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Abstract

Existing approaches for 2D pose estimation in videos of-
ten require a large number of dense annotations, which are
costly and labor intensive to acquire. In this paper, we pro-
pose a semi-supervised REinforced MOtion Transformation
nEtwork (REMOTE) to leverage a few labeled frames and
temporal pose variations in videos, which enables effective
learning of 2D pose estimation in sparsely annotated videos.
Specifically, we introduce a Motion Transformer (MT) mod-
ule to perform cross frame reconstruction, aiming to learn
motion dynamic knowledge in videos. Besides, a novel re-
inforcement learning-based Frame Selection Agent (FSA) is
designed within our framework, which is able to harness in-
formative frame pairs on the fly to enhance the pose estima-
tor under our cross reconstruction mechanism. We conduct
extensive experiments that show the efficacy of our proposed
REMOTE framework.

Introduction
Human pose estimation, which aims to estimate human body
joint locations in image coordinates, is a challenging yet
fast-growing research area with wide applications in vari-
ous fields. Nowadays, the explosive growth of online videos,
driven by the ubiquity of mobile devices and sharing activi-
ties on social media, demands effective and efficient pose es-
timation approaches (Nie et al. 2019; Zhang et al. 2020) that
can make use of information in videos in a data-driven man-
ner. However, collecting a large scale video dataset with per-
frame human pose annotations is often labor intensive and
time consuming, limiting the practical scale of such datasets
and the development of deep learning-based models.

Instead of collecting fully-labeled videos, a possible rem-
edy would be to craft algorithms to learn from limited la-
beled data, or more practically, sparsely labeled videos,
where temporal information could be additionally leveraged
to pass the supervision signal to the unlabeled frames for
training the pose estimation networks. PoseWarper (Berta-
sius et al. 2019) was proposed to propagate pose information
from labeled frames to neighboring unlabeled frames, which
greatly boosted the pose estimation performance. However,
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the information is mainly based on local context without
considering global context in videos. More recently, the
work of (Zhang et al. 2020) proposed a key-frame identi-
fication module and a dynamic dictionary to first infer poses
for a subset of frames, and then interpolate the key poses
to the entire video sequence. However, this method could
suffer when the pose sequence to be interpolated becomes
complex as the pose dynamics-based dictionary formulation
will become challenging.

To effectively exploit the labeled frames and temporal
dynamic information in the sparsely annotated videos, in
this paper, we propose a novel semi-supervised REinforced
MOtion Transformation nEtwork (REMOTE), which con-
sists of three major modules: a Reinforcement Learning
(RL)-based Frame Selection Agent (FSA), a Pose Estima-
tor (PE), and a Motion Transformer (MT). Specifically, we
design MT to conduct cross frame reconstruction based on
paired labeled and unlabeled frames from a video, in which
poses estimated by PE are used to guide the frame recon-
struction process. Hence, MT learns to warp frames based
on the motion dynamics between the current pose and the
target pose, which thus enables PE to learn from both la-
beled frames and unlabeled frames. As a result, under the
direct supervision of the labeled frames and extra supervi-
sion from the video motion dynamics within the reconstruc-
tion process, the capability of PE is enhanced.

However, to enable MT to work effectively, the selected
two frames for performing cross reconstruction need to con-
tain moderate variances. This is because if the two frames
are temporally too close in the video, the cross frame re-
construction will become trivial and thus MT will not be
able to learn motion dynamics sufficiently. In contrast, if
the two frames have overly large motion offsets, it may be-
come infeasible for MT to perform effective reconstruction
for supervising PE. Therefore, we design an RL-based agent
(FSA), guided by a specific reward set, to select informa-
tive frame pairs for MT, in order to push our framework
towards exploring effective motion dynamics and continu-
ously strengthening the pose estimation performance.

Our main contributions are summarized as follows: (1)
A novel REinforced MOtion Transformation nEtwork (RE-
MOTE) is proposed to effectively exploit information from
both labeled frames and temporal variations in sparsely la-
beled videos, resulting in a robust and accurate Pose Estima-



tor (PE). (2) A Motion Transformer (MT) module is intro-
duced to learn motion dynamic knowledge in video frames,
which is imparted to PE. (3) A novel Frame Selection Agent
(FSA) driven by a reward set, is proposed to select infor-
mative frame pairs, effectively improving the capability of
MT and enabling continuous improvement of PE. (4) Ex-
perimental results show that the proposed REMOTE frame-
work trained on sparsely labeled videos even outperforms
many existing models trained on densely labeled videos.

