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Abstract

This thesis motivates and examines the use of methods from topological data

analysis in detecting and analysing topological features relevant to models from sta-

tistical physics and particle physics.

In statistical physics, we use persistent homology as an observable of three dif-

ferent variants of the two-dimensional XY model in order to identify relevant topo-

logical features and study their relation to the phase transitions undergone by each

model. We examine models with the classical XY action, a topological lattice action,

and an action with an additional nematic term. In particular, we introduce a new

way of computing the persistent homology of lattice spin model configurations and

demonstrate its use in detecting topological defects called vortices. By considering

the fluctuations in the output of logistic regression and k-nearest neighbours mod-

els trained on persistence images, we develop a methodology to extract estimates of

the critical temperature and the critical exponent of the correlation length. We put

particular emphasis on finite-size scaling behaviour and producing estimates with

quantifiable error. For each model we successfully identify its phase transition(s) and

are able to get an accurate determination of the critical temperatures and critical

exponents of the correlation length.

In particle physics, we investigate the use of persistent homology as a means to

detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a

gauge-invariant manner. The sensitivity of our method to vortices in the deconfined

phase is confirmed by using twisted boundary conditions which inspires the definition

of a new phase indicator for the deconfinement phase transition. We also construct

a phase indicator without reference to twisted boundary conditions using a k-nearest

neighbours classifier. Finite-size scaling analyses of both persistence-based indicators

yield accurate estimates of the critical β and critical exponent of correlation length

for the deconfinement phase transition. We also use persistent homology to study

the stability of vortices under gradient flow and the classification of different vortex

surface geometries.
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1 Introduction

1.1 Topological Objects in Physics

Topology is ubiquitous in modern physics, and even a summary of all the areas of

physics where topological arguments crop up is far beyond the scope of this introduc-

tion. In this thesis we are interested in certain phenomena involving topology that

appear in the study of condensed matter and in particle physics. On the condensed

matter side we shall investigate defects in materials or fields which are classified us-

ing topology. Moving to particle physics, we will be interested in field singularities

which lie along closed surfaces, the topology of these surfaces, and how they embed

into spacetime. However, the focus of this thesis is on computational physics and

simulations on discrete models of spacetime. The usual topological tools relying on

continuous maps break down here: the topology of discrete space does not support

many interesting phenomena. But the topology in the underlying physics has not

gone away, we simply need to look for it using a new lens. An argument of this

thesis is that topological data analysis is an appropriate such lens for studying the

phenomena mentioned above.

As an example, in [3], Mermin lays out the use of winding numbers and the

fundamental group π1 in classifying defects in media consisting of planar spins.

Assign each point in the plane a unit-length vector lying in the same plane. We

could imagine that this describes the orientation of molecules in a material, or of

small magnetic moments in a larger magnetic film. Such a field is specified by a

map

f : R2 → S1

where S1 is the circle and f describes the angle the vector makes with the positive

x-axis at each point in the plane. Now suppose this map is continuous everywhere

except potentially at some point P ∈ R2, the location of a potential defect. Then

given a simple closed curve in the plane γ : S1 → R2 that encloses P and is traversed

anticlockwise, we can calculate the winding number

w(γ) =
1

2π

∮
γ

df

which sums up the changes in the angle f . Since γ is a closed path, the integral must
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be an integer multiple of 2π and therefore w : (S1 → R2)→ Z gives a signed count

of how many times the vector field winds round the circle, and in which direction,

while traversing γ. Note that this is a continuous map: so long as we avoid P ,

continuously deforming γ should continuously change w. But w is discrete and

must therefore remain constant. Suppose that we have a vector field f such that

this winding number is non-zero. Then f must turn through a full circle no matter

how small we shrink γ around P . The derivative of f at P therefore diverges and we

do indeed have a singularity, or defect. The point is that we did not need to shrink

γ. Calculating the winding number around a huge loop far away from P , but still

enclosing it, would give the same result and lead us to the same conclusion that there

is some singularity enclosed by γ. The simple topological notions of continuity and

continuous deformation allow us to detect a local defect at P from its global effect.

The same kind of argument shows that the nature of the singularity is classified up

to continuous deformation by the winding number too. Continuously deforming the

vector field f instead of γ will also leave the winding number invariant. Composing

γ and f gives us a map f ◦ γ : S1 → S1 from the circle to itself and allows us to

skip the middle man of having a vector field in the plane. The winding number of f

around γ simply becomes the degree of the map f ◦ γ and helps make it clear that

what we are really trying to get at is the topological fact that π1(S
1) ∼= Z.

Figure 1: A vortex (red) and antivortex (blue) in a configuration of the 2D XY

model – a discrete version of a unit-length vector field in the plane.
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Now consider vortices and antivortices in the 2D XY model as illustrated in

Figure 1 (we will look at these in more detail in Chapter 3). Instead of a vector

field on the plane, we can think of configurations of the XY model as unit-length

vector fields f : Z2 → S1 on the lattice. We might intuitively associate a winding

number of 1 to the vortex (in red) and −1 to the antivortex (in blue). But if

we try and define winding numbers and fundamental groups rigorously here, the

arguments fall apart. The discrete nature of the space means that an ’unwinding’

of the field becomes a perfectly admissible continuous deformation. Yet the physics

in this case ensures that vortices remain intact and behave as we would expect in

the continuum. There is a broad and fascinating underlying problem here of how

to model and describe such topological objects when the usual definitions in terms

of continuity and homotopy do not apply. Moreover, we are now looking at actual

configurations, i.e. data. Data is messy and the vortices we see in such data may

not look as well-formed as those in Figure 1. In Chapter 3 we will use topological

data analysis to characterise vortices and antivortices.

Such examples are not constrained to condensed matter physics. In quantum field

theory one might study certain Yang-Mills gauge fields that are classical solutions

to the equations of motion, called instantons. If we assume that the field strength

decays going outwards towards infinity, then such gauge fields are classified up to

continuous deformation by the third homotopy group of the gauge group π3(G) [4]

(isomorphic to Z when G = SU(n) for any n > 1 [5]). In this thesis we will look at

topological defects from Yang-Mills theory called center vortices which form along

closed surfaces. For SU(2), the parity of the number of such vortices is a topological

invariant. Once again, working on the lattice and with real data ruins any chance

of characterising these objects through homotopy groups. In Chapter 4 we use

topological data analysis to detect center vortices in SU(2) lattice gauge theory, the

lattice incarnation of SU(2) Yang-Mills.

1.2 Machine Learning of Phase Transitions

Many of the tools of topological data analysis are quantitative in nature. They

output a numerical summary of the input data which can then be used in further

data analysis. Therefore in this thesis we will not only use topological data analysis
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to detect topological defects, but also investigate its ability to quantitatively analyse

phase transitions associated with those defects. This work lies in the same vein

as the emerging body of work exploring the use of machine learning and other

data analysis methods to detect and classify phase transitions in statistical physics

systems. One of the motivations of this approach is to develop methodologies which

require minimal a priori knowledge about the systems in question. The hope then is

that these data-centric methods will be able to offer new insights into those models

at the forefront of physics which seem to defy analytical methods. Much of the work

in this area makes use of neural network models which, while unparalleled in machine

learning tasks, are generally hard to interpret. This thesis explores the idea that

topological data analysis, along with simple machine learning models, may provide

a more interpretable approach by allowing us to relate certain phase transitions to

the topological defects that may have a hand in driving them.

1.3 Thesis Outline

Chapter 2 covers the necessary background on the techniques we employ in this

thesis. It will cover the basic definitions and theorems behind persistent homology,

the main topological data analysis tool we use, along with some of the ways to

analyse its output. It goes on to introduce two simple machine learning classifiers,

the finite-size scaling method for quantitative analysis of phase transitions, and some

of the statistical techniques we make use of. The chapter ends with a summary of

some of the existing work in the application of topological data analysis to statistical

physics and quantum field theory.

Chapter 3 covers a project based on using persistent homology to detect topolog-

ical defects in several variants of the 2D XY model and study the phase transitions

driven by these defects. It begins by introducing the models being studied and their

phase transitions, as well as the previous work on using TDA to study them. It then

introduces the methodology we use to apply persistent homology, before going on

to cover several analyses using that methodology. The main part is a quantitative

analysis of the phase transitions where the critical temperatures and a critical ex-

ponent of the transition are accurately estimated, which was published as a paper

[1].
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Chapter 4 covers a project based on using persistent homology to detect center

vortices in SU(2) lattice gauge theory and study the deconfinement phase transition

undergone by this model. It begins by introducing the model being studied, its phase

transition, and the proposed mechanism for the transition that we consider. It then

introduces the methodology we use to apply persistent homology, before going on

to cover several analyses using that methodology. The main part is a quantitative

analysis of the phase transition where the critical couplings and a critical exponent

of the transition are accurately estimated, which has been released as a preprint [2].

Chapter 5 summarises the contributions of this thesis and discusses potential

future work.
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2 Background

2.1 Topological Data Analysis

Topological data analysis (TDA) is a relatively recent field of mathematics based

on applying the ideas and tools of algebraic topology to the analysis of data. The

motivation behind it is to provide a means to robustly describe shape in data.

Initially the idea was to identify purely topological structure such as the number

of connected components or holes, but more recent perspectives acknowledge the

ability of its tools to summarise the geometry of data too (e.g., [6]). It has found

applications in a wide variety of fields. A small list of references that attempts to

capture the breadth of fields of application is [7–16]. The principal tool of TDA is

persistent homology which is what we will be using in this thesis.

2.1.1 Persistent Homology

Persistent homology was introduced in its modern form in [17] and popularised in

[18]. We shall give an overview here, but other useful references are [19–22]. In

this section we assume a basic knowledge of simplicial/cubical complexes and their

homology. A brief review of these can be found in Appendix B.

Given a simplicial or cubical complex X, the k-dimensional holes in it are de-

scribed by the k-th homology Hk(X). In particular, we compute homology with

respect to some fixed field F so that Hk(X) is a vector space. However, data coming

from applications (including physics simulations) may not take the form of such a

complex. Even if it does, it may not have the kind of structure we want to consider

built in. For example, data may take the form of a set of points P in a metric space,

sampled from some underlying manifold. A discrete set can be considered to be a

simplicial or cubical complex, but its k-th homology is trivial for k ≥ 1 and its 0-th

homology simply counts the cardinality of P . However, we probably wanted to know

something about the homology of the manifold that the points were sampled from.

In order to insightfully apply homology then, we must use the data to construct a

complex which (ideally) captures the topological features we are interested in. A

common example of how to do this is given by the Vietoris-Rips simplicial complex
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of a point cloud.

Definition 2.1 (Vietoris-Rips Complex). Given a finite set of points P with a

distance function d : P 2 → R and a choice of radius ϵ ≥ 0, the Vietoris-Rips

complex VRϵ(P ) is the simplicial complex with vertices P and simplices

Σ = {σ ∈ P(P ) | ∀x, y ∈ σ : d(x, y) ≤ ϵ }.

Rather than viewing P as a discrete set of points, the Vietoris-Rips complex

gives us a way to view it as a piecewise linear object ”at the scale of” ϵ. However

this leaves us to find a single good value of ϵ which may be difficult to find, or may

not even exist at all as we see in Figure 2.

(a) (b) (c)

Figure 2: An example data set (red) showing that the Vietoris-Rips complex

(blue) may not capture all relevant scales in data at once. The data has two ob-

vious 1-dimensional holes. (a) a low radius may capture the smaller circle but not

the larger one. (b) an intermediate radius already fills in the hole in the small cir-

cle before even detecting the larger circle. (c) only at higher choices of radius do

we detect the larger circle.

Persistent homology is an attempt to address this problem by considering all

possible scales, in this case all possible values of ϵ, and relating the homology of

each complex making use of the functoriality of homology (see Appendix B for more

details).

Proposition 2.1. Let X, Y be simplicial (cubical) complexes and f : X → Y be a

simplicial (cubical) map. Then ∀k ∈ N there is an induced linear map fk : Hk(X)→
Hk(Y ) on k-th homology. The identity map id : X → X induces the identity map
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on homology. Moreover, if g : Y → Z is a simplicial (cubical) map, then

(g ◦ f)k = gk ◦ fk.

The maps we want to consider in the case of Vietoris-Rips complexes (and indeed

most cases) are simply inclusion maps. Note that for ϵ ≤ ϵ′ we have that VRϵ(P ) ⊆
VRϵ′(P ), so in particular we can consider the inclusion map VRϵ(P ) ↪−→ VRϵ′(P ).

Let ϵ1, . . . , ϵN be the values at which VRϵ(P ) undergoes a change (or simply a change

in homology). Then we can consider the sequence

VRϵ1(P ) ↪−→ VRϵ2(P ) ↪−→ . . . ↪−→ VRϵN (P )

known as a filtration of simplicial complexes. Applying the k-th homology functor

yields the sequence

Hk(VRϵ1(P ))→ Hk(VRϵ2(P ))→ · · · → Hk(VRϵN (P )) (1)

of vector spaces known as a persistence module. This allows us not only to record

the homology of the complex at different steps of the sequence, but also match up

the homology classes at one step to those at later steps. See Figure 3 for an example.

The Vietoris-Rips complex is not the only way we might end up with a nested

collection of complexes. Most of the filtrations we introduce in this thesis take the

following more general form.

Definition 2.2 (Sublevel Set Filtration). Let X be a simplicial (cubical) complex.

A function f : Σ(X) → R on the simplices (cubes) of X is a monotonic map if it

maps each simplex (cube) to a value in R in such a way that if τ is a face of σ, then

f(τ) ≤ f(σ). Given such a map f , the sublevel set filtration of f is the collection of

simplicial (cubical) complexes

{ f−1(−∞, t] | t ∈ R }

along with inclusion maps

f−1(−∞, s] ↪−→ f−1(−∞, t]

for all s ≤ t ∈ R. Here f is known as a filter, and t is the filtration index.
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X Y

Figure 3: An example of the map induced on homology by an inclusion of sim-

plicial complexes. Note that a shaded triangle represents a 2-simplex. If there is

a triangle with no shading, we should think of this as simply three 1-simplices

forming a hole that is not filled in by a 2-simplex. Suppose a basis of H1(X) is

given as {[1, 0]⊤, [0, 1]⊤} where the first vector corresponds to the lower left cycle

and the second corresponds to the upper one, and suppose a basis of H1(Y ) for

the right space is also given as {[1, 0]⊤, [0, 1]⊤} where the first vector corresponds

to the lower left cycle and the second corresponds to the upper right one. Then

the inclusion X ↪−→ Y induces a linear map H1(X) → H1(Y ) given by the ma-

trix
(
1,0
0,0

)
. Although both spaces have two 1-dimensional homology classes, only

the lower left hole in X persisted after mapping into Y . The upper hole in X was

killed off, and a new unrelated one was born in Y .

For example, we see that the Vietoris-Rips filtration for a point set P is simply

the sublevel set filtration of the function on the complete simplicial complex f :

P(P ) → R that sends σ 7→ diam(σ) = max{d(x, y) |x, y ∈ σ}. The functoriality

of homology still allows us to describe the topology of this more general nested

collection of complexes and inclusion maps. However, a sequence of vector spaces

with linear maps between them is hardly a concise summary. In order to state the

results that turn persistent homology into a practical tool, it will help to present

some more precise definitions. The following exposition is inspired by [23]. It is

worth noting that the following is just an overview of the theory in which there is

much ongoing research. Definitions and theorems will be general enough for our

purposes, but more restrictive than what is possible in an effort to simplify the

picture.
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Definition 2.3 (Persistence Module). Fix some indexing set T ⊆ R. A persistence

module V over T is a family of vector spaces {Vt}t∈T along with linear maps vs,t :

Vs → Vt for all s ≤ t ∈ T such that vt,t = id and vt,u ◦ vs,t = vs,u when s ≤ t ≤ u.

The sequence (1) was an example of a persistence module. Applying the k-th

homology functor to the sublevel set filtration of a function f is also a persistence

module which we denote by Hk(f). In general, if X = {Xt}t∈T is a filtered complex,

then we may write Hk(X) for the persistence module coming from applying Hk to

each Xt and inclusion map Xs ↪−→ Xt. The following is a particularly simple example

of a persistence module.

Definition 2.4 (Interval Module). Let b, d ∈ R = R ∪ {−∞,∞}. The interval

module I[b,d) is defined

I[b,d) = 0→ · · · → 0︸ ︷︷ ︸
t<b

→ F id−→ . . .
id−→ F︸ ︷︷ ︸

b≤t<d

→ 0 · · · → 0︸ ︷︷ ︸
d≤t

and we may define the interval modules I(b,d), I[b,d], I(b,d] similarly.

The following result tells us that sufficiently tame persistence modules can be

fully described in a succinct manner according to these interval modules.

Theorem 2.2 (Interval Decomposition of Persistence Modules [24, 25]). Let V be a

persistence module over index set T . If either T is finite, or Vt is finite-dimensional

for all t ∈ T , then there exists a direct sum decomposition

V =
⊕
I∈B(V)

II

where B(V) is some collection of intervals in R = R∪{∞}. Moreover, the decompo-

sition is unique up to isomorphism. We will say that a persistence module is interval

decomposable if it has such a direct sum decomposition into interval modules.

Note that the homology of a sublevel set filtration of a finite simplicial or cubical

complex always satisfies the conditions of the theorem. The collection of intervals

B(V) is called the barcode of V. In this thesis we will only consider finite complexes,

so that the index set T is also finite. All of our intervals will therefore be of the

form [b, d), closed on the left and open on the right. We say that a homological
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feature is born at index b and dies at index d. We often throw away the information

about whether or not the endpoints of bars are open or closed anyway to form the

persistence diagram.

Definition 2.5 (Persistence Diagram). Given a persistence module V, its persis-

tence diagram D(V) is the multiset

D(V) = { (b, d) ∈ R2 | b and d are the endpoints of an interval in B(V) }

where (b, d) is included with the appropriate multiplicity if there are multiple inter-

vals with these endpoints. If we are looking at the persistence module corresponding

to the k-th homology of a filtered complex and it is clear which complex we are talk-

ing about, in this thesis we shall often refer to the corresponding persistence diagram

as PHk.

Figure 4 shows an example of a filtration of simplicial complexes and the barcode

and persistence diagram of its persistent homology.

Given some data and a way to summarise it via a sequence of simplicial or cubical

complexes, we can now talk about the associated persistence diagram. We would

now like to be able to compare the persistent homology obtained from different data.

We start by defining a natural algebraic distance between persistence modules that

measures the extent to which two modules fail to be isomorphic.

Definition 2.6 (Interleaving Distance). Given persistence modules V = {Vs
vs,t−−→

Vt } and W = {Ws
ws,t−−→ Wt }, an ϵ-interleaving between V and W is given by two

collections of linear maps {ϕt : Vt → Wt+ϵ } and {ψt : Wt → Vt+ϵ } such that the

following diagrams commute for all s, t.

Vs Vt

Ws+ϵ Wt+ϵ

ϕs ϕt

Vs+ϵ Vt+ϵ

Ws Wt

ψs ψt

Vt Vt+2ϵ

Wt+ϵ

ϕt ψt+ϵ

Vt+ϵ

Wt Wt+2ϵ

ϕt+ϵψt
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H0

H1

(b)

0 1 2 3
0

1

2

3

(c)

H0
H1

Figure 4: (a) An example of a filtration of simplicial complexes (assume for t < 0

we have the empty complex ∅). (b) The associated H0 and H1 persistence bar-

codes. The arrowheads indicate that the bars carry on to infinity. (c) The associ-

ated persistence diagram. Note that the H0 point at (0, 1) has multiplicity 2.

The interleaving distance between V and W

dI(V,W) = inf { ϵ ≥ 0 | ∃ an ϵ-interleaving between V and W }

is the smallest ϵ for which there is some ϵ-interleaving between the two.

It is not immediately obvious how to go about computing the interleaving dis-

tance, so we also introduce the Wasserstein and bottleneck distances on persistence

diagrams which are more readily computable. The bottleneck distance will actually

end up being equivalent to the interleaving distance, and this fact turns out to have

important consequences for the use of persistence diagrams with real world data.

Definition 2.7 (Wasserstein and Bottleneck Distances). Given persistence dia-

grams D1 and D2, a multiset η ⊆ D1×D2 is called a partial matching if it restricts

to a bijection π1η → π2η, where π1 and π2 are the projections on to D1 and D2

respectively. That is, we can think of it as pairing up some of the points in D1
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with points in D2, but may leave points in either unmatched. The q-th Wasserstein

distance between D1 and D2 is

dW,q(D1, D2) = inf
η:D1→D2

( ∑
(x,y)∈η

||x−y||q∞ +
∑

(b,d)̸∈dom(η)

∣∣∣∣d− b2

∣∣∣∣q +
∑

(b,d)̸∈im(η)

∣∣∣∣d− b2

∣∣∣∣q ) 1
q

where the latter two terms sum the L∞ distances between the unmatched points and

their closest point on the diagonal ∆ = { (b, b) | b ∈ R }. The bottleneck distance

dB(D1, D2) = lim
q→∞

dW,q(D1, D2)

is calculated by replacing the sum in the above formula by the maximum of any

of the L∞ distances. An example of a partial matching realising the bottleneck

distance is shown in Figure 5.

D1
D2

Figure 5: An example of a partial matching that realises the bottleneck distance

between two persistence diagrams. Note that we show unmatched points as being

matched to the diagonal. Matching the blue and red points in any other way will

increase the length of the longest black line segment.

Theorem 2.3 (Isometry Theorem [26, 27]). Let V and W be interval decomposable

persistence modules. Then,

dB(D(V),D(W)) = dI(V,W).

The Isometry Theorem not only gives us a practical way to compute the inter-

leaving distance between persistence modules by passing to the persistence diagram,
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but it also picks up special relevance in relation to the sublevel set filtration. In par-

ticular, it is not difficult to see that given two filter functions f, g : X → R and

k ∈ N, the persistence modules Hk(f) and Hk(g) are ||f − g||∞-interleaved. If

f(x) ≤ t, then g(x) = f(x) + (g(x) − f(x)) ≤ t + ||f − g||∞. So the maps ϕt are

simply given by applying Hk to the inclusions

f−1(−∞, t] ↪−→ g−1(−∞, t+ ||f − g||∞]

and similarly for ψt. This gives us the following corollary.

Corollary 2.3.1 (Stability). Let k ∈ N and f, g : X → R be filter functions on a

simplicial or cubical complex X. Then,

dB(D(Hk(f)),D(Hk(g))) ≤ ||f − g||∞.

Thus a small change in our data, in this case represented by a change in the

filter function, leads only to a small change in the resulting persistence diagram as

measured by the bottleneck distance. Another way to say this is that, as a map

between metric spaces, D ◦ Hk is 1-Lipschitz. This is obviously important if our

data has any kind of noise, as it guarantees that the persistence diagram will not

change dramatically. A fact that was only proved much later is that we also have

the same for the q-Wasserstein distances.

Theorem 2.4 (Wasserstein Stability [28]). Let k ∈ N and f, g : X → R be filter

functions on a simplicial or cubical complex X. Then for all q, we have

dW,q(D(Hk(f)),D(Hk(g))) ≤ ||f − g||∞.

Let us summarise the above by giving the typical persistent homology framework.

Given some data D, we construct a filtered complex FD. That is, a R-indexed

collection of simplicial or cubical complexes {FD(s) }s∈R such that for all s ≤ t ∈ R
we have an inclusion map FD(s) ↪−→ FD(t). Applying the k-th homology functor to

each space and map gives us a persistence module that identifies the k-dimensional

holes in each complex and identifies when a hole in one complex is the same as that

in another. The interval decomposition theorem then shows that this persistence

module can be completely and uniquely described by a collection of intervals which

we represent using a persistence diagram consisting of points (b, d) ∈ R2
indicating
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a hole that enters the filtered complex at index b and persists through to index d.

