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I had written him a letter which I had, for want of better 

Knowledge, sent to where I met him down the Lachlan, years ago, 
He was shearing when I knew him, so I sent the letter to him, 

Just ‘on spec’, addressed as follows, ‘Clancy, of The Overflow’ 

And an answer came directed in a writing unexpected, 
(And I think the same was written with a thumb-nail dipped in tar) 
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I am sitting in my dingy little office, where a stingy 
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And the foetid air and gritty of the dusty, dirty city 
Through the open window floating, spreads its foulness over all 
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While he faced the round eternal of the cash-book and the journal — 
But I doubt he’d suit the office, Clancy, of ‘The Overflow.’ 

by Banjo Paterson 

Thesis summary 

The premise that agri-environment schemes (AES) achieve their management goals and benefit 
biodiversity and landscape features as well as improve water and soil quality remain 
controversial. Their success is thought to be constrained by multiple factors such as target taxa, 
previous management and starting conditions. Modelling the responses of  plants and soils and 
summarising these as indicators and metrics to determine the impacts of AES under global 
change, provides the basis of this thesis. The first chapter introduces global environmental 
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change and the place of AES in mitigating these and then moves on to explore predictive 
ecology and environmental modelling as useful sources of concepts, datasets and tools to 
support sustainable land management and policy in the in the UK. The objective is to use 
modelling to provide new evidence-based insights that help guide mitigation of global change 
impacts, principally agricultural intensification. 

The second chapter explores the potential for grassland AES options in Wales (UK) to achieve 
expected impacts on plant diversity and soil condition. A 13-year time interval 
was modelled to estimate the response of plants and soils to AES options and climate change. 
Empirical models of soil response to extensifying grassland management were constructed from 
published experimental data and used to drive change in soil inputs to a small ensemble of 
ecological niche models for British plants. Outputs were summarised by grouping species by the 
ecosystem functions and services they support and by matching projected species composition 
to the National Vegetation Classification. Results indicated that at least 10 years of 
management under grassland AES options are needed to drive vegetation towards desirable 
plant assemblages more typical of lower fertility habitats while promoting desirable species 
groups and reducing undesirable ones. Also, management effects had a more marked effect on 
vegetation than climate variation within 13 years. 

The third chapter focuses on tree planting as a commonly funded AES management 
prescription for afforestation, promotion of biodiversity and climate change mitigation. Using 
species niche modelling we explore how tree disease and climate change could limit 
achievement of these goals. In the temperate lowlands, succession takes 30 to 50 years to 
establish forest conditions, to explore establishment by planting, scenarios of broadleaved 
woodland development across Wales were modelled. This allowed estimation of the potential 
species composition of forests with, and without, climate change, and Fraxinus excelsior 
removal due to ash-dieback (Hymenoscyphus fraxineus). Results suggested some soil variables 
and woody species groups could achieve baseline forest values in less than 30 years. In 
contrast, other species groups failed to reach baseline equivalents within this time. Where 
Fraxinus excelsior was removed from the species pool it is expected that a scrub phase will 
persist or, if present, Acer pseudoplatanus will become dominant. The findings also indicated 
that given the UK’s fragmented, habitats relying entirely on already degraded successional 
processes could lead to poor afforestation outcomes. 

The fourth chapter concerns the effects of nitrogen (N) enrichment on UK grasslands and how 
indicators focused on this can or cannot be used to support assessment of AES success. 
Prolific use of N fertilisers and the exposure of natural and semi-natural ecosystems to surplus 
N has led to higher biomass production but has also created conditions that erode biodiversity. 
Also, gaseous N emissions from agriculture and fossil fuel burning lead to atmospheric 
deposition and accidental increases of N on land. These can be thought of as a ‘hard rain’ 
impacting vegetation positively or negatively by: stimulating higher crop yields or lowering 
diversity. The aims here are: to determine if N change will lead to a corresponding shift in 
grassland communities species composition; and to determine over what timescale changes in 
vegetation and soil can or cannot be measured. To explore this, modelling workflows were 
established consisting of: fertiliser-induced soil change using novel generalised linear mixed 
effect models; and, Bayesian models to estimate vegetation change caused by N deposition. 
This created scenarios reflecting change in N abundance inputs to the ecological niche model 
described in the previous two chapters. A novel result in the context of managing expectations 
from AES is that some changes in management are expected to take decadal timescales for 
measurable change to be observed. Thus, as indicators explored often showed little change 
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over the modelling duration, proof of management change as well measured indicators are 
advisable for results-based policy to determine AES outcomes. 
 
The final synthesis chapter evaluates the magnitude and timescales of change expected under 
the AES prescriptions modelled and how this knowledge can be tied into current development 
and validation of future AES. Also, suggestions are made on methodological improvements to 
modelling AES outcomes as well as further research concerning long term ecological monitoring 
and big data use in ecology for large-scale restoration. The findings which concern the 
application of modelling to AES impacts can be summarised as a recommendation to fund 
longer and stronger AES prescriptions to ensure they achieve their goals. As ecological and 
environmental science to inform good AES design does exist, a novelty of the research is, that 
despite evidence of good practice being possible, the current approach is often insufficient. 
Therefore, the wider suggestion to improve AES delivery is regular monitoring and evaluation to 
inform ongoing adaptation-based design.  
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Chapter one, introduction 

 

1 | The power of foresight before hindsight: Predictive 

ecology applied to land-management and global 

change 
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1.1 | Land use and global change impacts on ecosystems 

 

Climate change and habitat degradation are the two greatest threats to the biosphere and both 

are perpetuated by anthropogenic drivers (IPCC, 2018; Díaz et al., 2020). As plants and soils 

form the trophic foundations of terrestrial ecosystems and play a major part in global 

biogeochemical cycling, maintaining them is crucial for natural resource production and at 

greater temporal and spatial scales for planetary function and life support (Millennium 

Ecosystem Assessment, 2005; Rockström et al., 2009; Watson et al., 2011). 

 

Land management has a global impact on ecosystems and natural resource production, as 

described in the Millennium Ecosystem Assessment (Millennium Ecosystem Assessment, 2005) 

and the UK National Ecosystem Assessment (Watson et al., 2011). Subsequent global reports 

have also raised similar concerns and have highlighted the need for the design of better land 

management regimes to mitigate or minimise the anthropogenic impacts on ecosystems 

(Simons and Weisser, 2017; Balmford et al., 2018; WWF, 2018; Hayhow et al., 2019). 

 

1.1.1 | Agri-environment schemes and land management 

Agri-environment schemes (AES) are designed to reverse the negative impact that agriculture 

(and land management) is having on ecosystem function by promoting more sustainable land 

management practices (Green et al., 2005; Pe’Er et al., 2019). Typically, AES incentivise land-

managers to adopt or pursue practices or schemes mitigating deleterious environmental 

practices (Rose et al., 2016) or, especially for higher tier AES interventions, to restore and 

create semi-natural habitat (Staley et al., 2018). Until UK exit from the EU, the Common 

Agricultural Policy (CAP) has been the principle mechanism that has subsidised UK agriculture 

with a proportion of the EU budget for agricultural support being used to fund agri-environment 
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schemes with a view to making natural resource production more sustainable (Rose et al., 

2016; Pe’Er et al., 2019). The reformation of AES is, however, now needed not only to improve 

the sustainability of land management (Pe’Er et al., 2019) but also in light of Brexit to replace 

EU policies (Arnott et al., 2019; Defra, 2020b). Examples of practices incentivised by AES 

include: leaving vegetation to grow at field margins or across grasslands to specific heights, 

reducing livestock numbers on land, reducing inputs onto land (typically fertiliser) and planting 

trees or seeding herbaceous plants (Rose, 2011; Defra, 2020b, 2020a); also looking to the 

future, UK AES are likely to focus more on promoting good soil management (Defra, 2018). 

 

While AES refer to payments for alterations to agricultural practice this thesis considers land 

management subsidies beyond this, covering forestry as well (see, Chapter 4). While Rose 

(2011) defines AES as only being on agricultural land CAP does include woodland and scrub, 

e.g. Dadam and Siriwardena (2019). This provides a broader definition of AES inclusive of wider 

land management types covering forestry and conservation too. We use this holisitc definition of 

AES here. This also allows for parallel consideration of the holisitc AES definition with the UK 

government Environmental Land Management Scheme currently being developed (ELMS; 

Defra, 2020a) 

 

The UK government and devolved administrations have commissioned reviews into the 

effectiveness of its agri-environment policy (Ormerod, no date; Oatway et al., 2018) and are 

developing new environmental land management schemes (ELMS) currently (Defra, 2020b, 

2020a). Therefore, research into the impacts of AES on plants and soils is timely and much 

needed. 
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Given the scale and time spans of AES, being national and up to 15 years in duration, with 

contracts typically lasting 5 years (Rose, 2011), monitoring their success remains important but 

challenging (Ormerod, no date) and has been a European reporting requirement (Oatway et al., 

2018). This is particularly crucial as not only do AES represent a large-scale tool to tackle global 

environmental issues but they also represent a major cost to the governments that fund them 

(Pe’Er et al., 2019). Therefore, confirming success or determining the level of achievement is 

both environmentally and economically desirable. 

 

Undertaking national scale environmental, farmer and economic AES monitoring is no small feat 

given the time span and area that has to be covered; this has only been attempted once within 

the UK, in Wales (Emmett, Alexander, et al., 2016; Emmett et al., 2017). Even within these 

projects, an assessment of the baseline data took several years of resurvey and determined 

that AES effects will take multiple years to become apparent (Alison et al., 2020). Therefore to 

get the most out of, and add value to, the data that are produced from small to large scale AES 

monitoring (Ormerod, 2012a) it has been recommended that modelling is used to explore 

possible outcomes into the future to better inform policy and management (Ormerod, no date). 

Modelling using fine-resolution monitoring data is an attractive option for exploring future 

ecological responses to new packages of interventions over varying timescales and in the 

presences of additional external drivers such as climate change and pollutant deposition (De 

Chazal and Rounsevell, 2009; Mantyka‐pringle, Martin and Rhodes, 2012; Titeux et al., 2016).  

 

1.2 | Introducing predictive ecology as key for the future  

 

A comprehensive understanding is important for protecting and safely managing the 

ecosystems upon which we and other species depend, now and into the future (Rands et al., 
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2010; Evans et al., 2013; Mouquet et al., 2015). This is why predictive ecology (as defined by, 

Evans et al., 2013) is key for the future. Direct human activities and anthropogenic global 

changes are having major negative impacts on ecosystems (Green et al., 2005; Millennium 

Ecosystem Assessment, 2005; IPCC et al., 2014; Díaz et al., 2020). Without attempts to predict 

the changes from these major factors it will not be possible to cope strategically and proactively 

with the impact they are likely to have (Evans et al., 2013; Mouquet et al., 2015). It would be a 

suboptimal and unpragmatic approach to engage in reactive management, that is waiting for an 

outcome and managing its consequences versus prior moderation of human activity to avert 

cost and build resilience to further driving forces. This requires forecasting outcomes and 

therefore requires predictive models. Even if they are wrong they are normally useful when 

constructed with good reasoning (Box, 1979). Predicting potential outcomes to inform: decision 

making, management, preparing for future change; to remove, reduce or mitigate negative 

impacts on ecosystems and natural resource production systems is vital for future planetary 

stewardship (Evans et al., 2013; Guillera-Arroita et al., 2015).  

 

Ecological modelling is a well-established field and there are many examples where models 

have successfully informed decision-making (Schneider et al., 2003; Harrison et al., 2006; 

Sattler et al., 2007; Venette et al., 2010; Uden et al., 2015). 

 

1.2.1 | Modelling environmental variables for ecosystem change 

Environmental change cannot be considered in the context of a single variable given the 

complexity of the interrelationships between environmental variables and nature e.g. climate 

models explore, temperature, precipitation, humidity, wind etc. (Lowe et al., 2018; Sillero et al., 

2021). For this reason, predictive ecology considers the use of multiple variables from biotic to 

abiotic and this often leads to layered modelling work flows e.g. ecological niche models and 
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climate change models used in Harrison et al. (2006). However, as climatic-only ecological 

niche models (ENM, see, 1.4) often exclude local conditions a wider range of variables do need 

to be considered (Diekmann, Michaelis and Pannek, 2015; Sillero et al., 2021), particularly here 

as land management intensity is often a good predictor of other biotic variables (Green et al., 

2005; Gossner et al., 2016; Simons and Weisser, 2017). Even beyond local biotic conditions 

and climate change there are other global and local environmental variables that can effect 

ecosystems across scales, examples being: nitrogen deposition effects on vegetation (Stevens 

et al., 2016) or successional stage and plant height traits (Brunet et al., 2012). As detailed 

predictions beyond simple application of theory is needed, species niche models are used here 

to acquire estimates on future states. The reason niche models are applied is their ability to 

makes estimates with a given set of dimensions (environmental inputs) on how well a species is 

suited to conditions or how likely it is to occupy the site under the conditions observed or 

predicted. 

 

Here four environmental factor types are considered given the relationships between land 

management; global change; plants and soils. These are detailed in sections 1.2.1.1  to 1.2.1.4 

below. 

 

1.2.1.1 | Climate change 

Climate variables, mainly temperature and rainfall are known to affect species distributions, soil 

conditions, and are a major component of how we define biomes (Busby, 1991; Elith et al., 

2006; Alvarado-Serrano and Knowles, 2014; Urban et al., 2016; Booth, 2017; Seaton et al., 

2020). Within the UK, the Met Office has been recording and modelling climate variables for 

decades. Its latest large dataset published, UKCP18 provides extensive past climate 
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observations and future climate predictions as key inputs for ecological modelling of climate 

impacts (Lowe et al., 2018; Met Office Hadley Centre, 2018). 

 

1.2.1.2 | Soil variables 

Soil provides substrate for plants to grow in and represents a major loci of biogeochemical 

cycling (Gruber and Galloway, 2008). Given soil responses to management over time (Poulton 

et al., 2003; Ashwood et al., 2019; Xu et al., 2020), soil variables are key for modelling 

ecological change especially at the local or finer scale (Diekmann, Michaelis and Pannek, 

2015). Also soil variables, particularly macronutrients have been shown to give a linear 

response over time to management meaning that they can be simply modelled themselves 

(Poulton et al., 2003; Thomaes et al., 2012). Then these can be utilised as ENM inputs that may 

capture more nuanced species-environment relationships e.g. a unimodal habitat suitability 

response to macronutrient availability (Smart et al., 2010). 

 

1.2.1.3 | Plant and vegetation communities 

Modelling species likely niche space or distributions is a common end point use of other 

environmental datasets (Elith and Leathwick, 2009; Peterson et al., 2011; Sillero et al., 2021) 

and these can be applied in modelling ecosystem services given relationships between species 

effect traits and service delivery (Lavorel et al., 2011; Linney et al., 2020). However, models 

covering sufficient species numbers to predict ecosystem change under differing scenarios are 

rare globally. In the UK the R (R Core Team, 2019) package MultiMOVE is an ensemble of 

ENM for all common and many rare plant species. This contains models for over 1000  plant 

taxa making it well suited to AES modelling (Smart et al., 2010; Henrys, Butler, et al., 2015). 
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1.2.1.4 | Biogeochemical cycling 

The movement and change of major chemical elements; carbon (C), nitrogen (N), phosphorus 

(P) can link global change effects (Stevens et al., 2004; Gruber and Galloway, 2008; Rockström 

et al., 2009) and local management to the site level (Poulton et al., 2003; Thomaes et al., 2012; 

Ashwood et al., 2019; Xu et al., 2020). Modelling this or using published modelled data can tie 

the effects of local management change with global change (Stevens et al., 2016; Levy et al., 

2020) resulting in improved model explanatory power and functionality (Diekmann, Michaelis 

and Pannek, 2015; Sillero et al., 2021). 

 

1.3 | Defining ecological niches and species models 

 

To construct models for species, ecosystems, and management it is important to use clear 

terminology. Here I define a species realised niche as: 

“The combinations of environmental and ecological factors that a species can exist in, that is 

within a given geographic region or biotic community, in combination with the impact that the 

species has on its surrounding resources, conditions and community.” Adapted from Peterson 

et al. (2011). 

 

The realised niche refers to where a species would actually be observed within an environment. 

If a species existing in isolation from constraining interactions with other species and suitable 

abiotic conditions for it, is considered, then this is the fundamental niche which a species can 

exist in. This is particularly useful when considering how changes in abiotic conditions may alter 

the geographic area where conditions are suitable for a species, thus possibly changing its 

distribution. Here a species fundamental niche is defined as the full range of conditions, 
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variables and interactions the species could exist in, this can be considered with or without 

species dispersal constraints (Colwell and Rangel, 2009; Peterson et al., 2011). 

 

A (species) ENM is any statistical or computational construct built to attempt to predict the 

suitability of a species to, or probability that a species could or will occur at a point within; an nth 

number of dimensions that the model can account for (Peterson et al., 2011). These nth 

dimensions refer to any factor (spatial, temporal, trait based, abiotic or biotic) that can be 

considered to contribute to the realised niche (Colwell and Rangel, 2009; Alexander et al., 

2016). Models and metrics, however, cannot account for all the dimensions that make up a 

species niche due to the complexity of the natural world (Peterson et al., 2011; Mouquet et al., 

2015). Ecological theory and research, with model construction considerations, limitations and 

parsimony, can help identify the minimum set of n dimensions that will define the niche 

sufficiently comprehensively to represent the space species occupy within them. 

 

Here I use the term ENM (ecological niche model) rather than species distribution models 

(SDM) as the latter suggests the specific use of geographic spatial software datasets (Sillero et 

al., 2021) where the goal is typically model occupancy at some grid square resolution. This 

differentiation is expressed in Colwell and Rangel (2009) where there is differentiation between 

niche space as ranges within n dimensions versus the real world geographic distributions (the 

biotope). This is important for context here as our focus is to predict change into the future with 

changing environmental conditions, not to explore current real-world distributions. Sillero et al. 

(2021) also provides a succinct differentiation of the two terms. 

 

1.4 | Ecological niche model construction 
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Now a definition of an ENM has been established, the theory behind the construct of an ENM 

can be explored. To determine a species niche, the dimensions that define the ecological space 

in which the niche is embedded need to be considered (Elith and Leathwick, 2009; Boulangeat, 

Gravel and Thuiller, 2012). The dimensions in which a species exists are both spatial through, 

for example its dispersal from its point of origin and, also across environmental gradients or 

variables which may be less or more correlated spatially (Guisan and Thuiller, 2005; 

Boulangeat, Gravel and Thuiller, 2012). Environmental gradients are often abiotic, such as 

climatic variation which can be correlated with other variables such as altitude. Both maybe 

possible to map at varying resolutions hence a key consideration is the availability of datasets 

that can be used to quantify gradients in the niche dimensions across a geographical area. 

Many candidate variables that underpin a niche dimension can be correlated. Others may be 

less correlated but causally related to a mixture of other variables. For example current soil 

nutrient availability can be a complex function of existing soil type, related to climate and parent 

material, but interacting with legacy effects of land management history (Hawkins et al., 2007; 

Sillero et al., 2021). Biotic environmental variables refer to interactions with other species which 

fall into four types, predation, competition, parasitism, and mutualism which determine the 

species abundance and existence alongside other interacting species (Hirzel and Le Lay, 2008; 

Preston et al., 2008; Alexander et al., 2016).  

 

1.4.1 | Biotic, abiotic and dispersal dimensions 

The niche dimensions are conceptualised in the Biotic, Abiotic and Dispersal variables diagram 

(BAD diagram, Fig. 1.1) below. This allows niche dimensions to be considered conceptually 

with the location of realised species niche represented by the overlap of the different 

dimensions to create a space suitable for the species to exist. It is also important to remember 

that species are distributed through time (Elith and Leathwick, 2009) via their phenology and 
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their life span, particularly with the death of an individual creating a new opportunity for 

establishment by offspring of the same or different species. 

 
Figure 1.1. Biotic variables represented by the brown circle, Abiotic variables represented by the blue circle and 
Dispersal represented by the yellow circle to create the BAD diagram. Ideal conditions for the species are 
represented by the central space labelled Species niche. The yellow and brown bounded area in the bottom left 
represents where the plant species can disperse to with other plant species but where abiotic variables are unsuitable 
for establishment. The yellow and blue bounded area in the bottom right represents where the plant species can 
disperse to and grow under abiotic conditions but other plant species interactions fail to allow the species to establish. 
At the top, the brown and blue bounded area represents where biotic and abiotic conditions are suitable for the plant 
species but it cannot or has not dispersed there. Adapted from Peterson et al. (2011). 
For model construction, it is not pragmatic to measure everything affecting the niche space 

shown in the centre of Fig. 1.1 and it is likely to be impossible due to practical limitations in 

sampling. In order to be pragmatic and still create a model that considers niche space 

adequately, the right measures to represent the niche need to be selected (Elith and Leathwick, 

2009; Sillero et al., 2021). Spatial dimensions also need to be considered carefully in model 

construction as autocorrelation naturally occurs between space and environmental gradients 

(Guisan and Thuiller, 2005; Hawkins et al., 2007), usually summed up as nearer things are 

more similar. 

Ecologically relevant and suitable metrics must be chosen to represent the species niche for 

use in models as this allows for robust scientific explanation and insight through using 
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established theory also allowing for the construction of further theories (Guisan and Thuiller, 

2005; Elith and Leathwick, 2009; Sillero et al., 2021). Models that deliberately contain spatial 

components must be considered at the suitable scale so that model components are 

representative of the area and sites studied (Guisan and Thuiller, 2005; Sillero et al., 2021). 

Difficulties can occur when the resolution of input data varies and when input and output spatial 

scales differ. A common disparity of scale is geographic climate data versus finer resolution 

sample data that record the occurrence of a species, this can cause several different problems 

in reliability (Guisan and Thuiller, 2005; Trivedi et al., 2008; Mouquet et al., 2015): 

• Where input data scales vary (ideally, they should match), it can be simplest to use the 

coarse resolution to avoid error, averaging across cells to match resolutions. 

• Alternatively, it may be possible to statistically split coarse cells to allow for combination 

with finer cells and increase precision. 

• If output resolution is too coarse then finer variability in environmental mosaics will be 

unaccounted for. 

• For overly fine output resolutions then variability may be predicted which does not exist. 

