 𝑝<.001; EDA-PA: Median = 0.08, SD = 2.3, 𝑍=−2.26, 𝑝=.024).

Friedman tests showed a significant effect of emotional (positive, negative, and neutral) AM recall on EDA-PA

(𝜒2 (2)=7.31, 𝑝=.025) but no effect on EDA-PN (𝜒2 (2)=2.96, 𝑝=.23). However, post-hoc analysis with Wilcoxon signed-
rank tests and Bonferroni correction for EDA-PA showed no significant differences between negative and neutral
(𝑍=−2.15, 𝑝=.03), positive and negative (𝑍=0.82, 𝑝=.41), and positive and neutral valences (𝑍=−1.28, 𝑝=.20); Negative:
Median = 0.16, SD = 0.78; Neutral: Median = 0.21, SD = 2.89; and Positive: Median = 0.10, SD = 1.96.

5.3.2 Heart Rate Variability (HRV). The HRV features were not normally distributed (Shapiro-Wilk test, 𝑝<.05).
Wilcoxon signed-rank tests showed that RMSSD (Median = 42.7, SD = 59.0) and HFnu (Median = 0.485, SD

= 0.22) in recall condition were significantly lower than in the no-recall condition (RMSSD: Median = 45.0,
SD = 63.7, 𝑍=−4.80, 𝑝=.01; HFnu: Median = 0.976, SD = 0.07 , 𝑍=−9.25, 𝑝<.001). There was no significant difference in
SDNN (𝑍=−1.93, 𝑝=.63) between recall (Median = 53.2, SD: 39.9) and no-recall (Median = 69.1, SD = 47.6). Friedman
tests reported no significant effect between positive, negative, and neutral memory recall on RMSSD (𝜒2 (2)=.81, 𝑝=.66),
SDNN (𝜒2 (2)=.27, 𝑝=.87),

and HFnu (𝜒2 (2)=.64, 𝑝=.72); Positive (RMSSD: Median = 54.32, SD = 63.44; SDNN : Median = 53.82, SD = 30.7; HFnu:
0.49, SD = 0.23); Negative (RMSSD: Median = 67.96, SD = 77.3; SDNN : Median = 62.0; SD = 39.24; HFnu: 0.49, SD = 0.22);
and Neutral (RMSSD: Median = 54.4, SD = 73.7; SDNN : Median = 73.2; SD: 36.6; HFnu: Median = 0.46, SD: 0.22).

5.3.3 Pupil Responses and Eye Movement. The pupil and eye movement features were not normally distributed (Shapiro-
Wilk test, 𝑝<.001).
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Wilcoxon signed-rank tests showed that the mean pupil diameter (PD) and blink count were significantly
higher in the recall condition compared to the no-recall condition; Mean PD:𝑍=−4.80, 𝑝<.001, Recall Median =
3.23, Recall SD = 0.55, No-Recall Median = 3.11, No-Recall SD = 0.54; blink count: 𝑍=−4.875, 𝑝<.001, Recall Median =
8.0, Recall SD = 6.53, No-Recall Median = 6.0, No-Recall SD = 5.55).Mean blink duration for the recall condition
was significantly lower than the no-recall condition; 𝑍=−4.88, 𝑝<.001, Recall Median = 0.188, Recall SD = 0.10,
No-Recall Median = 0.22, No-Recall SD = 0.14).

A significant main effect of positive, negative, and neutral emotional recall on blink count (𝜒2 (2)=6.25, 𝑝=.044) was
reported by Friedman tests. No effect was found for mean PD (𝜒2 (2)=0.26, 𝑝=.77) and mean blink duration (𝜒2 (2)=3.13,
𝑝=.21).

Post-hoc analysis with Wilcoxon signed-rank tests on blink count showed no significant differences between positive
and negative (𝑍=−1.17, 𝑝=.24), positive and neutral (𝑍=−1.54, 𝑝=.13), and negative and neutral valences (𝑍=−0.18,
𝑝=.86); Negative: Median = 9, SD = 6.9, Neutral: Median = 9, SD = 6.5, and Positive: Median = 8, SD = 6.4.

5.4 Machine Learning Detection of AM Recall and Emotion

5.4.1 AM Recall Detection. For the personalized models to recognize if the autobiographical memory is being recalled
or not, we separated participant-wise data and followed the machine learning workflow to train and test the classifiers.
After 10-fold cross-validation (CV) on the train data, we evaluated our models on test data with a total average score of
86.9% for all the participants’ individual best models with a maximum of 95.1% and a minimum of 76.9% score. Out of 20
participants’ models (individual AM recall detect CVS can be seen in table 1), 13 got a score between 80-90% with an
average of 86.95%, 4 got a score above 90% with an average of 93.3%, and 3 got between 70-80% with an average of 77.8%.
We also found that EC provided the best score in 17 participant’s testing data whereas RF for 2, and KNN for 1 of the
participants. For the generalized models, we used all the participant data for training and testing the classifiers. After
10-fold CV, EC performed better than other models with a CV Score of 77.1%. Through PCA on the overall training data,
we found that ‘Mean Absolute Deviation’, ‘Peak Number’, and ‘Maximum Absolute Amplitude’ features were more
important than others as these have larger absolute scores on the highly relevant components.

