
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Pérez-Delgado, Carlos A (2022) A Quantum Software Modeling Language. In: Quantum
Software Engineering. Springer International Publishing Cham, pp. 103-119.

DOI

Link to record in KAR

https://kar.kent.ac.uk/97519/

Document Version

Pre-print

A Quantum Software Modeling Language

Carlos A. Pérez-Delgado

Abstract In this chapter we will discuss the development of a quantum software
modeling language.Webegin by discussing the need for a quantum-specificmodeling
language, and why existing ‘classical’ modeling languages may not be properly
suited for the task of modeling quantum software. We then proceed with a discussion
of the fundamental principles, or axioms, that any such modeling language should
adhere to.We then present ‘Q-UML’ a quantum softwaremodeling language based on
the popular Unified modeling Language (UML). We conclude with some examples
of Q-UML that showcase the expressive power of the language, as well as the
importance of the aforementioned principles.

1 Introduction

Modeling languages are useful tools for designing, discussing, and presenting new
software, hardware and complete systems. Software modeling languages, in particu-
lar, have been so useful that they can be partially credited with transforming the dis-
cipline of computer science. Software modeling has helped CS to grow from a solely
mathematical research area in the mid-twentieth century, to a multi-disciplinary
field that spans the entirety of the theory to end-product spectrum, employs millions
worldwide, produces ubiquitous and pervasive technology, and has revolutionized
every aspect of the human experience in the beginning of the twenty-first century.

The key insight behind software modeling in particular, and software engineering
in general, is that as long as any one person is required to understand the entirety
of a project, the complexity of projects that can undertaken by homo sapiens will
be severely curtailed. The keys to surpassing said limitations are encapsulation and
abstraction. Together these allow large groups of humans to collaborate on projects
whose complexities are too high to be understood by any one person alone.

Carlos A. Pérez-Delgado
University of Kent, Canterbury, Kent, UK, e-mail: c.perez@kent.ac.uk

1

2 Carlos A. Pérez-Delgado

It is thus natural to expect quantum software modeling to similarly help quantum
computation in its evolution. Today, quantum computation is studied and devel-
oped almost exclusively by very highly-trained specialists: mostly mathematicians,
computer scientists, quantum chemists, and theoretical and experimental physicists.

If quantum information technologies are to achieve even a fraction of the ubiquity
of their classical brethren, then the stage must be opened to a broader set of profes-
sionals. To achieve this, it will be necessary to be able to understand, and discuss,
quantum software without having to delve down to the (atomic) details. Software
engineers today do not (usually) develop, discuss, or analyze their work at a level
of abstraction that includes half-adders, flip-flops, let alone voltages or resistances.
Similarly, we will need a language that allows us to discuss quantum software that
does not concern itself with Hamiltonians, unitary gates, or even quantum circuits.

In the year 2021 there aren’t many, if any, large-scale quantum software projects.
So it may seem premature to develop a quantum software modeling language. This
brings us to next reason why software modeling languages are important: they act as
an intuition pump. Language can indeed influence our ability to craft new ideas[2],
and not just communicate them effectively[3]. All computer scientists are familiar
with how different programming paradigms and their associated languages allow
us think about and tackle problems in different ways. All physicists are similarly
familiar with Dirac notation, and Feynman diagrams. And most mathematicians will
be equally fluent in category and type theories—all to name but a few examples.

Software modeling languages have been amply credited as powerful intuition
pumps in the past. Software modeling, and more generally software engineering has
had a large measurable influence of lower abstraction level research in computer
science, such as programming languages[7]. It therefore stands to reason that the
development of a proper quantum software modeling language can also help in the
development of lower abstraction level tools—like quantumprogramming languages.

What then does a ‘proper’ quantum software modeling language look like? That
is the topic of the next section.

2 Fundamental Axiom of Quantum Software Engineering

A software modeling language is, above all, a language.As such, its utility is directly
proportional to the square of the number of people that ‘speak’ it. Therefore, while
it may have some benefits, one should resist the temptation to start completely anew
when developing a quantum software modeling language. On the contrary, it is
quite clear that in order to derive the maximum possible value of a new quantum
softwaremodeling language one should aim tomake it as close as possible to existing
classicalmodeling languages.We can explicitly state this requirement as the first part
of our Fundamental Axiom of Quantum Software Engineering: quantum software
engineering should be as similar to classical software engineering as possible.