 

For models without a spatial input requirement (e.g., those built non-spatially on data for species 

present in specific conditions) the above is less relevant (Sillero et al., 2021). However, it still 

needs to be considered if for example a spatial climate dataset is taken apart to give seasonal 

temperature inputs. This is considered in Elith and Leathwick (2009) particularly under the 

heading “The Interplay of Geographic and Environmental Space”. 

 

To further explore the Fig. 1.1 BAD diagram abiotic and biotic inputs need consideration aside 

from the spatial model components discussed above (Hirzel and Le Lay, 2008; Sillero et al., 

2021). Abiotic inputs are used comprehensively in species ecological niche models (Elith and 

Leathwick, 2009; Bocsi et al., 2016; Booth, 2017); especially climatic variables (Pearson and 

Dawson, 2005) as they are easy to obtain (Sillero et al., 2021) and are directly suitable as 
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inputs. There is also a huge resource in terms of data and literature on species and climate 

relationships as temperature and precipitation are the major drivers of vegetation type at the 

biome scale (Urban et al., 2016; Booth, 2017). Non-climatic abiotic inputs become more 

important when models are applied at local or site levels allowing for more heterogeneity to be 

accounted for (Hirzel and Le Lay, 2008; Elith and Leathwick, 2009; Diekmann, Michaelis and 

Pannek, 2015). 

 

Biotic input components of models need careful consideration for incorporation (Pearson and 

Dawson, 2005; Boulangeat, Gravel and Thuiller, 2012) as  biotic interactions are only easily 

expressed indirectly through correlative means unless experimental interactions are known or 

measured and appropriately modelled (Hirzel and Le Lay, 2008; Alexander et al., 2016). 

However, through modelling species at separate localities and then modelling where they 

occupy the same space and comparing, this allows for information to be gained on how species 

interact or compete under the independent variables used for the modelling (Hirzel and Le Lay, 

2008; Alexander et al., 2016). An example of this is the approach of creating multiple models for 

a species niche to create a layered model structure like that applied in Boulangeat et al. (2012). 

Although good ecological theory and knowledge is vital to justify biotic components of models 

(Preston et al., 2008), the simplest way correlative models can attempt to incorporate biotic 

interactions is to ensure inputs are from situations where species interactions are present and 

are thus expressed indirectly through effects on model inputs e.g. presence and absence data 

(Hirzel and Le Lay, 2008). However, this does not guarantee, and may prevent, robust capturing 

of true interactions as without data specifically expressing species interactions as they are likely 

to be under represented; this often requires dynamic modelling that is far more data intense 

than correlative modelling (Guisan and Thuiller, 2005). 
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The bottom and final component for the BAD diagram (Fig. 1.1) is dispersal. This is often 

unaccounted for or poorly captured in ENMs. This is because dispersal is difficult to measure 

and incorporate into models. Some models capture dispersal to some degree through sampling 

entire species ranges so allowing a coarse estimation to be made of where the species may 

colonise within or near its distribution (Elith and Leathwick, 2009; Boulangeat et al., 2012). A 

common approach is to make assumptions about species dispersal, which should be 

biologically justified. This can be done by, predicting that species will colonise anywhere within 

their range that has suitable conditions, only applicable to widespread easily dispersing species 

(Peterson et al., 2011) or using a dispersal predictor per species that can show distribution 

change over a given increment in time or environment (Boulangeat et al., 2012). This usually 

centres on the use of traits such as seed number and seed size (e.g. Liu, Cossu and Dickie, 

2019), which correlate with dispersibility. The constraint on this approach is that it relies on 

representative database measurements and is still only a proxy for the dynamic and 

probabilistic process of dispersal (Kimberley et al., 2016). The post dispersal process of a 

species colonising a site refers to its establishment phase. Hence dispersal constraint leads to 

the conjecture that communities may not be saturated since favourable abiotic conditions and 

species packing theoretically provide unrealised or colonisable niche space. One approach is to 

treat vegetation patches as unsaturated and therefore include species from the local species 

pool as potential members of new assemblages but dependent on management intervention to 

overcome dispersal and establishment constraints (Mateo, Mokany and Guisan, 2017). 

 

Additional theory behind the construction of an ENM, includes a number of conceptual 

assumptions that must be accounted for in the modelling process. The first consideration for 

correlative models throughout this work is that: environmental conditions making up niche 

dimensions adequately circumscribe the ecological space occupied by the species. (Elith and 
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Leathwick, 2009; Guillera-Arroita et al., 2015). Another key component to correlative modelling 

is that species in the training data are at equilibrium with their environment under a reasonable 

number of conditions (sensu Sillero et al., 2021). If this is not the case then the model is likely to 

have poor or incomplete niche dimensions and may produce inaccurate predictive results 

(Hirzel and Le Lay, 2008; Elith and Leathwick, 2009). An exception to this, or more accurately a 

work around, is exemplified in Uden et al. (2015) where iterations of ENM constructions are 

demonstrated to be useful for estimating the spread of invasive species. An alternative to work 

around equilibrium assumptions to predict the suitability of a species to the environmental 

variables modelled, is favourability modelling in Chamorro et al. (2020). 

 

Major considerations beyond input data types and abiotic, biotic and dispersal factors are 

statistical and computational model construction. As methods for this should be adequate both 

to compute the species niche space and be fit for end use (Elith et al., 2006; Guillera-Arroita et 

al., 2015), consideration of modelling methods and model testing are focused on in the next 

section. 

 

1.4.2 | Ecological niche model components 

The previous section can be thought of as considering aspects of robust design for ecological 

niche models. This section discusses the components of a workflow required to build a model. 

The modelling process can be broken down into three steps, building, running and applied use; 

as well as the construction of the model workflow, inputs (see, 1.4.1 and 1.2.1), modelling 

method and outputs. The thematic diagram in  Fig. 1.2. provides a visual layout of this. 
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Figure 1.2. Thematic diagram showing inputs used for consideration in construction and final inputs.  The orange box 
shows the process of constructing models via a testing process; providing input data and putting it through selected 
model types, then testing and adjusting until a final model construct is deemed suitable, as displayed in the blue box. 
Outputs can then be used for data visualisation, mapping or any suitable end use. 
 

To start with the left-hand side of  Fig. 1.2, the inputs must represent reality as closely as 

possible. This is relatively straight-forward with instrumentally measurable environmental 

variables (see, 1.4.1) like pH or temperature with clear methodologies (Hirzel and Le Lay, 2008; 

Peterson et al., 2011). However, this is not the case with species records (Guillera-Arroita et al., 

2015). For example, the simplest form of species input data is presence data, a record of a 

species being at a site at a given time. Complications arise with imperfect detection, for example 

if a surveyor goes to a site and fails to record a species when it is present then this site data is 

omitted from model construction. Further complexity for detecting species and acquiring 

representative data is added when different types of species data are used, types increasing in 

information content include: presence, presence and absence (or pseudo-absence), occupancy 

detection (species surveying and detection probability accounting) and abundance (Sillero et al., 

2021). Each of these types of data has potential issues: imperfect detection (false-presence, 

false-absence); can prevalence/abundance be properly estimated; and environmental bias 

(Peterson et al., 2011; Sillero et al., 2021). These can lead to inclusion of incorrect data or 
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omission of correct data (Peterson et al., 2011; Guillera-Arroita et al., 2015). The issues raised 

here must be considered in the data being used to construct a model so that they can be either 

understood as limiting factors or better still (if possible) accounted for, this can be done getting a 

measure of species detectability and sampling effort or at the very least understanding 

limitations of the data (Guillera-Arroita et al., 2015). 

 

The inputs boxes in  Fig. 1.2 are divided into three to represent the staged use of inputs. The 

first two input boxes, Environmental & Species, are used in the construction phase and are 

divided as they are gathered and considered for use in model construction separately (the 

Environmental box is not further divided for simplicity). The grey ‘Input data possibilities’ box 

(Fig. 1.2) represents input selection and calibration which is often needed to ensure the data is 

suitable as an input and in a useable format for the model type(s) selected, this is often time 

consuming to carry out; (Sillero et al., 2021). Calibration requirements will be described in model 

type methodologies e.g. SPECIES (Pearson et al., 2002); or determined in the modelling 

process (Elith et al., 2006). The box ‘Inputs for end use’ does not divide environmental and 

species data, as typically at end use, the data inputs needed have been streamlined into one or 

very few data sets. A grey input box is still included in the final model construct as a calibration 

step is still very often a requirement at this stage (Elith et al., 2006; Sillero et al., 2021). 

 

Sections 1.4.1 and the start of this section describe model input considerations to ensure 

models are given the best possible data to use. The next part of the modelling construct is the 

model type itself. Since the 1980s, a rapidly increasing number of modelling methods have 

become available (Booth, 2017) meaning there is a wide variety to choose from. Table 1.1 

below describes the modelling methods used in the core ENM (MultiMOVE, see, 1.6.4  for 

selection and use) and central to the thesis providing an example of the advantages and 
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disadvantages of different methods. The five model methods types below are considered due to 

their ability to work with presence and absence data allowing for robust predictions of probability 

of occurrence, suitability and detection issues (Guillera-Arroita et al., 2015; Sillero et al., 2021). 
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Table 1.1. A selection of five commonly used modelling methods ordered by increasing complexity. These are utilised 
in the central ecological niche model of the thesis, MultiMOVE (Smart et al., 2010; Henrys, Smart, et al., 2015) used 
for predicting plant species change and vegetation community shifts. 

Model name 
(& references) Inputs Method/ Process Outputs Strengths and Weaknesses 
Generalised linear 
models (GLMs). 
(McCullagh and 
Nelder, 1989; 
Ferrier et al., 2002; 
Elith et al., 2006; 
Hirzel and Le Lay, 
2008; Alvarado-
Serrano and 
Knowles, 2014; 
Sillero et al., 2021) 

Environmental 
input data must be 
selected to be 
ecologically 
realistic and 
computable, may 
need calibrating. 
Species presence 
or 
presence/absence 
data. 

Fits formulas, typically 
quadratic or higher 
power curves to 
explain variable 
relationships to 
species. 

Varied 
dependent 
on model 
construction. 

GLMs are considered strong for 
their clear interpretable construction 
and outputs, which display strong 
statistical relationships. This is 
however often the criticism of them 
as they can oversimplify 
environmental relationships. 

Generalized 
Additive Models 
(GAM). 
(Hastie and 
Tibshirani, 1986; 
Ferrier et al., 2002; 
Guisan and 
Thuiller, 2005; Elith 
et al., 2006; 
Alvarado-Serrano 
and Knowles, 
2014; Sillero et al., 
2021) 

Environmental 
input data must be 
selected to be 
ecologically 
realistic and 
computable thus 
may need 
calibrating. 
Species presence 
or presence 
absence data. 

The same fitting 
functions as GLMs. 
However, a data 
derived smoother 
function is applied to 
allow for more 
complex relationships 
to be modelled. 

Varied 
dependent 
on model 
construction. 

GAMs provide strong correlative 
models striking a balance between 
clear interpretable models like the 
GLMs and more computationally 
heavy models like machine learning 
techniques. This also gives the 
technique the potential to be to 
simplified to be realistic or over 
fitting, limiting wider model 
application. 

Multivariate 
adaptive 
regression splines 
(MARS). 
(Friedman, 1991; 
Elith et al., 2006; 
Phillips, Anderson 
and Schapire, 
2006; Sillero et al., 
2021) 

Environmental 
input data must be 
selected to be 
ecologically 
realistic and 
computable, may 
need calibrating. 
Species presence 
or 
presence/absence 
data. 

Fits sectioned linear 
regression to the data 
partitioning lines to fit 
to the data.  

Varied 
dependent 
on model 
construction. 

Faster computationally than other 
similar models (GAM). Less black 
box like than machine learning 
methods. As with GLM and GAM 
simpler model structure may not 
account for more complex 
ecological relationships but is more 
easily interpreted than more 
complex model structures. 

Neural networks 
(NNet). 
(Ripley, 1994; 
Pearson et al., 
2002; Guisan and 
Thuiller, 2005; Elith 
et al., 2006; Sillero 
et al., 2021) 

Presence absence 
species data along 
with any 
ecologically 
relevant data 
representing niche 
dimensions as the 
model method can 
utilise any input. 

Neural networks are 
machine learning 
techniques 
recognising patters 
e.g. where species 
occur with 
environmental 
conditions. Networks 
of layered neurons 
whose function links 
from one layer to the 
next. Multiple 
iterations through the 
layers allow the model 
to adjust itself to have 
the best explanatory 
power. 

Dependent 
on 
construction 
method and 
inputs. 

NNets are very powerful model 
types able to take any inputs for the 
model process. Due to their ability 
to accommodate complexity and 
their power they are prone to 
overfitting data. Also as a machine 
learning technique, they are 
somewhat opaque making 
interpretation of the model difficult. 
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Model name 
(& references) Inputs Method/ Process Outputs Strengths and Weaknesses 
Random forest 
(RF). 
(Breiman, 2001; 
Sillero et al., 2021) 

Any species data 
along with any 
ecologically 
relevant data 
representing niche 
dimensions as the 
model method can 
utilise any input 
although some 
calibration may be 
required to get 
good outputs. 

Decision tree method 
similar to regression 
trees. The training 
data set is sampled 
randomly to feed 
trees, this sampling 
can be limited to 
prevent overfitting. 
This data is then used 
to construct trees 
which explain input 
relationships, each 
tree is selected 
randomly preventing 
relic correlations to be 
found and reducing 
overfitting. 

Dependent 
on 
construction 
method and 
inputs. 

Computationally complex, being a 
machine learning method means 
this model type can be difficult to 
interpret. However, its construction 
allows complex relationships to be 
modelled and overfitting is 
prevented by convergence and 
cross-validation being built into the 
method.  

 

1.4.3 | Model complexity 

It is possible to assume that a more complex model construction provides a better result. This, 

however, is not the case as species relationships with few or many environmental variables can 

be simple or complex. For example, species presence may be complex with variation in 

temperature due to other related or unrelated ecological factors uncounted for in a climate data 

only model. Alternatively, a species may be better represented by a model with multiple 

environmental variables as they provide more explanatory power. Thus, model creation requires 

careful consideration to be fit for purpose and have good explanatory power making good use of 

the data available, this does not mean complexity is needed. 

 

An approach rather than applying single models as described above, is to provide multiple 

modelling methods in a single framework model (Stockwell and Peters, 1999; Thuiller et al., 

2009; Henrys, Smart, et al., 2015). This type of model layering or model ensemble approach 

allows for multiple modelling techniques to be used to generate a robust average fit to the data 

with the variation within and among methods, providing robust uncertainty estimation around the 

average fit. Model weighting can then be applied to generate the optimal predictive capability for 
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each species. This involves generating and then applying a weight to the outputs of each 

method where the weight represents the ability of the modelling method to predict hold-out 

samples of the training data used to build the model. This is the approach used in MultiMOVE 

(Elith et al., 2006; Thuiller et al., 2009; Henrys, Smart, et al., 2015). Another issue concerning 

complex models with multiple inputs is how data hungry they are, with machine learning models 

requiring more observations than others (Sillero et al., 2021). Further, dynamic mechanistic 

models require a high level of detailed species biology knowledge (Kearney and Porter, 2009) 

which is hard to gain across multiple taxa. 

 

1.4.3.1 | Dynamic and mechanistic process-based models 

While calls for models that represent species biological responses dynamically are extremely 

well justified (Kearney and Porter, 2009; Purves et al., 2013; Sillero et al., 2021), they are not 

yet widely available at scales and high enough taxa numbers to be used in an applied ecological 

context. This is due to the level of data and species biological knowledge required to construct 

dynamic and/or mechanistic biological process based species ecological niche models (Kearney 

and Porter, 2009; Purves et al., 2013). 

 

As the focus here is modelling plant and soil responses to AES, the methodology utilises 

correlative models with environmental variable and species presence relationships rather than 

mechanistic or process-based models. This is because mechanistic and process-based models 

are presently unfeasible for the scales considered, as the right information to model processes 

and mechanisms does not yet exist in a sufficient quantity or form to cover entire species 

community relationships between multiple environmental dimensions  (Evans et al., 2013; 

Mouquet et al., 2015; Urban et al., 2016). 
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Another factor for consideration is that under no-analogue future conditions  no model’s 

performance is sure to be robust (Williams and Jackson, 2007; Fitzpatrick and Hargrove, 2009) 

and correlative models with clearly defined operating spaces provide a certainty of where they 

can and can’t be relied on. This known entity factor of correlative models is also key in the 

context of the theory discussed above (1.4.1 -1.4.3). As this considers ideological construction 

that can lack pragmatic realism (Purves et al., 2013; Urban et al., 2016) or does not scale well 

as mentioned in Hirzel et al. (2008) e.g. few species interactions to whole community 

interactions. 

 

Thus, the use of well-constructed correlative models, which can be immediately useful as tools 

to tackle current issues such as the environmental issues mentioned within 1.1-1.2 ; are the 

best services to offer for those trying to tackle these issues such as managers and policymakers 

(Ferrier et al., 2002). 

 

1.4.4 | Model testing and reality checking 

In Fig. 1.2 the building process of a model is shown by going through the process in the orange 

construction box to get to a final construct in the blue box. Traditional statistical tests using p-

values can be used to assess if model results are significant via testing model outputs (Elith and 

Leathwick, 2009; Peterson et al., 2011). An example of this would be testing model results from 

data withheld from model construction, or ideally independently gathered (Smart et al., 2019; 

Sillero et al., 2021). If the model predictions are shown to be significantly different from random 

then the model fits to independent data provide a degree of explanation of environmental 

variable & species relationships. This however, does not test how applicable the model is to the 

real world as a tool box of tests is required to gain any certainty of this (Elith and Leathwick, 

2009). Beyond traditional statistics, the testing stages shown in the orange box of Fig. 1.2 
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represent dedicated model testing methods for predictive performance, a brief description of the 

two most established methods is provided here. 

 

The first predictive performance statistic described is area under the receiver operating 

characteristic curve (AUC). This form of model testing determines if the model can discriminate 

between where a species should be predicted as present versus absent (Elith et al., 2006). 

Values from conducting this give a score to predictive performance with a score of 0.5 or lower 

meaning the model is not better than random or worse; values with increasing proximity to one 

showing improving model performance (Elith et al., 2006; Henrys,et al., 2015). Similar to AUC is 

correlation between the data and model predictions, correlation can be determined using a 

traditional statistical test which gives an idea of how far the model deviates from the data and 

can also be tested for significance (Elith et al., 2006; Peterson et al., 2011; Sillero et al., 2021). 

 

Akaike’s Information Criterion (AIC) evaluates a range of competing models based on fit of data 

to model given the number of parameters included in the model (Elith and Leathwick, 2009). 

AIC essentially scores models based on how close they are to the reality depicted by the 

training data (Burnham and Anderson, 2002) meaning a lower AIC shows a better model. These 

scores are, however, produced for comparisons of models constructed from the same data set 

only, and can be used for selection of the best model for the data (Burnham and Anderson, 

2002). An example of AIC scores being used can be found in Preston et al. (2008). 

 

To summarise the construction process (Fig. 1.2, orange box), a range of input variables are 

selected with good ecological justification to feed model building. Then either different versions 

of the same method or multiple model methods are constructed using these input variables. The 

model testing methods explained above can then be employed to select combinations of input 
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variables and modelling methods, as predictors of species occurrence or species suitability to 

inputs (Sillero et al., 2021); the most robust model with the highest explanatory power can then 

be selected. This process forms the inputs and constructed model type that gives outputs, which 

can be employed for end use (Fig. 1.2, blue box). Outputs are also variable depending on the 

model construction that predictions represent (Guisan and Thuiller, 2005; Sillero et al., 2021):  

• Favourability or suitability score (representing how suitable environmental conditions 

within the data set are for species modelled, gained if the methodology can’t account for 

detection of species in the training data); 

• Relative likelihood of occurrence (probability that the species will occur under 

environmental conditions accounting for species detection not being perfect in the 

training data); 

• Probability of occurrence (the actual probability that a species will occur under given 

environmental conditions given by the model and its assumptions, normally with well-

informed species detection in training data). 

• Further complexity in output types is seen across ecological niche modelling methods, 

but not described here. The close consideration of what each step in the construction 

process involves and consists off is well emphasised in this section (e.g. Fig. 1.2), for a 

more comprehensive guide to ecological niche model constructions Sillero et al. (2021) 

provides a step by step guide. 

 

1.5 | Pragmatic application of ecological niche models 

 

The approach here centres on the use of correlative niche models. These are selected for the 

availability of well established methods and data sets, as well as the fact that more processed 

based models are too data hungry and are not guaranteed to provide better predictions 

especially under global change (see, 1.4.3.1). Beyond this the possibility to clearly define niche 

space using the dimensions of environmental inputs to the species model provides a 

transparent definition of suitable habitat that can be managed toward or away from, e.g. Smart 
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et al. (2019). Over all three key reasons promote the use of correlative niche models: their 

established robust use; their ability to cover many species (with less data than process models, 

1.4.3.1); and the simplicity of inputs allowing for setting of niche dimensions. 

 

Many ENMs focus on making predictions from low resolution or sparse data which is commonly 

available over much of the world at a small scale grid square resolution (Ferrier et al., 2002; 

Peterson et al., 2011; Mouquet et al., 2015) . Using species data like this along with low 

resolution climate datasets like “Worldclim” and environmental data from global data bases or 

herbarium records are the typical inputs for ENMs (Peterson et al., 2011). While low-resolution 

models are useful ecological and conservation tools, when used at appropriate scales they only 

provide low resolution outputs. Finer resolution (large scale) approaches to modelling despite 

sufficient data being available in places appear to be less abundant despite calls for it (Evans et 

al., 2013; Diekmann, Michaelis and Pannek, 2015; Mouquet et al., 2015). 

 

The scope of this project is to look at how AES prescribed management affects plant diversity 

and soil quality given interacting global change drivers. Given this applied focus in comparison 

with ENM as a wider subject many ENM methods are unsuitable for application within this 

project due to their low resolution. For this reason, many low resolution data examples and 

models are of limited application here, simply being examples of general ENM & SDM usage. 