Related Work
Pose estimation. Early works on image-based 2D pose
estimation used pictorial structures (Andriluka, Roth,
and Schiele 2009; Tian, Zitnick, and Narasimhan 2012;
Pishchulin et al. 2013) to represent the keypoints of the hu-
man body. Then the work in (Toshev and Szegedy 2014)
proposed a deep neural network to directly regress the key-
points, while other works (Chen et al. 2018; Xiao, Wu,
and Wei 2018; Jiang et al. 2020) utilized heatmaps to en-
code the locations of human joints. Besides, HRNet (Cheng
et al. 2020; Sun et al. 2019) focused on learning high resolu-
tion representations for pose estimation. Apart from image-
based pose estimation methods, several other works (Insa-
futdinov et al. 2017; Girdhar et al. 2018; Yang et al. 2021)
addressed 2D human pose estimation from videos. A few
works accumulate the temporal information using dense op-
tical flow (Pfister, Charles, and Zisserman 2015; Charles
et al. 2016; Song et al. 2017; Jiang et al. 2021) or pose flow
(Zhang et al. 2018), while more recently, Recurrent Neural
Network (RNN) based methods (Belagiannis and Zisserman
2017; Gkioxari, Toshev, and Jaitly 2016; Lin et al. 2017; Luo
et al. 2018) gained more popularity. Another line of work
(Wang, Tighe, and Modolo 2020; Liu et al. 2021; Huang
et al. 2018; Ruan et al. 2019b,a, 2021) addressed pose es-
timation and pose tracking simultaneously, to better exploit
spatio-temporal information in videos.
Pose estimation in sparsely-labeled videos. Recently, re-
search attention has been drawn to the scenario where
only sparsely annotated pose labels are available in videos.
DKD (Nie et al. 2019) exploited advances in knowledge
distillation to essentially convert the problem of pose es-
timation to pose matching for fast computation. Pose-
Warper (Bertasius et al. 2019) introduced a warping-based
model to warp the features from the unlabeled frames to
the labeled ones, enabling supervised learning on the un-
labeled frames using the existing sparse annotations. In the
work of (Zhang et al. 2020), a keyframe based computation
paradigm was proposed, where the network actively pro-
poses keyframes to query the pose from a pre-trained pose
estimator. The estimated poses were then interpolated to ob-
tain the pose in the remaining frames.

Different from the methods in (Bertasius et al. 2019),
which is restricted to local propagation of the label infor-
mation, and (Zhang et al. 2020), which adopts an interpo-
lation module to infer poses, we propose a novel REMOTE
framework that takes advantage of an RL-based FSA to dy-
namically select informative frame pairs for the MT, to drive
the PE to learn to continuously improve the pose estimation
performance based on the sparsely labeled videos.
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Figure 1: The overview of our REMOTE framework for
training 2D pose estimation model from sparsely-labeled
videos.

Reinforced Motion Transformation Network
We address the problem of human pose estimation from
sparsely labeled videos, where the ground-truth annotations
are only provided every K frames. To effectively exploit the
information from both the few labeled frames and the tem-
poral variations in videos, we propose a REinforced MO-
tion Transformation nEtwork (REMOTE), which consists of
three modules: a Frame Selection Agent (FSA), a Pose Esti-
mator (PE) and a Motion Transformer (MT). Figure 1 shows
the architecture of the proposed REMOTE framework.

In specific, for each labeled frame in the video, FSA
learns to select an unlabeled frame for it. Thus an informa-
tive pair of labeled and unlabeled frames, containing appro-
priate motion offset, is obtained. Then the selected informa-
tive frame pairs are fed to MT, in order to enable our network
to learn from both the information in the labeled frames and
the cost-free temporal dynamic information in the video, via
a semi-supervised learning manner.

Frame Selection Agent (FSA)
The FSA is designed to select the informative frame pairs
to perform cross reconstruction in MT, which is then used
to supervise the training of PE. The frame selection can
be formulated as a Markov decision process as: T =
(st, at, rt+1, st+1). Specifically, we model the FSA with a
DQN (Mnih et al. 2013), where our FSA scores the combi-
nation of the current state st and an action at, and the un-
labeled frame is determined as the state action pair with the
highest score. The FSA then receives a reward rt+1 as how
much improvement the pose estimator E yields by training
on this selected frame pair. The FSA then updates its state st
and moves to the next state st+1.