Is it possible then that a specific quantum software modeling language may be
entirely superfluous, and a purely classical one would suffice? No. Quantum software

A Quantum Software Modeling Language 3

x1

x2

(a) Classical Logic Circuit

|x1〉 H U

|x2〉 H

|x3〉 U

1

(b) Quantum Circuit

Fig. 1: Two logic circuits depicting, each depicting a software program. The one on
the left is classical logical circuit, whereas the one on the right is a quantum circuit.
Note how, at least superficially, there is little to tell each one apart.

and classical software,while theymay sharemany important similarities, are different
in fundamental ways. More importantly, they are different in fundamental ways that
need to be reflected in a design document. In the section we will discuss exactly how
so.

Before we consider how they are different, however, let us first consider how
quantum and classical software are similar or even the same. What sets quantum
software apart from its classical counterpart is, of course, the use of quantum al-
gorithms. However, despite the name, quantum algorithms are not, in themselves,
quantum objects. Consider Fig. 1. Part A shows a classical algorithm, while Part
B shows a quantum algorithm. In both cases we have an ordered set of operations,
taken from a larger set, that are applied to some data called the input.

What distinguishes classical circuit from quantum circuits are two things. The
first is the set of permissible operations. Classical gates are usually taken to come
from a standard set of universal logical bit operations, such as {AND, NOT}, or
simply {NAND}. Quantum gates, on the other hand, are taken from a universal set
of unitary operators, such as {CNOT, H, S, T}.

The second distinction is deeply connected to the first (and is what gives rise
to the operator disparity): quantum and classical algorithms (and software) operate
on different types of information. This is both an obvious and a subtle point. It is
obvious that quantum algorithms (and software) operate on quantum information,
while classical algorithms (and software) operates on classical information.

As a software engineer, this distinction can be treated much in the same way
that other, more traditional, data-type distinctions are treated. In traditional software
engineering it would not be uncommon to deal with modules that, say, operate on
string or integer types. Specifying that a function/module/method takes as input
a string rather than an integer is a well understood design decision.

However, in classical software engineering this distinction is completely artificial.
There is, fundamentally, no real distinction between a string and an integer. Both
are merely an ordered set of bits. It is true that we often create an abstraction layer, on
top of bits, that contains objects such as strings and integers, each such object
with its set of permissible operations, and so on. However, this abstraction is there
only for the benefit of the programmer or software engineer.

4 Carlos A. Pérez-Delgado

Quantum information, on the other hand, is fundamentally different from classical
information. Fundamental laws of physics dictate different sets of permissible oper-
ations for each. Quantum information can be put in superposition, classical informa-
tion cannot. Classical information can be cloned or copied, quantum information—in
general—cannot. While quantum information can be converted to classical informa-
tion and vice versa, the operation is constrained to following fundamental physical
laws, such as the Born rule and is often an unavoidably lossy conversion1.

Hence, the software engineer’s decision to have a module/function/etc. operate
on quantum or classical information is a fundamental one. And, it has inmense reper-
cussions. Quantum information can only be stored in a quantummodule, operated by
a quantum module, and can only be sent/communicated to other quantum modules.
And these are all fundamental requirements, rather engineering limitations. Even if
quantum computers become as cheap and easy to operate as classical ones, for the
reasons stated above, it will always be necessary to distinguish the use of classical
from quantum information in a software design document.

This brings us to the the second part of the Fundamental Axiom of Quantum
Software Engineering which we can now state in full: quantum software engineering
should be as similar to classical software engineering as possible, but no more.

•! Fundamental Axiom of Quantum Software Engineering

Quantum software engineering should be as similar to classical software engineering as
possible, but no more.

In the next section we discuss precisely how quantum software modeling needs
to be different from classical.

3 Design Principles for a Quantum Software modeling Language

In the previous section we discussed the fundamental axiom behind our approach
to software modeling, and software engineering in general. In this section we will
describe a set of guiding principles that we argue are both necessary and sufficient
for a quantum software modeling language to achieve the aforementioned central
axiom.

We will introduce five design principles. Each principle establishes a way in
which quantum software modeling must differentiate itself from classical software
modeling. For each principle, we will discuss why it is an essential feature of a
quantum software modeling language. Finally, we will make the argument as to why

1 For a full discussion on the nature of quantum information, please see a proper introductory text,
such as Nielsen & Chuang’s classic ‘Quantum Computation and Quantum Information’[5].