The stability property of persistent homology tells us that small perturbations to

our input filtered complex lead only to small changes in the persistence diagram

with respect to a couple of natural metrics.

There are at least two paradigms for using persistent homology to study phase

transitions of a given statistical physics model. The first can be called persistent

homology of configuration/data space, where the topology of the high-dimensional

space of model configurations is probed from samples. This approach is based on the

topology hypothesis for the origin of phase transitions [29, 30]. The idea here is that a

thermodynamic phase transition necessarily coincides with a change in the topology

of the energy level sets, although such a change does not turn out to be a sufficient

condition [31]. In the present work however, we shall make use of a newer paradigm

which we call persistent homology as an observable. With this approach we take a

sampled configuration of a model, construct a filtered complex based on that single

configuration, and compute persistence. We can think of this process as a means

to reduce the degrees of freedom of the model and produce nonlinear summaries of

configurations. Or as a way to focus only on certain topological degrees of freedom.

Statistics of these persistence diagrams are then analysed as the system undergoes

a phase transition.

2.1.2 Computing Persistent Homology

One of the motivations behind the use of homology was that it is straightforward

to compute. It turns out the computation of persistent homology is also straight-

forward. The following is based on the exposition in [20] and assumes that our field

is F = Z2 (which it will be throughout this thesis).

Given a filtered complex (simplicial or cubical) recorded as filtration function

f : Σ→ R on a set of simplices or cubes, we first define a total order on Σ compatible

with f , so that f(σ) < f(τ) implies that σ < τ . Let σ1, σ2, . . . , σn denote the full

collection of simplices or cubes according to this order. We now define a square

boundary matrix D of size n× n so that

Di,j =

{
1 if σi is a codimension-1 face of σj

0 otherwise
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and for any n × n Z2 matrix A we define a partial mapping lowA : {1, . . . , n} →
{1, . . . , n} such that

lowA(j) =

{
max{ i |Ai,j = 1 } if column j ̸= 0

undefined otherwise.

That is, we can think of lowA(j) as finding the 1 furthest down the j-th column

and returning its row number. What we are interested in is a reduced version of

the boundary matrix, where reduced means that low is injective on its domain of

definition: no two columns have their furthest down 1 on the same row. The simplest

possible algorithm for obtaining a reduced boundary matrix via column operations

is shown in Algorithm 1, first introduced in [17].

Algorithm 1 Column algorithm for persistent homology [17]

Input Boundary matrix D ∈M2,2(Z2)

Output Reduced boundary matrix R ∈M2,2(Z2)

1: R← D

2: for j = 1 to n do

3: while ∃i < j with lowR(i) = lowR(j) do

4: R[:, j]← R[:, j] +R[:, i] ▷ add column i to column j

5: end while

6: end for

Once the reduced boundary matrix R is obtained, the barcode can be read as

follows. For each j ∈ {1, . . . , n}:

• If lowR(j) = i, then there is a homology class that is born from the inclusion of

σi and which dies with the inclusion of σj. We therefore get a bar [f(σi), f(σj))

in B(Hdim(σi)(f)).

• Otherwise if there is some k such that lowR(k) = j, then there is a homology

class that is born from the inclusion of σj and which dies with the inclusion

of σk. We therefore get a bar [f(σj), f(σk)) in B(Hdim(σj)(f)).

• If j is not in the domain or image of lowR at all, then it is unpaired and instead

we get an infinite bar [f(σj),∞) in B(Hdim(σj)(f)).
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Note that it may be the case that we get bars of zero length from the procedure

above and we can simply throw these away. Algorithm 1 has cubic complexity

in the number of simplices or cubes in the worst case. However there are several

different ways to speed up the computation. In this thesis we use the giotto-tda

[32] and Ripser.py [33] software to computer persistent homology. Both of these

actually compute persistent cohomology, which turns out to give the same barcode

as persistent homology and allows for some optimisations [34, 35], including doing

row reduction instead of column reduction. The key theorem is the following.

Theorem 2.5 (Universal coefficient theorem [36, Thm. 3.2]). Given a topological

space X and field coefficients F, we have a natural isomorphism

Hk(X) ∼= Hom(Hk(X),F).

Thus the homology and cohomology at each step of the filtration have the same

dimension and the naturality means that the induced maps along the filtration have

the same rank. This implies the following.

Corollary 2.5.1 (Equivalence of persistent homology and cohomology [34]). Given

a filtered complex X = {Xt}t∈T , we have B(Hk(X)) = B(Hk(X)).

2.1.3 Vectorising Persistence Diagrams

Being multisets of points, persistence diagrams do not lend themselves towards

immediate use with many typical data analysis and machine learning methods. We

do not have an obvious way to compute the mean or variance of a set of diagrams and

any machine learning approach that requires an input of fixed size is inapplicable.

Methods that rely only on the distance matrix of a set of persistence diagrams

theoretically work thanks to the bottleneck and Wasserstein distances, but these

become unfeasible to compute when the set of diagrams and the diagrams themselves

become large. Instead, one typically uses a vectorisation method, which transforms

a set of persistence diagrams into a set of vectors lying in a single vector space. There

are many methods and this is an active area of research. A selection of methods

include [37–39], but in this thesis we focus on the persistence image [37] as it closely

mimics the structure of the persistence diagram and allows one to relate components

of the vectorisation back to regions of the diagram.
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Definition 2.8 (Persistence Image). Let ga,b : R2 → R denote a 2D Gaussian of

standard deviation σ centered at (a, b):

ga,b(x, y) =
1

2πσ2
exp

[
− (x− a)2 + (y − b)2

2σ2

]
.

Fix a non-negative weighting function w : R2 → R that is zero along the horizontal

axis, continuous, and piecewise differentiable. Given a persistence diagram D =

{(bi, di)}i∈I consisting of a finite number of points with finite birth and death, its

persistence surface with respect to w is the function ρD : R2 → R obtained by

translating each point (b, d) ∈ D into birth-persistence coordinates (b, d − b), then

placing Gaussians with variance σ2 on them, weighted by w:

ρD(x, y) =
∑

(b,d)∈D

w(b, d− b) gb,d−b(x, y).

The persistence image PI(D) is obtained by discretizing a rectangular region of the

domain of ρD into a collection of nI × nI pixels pi and integrating ρD within each:

PI i(D) =

∫∫
pi

ρD(x, y)dxdy.

In this way we obtain a (nI)
2-dimensional vector representing our persistence

diagram. See Figure 6 for an example. So long as we choose the same w, σ and

discretization for each diagram, we can compute averages and variances component-

wise. As observed in [40], a persistence diagram can be thought of as a discrete

measure on {(a, b) ∈ R2 | a ≤ b}. If we are sampling data from some distribution

and the expected persistence diagram measure has a density with respect to the

Lebesgue measure on {(a, b) ∈ R2 | a ≤ b}, then the average of the persistence

images can be thought of as an estimator for this density, multiplied by an additional

weighting of w.

Besides de-emphasising low-persistence points, the weighting by w ensures the

stability of the persistence image with respect to the 1-Wasserstein distance.

Theorem 2.6 (Persistence Image Stability [37]). Let D1, D2 be persistence diagrams

computed with weighting function w, variance σ2 and the same discretisation. Then

for l ∈ {1, 2,∞},

||PI(D1)− PI(D2)||l ≤
(
√

5|∇w|+
√

10

π

||w||∞
σ

)
dW,1(D1, D2)
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Figure 6: An illustration of how the persistence image is obtained from a persis-

tence diagram (a). It is first transformed into birth-persistence coordinates (b),

then the persistence surface (c) is computed before discretisation, yielding the per-

sistence image (d).

where |∇w| = sup(x,y)∈R2 ||∇w(x, y)||2.

Finally we note that, as discussed in [37], machine learning models trained on

persistence images are generally insensitive to the resolution and variance parameters

nI and σ.

Another vector representation we will make use of is the Persistence Landscape

[39]. First let us define persistent Betti numbers. Recall that Betti numbers record

the dimension of homology, βk(X) = dimHk(X). Persistent Betti numbers simply

record the dimension of homology after a linear map is applied.

Definition 2.9 (Persistent Betti Numbers). Let V be a persistence module indexed

over T consisting of vector spaces Vt and linear maps vs,t : Vs → Vt for s ≤ t ∈ T .
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The (s, t)-th persistent Betti number is

βs,t(V) = dim im vs,t

where we will omit V if it is clear which persistence module we are talking about.

Note that the collection of persistent Betti numbers associated to a persistence

module is intimately related to the barcode. The difference βs,t − βs−ϵ,t records the

number of bars born in the interval (s − ϵ, s] which live at least as long as t. The

difference βt−ϵ,t−ϵ−βt−ϵ,t tells us the number of bars that die in the interval (t−ϵ, t].
Equipped with this definition we introduce the persistence landscape.

Definition 2.10 (Persistence Landscape [39]). Given a persistence module V, its

persistence landscape λ is the sequence of functions λk(t) : R→ R with

λk(t) = sup{m ≥ 0 | βt−m,t+m ≥ k}

defined for all k ∈ N. We put the following distances on the space of persistence

landscapes:

Λp(λ, λ
′) =

( ∞∑
k=0

||λk − λ′k||p
) 1

p .

As with persistence images, the persistence landscape is stable with respect to

the metrics we put on it and the interleaving or bottleneck distance. In particular,

setting p =∞ to obtain the supremum metric, we have the following result.

Theorem 2.7 (Stability of Persistence Landscapes [39]). Let λ, λ′ be the persistence

landscapes associated to persistence modules V,V′ respectively. Then,

Λ∞(λ, λ′) ≤ dI(V,V′).

However, we do not yet have a finite-dimensional vectorisation. In order to

obtain that we simply sample our persistence landscapes at some fixed finite set of

sample points.

Definition 2.11 (Discretised Persistence Landscape). Given a persistence land-

scape λ and fixing a finite point sample P = {r1, . . . , rN} ⊂ R and some kmax,

the discretised persistence landscape λP is the set of (kmax + 1) N -vectors λPk =

[λk(r1), . . . , λk(rN)] for each 0 ≤ k ≤ kmax.

So long as we choose the same sample P each time (usually a uniform partition of

an interval), we can compute sums and differences of different discretised landscapes.
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2.1.4 Representative (Co)cycles

The following is based on the exposition in [41].

Given a filtered complex {Xt}t∈T , a point (b, d) in the resulting persistence dia-

gram PHk represents a related set of classes [ct] ∈ Hk(Xt) for b ≤ t < d. One might

ask for a representative k-cycle c for the whole interval [b, d). That is,

Birth(c) = inf{ t | c ∈ Zk(Xt) } = b

and

Death(c) = sup{ t | [c] ̸= [0] ∈ Hk(Xt) } = d

where we let the supremum of an unbounded set be equal to ∞. For example if we

detect a vortex in the plane as a 1-dimensional hole, as we will in Chapter 3, we

might want a 1-cycle (a closed curve) which bounds that hole, letting us identify

the location of the vortex. It turns out that such cycle representatives exist.

Proposition 2.8 (Persistent homology cycle representatives [42]). Every filtration

X = {Xt}t∈T of simplicial or cubical complexes admits a persistent homology cycle

basis B. That is,

D(Hk(X)) = { (Birth(c),Death(c)) | c ∈ B, dim(c) = k }

with the appropriate multiplicity, for all k.

In fact, such a basis may be computed using a standard persistent homology

algorithm [43] (see the supplementary materials in [41] for more detail). However,

there are a couple of issues to address. The first is that this basis is by no means

unique and there may be many choices of persistent cycle representative for each

point in the persistence diagram. The second is a consequence of the first: cycle

representatives are not a stable feature. A small change in the underlying data can

cause an arbitrarily large change in cycle representatives. This remains true even

if one tries to select a specific representative such as that which minimises volume

and then simply measures that volume [44].

Recall also from Section 2.1.2 that the persistent homology software we use

computes persistent cohomology instead of homology. While we receive the same
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barcode or persistence diagram at the end, calculating in this way does not give

representative cycles as a byproduct, but rather representative cocycles c ∈ C∗
k =

Hom(Ck,F). In this thesis we will work exclusively with F = Z2, so a cocycle can

also be thought of as the set of those k-simplices belonging to any chain that is sent

to 1. More precisely, we define the following.

Definition 2.12 (Support of a cochain). Let X be a space. Given a cochain c ∈
Ck(X) = Hom(Ck(X),F), its support is the subset

Supp(c) = sup

{
A ⊆ X

∣∣∣ c|X\A = 0

}
where the supremum is taken with respect to inclusion.

Intuitively, we ought to think of this subset as representing a cut which kills the

corresponding homology class. That is, removing these simplices from the complex

would remove the hole. An example is shown in Figure 7.

(a) (b)

Figure 7: A representative cycle and cocycle for the single non-trivial H1 class of

a simplicial complex X homeomorphic to an annulus. (a) A representative 1-cycle

c ∈ C1(X) in green such that [c] ̸= [0] ∈ H1(X). We see that c loops round

the hole. (b) A representative 1-cocycle f ∈ C1(X) = Hom(C1(X),Z2) such

that [f ] ̸= [0] ∈ H1(X). The red edges indicate the support of f and we see that

removing these edges would destroy the hole.
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In practise, available software for computing representative cycles or cocycles is

sparse. In this thesis we will make use of the Ripser.py [33] software which is able

to give representative cocycles for filtered simplicial complexes of a particular form.

2.2 Machine Learning

For our quantitative analysis of phase transitions we will want to assign configura-

tions of models to phases based on their persistence images. In order to do this we

will make use of simple machine learning binary classifiers which learn a function

Rn → {0, 1} based on some set of labelled training data. In this case, n will be

the number of pixels in our persistence images and the output will indicate which

phase the original configuration belongs to. The point is that instead of using more

advanced deep-learning classifiers, we introduce only simple models that are either

non-parametric or that have only a few parameters to learn, relying on the persistent

homology to have selected the relevant features. Then we may more easily interpret

the performance of the classifiers in terms of what the persistent homology detects.

2.2.1 Logistic Regression

Following the approach introduced in [45], we will train logistic regression models

to map the persistence images obtained from configurations of models onto phases.

Logistic regression is a generalised linear model which models a binary dependent

variable y(x) ∈ {0, 1}. For input x ∈ RN , a logistic regression model is parame-

terised by a weight vector w = (w1, . . . , wN)T ∈ RN and intercept b ∈ R. Its output

is a logistic function

pw,b(x) =
1

1 + exTw+b
∈ (0, 1)

which can be interpreted as the probability that y(x) = 1, with 1 − p(x) giving

the probability that y(x) = 0. Given training data {(xi, yi)}, the weights w and

intercept b are learnt by minimising a cross-entropy loss function

J(w, b) = −
∑
i

[
yilog(pw,b(xi)) + (1− yi)log(1− pw,b(xi))

]
+

1

C
(wTw + b2).

The first term penalises misclassifications with the penalty increasing as the con-

fidence in the incorrect classification increases. The second term implements ℓ2
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regularisation, reducing overfitting by preventing the weights from becoming too

large, where C is a hyper-parameter controlling the amount of regularisation.

In our case, x will be a persistence image, y(x) = 0 will indicate one phase, and

y(x) = 1 will indicate another. As in [45] we will train the model using data drawn

deep into both phases. However, since we are interested in making a precise estimate

of the critical point of a phase transition, we will use data closer to the critical

region than in [45]. After successful training, the weights will indicate features in

the persistence image characteristic of each phase. Weights wj < 0 will indicate

features of one phase, and weights wj > 0 will indicate features of the other. In the

intermediate range where there is no training data, the logistic regression model will

output an estimated classification OLR ∈ {0, 1} depending on whether p is less than

or greater than 0.5. Notice that we clamp the output to 0 or 1 rather than using the

direct output of the logistic function. We found that this leads to better finite-size

scaling behaviour later on. We may then treat ⟨OLR⟩ as a phase indicator. In this

thesis we shall be interested in the distribution of OLR at different values of β and

different lattice sizes.

2.2.2 k-Nearest Neighbours

We will also make use of k-nearest neighbours (k-NN) classification to map persis-

tence images onto phases. This is a non-parametric model which models a cate-

gorical dependent variable y(x) ∈ N, where x ∈ RN . The behaviour of the model

is determined by the training data {(xi, yi)} and a choice of the hyper-parameter

k ∈ N. Given new input x, it finds the k indices i1(x), . . . , ik(x) that minimise the

Euclidean distance ||x − xi||2. It then outputs the most common label among the

yi1(x), . . . , yik(x).

As in the case of logistic regression, x will be a persistence image, y(x) = 0 will

indicate one phase, and y(x) = 1 will indicate the other phase. We will train the

model using data drawn in both phases close to the critical region. In the critical

region where there is no training data, the k-NN model will output an estimated

classification OkNN ∈ {0, 1}. We may then treat ⟨OkNN⟩ as a phase indicator.
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2.3 Critical Exponents and Finite Size Scaling

In this section we assume a basic knowledge of statistical physics and phase transi-

tions. A brief review of these can be found in Appendix A.

A continuous phase transition is marked by diverging correlation length ξ and

fluctuations (e.g., the specific heat). One way to characterise the transition is to

ask how fast these quantities diverge as we approach the critical parameter βc.

Letting t = (β − βc)/βc be a reduced parameter, we find that they diverge with

a power law with, for example, ξ ∼ |t|−ν for the correlation length. We call ν

the critical exponent of correlation length for the phase transition and there is a

whole collection of such exponents associated to each phase transition, with one for

each diverging quantity we are looking at. These critical exponents, along with the

transition parameter βc characterise the phase transition. In fact, the same set of

values for the critical exponents may characterise several different phase transitions

and we say that these transitions lie in the same universality class. For example,

we consider a phase transition later in a variant of the 2D XY model which lies

in the same universality class as the 2D Ising model. The two models have very

different microscopic properties, but it turns out to be the macroscopic properties

such as lattice dimension and the Z2 symmetry in both that determine their critical

exponents. A full explanation for this behaviour would require introducing the

renormalisation group which is beyond this introduction, but a good reference is

[46].

Consider a quantity measured in the continuum limit A∞ that diverges at the

critical point with critical exponent ζ so that A∞(β) ∼ |t|−ζ . Then we have that

A∞(β) ∼ |t|−νζ/ν ∼ ξζ/ν .

But now for a finite system size L close to the critical point we have L≪ ξ since ξ

diverges and L takes over as the cutoff, giving us that

AL(β) ∼ Lζ/ν ,

not diverging but displaying a more and more pronounced peak as L increases. This

in turn lets us write down the following finite-size scaling ansatz [47]

AL(β) = Lζ/νÂ(L1/νt) (2)
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where Â is a dimensionless function.

In the case of the phase transition in the 2D XY model, known as the Berezinskii-

Kosterlitz-Thouless (BKT) transition, we see something slightly different. Here

the correlation length diverges much faster ξ ∼ exp(b|t|−ν) where b > 0 is some

non-universal (i.e., model specific) constant [48]. Now the finite-size scaling ansatz

becomes

AL(β) ≈ Lζ/ν Â(L exp(−b|t|−ν)) (3)

where we have ignored some small logarithmic corrections.

By simulating close to the phase transition on different lattice sizes L we can

extract the heights and locations of the different peaks in AL then fit these to

Equation 2 or Equation 3 as appropriate to estimate βc, ζ and ν. Note that the

logarithmic corrections we ignored in the BKT case mean that this method is not

typically used for high precision studies, where approaches based on the spin stiffness

[49] are more common.

We might expect the persistent homology of a configuration to demonstrate large

variations at criticality. We quantify this by looking at the fluctuations in the output

OLR and OkNN of the trained logistic regression and k-NN models, measuring the

variance

χLR(β) = ⟨O2
LR⟩β − ⟨OLR⟩2β

= ⟨OLR ⟩β(1− ⟨OLR⟩β).
(4)

Note that the second equation follows since OLR takes values in {0, 1}. This will

display a peak, indicating where the model is least certain about which phase con-

figurations are from, when ⟨OLR⟩T crosses 0.5. χkNN is defined similarly. We find

evidence that these quantities may also display finite-size scaling behaviour similar

to Equations 2 and 3 which we will use to estimate the critical β and the critical

exponent of correlation length ν.

If ν is known, we may estimate βc by fitting the peak locations βc(L) of χLR and

χkNN obtained from multiple lattice sizes to the ansatz

βc(L)− βc(∞) ∝ 1

L1/ν
. (5)
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in the case of a second order transition, or

βc(L)− βc(∞) ∝ 1

log(L)1/ν
. (6)

for a BKT transition.

To estimate ν (as well as βc), we can use a curve collapse approach, plotting

y = χLR or y = χkNN for multiple lattice sizes simultaneously against x = L1/ν t

(second order) or x = L exp(−bt−ν) (BKT). According to Equations 2 and 3, if

ν, βc, and b (in the case of a BKT transition) are correct then the curves for the

different lattice sizes should collapse onto one another. Thus finding values of ν and

βc which minimise the distance between the curves using the Nelder-Mead method,

as in the procedure described in [50], should give us an estimate of their true values.

2.4 Statistical Techniques

The following are techniques we use to improve and estimate the error in our esti-

mates of critical parameters and exponents.

2.4.1 Histogram Reweighting

Histogram reweighting allows us to express the ensemble average of an observable O

at an inverse temperature (or inverse coupling) β′ in terms of averages at any other

value β according to the equation

⟨O⟩β′ =
⟨Oe−(β′−β)E⟩β
⟨e−(β′−β)E⟩β

(7)

where E is the energy (or action) of a configuration [51]. However, in practice we

can only reweight so far, so that the energy distributions for β and β′ have a sizable

overlap. To reliably extrapolate to a wider region we can make use of multiple

histogram reweighing [52] where we sample at multiple values β1, . . . , βR. Suppose

we sample Ni configurations at parameter βi, then we can iterate the equation

e−fβ =
R∑
i=1

Ni∑
a=1

g−1
i e−βE

a
i∑R

j=1Njg
−1
j e−βjE

a
i +fj
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to estimate the free energies fi = fβi up to an additive constant, where each gi is

a quantity related to the integrated autocorrelation of the samples in run i. Given

the fi we can estimate

⟨O⟩β′ =
R∑
i=1

Ni∑
a=1

Oa
i g

−1
i e−βkE

a
i +fβ′∑R

j=1Njg
−1
j e−βjE

a
i +fj

.

2.4.2 Bootstrap Error Estimation

In order to make any reasonable conclusions from the results of our analysis we need

to be able to estimate the error in any numerical values obtained. While the error

in ensemble averages can be directly estimated from the sample, we also calculate

various fits to the data. The way in which error propagates here is not necessarily

easy to calculate directly. The idea of bootstrap analysis is to sidestep these concerns

by estimating the sampling distribution of a statistic directly. Suppose we obtain

N sampled configurations S = {θ1, . . . ,θN} and calculate some numerical statistic

f(S) from the data. Given some preset integer NB, bootstrap analysis proceeds by:

1. resampling S with replacement NB times to obtain samples S1, . . . , SNB
each

of size N ; then

2. computing f(Si) for each i ∈ {1, . . . , NB}.

For large enough NB, the distribution of the f(Si) approximates the sampling dis-

tribution of f and we can estimate the standard error

σf ≈
√

1

NB

∑
i

(
f(Si)− f(Sj)

)2
.

2.5 Previous Work

As mentioned in the introduction to this thesis, there is a growing body of work on

using machine learning to analyse phase transitions. An incomplete list of references

includes [53–67]. More recently, among other geometric and topological approaches

[68–71], there has been an interest in using persistent homology to produce inter-

pretable features which are inherently sensitive to topological objects. These can
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then be compared in their own right, or fed into a machine learning model [45, 72–

76]. A useful review is [77].