5.4.2 Emotion in AM (EAM) Detection. The 10-fold CV on the personalized classifier models to identify if the recalled
experience is of positive, negative or neutral valence reported an overall average CV score of 70.68% with a maximum
of 84.1% and minimum of 60.3%. As shown in table 1, 10 out of 20 participant’s models performed between 70-80%
with an average of 73.99% whereas 9 were between 60-70% and 1 above 80% with an average score of 65.52% and
84.1% respectively. For EAM detection, RF performed better than others for 12 participants, KNN for 7 and SVC for 1.
KNN performed better for the generalized EAM detection technique with a CV score of 50.3%. ’Maximum Absolute
Amplitude’, ’Peak Number (EDA-PN)’, and ’Amplitude (EDA-PA)’ features reported higher absolute scores through PCA
suggesting to be more important than others.

6 DISCUSSION

Investigating H1 (recalling emotional autobiographical memories in virtual reality elicits similar perceived emotional
responses), we analyzed self-reported subjective responses i.e. SAM and MEQ-SF to understand the emotional AM
and respective elicited emotional states. We first focused on learning if the emotional words used as stimuli helped in
recalling emotional AM. The significant difference in recalled memory’s perceived emotion and valence characteristics
suggests that positive, negative, and neutral valence words helped in recalling corresponding emotional memories. The
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Table 1. Cross-Validation Score (CVS) of the participants for Autobiographical Memory Recall Detection (AM Detection), and
Emotions in AM Recall (EAM Detection). [EC: Ensemble Classifier, KNN: K-nearest Neighbor, RF: Random Forest, SVC: Support
Vector Classifier]

Participant ID AM Detection EAM Detection
CV Score (%) Classifier CV Score (%) Classifier

1 88.2 EC 66.4 RF
2 77.9 EC 61.5 SVC
3 76.9 KNN 69.9 RF
4 93 EC 60.3 RF
5 87.6 EC 76.9 KNN
6 92.1 EC 71.8 RF
7 85.4 EC 74.6 KNN
8 85.5 EC 75.2 RF
9 93 RF 84.1 RF
10 78.6 RF 65.2 KNN
11 87.5 EC 72.1 KNN
12 88.2 EC 62.8 RF
13 95.1 EC 74.6 RF
14 88.2 EC 68.5 RF
15 86 EC 68.6 RF
16 84.3 EC 66.5 RF
17 87.7 EC 79.4 RF
18 89.1 EC 72.6 KNN
19 87.8 EC 70.3 KNN
20 86.2 EC 72.4 KNN

Generalized 77.1 EC 50.3 KNN

negative emotional memories were easily remembered as compared to neutral ones and were of stronger emotions
as compared to both positive, and neutral words which resonates with the studies in conventional laboratory setting
[51, 62, 77]. We also found that the emotional AM (i.e. positive, or negative words) are recalled vividly as compared to
the the neutral words aligning with previous findings in non-VR studies [13]. The strong positive relationship between
valence of the memory being recalled and elicited perceived valence suggest that positive AM recall tends to elicit
positive emotional experience and vice-versa in virtual reality. These insights support H1 highlighting the notion that
emotional past memories contribute in the emotion construction during the experience in virtual reality and could help
in improving the emotion recognition classifiers if considered contextually.

The physiological analysis on EDA, HRV, and Pupil data was performed to address H2 (Positive, negative, and
neutral autobiographical memory recall in virtual reality have a significant effect on the physiological emotional
states measured using electrodermal activity (EDA), heart rate variability (HRV), and pupil responses). An increase in
physiological arousal can be inferred from the higher EDA peak number and EDA mean peak amplitude [42, 76], lower
HRV RMSSD and HRV HFnu [10, 27], and increase in pupil diameter and blink count [20] during emotional AM recall
as compared to the no-recall condition. As we found a strong positive correlation between self-reported emotional
arousal and emotions of the AM, indicating emotions associated with past memories affect perceived emotional intensity
during the recollection, we can expect the increase in physiological arousal. Additionally, an increase in mean EDA
amplitude during emotional AM recall aligns with results from previous work [67]. However, we didn not find any
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significant change in physiology between positive, negative, and neutral emotional AM recall. This partially contradicts
our subjective measure for arousal (SAM-A) and the physiological arousal results from previous work [30, 67] that
showed significant differences between positive and neutral, and negative and neutral memories. A possible reason
could be that the previous study [30] allowed a longer time for participants to recall (up to 90𝑠) than our study (30𝑠)
allowing them to experience longer emotional experiences. Another reason for no significant change in physiology
could be that the emotional words chosen were on the similar arousal scale with only valence scale varied even for
neutral words. This should be further investigated by selecting the words with varied arousal emotional dimension.
Overall, our study results supported H2 partially with emotional AM recall being able to show significant effect on
physiological emotions, but failed to demonstrate significant difference between positive, negative, and neutral AM
recall.