A Quantum Software Modeling Language 5

these are the only five ways in which a quantum software modeling language should
differentiate itself from a classical one.

From here forth we will adopt the language of object-oriented design when
appropriate. This is to ensure a consistent nomenclature throughout this chapter, and
because we will be extending an existing classical object-oriented software modeling
language in the next section.

Quantum Classes Whenever a software module makes use of quantum informa-
tion, either as part of its internal state/implementation, or as part of its interface,
this must be clearly established in a design document.

The first and most obvious requirement is the proper labelling of modules or
classes. As discussed in the previous section, whether a particular module is classi-
cal or quantum is an important design consideration, with important ramifications.
A quantum module will operate on quantum information, using quantum func-
tions/methods. It will need to run on quantum hardware that allows for the storing
of said quantum information, and is capable of executing said quantum operations.
Classical modules do not have any of these requirements.

While classical modules can be, in general, run on the same quantum hardware
as the quantum modules, not doing so offers several strong advantages.

As such, it must be explicitly specified in any design document.
Below we will discuss some guidelines that are helpful to a software designer

when deciding whether a particular module is classical or quantum.

Quantum Elements Eachmodule interface element (e.g. public functions/methods,
public variables) and internal state variables can be either classical or quantum,
and must be labelled accordingly.

Quantum Variables Each variable should be labelled as classical or quantum.
If the model represents data types, the variables should also specify the
classical (e.g. integer, string) or quantum (e.g. qubit, qubit array, quantum
graph state) data type,

Quantum Operations For each operation, both the input and output should
be clearly labelled as either classical or quantum. Whether the operation
internally operates quantumly should also be labelled.

On a more basic level, data (variables) and operations that act on the data, are,
as discussed at length in the previous section, either classical or quantum. Quantum
information can generally only be stored in a quantum variable. And, while classical
information can be stored in a quantum variable, this would be both wasteful and
overly restrictive if the information to be stored is known to always be classical (e.g.
while the information could be potentially cloned, since it is classical, the design
document would imply that, in general, it cannot.)

Likewise, software operations (functions, methods) are either meant to operate
on classical or quantum data, and are in general, not interchangeable. As such, it is
important to label what kind of data the function takes as input, and produces as
output.

6 Carlos A. Pérez-Delgado

Quantum Supremacy A module that has at least one quantum element is to be
considered a quantum software module, otherwise it is a classical module.
Quantum and classical modules should be clearly labelled as such.

One of themajor considerations of any quantum software design is whichmodules
are to be quantum, and which are classical. This principle states, in accordance with
the central axiom stated in the previous section, that a module is to be quantum if
and only if it contains quantum elements.

Stated differently, a quantum module can contain both classical and quantum
(interface) elements. A classical module can only have classical elements. A mod-
ule having only classical elements will always be a classical module unless it is
‘upgraded’ by the next principle: quantum aggregation.

Quantum Aggregation Any module that is composed of one or more quantum
modules will itself be considered a quantum module, and must be labelled as
such.

Similarly to the ‘quantum supremacy’ principle, if a software module aggregates
(is composed of) at least one quantum module then it itself will also be labelled as
a quantum module.

It could be argued that the previous two principles ought to be treated as a single,
more general, principle: if a module uses quantum information, in any way, as part
of its implementation then it is to be considered a quantum module. Otherwise, it is
a classical one.

There are two reasons to state the two principles separately. First, in most software
modeling languages, aggregation is considered and represented in separate and
distinct ways from other internal elements. Fig. 3 gives an example of how aggregated
sub-modules (sub-classes) are represented differently from other internal elements
in both the quantum software modeling language Q-UML, and the original modeling
language upon which it is based, UML.

A second important reason is that it allows us to explicitly make the distinction
between aggregation, and communication, which is the next principle discussed.

Quantum Communication Quantum and classical modules can communicate with
each other as long as their interfaces are compatible, i.e. the quantum module
has classical inputs and/or outputs that can interface with the classical module.

In classical software engineering there are two different ways in which two distinct
modules can interact. The first one is the aforementioned aggregation. This occurs
when one module is subsumed as part of another module. The second is commu-
nication. This allows two separate modules (classes) to work together without one
being an internal part of the other.