 

1.5.1 | Applying ecological niche modelling to land management and global 

change 

The desired framing of the environmental modelling application described in 1.1.1 and 1.6  

requires careful consideration of both the inputs used (see, 1.2.1) and the models to be built 

(see, 1.4). As does the time-frame and scale (also mentioned in 1.1.1)  to be used for modelling 



26 

 

as national or even global scale ENMs often look at 100 km2 cells e.g. Hawkins et al., (2007); to 

large for AES modelling. Incorporating the combination of land management and global change 

affecting environmental variables related  to species realised niches requires revisiting  the BAD 

diagram (Fig. 1.1, and see, 1.5.1).  As typical land management operates at the field-scale and 

lower, environmental variables should be explored at this level (Diekmann, Michaelis and 

Pannek, 2015). For timescale, plant presence and abundance as well as land management 

practices tend to vary by season or annually. Thus, modelling over multiple decades or 

centuries as applied elsewhere in ENMs is less relevant (Fitzpatrick and Hargrove, 2009; Veloz 

et al., 2012). Generally, land management is best monitored and modelled at a sub-decadal 

timescale (Ormerod, 2012a, no date; Oatway et al., 2018); although it may take around 10 years 

for habitat changes to be observed (Critchley, Burke and Stevens, 2004; Maskell et al., 2014a). 

Thus, annual monitoring and modelling is reasonable. 

 

1.5.1.1 | Abiotic 

Climate variables tend to be those first associated with the abiotic component of species niches 

and at a land management scale accuracy and precision of the climate data is key (Hawkins et 

al., 2007; Diekmann, Michaelis and Pannek, 2015; Sillero et al., 2021). While infield climatic 

data loggers are useful for site monitoring, publicly published climate datasets into the past and 

future are available down to the 1 km2 e.g. UKCP18 (Lowe et al., 2018).  

 

In the context of climate change, novel (no-analogue) climates are those which do not exist at 

present, for this reason it is largely the case that models only considering environments 

currently seen across the planet cannot account for these future possible climates. This implies 

that ecological niche models only operating within currently observed environmental conditions 

will be inadequate to predict future compositions under no- analogue scenarios (Davis et al., 
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1998; Williams and Jackson, 2007; Fitzpatrick and Hargrove, 2009). However, the 

appropriateness of the range of variation in the model training data is captured as the definition 

of correlative models operating space (for all variables in the training data). Thus, where this 

space is breached relative to future novel conditions there can be a loss of robustness and 

certainty in the prediction. 

 

As the soil is a target for land management interventions (Rose, 2011; Oatway et al., 2018), 

changes in management regime are guaranteed to affect soil variables and plant responses. 

This has led to the need to include edaphic data as an ENM input (Diekmann, Michaelis and 

Pannek, 2015). Soil variables measured related to ecosystem state and type tend to be 

chemical or physical properties (Seaton et al., 2020) although these are also strongly influenced 

by soil organisms (microbial communities and mesofauna). 

 

While climate change is the most commonly considered global change variable in ENMs other 

global issues are also worthy of consideration, such as the disruption of biogeochemical cycles 

(Rockström et al., 2009; Steffen et al., 2015). Datasets with modelled change of biogeochemical 

cycles are available, driven by change in drivers such as  atmospheric N and S deposition 

(Tipping et al., 2019; Levy et al., 2020). Further, it is also critical to include changes in 

macronutrient availability (e.g. N, P, K) as this regulates soil fertility and thus plant species 

productivity and competition (Falkengren-Grerup, Brink and Brunet, 2006; Emmett, 2007). 

 

1.5.1.2 | Biotic 

Biotic interactions can be captured within models via deliberate inclusion of layered modelling 

(Boulangeat, Gravel and Thuiller, 2012; Sillero et al., 2021). However, a convenience of 

presence-absence based ENMs e.g. MultiMOVE (Smart et al., 2010; Henrys, Smart, et al., 
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2015), is that they capture species realised niches inclusive of biological interactions (Guillera-

Arroita et al., 2015) although the interactive process are not explicitly modelled. 

 

Ecological interactions that require consideration in ENMs management can affect species 

diversity directly and indirectly (Gossner et al., 2016). The manipulation for ecological 

restoration of species diversity need consideration (Pywell et al., 2007; Wagner et al., 2014) as 

does the manipulation for production purposes. This is particularly pertinent where trade-offs are 

likely  (Smart et al., 2006; Simons and Weisser, 2017). Plant health (pathogen and disease risk) 

is another factor that may lead to deliberate removal of species from ecosystems to reduce 

infection or pathogen spread also, actual  loss due to mortality from infection, global change is 

worsening this (Pautasso et al., 2010). 

 

Also, global change such as habitat loss, N deposition and climate change may have long-term 

effects on species diversity that should be captured within abiotic model components but may 

already have had an effect on baseline conditions within model construction data. This needs 

consideration through wider species pool modelling to prevent shifting baseline syndrome (Soga 

and Gaston, 2018); for example referencing back to established national vegetation 

classifications (Rodwell, 1998). 

 

1.5.1.3 | Modelling with dispersal versus dark diversity 

An ecologically robust way to capture species dispersal is to consider species functional traits 

relating to dispersal e.g. Brunet et al., (2012), or to construct a dispersal dedicated model 

component as part of a model or layered set of models (Boulangeat, Gravel and Thuiller, 2012). 

However, as this requires further data for construction, other more parsimonious options are 

available although these are traded off with robustness and may move predictions away from a 
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certain realised reality. If the community is considered to be saturated and is not expected to 

gain empty niche space over the modelled time period, then the site recorded species pool may 

capture enough diversity that dispersal constraints are negligible. This is however an unlikely 

situation and unsaturated communities and the opening of niche spaces are thought to be the 

norm (Mateo, Mokany and Guisan, 2017). A way to account for possible colonisers and capture 

the variation of species that may establish in the plot into the future is to use the local area 

species pool to determine which species to model and those with highest suitability or 

probability of occurrence predicted as those likely to establish. This is equivalent to modelling 

dark diversity, described in Pärtel et al., (2011). Dark diversity can be considered as all the 

species within a local area of a site that could grow under the environmental conditions at the 

site. Within this thesis modelling predicts potential colonising species by habitat suitability, 

observed or unobserved (but in the local pool) at baseline, forming a dark diversity pool. 

 

As land management for resource production is often based around the cultivating or planting of 

specific species (Smart et al., 2006; Bathgate et al., 2011; Simons and Weisser, 2017; 

Vanguelova et al., 2019) this can negate the need to consider dispersal and establishment in 

ENMs. This is because management deliberately seeding, or planting species may guarantee 

their presence but not their prosperity; this is where modelling suitability rather than probability 

of occurrence can give a more useful insight into vegetation community composition and 

ecosystem state. Hence in what follows, I interpret ENM outputs as estimating the suitability of a 

given configuration of abiotic conditions for a species if it could reach the patch and establish 

rather than a probability of occurrence.   
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1.5.2 | Land management and ecological niche modelling 

The previous section introduces some applied theory to modelling land management effects of 

species; this section looks at relevant approaches for data gathering monitoring AES and 

modelling approaches. Given global change and land management’s role in its perpetuation 

(Green et al., 2005; IPCC et al., 2014; Díaz et al., 2020) AES have been set up a tools to 

mitigate this and move towards sustainable land management practices (Rose, 2011; Pe’Er et 

al., 2019). While AES design is thought to be robust and monitoring regularly carried out the 

level of success is thought to be low and calls are often made to monitor and model AES 

schemes (Ormerod, 2012a, no date). This work attempts to further these efforts. 

 

As the creation of ecological models for applied use is most worthwhile when providing greater 

insight than applying ecological theory (Sinclair, White and Newell, 2010) the need for the 

integration of models becomes more desirable to explore interactions. This however leads to the 

question; how can greater insight be gained from modelling rather than the simple application of 

ecological theory?  

 

A trade-off of parsimony and model complexity arises when trying to robustly capture species at 

equilibrium with their environment; the training data often does not capture combined and 

interacting environmental factors e.g. climate change and land use/management (De Chazal 

and Rounsevell, 2009; Titeux et al., 2016). This is usually because time-series dynamic data is 

needed to quantify the random, directional, and cyclic patterns in the way species populations 

change interdependently in mixed species assemblages. The impacts of land management 

combined with global change provides additional novel impetus that can deflect these dynamics 

in ways that are potentially not readily predictable even where existing training data allows for 

dynamic interactions to be modelled (Benito Garzón, Robson and Hampe, 2019; Radchuk, 
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Kramer-Schadt and Grimm, 2019). This follows if the training data do not capture the future 

novel interactions between no-analogue configurations of driving variables. As the planet moves 

into an uncertain future this is more likely to be the rule than the exception posing major 

challenges for ecological forecasting (Chazal and Rounsevell, 2009; Mantyka‐pringle, Martin 

and Rhodes, 2012; Mantyka‐Pringle, Martin and Rhodes, 2013). Also, wide scale models 

looking at fewer or simplified national to global trends are acknowledged not to capture local 

conditions as well e.g. Purves et al. (2013). While integration of land use or management 

models with ecological niche models can be complex due to differing data types, this must be 

tackled for the sake of exploring interactions that will otherwise be neglected (Mantyka‐pringle, 

Martin and Rhodes, 2012; Mantyka‐Pringle, Martin and Rhodes, 2013; Titeux et al., 2016). 

 

While models applied to specific ecosystems and management have been built and utilised e.g. 

the Hurley Pasture Model (Johnson and Thornley, 1985), when they are applied outside of the 

ecosystems or management conditions in which they were built there are many performance 

issues (Arah et al., 1997; Thornley and Cannell, 1997). This is also reflective of the mechanistic 

modelling issues discussed in 1.4.3.1. More recent research has explored layered modelling 

techniques (dynamic and correlative) to gain wider application (De Vries et al., 2010) and this 

has led to policy-relevant findings of pollution impacts for specific ecosystems management 

(Rowe et al., 2014; Rowe et al., 2016). The applicability of a modelling methodology to research 

aims in the sections below highlights the difficulties of ecological niche modelling and 

forecasting land management effects. 

 

In the context of determining AES success, multiple factors have to be considered for 

representation within modelling. The timeframe from a response in taxa modelled (both for 

construction data and model predictions) has to be sufficient e.g. Taylor et al. (2009) with plant 
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species and insect taxa responding to over a decade of AES grassland management. In 

addition, to capture ecosystem variation at a national scale requires many sampling sites for 

regional comparison of taxa, diversity and habitat response, to management (Socher et al., 

2013). This also requires a local level sampling that is scaled up to sufficiently capture local 

processes at national scales (Weiss et al., 2014). Another factor affecting species pools in the 

context of modelling is plant health, as pathogens (e.g. fungal and insect diseases) can remove 

species e.g. crops and trees from ecosystems (Pautasso et al., 2010); incorporating this into 

ecological niche models provides yet another complexity for construction.  

 

The multiple factors discussed above has led the approach taken here to be largely correlative 

for a parsimonious approach applicable to many species by; reducing the computational 

resource needed; ensuring data and knowledge construction inputs are already available; and 

allowing scalability from fine resolution plant and soil data to national policy relevant outputs. A 

layered modelling approach is taken here using predicted climate data to capture climate 

change plus soil and vegetation input variables are modelled or manipulated to represent 

management change and deposition (see, 1.6.6). However, this approach does propagate many 

sources of uncertainty through the modelling workflow, (see, Fig. 5.1, for a graphical 

representation); 1.6.1, shows input data use. 

 

The considerations throughout 1.5, requires a high specificity of data that is surprisingly lacking 

in ecology (Chazal and Rounsevell, 2009) but have been sourced as far as possible as 

described below. 
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1.6 | Environmental data sources for ecological modelling in Great 

Britain 

 

The environmental and ecological data requirement for constructing a robust modelling workflow 

at a national scale is significant; fortuitously the UK is renowned for its environmental data 

(Lowe et al., 2018; Henniges et al., 2022). National assessments of UK habitats have been 

conducted since the 70s (Barr et al., 2014) with climatic data available back to the 1860s  (Lowe 

et al., 2018; Met Office Hadley Centre, 2018) and some botanical records date back much 

further (Clarke, 1897). More recently, comprehensive national reports have developed a greater 

understanding of trends and specific drivers and benefits from UK ecosystems (Watson et al., 

2011; Hayhow et al., 2019). This has provided an extensive amount of data covering the UK 

environment much of which is freely available. This means construction and input data for 

ecological modelling from high resolution “on the ground” species and local environmental data 

is abundant in the UK (Rodwell, 1998; Morecroft et al., 2009; Brown et al., 2014; Lawley, 

Emmett and Robinson, 2014; Emmett et al., 2017; Tipping et al., 2017; BSBI, 2018; Lowe et al., 

2018; Alison et al., 2020; Levy et al., 2020). These all provide ideal training data for fine scale or 

multi-scale ecological models as described below. 

 

1.6.1 | Ecosystem data 

As ecosystems are complex and varied, datasets covering multiple taxa and environmental 

variables are more unusual but data and research from specific contexts are available. These 

range from dedicated national studies e.g. national grassland soil carbon stock predictions 

(Manning et al., 2015), to free national soil classification maps and associated soil quality 

indicator databases (Lawley, Emmett and Robinson, 2014). There are however, some national 
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surveys with fine resolution data across taxa and environmental variables that capture a wide 

geographic distribution that can provide suitable ecological modelling inputs (Brown et al., 2014; 

Emmett, Alexander, et al., 2016; Emmett et al., 2017). These surveys provide the abiotic 

variables and some of the biotic variables described in 1.4.1  and 1.5.1. The two national 

surveys used to provide data for this thesis are described below. 

 

1.6.1.1 | Glastir Monitoring and Evaluation Program 

The Glastir Monitoring and Evaluation Program (GMEP) provides a survey of farms, farmers, 

landscape features, water and soil (Emmett et al., 2017). GMEP is used as a baseline to inform 

the Welsh Government how well their Glastir AES (Rose, 2011) will achieve its 6 goals into the 

future: 

1. Combating climate change 

2. Improving water quality and managing water resources 

3. Improving soil quality and management 

4. Maintaining and enhancing biodiversity 

5. Managing landscapes and historic environment and improving public access to the 

countryside 

6. Woodland creation and management 

The GMEP program ran from 2012 to 2016 and the relevant inputs for constructing fine 

resolution correlative modelling of UK ecosystems cover vegetation and soils. The 

methodologies for recording and surveying these are described in the vegetation and soil field 

handbook (Smart et al., 2016), here: 

https://nora.nerc.ac.uk/id/eprint/506219/13/N506219CR.pdf. While the data utilised throughout 

this work is from GMEP a follow up program, the Environment and Rural Affairs Monitoring & 

Modelling Programme (ERAMMP) continues to track the progress towards Glastir’s goals.   

 

https://nora.nerc.ac.uk/id/eprint/506219/13/N506219CR.pdf
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1.6.1.11 | Environment and Rural Affairs Monitoring & Modelling Programme (ERAMMP) 

The ERAMMP followed on from GMEP and had the same aims set by Welsh Government. 

However, additional outputs are included: modelling scenarios for the EU exit process, and 

being a source of data to report on the state of Wales’ natural resources (Emmett, Alexander, et 

al., 2016). 

 

1.6.1.2 | Countryside Survey’s 

The Countryside Survey (CS) is a national monitoring program for the habitats of Great Britain 

that has been running since 1978 (Bunce et al., 2012). The CS monitors plants and soils with its 

methodologies providing the foundation to GMEP and ERAMMP. CS underpins a lot of the 

monitoring of the UK countryside and natural resources (Carey, Wallis, Emmett, et al., 2008) 

including the UK National Ecosystem Assessment (Watson et al., 2011). The plant and soil data 

recorded by CS has  allowed for the construction of ENMs (Smart et al., 2010; Henrys, Smart, et 

al., 2015) and ecological change models throughout this work. The plant and soil data collection 

was conducted using methodologies detailed in their respective handbooks, the soils manual 

(Emmett et al., 2008) and the vegetation manual (Maskell et al., 2008). The last full scale CS 

survey was conducted in 2007 but a rolling 5 year program is continuing under the project 

UKSCAPE (Rennie et al., 2020). 

 

1.6.2 | Botanical diversity 

The UK’s comprehensive botanical recording history  (Henniges et al., 2022) means that 

vegetation community data (Rodwell, 1998) and plant species records (Walker et al., 2010) are 

rich. When this is combined with data from GMEP and the Countryside Survey this provides a 

comprehensive set of inputs for AES monitoring and modelling as called for in Ormerod’s 

(2012a, no date) work.  
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1.6.2.1 | Botanical Society of Britain and Ireland distribution database 

The Botanical Society of Britain and Ireland (BSBI) distribution database (Db) is the repository 

for the recording, and surveillance of British and Irish flowering plants and stoneworts (vascular 

plants and charophytes); this provides data for conservation, monitoring and modelling (Walker 

et al., 2010; BSBI, 2018). Methodologies for BSBI Db recording are laid out in Walker et al. 

(2010). In this thesis it is used as the source for constructing local species pools around each 

high-resolution modelled location. 

 

1.6.2.2 | National vegetation Classification 

The British National Vegetation Classification was developed to be a common standard 

developed for plant conservation by describing plant communities (Rodwell, 1998, 2006),  This 

provides standardised community compositions that can be referenced into the future for 

conservation and research efforts.  

 

1.6.2.3 | Combining botanical and environmental datasets 

When the BSBI distribution database and British National Vegetation Classification are 

combined with the environmental data from GMEP and the Countryside Survey  it provides a 

rich data set that captures local environmental conditions as is required in local ecological niche 

modelling (Diekmann, Michaelis and Pannek, 2015). This means the datasets described (1.6.1 

and1.6.2) cover all the input requirements detailed in 1.4.1 and  1.5.1 other than abiotic climatic 

data and global change data described  in the following section 1.6.3 . 
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1.6.3 | Global change 

The global environmental issues introduced in 1.1  and 1.2.1 have their own modelling 

communities which provide comprehensive predictions (Lowe et al., 2018; Levy et al., 2020) 

from a variety of modelling techniques (often dynamic and mechanistic process-based). These 

are published both, to allow for change and trends into the future to be understood and, to 

provide data for other modelling communities. The datasets described below complete the 

modelling data requirements detailed in 1.4.1  and 1.5.1. 

 

1.6.3.1 | UKCP18 

The Met Office UKCP18 climate data projections include past observed as well as future 

predicted climatic variables that have been made available through downscaling to the 1 km 

scale (Robinson et al., 2022), these also align to the IPCC standard scenarios (Lowe et al., 

2018). The data is produced within a dedicated program to both track climatic change, predict 

climate change and provide inputs for other models.   

 

1.6.3.2 | National deposition data 

The disruption of global biogeochemical cycles is a by-product of global change that leads to the 

deposition of chemical species that  affect ecosystem process and habitats (Rockström et al., 

2009; Stevens et al., 2016; Tipping et al., 2019). Modelling concentration-based estimated 

deposition values allow for the monitoring of these potential pollutants and estimating their 

trends. This also provides data for further modelling as utilised here (Tipping et al., 2019; Levy 

et al., 2020). 
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1.6.4 | MultiMOVE 

The combination of the datasets described above has led to the creation of an ecological niche 

modelling package constructed in the R environment (R Core Team, 2019); MultiMOVE (MM) 

which has undergone several years of development (Smart et al., 2010, 2019; Henrys, Butler, et 

al., 2015). 

 

Given the national coverage of MM and its ongoing development, see Henrys et al. (Henrys, 

Butler, et al., 2015) for the latest version, it is probably the most suitable currently available 

ENM for exploring AES via the approach described here. Also, given the number of taxa within 

MM and the scale of the construction datasets covering Great Britain; to the best of my 

knowledge, there is no more comprehensive software package to use for exploring land 

management and global change effects on UK plant taxa. 

 

The more recent MM updates (Henrys, Butler, et al., 2015) have led to a weighted model 

average function to better incorporate the varying strengths of each method applied to each 

species in the  model ensemble (Table 1.1). Also within this work the link between soil variables 

and vegetation in the modelling (a layered modelling approach) has been improved on from the 

GLMs created to express the relationships for GBMOVE (Smart et al., 2010). These take the 

form of newly constructed Neural networks that outperform the GLMs and provide a more robust 

link from soil variables to the mean Ellenberg scores driving the model (see, Appendix A.3 ). 

 

1.6.5 | Long-term ecological data 

Despite the rich history of biological and environmental recording within the UK (> 200 years) 

datasets monitoring long term change in response to managed and natural processes are 

surprisingly rare when reviewing literature for this work, this has been observed by others 
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(Chazal and Rounsevell, 2009). The projects described in 1.6.1 are changing this view, 

however; but the fundamental need for data representing management change is still required 

to construct models predicting how variables will change. While chronosequences and space-

for-time differences in habitats and management can provide proxy data for soil responses to 

management over time, they are of limited applicability for disentangling the effects of multiple 

global change impacts on ecosystems (Walker et al., 2010; Damgaard, 2019). To explore 

management change and find data suitable for modelling, literature and data searches are 

necessary for management change model training. The Ecological Continuity Trust website’s 

“sites” page (https://www.ecologicalcontinuitytrust.org/sites)  was a valuable starting resource 

for finding long-term land management based ecological monitoring datasets within this work 

(Ecological Continuity Trust, 2020). The exact method for the literature reviews and models 

constructed for the land management scenarios created are described in each of analysis 

chapter. 

 

This work takes advantage of long-term ecological datasets or chronosequences to model land 

management effects on ecosystems. Synergistically utilising this with the UK national datasets 

described throughout 1.6  to provide the required inputs for ecologically modelling AES impacts 

on plants and soils successfully. 

 

https://www.ecologicalcontinuitytrust.org/sites
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Figure 1.3. Example ecological modelling workflow for predicting management change effects on plant species and 
environmental variables. Numbering details: 1. Refers to datasets capturing non-climatic environmental variables 
often abiotic but can be biotic too (e.g. vegetation height or habitat type), non-climatic global change data would be 
inputted here; 2. Botanical species data for the species pool that the ecological niche model will run, this data can be 
linked to the ecosystem data; 3. Climactic data, can local to the site within the ecosystem data or taken from 
observation or prediction datasets; 4. Utilisation of the data in 1-3 through modelling or manipulation to represent 
management (these models are constructed prior to workflow assembly); 5. Georeferencing and calibrating climatic 
data to the location modelled; 6. Utilisation of the botanical data to determine which species to modelled at location; 
7. Finalisation of inputs to the ecological niche model; 8. The compiled dataset representing the modelled scenario; 9. 
The species ecological niche model (ENM) run; 10. Compiling the management affected environmental data with the 
species ENM output data; 11. The full output dataset of the modelling workflow representing the modelled 
management scenario; 12. Reporting of the results that best inform management and policy to achieve pre-determine 
goals, the key objective of modelling land management; 13. Reporting of results for novel findings or methodologies 
for academic literature. Boxes 1-3 are within a blue dashed box as the exact formats and data types will have been 
determined at the modelling workflow construction stage (see, section 1.4, Fig.1.1). 
 