As shown in Fig. 1, we split the original training dataset
into three disjoint subsets: training set Dt, state set Ds, and
reward set Dr. The FSA learns the policy by playing the
frame pair selection game on Dt. Meanwhile, both Ds and
Dr contain only a small subset of labeled frames, and are
employed for evaluating the current state (i.e., the perfor-
mance) of the PE and the performance gain brought by tak-
ing a specific action. Below we describe the state, action,
and reward formulation in detail.
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Figure 2: Illustration of state representation computation

State Representation Motivated by (Wu et al. 2019,
2020; Wang et al. 2021), the FSA receives information from
the state signal st to make the frame selection decision. To
select appropriate frame pairs, the information fed to the
FSA should contain: 1) current performance of the pose es-
timator (to see how much room the pose estimator E has
for improvement); and 2) global contextual information in
the video (to see where the informative frames might be).
For the performance information, Ds is used to evaluate the
performance of the pose estimator E. To ensure Ds is repre-
sentative enough, we sample Ds to match the distribution of
the original training dataset, and thus the improvement ob-
tained onDs could be transferred toDt successfully. For the
global contextual information, we introduce a global mem-
ory module to encode the pose evolution over time, allowing
FSA to navigate through the temporal information more ef-
ficiently. Besides, the agent needs to know additional infor-
mation about the previously executed actions and the video
sequence to repeat the whole episode of the game. There-
fore, as shown in Fig. 2, we represent the state of FSA at
the time step t as a tuple st = (Bt, Vt, ht), where Bt, Vt, ht
denote performance information, global contextual informa-
tion, and additional information, respectively.

For Bt, we adopt the standard PCK evaluation metric to
measure the performance of the pose estimator (detailed in
Sec 4). The performance is evaluated on the separate state
set Ds to avoid overfitting. Empirically, we notice that the
overall PCK score is not representative enough to encode
the performance. Therefore, we encode the PCK score dis-
tribution for each joint as the performance indicator. Be-
sides, the confidence of the pose estimator is also valuable
for evaluation. Therefore, we use the average max heatmap
response over each joint as another indicator of the perfor-
mance. For Vt, it is necessary to encode the temporal pose
evolution over the video. To this end, we first compute the
pose heatmap features frame by frame. Then a self-attention
mechanism (Vaswani et al. 2017) is used to weighted com-
bine the heatmap features, forming the final global mem-
ory Vt. Finally, ht serves as auxiliary information, which
encodes the index k of the current given labeled frame in the
video, the time window T for limiting the action space, and
the past selected pairs represented as a dictionary of frame
pair’s indices.
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Figure 3: Illustration of action representation computation

Action Representation In our framework, the FSA takes
an action by selecting an unlabeled frame from a pool of un-
labeled frames to pair with the given labeled frame. Note
that the FSA is supposed to select a frame pair with ap-
propriate motion offset. To this end, the action representa-
tion at should encode the motion offset related information.
As shown in Fig. 3, we encode dt, which is the difference
(subtraction) between the estimated pose coordinates from
a candidate unlabeled frame and the ground-truth pose co-
ordinates of the labeled frame, as the main element of our
action representation at. However, since the estimated pose
from the unlabeled frame is not always accurate (particu-
larly at the beginning of the training), the calculated differ-
ence alone is not good enough for encoding the motion off-
set. Therefore, we propose to additionally encode the con-
fidence score Ct of the pose estimated from the unlabeled
frame, i.e., the max heatmap response distribution over each
joint, as another element of at. Finally, we represent the ac-
tion representation as at = (Ct, dt).

To achieve efficient frame selection, we limit each action
in a restricted action spaceA = [tk−T, tk+T ], where tk is
the given labeled frame, and T is the restricted time window.
Based on the well defined action space, our proposed FSA
can not only jump forward to seek future informative frames,
but also go back to re-examine past information.

Reward Function After jointly training the PE and the
MT with the frame pair selected by FSA, the updated PE will
be evaluated on the held-out datasetDr at the tth time step to
get the PCK scores (PCKt). The reward signal is then esti-
mated, by checking if incorporating the newly picked frames
could boost the pose estimation accuracy. To this end, we de-
fine the reward as:

rt = PCKt − max
e∈(0,t−1]

{PCKe}. (1)

According to Eq (1), the FSA is rewarded only when the
newly updated pose estimator outperforms all previous ones.
Otherwise, the FSA receives a penalty proportional to the
drop in accuracy. Therefore, the reward function acts as an
explicit proxy indicating the effectiveness of the selected
frames on the performance of the PE.

Optimization As mentioned above, we employ three dis-
joint splits of the original training dataset (Dt, Ds, Dr) to
tailor the FSA for improving PE. The FSA formulated as a
DQN (Mnih et al. 2013; Casanova et al. 2020) determines
the action based on the Q values of the state-action pair
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Figure 4: Pipeline of jointly training the Motion Transformer
(MT) and the Pose Estimator (PE).

(st, at). The action corresponding to the maximum Q value
is raised, which indicates the index of the selected unlabeled
frame to pair with the labeled frame. The proposed DQN
agent is trained on the Dt and the rewards are computed
on the held-out split Dr. We train the DQN agent based on
the Temporal Difference (TD) error (Sutton 1988), which
is computed based on samples from the experience replay
buffer E :

ET ∼E
[
(yt −Q (st, at;φ))

2
]
, (2)

where yt denotes the TD target.