In classical software engineering there is really little distinction between the two.
In either case, there are two modules that need to be aware of each other’s interfaces,
and are expected to couple or work well together. The major consideration for a soft-
ware engineer when deciding whether class B is an internal class of A, or both classes
A and B merely communicate with each other is whether packages/modules/classes

A Quantum Software Modeling Language 7

other than A need to be aware of class B. If none do, then it makes sense to hide class
B as an inner, aggregated, class of A.

In QSE there is another, more important, consideration. As noted earlier, a quan-
tum class is one that makes use of quantum resources. It is important to note whether
or not a class is quantum because that determines, among other things, what type of
hardware resources are needed to run the module.

Let us suppose that class A is (otherwise) classical, and B is intrinsically quantum.
By making B an aggregated internal class of A, the software engineer is making the
implementer of class A responsible for any and all quantum resources incurred by
class B. In short, the designer is making the statement that quantum hardware and
resources are needed to implement A. Hence, although A has no quantum elements
of its own, it itself becomes a quantum class.

In contrast, if the designer chooses to make both A and B distinct classes that
merely communicate with one another, then class A can be implemented/run on fully
classical hardware. Any communication between A and B must then happen through
purely classical communication channels—given that A is classical it has no quantum
interfaces and can therefore neither send nor receive quantum information messages.
Class B is then responsible for transforming any quantum information meant for class
A into classical (generally via measurement).

This consideration goes well beyond the differentiation between module aggrega-
tion and communication in classical software engineering; and it is a clear example
of how and when QSE needs to go beyond its classical counterpart.

This concludes our discussion on the fundamental principles behind quantum
software modeling language design. We present all five principles on page 8 for easy
reference.

The principles discussed in this section are the immediate consequences of pre-
cisely two things. The first is the maxim we introduced in the previous section:
that quantum software engineering should differ from classical software engineer-
ing only inasmuch as is absolutely necessary. The second is the intrinsic nature of
quantum information, and its fundamental features that distinguish it from classical
information.

These principles can—and we argue should—be applied when developing any
kind of quantum software modeling language, regardless of its level of formality, or
mathematical rigor. In the following section we will put these principles into practice
with the presentation of a particular quantum software modeling language: Q-UML.

4 Q-UML

In this section we present Q-UML. Q-UML is an extension of the Unified modeling
Language (UML) that allows it to properly model quantum software. It was first
introduced, alongside several other ideas covered in this chapter, at the Quantum
Software Engineering Workshop, of the ACM/IEEE International Conference on
Software Engineering (ICSE) 2020[6].

8 Carlos A. Pérez-Delgado

•! Quantum Software modeling Language Core Design Principles

Quantum Classes Whenever a software module makes use of quantum information, either as part
of its internal state/implementation, or as part of its interface, this must be clearly established
in a design document.

Quantum Elements Each module interface element (e.g. public functions/methods, public vari-
ables) and internal state variables can be either classical or quantum, and must be labelled
accordingly.

Quantum Variables Each variable should be labelled as classical or quantum. If the model
represents data types, the variables should also specify the classical (e.g. integer, string)
or quantum (e.g. qubit, qubit array, quantum graph state) data type,

Quantum Operations For each operation, both the input and output should be clearly labelled
as either classical or quantum. Whether the operation internally operates quantumly
should also be labelled.

Quantum Supremacy A module that has at least one quantum element is to be considered a
quantum software module, otherwise it is a classical module. Quantum and classical modules
should be clearly labelled as such.

Quantum Aggregation Any module that is composed of one or more quantum modules will itself
be considered a quantum module, and must be labelled as such.

Quantum Communication Quantum and classical modules can communicate with each other as
long as their interfaces are compatible, i.e. the quantum module has classical inputs and/or
outputs that can interface with the classical module.

UML was chosen as the ‘base’ classical modeling language for this first quantum
modeling language for two closely-related reasons. The first is that UML is an
exceptionally easy to learn and use software modeling language, requiring very little
training and background knowledge to understand. The second is its consequently
large user base. By using UML as our basis, we can easily focus on developing and
discussing the quantum extensions.