1.6.6 | Modelling workflow 

Furthering the development of a model construction workflow (Fig. 1.2) utilising the data input 

described in the previous sections (see, 1.6.1-5); Fig. 1.3 demonstrates a conceptual approach 

to modelling land management effects on species and environmental variables. This is a 

representation of the overarching modelling approach used throughout this thesis. The Fig.1.3 
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boxes are numbered corresponding to the different dataset described in 1.6, the numbering 

being: 

1. Ecosystem data: environmental survey data such as GMEP (see, 1.6.1.1) and CS (see, 

1.6.1.2 ). 

2. Botanical data: BSBI (1.6.2.1) and the plant species date from species GMEP (see, 

1.6.1.1 ) and CS (see, 1.6.1.2). 

3. Climatic data: while this can be observed locally through data loggers it typically refers 

to predicted data, UKCP18 here (see, 1.6.3.1).  

4. Management modelling: Constructing management driven models of environmental 

inputs from ecological data (see, 1.6.5), these are then used to predict changes in Fig. 
1.3, 1. Manipulation of data e.g. canopy height, can also be conducted to represent a 

habitat transition e.g. grassland to forest. Non-climatic global change data can also be 

incorporated into the workflow here, such as deposition (see, 1.6.3.2). 

5. Georeferencing: A data handling process to locate the climatic data (Fig. 1.3, 3) with 

the sites in Fig. 1.3, 1. 

6. Species pool: Using species record to create a species pool for modelling appropriate 

for the locations from Fig. 1.3, 1. 

7. Calibration & complication: Compiling the input datasets and ensuring they are fit for 

the ENM run e.g. MultiMOVE (Henrys, et al., 2015) requires soil variables to be 

converted to Ellenberg scores (Ellenberg, Dull and Weber, 1992; Hill, Preston and Roy, 

2004). 

8. Input data: A compiled dataset representing the management scenario to be modelled 

in the ENM Fig. 1.3, 9. 

9. ENM: The central ecological niche model, MultiMOVE (Smart et al., 2010; Henrys, et al., 

2015) being the established model utilised in this work. 

10. Data compilation: Combining and compiling the outputs of Fig. 1.3, 4&9.  
11. Workflow output: The full modelled management scenario dataset from. 
12. Dataset utilisation, management and policy: The relevant data that has been 

requested or can be used as evidence for calls (Ormerod, 2012a, no date; Emmett, 

Alexander, et al., 2016; Oatway et al., 2018) for better environmental monitoring of AES 

and providing data for evidence based policy. 

13. Publication of novel outcomes: The dataset produced by or the methodology used 

within the workflow that represents novel insight for publication in academic journals. 
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Separated from Fig. 1.3, 12, as the data utilised there is often only purposed for 

reporting of current state or predicting future states of the environment. 
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1.7 | Thesis brief and research objectives 

 

The premise that AES achieve their management goals and benefit biodiversity and landscape 

features, and improve the quality of water and soil (Rose et al., 2016) remains controversial, 

with success thought to be constrained by factors such as target taxa, their availability in local 

species pools and legacy effects of previous management, including residual soil fertility  (Kleijn 

and Sutherland, 2003; Critchley, Burke and Stevens, 2004; Norton, Henrys and Crowe, 2014). 

Using plants and soils as indicators and metrics to determine the impacts of AES, and if they 

achieve their goals into the future under global change, forms the basis of this thesis. The 

objective is to use modelling to provide new evidence-based insights that help guide mitigation 

of global change impacts, principally agricultural intensification. As environmental modelling is 

well established (Mouquet et al., 2015), I utilise it here as a tool to inform how current action 

may reduce or mitigate negative change and improve or maintain positive ones.  

 

The five chapters are described as follows; the first chapter introduces the concepts of 

predictive ecology and environmental modelling as useful tools to inform on sustainable land 

management and policy (this chapter). In chapter two, I use modelling to assess the impact of 

AES impact on grasslands and the timeliness of their success. The third chapter looks at tree 

planting and succession and how aligned AES interventions can contribute to biodiversity and 

national carbon storage goals. Within the fourth chapter, I look at the effects of nitrogen 

enrichment on grasslands (deposition and fertiliser use), and how indicators and metrics 

focused on this can or cannot be used to support assessment of AES success. In the final and 

fifth chapter, I synthesise the findings to summarise what level of change at what timescale can 

be expected of AES and how this knowledge can be tied into current development and 

validation of future AES. 
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1.7.1 | Research objectives 

Three overarching research questions have been formulated to guide a model-based 

exploration of AES impacts in the presence of global change (climate change and nitrogen 

deposition). These represent an attempt to provide answers to calls (see, 1.1.1 &1.5.2 ) for 

more comprehensive monitoring and modelling of AES (Rose, 2011; Ormerod, 2012a, no date; 

Alexander, et al., 2016; Emmett et al., 2017; Oatway et al., 2018). 

Thesis research questions: 

1. Will target plant communities successfully reassemble toward desirable compositions or 

reference habitats in response to agri-environment scheme prescribed management? 

2. How long will reassembly take within modelled habitats? 

3. How do soil conditions and species groups related to ecosystem services and functions 

change in response to prescribed agri-environment scheme management? 

The following section introduces the data and model-based exploration of AES laying out a 

workflow. 
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2 | Abstract 

1. Agri-environment schemes (AES) incentivise land-management practices aimed at 

mitigating environmental impacts. However, their effectiveness depends on the duration 

and type of management. We explored the potential for grassland AES options in Wales 

(UK) to achieve expected impacts on plant diversity and soil condition.  

2. We modelled the response of plants and soils to AES options over a 13-year time interval. 

We applied scenarios of change in soil conditions based on three grassland management 

types, to high resolution baseline soil and vegetation data collected in grasslands across 

Wales, UK. We also applied scenarios of climate change to determine the extent to which 

this might modify the impact of AES intervention on plant species compositional turnover. 

3. Empirical models of soil response to extensification were constructed from published 

experimental data and used to drive change in soil inputs to a small ensemble of ecological 

niche models for British plants. These models were applied to the species in each baseline 

plot plus a wider 10×10 km species pool, thus estimating dark diversity (species that can 

potentially colonise) at each location. Outputs were summarised by grouping species by 

the ecosystem functions and services they support and by matching projected species 

composition to the National Vegetation Classification. 

4.  Scenario modelling indicated that at least 10 years of management under grassland AES 

options was needed to drive vegetation towards desirable plant assemblages more typical 

of lower fertility habitats while promoting desirable species groups and reducing 

undesirable ones.  

5. Synthesis and applications: Management effects had a more marked effect on 

vegetation than climate variation up to 2029. Realising modelled changes in possible future 

plant assemblages is likely to require additional measures to assist plant dispersal and 

establishment. 

2.1 | Chapter introduction 

 

Since the mid-nineteen-eighties, agri-environment schemes (AES) have provided a mechanism 

whereby land-managers are paid to reduce the intensity of agricultural management and its 

negative impacts on ecosystems while restoring and maintaining biodiversity (we term this 
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extensification). However, doubt has been cast on the effectiveness of AES success in 

delivering desired outcomes (Kleijn and Sutherland, 2003; Norton, Henrys and Crowe, 2014). 

Evidence of AES success is mixed, and dependent on factors such as starting conditions, focal 

organism(s), focal habitat, desired public-good and the length and intensity of management 

duration and monitoring (Critchley, Burke and Stevens, 2004; MacDonald et al., 2019). While 

positive outcomes have been found in differing taxa and habitats  (Keenleyside et al., 2011; 

Bright et al., 2015; Dadam and Siriwardena, 2019; MacDonald et al., 2019), others have 

reported (a) low success (i.e., maintaining the status quo; (b) inconclusive effects, or (c) lack of 

sufficient monitoring (Kleijn and Sutherland, 2003; Critchley, Burke and Stevens, 2004; Davey et 

al., 2010; Mountford and Smart, 2014; Norton, Henrys and Crowe, 2014; Arnott et al., 2018; 

Staley et al., 2018). Estimating the impact of future AES remains critical if they are to help 

address climate change and the biodiversity crisis cost-effectively (Keenleyside et al., 2011; 

Rose, 2011; European Commission, 2013; Pe’Er et al., 2019). Previous evidence has shown 

that positive effects may take longer to observe than the typical length of AES monitoring 

(Maskell et al., 2014b; Norton, Henrys and Crowe, 2014). 

 

Determining AES success for plants and soils is of particular interest within the study area 

(Wales, UK) as the Welsh AES Glastir, specifies goals targeted at vegetation and soil conditions 

(Rose, 2011; Welsh Government, 2016). Recent research in UK has often focused on AES 

effects on more mobile taxonomic groups with findings ranging across positive, negative or non-

significant change (Taylor and Morecroft, 2009; Bright et al., 2015; Colhoun et al., 2017; Dadam 

and Siriwardena, 2019; MacDonald et al., 2019). This varied by taxa and habitat although more 

targeted AES interventions appear to have more positive outcomes (Bright et al., 2015; Colhoun 

et al., 2017). Plants and soils however have been less recently studied with past research 

finding mixed success even over time periods beyond standard AES agreement times 
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(Critchley, Burke and Stevens, 2004; Feehan, Gillmor and Culleton, 2005; Taylor and Morecroft, 

2009). Determining the success of AES in achieving ecological goals depends on defining 

ecological change in terms of appropriate indicators and measuring progress toward or away 

from desirable end-points (Horrocks et al., 2014). We use this approach coupled with simple 

plant species ecological niche models (ENM) to forecast impacts on plants and soils in the 

presence of climate change. We focus on grasslands and estimate impacts at fine resolution but 

at national scale across Wales, UK (Emmett et al., 2017).  

 

Temperate grasslands are a major focus for both food production and conservation of 

biodiversity, they are also ecosystems where there is a pressing need to identify management 

regimes that can optimise food production and biodiversity recovery achieving impactful and 

economically viable levels of both (Simons and Weisser, 2017). The effects of extensifying 

management in grasslands vary in detectability and magnitude from short-term; 3-5 years 

(Maskell et al., 2014b; Defra, 2015) to long-term; 10-30 years (Pywell, Webb and Putwain, 

1994; Critchley, Burke and Stevens, 2004; Smith et al., 2014) with greater levels of restoration 

achieved over longer timescales. Thus, understanding the timescale of soil and plant community 

response to management is important to manage expectations among practitioners and 

policymakers. If restoration goals are likely to take longer to achieve than typical AES 

agreements then both monitoring and management require continuity over a longer period. Over 

more distant time horizons, it becomes important to know if ecosystem management outcomes 

could be altered by climate change (IPCC, 2018; Díaz et al., 2020). Here we explore if climate 

change is likely to risk delivery of benefits from future AES. This is key because plant species 

that might be expected to thrive under extensifying management prescribed by AES could 

experience reduced habitat suitability because the local climate becomes increasingly 

unfavourable. The evidence for climate change impacts on plant species is somewhat species-
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specific, scale dependent (time and space) and mixed on whether positive or negative impacts 

are likely. Europe-wide assessment suggests that the UK will see lower (c. 10%) species 

compositional turnover than the Mediterranean zone  (Alkemade, Bakkenes and Eickhout, 

2011) up to 2100 and overall net positive impacts on habitat suitability for a representative 

range of plant species by 2050 (Wamelink et al., 2020). A UK-centred assessment also 

estimated that around 40% of vascular plants had medium to high opportunity for expansion 

reflecting the northern range edge of many species in southern Britain while montane and 

northerly distributed species would retract (Pearce-Higgins et al., 2017) . These studies assess 

distributional change in suitability at grid square scale. These patterns are inevitably the 

outcome of the success or failure of dispersal and population growth in the presence of other 

species at the scale of the vegetation patch (Huston, 1999) . Evidence for annual and longer-

term effects of weather at this scale suggest that warmer, wetter conditions favour perennial 

grass species at the expense of smaller forbs  (Silvertown et al., 1994; Dunnett et al., 1998). 

However, in a study of the drivers of vegetation change across low productivity, semi-natural 

habitats across Scotland from the 1970s to 2005, Britton et al. (2017)  detected positive climate 

impacts on patch-scale diversity of several plants species groups. If warmer but wetter future 

conditions interact with high residual fertility and filter against dispersal and establishment of 

species typical of less intensively managed grasslands then any broadly positive effects of a 

warming climate are unlikely to be realised without field and landscape-scale intervention 

(Grass, Batáry and Tscharntke, 2021). In this respect longer term outcomes are likely to be 

critically dependent on interactions with socio-economically driven changes in land-use (for 

example AES) and hence any managed changes in productivity of the habitat matrix (Di Marco 

et al., 2019; Grass, Batáry and Tscharntke, 2021). 
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We use plant species ecological niche models (ENM) to explore the separate and combined 

effects of AES interventions and climate change on the plant species composition observed in a 

large, nationally representative series of locations recorded across Wales, UK. We model dark 

diversity, which we define as all species that have the potential to colonise a site under 

environmental conditions that suit them (Pärtel, Szava-Kovats and Zobel, 2011). This comprises 

species observed in each baseline location as well as species drawn from a wider pool (within 

10 km). These additional species may end up more suited to the conditions at each modelled 

location as the environmental filter changes in response to each management scenario. 

Modelled dark diversity therefore provides an indication of ecological restoration potential 

expressed in terms of the number and identity of species known to have occurred in and around 

each location that could potentially persist given successful dispersal and establishment. We 

forecast impacts on plants and soils using the MultiMOVE R package (Smart et al., 2010; 

Henrys, Smart, et al., 2015). Inputs to the model are vegetation height, soil conditions and 

climate variables. We change the baseline values of these inputs over the relatively short 

interval, 2016 to 2029, to explore near-term impacts of AES management with and without 

predicted climate change. The result is a suite of forecasts that estimate the impact of scenarios 

of climate change and management impact on plant species composition over time.  

 

In summary, we address the following research questions: (1) Does extensified management 

increase the suitability of conditions for species that support ecosystem functions and services 

as well as promoting beneficial change in soil conditions? (2) Will climate change drive down 

modelled plant species diversity potentially offsetting of any gains linked to AES intervention? 

(3) How much does predicted plant diversity and soil condition change after 5 years of AES 

management? 
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2.2 | Materials and Methods 

 

2.2.1 | Data sources 

Soil and vegetation data were recorded from 2×2 m square quadrats (n=828) located across 

Wales as part of the Glastir Monitoring and Evaluation Programme (GMEP) survey carried out 

between 2013-2016 with each site surveyed once over that time (Fig. 2.1). See  Emmett et al. 

(2017) and Seaton et al. (2020) for detailed soil and vegetation sampling methods. Soil samples 

were taken from one corner of each 2×2 m quadrat to determine gravimetric % soil moisture; 

fresh pH in distilled water, total C % and total N%. The soil variables from each plot were 

transformed into mean abiotic (Ellenberg) indicator scores and the resulting indicators scores 

used as the inputs to the ENM (Ellenberg, Dull and Weber, 1992; Hill, Preston and Roy, 2004). 

The GMEP soil and vegetation data were collected using a random design stratified by a 

physiographic classification of all 1 km squares across Wales. We focus on three grassland 

habitat types targeted for extensification within AES; improved (IG), neutral (NG) and acid 

grassland (AG) as defined in Jackson (2000), see, Appendix A.1. 
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Figure 2.1. Map of the Glastir Monitoring and Evaluation Programme (GMEP) 1 km squares surveyed between 2013-
2016, survey squares are not shown to scale to preserve data confidentiality. 
 

2.2.2 | Species ecological niche modelling 

We used the MultiMOVE R package (Henrys et al 2015) as the source of ENMs for higher and 

lower plants in the British flora. The package has been tested and applied in a number of 

studies under a range of contrasting scenarios (De Vries et al., 2010; Henrys, Smart, et al., 

2015; Rowe et al., 2015; Emmett et al., 2017; Smart et al., 2019). In summary, it uses a small 

ensemble of five statistical methods to model the realised niche of 1262 taxa covering the most 

common and many less common plants and bryophytes (Henrys et al., 2015; Smart et al., 2019 

for full description) in the British flora. Since the majority of dominant and frequent species in the 
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flora are included, the models are able to account for plants that contribute the most to 

supporting ecosystem functions and services across British ecosystems. There are seven inputs 

to each model for each species; the three mean Ellenberg indicator values that equate with pH 

(Ellenberg R), soil moisture (F) and fertility (N), cover-weighted vegetation height and three 

climate variables. The derivation of these inputs is described below.  

 

The mean Ellenberg values represent plant species preferences along environmental axes 

(Ellenberg, Dull and Weber, 1992). Along with cover-weighted vegetation height and the three 

climate variables, these indices quantify the realised niche of each species as represented in 

the national-scale, fine resolution presence-absence data used to train the models (Smart et al 

2010; Henrys et al 2015). When used in predictive mode the habitat suitability of a species is 

projected into the ecological space defined by the model inputs at baseline and then given a 

scenario of climate and management change that drives change in the model inputs. Thus, the 

predicted position of a species can change in this suitability space as its model inputs change.  

 

2.2.3 | Deriving Ellenberg scores from soils data 

Only a subset (5%) of the training data used to build MultiMOVE had measured soil variables 

(Henrys, Smart, et al., 2015; Smart et al., 2019). Utilising mean Ellenberg scores calculated 

from the species composition of each training plot as model inputs allowed every plot to 

contribute to model building, with the proviso that the species being modelled was removed 

from calculation of each mean Ellenberg score so as to avoid circularity. In a second modelling 

step relationships were derived between these scores and the measured soil variables in the 

5% subset. This provided transfer functions that could then be used to convert measured or 

modelled soil variables into the required Ellenberg scores used as model inputs.  The transfer 

functions were generated using neural network models (see, A.3 ). This method was selected 
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because of the need to optimise accuracy based on a small set of predictors with strong prior 

ecological justification for their inclusion. Model construction was achieved using the Neural 

network R package (Venables and Ripley, 2002) and is described in Appendix A.3 . This step 

allows soil changes to be translated into MultiMOVE inputs. 

 

2.2.4 | Soil change models  

An additional suite of models were used to quantify how soil conditions would be likely to 

change in response to AES management options in grassland. A literature search was 

conducted to assemble data on how soil carbon, nitrogen and pH changed over-time with 

management applied to British grassland habitats. Studies were only included where soil 

analysis methods matched those used in GMEP and where the treatment effect was a 

reasonable match to AES options (Table 2.1). This search resulted in datasets of varying size 

for each variable. Requests were made to study authors to provide full datasets, including 

relevant open access data. See, appendix A.4 , for contributing datasets and selection 

methodology. 

 

Generalized linear mixed-effect (GLMM) models (lmer4 R package; Bates et al., 2014) were 

constructed to estimate change in each soil variable over time given each extensification 

scenario (Table 2.1). Details for the categories for each scenario are in appendix A.4. 

 

Soils across Britain are recovering gradually from historically-high sulphur deposition (Emmett et 

al., 2010; Kirk, Bellamy and Lark, 2010). We accounted for this by adding a pH annual 

increment calculated from 29 years of data for each grassland habitat type (Emmett et al., 

2010). 
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2.2.5 | Calculating cover-weighted vegetation height 

Cover-weighted canopy height is another model input variable. It expresses the successional 

stage of the vegetation (Smart et al., 2010; Henrys, Smart, et al., 2015) and is calculated as 

follows across the i = 1 to n species in each sample plot: 

Cover weighted canopy height =
∑ (vegetative canopy height ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑛𝑛
𝑖𝑖=1

� (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑛𝑛
𝑖𝑖=1

  

 

The species % cover was recorded in each plot while vegetative (non-flowering) canopy height 

data were obtained from published sources (Stace, 1997; Hill, Preston and Roy, 2004). 

  

2.2.6 | Climatic data 

Three climatic variables (minimum January & maximum July temperature, and total annual 

precipitation) are also used as inputs to MultiMOVE. Long-term annual average values of these 

variables were originally used to train the MultiMOVE models and are used as inputs in 

predictive mode (Smart et al., 2010; Henrys, Smart, et al., 2015). The UKCP18 database (Lowe 

et al., 2018; Met Office et al., 2019) was used as the source of all climate data and surveyed 

sites were geo-referenced to the 1 km resolution of the cells. The historical climate was derived 

from UK land surface observations (HadUK-Grid) interpolated from meteorological station data 

onto a uniform 1 km grid (Lowe et al., 2018; Met Office et al., 2019). The observed data was 

averaged from 1981 to 2016 to give a baseline representative of conditions in 2016. For future 

high emissions (RCP8.5), climate projected from UKCP18 was selected and downscaled to 1 

km matching the baseline resolution, this represents a worst-case scenario projected climate 

(Robinson et al., 2022). This approach interpolates variables to a finer resolution while adjusting 

for local topography (see, Appendix A.2 and Robinson et al. (2022)). 
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2.2.7 | Defining the plant species pool and modelling dark diversity 

We modelled a species pool that combined the list of species observed in each baseline GMEP 

plot with additional species recorded in the wider 10 km square grid cell in the last 20 years 

(Walker et al., 2010; BSBI, 2018). In so doing we allow the estimated species composition of 

each plot location to change because the modelling can draw on this wider pool. That is, given a 

scenario of management and climate change the plant species with the highest modelled 

habitat suitability values could all have been absent from the baseline species composition in 

each plot. This amounts to modelling dark diversity (Pärtel, Szava-Kovats and Zobel, 2011) 

change where we include species that are estimated to find conditions suitable at a location 

even when absent at baseline. This is possible to do with high spatial realism because of the 

high quality of both regional species pool data available for Britain (Walker et al., 2010; BSBI, 

2018), and the availability of high-resolution soil and plant observations at each modelled 

location (see, 2.2.1). 

 

2.2.8 | Model testing 

To build confidence in model application, we tested whether predicted habitat suitability scores 

for each baseline GMEP plot correlated with observed species' presence. We used logistic 

regression with modelled habitat suitability as the sole explanatory variable. A two-tailed 

Wilcoxon rank test was also applied to test whether species absent in the observed baseline 

data had significantly different statistical ranks to species that were present. All statistical work 

was conducted in the R environment (R Core Team, 2019). 
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2.2.9 | Summarising ENM outputs 

The predictions at baseline and in response to each scenario were summarised in two ways: 

First, by treating the output habitat suitability scores for each species in each plot as a % 

frequency, this profile of modelled outputs for each plot were matched to the British National 

Vegetation Classification (NVC) (Rodwell, 1998) using the MAVIS software (Smart, 2000). 