Recall that we mentioned two paradigms for using persistent homology to study

phase transitions of a given statistical physics model: persistent homology of config-

uration/data space and persistent homology as an observable.

The first approach has not seen much activity. In [76], Donato et al. sam-

ple configurations at energy levels below, at, and above the critical point of phase

transitions in the mean-field XY model and ϕ4 model. Estimating the geodesic dis-

tance between configurations, they compute Vietoris-Rips H0 and H1 persistence

for each such set of samples and compare the results to see if there has been a

topology change across the phase transition, finding some qualitative evidence for

this change. A reason this approach has not seen further work, particularly of a

more quantitative nature, is that it is very computationally demanding. The config-

uration spaces involved are very high dimensional – a modestly sized lattice model

might have tens of thousands of variables. Therefore, not only is a large number

of configurations needed to sufficiently sample the space, but the topology change

may be manifested in high dimension so that looking at H0 and H1 may not be

sufficient. However, including higher dimensions in a Vietoris-Rips complex causes

a combinatorial explosion in the number of simplices and therefore computational

cost.

The second approach, which we focus on in this thesis, has seen much more work

in recent years. Some references include [45, 72–75, 78–80]. Previous works have

focused on identifying the different phases in various models in a mostly qualitative

manner. While [45] makes some steps towards obtaining quantitative measurements

of the multiscale structure of the Ising model at criticality, the work in this thesis

constitutes some of the first work on developing a framework for using persistent

homology observables to make rigorous numerical estimates of critical temperatures

or couplings and critical exponents with quantified error. We will make more specific

remarks on some of these previous works in Chapters 3 and 4 as relevant.
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3 XY Models

In this chapter we look at the classical 2D XY model as well as two variants. These

are spin models defined on a 2-dimensional lattice which exhibit phase transitions

driven by topological defects, and therefore serve as a good testbed for the use of

topological data analysis methods in statistical physics.

3.1 The XY Model and BKT Transition

The 2-dimensional XY model is defined on an L × L square lattice Λ by assigning

an angle θi ∈ S1 to each lattice site i ∈ Λ. The energy of a given configuration of

spins θ = {θi}i∈Λ is given by the Hamiltonian

H(θ) = −
∑
⟨ij⟩

cos(θi − θj)

where ⟨ij⟩ ranges over all pairs of nearest neighbour lattice sites. At low tempera-

tures spins tend to align with their neighbours and at high temperatures they are

able to become more and more disordered. We characterise this high temperature

behaviour as usual by saying that there is short-range order. That is, the correlation

function C(T, r) = ⟨cos(θ0 − θr)⟩T decays exponentially with distance

C(T, r) ∼ exp(−r
ξ

)

with a correlation length ξ depending on temperature. However, unlike the Ising

model considered in Appendix A, we do not have long-range order at any tempera-

ture. Instead we find that the correlation function decays as a power law

C(T, r) ∼
(1

r

) T
2π

for all temperatures below some temperature Tc. This is called quasi long-range

order. There is a qualitative change in the behaviour of the correlation function so

we must have a phase transition at critical temperature Tc, but it is unlike most we

see in statistical physics. Usually power law decay of correlations only happens at

the critical temperature itself, where as now it is happening in the whole interval

T ∈ (0, Tc]. The reason for this behaviour was uncovered by Kosterlitz and Thouless

[81, 82] for which they received the 2016 Nobel Prize in physics along with Haldane.
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Berezinskii had also been able to figure out what drove this phase transition but had

not been able to uncover the full picture [83]. We therefore call the phase transition,

which fits into neither of the first-order or continuous classifications, a Berezinskii-

Kosterlitz-Thouless (BKT) transition. The following rough explanation is inspired

by that in [84].

Let us consider the continuum limit where a configuration is now a map θ :

[0, L]2 → S1 and the Hamiltonian becomes

H =
1

2

∫
∇(θ(r⃗))2d2r⃗.

If we simplify the model to allow θ to take values in R instead of S1, then field theory

calculations show that C(T, r) decays as a power law for all temperatures T . The

missing ingredient must have been lost in passing from S1 to R and indeed what we

lost were vortex configurations. An example of a vortex configuration was discussed

in the introduction to this thesis and is characterised by a non-zero vorticity or

winding number

v =
1

2π

∮
C
∇θ(r⃗)dr⃗

where C is any curve which encloses the center of the vortex. If v < 0 we may also

call it an antivortex. The energy of a configuration containing a single rotationally

symmetric vortex with v = ±1 will have an energy like

Ev = π ln
L

a

where a is some short distance cutoff that we can think of as the size of the vortex

core. The dependence on L means that for large systems the energy cost will be too

high for vortices to form. However if we instead take a configuration with both a

vortex (v = 1) and an antivortex (v = −1), then the energy of this configuration is

Epair = 2π ln
R

a

where R is the separation between the vortices. Thus for small R, such bound vortex-

antivortex pairs may be formed from thermal fluctuations. When bound these still

do not lead to exponential decay of the spin-spin correlation. The idea instead is

that as the temperature increases past the critical point, it becomes energetically

favourable for the vortex-antivortex pairs to unbind, allowing free vortices to prolif-

erate through the system and destroy the quasi long-range order, leaving only the
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short-range order observed at high temperatures. A rough free energy argument

says that the free energy of a single vortex is

F = E − TS = π ln
L

a
− T ln

L2

a2

where S = ln(L2/a2) is the entropy, estimated from the idea that there are L2/a2

possible positions for a vortex with core area a2 in an L×L box. Thus at Tc = π/2 the

energy and entropy are balanced so free vortices become favourable. This value of the

critical temperature is actually not quite right and in fact it has been numerically

estimated to be approximately T = 0.8929 [85]. We also note that the critical

exponent of correlation length for the BKT transition is ν = 1
2
.

3.2 Variant Models

Modifying the Hamiltonian of the XY model gives us a couple of different variants

which also display BKT transitions. One of these variants also has a second-order

phase transition at a lower temperature in addition to the BKT transition.

3.2.1 Constrained XY Model

What we will refer to as the 2-dimensional Constrained XY model was introduced

and investigated in [86, 87] where it is called an XY model with a topological lattice

action. It is defined similarly to the classical XY model by assigning an angle θi ∈ S1

to each lattice site i ∈ Λ of an L× L square lattice Λ. However the Hamiltonian is

defined as

H(θ) =

0 if 1
2π
|θi − θj| ≤ δ for all ⟨i, j⟩

∞ otherwise.

Therefore all configurations are constrained so that the spins at neighbouring sites

cannot differ by more than δ. Since the partition function does not depend on the

thermodynamic temperature, we consider the phase portrait as a function of the

parameter δ. The model undergoes a BKT transition as δ increases at approxi-

mately δ = 0.2825 [87] with ν = 1
2
. Notice that while δ < 0.25 no (anti)vortices may

form. This is interesting as the energy-entropy trade off argument for vortex prolif-
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eration no longer works here: the energy is constant for all allowed configurations.

Nevertheless, vortices seem to be responsible for the phase transition here too.

3.2.2 Nematic XY Model

There are a variety of generalised XY models with nematic interactions. We will

consider the model with Hamiltonian

H(θ) = −
∑
⟨ij⟩

[
∆ cos(θi − θj) + (1−∆) cos(2(θi − θj))

]
where we will fix ∆ = 0.15. The first term is the usual XY interaction, but the

second term is a nematic interaction which remains invariant when any individual

spin is rotated 180 degrees. We can imagine this as an interaction between the

spins considered as headless rods: spins which are parallel contribute less energy,

even if they point in opposite directions. The T -∆ phase diagram of this model

is explored in [88–90], and we see that at our chosen ∆ = 0.15, it undergoes two

phase transitions as temperature increases. The first is an Ising-type transition

from a magnetic phase to a nematic phase at T ≈ 0.3314 (as estimated using the

magnetic susceptibility) resulting in (anti)vortices (which remain bound into vortex-

antivortex pairs) stretching into domain walls with a half-(anti)vortex at each end;

across the wall the spins flip by π. See Figure 8 for an example. The second is

a BKT transition to a paramagnetic phase at T ≈ 0.7808 (as estimated using the

magnetic susceptibility) driven by the unbinding of these pairs of now-elongated

vortices and antivortices.

3.3 Previous Work

While the existing works on the persistent homology as an observable paradigm share

the same underlying idea, the approaches seen so far have differed significantly, both

in how filtrations have been constructed, and how the resulting persistence diagrams

have been analysed. Tran, Chen, and Hasegawa investigated phase transitions in

the 2D XY model, 1D transverse-field Ising and 1D Bose-Hubbard models [72].

They computed the Vietoris-Rips persistence of point clouds of lattice sites with

inter-point distances given by a linear combination of the Euclidean distance in the
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Figure 8: A configuration with a vortex that has stretched out into two half-

vortices separated by a domain wall.

lattice and the difference in the spins. They show that clustering configurations

based on the the Persistence Fisher kernel [91], persistence entropy and the second

moment of persistence of the H1 diagrams identifies the different phases. They

demonstrate that increasing the lattice size produces sharper estimates of the critical

temperature. This approach is extended to the XXZ model on a pyrochlore lattice

by Olsthoorn, Hellsvik, and Balatsky, approximately separating the six different

phases of the model [74].

Cole, Loges, and Shiu apply a different methodology to the previous works. Look-

ing at the 2D Ising, square-ice, XY and fully-frustrated XY models, they introduce

general constructions of filtrations for configurations of discrete-valued and circle-

valued spin models [45]. In particular, configurations of circle-valued models like the

XY model are given a sublevel set filtration of the map f : Λ → (−π, π] which as-

signs each site i ∈ Λ in the lattice a parameterisation of its spin f(i) ∈ (−π, π]. This

filtration yields cubical subcomplexes of the lattice. They make use of persistence

images [37] to vectorise persistence diagrams, allowing the application of a logistic

regression model to separate the phases. They relate some quantitative aspects of

the persistence diagrams to the estimation of critical exponents in the case of the

Ising model. For discrete models they construct α-complexes on subsets of the lat-

tice sites with the same spin. This is similar to the approach used by Hirakida et

al. in [75] who look at the effective Polyakov line model.
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Comparing the approach in [72] to that in [45] makes it clear that there is a

significant degree of choice in picking the filtration used to compute the persistent

homology of a given XY model configuration. We will demonstrate that this choice is

an important factor in determining what information about phase transitions one can

derive from the persistence. In particular, we find that using two different filtrations

is required to detect and analyse the two different phase transitions undergone by

the nematic XY model.

3.4 Methods

3.4.1 Simulation

We will make use of the Metropolis algorithm, described in Appendix A, and the

Wolff cluster algorithm [92].

Metropolis Algorithm Recall that the Metropolis algorithm produces a se-

quence of configurations {ct}t∈N where a configuration c′ is proposed as the t+ 1-th

configuration ct+1 by sampling from a distribution g(c′|ct) based on the previous

configuration ct (see Appendix A). In the case of the XY model and the variants

we study in this chapter, new configurations are proposed by randomly selecting a

lattice site i ∈ Λ and angle θ′ ∈ S1, then proposing the replacement θi ← θ′. Thus

at each step t of the Markov chain we have g(c′|ct) = g(ct|c′) and the new configu-

ration is accepted or rejected purely based on the resulting change in the value of

the Hamiltonian.

Wolff Cluster Algorithm The idea here is that instead of modifying spins one

at a time, whole clusters of spins may be flipped across a random line, more quickly

exploring the space of configurations while maintaining the conditions of ergodicity

and detailed balance required to converge to the correct probability distribution.

Once again we set up a Markov chain starting with a random configuration and

generating each next step based on the previous. Pseudocode for a single step is

given in Algorithm 2.
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Algorithm 2 Wolff Cluster Step [92]

Input Configuration {θi}i∈Λ
Output Updated configuration {θ′i}i∈Λ
1: for i ∈ Λ do

2: θ′i ← θi

3: end for

4: S ← ∅ ▷ S is an empty stack of lattice sites

5: push(S,UniformRandom(Λ)) ▷ Initialise it with a random lattice site

6: r ← UniformRandom([0, 2π)) ▷ Angle of a random line through the origin

7: while S ̸= ∅ do
8: i← pop(S)

9: for j ∈ Λ \ S neighbouring i do

10: P ← 1− exp(min{0,−2β cos(θi − r) cos(θj − r)})
11: if UniformRandom([0, 1]) ≤ P then

12: push(S, j) ▷ Add j to the stack with probability P

13: end if

14: end for

15: θ′i ← 2r + π/2− θi ▷ Flip θi in the line defined by r

16: end while
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3.4.2 Filtered Complex

To apply persistent homology we must choose how to define a filtered cubical com-

plex for a given configuration θ = {θi}. Our idea is to filter the square tiling of the

plane corresponding to the lattice Λ according to the differences in neighbouring

spins. For each cube c in this cubical complex, we will specify a filtration index

f(c) at which it appears, and then Ft = f−1(−∞, t] is the subcomplex of the plane

consisting of all cubes that have appeared by time t. Denote the smallest angle

between spins θi and θj by di,j. This can also be seen as the length of the shortest

arc between θi and θj on the unit circle.

Definition 3.1 (Angle difference filtration). Taking an L×L square lattice Λ as a

2-dimensional cubical complex C with 0-cubes {i} for i ∈ Λ, 1-cubes {i, j} for all

nearest neighbour pairs of sites i, j in Λ, and 2-cubes {i, j, k, l} for all plaquettes

with corners i, j, k, l in Λ, the angle difference filtration is the sublevel set filtration

defined by f : C → R where:

1. We introduce each vertex or 0-cube i ∈ Λ at index

f(i) = 0.

2. Each edge or 1-cube {i, j} is introduced at index

f({i, j}) =
1

2π
di,j.

3. Each plaquette or 2-cube {i, j, k, l} is introduced at index

f({i, j, k, l}) = max
a,b∈{i,j,k,l}

1

2π
da,b.

We will also introduce another similar filtration to use with the Nematic XY

model in Section 3.2.2. This will instead use a nematic angle difference dni,j which

denotes the smallest angle between the spins θi and θj considered as directionless

rods. We can think of this as the length of the shortest arc connecting the head of

one spin to either the head or tail of the other spin. That is dni,j = min(di,j, π−di,j).

Definition 3.2 (Nematic angle difference filtration). Taking an L×L square lattice

Λ as a 2-dimensional cubical complex C with 0-cubes {i} for i ∈ Λ, 1-cubes {i, j} for
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all nearest neighbour pairs of sites i, j in Λ, and 2-cubes {i, j, k, l} for all plaquettes

with corners i, j, k, l in Λ, the nematic angle difference filtration is the sublevel set

filtration defined by fn : C → R where:

1. We introduce each vertex or 0-cube i ∈ Λ at index

fn(i) = 0.

2. Each edge or 1-cube {i, j} is introduced at index

fn({i, j}) =
1

2π
dnij.

3. Each plaquette or 2-cube {i, j, k, l} is introduced at index

fn({i, j, k, l}) = max
a,b∈{i,j,k,l}

1

2π
dnab.

The intuition behind these filtrations originally came from considering the 2D

XY model. Regions of the lattice where spins vary slowly will be introduced in the

angle difference filtration early, while regions containing rapidly varying spins, such

as at the centre of vortices, will enter the filtration later. We should expect then,

at least at low temperatures, that each vortex will be manifested as a hole in the

filtered lattice which is formed early on in the filtration, and which only gets filled in

much later: i.e., a persistent H1 class. Figure 9 shows an example of this. However

we will see that these filtrations can capture other structure such as spin waves, or

half-vortices and domain walls when we look at the Nematic XY model. Moreover,

compared to the point cloud filtrations used in [72, 74] this class of filtrations has the

computational benefit that edges are only introduced between neighbouring lattice

sites and only elementary cubes up to dimension 2 are included, greatly speeding

up the computation of persistent homology. The persistence diagrams obtained

using these filtrations are stable with respect to small perturbations to the spins, in

contrast to the sublevel set filtration used in [45].

Proposition 3.1 (Stability of angle-difference filtration). The maps assigning to

each configuration in (S1)Λ the functions f, fn : C → R are (1/π)-Lipschitz with

respect to the L∞ metric.
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Figure 9: An illustration of the angle difference filtration for a configuration of the XY

model with an antivortex. The filtration parameter increases from left to right and the

state of the filtration is shown at 6 different stages. On the left-hand side only those

neighbouring spins which don’t differ too much are connected by edges and plaquettes. As

we move towards the right, more and more edges are introduced between more disparate

spins. Note the correspondence between the bars and the holes in the filtration. For ex-

ample, the longest bar corresponds to the hole around the antivortex in the centre of the

configuration. This hole is formed early on as the spins far from the centre vary slowly,

but survives until the central plaquette is added to the filtration.
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Proof. This follows simply from di,j being a 2-Lipschitz function ((S1)2, ||.||∞)→ R.

Suppose we modify each spin of a configuration θ′i = θi + ∆θi. Denote the new

length of the arc between θ′i and θ′j by d′i,j. Then for all i, j we have that

di,j − |∆θi| − |∆θj| ≤ d′i,j ≤ di,j + |∆θi|+ |∆θj|,

giving us that ||f − f ′||∞ = 1
2π

maxi,j |di,j − d′i,j| ≤ 1
2π

2 maxi |∆θi| = 1
π
||θ − θ′||∞.

Taking the equation dni,j = min{di,j, π − di,j} and working through the cases shows

the same for fn.

3.5 Detecting Topological Defects

As a first experiment, let us see what the persistent homology of a typical low

temperature XY model configuration containing vortices looks like. Figure 10 shows

a configuration sampled at a low temperature using the Metropolis algorithm with

multiple clearly observed (anti)vortices.

Figure 11 shows the persistence diagram we obtain using the angle difference

filtration on the configuration. As expected, we have 4 points on the infinite death

line: 1 in H0, 2 in H1 and 1 in H2, recording the homology of the final complex

which is homeomorphic to a 2-torus. The 0-dimensional and 2-dimensional persis-

tent homology are not too interesting, but we see some interesting structure in the

1-dimensional persistence. The points split into at least 2 clusters: most lie in a

cluster of low-persistence points close to the diagonal, but a few lie in a small cluster

of high-persistence points which die close to filtration index 0.5. We immediately

hypothesise that this latter cluster corresponds to vortices and antivortices in the

configuration. Simply counting the number of vortices and antivortices in the config-

uration yields a count of 12, but there are 11 points in the cluster in the persistence

diagram. Computing some other examples always yields this difference of 1. This

turns out to be due to the periodic boundary conditions and a simple topological

fact.

Proposition 3.2. Let T 2 denote the 2-torus, and x ∈ T 2 be a point in the torus.

Then,

H1(T
2 \ {x}) ∼= F2 ∼= H1(T

2).
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Figure 10: An XY model configuration sampled using the Metropolis algorithm at

T = 0.2 on a 50× 50 lattice. The shading indicates the contribution of each lattice

site to the Hamiltonian, helping us identify 12 (anti)vortices (recall that we have

periodic boundary conditions).

These are straightforward calculations, but note that we can intuitively see how

the first isomorphism holds by retracting the punctured torus T 2 \ {x} to the bou-

quet of 2 circles. The point is that if we consider a filtration index where the filtered

complex is almost complete except for a single hole centered on a vortex. Then the

complex is homeomorphic to a punctured torus and hence its 1-dimensional homol-

ogy is the same as the torus, so we do not obtain a point in our persistence diagram.

We can also think about this difference of 1 as being due to the infinite-death points

in H1. These represent 1-cycles that cross from one side of the configuration to the

other, looping around the periodic boundary conditions. These therefore surround

all the vortices in the configuration, effectively adding 1 to our count.
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Figure 11: The persistence diagram obtained using the angle difference filtration

on the configuration in Figure 10. Note that in the cluster of high persistence,

finite-death points in PH1 there are 11 points.

3.6 Observing the Phase Transitions

In the previous section we looked at the persistence of a single configuration which

may or may not produce a persistence diagram representative of its phase. In

order to reasonably analyse the persistent homology of different phases we ought to

consider the expected persistence. We therefore need to pass to a vectorisation and

we choose persistence images since these will allow us to easily relate observations

back to features in the persistence diagrams.

Fixing a lattice size of 30× 30, the procedure for our analysis of each model at

each temperature is as follows:

1. We sample the model using the Wolff cluster algorithm [92] at a range of tem-

peratures spanning the phase transition(s). We perform 50, 000 Wolff cluster

flips to properly thermalise the model, and 100 cluster flips between samples

to ensure that the autocorrelation is negligible.
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2. For each sample, we compute persistence images with 30× 30 resolution and

σ equal to 10% of a pixel.

3. We average the persistence images to estimate the expected value.

XY Model Using the angle difference filtration described in Section 3.4.2 we ob-

tain average persistence images as shown in Figure 12. At low temperatures we see

that most points in the persistence diagrams are concentrated in the lower left corner.

These come from the presence of spin waves: spins tend to differ more with those in

the opposite corner of a plaquette than with their immediate neighbours, producing

a short-lived cycle. As the temperature increases we observe that the spin-wave

cycles persist longer and longer. At around T = 0.8, 0.95, close to the critical point,

we begin to see points close to the downwards diagonal persistence = 0.5− birth, or

equivalently death = 0.5. These represent (anti)vortices: they are born reasonably

early, as spins far away from the centre vary slowly, but die much later due to the

large difference in spins at the vortex core. In fact, we can check that the sum of the

components of the persistence image lying on the diagonal and the two immediate

subdiagonals correlates well with the absolute vorticity (the total count of vortices

and antivortices) of the configurations as measured by summing the signed angle

difference around all plaquettes. For example, computing the Pearson correlation

coefficient on 2000 configurations at T = 1.0 for L = 140 yields a correlation coef-

ficient of r = 0.70, p < 0.001. At high temperatures we see this concentration of

cycles on the diagonal increase and shift rightwards, indicating a disordered phase

with many vortices.

Constrained XY Model Using the angle difference filtration described in Section

3.4.2 we obtain average persistence images as shown in Figure 13. We immediately

see a resemblance with the persistence images obtained for the XY model in Figure

12 except that we see a cutoff effect at birth = δ, since by this point all neighbouring

lattice sites must have been connected in the filtration.

Nematic XY Model From Figure 14 we see that the Magnetic-Nematic tran-

sition is manifested in the angle difference filtration by the emergence of a cluster
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Figure 12: The average H1 persistence images in birth-persistence coordinates at different

temperatures for the XY model with L = 30.
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Figure 13: The average H1 persistence images in birth-persistence coordinates at different

temperatures for the Constrained XY model with L = 30.
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in the bottom right of the persistence image and the rightwards movement of the

cluster in the top left. These likely correspond to the appearance of domain walls

in configurations. In particular, at a time close to 0.5 in the filtration, the edges

which cross domain walls will get added all at once, forming many short-lived cycles.

Meanwhile, (anti)vortices get stretched out into strings so that more spins must be

connected in the filtration before a hole is formed, generally causing the time at

which this happens to increase a little. There is little qualitative difference between

the images across the BKT transition however. In Figure 15, showing the average

persistence images using the nematic angle difference filtration, we see a familiar pic-

ture of the BKT transition which is very similar to that observed in the XY model

and Constrained XY model, while the Ising-type transition is not detectable at all.

We also looked at a combined angle difference filtration using ∆
2π
di,j + 1−∆

2π
dni,j. This

potentially did detect both phase transitions, but the later step of training classifi-

cation models to identify phases from the persistence images was difficult, so it was

not possible to verify this.