These extensions aim to minimally change base UML. A direct line can be drawn
from each change to base UML to principle discussed in the previous section. The
changes are also implemented in a way as to make Q-UML maximally backwards
compatible with base UML. The goal is that for a purely classical piece of software,
both the UML and Q-UML models ought to be identical. And, indeed, that is the
case.

It did not, however, have to be this way, nor is this a direct result of the principles
detail in the previous section, or the maxim (axiom) from two sections past. The
first QSE principle discussed in the previous section states that quantum classes
(modules) and classical ones need to be differentiated from one another. In Q-UML
we choose to make that distinction by presenting classical classes just as they would
appear in base UML, and adding new notation for quantum classes.

A Quantum Software Modeling Language 9

4.1 UML

UML (base) is a visual language, that represents and models software via dia-
grams. UML is agnostic with respect to programming languages tools, platforms,
and software development processes. That said, UML is an object-orientedmodeling
language.

As its name suggests, UML attempts to be usable in any complex system design
and engineering. In many such systems software may be merely a small component
of the overall whole. There are in total 14 different types of UML diagrams, split
into two general categories: structure and behavior diagrams.

Structure diagrams are used to model and represent the static elements of a
(software) system. The seven structure diagram types are: class, package, object,
component, profile, composition structure, and deployment.

Behavior diagrams are used to model and represent the dynamic elements of a
(software) system. The seven behavior diagram types are: state machine, use case,
activity, sequence, interaction overview, communication, and timing. These last four
are commonly referred to as interaction diagrams.

Of these fourteen diagram types, the most widely used (and hence important)
diagrams are: use case, class, object, state machine, sequence, and activity diagrams.

Use case diagrams are used to specify the functionality of a (software) system.
Class and object diagrams, as their names suggest, show the classes and objects of
the system, including their internal members, and their relationships (inheritance,
aggregation, communication) with each other. State-diagrams are used to represent
the intra-object dynamics of the software system. Activity diagrams represent the
general logical and control flow of the entire system2.

4.2 Q-UML Extensions

Following the aforementioned QSE axiom and our design principles, all Q-UML
diagrams are identical to (base) UML diagrams, except for one thing: all instances
of quantum information, whether it is being stored, communicated, or processed,
are to be clearly labelled as such. Since UML is a graphical language, the Q-UML
extensions are also graphical.

Generally speaking, there are two ways in which UML presents information in its
diagrams. The first is pictorially. Classes and objects are represented by rectangles,
in class/object diagrams, and their relationships to one another are represented
via connecting lines/arrows/etc. The second is via text, usually used as labels. For
instance, the names of classes and objects, and the internal members of either.

2 There are many good introductory texts to UML. That said, the text ‘UML @Classroom: An
introduction to object-oriented modeling’ by Seidl et. al.[9] is not only excellent, it happens to
cover in-depth precisely the UML diagrams discussed here.

10 Carlos A. Pérez-Delgado

Fig. 2 Q-UML use case di-
agram of Shor Application.
Note how any use case of the
software that requires quan-
tum resources (in this case, all
of them) is distinguished by
use of a double-line.

Shor Application

Hacker

Mathematician

Break RSA

Factor Large
integer

<<include>>

uc Shor Application

Quantum information can represented either pictorially, or textually in Q-UML.
When it represented textually, quantum information will be typeset in bold font, to
distinguish it from classical. When quantum information is represented pictorially,
double lines will be used to set it apart.Whenever possible, both bold font and double
lines are used to represent quantum objects/processes/etc. This covers the syntax of
Q-UML.

As for the semantic rules, these follow from the previously discussed principles.
All static structures and dynamic processes in Q-UML are by default classical.
A static structure (e.g. class) is set to quantum if and only if it a) directly stores
quantum information, or b) one of its constituent structures (a variable, aggregated
class, etc.) stores quantum information. Likewise, a dynamic structure (e.g. process)
is quantum if and only if it is itself a quantum information process, or one of its own
sub-processes is a quantum information process.

The rules are best presented through example. For this purpose we present
Shor Application: a quantum software implementation of the well-known Shor’s
algorithm[10]. This software system would have obvious applications in cybersecu-
rity: Shor’s algorithm can be used to easily break RSA2048 encryption. Of course,
there are other more benign applications: factoring large integers is useful in many
number-theoretic, combinatorial, and optimization problems. There are likely many
more use cases for this software system, but we can focus on these two and provide
a Q-UML use case diagram that details them—see Fig. 2.