Second, the modelled suitability scores for species classified by particular ecosystem-service 

supporting groups were summed to give an estimated species count per group per 2×2 m 

quadrat for that functional group (Calabrese et al., 2014). The species groups used were as 

follows: nitrogen-fixers (nutrient cycling); nectar plants (pollinator food source; Baude et al., 

2016); forage grasses (livestock production), and injurious weeds (Maskell et al., 2020) of  

which increased abundance of the latter can be viewed as a disservice to agricultural  

production (Smart et al., 2017). See, Appendix A.5, Table A.5 for species lists. 

 

2.2.10 | Scenario modelling  

The modelled baseline represents the observed environmental and climatic conditions in 2016. 

We then defined scenarios of change in the model inputs (soil conditions and vegetation height) 

representing the impact of AES interventions over 5, 10 and 13 years. The interventions were all 

based on extensifying options in the Welsh Glastir AES that reduce fertiliser inputs and reduce 

stocking rate to achieve a target vegetation height. See, Appendix A.4.2, Table A.1. 

 

Three scenarios were defined – Reduced Stocking (RS), Low soil nutrient inputs (LI) and No 

inputs (NI); (Table 1.1). The soil models generated above from the experimental literature 

estimate change in soil variables given the assumed impact of the Glastir AES options (see, 

Appendix A.4.2, Table A.1). This means we can use the soil models to predict the amount of 

change in the soil variables expected over the different time periods and then use these as 
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inputs to the ENM after first converting them into mean Ellenberg scores using the neural 

network models (see, 2.2.3 ). No non-AES or “business as usual” management scenario was 

constructed as insufficient time-series nor chronosequence data could be found to represent 

this. 

 

The scenarios were created by using empirical models of management-induced change in soils 

variables to represent the impact of relevant AES options, details in Table 2.1. The process is 

fully described in Appendix A.4.  
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Table 2.1.  Scenario descriptions for the agri-environment scheme management prescriptions modelled. Two climate 
states were applied: High emissions (RCP 8.5 UKCP18 downscale modelled 1 km); and Baseline average climate 
(1981 to 2016). Full scenario details and soil variable modelling details can be found in Appendix A.4, Table A.1. 

 

 

2.3 | Results 

 

2.3.1 | Testing the model against baseline observations 

Greater modelled suitability scores were associated with a greater chance of the modelled 

species being present in a quadrat and species observed in each quadrat also had a 

significantly higher rank suitability score (P <0.001; two tailed Wilcoxon rank test, see, Appendix 

A.5.1, Fig. A.2). Note that this is a strong test since the baseline data are wholly independent of 

the model training data. Also see Smart et al. (2019) for further testing of MultiMOVE. 

 

2.3.2 | Modelling change as a function of AES intervention and climate 
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2.3.2.1| Baseline and projected climate 

The observed baseline (1981-2016 averages) and the high emissions (RCP8.5) predictions are 

notably different, although there is overlap in value ranges (Appendix A.5.2, Fig. A.6). Annual 

rainfall values are all within the range of MultiMOVE’s training data (Appendix A.5.2, Fig. A.6, 

A) however, for temperature (especially minimum Jan temperature, Appendix A.5.2, Fig. A.6, B) 

a spike in projected values in 2026 moves outside the range of the GB-wide training data 

resulting in a lack of robustness in model performance for these locations. 

 

2.3.2.2 | Projected change in soil conditions  

Across the three scenarios, the modelled direction of change in soil variables was similar with 

differences between habitat types (Appendix A.4.4, Fig. A.1). Overall, improved and neutral 

grasslands tended to increase in %C and decrease in %N but changes were small over the time 

period. Predicted change was more marked in acid grasslands where both %C and %N were 

expected to decrease. Modelled changes in pH varied the most, increasing in the low input and 

reduced stocking scenarios and decreasing under no fertiliser inputs (Appendix A.4.4, Fig. A.1).  
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Figure 2.2. Modelled dark diversity trends across years (2016, 2021, 2029) of species supporting ecological functions, disservices or services (Smart et al. 2017). 
Symbols: + = 2021 & 2029 medians above the 2016 3rd quartile; 0 = 2021 & 2029 medians not outside the 2016, 1st & 3rd quartile; - = 2021 & 2029 medians below 
the 2016, 1st quartile; (-) = 2029 median >10% lower than 2021 median; (~) returns to within baseline 1st & 3rd quartile after 2021 but by less than 10% change 
from the 2021 median; see, Appendix A.5.2,  Fig. A.4 & Fig. A.5 for boxplot trends. Scenarios represent three groups of grassland management options 
representative of agri-environmental schemes (see, Appendix A.4,  Table A.2). Scenarios were created by using baseline (2016) and predicted climate data 
(UKCP18) combined with management-driven predictions of soil change as inputs to the plant species ENMs available in MultiMOVE.  
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Figure 2.3. Plant community profiles of modelled baseline (2016) versus scenario-driven species composition (2029). Each graph shows the counts of matches by 
community type where each type featured in the top five matching coefficients when the modelled species’ suitabilities in each quadrat were compared to the 
species compositional profiles of the UK National Vegetation Classification (NVC). Modelled baseline (dark grey); scenarios, no climate change (blue) & predicted 
climate change (orange, 2029). Broad-habitat types (rows): IG = Improved grassland (348 plots); NG = Neutral grassland (292 plots); AG = Acid Grassland (188 
plots). For Low Inputs & Reduced stocking, vegetation height is as stipulated as 100 mm (Table 2.1). Summarised vegetation types were derived by grouping 
(Appendix A.5.1, “Table A.4) NVC unit matches for the baseline and modelled GMEP plots. Matches are from MAVIS processing of the habitat suitability outputs 
from ecological niche modelling.  
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2.3.3 | Modelled habitat suitability and vegetation change over 13 years 

 

2.3.3.1 | Plant species and dark diversity changes grouped by link to function and 

service 

The suitability of conditions for injurious weeds remained stable (acid grasslands) or 

declined (improved and neutral grasslands) in all scenarios seeing a more gradual decline 

up to 2029 under the Reduced Stocking scenario. Nitrogen-fixers were also largely stable 

but their suitability was predicted to increase under Low Inputs and Reduced stocking in 

improved and neutral grassland (Fig. 2.2). Stability and decline in the later part of the 

interval were projected in Acid grassland for nitrogen-fixers (Fig. 2.2). 

 

Modelled dark diversity of both nectar plants and forage grasses were predicted to increase 

in the majority of grassland and management scenario combinations but with a decline in the 

suitability of conditions for these groups of species in acid grassland under Reduced 

Stocking up to 2029. Within the acid grassland broad-habitat increases in forage grasses are 

only predicted given management for taller vegetation (>100 mm) or under predicted climate 

change (Fig. 2.2). 

 

Including predicted climate change made little overall difference to forecast changes in dark 

diversity between 2016 and 2021. However, between 2021 and 2029 predicted climate 

values were estimated to drive declines in the suitability of conditions for a number of 

functional groups including nectar plants and nitrogen-fixers in improved grasslands under 

Low and No Inputs (Fig. 2.2). 

 

Modelled changes in responses of functionally important species were consistent with the 

longer-term aim of reducing management intensity. For example, suitability increased for 

less-productive forage grasses such as Anthoxanthum odoratum (Appendix A.5.2, Fig. A.7), 
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and decreased for injurious weeds e.g. Rumex obtusifolius (Appendix A.5.2, Fig. . A.8). We 

emphasise that change in suitability of conditions may not correlate positively with short-term 

changes in abundance within sampled plots. For example, reduced nutrient inputs and 

grazing reduces the vigour of perennial grass cover providing gaps which can be rapidly 

exploited by injurious weeds even though suitability of abiotic conditions is expected to 

decline over the longer term (Maskell et al., 2020). Consistent with a reduction in 

management intensity a net increase in habitat suitability is projected for a range of common 

nectar plants (associated with lower agricultural intensity). Examples include Cirsium 

palustre and Lotus corniculatus, both showing small but consistent increases in median 

suitability score for all scenarios (Appendix A.5.2,  Fig. A.9 & Fig. A.10). Within the 

Nitrogen-fixing species group a consistent pattern was only seen in Acid grasslands (Fig. 

2.2); where across the extensification scenarios, nitrogen-fixer diversity was typically 

maintained or declined somewhat by 2029 (Appendix A.5.2, Fig. A.4, top row). 

 

2.3.3.2 | Vegetation community change 

Modelled outcomes of all three extensifying scenarios were similar with or without climate 

change (Fig. 2.3). Over the 13-year interval conditions became more suitable for semi-

improved and unimproved grassland communities at the expense of improved grassland 

communities (Fig. 2.3, losses from MG11&MG11a and gains to the semi-improved 

MG6&MG6a). Introducing climate change had minor effects on change in the distribution of 

best fitting community units. The effect of the Reduced Stocking scenario in acid grassland 

was less consistent with expectation. Here unimproved communities decreased in 

favourability with small net gains to semi-improved grassland, fen and assemblages typical 

of more disturbed conditions. 

 

By 2029 (Fig. 2.3), the greatest impact of the extensifying scenarios was predicted to be in 

the more productive neutral and improved grasslands with more occurrences of later 
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successional community types including OV21, scrub and forest units W17 and W25 and 

Bracken U20. The greater variation in vegetation types expected to arise following AES 

intervention suggests a degree of dependence on variable starting conditions. Overall, then, 

modelling suggests that a desirable shift in conditions favouring plant community types more 

typical of lower fertility could be achieved in 13 years. Only the results for 2029 are shown in 

Fig. 2.3. After 5 years (typical AES agreement length, presented in Appendix A.5.2, Fig. 

A.3) little change in plant community type was predicted. 

 

By 2029 modelled assemblages within Improved grassland, showed greatest matches with 

community units dominated by the forage grasses Lolium perenne, Anthoxanthum odoratum, 

Poa trivialis, Cynosurus cristatus and Dactylis glomerata (NVC units include MG11, 6 and 7 

communities). Modelled assemblages were also a frequently higher match with wetter, yet 

still productive grasslands, dominated by the common and abundant rush Juncus effusus 

and the common grass Agrostis stolonifera (NVC communities MG10 and 11). Modelled 

species compositions within Neutral grasslands were similar to the widespread, U4 NVC 

community, typically less fertile and with low pH and dominated by the fine-leaved grasses 

Festuca ovina and Agrostis capillaris but often joined by species more indicative of 

agricultural improvement such as Holcus lanatus and Trifolium repens. Consequently, the 

modelled impact of extensifying interventions appeared to drive a shift toward assemblages 

typical of less productive, yet lower pH conditions, resulting in increased fit to less productive 

grassland but not to the characteristically more species-rich lowland unimproved neutral 

grasslands (MG4, 5 & 8 NVC communities). This is despite the fact that species typical of 

these assemblages will have been present in most species pools and therefore potential 

contributors to the modelled dark diversity of each patch. In none of the random sample of 

grassland plots did the neutral, unimproved hay meadow assemblages feature in the top 5 

best fits. This is perhaps not surprising given the rarity of these traditionally-managed hay 

meadows in Wales (Stevens, 2010; Alison et al., 2020). The implication from our modelling 
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is that in most places, changes in soil conditions and possibly canopy height, are not 

expected to be sufficient to favour the rarest neutral grassland communities. Even where 

such conditions do arise, assisted dispersal and establishment may be required. Modelled 

changes applied to low soil pH acid grassland starting points may have been expected to 

result in increasing fits to heathland assemblages. However, we only applied a minor change 

in canopy height consistent with the interventions modelled. A taller canopy height filter will 

have increased the possibility of admitting taller heathland ericoids into the estimated dark 

diversity for each location conditional on the soil regime (cf. Medina-Roldán, Paz-Ferreiro 

and Bardgett, 2012). 

 

2.4 | Discussion 

 

The benefits of our approach are simplicity plus high realism and generality. This is because 

we modelled at fine-resolution but across a representative national sample of locations. 

Using an AES survey as a baseline for modelling also derives more value for money from 

these often costly field campaigns while also addressing repeated calls for better use of 

modelling to understand the ecological impacts of interventions (Kleijn and Sutherland, 2003; 

Lavorel et al., 2011; Horrocks et al., 2014; Staley et al., 2018; MacDonald et al., 2019). 

 

2.4.1 | Modelling the management scenarios 

We conclude that given sufficient time (>10 years), the three extensifying management 

scenarios appear able to drive desirable changes in soil carbon and nitrogen which in turn 

increase the likelihood of achieving maintenance and restoration outcomes for plant 

communities and species groups. Hence 13 years of low to no inputs, creates conditions 

more suitable for plant community types associated with lower fertility. This is consistent with 

Critchley et al. (2004) who also showed that plant community restoration could occur in a 
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range of grasslands types in Britain in parallel with reductions in soil fertility within 4 to 8 

years. 

 

In the modelled scenarios, the low fertility acid grassland showed the greatest increase in 

range of vegetation community types but not necessarily to markedly lower fertility 

assemblages (Fig. 2.3). In contrast the higher fertility improved & neutral grasslands showed 

greater shifts from their baseline with significant gains to unimproved grassland vegetation 

types. Less fertile starting conditions (acid grassland) have less productivity to lose but also 

appear to show the greatest diversification in community type in response to 13 years of 

extensifying management. These patterns are consistent with the dependence of response 

on starting conditions (Critchley et al., 1996). 

 

Our results predict the changing habitat suitability of species that arise when we filter the 

species pool by adjusting grazing regime via impact on vegetation height, nutrient inputs via 

impact on soil conditions and climate. We do not model dispersal, plant establishment and 

population processes that result in the formation of dominance hierarchies and realised 

alpha diversity (Gavish et al., 2017). Hence, when observations are compared with model 

predictions, species compositional turnover is likely to lag behind abiotic change 

(Boulangeat, Gravel and Thuiller, 2012) or not occur unless further intervention assists 

dispersal and establishment (e.g. Wagner et al., 2014). This is consistent with our treating 

patches as unsaturated (Mateo, Mokany and Guisan, 2017); meaning that our outputs 

should be interpreted as an estimation of the dark diversity of species that will itself be 

filtered as a result of local and regional processes (Pärtel, Szava-Kovats and Zobel, 2011).  

 

We adopted a simple data-driven approach to modelling soil change over a relatively short 

time interval, deliberately chosen to reflect the duration of scheme agreements (5-13 years). 

The trends we projected have indeed been observed under extensification (Marriott et al., 
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2010; Medina-Roldán, Paz-Ferreiro and Bardgett, 2012) including increasing soil C, 

decreasing fertility and small biodiversity gains (Medina-Roldán, Paz-Ferreiro and Bardgett, 

2012). This is most consistent in our modelling of neutral grassland (Appendix A.4.4, Fig. 

A.1; and Appendix A.5.2, Fig. A.4). 

 

We believe that there was sufficient consistency in the available soil observations to produce 

robust models; but only just as long-term experimental data that can be used to represent 

extensification AES options reliably appears to be rare (see, 2.2.4 and Appendix A.4). 

Despite a number of long-term experiments existing across the UK, we found a surprising 

lack of long-term datasets that could represent changes in soil variables driven by 

fundamental processes of succession, disturbance and changes in macro-nutrient 

availability in response to management. We are not alone in noticing this (Chazal & 

Rounsevell 2009). 

 

We show that all three AES scenarios were predicted to diversify the range of plant 

communities relative to baseline. However, much more limited change was estimated to 

occur over 5 years; the typical duration of Glastir scheme agreements (Appendix A.5.2, Fig. 

A.3). Our results, suggest that consumers of evidence from monitoring programs should 

expect little major change after 5 years when newly applying AES prescriptions, but 

continuing management is capable of creating conditions suitable for target communities and 

plant species. Stevens et al. (2010) also described the lower impact of such interventions 

expected in the shorter term on Welsh grasslands. Modest impacts over similarly short-

timescales have been seen elsewhere in temperate grasslands (Marriott et al., 2010; 

Medina-Roldán, Paz-Ferreiro and Bardgett, 2012; Norton, Henrys and Crowe, 2014).  
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2.4.2 | Climate change and plant diversity 

Given the short time interval across which we modelled, we applied a worst-case-scenario 

future climate projection to explore the potential strength of the modelled responses on an 

annual basis  (e.g. Morecroft et al., 2016). Inspecting the time series of annual projections 

showed considerable variation with a peak in maximum July temperature in 2026 that moved 

outside of the training space of our ENM ensemble (Lowe et al., 2018; Met Office Hadley 

Centre, 2018), see, Appendix A.5.2, Fig. A.6. This exemplifies the challenge of any model to 

reliably project species niche dynamics into novel climate space (Williams and Jackson, 

2007; Fitzpatrick and Hargrove, 2009; Veloz et al., 2012). Even though the 2021 and 2029 

projected climate variables were within the model’s training space, no-analogue climate 

configurations become much more likely in future (Mouquet et al., 2015; Alexander et al., 

2016). This challenges the impacts modelling community to achieve useful prediction by 

modelling genotypic and phenotypic adaptive capacity at the species level and thereby 

freeing ENM from the constraints imposed by the range of their historical training data 

(Benito Garzón, Robson and Hampe, 2019). This is an active research frontier and 

approaches vary in data demand (Catullo, Ferrier and Hoffmann, 2015; Benito Garzón, 

Robson and Hampe, 2019; Mokany, Bush and Ferrier, 2019). For our purposes, species’ 

adaptive capacity is arguably less relevant to our results as we consider an interval  ending 

relatively soon in 2029 and defined to explore  AES performance under realistic agreement 

lengths (Rose, 2011).  

 

We estimate that the effect of the extensifying interventions will substantially outweigh 

modelled climate change effects in the time period modelled (Fig. 2.2; Fig. 2.3; Appendix 

A.5.2, Fig. A.4). The strong effect of management relative to other drivers clearly depends 

upon the severity of the driver (Guiden et al., 2021) and future directional change in climate 

accompanied by acute effects of extreme events is increasingly likely (Dodd et al., 2021). 

Because we were interested in modelled impacts over a relatively short near-term interval 
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and interested in the potentially acute filtering effects of the weather in any one year, we 

applied annual predicted climate variables. A longer term average would have been a safe, 

but less responsive, and we believe a less informative option (cf. Morecroft et al., 2016; 

Rose et al., 2016). 

 

Based on our model investigation we estimate that under climate change predicted diversity 

change varies between functionally-important species groups. While climate impacts are 

more noticeable up to 13 years, climate change does not consistently drive diversity through 

this interval.  

 

2.4.3 | Management effect timescales 

Over the modelled time period, changes in soil variables were predicted to be modest and 

consistent with observed responses in the time series used to build the soil models (e.g. 

Defra, 2015; Pywell et al., 2007). The change over time drove shifts toward conditions more 

suitable for unimproved grassland communities by 2021, although the greater change is 

seen at 2029 (Appendix A.5.2, Fig. A.3 versus Fig. 2.3). Therefore, longer durations should 

bring about more desirable change (Horrocks et al., 2014). This is congruent with other 

research suggesting that either management must carry on for longer to see a change or 

that the interventions are increasingly impactful per unit of time under agreement (Marriott et 

al., 2010; McSherry & Ritchie, 2013; Medina-Roldán et al., 2012). This is consistent with 

other studies where extensification time periods in excess of 10 years show greater change 

(Pywell, Webb and Putwain, 1994; Kirkham et al., 2011; Hayes and Lowther, 2014; Wagner 

et al., 2014). Thus, we estimate that just 5 years of AES management intervention is likely to 

result in limited benefit to the plant species groups explored here. 
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2.5 | Conclusions 

 

The common AES prescription scenarios represented in our results are all a form of broad-

shallow extensification of management. Lighter touch AES prescriptions are more 

acceptable to grassland agricultural managers because they require fewer changes in 

practice (Arnott et al., 2018). Our modelling suggests that these interventions can produce 

positive effects if given enough time (at least 10 years). Another option would be to engage 

in greater targeting and more active management but taking much more account of local 

opportunities and constraints (Firbank, 2005). Thus from the perspective of the policy maker, 

considering funding longer and stronger interventions such as those applied in restoration 

ecology (e.g. Pywell et al., 2007; Staley et al., 2018 & Wagner et al., 2014) is worthwhile if 

major change to plant diversity, species composition and soil health is desired (Stevens, 

2010; Török et al., 2021).  

  



80 

 

2 | References 

Alexander, J. M., Diez, J. M., Hart, S. P., & Levine, J. M. (2016). When climate reshuffles 
competitors: a call for experimental macroecology. Trends in Ecology & Evolution, 
31(11), 831–841. 

Alison, J., Maskell, L. M., Smart, S. M., Feeney, C., Henrys, P. A., Botham, M., Robinson, D. 
A., & Emmett, B. A. (2020). Environment and Rural Affairs Monitoring & Modelling 
Programme (ERAMMP). ERAMMP Report 30: Analysis of National Monitoring Data 
in Wales for the State of Natural Resources Report 2020. 

Alkemade, R., Bakkenes, M., & Eickhout, B. (2011). Towards a general relationship between 
climate change and biodiversity: an example for plant species in Europe. Regional 
Environmental Change, 11(1), 143–150. 

Arnott, D., Chadwick, D., Harris, I., Koj, A., & Jones, D. (2018). What can management 
option uptake tell us about ecosystem services delivery through agri-environment 
schemes? Land Use Policy, 81, 194–208. 
https://doi.org/10.1016/j.landusepol.2018.10.039 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models 
using lme4. ArXiv Preprint ArXiv:1406.5823. 

Baude, M., Kunin, W. E., Boatman, N. D., Conyers, S., Davies, N., Gillespie, M. A. K., 
Morton, R. D., Smart, S. M., & Memmott, J. (2016). Historical nectar assessment 
reveals the fall and rise of floral resources in Britain. Nature, 530(7588), 85–88. 

Benito Garzón, M., Robson, T. M., & Hampe, A. (2019). ΔTrait SDMs: species distribution 
models that account for local adaptation and phenotypic plasticity. New Phytologist, 
222(4), 1757–1765. 

Boulangeat, I., Gravel, D., & Thuiller, W. (2012). Accounting for dispersal and biotic 
interactions to disentangle the drivers of species distributions and their abundances. 
Ecology Letters, 15(6), 584–593. 