Pose Estimator (PE)
We adopt the Simple Baseline (Xiao, Wu, and Wei 2018)
with ResNet50 (He et al. 2016) as our baseline pose estima-
tor E. Given a pair of an annotated frame FLBL and an unla-
beled frame FunLBL selected by the FSA, the pose estimator
E infers the poses PLBL and PunLBL correspondingly:

PLBL = E(FLBL);PunLBL = E(FunLBL), (3)

which are then fed to the MT to exploit the dynamic infor-
mation in the frame pair. Note that the pose estimator E is
of our interest after training.

Motion Transformer (MT)
The MT not only learns from the labeled frames but also ex-
ploits temporal dynamic information in the paired frames.
As human motions can have different speeds and ampli-
tudes, the motion offset between the two frames could vary.
If we can model and learn the variety in the motion offset
and pass the knowledge down to the PE, the PE will be
robust and more accurate. Motivated by (Gui et al. 2018;
Hernandez, Gall, and Moreno-Noguer 2019), we propose to
perform cross reconstruction mechanism between the two
selected frames and employ the image level and pose-related
feature level errors as the supervision signals.

Specifically, the MT module is employed to: 1) recon-
struct the labeled frame from its ground-truth pose and the

unlabeled frame; and 2) reconstruct the unlabeled frame
from its estimated pose and the labeled frame. Note that if
this cross frame reconstruction mechanism functions effec-
tively, the estimated pose has to be accurate; Otherwise, the
transform generator will fail to accurately manipulate the
subject in the input frame. Using the estimated pose as a
bridge, it implicitly encourages our pose estimator E to pro-
vide more accurate estimations.

We additionally introduce a ConvNet-based discriminator
to train the MT in an adversarial manner by enforcing more
constraints on the predictions of the MT and consequently
the PE. The discriminator estimates if a given pose and a
generated person image are a match, based on: 1) the qual-
ity of the input image; and 2) if the pose of the subject in
the image matches the given pose. The discriminator further
promotes the accuracy of our pose estimator E.

Transform Generator Inspired by the recent advances in
pose guided person image generation (Ma et al. 2017; Zhu
et al. 2019), we employ a similar pose guided transform gen-
erator in our MT. The traditional generators in (Ma et al.
2017; Zhu et al. 2019) take a source image containing a sub-
ject and a target pose as input, and generate a realistic and
appearance consistent image of the source subject in the tar-
get pose. In order to simultaneously utilize the generator’s
ability in modeling motion dynamic knowledge in frame
pairs and generating images which are shape-consistent with
the target poses, we modify the traditional generators and
propose a cross reconstruction mechanism as follows. Given
a frame pair (FunLBL, FLBL), in order to perform the cross
reconstruction mechanism effectively, we first pass the un-
labeled frame FunLBL and the ground-truth pose Pgt of the
labeled frame FLBL through the transform generator to gen-
erate the reconstructed frame F ′LBL. Then, the labeled frame
FLBL and the estimated pose PunLBL of the unlabeled frame
FunLBL are fed to the generator to produce the reconstructed
frame F ′unLBL as follows:

F ′LBL = G(FunLBL, Pgt) (4)

F ′unLBL = G(FLBL, PunLBL). (5)
In addition to the implicit cross reconstruction loss, we

could also add an explicit supervision on the reconstructed
frames by checking if the pose estimated from the recon-
structed frame matches with the one extracted from the ac-
tual frame. As shown in Fig. 4, the reconstructed frames
F ′LBL and F ′unLBL are then fed back to the pose estimator
E, to generate their corresponding pose heatmaps P ′LBL and
P ′unLBL:

P ′LBL = E(F ′LBL);P
′
unLBL = E(F ′unLBL) (6)

Discriminator To obtain more realistic reconstruction and
further encourage the pose transfer generator to faithfully re-
construct frames with poses that match the target poses, a
shape discriminator is introduced. Given a frame (Fi or F ′i )
and the estimated pose Pi, i ∈ {LBL,unLBL}, the discrimi-
nator scores four probabilities on the consistency of the pose
and the input frame:

p
(′)
i = Discriminator([F

(′)
i , Pi]), (7)



where [·, ·] denotes the channel-wise concatenation. pi
scores the original input frame Fi and pose Pi pair, whereas
p′i evaluates the reconstructed frame F ′i and pose Pi pair. By
providing both pose and appearance information as the input
of the discriminator, we encourage the pose transfer genera-
tor to reconstruct more realistic frames while taking care of
the pose consistency of the reconstructed frames.