Use case diagrams in Q-UML are a bit subtle and slightly different from other
diagrams in their portrayal of quantum information resources. Obviously, human
actors (users of the system) cannot be quantum in nature3. Further, no quantum
communication is sent to/from the user. Rather, the double-lines in the use case

3 Putting aside any philosophical discussions about the quantum nature of the Universe; here we
use quantum as a shorthand for non-classical, or coherent information.

A Quantum Software Modeling Language 11

Euclidean

-aValue:int
-bValue:int

+evaluateGCD()

Get the greatest
common factor (GCD)
of aValue and bValue.-N:int

+factor():int

Given an integer N,
find one of its prime
factors.

ShorFactor

1

1

1

-N:int
-a:int

Obtain a finite order r
which is the smallest
positive integer such
that a^r = 1 mod N.

ShorOrder

Performs a quantum
Fourier transform on
the input state over the
group GF(2^n)

QFT_n

-?:qint

+get-QFT(): qint
+get-QFT-inv(): qint

Performs a quantum
Fourier transform,
and/or its inverse, on
the input state over the
group G. The group is
set by subclass.

QFT

-N:int

ShorApplication

m

+start()

+orderFind(): int

cd Shor Application

Fig. 3: Q-UML class diagram of Shor Application. Quantum classes and elements
are presented in bold text, while quantum classes and relationships use double-lines.

diagram are meant to denote the use of quantum resources, by the software system,
in satisfying the use case requirements.

A more common portrayal of quantum information in Q-UML is in class and
object diagrams, which we discuss next.

4.2.1 Class and Object Diagrams

Class (object) diagrams in Q-UML, as in base UML, denote not just classes (ob-
jects) in the software system but also their internal elements, and the relationships
(communication, aggregation, inheritance) between them.

Fig. 3 showcases a Q-UML class diagram of our Shor Application. We can use it to
showcase the rules as they apply to both class and object diagrams. Shor Application
makes use of six classes—five of them quantum. The class Euclidean is the only non-
quantum one. The classes ShorApplication, ShorFactor, ShorOrder, and QFT_n
are all quantum. Note how their names are all typeset in bold to emphasize this fact.
The class QFT is both quantum and abstract; as such, its name is typeset in both

12 Carlos A. Pérez-Delgado

Fig. 4 Q-UML state diagram
of an object of class QFT_n.
One can tell immediately
that both represented states
are quantum states, and the
transitions between them
are mediated via quantum
operators, due to the use of
bold text and double-lines.

Computational
Basis State

State Initialization

QFT Fourier Basis
state

QFT Inverse

bold and italics. The later following the (base) UML rule to italicize abstract class
names.

Finally, note how for all quantum classes the border of the rectangle denoting the
class uses a double line. This is a departure from the previous version of Q-UML[6],
which used only bold typeface to denote quantum classes.

This change was made for three reasons. The first reason is consistency. Q-UML
has—essentially—two syntactic rules, one for pictorial and one for text representa-
tions. Since classes in class diagrams (and objects in object diagrams) are represented
in both ways (a rectangle and a name), it makes that they follow both sets of rules.

The second reason is readability and clarity. It is common for the class names to
be typeset with a slightly larger font than class elements. Merely using bold typeface
for quantum classes may not be clear or readable enough in some conditions.

Third, the use of double-lined borders for quantum classes does not seem to add
much visual clutter. Hence, both mentioned advantages can be achieved without any
discernible disadvantage.

Bold text is also applied to class members. Any attributes that store quantum
quantum information will have their name typeset in bold. Representing quantum
methods is slightly more complex. If any of the inputs are quantum, these are bold.
If the output or datatype of the method is quantum, then the datatype should also be
bold. For backwards compatibility with regular UML, whenever the input or output
datatypes of a method are omitted, these will be assumed to be classical in nature. In
accordance with the previously established rules, if a class/object has any quantum
attributes or methods then it itself is considered quantum. In this case, its name shall
also be bold, and its border will use double-lines.

Finally, relationships between classes follow the same rules, using double-lines
whenever the relationship is quantum in nature. For inheritance, if the superclass is
quantum then the subclass, and the inheritance relationship, will also be quantum—
however, the converse is not necessarily true. In the case of aggregation and compo-
sition, if a class/object being aggregated/composed is quantum, then the class/object
to which it is aggregated/composed into, as well as that relationship will also be
quantum.