Bright, J. A., Morris, A. J., Field, R. H., Cooke, A. I., Grice, P. V, Walker, L. K., Fern, J., & 
Peach, W. J. (2015). Higher-tier agri-environment scheme enhances breeding 
densities of some priority farmland birds in England. Agriculture, Ecosystems & 
Environment, 203, 69–79. 

Britton, A. J., Hester, A. J., Hewison, R. L., Potts, J. M., & Ross, L. C. (2017). Climate, 
pollution and grazing drive long‐term change in moorland habitats. Applied 
Vegetation Science, 20(2), 194–203. 

BSBI. (2018). Botanical Society of Britain & Ireland Distribution Database. Database. 
https://database.bsbi.org/search.php? 

Calabrese, J. M., Certain, G., Kraan, C., & Dormann, C. F. (2014). Stacking species 
distribution models and adjusting bias by linking them to macroecological models. 
Global Ecology and Biogeography, 23(1), 99–112. 

Catullo, R. A., Ferrier, S., & Hoffmann, A. A. (2015). Extending spatial modelling of climate 
change responses beyond the realized niche: estimating, and accommodating, 
physiological limits and adaptive evolution. Global Ecology and Biogeography, 
24(10), 1192–1202. 

Colhoun, K., Mawhinney, K., McLaughlin, M., Barnett, C., McDevitt, A. M., Bradbury, R. B., & 
Peach, W. (2017). Agri-environment scheme enhances breeding populations of some 
priority farmland birds in Northern Ireland. Bird Study, 64(4), 545–556. 
https://doi.org/10.1080/00063657.2017.1415296/SUPPL_FILE/TBIS_A_1415296_S
M9570.DOCX 

Critchley, C. N. R., Burke, M. J. W., & Stevens, D. P. (2004). Conservation of lowland semi-
natural grasslands in the UK: a review of botanical monitoring results from agri-
environment schemes. Biological Conservation, 115(2), 263–278. 



81 

 

Critchley, C. N. R., Smart, S. M., Poulton, S. M. C., & Myers, G. M. (1996). Monitoring the 
consequences of vegetation management in Environmentally Sensitive Areas. 
Aspects of Applied Biology (United Kingdom). 

Dadam, D., & Siriwardena, G. M. (2019). Agri-environment effects on birds in Wales: Tir 
Gofal benefited woodland and hedgerow species. Agriculture, Ecosystems & 
Environment, 284, 106587. 

Davey, C., Vickery, J., Boatman, N., Chamberlain, D., Parry, H., & Siriwardena, G. (2010). 
Regional variation in the efficacy of Entry Level Stewardship in England. Agriculture, 
Ecosystems & Environment, 139(1–2), 121–128. 

De Vries, W., Wamelink, G. W. W., Dobben, H. van, Kros, J., Reinds, G. J., Mol-Dijkstra, J. 
P., Smart, S. M., Evans, C. D., Rowe, E. C., & Belyazid, S. (2010). Use of dynamic 
soil–vegetation models to assess impacts of nitrogen deposition on plant species 
composition: an overview. Ecological Applications, 20(1), 60–79. 

Defra. (2015). Managing grassland diversity for multiple ecosystem services. 
http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Locatio
n=None&Completed=0&ProjectID=17251 

Di Marco, M., Harwood, T. D., Hoskins, A. J., Ware, C., Hill, S. L. L., & Ferrier, S. (2019). 
Projecting impacts of global climate and land‐use scenarios on plant biodiversity 
using compositional‐turnover modelling. Global Change Biology, 25(8), 2763–2778. 

Díaz, S., Settele, J., Brondízio, E., Ngo, H., Guèze, M., Agard, J., Arneth, A., Balvanera, P., 
Brauman, K., & Butchart, S. (2020). Summary for policymakers of the global 
assessment report on biodiversity and ecosystem services of the Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem Services. 

Dodd, R. J., Chadwick, D. R., Harris, I. M., Hines, A., Hollis, D., Economou, T., Gwynn‐
Jones, D., Scullion, J., Robinson, D. A., & Jones, D. L. (2021). Spatial co‐localisation 
of extreme weather events: a clear and present danger. Ecology Letters, 24(1), 60–
72. 

Dunnett, N. P., Willis, A. J., Hunt, R., & Grime, J. P. (1998). A 38‐year study of relations 
between weather and vegetation dynamics in road verges near Bibury, 
Gloucestershire. Journal of Ecology, 86(4), 610–623. 

Ellenberg, H., Dull, R., & Weber, H. E. (1992). Indicator values of plants in Central Europe. 
Göttingen, Goltze. 

Emmett, B. A., Abdalla, M., Anthony, S., Astbury, S., & August, T. (2017). Glastir Monitoring 
& Evaluation Programme. Final report. In Final Report to Welsh Government. 
https://doi.org/10.13140/RG.2.2.25314.02243 

Emmett, B., Reynolds, B., Chamberlain, P. M., Rowe, E., Spurgeon, D., Brittain, S. a, 
Frogbrook, Z., Hughes, S., Lawlor,  a J., Poskitt, J., Potter, E., Robinson, D. a, Scott, 
A., Wood, C., & Woods, C. (2010). Countryside Survey: Soils Report from 2007. 
Environment, 192. https://doi.org/10.3987/COM-08-S(W)Summary 

European Commission. (2013). Regulation (EU) No 1305/2013 of the European Parliament 
and of the Council of 17 December 2013 on support for rural development by the 
European Agricultural Fund for Rural Development (EAFRD) and repealing Council 
Regulation (EC) No 1698/2005. OJ L (Official Journal European Union L 347/487), 
347, 487–548. 

Feehan, J., Gillmor, D. A., & Culleton, N. (2005). Effects of an agri-environment scheme on 
farmland biodiversity in Ireland. Agriculture, Ecosystems & Environment, 107(2–3), 
275–286. https://doi.org/10.1016/J.AGEE.2004.10.024 

Firbank, L. G. (2005). Striking a new balance between agricultural production and 
biodiversity. Annals of Applied Biology, 146(2), 163–175. 

Fitzpatrick, M. C., & Hargrove, W. W. (2009). The projection of species distribution models 
and the problem of non-analog climate. Biodiversity and Conservation, 18(8), 2255. 



82 

 

Gavish, Y., Marsh, C. J., Kuemmerlen, M., Stoll, S., Haase, P., & Kunin, W. E. (2017). 
Accounting for biotic interactions through alpha‐diversity constraints in stacked 
species distribution models. Methods in Ecology and Evolution, 8(9), 1092–1102. 

Grass, I., Batáry, P., & Tscharntke, T. (2021). Combining land-sparing and land-sharing in 
European landscapes. In Advances in Ecological Research (Vol. 64, pp. 251–303). 
Elsevier. 

Guiden, P. W., Barber, N. A., Blackburn, R., Farrell, A., Fliginger, J., Hosler, S. C., King, R. 
B., Nelson, M., Rowland, E. G., Savage, K., Vanek, J. P., & Jones, H. P. (2021). 
Effects of management outweigh effects of plant diversity on restored animal 
communities in tallgrass prairies. Proceedings of the National Academy of Sciences, 
118(5). https://doi.org/10.1073/PNAS.2015421118 

Hayes, M. J., & Lowther, R. A. (2014). Conservation management of species-rich grasslands 
in the Elan Valley, Radnorshire. 
https://www.elanvalley.org.uk/sites/default/files/fileman/Hayes__Lowther_2014_-
_Conservation_management_of_species-
rich_grasslands_in_the_Elan_Valley_Radnorshire_-_Evidence_report_8.pdf 

Henrys, P. A., Smart, S. M., Rowe, E. C., Jarvis, S. G., Fang, Z., Evans, C. D., Emmett, B. 
A., & Butler, A. (2015). Niche models for British plants and lichens obtained using an 
ensemble approach. New Journal of Botany, 5(2), 89–100. 
https://doi.org/10.1179/2042349715Y.0000000010 

Hill, M. O., Preston, C. D., & Roy, D. B. (2004). PLANTATT-attributes of British and Irish 
plants: status, size, life history, geography and habitats. Centre for Ecology & 
Hydrology. 

Horrocks, C. A., Dungait, J. A. J., Cardenas, L. M., & Heal, K. V. (2014). Does extensification 
lead to enhanced provision of ecosystems services from soils in UK agriculture? 
Land Use Policy, 38, 123–128. 

Huston, M. A. (1999). Local processes and regional patterns: appropriate scales for 
understanding variation in the diversity of plants and animals. Oikos, 393–401. 

IPCC. (2018). Global Warming of 1.5° C: An IPCC Special Report on the Impacts of Global 
Warming of 1.5° C Above Pre-industrial Levels and Related Global Greenhouse Gas 
Emission Pathways, in the Context of Strengthening the Global Response to the 
Threat of Climate Chang. Intergovernmental Panel on Climate Change. 

Jackson, D. L. (2000). Guidance on the interpretation of the Biodiversity Broad Habitat 
Classification (terrestrial and freshwater types): Definitions and the relationship with 
other habitat classifications. Joint Nature Conservation Committee. 

Keenleyside, C., Allen, B., Hart, K., Menadue, H., Stefanova, V., Prazan, J., Herzon, I., 
Clement, T., Povellato, A., Maciejczak, M., & Boatman, N. (2011). Delivering 
environmental benefits through entry-level agri-environment schemes in the EU. 

Kirk, G. J. D., Bellamy, P. H., & Lark, R. M. (2010). Changes in soil pH across England and 
Wales in response to decreased acid deposition. Global Change Biology, 16(11), 
3111–3119. 

Kirkham, F., Dunn, R., Tallowin, J., Bhogal, A., & Chambers, B. (2011). BD1468 Appendix 2, 
Are inputs of fertilizer and lime compatible with the restoration of species diversity to 
hay meadows? Evidence from a 12 year fertilizer and lime experiment. Department 
for Environment, Food and Rural Affairs (Defra), Nobel House, 17 Smith Square, 
London SW1P 3JR helpline@defra.gsi.gov.uk. 
http://sciencesearch.defra.gov.uk/Default.aspx?Module=More&Location=None&Proje
ctID=16130 

Kleijn, D., & Sutherland, W. (2003). How Effective are European Agri-Environment Schemes 
in Conserving and Promoting Biodiversity? Journal of Applied Ecology, 40, 947–969. 
https://doi.org/10.1111/j.1365-2664.2003.00868.x 

Lavorel, S., Grigulis, K., Lamarque, P., Colace, M., Garden, D., Girel, J., Pellet, G., & 
Douzet, R. (2011). Using plant functional traits to understand the landscape 
distribution of multiple ecosystem services. Journal of Ecology, 99(1), 135–147. 



83 

 

Lowe, J. A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., 
Edwards, T., & Fosser, G. (2018). UKCP18 science overview report. Met Office 
Hadley Centre: Exeter, UK. 

MacDonald, M. A., Angell, R., Dines, T. D., Dodd, S., Haysom, K. A., Hobson, R., 
Johnstone, I. G., Matthews, V., Morris, A. J., & Parry, R. (2019). Have Welsh agri‐
environment schemes delivered for focal species? Results from a comprehensive 
monitoring programme. Journal of Applied Ecology, 56(4), 812–823. 

Marriott, C. A., Fisher, J. M., Hood, K., & Pakeman, R. J. (2010). Impacts of extensive 
grazing and abandonment on grassland soils and productivity. Agriculture, 
Ecosystems & Environment, 139(4), 476–482. 

Maskell, L. C., Henrys, P., Pescott, O. L., & Smart, S. M. (2020). Long‐term trends in the 
distribution, abundance and impact of native “injurious” weeds. Applied Vegetation 
Science. 

Maskell, L., Jarvis, S., Jones, L., Garbutt, A., & Dickie, I. (2014). Restoration of natural 
capital: review of evidence. 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachm
ent_data/file/517024/ncc-research-restoration-natural-capital-review.pdf 

Mateo, R. G., Mokany, K., & Guisan, A. (2017). Biodiversity models: What if unsaturation is 
the rule? Trends in Ecology & Evolution, 32(8), 556–566. 

McSherry, M. E., & Ritchie, M. E. (2013). Effects of grazing on grassland soil carbon: a 
global review. Global Change Biology, 19(5), 1347–1357. 

Medina-Roldán, E., Paz-Ferreiro, J., & Bardgett, R. D. (2012). Grazing exclusion affects soil 
and plant communities, but has no impact on soil carbon storage in an upland 
grassland. Agriculture, Ecosystems & Environment, 149, 118–123. 

Met Office Hadley Centre. (2018). UKCP18 Regional Projections on a 12km grid over the UK 
for 1980-2080. 
https://catalogue.ceda.ac.uk/uuid/589211abeb844070a95d061c8cc7f604 

Met Office, Hollis, D., McCarthy, M., Kendon, M., Legg, T., & Simpson, I. (2019). HadUK-
Grid Gridded Climate Observations on a 1km grid over the UK, v1.0.1.0 (1862-2018). 
https://doi.org/doi:10.5285/d134335808894b2bb249e9f222e2eca8 

Mokany, K., Bush, A., & Ferrier, S. (2019). Community assembly processes restrict the 
capacity for genetic adaptation under climate change. Ecography, 42(6), 1164–1174. 

Morecroft, M. D., Bealey, C. E., Scott, W. A., & Taylor, M. E. (2016). Interannual variability, 
stability and resilience in UK plant communities. Ecological Indicators, 68, 63–72. 

Mountford, O., & Smart, S. (2014). Assessment of the effect of Environmental Stewardship 
on improving the ecological status of grassland, moorland and heath (NECR156). 
http://publications.naturalengland.org.uk/publication/5163836952805376 

Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., Faure, D., 
Garnier, E., Gimenez, O., Huneman, P., Jabot, F., Jarne, P., Joly, D., Julliard, R., 
Kéfi, S., Kergoat, G. J., Lavorel, S., Le Gall, L., Meslin, L., … Loreau, M. (2015). 
Predictive ecology in a changing world. In M. Cadotte (Ed.), Journal of Applied 
Ecology (Vol. 52, Issue 5, pp. 1293–1310). Wiley/Blackwell (10.1111). 
https://doi.org/10.1111/1365-2664.12482 

Norton, L., Henrys, P., & Crowe, A. (2014). Assessment of the effects of Environmental 
Stewardship on landscape character (NECR158). 
http://publications.naturalengland.org.uk/publication/6030120045248512 

Pärtel, M., Szava-Kovats, R., & Zobel, M. (2011). Dark diversity: shedding light on absent 
species. Trends in Ecology & Evolution, 26(3), 124–128. 

Pe’Er, G., Zinngrebe, Y., Moreira, F., Sirami, C., Schindler, S., Müller, R., Bontzorlos, V., 
Clough, D., Bezák, P., & Bonn, A. (2019). A greener path for the EU Common 
Agricultural Policy. Science, 365(6452), 449–451. 

Pearce-Higgins, J. W., Beale, C. M., Oliver, T. H., August, T. A., Carroll, M., Massimino, D., 
Ockendon, N., Savage, J., Wheatley, C. J., & Ausden, M. A. (2017). A national-scale 



84 

 

assessment of climate change impacts on species: Assessing the balance of risks 
and opportunities for multiple taxa. Biological Conservation, 213, 124–134. 

Pywell, R. F., Bullock, J. M., Tallowin, J. B., Walker, K. J., Warman, E. A., & Masters, G. 
(2007). Enhancing diversity of species-poor grasslands: An experimental assessment 
of multiple constraints. Journal of Applied Ecology, 44(1), 81–94. 
https://doi.org/10.1111/j.1365-2664.2006.01260.x 

Pywell, R. F., Webb, N. R., & Putwain, P. D. (1994). Soil fertility and its implications for the 
restoration of heathland on farmland in southern Britain. Biological Conservation, 
70(2), 169–181. 

R Core Team. (2019). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing. https://www.r-project.org/. 

Robinson, E. L., Huntingford, C., Semeena, V. S., & Bullock, J. M. (2022). CHESS-SCAPE: 
Future projections of meteorological variables at 1 km resolution for the United 
Kingdom 1980-2080 derived from UK Climate Projections 2018. NERC EDS Centre 
for Environmental Data Analysis. 
https://doi.org/doi:10.5285/8194b416cbee482b89e0dfbe17c5786c 

Rodwell, J. S. (1998). British plant communities (Vol. 2). Cambridge University Press. 
Rose, H. (2011). An introduction to Glastir and other UK agri-environment schemes. 

https://senedd.wales/Research Documents/An introduction to Glastir and other UK 
agrienvironment schemes - Research paper-15022011-210272/11-012-English.pdf 

Rose, R., Monteith, D. T., Henrys, P., Smart, S., Wood, C., Morecroft, M., Andrews, C., 
Beaumont, D., Benham, S., & Bowmaker, V. (2016). Evidence for increases in 
vegetation species richness across UK Environmental Change Network sites linked 
to changes in air pollution and weather patterns. Ecological Indicators, 68, 52–62. 

Rowe, E. C., Wamelink, G. W. W., Smart, S. M., Butler, A., Henrys, P. A., van Dobben, H. 
F., Reinds, G. J., Evans, C. D., Kros, J., & de Vries, W. (2015). Field survey based 
models for exploring nitrogen and acidity effects on plant species diversity and 
assessing long-term critical loads. In Critical Loads and Dynamic Risk Assessments 
(pp. 297–326). Springer. 

Seaton, F. M., Barrett, G., Burden, A., Creer, S., Fitos, E., Garbutt, A., Griffiths, R. I., Henrys, 
P., Jones, D. L., & Keenan, P. (2020). Soil health cluster analysis based on national 
monitoring of soil indicators. European Journal of Soil Science. 

Silvertown, J., Dodd, M. E., McConway, K., Potts, J., & Crawley, M. (1994). Rainfall, 
biomass variation, and community composition in the Park Grass Experiment. 
Ecology, 75(8), 2430–2437. 

Simons, N., & Weisser, W. (2017). Agricultural intensification without biodiversity loss is 
possible in grassland landscapes. Nature Ecology & Evolution, 1. 
https://doi.org/10.1038/s41559-017-0227-2 

Smart, S., Andrew Scott, W., Whitaker, J., Hill, M. O., Roy, D. B., Nigel Critchley, C., Marini, 
L., Evans, C., Emmett, B. A., Rowe, E. C., Crowe, A., Le Duc, M., & Marrs, R. H. 
(2010). Empirical realised niche models for British higher and lower plants - 
Development and preliminary testing. Journal of Vegetation Science, 21(4), 643–656. 
https://doi.org/10.1111/j.1654-1103.2010.01173.x 

Smart, S. M. (2000). MAVIS: Software for Allocation of Vegetation Samples to CVS and 
NVC Classifications. CEH, Wallingford. CEH, Wallingford. 

Smart, S. M., Henrys, P. A., Norton, L. R., Wallace, H., Wood, C. M., Williams, B., & Bunce, 
R. G. H. (2017). Changes in the frequency of common plant species across linear 
features in Wales from 1990 to 2016: implications for potential delivery of ecosystem 
services. New Journal of Botany, 7(2–3), 112–124. 
https://doi.org/10.1080/20423489.2017.1408190 

Smart, S. M., Jarvis, S. G., Mizunuma, T., Herrero‐Jáuregui, C., Fang, Z., Butler, A., Alison, 
J., Wilson, M., & Marrs, R. H. (2019). Assessment of a large number of empirical 
plant species niche models by elicitation of knowledge from two national experts. 
Ecology and Evolution, 9(22), 12858–12868. 



85 

 

Smith, S. W., Vandenberghe, C., Hastings, A., Johnson, D., Pakeman, R. J., Van Der Wal, 
R., & Woodin, S. J. (2014). Optimizing carbon storage within a spatially 
heterogeneous upland grassland through sheep grazing management. Ecosystems, 
17(3), 418–429. 

Stace, C. (1997). New flora of the British Isles.. ed. 2. 
Staley, J. T., Lobley, M., McCracken, M. E., Chiswell, H., Redhead, J. W., Smart, S. M., 

Pescott, O. L., Jitlal, M., Amy, S. R., & Dean, H. J. (2018). The environmental 
effectiveness of the Higher Level Stewardship scheme; resurveying the baseline 
agreement monitoring sample to quantify change between 2009 and 2016. Full 
technical final report. 

Stevens, D. P. (2010). Grasslands of Wales. University of Wales Press. 
Taylor, M. E., & Morecroft, M. D. (2009). Effects of agri-environment schemes in a long-term 

ecological time series. Agriculture, Ecosystems & Environment, 130(1–2), 9–15. 
Török, P., Brudvig, L. A., Kollmann, J., N Price, J., & Tóthmérész, B. (2021). The present 

and future of grassland restoration. Restoration Ecology, 29, e13378. 
Veloz, S. D., Williams, J. W., Blois, J. L., He, F., Otto‐Bliesner, B., & Liu, Z. (2012). No‐

analog climates and shifting realized niches during the late quaternary: implications 
for 21st‐century predictions by species distribution models. Global Change Biology, 
18(5), 1698–1713. 

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S fourth edition. 
World. 

Wagner, M. ., Bullock, J. M. ., Hulmes, S. ., Hulmes, L. ., Peyton, J. ., Amy, S. ., Savage, J. ., 
Dos Santos Pereira, G. ., Tallowin, J. R. B. ., Dunn, R. M. ., & Pywell, R. F. (2014). 
BD1459: Techniques to enhance the establishment and persistence of poor-
performing species in grassland restoration - RP00199. 
http://publications.naturalengland.org.uk/publication/5700071847886848?category=5
13173 

Walker, K., Pearman, D., Ellis, B., McIntosh, J., & Lockton, A. (2010). Recording the British 
and Irish flora 2010-2020. BSBI, London. 

Wamelink, G. W. W., Mol-Dijkstra, J. P., Reinds, G. J., Voogd, J. C., Bonten, L. T. C., Posch, 
M., Hennekens, S. M., & De Vries, W. (2020). Prediction of plant species occurrence 
as affected by nitrogen deposition and climate change on a European scale. 
Environmental Pollution, 266, 115257. 

Welsh Government. (2016). Glastir Management Verifiable Standards for Options 1 to 46. 
https://gov.wales/glastir-management-options-1-46-verifiable-standards 

Williams, J. W., & Jackson, S. T. (2007). Novel climates, no‐analog communities, and 
ecological surprises. Frontiers in Ecology and the Environment, 5(9), 475–482. 