3.7 Matching Vortices and Antivortices with Representa-

tive Cocycles

Besides simply matching the vortex count and the number of high persistence points

in PH1, we might also attempt to identify each point in PH1 with a cycle in the

cubical complex. Unfortunately, as mentioned in Section 2.1.4, available software

tools for this kind of analysis are sparse. Instead we will take a slightly different

approach which will turn out to lead to provide some interesting results.

Rather than obtaining representative cycles, we instead obtain representative

cocycles. In Z2 coefficients a 1-cocycle is a function c from the edges of the complex

to Z2, so we can also think of a 1-cocycle as a subset of the edges given by its support

Supp(c). These edges represent a cut of the corresponding cycle, i.e., removing these

edges would break the cycle.

We will make use of the Ripser.py software [33] to calculate persistent coho-

mology and representative cocycles. However, this software works with simplicial

complexes and not cubical complexes so we will define a filtered simplicial complex
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Figure 14: The average H1 persistence images in birth-persistence coordinates at different

temperatures for the Nematic XY model with L = 30 using the angle difference filtration.
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Figure 15: The average H1 persistence images in birth-persistence coordinates at different

temperatures for the Nematic XY model with L = 30 using the nematic angle difference

filtration.
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which yields the same persistent homology as the angle difference filtration.

Definition 3.3 (Simplicial angle difference filtration). Triangulate the lattice so

that each plaquette is divided into two triangles by a single diagonal edge (which

diagonal is chosen does not matter) to obtain a simplicial complex Σ homeomorphic

to the 2-torus. The simplicial angle difference filtration is the sublevel set filtration

of f : Σ→ R where:

1. We introduce each vertex (or 0-simplex) {i} at index

f({i}) = 0.

2. If an edge (or 1-simplex) {i, j} connects nearest neighbour lattice sites (i.e., is

horizontal or vertical), it is introduced at index

f({i, j}) =
1

2π
di,j.

Otherwise if it is a diagonal on a plaquette □, it is introduced at index

f({i, j}) = max
x,y∈□

1

2π
dx,y.

3. Each triangle (or 2-simplex) {i, j, k} lies in some plaquette □ and is introduced

at index

f({i, j, k}) = max
a,b∈□

1

2π
da,b.

It is straightforward to see that ∀t ∈ R, the simplicial angle difference filtered

complex at index t is homeomorphic to the (cubical) angle difference filtration at

index t. We therefore obtain the same persistence module and thus persistence

diagram.

Figure 16 shows a low temperature configuration along with a representative

cocycle for one of the high persistence H1 points. We observe that it forms a path

between a vortex and an antivortex.

We might hypothesise that this is always the case for the points in the high

persistence cluster, so that the representative cocycles give us a way to match vor-

tices and antivortices. However, in Figure 17 we see that another representative
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Figure 16: A representative cocycle in an XY model configuration sampled at

T = 0.2. (a) The persistence diagram obtained using the simplicial angle differ-

ence filtration. The point we are looking at is highlighted in green. (b) The con-

figuration coloured by Hamiltonian density with a representative cocycle indicated

in red.

cocycle links several vortices. The issue here is that the software is only required

to give some representative cocycle c for [c] ∈ ker(δi)/ im(δi−1), among all possible

representatives c+ δi−1b for any b ∈ C∗
i−1.

Nevertheless, if the representative cocycles of high persistence points in H1 yield

paths between vortices and antivortices, then the lengths of these paths may signal

the phase transition. Given a configuration and its simplicial angle difference per-

sistence, let Rn denote the set of representative cocycles obtained using Ripser.py

for the n most persistent finite-death points in H1. Given a cocycle c, recall that

Supp(c) denotes its support: the set of simplices involved in any chains sent to 1 by

c. We define the observable

ℓn =
1

n

∑
c∈Rn

| Supp(c)|
2

which records the average length of the paths for the n most persistent points in

H1. The factor of 1/2 comes from the fact that we have two edges in the cocycle

for each step along the lattice. Note that although Ripser.py makes no guarantees

on which cocycle it gives, it is deterministic – given the same data, we get the same
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Figure 17: A long representative cocycle in an XY model configuration sampled at

T = 0.2. (a) The persistence diagram obtained using the simplicial angle differ-

ence filtration. The point we are looking at is highlighted in green. (b) The con-

figuration coloured by Hamiltonian density with a representative cocycle indicated

in red.

cocycles out – so ℓn is well-defined so long as n is not greater than the number

of points in the diagram. Figure 18 shows the estimated expectation of ℓ15 as a

function of temperature for lattice sizes L ∈ {50, 75, 100}. For each lattice size and

temperature, 500 configurations were generated using the Metropolis algorithm with

200L2 steps before the first sample and 10L2 steps between each subsequent sample.

We immediately observe that the function peaks close to the critical temperature

of the XY model. This agrees with our intuition about the phase transition. As the

temperature increases from below, vortices and antivortices begin to separate and

spread out, increasing the average cocycle path length. Going past the transition

point however, more and more vortices appear in configurations, increasing the vor-

tex density and decreasing the distance between vortices again. The fact that the

peaks in the curves appear to grow taller and narrower as the lattice size increases,

as well as closer to the transition point, indicates that this observable is sensitive to

the phase transition. It may therefore be possible to do a quantitative analysis of the

phase transition using this observable, obtaining estimates of the critical tempera-

ture and critical exponent of correlation length ν. However, the arbitrary nature
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Figure 18: The average lengths of the paths corresponding to the 15 most persis-

tent cocycles as a function of temperature for three different lattice sizes.

of the chosen cocycle representative and the resulting variance in this measurement

do not make it ideal for this purpose. Instead we make use of observables based on

simple machine learning.

3.8 Quantitative Analysis of Phase Transitions

In this section we apply the the machine learning classifiers and statistical techniques

introduced in Chapter 2 to estimate the critical temperatures and critical exponents

of correlation length for the different phase transitions.

3.8.1 Numerical Procedures and Error Estimation

The procedure for our analysis of each model at each lattice size is as follows:

1. We sample the model on the given lattice size using the Wolff cluster algorithm

[92] at a range of temperatures spanning the phase transition(s). We perform

50, 000 Wolff cluster flips to properly thermalise the model, and 100 cluster

flips between samples to ensure that the autocorrelation is negligible.
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2. For each sample, we compute persistence images with 30× 30 resolution and

σ equal to 10% of a pixel.

3. We use persistence images from the low and high temperature phases to train

the logistic regression and k-NN models.

4. Using the trained classification models, we assign a predicted phase to each

sample from the critical region.

5. Close to the peaks in the variances χLR and χkNN of the classifier we apply

multiple histogram reweighting to obtain an interpolated curve and a more

precise estimate of the location of the peak.

Once we have the interpolated variance curve and peak temperature for each of the

lattice sizes, we estimate Tc and ν by fitting the peak temperatures to the appropriate

finite-size scaling ansatz (Equations 5 and 6) and optimising the data collapse of the

variance curves. For each lattice size we perform two bootstraps: first by resampling

the training samples, and second by resampling the samples in the critical region. In

each case we resample 500 times, obtaining bootstrap distributions for the estimates

of Tc and ν. We estimate the error in these quantities by taking the square root of

the sum of the variances of the two bootstrap distributions.

For the constrained XY model we must adjust our methodology slightly since

histogram reweighting is not possible. Instead we will sample deltas more densely,

then to extract the maximums of χLR and χkNN we will fit a parabola to the three

highest points.

3.8.2 XY Model

Logistic Regression We trained logistic regression models on samples drawn

from the low and high temperature phases given in Table 1 with 10, 000 samples

from each temperature. The regularisation hyper-parameter was set to C = 0.001.

We evaluated the models with 10, 000 samples from each temperature in the critical

region.

A plot of the resulting phase indicators is shown in Figure 19 and their variance

curves are shown in Figure 20. The plot of the pseudo-critical temperatures against
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Region T

Low T 0.85, 0.85, 0.85

High T 0.91, 0.92, 0.93

Critical 0.88, 0.89, 0.90

Table 1: Values of T sampled at for analysis of the XY model phase transition

using logistic regression.

log(L)−2 is shown in Figure 21. We do not observe any significant lattice-size de-

pendence in the pseudo-critical temperatures. They instead seem to be distributed

close to T = 0.89 which is the midpoint of the training temperatures. A straight

line fit yields an extrapolated critical temperature of

Tc = 0.8872± 0.0009,

well below the expected Tc = 0.8929. The curve collapse (Figure 22) procedure gives

Tc = 0.8824± 0.0001

ν = 0.4968± 0.0055

b = 0.5098± 0.0068,

not accounting within one standard deviation for the expected values of Tc = 0.8929

and ν = 1
2
.

An advantage of using a generalised linear model like logistic regression, as ex-

plored in [45], is that we can easily match the learned weights against the pixels of

the persistence images. This allows us to interpret how the classifier distinguishes

phases. The weights of the logistic regression model trained on the L = 140 XY

model data is shown in Figure 23. We see that the low temperature phase is char-

acterised by cycles which are born early and which tend to have low persistence,

representing spin waves. The high temperature phase is indicated by cycles with

a later birth time and persistence. In particular, the most important region in

identifying the high temperature phase is close to birth = 0.1, persistence = 0.4

which detects (anti)vortex cycles beginning to change behaviour and move down

the diagonal persistence = 0.5− birth.
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k-Nearest Neighbours In the case of the XY model, we found that the k-nearest

neighbours classification worked best when trained on a broad range of temperatures.

We trained the models on samples drawn from the low and high temperature phases

given in Table 2 with 2000 samples from each temperature. The neighbours hyper-

parameter was set to k = 30. We evaluated the models with 10, 000 samples from

each of the temperatures in the critical region.

Region T

Low T 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,

0.60, 0.65, 0.70, 0.75, 0.80, 0.85

High T 0.95, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30,

1.35, 1.40, 1.45, 1.50, 1.55, 1.60

Critical 0.900, 0.905, 0.910, 0.915, 0.920, 0.925,

0.930, 0.935, 0.940, 0.945, 0.950

Table 2: Values of T sampled at for analysis of the XY model phase transition

using k-nearest neighbours classification.

A plot of the resulting phase indicators is shown in Figure 24 and their variance

curves are shown in Figure 25. The plot of the pseudo-critical temperatures against

log(L)−2 is shown in Figure 26. Here we see an asymptotic convergence towards

a linear dependence between the pseudo-critical temperatures Tc(L) and log(L)−2.

Fitting a straight line to the largest three lattice sizes yields

Tc = 0.8935± 0.0043,

much closer to the expected Tc ≈ 0.8929 than the result of the logistic regression

approach. The curve collapse (Figure 27) procedure gives

Tc = 0.8918± 0.0033

ν = 0.4972± 0.0264

b = 0.5073± 0.0137,

very close to the expected values.
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Figure 19: Plot showing ⟨OLR⟩ as a function of temperature for each lattice size for the

XY model. The shaded regions indicate the temperatures used for the low and high tem-

perature training data. The vertical line shows the location of the expected critical tem-

perature Tc = 0.8929.
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Figure 20: Plot showing χLR as a function of temperature for the largest three lattice sizes

of the XY model. These are what we use to perform the curve collapse procedure.
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Figure 21: Estimating the critical temperature for the XY model using logistic regression.

The pseudo-critical temperatures for the different lattice sizes, calculated from finding the

peak of χLR, are fitted to the ansatz in Equation 6. The intercept gives the estimate for

Tc(∞). Error bars are estimated by bootstrapping.
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Figure 22: The curve collapse of χLR for the XY model with Tc = 0.8824, ν = 0.4968 and

b = 0.5098.
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Figure 23: The weights of the logistic regression model trained on the XY model configu-

rations with L = 140.
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Figure 24: Plot showing ⟨OkNN⟩ as a function of temperature for each lattice size for the

XY model. The shaded regions indicate the temperatures used for the low and high tem-

perature training data. The vertical line shows the location of the expected critical tem-

perature Tc = 0.8929.
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Figure 25: Plot showing χkNN as a function of temperature for the largest three lattice

sizes of the XY model. These are what we use to perform the curve collapse procedure.
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Figure 26: Estimating the critical temperature for the XY model using k-nearest neigh-

bours. The pseudo-critical temperatures for the different lattice sizes, calculated from find-

ing the peak of χkNN , are fitted to the ansatz in Equation 6. We use the largest three lat-

tice sizes in the linear fit. The intercept gives the estimate for Tc(∞). Error bars are esti-

mated by bootstrapping.
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Figure 27: The curve collapse of χkNN for the XY model with Tc = 0.8918, ν = 0.4972 and

b = 0.5073.
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3.8.3 Constrained XY Model

Logistic Regression Analysis We trained logistic regression models on samples

drawn from the low delta phase and high delta phase shown in Table 3 with 4000

samples from each. The regularisation hyper-parameter was set to C = 0.001.

We evaluated the models with 4000 samples from each of δ indicated in the table.

A plot of the resulting phase indicators is shown in Figure 28. The plot of the

Region δ

Low δ 0.270, 0.272, 0.274, 0.276, 0.278, 0.280

High δ 0.286, 0.288, 0.290, 0.292, 0.294, 0.296

Evaluated 0.270, 0.271, 0.272, 0.273, 0.274, 0.275,

0.276, 0.277, 0.278, 0.279. 0.280, 0.281,

0.282, 0.283, 0.284, 0.285, 0.286, 0.287,

0.288, 0.289, 0.290, 0.291, 0.292, 0.293,

0.294, 0.295, 0.296

Table 3: Values of δ sampled at for analysis of the constrained XY model phase

transition using logistic regression.

pseudo-critical deltas against log(L)−2 is shown in Figure 29. We do not observe

any significant lattice-size dependence in the pseudo-critical deltas. They instead

seem to be distributed close to δ = 0.283 which is the midpoint of the training

deltas. The curve collapse (Figure 30) procedure gives

δc = 0.2843± 0.0013

ν = 0.4999± 0.0189

b = 0.3009± 0.0041,

which accounts for the previously-obtained value of δc = 0.2825 within two standard

deviations, and supports ν = 1
2

within one standard deviation.

The weights of the logistic regression model trained for L = 140 are shown in

Figure 31. We observe a similarity to the weights learnt for the XY model in Figure

23 although in this case it appears to be more difficult to delineate which regions of

the persistence images indicate the two phases.
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k-Nearest Neighbours Analysis We trained the k-nearest neighbours models

on samples drawn from the low δ phase and high δ phase shown in Table 4 with

4000 samples from each. The neighbours hyper-parameter was set to k = 30. We

evaluated the models with 4000 samples from each of δ indicated in the table.

Region δ

Low δ 0.270, 0.272, 0.274, 0.276, 0.278, 0.280

High δ 0.286, 0.288, 0.290, 0.292, 0.294, 0.296

Evaluated 0.270, 0.271, 0.272, 0.273, 0.274, 0.275,

0.276, 0.277, 0.278, 0.279. 0.280, 0.281,

0.282, 0.283, 0.284, 0.285, 0.286, 0.287,

0.288, 0.289, 0.290, 0.291, 0.292, 0.293,

0.294, 0.295, 0.296

Table 4: Values of δ sampled at for analysis of the constrained XY model phase

transition using k-nearest neighbours classification.

A plot of the resulting phase indicators is shown in Figure 32. The plot of

the pseudo-critical deltas against log(L)−2 is shown in Figure 33. Here we see an

asymptotic convergence towards a linear dependence between the pseudo-critical

deltas δc(L) and log(L)−2. Fitting a straight line to the largest three lattice sizes

yields

δc = 0.2821± 0.0014.

The curve collapse (Figure 34) procedure gives

δc = 0.2818± 0.0017

ν = 0.5003± 0.0206

b = 0.5022± 0.0048,

very close to the expected values.
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Figure 28: Plot showing ⟨OLR⟩ as a function of delta for each lattice size for the Con-

strained XY model. The shaded regions indicate the deltas used for the low and high

delta training data. The vertical line shows the location of the expected critical delta

δc = 0.2825.
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Figure 29: Estimating the critical delta for the Constrained XY model using logistic re-

gression. The pseudo-critical deltas for the different lattice sizes, calculated from find-

ing the peak of χLR, are fitted to the ansatz in Equation 6. The intercept of the linear fit

gives the estimate for δc(∞). Error bars are estimated by bootstrapping.
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Figure 30: The curve collapse of χLR for the Constrained XY model with δc = 0.2843,

ν = 0.4999 and b = 0.3009.
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Figure 31: The weights of the logistic regression model trained on configurations over the

BKT transition in the Constrained XY model with L = 140.
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Figure 32: Plot showing ⟨OkNN⟩ as a function of delta for each lattice size for the Con-

strained XY model. The shaded regions indicate the deltas used for the low and high

delta training data. The vertical line shows the location of the expected critical delta

δc = 0.2825.
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Figure 33: Estimating the critical delta for the Constrained XY model using logistic re-

gression. The pseudo-critical deltas for the different lattice sizes, calculated from finding

the peak of χkNN , are fitted to the ansatz in Equation 6. We fit to the largest three lattice

sizes and the intercept of this gives the estimate for δc(∞). Error bars are estimated by

bootstrapping.
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Figure 34: The curve collapse of χkNN for the Constrained XY model with δc = 0.2818,

ν = 0.5003 and b = 0.3022.
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3.8.4 Nematic XY Model

Logistic Regression Analysis of Magnetic-Nematic Transition We trained

logistic regression models on samples drawn from the low and high temperature

phases given in Table 5 with 10, 000 samples from each temperature. The regulari-

sation hyper-parameter was set to C = 10−6. We evaluated the models with 10, 000

samples from each temperature in the critical region.

Region T

Low T 0.3200, 0.3225

High T 0.3425, 0.3450

Critical 0.33000, 0.33125, 0.33250, 0.33375, 0.33500

Table 5: Values of T sampled at for analysis of the magnetic-nematic transition in

the nematic XY model using logistic regression.

A plot of the resulting phase indicators is shown in Figure 35. The plot of the

pseudo-critical temperatures against L−1 is shown in Figure 36. For the lower lattice

sizes L < 60, we do not observe any significant lattice-size dependence in the pseudo-

critical temperatures. They instead seem to be distributed close to T = 0.3325 which

is the midpoint of the training temperatures. At the larger lattice sizes L ≥ 60, a

linear dependence on L−1 emerges. Fitting a line to the largest four lattice sizes

yields an extrapolated critical temperature of

Tc = 0.3314± 0.0001.

The curve collapse (Figure 37) procedure gives

Tc = 0.3315± 0.0001

ν = 0.8562± 0.0102.

While these estimates of the critical temperature are good, the expected value

of ν = 1 doesn’t fall within the error bars estimated with this approach.

The weights of the logistic regression model trained for L = 140 are shown in

Figure 38. We observe that the classifier learns to detect exactly what we saw in
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Figure 14, namely a rightwards shift of the upper left cluster, and the emergence

of a cluster in the bottom right, corresponding to domain walls forming in the

configurations.

k-Nearest Neighbours Analysis of Magnetic-Nematic Transition We trained

the k-nearest neighbours models on samples drawn from the low and high tem-

perature phases given in Table 6 with 4000 samples from each temperature. The

neighbours hyper-parameter was set to k = 30. We evaluated the models with 4000

samples from each temperature in the critical region.

Region T

Low T 0.3200, 0.3225

High T 0.3425, 0.3450

Critical 0.33000, 0.33125, 0.33250, 0.33375, 0.33500

Table 6: Values of T sampled at for analysis of the magnetic-nematic transition in

the nematic XY model using k-nearest neighbours classification.

A plot of the resulting phase indicators is shown in Figure 39. The plot of the

pseudo-critical temperatures against L−1 is shown in Figure 40. Here we see that

for L ≥ 60, the pseudo-critical temperatures fit reasonably well on a straight line

when plotted against L−1. Fitting a line to the largest four lattice sizes yields

Tc = 0.3315± 0.0002.

The curve collapse (Figure 41) procedure gives

Tc = 0.3316± 0.0002

ν = 0.9551± 0.0196,

very close to the expected value of Tc = 0.3314, but not quite compatible with ν = 1

although better than the logistic regression result.
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Figure 35: Plot showing ⟨OLR⟩ as a function of temperature for each lattice size over the

Magnetic-Nematic transition in the Nematic XY model. The shaded regions indicate the

temperatures used for the low and high temperature training data. The vertical line shows

the location of the expected critical temperature Tc = 0.3314.
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Figure 36: Estimating the critical temperature for the Magnetic-Nematic transition in

the Nematic XY model using logistic regression. The pseudo-critical temperatures for the

different lattice sizes, calculated from finding the peak of χLR, are fitted to the ansatz in

Equation 5. The intercept gives the estimate for Tc(∞). Error bars are estimated by boot-

strapping.
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Figure 37: The curve collapse of χLR for the Magnetic-Nematic transition in the Nematic

XY model with Tc = 0.3315 and ν = 0.8562.
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Figure 38: The weights of the logistic regression model trained on configurations over the

Magnetic-Nematic transition in the Nematic XY model with L = 140.
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Figure 39: Plot showing ⟨OkNN⟩ as a function of temperature for each lattice size over the

Magnetic-Nematic transition in the Nematic XY model. The shaded regions indicate the

temperatures used for the low and high temperature training data. The vertical line shows

the location of the expected critical temperature Tc = 0.3314.
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Figure 40: Estimating the critical temperature for the Magnetic-Nematic transition in the

Nematic XY model using logistic regression. The pseudo-critical temperatures for the dif-

ferent lattice sizes, calculated from finding the peak of χkNN , are fitted to the ansatz in

Equation 5. The intercept gives the estimate for Tc(∞). Error bars are estimated by boot-

strapping.
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Figure 41: The curve collapse of χkNN for the Magnetic-Nematic transition in the

Nematic XY model with Tc = 0.3316 and ν = 0.9551.
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3.8.5 Logistic Regression Analysis of Nematic-Paramagnetic Transition

We trained logistic regression models on samples drawn from the low and high

temperature phases given in Table 7 with 10, 000 samples from each temperature.

The regularisation hyper-parameter was set to C = 0.001. We evaluated the models

with 10, 000 samples from each temperature in the critical region.

Region T

Low T 0.74, 0.75, 0.76

High T 0.80, 0.81, 0.82

Critical 0.77, 0.78, 0.79

Table 7: Values of T sampled at for analysis of the nematic-paramagnetic transi-

tion in the nematic XY model using logistic regression.

A plot of the resulting phase indicators is shown in Figure 42. The plot of the

pseudo-critical temperatures against log(L)−2 is shown in Figure 43. We do not

observe any significant lattice-size dependence in the pseudo-critical temperatures.

They instead seem to be distributed just above to T = 0.78 which is the midpoint

of the training temperatures. While a straight line fit to all but the smallest lattice

size yields an extrapolated critical temperature of

Tc = 0.7804± 0.0002,

not too far from the expected Tc ≈ 0.7808, Figure 43 does not suggest that increasing

the statistics would lead to increased accuracy. However, the curve collapse (Figure

44) procedure gives

Tc = 0.7803± 0.0025

ν = 0.5107± 0.0101

b = 0.3037± 0.0076,

accounting for the expected value of Tc = 0.7808, but giving a potentially question-

able result for ν = 1
2

which lies just outside one standard deviation.

The weights of the logistic regression model trained for L = 140 are shown in

Figure 45. We note the similarity to the weights learnt for the XY model in Figure
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23 except now the region in the top left represents half-vortices and half-antivortices

which change behaviour, shifting down to the right as temperature increases.

3.8.6 k-Nearest Neighbours Analysis of Nematic-Paramagnetic Transi-

tion

We trained k-nearest neighbour models on samples drawn from the low and high

temperature phases given in Table 8 with 2000 samples from each temperature.