In contrast to the above, association relationships do not have any special rules.
Two classes can communicate together regardless of whether one, both, or neither is
quantum. However, a classical class cannot (as already established) have the capacity
to receive, send, or store quantum information. Hence, any communication between
a quantum and a classical class must be through purely classical channels.

A Quantum Software Modeling Language 13

Receive Input
N

Pick
pseudo-random
number a < N

calculate
gcd(exp(a,r/2)±1,N)

find period r of
f(x) = a^x mod N

Compute g=
gcd(a, N)

[g = 1]

[r isOdd or exp(a,r/2) ? -1 mod N]

[r isEven and
exp(a,r/2) ? -1 mod N]

[g > 1]

Fig. 5: A Q-UML activity diagram for Shor Application, showing an overview of the
logical control flow of the program. The sole quantum operation is displayed using
a double-lined border, and bold text.

All of these rules translate directly to objects, their members and relationships,
in object diagrams. Next, we move onto the features of behavior Q-UML diagrams.

4.3 Activity and State Diagrams

Much in the same way that class and object diagrams are so closely related that they
merit being discussed together, so do activity and state diagrams. However, while
state and object diagrams are so similar that presenting one is sufficient to understand
both, activity and state diagrams have subtle and important difference between them
in Q-UML. Hence, it is important to detail them both with examples. Fig. 4 presents
a state diagram of an object belonging to the class QFT_n. Fig. 5 presents a flowchart
of the main algorithm followed by Shor Application.

Both follow the same basic rules: quantum information states and processes are
denoted through the use of bold text and double-lines.

In our state diagram (Fig. 4), we have two quantum states: a computational basis
state, and a Fourier basis state. Each are properly denoted as being quantum states.
The operation that transforms one into the other is necessarily a quantum operator.

14 Carlos A. Pérez-Delgado

Hence, the transition between both states—the arrows—are denoted as quantum
states through the use of double lines.

Now consider the activity diagram in Fig. 5. Once again, the only quantum
operation—the period-finding step—is properly denoted as a quantum operation
through the use of both double-lines and bold text. However, note the complete lack
of double-lined arrows throughout the diagram. Why is this the case?

In Q-UML diagrams, as in base UML, activity diagrams represent multi-step
processes. Each rectangle (node) represents an activity. And the arrows merely
denote the passing of control from one logical activity to the next. Unlike in state
diagrams, where arrows denote operations or processes that can be either classical or
quantum, in activity diagrams they denote the flow of control. It would be a category
error to even attempt to classify these as either classical or quantum.

This relates back to the discussion in Sec. 2 on Page 2. While algorithms may
operate on classical and/or quantum information, the algorithms themselves—the
logical flow-control of a program—are always classical objects.

Next, we discuss sequence diagrams in Q-UML.

4.4 Sequence Diagrams

Sequence diagrams in Q-UML, like in base UML, allow us to portray the dynamic re-
lationship between modules in a software program. Fig. 6 shows a Q-UML sequence
diagram for Shor Application.

Like before, we make use of bold text and double-lines to portray quantum
information textually and pictorially. Names of quantum classes, and the labels of
quantum messages are typeset in bold. The arrows depicting quantum messages use
double-lines.

In another departure from the original version of Q-UML[6] we now also have
the borders of quantum classes, their lifelines, active objects and threads using
double-lines. Once again, this change was made for consistency, and readability.

Note that although the relationship between Shorfactor and ShorOrder is quan-
tum, the messaging between them is not. A module is marked as quantum if it uses
quantum resources in any form, either directly as part of its internal implementation
or as part of an aggregated module. If an aggregated sub-class is quantum, then
the encompassing class must also be marked as quantum. In a class diagram, the
quantum composition relationships inform us—especially in the case of a seemingly
classical module that does not in itself use quantum resources—which composed
modules are using quantum resources.

Also, note the communication between the objects ShorOrder and QFT_n. The
moduleQFT_n operates on a quantum state.Hence, both ‘set’messages are quantum.
Likewise, the return messages ρ and ρ′ are quantum states. However, the request to
perform a quantum Fourier transform (QFT) or a QFT inverse operation can (and
therefore must) be communicated classically. This diagram showcases the level of
granularity available to us using these diagrams with the proposed extensions.