 
 
 

  



86 

 

Chapter three, analysis chapter two 
 

3 | Make like a tree and leave: How will tree species 

loss and climate change alter future temperate 

broadleaved forests? 

This chapter has undergone review by co-authors and been submitted to the journal of 
Forest Ecology and Management. 
 
Bede West a,b,# | Davey L. Jones b,c | Emma L. Robinson d | Aidan M. Keith a | Simon Kallow e  
| Robert H. Marrsh | Simon M. Smart a,h 
 
a UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, 
Bailrigg, Lancaster, LA1 4AP, UK 
b Environment Centre Wales, Bangor University, Bangor, Gwynedd, LL57 2UW, UK 
c SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch 
University, Murdoch, WA 6105, Australia 
d UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, 
Wallingford, Oxfordshire, OX10 8BB, UK 
e Joint Nature Conservation Committee, Monkstone House, City Road, Peterborough, PE1 
1JY, UK 
h School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK 
 
Contribution statement: 
BW and SS conceived the initial ideas, BW constructed most of the modelling workflow with 
the calibration neural networks created by SS. AK, RM, SK and ER contributed data or 
helped with data acquisition. BW created the original manuscript with subsequent editing 
and comment from all authors. 
 
  



87 

 

3 | Abstract 

Forest creation (planting or natural colonisation) has the potential to reduce biodiversity loss 

and mitigate climate change but, tree disease emergence may counteract this. Further, 

given decadal timescales required for forest establishment, climate change is increasingly 

likely to act as a filter on plant community assembly. In the temperate lowlands succession 

takes 30 to 50 years for non-forest land to establish woodland plant assemblages, while the 

timescales required for new forest to sequester carbon suggest unassisted succession will 

be too slow for net zero 2050 targets. However, if plantations can establish faster than 

succession it would be beneficial to recommend planting native species as soon as possible. 

We explore scenarios of broadleaved woodland development across Wales, UK, as a case 

study area. We use a suite of empirical Species Niche Models for British plants to estimate 

the potential species composition of forests with, and without, projected climate change. 

Additionally, we examine how tree canopy composition alters if Fraxinus excelsior is widely 

impacted by ash-dieback (Hymenoscyphus fraxineus). The results suggest soil total carbon 

and nitrogen could achieve baseline broadleaved forest values in less than 30 years. 

However only timber and woody flora species groups showed diversity scores that surpass 

baseline broadleaved forest diversity, with nectar plants and ancient woodland indicator 

species failing to reach baseline equivalents within 30 years; although complete congruence 

is unlikely given baseline forests could be hundreds of years old. Where Fraxinus excelsior 

was removed from the species pool we predicted that a scrub phase will persist or, if 

present, Acer pseudoplatanus will become the canopy dominant. The heavier shade cast by 

this species is likely to result in differences in species composition of the understory and 

ground flora diversity is likely to decrease. Reliance on unassisted succession will also 

depend critically on (a) dispersal from local source populations and (b) on establishment 

filters that could be severe in landscapes with high management intensity history. These 

findings indicate that given the UK’s fragmented habitats relying on already degraded 

successional processes would lead to poor afforestation outcomes. 
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3.1 | Chapter introduction 

 

3.1.1 | Environmental crises and tree disease 

Forest creation has potential to slow, or reverse, global biodiversity loss and climate change 

(Read et al., 2009; Di Sacco & Hardwick et al., 2020; Stafford et al., 2021). Active (planting) 

and passive (natural colonisation via succession/rewilding, e.g. Broughton et al., (2021)) 

afforestation represent two key approaches to achieve this, often described as nature-based 

solutions (Seddon et al., 2019; Helm et al., 2020; IUCN, 2020). However, climate change will 

impact forests development (Alexander et al., 2016; Wessely et al., 2017; Di Sacco A & 

Hardwick K et al., 2020), so species suitable for afforestation need careful selection (Read et 

al., 2009).  

 

Exotic diseases are likely to pose threats to afforestation through novel interactions with 

factors such as pollution and extreme weather (Kirk, Bellamy and Lark, 2010; Skovsgaard et 

al., 2017; Carroll, 2020; Dodd et al., 2021). An example is ash-dieback (Hymenoscyphus 

fraxineus (T.Kowalski) Baral, Queloz & Hosoya) which is infecting and killing European ash 

(Fraxinus excelsior L.); this has been a concern in Western-Europe for around a decade 

(Kjær et al., 2012; Pautasso et al., 2013; Baral, Queloz and Hosoya, 2014). With F. excelsior 

being the dominant in many UK woodlands (Mitchell et al., 2016) the future’s uncertain for 

these habitats. Evidence is needed urgently to guide tree-planting and rewilding given 

uncertainty in future driver interactions. This is particularly the case for the design of effective 

agri-environment schemes options, for example woodland creation and tree planting within 

the Glastir scheme in Wales  (Rose, 2011; Welsh Government, 2017); or non-governmental 

afforestation plans (for example: The Bonn Challenge; Woodland Trust free trees; Rewilding 

Britain).  

 

https://www.bonnchallenge.org/
https://www.woodlandtrust.org.uk/plant-trees/schools-and-communities/
https://www.rewildingbritain.org.uk/support-rewilding/our-campaigns-and-issues/natural-regeneration
https://www.rewildingbritain.org.uk/support-rewilding/our-campaigns-and-issues/natural-regeneration
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In temperate biomes evidence suggests it takes at least 30 years for distinctive forest plant 

communities to assemble (Falkengren-Grerup, ten Brink and Brunet, 2006; Brunet et al., 

2012); with research in Britain suggesting 30 to 50 years for at least partial woodland plant 

community assembly (Walker, Sparks and Swetnam, 2000; Harmer et al., 2001; Poulton et 

al., 2003; Ashwood et al., 2019). This duration means climate change is increasingly likely to 

act as a novel filter on species composition of the canopy and understorey potentially giving 

rise to either vacant niche space or no-analogue assemblages (Read et al., 2009; Alexander 

et al., 2016). Therefore, timely and credible assessments of effects of these novel filters are 

needed if ecologists and foresters are to answer the call for “the right trees planted in the 

right place” (Di Sacco, & Hardwick, et al., 2020). 

 

In this study we investigate the combined effects of climate change and F. excelsior loss due 

to ash-dieback on forest communities. Climate change in the context of ash-dieback (H. 

fraxineus) will mean canopy gaps emerging in previously F. excelsior dominated forests 

(Skovsgaard et al., 2017). Species that will benefit from vacated niche space are uncertain 

although likely replacements have been highlighted (Mitchell, 2014; Skovsgaard et al., 

2017). 

 

3.1.2 | Forest carbon sequestration 

Afforestation sequesters carbon in both above- (Di Sacco& Hardwick, et al., 2020) and 

below-ground carbon pools (Minasny et al., 2017; Mayer et al., 2020), whilst also being 

profitable and mitigating biodiversity loss ( Di Sacco& Hardwick, et al., 2020; Read et al., 

2009); therefore speeding up afforestation seems desirable. The UK 2050 net-zero carbon 

strategy describes how excess carbon emissions can be absorbed by natural carbon sinks 

like forests (HM Government, 2021). However, Read et al., (2009) highlighted, over 10 years 

ago, that benefits from forest establishment may take 50 to 100 years to come to full fruition; 

too slow for UK 2050 targets (HM Government, 2021). 
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Considering forest carbon (C) storage for climate change mitigation there are two key factors 

that are important to ensure net C gain in forests. The first, high organic C soils when 

planted with trees, often fail to show a net C gain, even decades after planting, and 

sometimes suffer C loss (Friggens et al., 2020; Mayer et al., 2020; Casado et al., 2022). For 

this reason, high C content soils should not be planted, ruling out habitats including C-rich 

acid grasslands and heathlands, most being upland in the study area Wales, UK (see: 

Emmett et al., 2017 & Seaton et al., 2020); see, Appendix B.1 , for Welsh broad habitat 

details. The second, directly relating to net C flux in forests is C priming, where C introduced 

into the soil under increased CO2 and higher temperatures causes greater microbial activity, 

respiration and loss of soil organic matter. This has been observed under experimental 

conditions for temperate soils (Smith et al., 2013). An increase in soil C especially in the 

upper layers (e.g. top 15 cm considered here) may not be representative of an overall 

increase in soil C sequestration, certainly if soil fertility is low (De Graff et al., 2006; Hungate 

et al., 2009). This is because labile C can prime lower layers (microbial activation) giving rise 

to C loss throughout the soil profile (Smith et al., 2013; Guenet et al., 2018). However, in the 

longer term (at least 3 years but more likely >25 years for more stable C pool gains) 

increases in the C pool provides net C sequestration; although it is only an increase in the 

labile fraction (De Graff et al., 2006; Guenet et al., 2018; Mayer et al., 2020), but this C can 

be fixed to be more recalcitrant as described in Cotrufo et al., (2013). 

 

3.1.3 | Biodiversity and carbon  

As benefits to biodiversity and C sequestration may not be achievable in the same 

ecosystem and land use area, strategies are required to optimally allocate management 

interventions, given the: ecological potential of the starting landscape, and trade-offs within 

ecosystem and land use types (Read et al., 2009; Di Sacco & Hardwick, et al., 2020; Linney 

et al., 2020).  But there are differences in definitions, forest establishment does not have a 
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consistent end point across the studies. We consider establishment by progress towards 

established (baseline) forest conditions, via modelled changes in plant communities and key 

soil variables (pH, carbon, and nitrogen) which have been highlighted as important for soil 

health in Seaton et al., (2020). The 30-50 year UK forest establishment timeframe might be 

overly long as some studies suggest shorter timescales from 20 to 30 years (Falkengren-

Grerup, Brink and Brunet, 2006; Vesterdal et al., 2008; Brunet et al., 2012; Thomaes et al., 

2012). However, there is evidence that many forest plants can establish within 15 years 

when adjacent to older forest (Brunet et al., 2012). If faster forest establishment is 

achievable this should also lead to faster acquisition of benefits. 

 

A constraint to assembly of characteristic woodland plant communities is the depletion of 

plant species pools due to the degraded nature of UK landscapes with only 13% forest 

cover, one of the lowest in Europe (Hayhow et al., 2019; Forest Research, 2020). Natural 

migration of understory forest species may occur at <3 to 12 m per year depending on 

species (Brunet et al., 2012). Progression of succession is very pertinently highlighted in the 

uplands in Wales by McGovern et al., (2013) and in England by Marrs et al. (2018) with no 

tree cover established even after 50-60 years in grazing exclusion experiments. Even when 

wider upland species diversity has been seen to increase in that time (Alday et al., 2022) it is 

clear that the way a forest is established, and the age it is allowed to reach before it is 

altered is a major factor in the carbon sequestered, its biodiversity, and therefore health 

(Brunet et al., 2012; Kröel-Dulay et al., 2015; Ashwood et al., 2019; Berdeni, Williams and 

Dowers, 2021). If plantation broadleaved forest can establish faster than successional 

timeframes (< 30 years), it appears best to recommend planting native species using 

minimum soil disturbance techniques (sensu Berdeni et al., 2021) as soon as possible to 

mitigate climate change and biodiversity loss.  

 



93 

 

Considering other key factors of importance to this study, broadleaved forests have been 

seen to sequester carbon slower than conifers (Mayer et al., 2020) but plantation coniferous 

forests tend to have lower biodiversity. Also many coniferous species are not native (Carey, 

Wallis, Chamberlain, et al., 2008), and therefore not considered for obtaining desirable 

outcomes in this study (Stafford et al., 2021). 

 

3.1.4 | Research aims 

The combined effects of climate change and disease-induced tree mortality are explored by 

modelling scenarios of soil and climate change (Fig. 3.1).  We generated habitat suitability 

scores for woodland plants across a range of habitats in Wales, UK and summed these to 

estimate dark diversity (Pärtel, Szava-Kovats and Zobel, 2011) at high resolution sample 

points. Dark diversity refers to the species within the local pool that can inhabit a patch given 

its observed or modelled conditions (Pärtel, Szava-Kovats and Zobel, 2011). This means we 

model potential colonising species into future scenarios that are observed and unobserved 

at baseline as dark diversity predictions. We applied “worst-case-scenario” (RCP 8.5) 

climate projections (Lowe et al., 2018; Met Office Hadley Centre, 2018) and model over 

longer time-periods than achieved to date (Mitchell et al., 2016). 

 

Thus, we aim to contribute evidence that will aid ecological restoration accounting for place-

based pool of possible colonists (Pärtel, Szava-Kovats and Zobel, 2011) including: ancient 

woodland indicator (AWI) species (Glaves et al., 2009); woody flora (Kallow, 2014; Trivedi 

and Kallow, 2017); timber species (Pyatt, Ray and Fletcher, 2001; Bathgate et al., 2011); 

and nectar producing species (Smart et al., 2017; Alison et al., 2021). We attempted to 

answer the following research questions: 

i. Which trees and shrubs could replace F. excelsior with and without alteration of 

climate?  
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ii. Do modelled changes in soil conditions and increasing shade from a growing tree 

canopy filter forest plant assemblages over a 30-year period approximate to 

reference baseline conditions in established broadleaved forest? 

iii. To what extent are these modelled assemblages changed in their species 

composition by projected climate change? 

 

3.2 | Methods 

 

The following sections follow the numbering in Fig. 3.1, detailed in the parentheses. All 

modelling, statistical analysis and data plotting was conducted in R statistical software 

version 4.0.3 (R Core Team, 2019). The R package MutliMOVE (Fig. 3.1, 5.0) forms the 

ecological niche modelling core of the workflow (Henrys, Butler, et al., 2015). 

 

 
Figure 3.1. Schematic representation of the modelling workflow. Numbered boxes refer to sections in main text. 
Green boxes represent a coded process; grey boxes represent model runs; white boxes are datasets; white 
boxes with dashed outlines represent input data. 
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3.2.11 | GMEP Survey data (1.0) 

Co-located soil and plant species compositional data were recorded as part of the Glastir 

Monitoring and Evaluation Program (GMEP). Within the study 732 plots surveyed once 

between 2013 and 2016 are used; detailed survey methodologies are described in Emmett 

et al. (2017) and Seaton et al. (2020). 

 

3.2.12 | Baseline soil sampling (1.1) 

A set of five soil cores (5 cm diameter x 15 cm depth) were taken from the edge of each (200 

m2) quadrat’s central 2×2 m square.  Measurements of pH in water, carbon (%), nitrogen(%) 

and gravimetric moisture content (%) from each plot define baseline model inputs and are 

the starting values that are adjusted over time to reflect the impact of tree planting for 

subsequent woodland development . 

 

3.2.13 | Soil response models and calibration (1.2) 

A suite of transfer functions were used to estimate values of vegetation indicator variables 

(mean Ellenberg values) for each quadrat given measured soil variables (Ellenberg, Dull and 

Weber, 1992). This step was necessary because the plant ecological niche models (ENM) 

were originally built using mean Ellenberg values plus vegetation height and climate as 

inputs (De Vries et al., 2010; Smart et al., 2010; Henrys, Smart, et al., 2015). Ellenberg 

values represent the position of a plant species along ecological gradients of wetness 

(Ellenberg F), fertility (Ellenberg N) and reactivity (Ellenberg R)  created by Ellenberg et al. 

(1992) and modified for Britain by Hill et al. (2004). To avoid circularity in building plant 

species niche models we excluded the focal species from the calculation of the mean 

Ellenberg scores when modelling its niche (see, Appendix A.3). 
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3.2.13.1 | Neural network calibration code (1.2.1) 

Neural networks were used to model the three Ellenberg scores using soil variables in 2.1.2 

as inputs (sensu, 2 , West et al. (no date)). Details of the creation of the Neural networks can 

be found in Appendix A.3. 

 

3.2.13.2 | Edaphic change models (1.2.2) 

Our approach to modelling change in the soil variables over time in response to planting and 

woodland development was empirical data driven as dynamic biogeochemical modelling 

would be too coarse and not applicable (see, 3.4.1 ).  Soil change under woodland 

development was modelled as follows; a literature search was conducted to find empirical 

soils data from time-series or chronosequences that measured change under afforestation 

by UK native broadleaved species. Care was taken to ensure the soil variables were 

measured in the same way as GMEP soil measurements. This process yielded nine data 

sets which were either sourced from the published literature or provided by the original 

authors (see, Appendix B.2, Table B.1.). As many datasets did not record all four soil 

variables, they were modelled separately using generalised linear mixed effect (GLME) 

models. These GLME models were based on the following covariates: starting value of the 

variable modelled, time (years of woodland development) and afforestation type. All models 

used a random effect for study or data source. Here, we assume that the modelled change is 

reasonably correlated with other soil variables whereas in reality we know they interact in 

varied ways. GLME models differed in terms of the final set of covariates included (see, 

Appendix B2.3 ). The best performing model for soil moisture change (lowest AIC, highest 

R2) consisted of forest type and starting Ellenberg wetness value, this led to a uniform 

response across modelled years. See, Appendix B.2, for GLME construction and training 

data. An annual incremental addition to soil pH was added following 2 , West et al. (no date) 

and Emmett et al. (2010) for each broad habitat type to represent a recovery from deposition 
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based acidification. This reflects the expected response to ongoing recovery from 

historically-high levels of sulphur deposition (Kirk, Bellamy and Lark, 2010). 

 

3.2.14 | Ellenberg and cover data collation (1.3) 

The soil measurements for each GMEP plot were inputted to the neutral network models 

(directly for baseline or through the GLME plantation models), these are translated into 

predicted mean Ellenberg values, which are required inputs for the MultiMOVE species 

niche models. Alongside this for the baseline cover-weighted canopy height was calculated 

using vegetation species data from 2.1 and average vegetative height (Hill, Preston and 

Roy, 2004)  as for 2, West et al. (no date). This derived variable expresses the successional 

stage of the habitat and, by proxy, the light availability at plot ground level (Depauw et al., 

2020). 

 

To represent forest growth, we incrementally increased cover-weighted canopy height 

(CWCH) by the years modelled in the workflow (Table 3.1).  To do this a literature review 

was conducted to find growth rates for F. excelsior and other broadleaves grown in and 

native to the UK. Where the papers found did not contain F. excelsior an average across the 

native broadleaved species included was taken (see the following for data: Claessens et al., 

1999; Hein, 2003; Harmer, Boswell and Robertson, 2005; Dobrowolska et al., 2011; Harmer, 

Kiewitt and Morgan, 2012). The CWCH year increments shown in Table 3.1 are created by 

taking an average height reached over the given number of years in meters from the litrature 

catergorised as CWCH values. The catergorisation of meters to CWCH was as for the 

MultiMOVE manual (Hernys et al., 2015): CWCH 5 as 1.0-3.0 m; CWCH 6 as 3.1-6.0 m; 

CWCH 7 as 6.1-15.0m; CWCH 8 as >15m. Half units were used in 2026 & 2036 as grows 

rates weren’t always sufficiently different to move between catergories but growth still had to 

be represented.. Model testing showed that this approach to filtering species by their canopy 
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height and by soil conditions is able to reproduce the observed woodland community type 

satisfactorily, given succession (see figure 11.4 in Rowe et al. (2015)).  

 

3.2.15 | Baseline vegetation (2.1) 

Baseline vegetation data was equivalent to that used in 2, West et al. (no date), species and 

their percentage cover for broad habitats: Arable and Horticulture (A&H); Improved 

Grassland (IG); Neutral Grassland (NG); and Bracken (Br). See, B.1 , for broad habitat type 

descriptions. 

 

3.2.16 | Defining the wider species pool (2.2 & 2.3) 

The Botanical Society of Britain and Ireland distribution database provided the local 10 km 

species pool  (BSBI, 2018) as defined in 2, West et al. (no date). The species pool modelled 

at each plot location comprised the unique list of plant species observed in the baseline 

quadrat (Fig. 3.1, 1.0 & 2.1 ), those recorded in other quadrats in the GMEP 1 km square 

(Fig. 3.1, 2.1) and additional species present in the wider 10 km square pool.  

 

3.2.21 | Observed and predicted climate data (3.0 & 3.1) 

Here, we used the same climate data as 2, West et al. (no date), this being observed historic 

data averaged from 1981 to 2016 as a baseline; and ‘worst case scenario’ future high 

emissions (RCP8.5), both at the 1 km cell resolution (Lowe et al., 2018; Met Office et al., 

2019; Robinson et al., 2022). The RCP8.5 1 km data source is the same as 2, West et al. 

(no date).  

 

3.2.22 | Georeferencing and variable averaging (3.2) 

Climate data were geo-referenced to each plot location via the 1 km climate data cell they 

occurred within, as for 2, West et al. (no date). 
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3.2.23 | Observed or projected climate application (3.3) 

The climate data was utilised in the three scenarios, with all modelling done for 2016 using 

baseline climate data, the planted scenarios applied baseline and projected climate so that 

results for each, across years, could be compared. 

 

3.2.31 | Model inputs (4.0) 

Lastly, the MultiMOVE model was run for all species in the pool attached to each quadrat 

location using the seven input variables (the three mean Ellenberg values; cover weighted 

canopy height; minimum January & maximum July temperature, and total annual 

precipitation). MultiMOVE then uses theses inputs to give habitat suitability scores to the 

species in each plots pool with the generated scores allowing species to be ranked. This 

ranking provides a prediction of which species will be filtered in (or out) of plots under the 

differing scenario inputs (Table 3.1). 
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Table 3.1. Details of woodland development scenarios modelled with and without Fraxinus excelsior. Scenarios are: Baseline = Modelled forests from observed environmental 
data in GMEP survey; Baseline CC = as for Baseline but with the predicted climate change data as inputs; Plantation broadleaved = Broad habitat types, Arable and 
Horticulture, Improved Grassland, Neutral grassland and Bracken with soils modelled as having been planted with broadleaved trees under a baseline climate; Plantation 
broadleaved CC = As for Plantation broadleaved but with the predicted climate change data as inputs. Baseline climate = Baseline average climate (1981 to 2016); Predicted 
climate = High emissions. AES = agri-environment scheme; Glastir option codes: WC4 = Enhanced Mixed woodland creation; WC2 = Native woodland biodiversity creation; 
611 = Trees & Shrubs transplants for planting (Woodland + Advanced scheme area); 101 = Trees and scrub establishment by planting. 
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3.2.32 | MultiMOVE (5.0) 

The MultiMOVE ENM consists of an ensemble of five modelling methods whose outputs are 

combined to produce a weighted model average habitat suitability score (Fig. 3.1, 4.0). This 

covers the realised niche of 1262 taxa within Great Britain covering the most common and 

many less common plants and bryophytes (see Henrys et al., 2015; Smart et al., 2019 for full 

description). The ENM package has been utilised by many studies under multiple scenarios 

and is subject to a process of ongoing validation and testing (West et al., no date; De Vries 

et al., 2010; Henrys, Smart, et al., 2015; Rowe et al., 2015; Emmett et al., 2017; Smart et al., 

2019). 