Loss function To successfully train MT, we need com-
prehensive supervisions at each training stage of our MT.
Firstly, we should exploit the ground-truth labels whenever
possible. We denote this loss as Lgt, which is the mean
square error between the predicted and the ground-truth
heatmaps, and is only defined for the labeled frames:

Lgt =
1

N

N∑
t=1

(||P t
LBL − P t

gt||2 + ||P ′tLBL − P t
gt||2), (8)

where PLBL and P ′LBL are heatmaps estimated from the la-
beled frame FLBL and its reconstructed version F ′LBL, re-
spectively, Pgt is the ground-truth heatmap of the frame
FLBL, and N is the number of labeled frames.

To encourage vivid reconstruction as well as the consis-
tency between the target poses and the pose in the recon-
structed frames, we introduce an adversarial loss:

Ladv = EFi∈F,Pi∈P [log(pLBLpunLBL)]

+ EF ′
i ∈F̂,Pi∈P [log((1− p′LBL)(1− p′unLBL))] ,

(9)

where i ∈ {LBL,unLBL}, and P , F and F̂ denote the dis-
tribution of human pose heatmaps, real and reconstructed
human frames, respectively. We encourage the realistic re-
construction here though it is not our ultimate goal, as it will
help estimate the following pose consistency loss.

The Ladv and Lgt have no direct restrictions on the poses
in the reconstructed frames. To address this issue, we pro-
pose the pose consistency loss Lpose to constrain the poses
of the reconstructed frames to be similar to the estimated
poses of the input frames on a semantic level.

The pose estimator E is utilized again to extract pose re-
lated features from FLBL, F ′LBL, FunLBL, and F ′unLBL at
four intermediate layers of the pose estimator E:

Lpose = EFi∈F,F ′
i ∈F̂

4∑
k=1

∑
i

‖Ek(F
′
i )− Ek(Fi)‖2 , (10)

where i ∈ {LBL,unLBL} and Ek corresponds to the kth
layer feature map of the pose estimator E.

Finally, our complete objective function is defined as the
weighted combination of all the aforementioned losses:

Lfull = λ1Lgt + λ2Ladv + λ3Lpose, (11)

where λi(i ∈ {1, 2, 3}) controls the relative importance of
the three objectives. Empirically, we set the λ1, λ2 and λ3 in
(11) as 1, 0.25, and 0.5. We aim to solve the minimax game:

E∗, G∗ = argmin
E,G

max
D
Lfull. (12)

Training and testing
During training, we use the MPII (Andriluka et al. 2014)
pre-trained pose estimator and Market-1501 (Zheng et al.
2015) pre-trained transfer generator to initialize our pose es-
timator and MT, respectively. This provides a relatively good
accuracy to start with. The training and testing procedure of
our REMOTE framework can be summarized as follows:
1. The state set Ds is used to compute state st for FSA.
2. FSA finds the first labeled anchor frame in the first video
sequence in Dt and generates action at, i.e., proposing an
unlabeled frame F t

unLBL to pair with this labeled frame
F t
LBL with an ε-greedy policy.

3. Given the selected pair, the MT performs cross frame re-
construction and passes the extracted motion knowledge to
improve the pose estimator E by updating its parameters.
4. The reward rt+1 is computed based on the performance
improvement of the E on Dr and then fed to the FSA.
5. The FSA updates its parameters and moves to the next
labeled anchor frame.
6. Repeat steps 1 to 5 until the reward becomes negative for
five consecutive times. Then, the FSA switches to the next
video sequence inDt. The training stops after processing all
the video sequences in Dt.
7. The pose estimator E is evaluated on the test dataset.

Experiments
Datasets. We evaluate our proposed REMOTE frame-
work on two widely used video pose estimation datasets:
Penn Action (Zhang, Zhu, and Derpanis 2013) and Sub-
JHMDB (Jhuang et al. 2013).

Penn Action (Zhang, Zhu, and Derpanis 2013) is a large-
scale unconstrained video dataset containing 2326 video se-
quences of 15 different actions, with 1258 videos for training
and the rest for testing. On average, each video contains 70
frames. We uniformly sample 3 videos from each action cat-
egory in the original training dataset to build the Ds. For the
Dr, we uniformly sample 60 videos (4 videos per action cat-
egory) from the remaining training dataset. The rest (1153
videos in total) is considered as the Dt.