At last, to test H3 (The recall of emotional autobiographical memories can be reliably classified into binary-label
(recall/no-recall), and multi-label (positive/ negative/ neutral) classes using physiological information such as EDA) we
used basic supervised machine learning techniques. Through personalized binary-label classifier, we investigated if we
can detect word-induced autobiographical memory recall using physiological information such as EDA. We achieved a
cross-validation score (CVS) or accuracy of up to 95.1% with an overall average CVS of 86.9% and maximum participant’s
model providing a CVS between 80-90%. Our generalized Ensemble classifier achieved a 77.1% CVS. This suggests that
our method performs well enough to be considered an effective method for detecting if the participant is recalling an
autobiographical memory after reading a word in Virtual Reality. Our results also proposed Mean Absolute Deviation,
Peak Number (EDA-PN), and Maximum Absolute Amplitude EDA features to strongly contribute to the AM Recall
detection for most of the participants’ models.

Next, we explored the detection of emotional valence in autobiographical memory recall induced by text-stimuli in
VR using multi-label classifier i.e. positive, negative, and neutral on EDA data. The personalized classification reported a
CVS of up to 84.1% with 70.68% overall average CVS across all participants’ models. A total of 19 out of 20 participant’s
models achieved between 60-80% CVS. Our generalized KNN classifier performed best with 50.3% CVS. These results
indicate medium accuracy in predicting positive, negative or neutral EAM for personalized machine learning models.
High absolute scores of Maximum Absolute Amplitude, Peak Number (EDA-PN), and Amplitude (EDA-PA) EDA features
suggested being highly relevant in detecting whether the recalled autobiographical memory is of positive, negative or
neutral valence in VR. These results support H3 suggesting the possibility of automatic recognition of emotional AM in
virtual reality.

6.1 Summary of Contributions

The primary objectives of this study were to (1) investigate any relationship between recalled emotional autobiographical
memory in VR and perceived emotional responses, (2) explore any relationship between emotional autobiographical
memory in VR and physiological signals, and (3) determine if physiological signals can help in detecting when someone
is recalling a self-relevant experience after reading text in VR and if it can also detect the emotional states associated
with it. In order to investigate this, we asked three research questions. We sum up our answers to the questions based
on our findings here:

RQ1:What is the relationship between emotional autobiographical memory recall and elicited emotions in VR?
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A1: The strong positive relationship between valence of the memory being recalled and elicited perceived valence
suggest that positive AM recall tends to elicit positive emotional experience and vice-versa in virtual reality.

RQ2: How does the recalled emotional AM impacts the physiological signals such as EDA, HRV, and pupil responses in VR?

A2: During AM recall in VR, we found that the EDA peak number (EDA-PN) and mean amplitude (EDA-PA) increased,
HRV measures of RMSSD and HFnu decreased, pupil diameter and blink count increased, and blink duration decreased.
However, we found no statistically significant differences in the physiological signals between the different valences.

RQ3: How can we detect if the experience being recalled is autobiographical memory using physiological signals?

A3: Higher and consistent performance of our method in detecting if the participant is recalling a autobiographical
memory in VR which seems effective and promising. A significant effect of AM Recall on EDA-PN reported to answer
RQ1 also supported our method. It was also one of the important features contributing to higher accuracy along with
Mean Absolute Deviation, and Maximum Absolute Amplitude EDA features.

RQ3a: How can we detect if the autobiographical memory being recalled in VR elicits positive, negative or neutral valence
emotional states?

A3a: This study allowed us to test the ability of our method to detect emotional states induced during the autobio-
graphical memory recall through textual cues. It encourages the use of EDA as a modality to recognize the EAM during
recall, which is demonstrated for the first time in VR as far as we know. EDA features such as Maximum Absolute
Amplitude, Peak Number (EDA-PN), and in particular, Amplitude (EDA-PA) strongly contributed to the EAM Detection
models. EDA-PA being an important feature is also supported by the answer to RQ2 showing a significant effect of
emotions associated with autobiographical memory being recalled. This concept paves the way for future investigations
in detecting emotional states associated with past experiences recall in VR.