The neighbours hyper-parameter was set to k = 30. We evaluated the models with

10, 000 samples from each temperature in the critical region.

Region T

Low T 0.50, 0.55, 0.60, 0.65, 0.70

High T 0.85, 0.90, 0.95, 1.00, 1.05

Critical 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81,

0.82

Table 8: Values of T sampled at for analysis of the nematic-paramagnetic transi-

tion in the nematic XY model using k-nearest neighbours classification.

A plot of the resulting phase indicators is shown in Figure 46. The plot of the

pseudo-critical temperatures against log(L)−2 is shown in Figure 47. Here we see

an asymptotic convergence towards a linear dependence between the pseudo-critical

temperatures Tc(L) and log(L)−2. Fitting a straight line to the largest four lattice

sizes yields

Tc = 0.7766± 0.0034.

While this is further from the expected Tc ≈ 0.7808 than the result of the logistic

regression approach, the approach towards the correct finite-size scaling is much

clearer. The curve collapse (Figure 48) procedure gives

Tc = 0.7757± 0.0064

ν = 0.4983± 0.0226

b = 0.3051± 0.0083,

which is compatible with the expected values of Tc = 0.7808 and ν = 1
2
.
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Figure 42: Plot showing ⟨OLR⟩ as a function of temperature for each lattice size for the

Nematic-Paramagnetic transition in the Nematic XY model. The shaded regions indicate

the temperatures used for the low and high temperature training data. The vertical line

shows the location of the expected critical temperature Tc = 0.7808.
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Figure 43: Estimating the critical temperature for the Nematic-Paramagnetic transition in

the Nematic XY model using logistic regression. The pseudo-critical temperatures for the

different lattice sizes, calculated from finding the peak of χLR, are fitted to the ansatz in

Equation 6. We use all the lattice sizes except the smallest in the fit. The intercept gives

the estimate for Tc(∞). Error bars are estimated by bootstrapping.
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Figure 44: The curve collapse of χLR for the Nematic-Paramagnetic transition in the Ne-

matic XY model with Tc = 0.7803, ν = 0.5107 and b = 0.3037.
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Figure 45: The weights of the logistic regression model trained on configurations over the

Nematic-Paramagnetic transition in the Nematic XY model with L = 140.
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Figure 46: Plot showing ⟨OkNN⟩ as a function of temperature for each lattice size for the

Nematic-Paramagnetic transition in the Nematic XY model. Note that in this case the

training regions lie outside the bounds of the plot. The vertical line shows the location of

the expected critical temperature Tc = 0.7808.
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Figure 47: Estimating the critical temperature for the Nematic-Paramagnetic transition

in the Nematic XY model using k-nearest neighbours. The pseudo-critical temperatures

for the different lattice sizes, calculated from finding the peak of χkNN , are fitted to the

ansatz in Equation 6. We use the largest four lattice sizes for the fit. The intercept gives

the estimate for Tc(∞). Error bars are estimated by bootstrapping.
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Figure 48: The curve collapse of χkNN for the Nematic-Paramagnetic transition in the Ne-

matic XY model with Tc = 0.7757, ν = 0.4983 and b = 0.3051.

77



3.9 Conclusions and Discussion

We have introduced a way of applying persistent homology to analyse the configura-

tions of lattice spin models and applied this to the 2D XY model with three different

Hamiltonians: the standard action, a topological lattice action, and a modified stan-

dard action with an additional nematic interaction term. We saw that vortices and

antivortices were detected by high persistence points in the H1 persistence diagram.

However, a shortcoming of the filtration considered is that such points may also

appear when there is no vortex. Consider the configuration of spins shown in Figure

49. One would not conclude that there is a vortex here, but the angle difference

filtered complex would still exhibit a long lasting hole around these spins, yielding

a high persistence point in H1.

Figure 49: A non-vortex configuration of spins that would result in a high persis-

tence point in persistent H1 using the angle difference filtration.

We investigated the phase transitions in each model and in each case we were

able to successfully identify the transition and estimate its critical temperature and

critical exponent of the correlation length by considering the finite-size scaling of

observables derived from the persistent homology of configurations. In particular we

trained logistic regression and k-nearest neighbours classifiers to identify the phases

of the models from persistence images and the critical point was estimated as the

temperature at which the variance in the classification reached a maximum. We

found that two different filtrations were necessary to detect the two different phase

transitions in the nematic XY model. It remains an open question of whether or

not the filtrations introduced by other authors for XY models (e.g., in [45, 72])

would detect both simultaneously. However, it certainly leads one to hesitate be-

fore proclaiming persistent homology a universal tool for the investigation of phase

transitions without prior knowledge. In particular, it is clear now that the choice of

filtered complex is important, and good design of these seems to rely on having at
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least some insight into the mechanism of a phase transition.

We have found that the approach of using logistic regression for classification

as introduced in [45], while useful for interpreting which regions of the persistence

image indicate the different phases, fails to produce accurate estimates of the critical

temperature or exponents in the case of the BKT transitions. Instead it will tend

to yield the midpoint between the low and high-temperature training temperatures

as the critical temperature. Indeed, using different temperatures for the training

causes the estimated critical temperature to shift accordingly. This failure may

be because logistic regression is a generalised linear model and the data here is

highly non-linear. On the other hand, the non-parametric k-nearest neighbours

approach generally produces good results, with a clear asymptotic approach towards

the expected finite-size scaling behaviour in all cases.

There are a number of interesting questions and directions for further research:

• The analysis of representative cocycles might be improved by choosing a more

specific representative according to some criterion. For example, a cocycle c

with minimum length (i.e., minimising | Supp(c)|). This may provide a method

to associate vortices with antivortices in the low temperature phase. However

the calculation of such a cocycle would involve solving a non-trivial optimisa-

tion problem.

• The issue of non-vortex configurations of spins yielding high persistence points

in H1 could potentially be addressed through the use of representative cycles.

If a basis of cycles could be found such that each surrounds just one vortex

(it may be sufficient to simply take the boundary of the 2-cube which kills

the homology class), then a discrete version of the winding number can be

calculated around that cycle and used to annotate the corresponding point in

the persistence diagram.

• The approach presented could easily be extended to other classical lattice spin

models, but it would also be interesting to see if the filtrations presented in

Section 3.4.2 could be adapted to the quantum lattice spin models.

• The similarity of the persistence images across the BKT transition in all three

models raises the question of the extent to which the persistence is a universal
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quantity. This could potentially facilitate a transfer learning approach where

classifiers trained on one model can identify phase transitions of the same

universality class in another model (see, e.g., [64]).

• It could also be investigated if the use of a vectorisation and a classifier is nec-

essary in the first place. There is a notion of variance for persistence diagrams

called Fréchet variance [93] which might show finite-size scaling behaviour di-

rectly. However this is computationally expensive to measure.

• Finally, we note that there have been a variety of different filtrations used to

compute the persistent homology of configurations of lattice spin models (e.g.,

[45, 72, 74]). It would be interesting to see how these perform and complement

one another on a single data set.
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4 SU(2) Lattice Gauge Theory

Quantum chromodynamics (QCD) poses several outstanding problems in particle

physics, including the mechanism of confinement and the deconfinement phase tran-

sition, mass-gap generation, and chiral symmetry breaking [94]. These phenomena

are non-perturbative and are therefore typically investigated through the framework

of Lattice QCD. Supplementing this traditional approach, there is an emerging body

of work exploring the use of machine learning and data analysis tools in extending

Monte Carlo analysis of lattice QCD towards generating the insights required to

tackle these open problems. References include [95–97] among others. For example,

one application of machine learning is to classify phases of the theory based on sam-

pled configurations, learning observables that function as order parameters for the

phase transitions undergone by QCD, following the quantitative approach outlined

for spin models in [98].

Focusing on confinement, a compelling potential mechanism relies on the pres-

ence of topological defects called center vortices in confining gauge configurations

[99–101]. Vortex-like configurations have recently been shown to exist in pure gauge

theories (e.g., [102–128]) and have recently been observed in lattice simulations of

QCD [129]. While order parameters have been constructed for the confinement-

deconfinement phase transitions in Yang-Mills theories that are based on the topo-

logical symmetry related to the conservation of the number of vortices (see, e.g., [102,

130, 131]), identification of vortices proves to be a more challenging undertaking. In

fact, existing methodologies for exposing vortices in gauge theories rely on perform-

ing gauge fixing and projection [132]. This procedure suffers from the problem of

Gribov ambiguities [133, 134], which, even with careful choices of the gauge fixing

condition (for instance, following the prescription of [135]), can be mitigated only in

part. Motivated by the physical appeal of a fully gauge-independent description, we

investigate the possibility of instead analysing vortices and performing phase classi-

fication in a gauge-invariant manner by making use of persistent homology. Rather

than considering full QCD, in this chapter we instead develop a methodology for

the pure gauge SU(2) lattice gauge theory which also exhibits a deconfinement tran-

sition potentially driven by center vortices. In the context of vortex identification,

this system represents a simplified toy model of QCD where the quarks have been
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removed, and the gauge group is simplified from SU(3).

4.1 Model

A configuration of the 4D SU(2) lattice gauge theory is specified by SU(2)-valued

variables Uµ(x) located on each link (x, µ) of an Nt × N3
s lattice Λ with periodic

boundary conditions, where µ ∈ {0, 1, 2, 3} describes the direction in which the link

emanates from the lattice site x ∈ Λ. In practice, Uµ(x) lies in the fundamental

representation of SU(2), taking the form of a 2 × 2 complex matrix. To simulate

at non-zero temperature we ensure Nt ≪ Ns. The gauge symmetry is generated

by gauge transformations Ω ∈ SU(2)Λ sending each Uµ(x) 7→ Ω(x)Uµ(x)Ω†(x + µ̂),

where x + µ̂ denotes the lattice site one step in the µ direction from x. It turns

out that the observables that are invariant under these transformations are traces

of products of the link variables along closed paths C, also known as Wilson loops

W (C). The simplest non-trivial example is the Wilson loop around a 1×1 plaquette

(x, µ, ν) of the lattice:

Wµ,ν(x) =
1

2
tr
[
Uµ(x)Uν(x+ µ̂)U †

µ(x+ ν̂)U †
ν(x)

]
.

We use this to define the Wilson action evaluated on a configuration U = {Uµ(x)}(x,µ)
as

S(U) = −β
4

∑
x,µ<ν

Wµ,ν(x) (8)

where β is an inverse gauge coupling parameter. This in turn allows us to define

the vacuum expectation value of any given observable A(U) as

⟨A⟩ =

∫
dUA(U) e−S(U)∫
dU e−S(U)

(9)

where dU =
∏

x,µ dUµ(x) is a product of Haar measures over SU(2) for each link

variable. In practice we estimate expectations using Monte Carlo methods, where

Eq. (9) becomes a simple mean of the observed values.

The model represents a discretised version of the SU(2) Yang-Mills theory after

quantisation via functional integrals and Wick rotation into Euclidean space. Letting

a denote the lattice spacing as a physical length, the Wilson action approximates the

Yang-Mills action as the continuum limit a → 0 is approached with discretisation

errors of O(a2). Then β is related to the Yang-Mills gauge coupling g by β = 1/4g2.
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4.2 Confinement and Center Vortices

The model introduced above exhibits two phases – a confined phase at low β and

a deconfined phase at high β – and the phase transition between these is known as

the deconfinement transition. This transition occurs only in the spatial continuum

limit Ns →∞ and while we care also about the temporal limit Nt →∞, it’s worth

noting that a critical β is well defined for each finite Nt and it is these we will be

estimating. Confinement in the SU(2) lattice gauge theory can be characterised in

a number of ways [94], including:

• Area law for Wilson loops. Let W (C) denote the value of a Wilson loop

around a closed curve C = R × T , consisting of a rectangle of length R in

a space-like direction and T along the temporal direction. We consider the

limit of large area A(C) = RT . In the confined phase at low β we have

that ⟨W (C)⟩ ∝ exp(−σA(C)) where σ is known as the string tension. In the

deconfined phase at high β we have that ⟨W (C)⟩ decays exponentially instead

with P(C), the perimeter of C.

• Vanishing Polyakov loop. Define the Polyakov loop at a point x in the

lattice as

P (x) =
1

2
tr
[
U0(x)U0(x+ 0̂) . . . U0(x− 0̂)

]
(note this only depends on the spatial coordinates of x). This represents a

Wilson loop that has a non-zero winding number around the time direction of

the periodic lattice. In the confined phase we have ⟨P (x)⟩ = 0 whereas in the

deconfined phase we have ⟨P (x)⟩ ≠ 0.

Several possible pictures of what drives the deconfinement transition, in both

this model and QCD, have been proposed. Here we focus on the center vortex

picture [99, 100]. Fix a time slice at time t. Given two closed oriented contours C

and C ′ in that 3-dimensional slice with linking number m, a loop operator B(C ′, t)

can be defined that has the following commutation algebra with the Wilson loop

W (C, t):

W (C, t)B(C ′, t)− (−1)mB(C ′, t)W (C, t) = 0. (10)

This equation defines the ’t Hoof algebra [99]. For simplicity, we consider planar

non-intersecting curves C and C ′, for which m = 0, 1. The operator B(C ′, t) is
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called the ’t Hooft loop. When acting on a gauge configuration, B(C ′, t) creates

a magnetic flux with the resulting observable effect of multiplication by -1 of all

Wilson loops having support on curves C with linking number 1 with C ′. For this

reason, the ’t Hooft loop is said to be a vortex creation operator. Since the center

of the group, which in our case is Z(SU(2)) = {I,−I} ∼= Z2, plays a role in the ’t

Hooft algebra (as exposed by the factor (−1)m), the vortices created by the ’t Hooft

loop operator are called center vortices. Fixing the curve C ′ for all time slices t, we

see that a vortex traces out a surface in 4-space, closed by the periodic boundary

conditions.

In the limit of weak fields, where the theory is deconfined, all Wilson loops are

close to unity. Confining configurations are expected to have Wilson loops that

largely deviate from unity. In particular, Wilson loops close to -1 can be obtained

from a weak field configuration through the injection of center vortices generated

with appropriate insertions of ’t Hooft loop operators. Moving from this observation,

operationally we can define a center vortex to be a collection of plaquettes in the

dual lattice (in the sense of the dual graph) that form a closed surface (with the

closedness being a consequence of the Bianchi identities) and that carry a non-trivial

charge in Z2, corresponding to the −1 element. To carry a non-trivial center charge

means that any Wilson loop in the lattice that topologically links with this surface

is multiplied by that charge.

In the confined phase center vortices are found to form large surfaces, often

wrapping round the periodic boundaries, that percolate throughout the lattice [136].

Therefore, given a particular Wilson loop W (C), the number of vortices that link

with C is proportional to the enclosed area A(C), leading to the area law for the

suppression of ⟨W (C)⟩. In the deconfined phase, the center vortices become smaller

and more sparse, ensuring that for sufficiently large Wilson loops, only those vortices

close to the curve C have a chance of linking with it, leading to the perimeter law.

Similarly we see that only in the confined phase, where vortices may wrap around

the periodic boundary conditions of the lattice, is there a chance they may link

with a Polyakov loop, suppressing its expectation. For an overview of the evidence

supporting the center vortex picture see [137]. In practice, center vortices generated

by the system have some finite thickness, so that only larger Wilson loops may fully

link with them and obtain the full center charge. Loops that partially link may still
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obtain a partial charge, some factor lying between I and −I in SU(2).

While the concepts of vorticity and creation of a vortex through the insertion of a

’t Hooft loop are well understood in terms of symmetry and boundary conditions in a

finite volume (see for instance [99, 102, 130, 131]), quantum fluctuations make vortex

identification a much more involved process, with currently used prescriptions not

fully validated from first principles. A widely used method to detect and analyse

these thick vortices is to transform configurations to the maximal center gauge,

where each matrix Uµ(x) is as close to either I or −I as possible, then project the

matrices onto whichever of I or −I is closer. After projection, the Wilson loops

of plaquettes take values either 1 or −1 and the latter are identified as projected

vortices, or P-vortices. It has been shown that the locations of these correlate

with the unprojected thick vortices [138]. However, the projection means that we

lose gauge invariance, as well as geometric information such as the thickness of the

vortices. In this work we introduce a method designed to look for thin vortices, but

we argue that, through the use of persistent homology, the results tell us something

about these thick vortices too.

There is no analytical formula for the critical value of β for each value of Nt,

but detailed numerical studies have shown good agreement with each other. We will

compare our results to those found in [139] which we reproduce in Table 9. We also

estimate the critical exponent of correlation length ν which, as a consequence of the

Svetitsky–Yaffe conjecture [140], is the same as for the 3D Ising model. We therefore

compare our measurement of ν to the high precision estimate ν = 0.629971(4) from

[141].

Nt βc

4 2.2986(6)

5 2.37136(54)

6 2.4271(17)

Table 9: Estimates for the critical value of β for the deconfinement phase tran-

sition in the SU(2) lattice gauge theory for the values of Nt we consider in this

thesis. Reproduced from [139].
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4.3 Twisted Boundary Conditions

In order to test the sensitivity of our method to thin vortices we will make use of

the trick of imposing twisted boundary conditions [142]. The idea is that we choose

some co-closed collection of plaquettes in the lattice, i.e., plaquettes that link with

some closed surface in the dual lattice, and negate their contribution to the action.

See Figure 50 for an illustration of co-closed collections of plaquettes. In our case

we choose the plaquettes

T = {((0, 0, y, z), 0, 1) | 0 ≤ y, z ≤ Ns}

corresponding to a surface wrapping round the latter two spatial dimensions of the

lattice. The action with twisted boundary conditions becomes

ST (U) = −β
4

[ ∑
x,µ<ν

(x,µ,ν) ̸∈T

Wx,µ,ν −
∑
x,µ<ν

(x,µ,ν)∈T

Wx,µ,ν

]
(11)

which we refer to as the twisted action.

This modification of the action allows the lattice to support an odd number of

center vortices wrapping in the yz plane, which is prohibited by the usual periodic

boundary conditions of the Wilson action. It’s important to note that we are talking

about the boundary conditions of the gauge field on the lattice and not the lattice

itself. We are not twisting the lattice and forming any kind of Möbius band, rather

it is the gauge field which obtains a factor of −I as we loop around the lattice. We

can alternatively think of this twisted action as explicitly inserting a thin vortex into

the system on the surface defined by T , so that the system is forced to generate a

(thick) vortex to cancel it out. We shall denote expectations calculated with respect

to this twisted action by ⟨A⟩twist.

Twisted boundary conditions give us an alternative way to characterise confine-

ment and the deconfinement transition. Magnetic and electric flux free energies can

be defined in terms of the ratio of partition functions for the twisted and Wilson

actions and the behaviour of these can be shown to imply the area law decay for

the Wilson loop [143] and therefore confinement.
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Figure 50: A lower dimensional illustration of a co-closed collection of plaquettes that

wraps around the periodic boundary conditions of the lattice. Plaquettes in a 3D lattice

link with edges in the dual lattice, so the condition of being co-closed means that the col-

lection of those linking edges forms a closed loop. In this case the loop is closed by the

periodic boundary conditions. Going to 4 dimensions, we imagine repeating the co-closed

line of plaquettes along the new dimension, forming a co-closed surface of plaquettes.
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4.4 Previous Work

We briefly remark on two papers that have used persistent homology to look at QCD

and lattice gauge theories. Kashiwa, Hirakida and Kouno noted the sign problem

in simulating dense QCD and instead considered an effective model in the form of a

modified 3D Potts model where each Z3 Potts spin corresponds to a Polyakov loop

[144], avoiding the need to construct a filtered complex from gauge fields directly.

Computing the persistence of pointclouds of lattice sites sharing the same Potts

spin, they were able to probe the phase structure of the model using the average

and maximum birth-death ratio of points in the resulting persistence diagrams.

More recently, Sehayek and Melko investigated the 2D and 3D Z2 lattice gauge

theories [80]. Given a configuration of the model, they place a point at the centre

of each spin-down lattice link and compute the Vietoris-Rips filtered complex of the

resulting pointcloud. The β1 Betti curve then provides the number of closed strings

of down spins and their sizes. These quantities and the filtered complex are gauge

variant, but by averaging the loop count over many configurations they indirectly

measure the density of vison defects which produces a clear indicator of the phase

transition in the 3D model when plotted as a function of temperature.

4.5 Methods

4.5.1 Simulation

In order to sample the SU(2) lattice gauge theory, we will use the HiRep software

[145]. This generates a Markov chain, but rather than using the Metropolis algo-

rithm, it uses the heatbath and over-relaxation algorithms.

Heatbath Algorithm The idea here is to update each link variable Uµ(x) one by

one while holding all the others fixed. In particular, given a current configuration

U = {Uν(y)} and a particular link (x, µ), consider the probability distribution

P(x,µ),U on SU(2) such that

P(x,µ),U(U ′) ∝ exp

(
β

4

∑
X staple of (x,µ)

1

2
trX†U ′

)
,
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appropriately normalised and where X ranges over those 6 plaquettes containing

the link (x, µ), denoting the product around the other three links. In other words,

the sum inside the exponential is the local contribution to the action coming from

having the matrix U ′ on the link (x, µ) and all other links as in U. Then a step of

the heatbath algorithm is given in Algorithm 3. The algorithm is named as such

Algorithm 3 Heatbath step [146]

Input Configuration U = {Uµ(x)}
Output Updated configuration U′ = {U ′

µ(x)}

1: for x ∈ Λ do

2: for µ ∈ {0, 1, 2, 3} do
3: U ′

µ(x)← Sample(P(x,µ),U)

4: end for

5: end for

because it ”consists of successively touching a heat bath to each gauge variable in

the system” [146].

Over-relaxation This algorithm, introduced in [147], is inspired by over-relaxation

approaches for solving linear systems such as those in [148]. The idea is to perform

the heatbath algorithm, but to ”overcorrect” each link variable and therefore cause

the Markov chain to decorrelate faster so that it can be sampled more frequently.

Choose some over-relaxation parameter ω ∈ [1, 2] and suppose a step of the heat-

bath algorithm would replace a matrix U at link (x, µ) with a matrix V . Then the

rotation from U to V is given by V U † and we simply increase the rotation in this

direction to get a new matrix U ′ = (V U †)ωU . In practise, we avoid using fractional

powers and use ω = 2, noting that ω = 1 gives the standard heatbath algorithm.

In this thesis all Markov chains generated with HiRep will have 1 heatbath

sweep and 4 over-relaxation sweeps between each step of the chain. In general we

will sample the chain every 100 such steps (i.e., after 100 heatbath and 400 over-

relaxation sweeps) in order to obtain samples with low autocorrelation.
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4.5.2 Wilson Flow

The Wilson flow, introduced in [149], is a gradient flow on configurations taking

them towards lower action values. The flowed configuration V (t) at Wilson flow

time t is defined by the differential equation

∂Vµ(t, x)

∂t
= − 4

β
{∂x,µS(V (t))}Vµ(t, x)

with initial conditions Vµ(0, x) = Uµ(x), where ∂x,µ is a Lie algebra-valued differ-

ential operator (see Appendix A in [149] for a precise definition which we shall not

need here). We will compute this gradient flow with the HiRep software [145] which

uses an adaptive 3rd order Runge-Kutta integrator.

The Wilson flow can be thought of as a way to smooth out short-range singu-

larities from the gauge field which can help with certain measurements such as the

topological susceptibility. However, we are primarily interested in it as a means to

analyse the stability of center vortices. In order to do this, we will need a reference

characteristic Wilson flow time t0 with which to compare the time that a vortex

lives under the flow. Let Cµ,ν(x) be the average of the product of links around each

of the four (µ, ν)-plaquettes around x. Define

Esym =
∑
x,µ<ν

tr(Cµ,ν(x))

which is a sort of improved estimator for the action. The reference scale t0 for

SU(3) lattice gauge theory and lattice QCD is defined by the implicit equation

t20Esym(V (t0)) = 0.3 [149]. For SU(2), the authors of [150] suggest scaling the value

by the quadratic Casimir, giving the definition

t20Esym(V (t0)) = 0.3× (3/4)2

that we use in this thesis.