Sub-JHMDB (Jhuang et al. 2013) Following (Nie et al.
2019; Luo et al. 2018; Zhang et al. 2020), we use the subset
of JHMDB (i.e., Sub-JHMDB) to evaluate our method. This
subset contains 316 full-body person videos and 12 different
action categories. 15 body joints are labeled on each frame
excluding invisible joints. Sub-JHMDB has 3 different split
schemes with a training and testing ratio of roughly 3:1. We
train our model separately and report the average results over
three splits. For each split scheme, we uniformly sample 12
videos (1 video per action category) from the corresponding
training dataset to build the Ds. 12 videos are sampled from
the remaining dataset to build the Dr. The remaining videos
are considered as the Dt.
Evaluation Metrics. We measure the performance of the
PE with the standard Percentage of Correct Keypoints
(PCK) (Yang and Ramanan 2013). A joint is considered
to be correct if it lies within a predefined threshold αL,
where α is a scaling coefficient and is conventionally set
to 0.2 while L is the reference distance, which is set to



Method Head Sho. Elb. Wri. Hip Knee Ank. Avg
Baseline, w/o fine-tune 88.5 79.5 72.3 68.9 84.5 78.3 78.0 77.8
Pose Estimator E+Lgt 88.7 79.7 72.6 69.5 84.8 78.7 78.2 78.1
MT+Random 92.2 81.4 73.8 70.5 85.0 79.2 78.9 78.6
MT+Uniform-3 88.9 79.7 73.5 69.7 85.3 78.7 79.1 78.5
MT+Uniform-6 90.3 80.5 74.2 69.8 85.6 78.5 79.3 78.9
MT+Uniform-9 90.1 79.5 73.1 69.4 85.2 77.9 78.8 78.3
MT+FSA - Lgt 88.6 79.9 72.5 69.4 84.9 78.6 78.4 78.2
MT+FSA - Ladv 89.4 80.3 73.2 70.1 85.2 79.7 79.1 78.8
MT+FSA - Lpose 89.0 80.8 74.1 70.4 85.1 80.7 78.8 79.1
MT+FSA 93.8 82.9 76.2 71.3 85.9 81.4 80.3 80.8

Table 1: Ablation study on the frame sampling mecha-
nism and Motion Transformer (MT) losses for Sub-JHMDB
dataset with an average of 7.2 labeled frames per video. The
stricter PCKtorso is used.

L = max(H,W ) in the typical PCKbody setting (Song
et al. 2017; Luo et al. 2018). H and W denote the height
and width of the bounding box containing a person instance.
Following (Nie et al. 2019; Luo et al. 2018), we additionally
adopt the stricter PCKtorso, whose reference distance L is
set to the torso diameter (Luo et al. 2018).
Implementation details. To improve the diversity of train-
ing data, we perform data augmentation following conven-
tional strategies (Zhang et al. 2020; Bertasius et al. 2019).
For the Penn Action, the scaling factor ranges from 0.8 to
1.4 while for Sub-JHMDB it ranges from 1.2 to 1.8. We use
GT bounding box to crop each person and pad to a fixed size
(384 × 384). We use ResNet50 as the backbone of (Xiao,
Wu, and Wei 2018). Following PoseWarper (Bertasius et al.
2019), we assume the labels are available every 5th frame in
the Penn Action and Sub-JHMDB i.e., K = 5. We fix the
half time-window length of the action space to T = 2K for
all datasets, which means the action space of the FSA is 4×
the size of the labeled frame interval.

Ablation Study
In this section, we conduct a series of ablation studies on
the Sub-JHMDB (Jhuang et al. 2013) dataset to analyze the
performance of each component in our proposed REMOTE
framework. We adopt the pose estimator in (Xiao, Wu, and
Wei 2018) with ResNet50 (He et al. 2016) as our backbone,
and gradually add our proposed modules to the backbone.

We first evaluate different frame sampling mechanisms
including our proposed dynamic FSA, the fixed distance
sampling and random sampling on the Sub-JHMDB dataset.
As shown in Table 1, the results of uniformly sampling an
unlabeled frame that is n frames away from the labeled
frame (MT+Uniform-n) demonstrate that uniformly tracing
back for 6 frames (MT+Uniform-6) gives us the best results.
This validates our hypothesis that pairing the given labeled
frame with either a frame that is too close or too far away is
sub-optimal. This is due to the fact that pairing with a frame
that is too close (e.g., MT+Uniform-3) brings almost no mo-
tion offsets, limiting the amount of new information the MT
could capture. While pairing with a frame that is too far
away (e.g., MT+Uniform-9) significantly raises the difficul-
ties of conducting motion transformation, leading to a lower
PCK values in Table 1. We obtain best performance (78.9)

(a) (b)

Figure 5: (a) Performance comparison of sampling mech-
anisms. Our proposed FSA converges after 20K itera-
tions, while Random selection converges at 30K itera-
tions. (b) Comparison on PCKtorso w.r.t the number of
labeled frames. Our proposed method outperforms Pose-
Warper (Bertasius et al. 2019) under any annotation density.

when the unlabeled frame is sampled 6 frames away. How-
ever, with our dynamic FSA mechanism, we further outper-
form it by 1.9 (from 78.9 to 80.8).