A Quantum Software Modeling Language 15

Loop

sd Shor Application

Alternative

:Shor App

User

:ShorFactor

start
setN(N)

factor()

a

:Euclidean

evaluateGCD()

set-A-N(a,N)

GCD

[r isOdd or exp(a,r/2) ? -1 mod N]

[if GCD(a,N) ? 1]

a

[else]

:ShorOrder

set-A-N(a,N)

:QFT_n

 set(|0?)

 set(|? ?)

r

factorqN

 ?

get-QFT-inv-|? ?

 ?´

get-QFT-|0?

Fig. 6: Q-UML sequence diagram for Shor Application. Once again, bold text and
double-lines are used to represent quantum classes/objects, their lifelines and threads,
and quantum communication between them.

4.5 Discussion and Further Reading

Q-UML, its design principles, and the axioms upon which those are built were first
introduced at the Quantum Software EngineeringWorkshop of the IEEE/ACM 42nd
International Conference on Software Engineering, in 2020[6, 1]. This was among
the first major international events centered around quantum software engineering.

QSE is still a very young field. Q-UML—and the work surrounding—has been
from its inception an attempt to shape the future direction of this field. At its core,
Q-UML is what it says it is: a modeling language for quantum software. Hopefully,
it will become a pragmatically useful one: used in the design, development, and
discussion of complex quantum software. This chapter serves as an introduction, for
the working quantum software engineer, to Q-UML.

Hopefully, Q-UML will also serve as a template for further QSE development.
Q-UML is a testbed for the axiom put forth in Sec. 2. If Q-UML succeeds as a
modeling language it will prove the utility of said axiom, and the design principles
that spawn from it. Regardless of the speed of adoption of Q-UML as a practical
tool, its development serves one other purpose: to spark a useful discussion about the

16 Carlos A. Pérez-Delgado

direction of QSE research and development. There is already some positive evidence
of this happening[1, 4, 8].

In short, this is a very interesting and exciting time for the field of quantum
software engineering. Many interesting discoveries and developments await those
willing and able to search them out. Q-UML is work in one possible direction in this
field. But it is also an attempt to argue how work in any direction in this new field
should be conducted. For example, development of a formal specification language
for quantum software (something that Q-UML is certainly not) could also be based on
the same axiom/principles as Q-UML. And so, hopefully, the contents of this chapter
are useful to any researcher doing work in this field, regardless of the direction they
wish to take.

Acknowledgements The author would like to acknowledge funding through the EPSRC Quantum
Communications Hub (EP/T001011/1). The author would like to thank Hector Perez-Gonzalez for
his valuable work, knowledge, and insight, during the collaboration that gave birth to Q-UML, and
would also like to thank Joanna I. Ziembicka for useful comments during the preparation on this
manuscript.

References

1. Abreu, R., Ali, S., Yue, T.: First international workshop on quantum software engineering (q-se
2020). ACM SIGSOFT Software Engineering Notes 46(2), 30–32 (2021)

2. Jackendoff, R.: How language helps us think. Pragmatics & Cognition 4(1), 1–34 (1996)
3. Mercer, N.: Words and minds: How we use language to think together. Routledge (2002)
4. Moguel, E., Berrocal, J., García-Alonso, J., Murillo, J.M.: A roadmap for quantum software

engineering: Applying the lessons learned from the classics. In: Q-SET@ QCE, pp. 5–13
(2020)

5. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
6. Pérez-Delgado, C.A., Perez-Gonzalez, H.G.: Towards a quantum software modeling language.

In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, pp. 442–444 (2020)

7. Ryder, B.G., Soffa, M.L., Burnett, M.: The impact of software engineering research on modern
progamming languages. ACM Trans. Softw. Eng. Methodol. 14(4), 431–477 (2005). DOI
10.1145/1101815.1101818. URL https://doi.org/10.1145/1101815.1101818

8. Sánchez, P., Alonso, D.: On the definition of quantumprogrammingmodules. Applied Sciences
11(13), 5843 (2021)

9. Seidl, M., Scholz, M., Huemer, C., Kappel, G.: UML@ classroom: An introduction to object-
oriented modeling. Springer (2015)

10. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In:
Proceedings 35th annual symposium on foundations of computer science, pp. 124–134. IEEE
(1994)