7 POTENTIAL APPLICATIONS

The automatic detection of whether the user is recalling their past information and the information about the associated
emotions opens a plethora of applications to provide more personalized and empathetic systems as well as interactions
in VR.

Language Learning System: A direct application of words-based emotional autobiographical memory recall detection
could be a personalized second language learning system in VR that exploits the knowledge that a specific word
has emotional past memory associated with it. The physiological sensors within the system could be further used to
understand learners’ cognitive and affective states (e.g. engagement and cognitive load during learning) and enable
adaption of learning content accordingly [75]. It provides more empathetic and engaging interactions while promoting
effective vocabulary acquisition.

Reflection and Therapy: Another application would be in supporting reflection — reviewing of past behaviour to
enable learning from past experiences and reframing of self-identity. This would be beneficial as autobiographical
memories are highly connected with self-identity. Systems could enable positive reframing of traumatic events through
therapy. Previous research has used emotional AM recall in various therapies such as memory rehabilitation therapy for
Alzheimer’s patients, Eye Movement and Desensitization and Reprocessing (EMDR) therapy for people with emotional
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distress, and VR-based exposure therapy for social anxiety. With information on when the patient is recalling their
past experience and its emotional state, these therapies can be designed to be adaptive. This also provides a feature to
automatically emotion-tag the past experience implicitly while the patient is engaged in the virtual therapy session.

Reminiscence: Reminiscing in VR, which usually involves recalling positive memories, has been proven to reinforce
the positive emotion and promote emotion regulation. This research can contribute towards a real-time adaptive VR
system exploiting the directive function (i.e., using past experiences to decide on current and future activities). This
vision also aligns with Pizolli’s Personalized VR [60], that takes information about relevant life events of the user
and uses it to render virtual content (e.g., objects) to provide a more relaxing experience, consequently enhancing
well-being.

8 LIMITATIONS AND FUTUREWORK

One of the primary drawbacks in investigating the different emotional autobiographical memory recall was the absence
of a wider range of different emotion triggering words. Previous research [79] has suggested that arousal plays an
important role in AM retention, so for our future works, we would like to include higher emotional intensity stimulus
cues such as images, video and 3D graphics. Although the results indicated that using EDA, HRV, pupil responses, and
eye movements could provide promising results, we plan to expand on the sensors used by using Electroencephalogram
(EEG) for memory recall as proposed by previous research [33]. This preliminary research is exploring emotional
word cues as stimulus to retrieve AM in VR by replicating conventional laboratory based Autobiographical Memory
Test (AMT). In order to further explore the potential of VR, we plan to use more immersive and interactive virtual
environments towards identifying emotional AM. Our emotional autobiographical recall prediction model achieved
comparatively less cross-validation score. One of the reason could be the imbalanced emotion data as we had to relabel
the data based on the emotions of the recalled AM which were inconsistent with the intended emotion. Another reason
could be less data resulting in inaccurate models. To deeply investigate this we would be collecting more data in future.

9 CONCLUSION

In this paper, we examined the effects of AM recall and emotional AM recall on physiological signals such as EDA,
HRV, and pupil response in VR and investigated the automatic recognition of emotional AM recall. Specifically, we
tested AM recall vs No recall and positive, negative, and neutral emotional AM recall in VR using an Autobiographical
Memory Test (AMT) by showing emotional words in VR while recording their EDA, HRV and pupil data. For emotional
words, we used 5 positive, negative, and neutral words each combining for a total of 15 trials for each participant. After
every trial, we asked the participants to complete the Self-Assessment Manikin (SAM) scale and Memory Experience
Questionnaire - Short Form (MEQ-SF) subjective questionnaires to collect their perceived emotional and memory
experience information. Later, we modeled the AM recall and emotions in AM recall with the collected EDA data to
develop recognition system.

Our results show that AM recall has a positive impact on EDA peak number, EDA mean peak amplitude, HRV
Standard Deviation of NN intervals (SDNN), HRV relative High Frequency band power in normal units (HFnu), mean
pupil diameter (mean PD), blink count, mean blink duration, maximum blink duration, and standard deviation (SD) blink
duration compared to the condition when the participants were not recalling memories. Only maximum blink duration,
and SD blink duration reported a significant effect of emotional AM recall i.e. positive, negative, and neutral emotional
experiences. Our AM Detect system achieved a generalized accuracy of 77.1% and person-dependent accuracy of up to
95.1%. Generalized accuracy of Emotion in AM detection was 50.3% and person-dependent of up to 70.7% However, our
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results also imply the potential improvement points for the used emotional words to be of varying intensity. These
issues will be addressed in the future work along with investigating more physiological sensors such as EEG.
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