In addition to that, we also notice that training on
the random pairs of labeled and unlabeled frames (i.e.,
MT+Random) brings less improvement compared to the
best fixed distance sampling schemes (i.e., MT+Uniform-
6) but more improvement compared to the sub-optimal ones
(i.e., MT+Uniform-3 and MT+Uniform-9). We conjecture
the reason is that randomness benefits from the diversity of
the information, meanwhile introduces noise, which dam-
ages the performance of the MT. More precisely, if frame
pairs are selected randomly, then pairs that have overly large
motion offsets are also fed to the network, making it diffi-
cult or even infeasible for MT to perform effective recon-
struction, i.e., this brings low-quality or even noisy self-
supervision signals for the PE. As shown in Fig. 5 (a),
our FSA converges at 20K iterations (∼12 hours), while
Random selection method converges at 30K iterations (∼9
hours). We can see our FSA surpasses Random selection at
any iteration, while spending slightly longer training time.
We argue this is because the proposed framework has a spe-
cific reward set in the FSA, which gives the framework a
clear direction towards continuously strengthening the PE,
throughout the whole training process.

Then, we investigate the importance of each term in the
loss function of our MT (Eq. 11). As shown in Table 1, re-
moving any of the three terms (Lgt, Ladv and Lpose) from
the loss function of the proposed MT significantly drops the
performance of the PE. This means the all three terms are
necessary for MT to function well.

Comparison with State-of-the-arts
In this section, we demonstrate the performance of our pro-
posed REMOTE framework by comparing with the SOTA
models both quantitatively and qualitatively on the Penn Ac-
tion and Sub-JHMDB datasets.
Quantitative Comparison. Table 2 reveals the comparison
between our REMOTE model trained with frames proposed
by FSA and SOTA methods. We use the baseline (Xiao, Wu,
and Wei 2018) with ResNet50 (He et al. 2016) as our back-
bone pose estimator E. Specifically, Song et al (Song et al.
2017), LSTM Pose Machine (Luo et al. 2018), DKD (Nie



Dataset Method Head Shoulder Elbow Wrist Hip Knee Ankle Average #labels/video

Penn Action

Song et al(Song et al. 2017) 98.0(-) 97.3(-) 95.1(-) 94.7(-) 97.1(-) 97.1(-) 96.9(-) 96.5(-) N/A
LSTM Pose Mach.(Luo et al. 2018) 98.9(96.0) 98.6(93.6) 96.6(92.4) 96.6(91.1) 98.2(88.3) 98.2(94.2) 97.5(93.5) 97.7(92.6) N/A
DKD(Nie et al. 2019) 98.8(96.6) 98.7(93.7) 96.8(92.9) 97.0(91.2) 98.2(88.8) 98.1(94.3) 97.2(93.7) 97.8(92.9) N/A
Baseline(Xiao, Wu, and Wei 2018) 98.1(95.6) 98.2(92.1) 96.3(91.7) 96.4(90.3) 98.4(86.9) 97.5(92.4) 97.1(91.8) 97.4(91.3) N/A
PoseWarper(Bertasius et al. 2019) 98.3(95.5) 98.8(92.6) 97.3(92.1) 96.8(90.9) 98.3(87.8) 98.1(93.6) 97.7(92.3) 97.9(91.9) 13.8
KFP (Zhang et al. 2020)(Semi-supervised) 98.5(91.8) 98.4(91.9) 97.1(88.3) 95.2(85.0) 98.9(92.1) 98.7(91.5) 98.4(90.4) 97.8(90.0) 17.3
Ours 98.8(96.8) 99.1(94.2) 97.8(94.1) 98.1(92.3) 98.7(90.9) 98.8(94.9) 98.7(94.7) 98.6(93.8) 13.8