As an example, we sample 100 configurations at β = 2.31 on a 124 hyper-

cubic lattice and calculate the Wilson flow, measuring Esym at flow times t =

0, 0.015, 0.03, . . . , 1.5. A plot of the average of Esym as a function of flow time

is shown in Figure 51. We use these to calculate t0 for each configuration, obtaining

the distribution shown in Figure 52. This gives us an estimated value of

t0 = 0.99± 0.06
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for β = 2.31 which we will also use in Section 4.8.
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Figure 51: The average of Esym as a function of Wilson flow time on a 124 lattice

at β = 2.31. The shaded region indicates plus and minus one standard deviation.

4.5.3 Filtered Complex

To apply persistent homology we must choose how to define a filtered complex for

a given configuration U = {Uσ(x)}. We present a filtered complex FU which is

constructed based on Wilson loops and which will therefore give gauge-invariant

persistence diagrams.

The idea is to explicitly construct a cubical model of vortex surfaces, under

the assumption that vortices are thin. Note that since we have periodic boundary

conditions, spacetime in this model forms a 4-torus S1 × S1 × S1 × S1. Moreover,

both the lattice Λ and its dual Λ∗ (as in dual graph) can be considered as providing

a way of turning this space into a cubical complex. The lattice Λ gives us a complex

X with a vertex for each lattice site and the dual lattice Λ∗ gives us a complex Y

with a vertex for each 4-cube in X and a 4-cube for each vertex in X. Plaquettes

in X are in bijection with those in Y , with a plaquette p of X corresponding to the

unique plaquette q in Y that intersects p at a single point. Since vortices live on the

dual lattice, we make use of this 1-to-1 correspondence to filter Y according to the

value of Wilson loops around plaquettes in X.
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Figure 52: Distribution of t0 for β = 2.31.

Denote by cA(y) =
∏

µ∈A[y, y + −→µ ] a cube in Y , where [y, y + −→µ ] is the line

segment between lattice site y ∈ Λ∗ and y + −→µ . The cube c∅(y) is just the point

y itself. The dimension d of cA(y) is |A| and we will refer to it as a d-cube. The

boundary ∂cA(y) of a d-cube is the set of its d−1-cube faces. For example ∂c{µ}(y) =

{c∅(y), c∅(y + −→µ )}. With this notation, our observation of the bijection between

plaquettes in X and Y becomes that the 2-cube c{µ,ν}(y) is matched with the 2-cube

cσ,τ (x) inX (defined similarly) that is used to define the Wilson loopWσ,τ (y+−→µ+−→ν )

where {σ, τ} ∩ {µ, ν} = ∅.

To define the filtered complex we will give a filtration index f(cA(y)) ∈ R for

each cube cA(y) in Y specifying when it appears. Then FU (s) is the subcomplex of

Y consisting of all cubes c for which f(c) ≤ s. That is,

FU (s) = f−1(−∞, s].

Since we are attempting to model vortex surfaces, we will initially specify when

the 2-cubes are to enter the filtered complex and then introduce the cubes of other

dimensions based on these.

Our construction of the function f is the following:
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1. We introduce each 2-cube c{µ,ν}(y) in our filtered complex at index

f(c{µ,ν}(y)) = Wσ,τ (y +−→µ +−→ν )

where {σ, τ}∩{µ, ν} = ∅. That is, at an index equal to the value of the Wilson

loop around the plaquette in X paired with it by the bijection.

2. Since a 2-cube is not allowed to be included before its constituent 1-cubes and

0-cubes in a cubical complex, we introduce these at the smallest index of all

the 2-cubes they are incident to. So

f(cA(y)) = min{ f(C) | cA(y) ∈ ∂C }

when |A| ≤ 1.

3. For the 3-cubes and 4-cubes we follow a clique-like rule where we introduce a

cube as soon as all of its boundary cubes are introduced. So

f(cA(y)) = max{ f(C) | C ∈ ∂cA(y) }

when |A| ≥ 3.

Thus for s < −1, FU (s) is the empty complex and for s ≥ 1, FU (s) is the filled

in tiling homeomorphic to a 4-torus. Going between these values, the first cubes

to enter FU are surfaces made up of plaquettes which link with Wilson loops that

are close to −1. The idea therefore is that thin vortex surfaces will enter the fil-

tered complex early. Moreover, since small Wilson loops like those considered here

still pick up a partial charge from thick vortices, surfaces representing those thick

vortices ought to enter the filtered complex earlier than they otherwise would have.

We expect to detect these closed surfaces in persistent H2 (since we are using Z2

coefficients, the orientability of the surfaces does not impact this). We may also see

other topological features such as the presence of handles or holes in H1, as well as

the transient low-persistence points in persistent H0 and H1 that arise as the sur-

face forms near the start of the filtration. An illustration of the connection between

Wilson loops and the inclusion of vortices into the filtration is shown in Figure 53.

An illustration of how to imagine what the filtered complex is aiming to do is shown

in Figure 54.
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(a) (b)

Figure 53: A lower dimension illustration of the idea behind the filtered complex. In 3 di-

mensions, center vortices form closed 1-dimensional curves that link with 2-dimensional

plaquettes. In this setting we would include edges (dark/red) according to the Wilson

loop around the plaquette (light/cyan) they link with. (a) Early on in the filtered complex

we include edges that link with plaquettes with negative Wilson loop values. In this way

we build explicit cubical models of 1-dimensional center vortices which are then detected

in PH1. (b) Later on we eventually fill in the rest of the edges and the 2-cubes between

them, destroying the PH1 features corresponding to the vortices. Moving from 3 dimen-

sions to 4, we are inserting plaquettes instead of edges and instead of a closed curve we

obtain a closed surface which we detect with PH2 (assuming the surface is orientable).
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(a) (b) (c)

(d) (e) (f)

Figure 54: A cartoon of a 3D slice of the filtered complex. (a) At the beginning of the fil-

tration the complex is empty. (b) At low Wilson loop values we begin to form vortex sur-

faces with transient features detected in H0 and H1. (c) The vortex surfaces close, becom-

ing detectable in H2. (d) At higher Wilson loop values, vortex surfaces persist while other

plaquettes begin to be included in the complex. (e) The vortex surfaces may become filled

in if all plaquettes inside the surface are included, killing the corresponding H2 class. (f)

Eventually the whole 4-torus cubical complex is filled in.
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It is worth noting the difference in approach from our previous work using per-

sistent homology to identify vortices in 2D XY models as in Chapter 3. Vortices

there were point defects (located at vertices of the dual lattice), which we aimed

to detect by constructing 1-dimensional loops in the original lattice that encircled

them. Here, we are modelling the vortex surfaces in the dual lattice directly.

It is straightforward to see that this filtered complex is stable with respect to

perturbations of the SU(2) link variables since the Wilson loop Wµ,ν(y) is a linear

map due to the linearity of the trace and is therefore Lipschitz continuous. The

stability property of persistent homology [151] therefore ensures that a small per-

turbation of the link variables only results in a small perturbation of the resulting

persistence diagram with respect to the bottleneck distance.

4.6 Detecting Vortices

We first investigate the ability of the persistent homology of our filtered complex to

identify an inserted thin vortex, obtained using twisted boundary conditions, as a

function of β. For Ns ∈ {12, 16, 20}, fixing Nt = 4, we generate 200 configurations

using the Wilson action (8) and 200 configurations using the twisted action (11) for

each β ∈ {1.5, 1.6, . . . 2.9}. Configurations are generated using the HiRep software

[145] with 1 heatbath step and 4 overelaxation steps for each Monte Carlo step and

a sample taken every 100 Monte Carlo steps.

Since the inserted vortex forms a closed surface, we expect to observe it in the

PH2 diagram. Moreover, the surface wraps round the periodic boundary of the

lattice in the latter two spatial directions. If it is the first such surface to wrap

around those dimensions to enter the filtered complex, then we will observe it as

a point in PH2 with infinite death index since it encloses a two-dimensional hole

which remains even in the final complex of the filtered complex (homeomorphic to a

4-torus). Otherwise, it would appear as a point with finite death index. In Figure 55

we compare the persistence diagrams of individual sampled configurations in each

phase using the Wilson action and the twisted action. In the confined phase there

is no immediate distinction to be made between the persistence diagrams generated

using the different actions. We claim that this is because vortices in this phase
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Figure 55: Sample persistence diagrams of individual configurations obtained using the

following actions and values of β: (a) Wilson, β = 1.5 (b) twisted, β = 1.5 (c) Wilson,

β = 2.9 (d) twisted, β = 2.9. The arrow in (d) indicates the point (b,∞) ∈ PH2 with the

smallest birth index b. Note the distance between it and the others.
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percolate throughout the system so there are likely to be many vortices that wrap

around the periodic boundary conditions of the lattice. Our inserted vortex may

then appear as a single point of finite persistence in PH2, but the persistence of

the system is not affected largely. However in the deconfined phase phase there is a

clear difference. There is unlikely to be any system-generated vortex surfaces that

wrap around the lattice so the inserted vortex becomes the first such surface to enter

the filtered complex. We therefore observe that one of the PH2 points with infinite

death time has much lower birth time than the others, allowing us to identify that

this point represents our inserted vortex surface. Moreover, we observe a significant

change in PH0 and PH1 with many low persistence points appearing early on in the

filtered complex. These arise as different plaquettes of the inserted vortex enter the

filtered complex at different indices, forming transient connected components and

holes. Note that these all die by the time we reach the birth index of the point in

PH2.

Following the discussion above, we define an observable based on the persistence

diagram of a configuration:

m2 = min
{
b
∣∣ (b,∞) ∈ PH2

}
,

the smallest birth index of all points in the H2 persistence diagram which persist

until the end of the filtration (therefore representing generators of the homology of

the 4-torus). The expected value of m2 for different lattice sizes with the Wilson

action and twisted action are shown in Figure 56. Note that there is no difference

between the expectations estimated using the different actions well into the confined

phase (low β), but in the deconfined phase (high β) the curves split apart. As the

lattice size increases, the point at which the curves diverge approaches the critical

β of the phase transition from below. These observations motivate measuring the

difference between the expected values using different actions

Om2 = ⟨m2⟩ − ⟨m2⟩twist

as a phase indicator which will be zero in the confined phase and non-zero in the

deconfined phase, similar to the definition of an order parameter but without the

requirement to detect any symmetry breaking. A finite-size scaling analysis of this
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quantity yields the curve collapse in Figure 57 with estimates of βc and ν

βc = 2.291± 0.019

ν = 0.614± 0.080

in agreement with the existing estimate βc = 2.2986(6) in Table 9. Error estimates

are obtained by performing 2000 bootstraps. While the error obtained is reason-

ably large, it should be stressed that these estimates were obtained using only 200

configurations at each value of β and Ns.

Note that we fixed the exponent of −2 for the scaling of Om2 with Ns. Attempt-

ing to fit this exponent along with βc and ν often led to the optimizer returning

unrealistic large positive values for the exponent, spoiling the error estimation. The

value of −2 was found by hand to give a good fit and we offer a heuristic argument

for why. First note that N2
s is how the number of plaquettes in the inserted vortex

surface scales with Ns, since the surface wraps round the periodic boundary condi-

tions. In the case where it describes the formation of the inserted vortex surface,

the value of m2 is determined by the filtration index of the last plaquette to enter

the surface. Now the larger the surface, the more likely it is that there will be at

least one plaquette in the surface affected by noise or pierced by another vortex,

causing it to enter the filtered complex late and dragging the value of m2 closer

to its average in the Wilson action. Assuming that this likelihood is independent

for each plaquette or at least approximately linear in the number of plaquettes, we

therefore obtain the quadratic scaling.

Motivated to understand the error bars for the estimates of ⟨m2⟩twist in Figure

56, we look at the distribution of m2 as measured using the twisted action on a

4 × 203 lattice in Figure 58. We recenter the data using ⟨m2⟩ in order to compare

the effect on Om2 at different values of β.

We see that at lower values of β in the confined phase, the value of m2 remains

close to the average value measured with the untwisted Wilson action. As β increases

we observe a bimodal distribution, with some configurations maintaining anm2 value

close to the untwisted average and some joining a lower mode. A likely explanation

for this behaviour is that for those configurations in the zero mode, the H2 generator

of the 4-torus responsible for m2 does not correspond to the inserted vortex in the

y-z plane, either because there is another vortex spanning a plane which is more

99



1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.0

0.2

0.4

0.6
m

2

Ns = 12, twisted
Ns = 16, twisted
Ns = 20, twisted
Ns = 12, 16, 20, Wilson

Figure 56: The expected value of the observable m2 as a function of β plotted for differ-

ent values of Ns and with the Wilson and twisted actions. The difference between the val-

ues for different lattice sizes using the Wilson action is not distinguishable at this scale, so

they are plotted as the same points. Their error bars are also small enough so as to not be

visible.
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Figure 57: The curve collapse of our phase indicator Om2 using βc = 2.291 and ν = 0.614.

Error bars are not shown for clarity but are comparable to those in Figure 56.
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easily observed or because the formation of a complete vortex surface along the twist

in the filtered complex is being impeded, perhaps by intersection with other vortices.

By the time we are firmly in the deconfined phase, the majority of configurations lie

in the lower mode, signalling that the inserted vortex along the y-z is responsible

for the value of m2.

To verify this picture, we can check if the H2 generator responsible for m2 is

indeed represented by a yz plane. We do this by recomputing the persistent homol-

ogy but with the cubical complex only being periodic in the y and z directions and

open in the t and x directions. This makes the final complex homeomorphic to the

Cartesian product of a 2-torus and R2, homotopy equivalent to the 2-torus which

has a single H2 generator: the yz plane. Then we can simply check whether or

not the birth time of this generator is the same as m2. Denote by Iyz the indicator

function for a configuration that is 1 if they match and 0 if they do not. That is,

Iyz tells us if m2 is determined by a H2 generator which spans the yz plane. The

mean and variance of this indicator as a function of β are shown in Figure 59.

We see that at low β, the inserted yz vortex sheet is never responsible for the

value of m2. There are likely to be many vortices and those which span planes includ-

ing the t direction are smaller and likely to be picked up sooner in the persistence.

Approaching and passing the transition point, the proportion of configurations for

which m2 describes the birth time of a yz plane increases until close to 1. There are

fewer dynamically generated vortices and instead m2 is determined by the one we

inserted via the twisted boundary conditions. We note that peak in the variance of

Iyz gives us an alternative marker for the phase transition.

4.7 Classification of Vortices

Recall from Section 4.3 that the twisted boundary conditions action ST depended

on some co-closed collection of plaquettes T . For the previous section we fixed T to

correspond to a yz plane but we could in principle choose any co-closed collection,

yielding inserted thin vortices with any surface we like. Beyond detecting vortices, it

seems reasonable to expect that the persistent homology of the filtration we defined

will also allow us to distinguish between different surfaces. By choosing different
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collections T and sampling using the corresponding action ST , twisted boundary

conditions allow us to test this.

In particular, we consider the following surfaces. Note that the plaquettes given

are dual to those making up the surfaces themselves.

Untwisted

T = ∅,
giving the usual Wilson action.

Plane Twist

Tyz = {((0, 0, y, z), 0, 1) | 0 ≤ y, z ≤ Ns},
corresponding to a yz plane.

Genus 0 (2× 2× 2)

Tg0,2 = {((t, x, y, 0), 2, 3) | 1 ≤ t, x ≤ 2, y ∈ {0, 2}}
∪ {((t, x, y, 0), 2, 3) | 1 ≤ t, y ≤ 2, x ∈ {0, 2}}
∪ {((t, x, y, 0), 2, 3) | 1 ≤ x, y ≤ 2, t ∈ {0, 2}},

corresponding to a 2× 2× 2 cube with a corner at (1, 1, 1, 0) as shown in Figure 60.

Genus 0 (3× 3× 3)

Tg0,3 = {((t, x, y, 0), 2, 3) | 1 ≤ t, x ≤ 3, y ∈ {0, 3}}
∪ {((t, x, y, 0), 2, 3) | 1 ≤ t, y ≤ 3, x ∈ {0, 3}}
∪ {((t, x, y, 0), 2, 3) | 1 ≤ x, y ≤ 3, t ∈ {0, 3}},

corresponding to a 3× 3× 3 cube with a corner at (1, 1, 1, 0) as shown in Figure 61.

2 × Genus 0 (2× 2× 2)

T2×g0,2 = Tg0,2 ∪
(
Tg0,2 + (0, 8, 0, 0)

)
,

corresponding to a pair of 2 × 2× 2 cubes; one with a corner at (1, 1, 1, 0) and the

other with a corner at (1, 9, 1, 0) as shown in Figure 62.
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Figure 61: The Genus 0 (3 × 3 × 3) sur-

face.

Genus 1

Tg1 = {((1, x, y, 0), 1, 3) |x ∈ {0, 3}, 1 ≤ y ≤ 3}
∪ {((1, x, y, 0), 2, 3) | 1 ≤ x ≤ 3, y ∈ {0, 3}}
∪ {((t, x, y, 0), 2, 3) | t ∈ {0, 1}, 1 ≤ x, y ≤ 3, (x, y) ̸= (2, 2)}
∪ {((1, 1, 2, 0), 1, 3), ((1, 2, 2, 0), 1, 3), ((1, 2, 1, 0), 2, 3), ((1, 2, 2, 0), 2, 3)},

corresponding to a 1× 3× 3 torus with a corner at (1, 1, 1, 0) as shown in Figure 63.

Genus 2

Tg2 = {((1, x, y, 0), 1, 3) |x ∈ {0, 5}, 1 ≤ y ≤ 3}
∪ {((1, x, y, 0), 2, 3) | 1 ≤ x ≤ 3, y ∈ {0, 3}}
∪ {((t, x, y, 0), 2, 3) | t ∈ {0, 1}, 1 ≤ x ≤ 5, 1 ≤ y ≤ 3, (x, y) ̸= (2, 2), (x, y) ̸= (4, 2)}
∪ {((1, 1, 2, 0), 1, 3), ((1, 2, 2, 0), 1, 3), ((1, 2, 1, 0), 2, 3), ((1, 2, 2, 0), 2, 3)}
∪ {((1, 3, 2, 0), 1, 3), ((1, 5, 2, 0), 1, 3), ((1, 5, 1, 0), 2, 3), ((1, 5, 2, 0), 2, 3)},

corresponding to a 1 × 5 × 3 double torus with a corner at (1, 1, 1, 0) as shown in

Figure 64.
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Figure 63: The Genus 1 surface.

Let us fix the lattice to be 4×16×16×16 and β = 2.31, just into the deconfined

phase. We apply the following procedure.

1. For each of the choices of T , we sample 100 configurations using the action ST

using the HiRep software [145] with 1 heatbath step and 4 overelaxation steps

for each Monte Carlo step and a sample taken every 100 Monte Carlo steps.

2. For each sample we compute their PH0, PH1, PH2, PH3 persistent homology

using our filtered complex and compute the corresponding persistence land-

scapes with 1 layer and a resolution of 100.

3. We train a kNN model (k = 10) to predict which action each configuration

was generated using.

A 4-fold cross validation produces the confusion matrix shown in Figure 65.

In this representation of the classification accuracy, we want the diagonal to have

high values and entries off the diagonal to be small, signalling that the predicted

label matches the actual type of the vortex. The diagonal structure we see in Figure

65 therefore tells us that the classification was reasonably successful. However there
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Figure 64: The Genus 2 surface.

is some confusion between certain pairs of vortex types as signaled by the block

diagonal structure. In particular, there is confusion between the 2 × 2 × 2 cube

vortex surface and the pair of such surfaces, and there is confusion between the

genus 1 and genus 2 vortex surfaces. We might hypothesise that this is due to

the vortices not entering the filtered complex fully due to noise and the effect of

dynamically generated vortices, leaving the surfaces not closed and therefore not

appearing in PH2. Note that these simulations were performed at β = 2.31, only

just into the deconfined phase. Instead, the persistence landscapes may be picking up

on the transient 0 and 1-dimensional cycles that appear during the early parts of the

filtration. These signatures may look similar in each of the pairs of cases mentioned.

One could investigate this hypothesis by computing the classification with only the

0 and 1-dimensional landscapes or by using a generalised linear classifier (such as

logistic regression) and analysing the learned weights, but this is future work.

4.8 Stability of Vortices

Having a quantitative way to detect center vortices also allows us to analyse their

stability. In the presence of a Higgs field, vortices are minimal action configurations

[99] and hence stable under the Wilson flow. However in pure Yang-Mills we are not
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Figure 65: The confusion matrix obtained from cross validating the ability of a

kNN classifier to distinguish inserted vortex surfaces from persistence landscapes.

The x axis shows the predicted label and the y axis shows the true label.

certain about the stability of vortices under the Wilson flow: i.e., we can ask whether

or not the flow will eventually smooth them out. This may also depend on several

factors including whether or not we have periodic boundary conditions (in this thesis

we do) and whether the vortex surfaces wrap round the periodic boundary. In this

section we consider the question of when a vortex remains detectable in persistent

homology and use this to identify at which point in the Wilson flow we lose it.

Let us fix the lattice to be 4×16×16×16 and β = 2.31, just into the deconfined

phase. For three of the twisted actions (Genus 1, Genus 2, and 2 × Genus 0), we

apply Wilson flow to the 100 configurations generated in the previous section, saving

the flowed configurations at Wilson flow times t = 0, 0.075, 0.15, . . . , 1.5. For each

of the configurations we compute their persistent homology using our filtration. We

use two different methods to quantify the ability to detect the inserted vortex.
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Difference in persistence Since we are working only just above the phase tran-

sition and none of the inserted vortex surfaces considered wrap the periodic bound-

aries of the lattice, assume that the inserted vortex will be responsible for the most

persistent finite-death point in PH2. A näıve approach to quantifying the ability to

detect the vortex is to measure the difference in the average of the persistence p1 of

the most persistent such point and the persistence p2 of the second most persistent.

The plot of this quantity as a function of Wilson flow time for each of the vortex

surfaces considered is shown in Figure 66.
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Figure 66: Vortex stability via difference in persistence.

This is by no means a precise measurement, but we do at least observe by eye

that the difference becomes negligible close to t = 1, approximately around the

characteristic flow time of t0 = 0.99 obtained in Section 4.5.2. This would suggest

that the vortices are stable for times that correspond to the typical hadronic scale.

That is, this analysis does not rule out that vortices may play some role in the

dynamics we are interested in.

We can apply a similar analysis for the Plane Twist twisted boundary conditions

but where we consider the birth time b1 of the earliest infinite H2 point and the birth

time b2 of the second earliest. In particular, note that b1 = m2 as defined in Section

4.6. Once again we apply Wilson flow to 100 configurations sampled at β = 2.31,

saving the flowed configurations at Wilson flow times t = 0, 0.075, 0.15, . . . , 1.5. A
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plot of the difference between the average of b2 and the average of b1 as a function

of t is shown in Figure 67. Note that this difference is effectively the same as for

the difference in persistence p1− p2 for the finite-death points, but we have avoided

trying to make sense of the ”equation”

p1 − p2 = (∞− b1)− (∞− b2) = b2 − b1.

The curve we obtain is still therefore to be compared with those in Figure 66 where

we see that the Plane Twist vortex is more stable, with the difference only becoming

negligible closer to t = 1.5.
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Figure 67: Vortex stability via birth times of infinite H2 generators.