Sub-JHMDB

Song et al(Song et al. 2017) 97.1(-) 95.7(-) 87.5(-) 81.6(-) 98.0(-) 92.7(-) 89.8(-) 92.1(-) N/A
LSTM Pose Mach. (Luo et al. 2018) 98.2(92.7) 96.5(75.6) 89.6(66.8) 86.0(64.8) 98.7(78.0) 95.6(73.1) 90.9(73.3) 93.6(73.6) N/A
DKD (Nie et al. 2019) 98.3(94.4) 96.6(78.9) 90.4(69.8) 87.1(67.6) 99.1(81.8) 96.0(79.0) 92.9(78.8) 94.0(77.4) N/A
Baseline (Xiao, Wu, and Wei 2018) 97.5(88.5) 97.8(79.5) 91.1(72.3) 86.0(68.9) 99.6(84.5) 96.8(78.3) 92.6(78.0) 94.4(77.8) N/A
PoseWarper (Bertasius et al. 2019) 97.8(91.3) 97.4(80.9) 91.8(73.6) 90.7(69.2) 97.2(84.8) 97.0(79.7) 94.5(78.6) 95.0(78.8) 7.2
KFP (Zhang et al. 2020)(Semi-supervised) 96.2(84.3) 95.8(82.0) 94.9(77.4) 92.9(72.4) 96.0(84.0) 95.4(80.9) 94.4(78.4) 95.2(80.3) 17.5
Ours 98.5(93.8) 98.1(82.9) 93.7(76.2) 92.9(71.3) 97.3(85.9) 97.3(81.4) 95.2(80.3) 95.9(80.8) 7.2

Table 2: Comparison with the SOTA on the Penn Action and Sub-JHMDB datasets. The scores presented in the table are in the
format of PCKbody(PCKtorso). “-” and N/A indicate the corresponding value is unavailable.

et al. 2019) and Baseline (Xiao, Wu, and Wei 2018) leverage
all available pose labels for training. Similar to our model,
KFP(Zhang et al. 2020) also introduces a frame proposal-
based method. However, the final prediction is interpolated
with a pose-dynamics dictionary learned in a self-supervised
manner. PoseWarper (Bertasius et al. 2019) was also devel-
oped with sparse annotations while the features of the un-
labeled frame are only warped to its neighboring labeled
frame. We experiment on the similar setting to (Bertasius
et al. 2019) for a fair comparison and assuming the pose an-
notation is available for 13.8 frames per video on average.

As outlined in Table 2, our proposed REMOTE frame-
work outperforms the existing SOTA models trained with
the complete set of labels, evaluated under both PCKbody

and PCKtorso metrics. Using the identical set of la-
beled frames, our proposed model outperforms Pose-
Warper (Bertasius et al. 2019) by 0.7 in PCKbody and 1.3
in PCKtorso on the Penn Action dataset, owing to the ef-
ficient informative frame mining mechanism as well as the
additional supervision signals brought by the proposed MT.
Compared with the KFP (Zhang et al. 2020), due to inac-
curate nature of its interpolation step, our model achieves
3.8 improvement on the Penn Action dataset when evaluated
with the more critic PCKtorso.

The results on the Sub-JHMDB dataset are also presented
in Table 2, where we observe that our model still outper-
forms the SOTA models in terms of the both PCK metrics
as well as the efficiency of using labeled frames. Note that,
compared to KFP, our method uses less than half labeled
frames per video (7.2 versus 17.5 labeled frames), but still
outperforms KFP by 0.7.

We also investigate the efficiency of the ground truth label
usage by examining: 1) the variations of the PCK score when
providing more labeled frames; 2) the variations of the PCK
score among different methods when using the same amount
of labeled frames. We jointly plot the PCK score w.r.t the av-
erage number of labeled frames per video in Fig. 5 (b). Com-
pared to the PoseWarper (Bertasius et al. 2019), our model
not only outperforms it in all label density settings but also
enjoys more boost when given the same amount of extra la-
beled frames. This indicates the efficiency of our proposed
method in exploiting the provided sparse annotations.
Qualitative Results We also present a few qualitative re-
sults to visually check if our FSA indeed raises informa-
tive frames for training the MT. The selected frames by

Figure 6: Visualization of the proposed unlabeled frame (red
dotted bbox) for the annotated anchor frame (orange bbox).
We observe that the selected frames present moderate pose
variances, compared to the annotated frame.

Figure 7: Visualization of the pose estimation results. The
left three images are from the Penn Action and the rest are
from the Sub-JHMDB.

the proposed FSA are shown in Fig. 6. Given the labeled
frames marked with orange bounding boxes, the proposed
unlabeled frames are marked with red bounding boxes. We
observe a moderate amount of variations in the poses con-
tained in the proposed frames compared to the poses from
the labeled frames, which is consistent with our intuition.

We further visualize a few pose estimation results in
Fig. 7. As depicted in the figure, our model could deliver
accurate pose estimation results for different actions in pres-
ence of scale/lighting variations.

Conclusion
We address the problem of semi-supervised video human
pose estimation in this paper, where only temporally sparse
annotations are available. To handle this task, we have pro-
posed the REMOTE framework, a novel model integrating
a Motion Transformer (MT) and an RL-based Frame Selec-
tion Agent (FSA), that is capable of training the pose esti-
mator based on both labeled frames and temporal dynamics.
We conduct extensive experiments that demonstrate the effi-
cacy of the proposed framework.
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