Overlap via persistence images An alternative approach is inspired by looking

at Figure 68. Here we see that the most persistent finite-death point in PH2 (as-

sumed to be the inserted vortex) is clearly distinct from the other points in PH2.

During Wilson flow, the distance between this point and the others shrinks until it

is no longer distinct. The idea is to use persistence images to estimate the density of

points in the persistence diagram and quantify when there is significant overlap of

the point with the rest. In particular, for each configuration we compute the PH2

persistence image PI2 with a resolution of 200× 200, σ equal to 2.5% of a pixel and

a constant weighting function f(b, p) = 1. Note that with this weighting function

we are simply approximating the density of points in the persistence diagrams, but
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Figure 68: A typical persistence diagram obtained using the Genus 1 twisted

boundary conditions. Note the isolated point in PH2 with maximum persistence

among the finite-death points.

lose the stability property of the persistence image since f does not go to zero on

the p = 0 axis. Define

V = PI i2 / ⟨
∑
j

PIj2⟩

where i is the pixel containing the most persistent finite-death point in PH2. The

deviation of V from zero gives us an indication of when the vortex point becomes

indistinguishable from the background. A plot of the average of V as a function of

Wilson flow time for the different vortex surfaces is shown in Figure 69.

This suggests overlap coming in at closer to Wilson flow time t = 0.6 which,

while less than the characteristic flow time of t0 = 0.99 obtained in Section 4.5.2, is

on the same order of magnitude and so also leads us to conclude that vortices are

stable long enough to play a role in hadronic physics and they remain visible to the

persistent homology of our filtered complex across this scale.
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Figure 69: Vortex stability via persistence images.

4.9 Quantitative Analysis of the Deconfinement Transition

We now investigate whether the persistent homology is able to detect the decon-

finement phase transition purely from the Wilson action by making use of a simple

machine learning framework inspired by that in [1]. In particular, for Nt ∈ {4, 5, 6}
we attempt to estimate the critical inverse coupling βc and the critical exponent of

the correlation length ν via a finite-size scaling analysis of the output of a k-nearest

neighbours classifier trained on the persistence. In each case we repeat the following

procedure for each Ns ∈ {12, 16, 20, 24}.

1. Configurations are sampled from a range of values of β (specific values are

given in each case below) using the HiRep software [145] with 1 heatbath step

and 4 overelaxation steps for each Monte Carlo step and a sample taken every

100 Monte Carlo steps.

2. For each sample we compute their PH0, PH1, PH2 and PH3 persistent ho-

mology using our filtered complex and compute the corresponding persistence

images with a resolution of 25 × 25 and and σ equal to 5% of a pixel. We

concatenate the 4 separate images and flatten them into a 4× 25× 25 = 2500

dimensional vector.
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3. We train a kNN model (k = 30) to predict the phase of a configuration based

on its concatenated persistence image vector by using vectors from well into

the confined and deconfined phases.

4. Using the trained classification model, we define an observable OkNN which is

the predicted phase of a given configuration.

5. Applying multiple histogram reweighting to the variance

χkNN = ⟨O2
kNN⟩ − ⟨OkNN⟩2

= ⟨OkNN⟩ (1− ⟨OkNN⟩)

(where the second equality follows since OkNN ∈ {0, 1}), we obtain an inter-

polated curve and a more precise estimate of the location of its peak.

By performing a finite-size scaling analysis of the locations of the peaks obtained for

each value of Ns, and a curve collapse of the different reweighted variance curves,

we obtain estimates of βc and ν for the deconfinement phase transition at the given

value of Nt.

4.9.1 Nt = 4

For lattices of size 4×N3
s with Ns ∈ {12, 16, 20, 24}, we train a k-nearest neighbours

classifier (k = 30) on the concatenated PH0, PH1, PH2 and PH3 persistence images

of 200 configurations sampled at each β in the confined and deconfined regions given

in Table 10. The classifier is then used to produce a predicted classification OkNN

for 200 configurations sampled from the critical region.

Region β

Confined 2.2 , 2.21, 2.22, 2.23, 2.24

Deconfined 2.36, 2.37, 2.38, 2.39, 2.4

Critical 2.25, 2.26, 2.27, 2.275, 2.28, 2.285, 2.29,

2.295, 2.298, 2.299, 2.3, 2.301, 2.302, 2.305,

2.31, 2.315, 2.32, 2.325, 2.33, 2.34, 2.35

Table 10: Values of β sampled at for the Nt = 4 phase transition.
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The resulting estimates of the expectation ⟨OkNN⟩(β) are shown in Figure 70

along with interpolating curves obtained via histogram reweighting. The variance

curves χkNN are shown in Figure 71.

From here we proceed with two separate analyses. In the first we estimate βc from

a linear regression assuming the value of the critical exponent ν to be known. In the

second we estimate βc and ν concurrently via a curve collapse procedure. In both

cases we perform two separate bootstraps to obtain 500 bootstrap samples from each.

One bootstrap is carried out by resampling the configurations for each β used to

train the k-nearest neighbours classifier. The other is carried out by resampling the

configurations for each β used to estimate ⟨OkNN⟩. Applying the finite-size scaling

analysis to both collections of bootstraps yields two separate distributions for βc

and two for ν. The error in these quantities is therefore estimated by combining

the standard deviation of the distributions coming from the different bootstrap

procedures under the assumption that they are independent.

By defining the pseudo-critical inverse coupling βc(Ns) to be the point at which

χkNN peaks, we can plot βc(Ns) against N
−1/ν
s using a previously estimated [141]

value of ν = 0.629971. The result is shown in Figure 72. We observe that the

points plotted with error bars of 1σ support a straight line fit. The intercept yields

βc = 2.2989±0.0009, supporting the previously obtained estimate of βc = 2.2986(6)

in Table 9.

To estimate βc and ν concurrently we employ a numerical curve collapse pro-

cedure, plotting χkNN against N
1/ν
s (β − βc) and tuning βc and ν to minimise the

distance between the curves using the conjugate gradient method.

The resulting curve collapse is shown in Figure 73 and the obtained estimates of

βc and ν

βc = 2.2988± 0.0007

ν = 0.634± 0.014

are consistent with previous estimates.

To confidently claim that this methodology identifies the phase transition, we

also tried using alternative values of β to train the kNN classifier, chosen further

away from the transition point and so that the transition point is further from the
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Figure 70: Plot showing our phase indicator ⟨OkNN⟩ as a function of β for Nt = 4. The

points show the measured expectations and the curve is the output of histogram reweight-

ing these measurements.

2.28 2.30 2.32
0.0

0.1

0.2

kN
N

Ns = 12
Ns = 16
Ns = 20
Ns = 24

Figure 71: The variance curves χkNN of OkNN for Nt = 4 to which we will apply our curve

collapse procedure.
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Figure 72: Estimating βc for Nt = 4. The pseudo-critical values of β, obtained from locat-

ing the peaks of the variance curves in Figure 71, are fitted to the ansatz (5). Error bars

are estimated by bootstrapping.
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Figure 73: The curve collapse of χkNN for Nt = 4 using βc = 2.2988 and ν = 0.635.
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center point between the highest β in the confined phase and the lowest β in the

deconfined phase. The alternative training values are shown in Table 11.

Region β

Confined 2.21, 2.22, 2.23

Deconfined 2.38, 2.39, 2.4

Critical 2.24, 2.25, 2.26, 2.27, 2.275, 2.28,

2.285, 2.29, 2.295, 2.298, 2.299, 2.3, 2.301,

2.302, 2.305, 2.31, 2.315, 2.32, 2.325, 2.33,

2.34, 2.35, 2.36, 2.37

Table 11: Alternative values of β sampled at for the Nt = 4 phase transition to

test the sensitivity of the method to the choice of training data.

Using these training values we obtain estimates from the linear fit of

βc = 2.2996± 0.0009

and the curve collapse of

βc = 2.2998± 0.0007

ν = 0.638± 0.013,

close to our previous ones and still compatible with our reference estimates.

4.9.2 Nt = 5

For lattices of size 5×N3
s with Ns ∈ {12, 16, 20, 24}, we train a k-nearest neighbours

classifier (k = 30) on the concatenated PH0, PH1, PH2 and PH3 persistence images

of 200 configurations sampled at each β in the confined and deconfined regions given

in Table 12. The classifier is then used to produce a predicted classification OkNN

for 200 configurations sampled from the critical region. The resulting estimates of

the expectation ⟨OkNN⟩(β) are shown in Figure 74 along with interpolating curves

obtained via histogram reweighting.

The plot of the pseudo-critical βc(Ns) against N
−1/ν
s using ν = 0.629971 is shown

in Figure 75. Here we fit a straight line to the largest three lattice sizes since this
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Region β

Confined 2.29, 2.3, 2.31, 2.32, 2.33

Deconfined 2.41, 2.42, 2.43, 2.44, 2.45

Critical 2.34, 2.345, 2.35, 2.355, 2.36, 2.365,

2.369, 2.37, 2.371, 2.372, 2.375, 2.38, 2.385,

2.39, 2.395, 2.4

Table 12: Values of β sampled at for the Nt = 5 phase transition.

gives a better fit than including Ns = 12. The intercept yields βc = 2.3696 ±
0.0012 which is just about compatible with the previously obtained estimate of

βc = 2.37136(54) in Table 9.

We also perform the curve collapse on only the highest three lattice sizes and

the result is shown in Figure 76. The obtained estimates of βc and ν

βc = 2.3697± 0.0011

ν = 0.634± 0.028

are consistent with previous estimates.

4.9.3 Nt = 6

For lattices of size 6×N3
s with Ns ∈ {12, 16, 20, 24}, we train a k-nearest neighbours

classifier (k = 30) on the concatenated PH0, PH1, PH2 and PH3 persistence images

of 200 configurations sampled at each β in the confined and deconfined regions given

in Table 13. The classifier is then used to produce a predicted classification OkNN

for 200 configurations sampled from the critical region.

The resulting estimates of the expectation ⟨OkNN⟩(β) are shown in Figure 77

along with interpolating curves obtained via histogram reweighting.

The plot of the pseudo-critical βc(Ns) against N
−1/ν
s using ν = 0.629971 is shown

in Figure 78. The intercept of the straight line fit yields βc = 2.4277 ± 0.0008,

supporting the previously obtained estimate of βc = 2.4271(17) in Table 9.

The result of the curve collapse is shown in Figure 79. The obtained estimates
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Figure 74: Plot showing our phase indicator ⟨OkNN⟩ as a function of β for Nt = 5. The

points show the measured expectations and the curve is the output of histogram reweight-

ing these measurements.
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Figure 75: Estimating βc for Nt = 5. The pseudo-critical values of β of the largest three

lattice sizes, obtained from locating the peaks of the variance curves, are fitted to the

ansatz (5). Error bars are estimated by bootstrapping.
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Figure 76: The curve collapse of χkNN for Nt = 5 using βc = 2.3697 and ν = 0.634.

2.41 2.42 2.43 2.44 2.45
0.0

0.2

0.4

0.6

0.8

1.0

O
kN

N

Ns = 12
Ns = 16
Ns = 20
Ns = 24

Figure 77: Plot showing our phase indicator ⟨OkNN⟩ as a function of β for Nt = 6. The

points show the measured expectations and the curve is the output of histogram reweight-

ing these measurements.

119



Region β

Confined 2.33, 2.34, 2.35, 2.36, 2.37

Deconfined 2.49, 2.5, 2.51, 2.52, 2.53

Critical 2.38, 2.39, 2.4, 2.405, 2.41, 2.415, 2.42,

2.425, 2.426, 2.427, 2.428, 2.43, 2.435, 2.44,

2.445, 2.45, 2.455, 2.46, 2.47, 2.48

Table 13: Values of β sampled at for the Nt = 6 phase transition.

of βc and ν are

βc = 2.4276± 0.0008

ν = 0.666± 0.016.

The estimate of βc agrees with the previous estimate, however the previous estimate

of ν = 0.629971 we refer to lies just over 2 standard deviations outside of our

estimate.

4.10 Discussion

In this chapter we have developed a method to use persistent homology to detect cen-

ter vortices in configurations of SU(2) lattice gauge theory. We demonstrated that

the resulting persistence diagrams are sensitive to vortices in the deconfined phase

and investigated some applications of our vortex detection method. Quantitatively,

we defined two different persistence-based phase indicators for the deconfinement

phase transition — one making use of twisted boundary conditions, and the other

using simple machine learning — and successfully used them to estimate the critical

β and exponent ν of the transition.

This method was designed to detect and capture the behaviour of vortices, and

the efficacy of this was confirmed by being able to detect the use of twisted boundary

conditions. Moreover the method was still able to detect the deconfinement phase

transition from samples using the original action alone. We argue that this lends

support to the center vortex picture of confinement, at least by not ruling it out.

For a stronger argument we would need to investigate the relationship between our
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Figure 78: Estimating βc for Nt = 6. The pseudo-critical values of β, obtained from locat-

ing the peaks of the variance curves, are fitted to the ansatz (5). Error bars are estimated

by bootstrapping.
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Figure 79: The curve collapse of χkNN for Nt = 6 using βc = 2.4276 and ν = 0.666.
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method and other competing pictures. For example, looking at the monopole picture

of confinement (see [152] or [94] for a summary), one could investigate the sensitivity

of our method to monopoles. If it were to turn out that the method is sensitive to

vortices but not to monopoles, the fact that it captures the phase transition would be

evidence for the vortex picture over the monopole picture. However, we are not sure

yet whether or not the method is sensitive to monopole configurations and this is

work yet to be done, which will require non-trivial adaptations of some of the steps

used here. For instance, if the current method is indeed sensitive to monopoles,

then one might instead attempt to devise a filtration that exposes monopole-like

singularities but not vortices.

Besides a greater degree of interpretability, another advantage of this method

over machine learning approaches based on deep learning is that we were able to

obtain our results using only a small number of sampled configurations. This is

particularly important in view of extending the methodology to full QCD, for which

numerical computations for generating gauge configurations near the physical point

are very demanding and hence the number of configurations one can use is generally

limited.
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5 Conclusions

The work described in this thesis lays the groundwork for the use of topological

data analysis in producing insights into models from statistical physics and quan-

tum field theory. Beyond using persistent homology to detect topological defects,

we have paid close attention to developing methodologies for using it to investigate

the quantitative aspects of phase transitions. The idea has been to provide inter-

pretation of the mechanism of the phase transitions by being able to relate them to

the behaviour of the topological defects involved.

In particular, we have made the following contributions:

• We introduced a new class of filtered complexes for lattice spin systems, includ-

ing the angle difference and nematic angle difference filtrations, which allow

persistent homology to detect topological defects including point vortices, half

vortices, and domain walls.

• We introduced a gauge-invariant construction that produces a filtered complex

from a field configuration for SU(2) lattice gauge theory. We found evidence

that this detects center vortices by showing that it distinguishes configura-

tions generated using twisted boundary conditions in the deconfined phase. In

particular, we show that a phase indicator can be recovered by comparing the

H2 persistence diagrams of configurations generated using twisted boundary

conditions and configurations sampled using the usual Wilson action.

• Finding inadequacies with using logistic regression for estimating the critical

temperature of XY models, as previously introduced in [45], we introduce a

non-parametric method using k-nearest neighbour classification as a tool to

estimate the critical point of phase transitions from persistence images. We

demonstrated that this yields improved results in the XY model case.

• We demonstrated the applicability of finite-size scaling analysis for persistence-

based observables, including the output of k-nearest neighbour classifiers trained

on persistence images. In particular, we apply the standard statistical tools

of histogram reweighting and bootstrapping to obtain estimates of the critical
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point and the critical exponent of the correlation length with quantified error

in models from statistical physics and quantum field theory.

• By finding representative cocycles for persistent H1 in the XY model, we di-

rectly investigated the unbinding of vortex anti-vortex pairs which drive the

BKT phase transition.

• Using the structure of persistence diagrams, we investigated the ability to de-

tect center vortices after Wilson flow as a proxy for vortex stability, concluding

that they are stable enough to be involved in the dynamics of interest in SU(2)

lattice gauge theory.

• We demonstrated that the persistent homology of our filtered complex con-

struction for SU(2) lattice gauge theory is sensitive to the topology of center

vortex surfaces by using persistence landscapes to classify different twisted

boundary conditions.

5.1 Future Work

One of the driving motivations of this work is QCD and the approach to analysing

the deconfinement transition in lattice QCD. In order to reach this goal, one would

first need to extend the approach of Chapter 4 to the SU(3) lattice gauge theory. The

center vortex picture here is similar but now, since the center is Z(SU(3)) ∼= Z3,

there are two non-trivial types of center vortex which may interact. This would

require the construction of a new filtered complex. Moreover, the deconfinement

phase transition in the SU(3) gauge theory is a first-order (or discontinuous) phase

transition. It is not a priori clear that the quantitative methodology developed in

this thesis would be immediately applicable.

Once a methodology for the SU(3) lattice gauge theory is developed, the step

to lattice QCD should be straightforward. Indeed lattice QCD can be seen as an

extension of the gauge theory where we now consider fermion fields on the lattice

sites and additional interaction terms in the action. However, since the center vortex

picture concerns only the gauge fields, the gluons, one may immediately apply the

SU(3) methodology.

124



Beyond gauge theories, it would not be unreasonable to expect persistent homology-

based analysis to be useful for other classes of systems where topology plays a role

such as in certain quantum models. There is already some work in this direction,

such as [78, 79, 153]. Moving away from phase transitions, there is potential use for

topological data analysis in studying non-equilibrium systems as in [154]. In partic-

ular, there is scope to apply the theory of persistence vineyards [43]. The idea here is

that for a stable filtered complex, as the underlying data changes continuously over

time, so too does the resulting persistence diagram. Points in the diagram therefore

trace paths, also known as vines, which allow one to relate the persistence diagrams

obtained at different times.

Beyond the extension of the persistent homology as an observable approach con-

sidered in this thesis, there is potentially interesting work to be done on the persistent

homology of configuration space. One of the principal drawbacks discussed in [76] is

the computational cost of computing persistent homology in degrees higher than 1

for the Vietoris-Rips complexes of large pointclouds. One idea is to more directly fo-

cus on finding critical points and Morse indices in a local neighbourhood, as in [155],

rather than trying to characterise the topology of the whole sublevel set. It may

also be possible to directly compute persistent homology in several degrees higher

than [76] by leveraging techniques to parallelise the computation of persistence, as

in [156, 157]. Alternatively, a newly emerging idea is quantum computation of not

only Betti numbers [158], but also persistent Betti numbers. Such technology will

not be available in the immediate future, but may be transformative for applications

such as this once it is.

125



Appendices

A Introduction to Statistical Physics

and Phase Transitions

In this thesis we are concerned with the behaviour of models of large physical sys-

tems at equilibrium. The natural framework for this is statistical physics where one

assigns an energy to each possible state of the system, then considers certain prob-

ability distributions over the states based on their energy. By considering statistics

computed with respect to these distributions, one can capture the macroscopic prop-

erties of the system at hand including drastic phase transitions in the behaviour of

the system. We shall briefly review the main ideas in this appendix which is inspired

by [46].

A.1 Gibbs Distribution

To describe a model with a single external parameter β we need two things: a space

of configurations C and an energy function (or Hamiltonian) H : C → R. If the

space of configurations is countable, then the statistical properties of the system ”at

equilibrium” and fixed β are described by the partition function

Z(β) =
∑
c∈C

e−βH(x).

If the space of configurations is uncountable, then we instead obtain an integral

Z(β) =

∫
C
e−βH(x)dx.

Whichever case we find ourselves in, we write a probability distribution function

pβ : C → R given by

pβ(x) =
1

Z(β)
e−βH(x)

specifying the unique distribution which maximises (information theoretic) entropy

for a given value of the average energy U(β) =
∫
C pβ(x)H(x)dx, often called the

Boltzmann or Gibbs distribution.
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As a justification of why this is the right distribution to look at, in thermody-

namics the Gibbs distribution is the one that maximises thermodynamic entropy

for a conserved total energy. Such a distribution describes the system at thermody-

namic equilibrium with a fixed temperature T = 1/kBβ, where kB is Boltzmann’s

constant. From now on we will ignore kB or simply pretend it is equal to 1, and call

β inverse temperature 1/T .

We will denote the expectation of functions A : C → Rn with respect to the

Gibbs distribution by

⟨A⟩β =
1

Z(β)

∫
C
A(x) e−βH(x)dx

although the expectations of some functions may be calculated from Z in an alter-

native way, via the free energy

F(β) = − 1

β
lnZ(β).

For example, a brief calculation shows that the average energy U is a first derivative

of the free energy

U(β) = ⟨H⟩β =
∂(βF)

∂β

and the specific heat

C(β) = −β2∂U

∂β
= −β2∂

2(βF)

∂β2
,

which measures how quickly the average energy responds to changes in temperature,

becomes a measure of fluctuation in the energy

C(β) = ⟨H2⟩β − ⟨H⟩2β = Varβ(H)

via a principle called the fluctuation-dissipation theorem.

A.2 An Example: The 2D Ising Model

The configurations of this model are specified by binary variables σi ∈ {−1, 1} called

spins on each site i of a square lattice Λ of size L× L. That is, C = ZL×L2 . We will

also call a spin σ = 1 an up spin and σ = −1 a down spin. The Hamiltonian assigns
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each configuration {σi}i∈Λ an energy based on how well the spins align with their

nearest neighbours

H({σi}i∈Λ) = −
∑
⟨ij⟩

σiσj

where ⟨ij⟩ runs over all nearest neighbour pairs of sites in the lattice, considering

the lattice to have periodic boundary conditions. If many spins are aligned then σiσj

is usually 1, so the energy is low. If many are misaligned then the product term is

usually −1, so the energy is high. The Ising model is usually interpreted as a model

of magnetic material where each spin is the magnetic moment for an atom which

influences the magnetic moments of neighbouring atoms. There is a known analytic

formula for the free energy of the 2D Ising model, as found by Onsager [159]:

1

L2
F = − ln(2)

2
− ln(cosh 2β)− 1

2π

∫ π

0

ln
(
1 +
√

1− k2 cos2 θ
)
dθ (12)

where k = 2 sinh 2β/ cosh2 2β. One can therefore also exactly calculate quantities

such as the average energy and specific heat by taking the right derivatives as spec-

ified above.

A.3 Phase Transitions

In this framework a phase transition is said to occur whenever there is a singularity

in a derivative of the free energy. When there is a discontinuity in a first derivative

there is said to be a first order transition, and when there is a discontinuity or

divergence in a higher derivative there is said to be a continuous phase transition.

For example, a first order phase transition might manifest as a discontinuous jump

in the average energy U as β is varied. Where as a typical indicator of a continuous

phase transition is a divergence in the specific heat C. There is also a third type

of transition, often called a topological phase transition, but we leave discussion of

that unusual case to the main text in Section 3.

The first thing to note is that by the definition above, phase transitions do not

occur on finite lattices Λ. It is straightforward to see that the partition function is

a finite sum of analytic functions and hence analytic, so that the free energy is too.

Therefore there are no singularities in any of its derivatives. However, this argument

can and does fail when we pass to the thermodynamic limit |Λ| → ∞. However, in
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the finite case we often still see the shadow of a phase transition: the divergence of

a function might become a pronounced peak that gets taller as |Λ| increases. We

will gloss over this for now, but exactly how these finite-size effects manifest will be

crucial to the work of this thesis and we instead cover this in Section 2.3.

We do not consider any first order phase transitions in this thesis, so let us

concentrate on continuous transitions and consider our Ising model example. From

Eqn. 12 one finds that the specific heat of the Ising model diverges at temperature

Tc =
1

βc
=

2

ln(1 +
√

2)

but since having an analytic formula is the exception rather than the rule, it is more

instructive to consider how else we might have spotted the phase transition.

Correlation Functions Just looking at typical configurations sampled from a low

temperature (high β) and a high temperature (low β), for example those in Figure

80, reveal a stark difference in behaviour. Qualitatively, the spins in Figure 80 (a)

(a) (b)

Figure 80: Sample configurations of the Ising model. (a) Sample from low temper-

ature. (b) Sample from high temperature.

seem to be more ordered, forming large regions where all the spins point the same

way. Those in Figure 80 (b) are very much disordered; the direction a particular
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spin is pointing in tells us very little about what to expect even just a few lattice

sites away. Quantitatively we introduce the following.

Definition A.1 (Spin-Spin Correlation Function). For the Ising model, the spin-

spin correlation function for a given value of β and a distance r is

C(r, β) = ⟨σ0 σr⟩β

which measures the correlation between a spin and another at distance r away from

it in the lattice. Exactly which spins we look at does not matter due to translation

invariance of the system, only the distance between them.

For all values of β ̸= βc we asymptotically have that

C(r, β) ∼ 1

rτ
exp

(
−r
ξ

)
where τ is some number depending on the phase and ξ is a characteristic length

scale called the correlation length which varies with β.

As we might expect, at high temperatures the correlation function decays to

zero and ξ is small. We say that there is only short-range order. Spins are almost

independent of each other as it is, but especially as we consider spins further and

further apart.

Definition A.2 (Short-Range Order). A spin system is said to display short-range

order if the spin-spin correlation function decays exponentially to zero with distance.

At low temperatures the correlation function decays towards a fixed value greater

than zero. On average, most of the spins are pointing in the same direction as each

other so all spins are correlated. There is said to be long-range order. Perhaps

surprisingly, ξ is also small here: a spin flipping to −1 in a sea of +1 spins is

unlikely to affect many others except its closest neighbours.

Definition A.3 (Long-Range Order). A spin system is said to display long-range

order if the spin-spin correlation function decays exponentially towards some c > 0

with distance.
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Where things get interesting is right at the critical temperature. Here the corre-

lation length ξ diverges, giving us instead a power-law for the correlation function

C(r, β) ∼ 1

rτ
,

decaying slower than the usual exponential decay. For a illustrative cartoon of

what is going on here, consider Figure 81. Instead of the large clusters we see at low

Figure 81: Sample configurations of the Ising model taken close to the critical

point.

temperatures and the small clusters and television static we see at high temperatures,

here we see clusters over many different scales. The flipping of a single spin will not

affect a large cluster immediately, but it may affect a nearby small cluster, which

itself may influence a larger cluster, which influences an even large cluster, and so

on in a kind of cascade. The multiscale structure of configurations at criticality

therefore allows the correlation between spins to carry farther in the lattice. In fact,

one can make a more precise statement about scale invariance of the Ising model at

criticality, but this is beyond the scope of this introduction. Instead we take away

the idea that short and long-range order tell us about the phase of the model we are

in, and a diverging correlation length signals the phase transition.
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Order Parameters and Symmetry Breaking Looking at Figure 80 again, a

different approach to looking at the phase transition is inspired by noticing that most

of the spins in (a) point in the same direction where as in (b) we might estimate

that there are as many up spins as down spins. We measure this excess via following

observable.

Definition A.4 (Magnetisation). For a lattice spin model, the magnetisation of a

configuration σ = {σi}i∈λ is defined to be

M(σ) =
1

|Λ|
∑
i∈Λ

σi.

A cartoon plot of the magnetisation as a function of temperature is shown in

Figure 82. Note that is that it is non-zero at low temperatures and zero at high tem-

Figure 82: A cartoon of magnetisation in the Ising model.

peratures. It is sensitive to the natural Z2 symmetry of the Ising model. Flipping

all the spins 1 7→ −1, −1 7→ 1 preserves the Hamiltonian H, but flips the magnetisa-

tion M . We call an observable with these two properties an order parameter. How

does this let us look at the phase transition? Well at high temperatures we have

M = 0, so applying the spin flip preserves the magnetisation since −0 = 0. But

at low temperatures we have M = m for some m ̸= 0. Applying the spin flip now

gives M = −m ̸= m, no longer preserving the magnetisation. The order parameter

therefore allows us to observe the breaking of some Z2 symmetry. The idea is that

this must occur at the phase transition, so we can identify the critical temperature

as the point at which the order parameter first goes to zero.
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In this thesis we will often consider observables O : C → R with the property

that O is zero in one phase and non-zero in the other but which is not necessarily

sensitive to the symmetries of the model in question. Instead of calling these order

parameters as is often done, we will prefer to call such quantities phase indicators.

Simulation What if we look at one of the many models which, unlike the 2D Ising

model, does not have an exact analytic solution? How can we hope to compute even

simple expectations, let alone quantities such as the free energy? The answer is to

simply estimate these quantities via Monte Carlo methods. In particular, the stan-

dard approach is to set up a Markov Chain which allows us to sample configurations

according to the Gibbs distribution. That is, we generate a sequence of configu-

rations {ct}t∈N whose energies are distributed according to the Gibbs distribution.

One way to do this is through the Metropolis Hastings algorithm [160] where the

next configuration in the sequence ct+1 is obtained from the previous ct according

to some easy to sample distribution g(ct+1|ct). Algorithm 4 shows how to generate

the next step in the Markov chain.

Algorithm 4 Metropolis Step [160]

Input Configuration ct

Output Updated configuration ct+1

1: c′ ← Sample(g(c′|ct))
2: A← min

(
1, exp

[
− β(H(c′)−H(ct))

]
g(ct|c′)/g(c′|ct)

)
3: u← Uniform([0, 1])

4: if u ≤ A then

5: ct+1 ← c′

6: else

7: ct+1 ← ct

8: end if

The idea behind such algorithms is to generate a Markov chain obeying two

conditions. The first, detailed balance, means that the the probability of two con-

secutive configurations in the chain being A then B is the same as the probability

of two consecutive steps being B then A. This is a sufficient condition to ensure

that the Markov chain has a stationary distribution. The second, ergodicity, essen-
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tially says that the simulation can reach every possible configuration. This ensures

that the stationary distribution is unique. The Metropolis algorithm satisfies these

two conditions in such a way that the resulting stationary distribution is the Gibbs

distribution that we wanted.

One typically begins the chain with either a random configuration or an ordered

configuration and then runs several thousand Metropolis steps in order to approach

the limiting distribution, or ”thermalise”. The distribution g is often very simple.

For example in the Ising model (or other lattice spin models), one might generate

the new configuration by selecting a lattice site at random and flipping the spin at

that site (or choosing a random new value for it). Thus the configurations which

are close together in the Markov chain can be very highly correlated, so one usually

samples the chain every few hundred or thousand steps, or otherwise applies some

statistical techniques to deal with this.

Now estimating some expected value ⟨O⟩β is as simple as sampling a large number

N of configurations Ci from the Markov chain and calculating

⟨O⟩β ≈
1

N

N∑
i=1

O(Ci).

The main reason that Monte Carlo methods are so helpful for statistical physics is

that the error in this approximation decreases with 1/
√
N regardless of the dimen-

sionality of the configuration space.

B Introduction to Computational Topology

As a subfield of mathematics, topology covers those properties of topological spaces

invariant under continuous maps. This generality is powerful: the ideas and tools of

topology can be applied to many weird and wonderful spaces and functions. However

we run into an issue if we wish to do computational topology, since computers will

only work with more structured and easily-described spaces and maps. As such,

we will restrict ourselves to certain classes of topological spaces and functions. In

particular we will introduce simplicial and cubical complexes which are constructed

out of generalisations of triangles and squares respectively. As it turns out, many
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compact topological spaces which are sufficiently nice will be homeomorphic to some

simplicial and/or cubical complex anyway, so we will obtain the same topological

invariants when working with the appropriate simplicial or cubical approximation

as with the original space.

Of the different flavours of topology, that which lends itself most towards com-

putation is algebraic topology. Many of the principal tools of algebraic topology rely

on the homotopy groups πk(X) which describe the different ways in which we can

map a k-sphere into a space X up to continuous deformation. However, the group

structure makes practical computation of these difficult, so once again we resort

to a more easily computable alternative in the form of homology. The homology

vector space Hk(X) simply counts the number of k-dimensional holes in X via its

dimension in a way that we shall soon make more precise.

B.1 Simplicial Complexes

Introductory courses in algebraic topology often start by introducing simplicial com-

plexes, precisely because they are easy to construct and compute invariants with.

In that scenario the intent is to perform computations by hand, but this ease of

computation extends to computers too. A simplicial complex is an abstract con-

struction, but it comes equipped with a geometric realisation which is a topological

space constructed by gluing together triangles of different dimensions.

Definition B.1 (Abstract simplicial complex). An abstract simplicial complex K =

(V,Σ) consists of a set V called the set of vertices of the complex, along with a set

Σ ⊆ P(V ) called the set of simplices, obeying the following two conditions:

1. For each v ∈ V , we have {v} ∈ Σ (singletons are simplices).

2. If τ ∈ Σ and σ ⊆ τ , then σ ∈ Σ (the set of simplices is downwards closed).

We may simply refer to the abstract simplicial complex as Σ, where V is understood

to be given by the singletons in Σ. The dimension of a simplex σ is k = |σ| − 1 and

we call it a k-simplex.

In order to obtain the geometric realisation we first need the following definition.
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Definition B.2 (Standard n-simplex). The standard n-simplex is the subset

∆n = { (a0, . . . , an) |
∑
i

ai = 1 and ai ≥ 0∀i } ⊂ Rn+1.

The standard 0-simplex is a point, the 1-simplex is a line segment, the 2-simplex

is a triangle, the 3-simplex is a tetrahedron and so on.

Definition B.3 (Geometric realisation). Given an abstract simplicial complex K =

(V,Σ), its geometric realisation |K| is the topological space obtained from the fol-

lowing procedure.

1. For each σ ∈ Σ take a copy of the standard (|σ| − 1)-simplex and call it ∆σ.

Label its vertices with the elements of σ.

2. Whenever τ ⊂ σ ∈ Σ, identify ∆τ with a subset of ∆σ via the face inclusion

that sends the elements of τ to the corresponding elements of σ.

Thus the geometric realisation is a quotient space |K| =
⊔
σ∈Σ ∆|σ|−1

/
∼ where ∼

is the equivalence relation described in Step 2.

Now let us look at how to define the homology of a simplicial complex. We first

need to algebraise the notion of a collection of simplices. In the following we will fix

some ordering on the vertex set.

Definition B.4 (Simplicial chains). Fix some field F and some k ∈ N. Given a

simplicial complex Σ, the space of simplicial k-chains is the F-vector space

Ck =
{ ∑

i

aiσi | ai ∈ F, σi ∈ Σ, |σi| = k + 1 ∀i
}
,

consisting of finite formal sums of k-simplices with coefficients in F. Given a chain

c ∈ Ck, we say it has dimension dim(c) = k.

What we are now interested in is how to obtain the boundary of a simplex

or collection of simplices. Consider a 2-simplex {i, j, k} which (by the geometric

realisation) we can think of as a triangle with vertices i, j and k. Its boundary

ought therefore to be made up of three edges or 1-simplices {i, j}, {i, k} and {j, k}:
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all the simplices obtained by removing one vertex from the original. Rather than

just giving the sum of these simplices, we give the alternating sum which will help

us keep track of orientations.

Definition B.5 (Simplicial boundary map). Given a k-simplex σ = {v0, . . . , vk}
(where the labels vj respect the ordering on the vertex set), its boundary is the

(k − 1)-chain

∂σ =
k∑
j=0

(−1)j{v0, . . . , vj−1, vj+1, . . . , vk}.

This extends linearly to the boundary map ∂k : Ck → Ck−1 sending∑
i

aiσi 7→
∑
i

ai∂σi.

The alternating sum ensures that ”interior” simplices are cancelled out. For

example, consider the sum of two 1-simplices {i, j} + {j, k} corresponding to two

line segments joined end-to-end. The boundary would be

({i} − {j}) + ({j} − {k}) = {i} − {k},

containing only the outer endpoints. The interior simplex {j} was cancelled out.

In order to find holes we are interested in collections of simplices, algebraised as

simplicial chains, which are closed. For example a 1-dimensional hole is enclosed

by a closed curve and a 2-dimensional hole should be enclosed by a closed surface.

Another way to say this is that the simplicial chain has no boundary.

Definition B.6 (Simplicial cycles). Given a simplicial complex, its k-cycles are

given by the subspace of Ck:

Zk = ker ∂k.

However, not all cycles describe holes. Take our triangle {i, j, k}. The boundary

{j, k} − {i, k} + {i, j} is a 1-cycle: taking its boundary causes all the resulting 0-

chains to cancel out. But we certainly would not say that there is a hole in the

triangle. The issue here is that this cycle bounds a higher dimensional simplex

which ”fills” the hole.
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Definition B.7 (Simplicial boundaries). Given a simplicial complex, its k-boundaries

are given by the subspace of Ck:

Bk = im ∂k+1.

It is easy to verify using the formula for ∂k that Bk ⊆ Zk for all k, which is

equivalent to saying that ∂k ◦∂k+1 = 0. This finally allows us to define homology by

looking at cycles that are not filled in by higher dimensional simplices, or indeed that

simply differ by the addition or subtraction of the boundaries of higher dimensional

simplices.

Definition B.8 (Simplicial homology). Given a simplicial complex K, its k-th

simplicial homology is the quotient F-vector space

Hk(K) = Zk/Bk.

We therefore refer to homology classes [c] ∈ Hk (or c + Bk in coset notation),

where c ∈ Zk is a representative cycle. For example, the dimensionality of H0 records

the connected components of the simplicial complex. Take the complex consisting

of a single line segment {i, j}. Both {i} and {j} are 0-cycles, but we clearly do not

have two connected components. This is reflected in H0 by the fact that these two

cycles differ by the boundary ∂1{i, j} = {i} − {j}. Therefore both {i} and {j} are

representatives of the same homology class.

To rephrase the above as a purely algebraic picture, given a simplicial complex,

we have a sequence of vector spaces and linear maps

. . .→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0

describing how to go from a collection of simplices to its boundary, with the property

that ∂k ◦ ∂k+1 = 0. Such a sequence is called a chain complex and given any chain

complex we can define its k-th homology as the vector space Hk = ker ∂k/ im ∂k+1.

Homology therefore maps simplicial complexes to vector spaces. We can ask if this

mapping is functorial: if homology also sends simplicial maps X → Y between

simplicial complexes to linear maps Hk(X) → Hk(Y ) between vector spaces. But

first we need to know what the appropriate maps between simplicial complexes are.
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Definition B.9 (Simplicial map). Given two simplicial complexes K = (VK ,ΣK)

and L = (VL,ΣL). A simplicial map f : K → L is described by a map fV : VK → VL

such that ∀σ ∈ ΣK we have that f(σ) = {f(v) | v ∈ σ} ∈ ΣL.

Now we can extend a simplicial map f to give a map between the spaces of

k-chains of K and L, by defining fk : Ck(K)→ Ck(L) as the map∑
i

aiσi 7→
∑
i

dim f(σi)=k

aif(σi).

The key result now is that this map descends to the quotient.

Proposition B.1 (Functoriality of homology). Given simplicial complexes K and

L and a simplicial map f : K → L, the induced linear map fk on k-chains descends

to a map fk : Hk(K)→ Hk(L) on k-th homology given by

[c] 7→ [f(c)].

The identity map id : K → K induces the identity map on homology. Moreover, if

g : L→M is another simplicial map, then

(g ◦ f)k = gk ◦ fk : Hk(K)→ Hk(M).

The fact that there is an induced map on homology which respects composition

is referred to by saying that homology is a functor from the category of simplicial

complexes with simplicial maps to the category of vector spaces with linear maps.

This will be important for the definition of persistent homology in Section 2.1.1.

Finally, we should also define cohomology since it comes up briefly in Sections

2.1.2 and 2.1.4. The idea is to take our sequence of chain spaces and boundary maps

. . .→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0

and simply dualise everything. That is, we replace Ck with C∗
k = Hom(Ck,F) and

the boundary maps ∂k : Ck → Ck−1 with coboundary maps δk : C∗
k → C∗

k+1 in the

opposite direction giving

. . .← C∗
3

δ2←− C∗
2

δ1←− C∗
1

δ0←− C∗
0 ←− 0,
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where δk is defined on a cochain b ∈ C∗
k as

δk(b)(c) = b(∂k+1c)

for all chains c ∈ Ck+1.

Definition B.10 (Simplicial cohomology). Given a simplicial complex K, its k-th

simplicial cohomology is the quotient F-vector space

Hk(K) = ker(δk)/ im(δk−1).

Cohomology is also a functor from simplicial complexes to vector spaces, but

with the arrows flipped (it is a contravariant functor).

Proposition B.2 (Functoriality of cohomology). Given simplicial complexes K and

L and a simplicial map f : K → L, there is an induced linear map fk : Hk(L) →
Hk(K) on k-th cohomology given by

[b] 7→ [b ◦ fk]

where fk : Ck(K) → Ck(L) is the induced map on chains. The identity map id :

K → K induces the identity map on cohomology. Moreover, if g : L→M is another

simplicial map, then

(g ◦ f)k = gk ◦ fk : Hk(M)→ Hk(K).

B.2 Cubical Complexes

In most of this thesis it will make more sense to work with a slightly different type of

complex. If we instead build our spaces out of generalisations of squares and cubes

rather than triangles, we obtain cubical complexes.

The story here closely mirrors that for simplicial complexes. We can make the

following definitions, following [161].

Definition B.11 (Abstract cubical complexes). An abstract cubical complex K =

(V,Σ) consists of a vertex set V along with a set Σ ⊆ P(V ) called the cubes of the

complex, obeying:
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1. For each v ∈ V , we have {v} ∈ Σ.

2. For every σ ∈ Σ the elements of σ can be represented as the vertices of a finite

dimensional cube, where the faces contained in σ are exactly the vertex sets

of the faces of this cube.

3. If σ, τ ∈ Σ, then σ ∩ τ = ∅ or σ ∩ τ ∈ Σ.

A map f : VK → VL between the vertex sets of two cubical complexes is a cubical

map if:

1. For every σ ∈ ΣK , f(σ) ⊆ τ for some τ ∈ ΣL.

2. f takes adjacent vertices in K (connected by a 1-cube) to either adjacent

vertices in L, or the same vertex.

We could then simply copy and paste the rest of the definitions and results for

simplicial complexes with only minor modifications to get to the notion of homology.

However, it may be more instructive to approach the definition in a slightly different

way. Rather than starting with this abstract data structure, one can define cubical

complexes concretely as subsets of Euclidean space from the start, as in [162].

Definition B.12 (Elementary intervals and cubes). An elementary interval is an

interval of the form [i, i + 1] ⊂ R (non-degenerate) or [i, i] = {n} (degenerate) for

some choice of i ∈ Z. An elementary cube is a finite product of elementary intervals

Q = I1 × . . .× In ⊂ Rn, where n is some fixed embedding dimension. Its dimension

dimQ is the number of non-degenerate intervals in the product.

Definition B.13 (Concrete cubical complex). A cubical complex C is a subset of

Rn that is a union of elementary cubes which may be of varying dimension. n is

known as the embedding dimension. The dimension of the cubical complex dimC

is the maximum dimension of any elementary cube contained in C.

As before, in order to define homology we need to inject some algebra. Fix a

field F.
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Definition B.14 (Cubical chains). Given k ∈ N, the space of cubical k-chains is

the F-vector space

Ck = {
∑

αiQi | Qi ⊆ C, dimQi = k, αi ∈ F},

consisting of finite formal sums of elementary cubes.

Definition B.15 (Cubical boundary map). The boundary of a non-degenerate el-

ementary interval is given by the formal sum ∂[i, i+ 1] = [i+ 1, i+ 1]− [i, i]. For a

degenerate elementary interval the boundary is zero. The boundary of an elementary

cube Q = (I1 × . . .× In) is a formal sum

∂Q =
n∑
j=1

(−1)
∑j−1

i=1 dim Qi(I1 × . . .× ∂Ij × . . .× In) (13)

where we consider × as distributing over the formal summation. We can see that

for dimQ ≥ 1 we have dim ∂Q = dimQ − 1. Therefore we can extend ∂ to linear

maps ∂k : Ck → Ck−1 via the mapping
∑
αiQi 7→

∑
αi(∂Qi).

Once again, we are interested in the closed chains and chains that are obtained

in the image of the boundary map.

Definition B.16 (Cubical cycles and boundaries). The space of k-cycles is the

subspace

Zk = { c ∈ Ck | ∂kc = 0 } ⊆ Ck

and the space of k-boundaries is the subspace

Bk = { ∂c | c ∈ Ck+1 } ⊆ Ck.

Now a key observation is that, since ∂∂I = 0 for any elementary interval I, we

also have that ∂k ◦ ∂k+1 = 0 for all k ∈ N, so that Bk ⊆ Zk. See Figure 83 for an

example.

The sequence of linear maps

. . .→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0

therefore forms a chain complex.
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Figure 83: Example of how the boundary operator ∂ acts on a simple cubical com-

plex consisting of a single 2-dimensional cube. Note how sum in equation (13) be-

ing alternating ensures that ∂∂ = 0.

Definition B.17 (Cubical homology). The kth cubical homology of C is defined to

be the quotient F-vector space

Hk(C) = Zk/Bk.

We therefore have collections of cubes forming closed loops, surfaces, etc. which

are not simply the boundaries of higher-dimensional cubes: i.e. holes.

For the definition of persistent homology in Section 2.1.1 to work for cubical

complexes, we need to know that cubical homology is functorial: given a suitable

definition of a cubical map f : C → D between cubical complexes, there is an

induced map fk : Hk(C)→ Hk(D) for each k ∈ N which respects composition. Un-

fortunately this is when the concrete approach to cubical complexes let us down. It

is certainly possible to define cubical maps and obtain an induced map on homology

as is done in [162], but the story is much more complicated. Instead we shall simply

state the following.

Proposition B.3 (Functoriality of cubical homology). Given a cubical map f :

C → D, there is an induced map on cubical homology fk : Hk(C) → Hk(D) for all

k ∈ N. Moreover, given another cubical map g : D → E, then

(g ◦ f)k = gk ◦ fk : Hk(C)→ Hk(E).

In particular for our purposes, given a subset C ⊆ D of a cubical complex D,

the inclusion map C ↪−→ D is a cubical map and thus induces a map on homology.

Cohomology is obtained in exactly the same way as with simplicial complexes:

by dualising the chain complex of chain spaces and boundary maps, then computing

the quotient of coboundary maps.
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281. url: http://www.numdam.org/article/BSMF_1956__84_

_251_0.pdf.

[6] Elchanan Solomon, Alexander Wagner, and Paul Bendich. From Geometry

to Topology: Inverse Theorems for Distributed Persistence. 2021. doi: 10.

48550/ARXIV.2101.12288. arXiv: 2101.12288 [math.AT].

[7] Vin De Silva, Robert Ghrist, et al. “Homological sensor networks”. In: Notices

of the American mathematical society 54.1 (2007), pp. 10–17. url: https:

//www.ams.org/notices/200701/fea-ghrist.pdf.

[8] Chunyuan Li, Maks Ovsjanikov, and Frederic Chazal. “Persistence-Based

Structural Recognition”. In: 2014 IEEE Conference on Computer Vision and

Pattern Recognition. 2014, pp. 2003–2010. doi: 10.1109/CVPR.2014.

257.

[9] Violeta Kovacev-Nikolic, Peter Bubenik, Dragan Nikolić, and Giseon Heo.
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