 

3.2.33 | Summarising model outputs (6.1) 

The outputs from Fig. 3.1, 1.3 & 5.0 were summarised by habitat type and scenario for the 

modelled interval 2016 to 2056. For comparison of soil variables modelled with the baseline 

broadleaved woodland values we used an unpaired t-test on log transformed data to achieve 

normality. This allowed determination of how modelled planted soil for a given year differs 

from observed forest soils. 

 

As for 2 , West et al. (no date) logistic regression was used to build credibility by testing 

whether species’ presence and absence in the baseline was correlated positively with the 

modelled habitat suitability scores for each plot location (see, Appendix A.5-A.5.1). 

 

3.2.34 | Habitat suitabilities and species groups (6.2) 

Habitat suitability scores were used in two ways for analysis. First, we summed suitability 

scores for specific subsets of ecosystem service-supporting species producing dark diversity 

(Fig. 3.2) estimates for each year, habitat and species group (Calabrese et al., 2014). Dark 

diversity (Pärtel, Szava-Kovats and Zobel, 2011) refers to all the species within a local area 

of a site that could grow under the environmental conditions at the site, here this includes 
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species pools in Fig. 3.1, 2.1 & 2.2; with higher habitat suitability scored species being 

ranked as those best suited. We used four species lists as follows: UK woody flora (a woody 

tissued flora list provided by the UK National Tree Seed Project  (Kallow, 2014; Trivedi and 

Kallow, 2017)); ancient woodland indicators for Wales (Glaves et al., 2009); timber species 

being a timber producing subset of the woody flora (Pyatt, Ray and Fletcher, 2001; Bathgate 

et al., 2011); and nectar producing species (Smart et al., 2017; Alison et al., 2021) – see, 

Appendix B.3.1, Table B.3. Secondly, the habitat suitability scores per plant species were 

treated as a frequency table and matched to the British National Vegetation Community 

(NVC) units (Rodwell, 1998) via the software MAVIS (Smart, 2000), using methods as for 2, 

West et al. (no date).  

 

 
Figure 3.2. Species pool, plot and spatial data nesting. The spatial nesting of the squares provides a visual as 
well as descriptive explanation of dark diversity. The survey square within C refers to the Glastir Monitoring and 
Evaluation Program 1 km squares proportionally representing land use across Wales. 
 

A key component of the workflow for considering H. fraxinus impacts is the inclusion or 

removal of F. excelsior from the model outputs. The removal of F. excelsior from the outputs 

allows for species and vegetation types ranked below F. excelsior vegetation to be identified 

as likely replacements of the species and how this may change future vegetation. 
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3.3 | Results 

 

3.3.1 | Soil variables modelled 

Outputs of the soil variables models (Fig. 3.3), show all habitats are expected to increase in 

pH given alterations applied due to expected recovery from historically high S deposition. 

Moreover, every habitat (Fig. 3.3) other than Bracken starts at higher pH than the 

broadleaved woodland reference (Fig. 3.3, A). Nitrogen and carbon in some planted broad 

habitats appears to respond with predicted change becoming congruent with (not 

significantly different from) the reference baseline broadleaved habitat by the 2040s.   

 

Planting is predicted to increase topsoil C concentrations (Fig. 3.3, A), habitats either 

exceed or reach equivalent baseline broadleaved reference values. This depends on starting 

soil C as it is an input parameter, and the change is modelled linearly. Bracken is similar to 

the baseline at the start but exceeds broadleaved woodland values by 2046. Arable, 

improved and neutral grassland start with significantly lower values at baseline but are then 

predicted to accumulate carbon becoming no different (arable) or exceeding (grasslands) the 

baseline by 2056. 

 

Little soil N% change is predicted, other than increasing in arable where values start lower 

than the broadleaved reference and end significantly higher (Fig. 3.3). Overall, the results 

predict increasing pH and C:N ratio. The higher pH starting points and predicted changes 

suggest that developing woodland plant communities will reflect appreciably higher pH than 

the average Welsh woodland (Fig. 3.3, A).  



104 

 

 
Figure 3.3. Modelled change in soil variables under tree planting per Broad Habitat (BH) type and year, for pH (A), total soil carbon percentage (B) & total soil nitrogen 
percentage (C). The year 2016 for each BH type represents the observed data (black boxes), subsequent years data were predicted by using 2016 data as inputs to 
generalised linear mixed effect models of broadleaved woodland plantation on respective soil variables (blue boxes). Asterisks (*) at Y=9 for pH; Y=40 for Carbon & Y=2 for 
Nitrogen, represent significant differences (p-value=0.05) of logged variables of the 2016 Broadleaved Woodland baseline compared to the modelled values for the Broad 
Habitat type and year below each asterisk. Where asterisks are not shown planted habitat values were not significantly different from the target Broadleaved Woodland 
baseline.  
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Figure 3.4. Species group diversity change. Symbols define how the species group’s diversity score (interquartile 
range (IQR) and median) for a given year and broad habitat type compares with the Broadleaved Woodland 
baseline median (2016) given accumulation of woodland dark diversity, either with or without climate change. 
Thus relative to the baseline, blue symbols indicate a decrease, black, no change and orange an increase. Broad 
Habitat types: BW = Broadleaved woodland (2016 baseline); A&H = Arable and horticulture; IG = Improved 
grassland; NG = Neutral grassland; Br = Bracken. The data used to create these boxplots was generated using 
an ecological niche model MultiMOVE, inputs were altered to represent baseline (1981-2016) and future climates 
using downscale UKCP18 climate data, incremental increase of cover weighted canopy height representing tree 
growth and generalised linear mixed effect models of soil variable change under broadleaved plantation. All 
diversity scores are representative of modelled dark diversity, thus the baseline score will be higher than the 
2016 observed diversity. See, Appendix B.3.2, Fig. B.7 for boxplots showing the IQRs of each species groups 
diversity scores per habitat and scenario. 
 

3.3.2 | Model validation against baseline observations 

Logistic regression showed that a greater habitat suitability score (weighted model average) 

increased the probability of the species being observed in baseline quadrats (P <0.001, see, 

Appendix A.5.1, Fig. A.2). The mean rank of species observed as present also had a 

significantly greater habitat suitability scores than the mean rank of the species not observed 

(P <0.001; two tailed Wilcoxon rank test, see, Appendix A.5.1, Fig. A.2).  

 

3.3.3 | Species groups and predicted dark diversity 

Predicted dark diversity for two groups of ecosystem service-supporting plants both showed 

deviations from the baseline broadleaved woodland across the time interval. 
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3.3.3.01 | Nectar plants and ancient woodland indicators 

When climate change is included as a filter on the plant species pool, predicted diversity of 

both groups matches the broadleaved baseline by 2050 for Neutral Grassland and Bracken 

starting points (Fig. 3.4). This also occurs for nectar plant diversity in the two agriculturally-

intensive habitats, Arable & Horticulture and Improved Grassland, but woodland specialist 

diversity still lags behind the broadleaved reference for these two habitats with climate 

change included (Fig. 3.4). Without climate change, predicted diversity shows a persistent 

lag behind the baseline reference even by 2050 for both plant groups. This applies across all 

starting habitats except Neutral Grassland where nectar plant diversity moves appreciably 

toward but does not match baseline values by 2050.   

 

Nectar-producing, plant diversity scores in broadleaved woodland drop below the baseline 

median in Fig. 3.4, from 2021 to 2046; this appears to be a reshuffling of the community 

rather than a pan-taxa climate response. This is reflected in habitat suitability scores of 

Hedera helix and Rubus fruticosus (Appendix B.3, Fig. B.4, B&C) in 2021, 2036 and 2046 

being below the 2016 baseline; and Crataegus monogyna (Appendix B.3, Fig. B.4, A) and 

Hyacinthoides non-scripta (Appendix B.3, Fig. B.3, C) rising above the baseline until 2029 

then remaining above or near the 2016 baseline until 2050. 

 

Under climate change ancient woodland indicator species (AWI) in baseline broadleaved 

woodland showed a drop in diversity, alongside a drop in all the climate variable values in 

2029 (Fig. 3.4 & Appendix B.4, Fig. B.10). This climate response is confirmed by habitat 

suitability scores of Arum maculatum, Circaea lutetiana, Hyacinthoides non-scripta and 

Oxalis acetosella all having the lowest or near lowest scores across the modelling in 2029, 

then rising from the 2040s onwards (Appendix B.3.2, Fig. B.3). However, no modelled 

planted habitat reaches the AWI median prior to 2050. 
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3.3.3.02 | Timber Species and Woody Flora 

Dark diversity scores of both groups in Fig. 3.4 are predicted to have exceeded the baseline 

reference by 2050 with and without climate change. Different levels of response were 

observed among habitats: Bracken was predicted to show the largest positive response over 

the shortest period. Increasing canopy height in this habitat results in both species groups 

dark diversity exceeding the modelled baseline by 2029 (Fig. 3.4). In broadleaved woodland 

filtered by climate change similar suitability changes occur for the predicted dominants. 

These are Acer pseudoplatanus, Fagus sylvatica, Fraxinus excelsior and Quercus Sp. all 

showing similar trends from year to year (Appendix B.3.2, Fig. B.5). 

 

Woody flora (Appendix B.3.2, Fig. B.9) showed a drop in diversity scores with F. excelsior 

removed as does the timber species scores (Appendix B.3.2, Fig. B.8). However, this is 

reduced as F. excelsior makes a smaller relative contribution to the woody flora group as it is 

larger than the timber group.  

 

For both planting scenarios, under baseline and predicted climate (Fig. 3.5), there is less 

variation in the woody flora scores (Appendix B.3.2, Fig. B.9,C&D) than the timber species 

scores ( Appendix B.3.2, Fig. B.8,C&D). However, individual species results under climate 

change in baseline broadleaved woodland shown changes in the rank order of their habitat 

suitabilities. For example Corylus avellana shows its lowest scores in 2029 & 2050 

(Appendix B.3.2, Fig. B.6); but R. fruticosus shows its highest (Appendix B.3.2,  Fig. B.4, C) 

in 2029 & 2050; indicating a reshuffling of the woody flora community. 
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Figure 3.5. Timber and woody species group diversity change. Symbols define how the species group’s diversity 
score (interquartile range (IQR) and median) for a given year and broad habitat type compares with the 
Broadleaved Woodland baseline median (2016) given accumulation of woodland dark diversity, either with or 
without climate change. Thus, relative to the baseline, blue symbols indicate a decrease, black, no change and 
orange an increase. Broad Habitat types: BW = Broadleaved woodland (2016 baseline); A&H = Arable and 
horticulture; IG = Improved grassland; NG = Neutral grassland; Br = Bracken. The data used to create these 
boxplots was generated using an ecological niche model MultiMOVE, inputs were altered to represent baseline 
(1981-2016) and future climates using downscale UKCP18 climate data, incremental increase of cover weighted 
canopy height representing tree growth and generalised linear mixed effect models of soil variable change under 
broadleaved plantation. See, Appendix B.3.2, Fig. B.8 & Fig. B.9 for boxplots showing the IQRs of each species 
groups diversity scores per habitat and scenario. 
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3.3.3.1 | Vegetation and Fraxinus excelsior modelling 

Results within Fig. 3.6 & Fig. 3.7 are a subset of data, only including sites where Fraxinus 

excelsior habitat suitability scores suggest the species is likely to be present according to 

logistic regression conducted on baseline scores (see, A.5.1). Thus, these figures 

specifically focus on ash woodland. The species results (Fig. 3.5) build confidence in the 

modelling as a plausible range of common woodland trees, shrubs and herbs are predicted 

to have the highest modelled suitabilities. Overall there is little difference in the top species’ 

identity with, or without, climate change, and also little turnover through time.  

 

The modelled results for the F. excelsior plots (Fig. 3.6) provide an estimation of suitable 

species to plot conditions representing the dark diversity pool (see more species in, 

Appendix B.3.1, Table B.2). The years included are: the baseline, 2016; 20 years from 

baseline, 2036; 30 years from baseline (research question ii), 2046; and net-zero target 

year, 2050. 
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Figure 3.6. For each habitat and year with and without climate change the top 6 species most suitably predicted 
species are shown (top 5 if Fraxinus excelsior is removed). This only includes plots where weighted model 
average score suggests F. excelsior is more likely to be present than absent, determined by logistic regression. 
The first 2016 row represents modelled habitat suitabilities in broadleaved woodlands in the baseline year 2016 
with all other years representing canopy growth and climate change scenarios. Broad Habitats: BW= 
Broadleaved woodland baseline; AH= Arable & Horticulture; IG= Improved Grassland; NG= Neutral Grassland; 
Br= Bracken; Climate change applied?: No = Baseline climate (white); Yes = predicted climate (grey). See, 
Appendix B.3.1, Table B.2 for the top 20 species. 
 

Within baseline broadleaved woodland A. pseudoplatanus is consistently predicted as the 

likely replacement for F. excelsior under climate change, as it has the highest suitability 

scores (Fig. 3.6, BW, Climate change scenarios). The vegetation results suggest little 

change in vegetation type with F. excelsior removed (Fig. 3.7). However, the predicted, 

neutral, base-rich woodlands or acid woodlands are likely to be realised as low canopy 

woodlands or scrub with the species such as Corylus avellana, Crataegus monogyna, and 

R. fruiticosus (Fig. 3.6). Scrub as a vegetation type appears more regularly with the removal 

of F. excelsior and more regularly in higher fertility habitats (Fig. 3.6). 
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Results for improved grassland (Fig. 3.6, IG) also show that Crataegus monogyna and R. 

fruticosus are consistently most suitable. Neutral grassland results in Fig. 3.6 are similar to 

the improved grassland but lack the higher scores of the high fertility species (e.g. Galium 

aparine). Neutral grasslands along with bracken habitat also show the largest number of 

vegetation types in the top vegetation groups (Appendix B.3.1, Table B.2). The standout 

feature of the bracken habitat species results is fern species (Pteridium aquilinum, 

Dryopteris dilatata, Dryopteris filix-mas) consistently occurring within the top six species 

regardless of climate. 

 
Figure 3.7. The top five woodland vegetation types for each habitat with Broadleaved Woodland 2016 baseline 
on the far left for reference, and 2050 for all other scenarios. The left-hand plot shows the predicted vegetation 
with Fraxinus excelsior (F.e.) within the species pool and the right plot without F.e., no baseline is shown in the 
right-hand plot as F.e. is present at the baseline. Woodland types were constructed via National Vegetation 
Classification units (NVC units, matched using the software MAVIS). See, Appendix B.3.1, Table B.2, for full data 
and vegetation group details. The first 2016 row represents broadleaved woodlands at baseline in 2016 with all 
other years representing canopy growth and climate change scenarios. Broad Habitat: BW= Broadleaved 
woodland baseline; AH= Arable & Horticulture; IG= Improved Grassland; NG= Neutral Grassland; Br= Bracken. 
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3.4 | Discussion 

 

We based our modelling on high-quality, high-resolution soil and vegetation data. As shown 

here, models can be usefully applied to manage expectations about the potential timescales 

of achieving conditions suitable for assembling typical understorey communities. This is 

important because the understorey contributes significantly to forest biodiversity (Brunet et 

al., 2012; Perring et al., 2020). Our novel inclusion of a measured local species pool (sensu 

2 , West et al. (no date)) allows for compositional turnover to arise as the woodland develops 

in the form of species changing rank based on their habitat suitability score. Hence by 

modelling habitat suitability of a large suite of potential colonists we can estimate dark 

diversity at each location over time (Pärtel, Szava-Kovats and Zobel, 2011). 

 

These approaches have allowed us to address the research questions within the following 

sections.  

 

3.4.1 | Soils 

The soil response to afforestation showed mixed results reflecting development from 

differing starting habitat associated soil conditions (Minasny et al., 2017; Mayer et al., 2020). 

While our approach used simple and linear empirical models, the results appear plausible 

over the timescales examined matching research into similar conditions and ecosystems 

(Poulton et al., 2003; Thomaes et al., 2012). Dynamic biogeochemical modelling would have 

required either prohibitive data gathering and parameterisation or the use of generalised 

parameters sets reducing (coarsening) realism of models (Radchuk, Kramer-Schadt and 

Grimm, 2019), and lowering sensitivity to the fine resolution of the input data (e.g. Davies et 

al., 2016). 
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The three modelled soil variables showed different trajectories. Soil pH started higher than 

baseline broadleaved woodland in all habitats except the less intensively-managed Bracken 

(Pteridium aquilinum) dominated broad habitat type (see also Seaton et al. (2020)) and then 

increased steadily reflecting  adjustment due to recovery from historically acidification from 

deposition (Emmett, Reynolds, et al., 2016), sensu 2, West et al. (no date).   

 

Nitrogen (N%) provided an almost opposite story from pH as all habitats except arable were 

within the baseline range of broadleaved woodland values Fig. 3.3, C, probably because 

arable soils lose organic matter due to continued crop harvesting with associated nutrient 

loss  (Jones et al., 2013). However, this habitat makes the greatest gains in N being 

significantly greater than baseline by 2056. The lack of significant differences (Fig. 3.3, C) in 

grassland and bracken habitats from baseline broadleaved woodland soil N is likely due to N 

being a biologically-limiting nutrient that is competed for in all habitats by biota present (De 

Graff et al., 2006; Mayer et al., 2020). However, the C:N ratio varies between habitats and 

as can be seen across Fig. 3.3 from left to right, broad habitat carbon values are predicted 

to increase across the time-period. The increasing C:N will filter for species typical of lower 

fertility than the intensively managed planted habitat’s baselines. In summary, using simple 

models applied to published evidence of the effects of woodland development we predict 

consistent and substantial increases in C:N ratio where the increase in soil C up to 2050 

outweigh increases in soil N, and pH continues to increase in line with recent observations. 

Coupled with adjustment of the shade filter by simply increasing canopy height and applying 

climate change, we then determined how these changing model inputs altered habitat 

suitability for plant species over time (research question ii.). The increase in soil C provides a 

positive message for forest utilisation to achieve 2050 goals in UK government strategy (HM 

Government, 2021). 
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While soil conditions are often discussed in the context of climate change mitigation (De 

Graff et al., 2006; Mayer et al., 2020), changing conditions also imply change in plant 

biodiversity and species composition. Moreover land-use legacy effects (e.g. higher N) can 

result in long-lasting constraints on future woodland development (Dupouey et al., 2002; 

Valtinat, Bruun and Brunet, 2008; Diedhiou et al., 2009). 

 

3.4.11 | Most habitat creation, versus most change 

A more nuanced discussion around ecosystem function and service trade-offs surrounding 

soil carbon capture versus biodiversity gains (Linney et al., 2020) is a comparison of the 

“most creation” versus the “most change” for differing environmental variables within a 

habitat. Here we use “most creation” to refer to where the starting habitat has moved closest 

to the broadleaved woodland baseline, i.e., creating habitat the most similar to it. On the 

other, hand “most change” to refer to where the greatest positive changes occur in variables. 

 

Looking at a “most change” example, A&H begins with the lowest carbon and nitrogen 

values at baseline (Fig. 3.3) and thus makes the largest gains by 2046 but predicted 

increases in plant diversity are the least of all the habitats (Fig. 3.4 & Fig. 3.5). However 

legacy effects of low carbon and high residual fertility can limit the absolute biodiversity 

change relative to other habitat types, combined with croplands often being the most 

degraded habitats (Mayer et al., 2020; Berdeni, Williams and Dowers, 2021). Such legacy 

effects can push community assembly away from desirable endpoints (Falkengren-Grerup, 

ten Brink and Brunet, 2006). 

 

In contrast, planted Bracken habitats exhibit the greatest predicted forest creation (“most 

creation”) both in terms of progression toward baseline broadleaved woodland soil 

conditions (Fig. 3.3) and predicted dark diversity of forest specialist plants (Appendix B.3.2, 

Fig. B.7, B). Here the similarities of the two broad habitats at baseline has led to forest soils 
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and ancient woodland indicator species resembling the described target broad habitat 

closely. Bracken is often thought of as a woodland species that can become dominant after 

trees are cleared, and there are often woodland species in these habitats within either relict 

understories, or seedbanks (Marrs and Watt, 2006). 

 

3.4.2 | Climate 

Climate filtering effects are noticeable in both the species results (Fig. 3.4 & Fig. 3.5) and 

vegetation results (Fig. 3.6) where differences between climate scenarios are apparent 

(research question iii.). As predicted temperatures move outside of the range of MultiMOVE 

model’s training data (2046 onwards) predictions after this period become less reliable (see, 

Appendix B.4, Fig. B.10). The range of the climate training data for MultiMOVE is large 

given that it covered the full extent of Britain from the temperate continental South-East-

England to the boreal conditions of the Scottish mountains. This emphasises the substantial 

changes in climate predicted for Wales in the next 40 years. Modelling the ecological 

impacts is an acknowledged challenge and even dynamic approaches need to estimate the 

uncertain consequences of no-analogue climate space and novel competitive interactions 

(Williams and Jackson, 2007; Mouquet et al., 2015; J. M. Alexander et al., 2016). See, 

Appendix A2.1, for further details on modelling into future climate space. 

 

3.4.3 | Plant Species 

Plantation predicted diversity scores for ecosystem function and service supporting plants all 

demonstrated deviations from the baseline broadleaved woodland diversity scores (Fig. 3.4 

& Fig. 3.5). This occurs even in the observed climate scenario where timescales would be 

expected to produce results similar to the baseline. This suggests that none of the scenarios 

of future afforestation are likely to replicate the plant assemblages typical of the baseline 

woodlands in Wales. This implies that expectations require careful management and that 
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targets based on the present or past may need to be applied loosely to future forest 

development (research question ii.). 

 

The highest diversity is within the Timber and Woody flora species groups, which is 

expected as the model workflow is deliberately set up to represent forest establishment, 

building confidence in its robustness. Comparisons within the results however highlight novel 

differences under different climates, habitats, and where Fraxinus excelsior is removed from 

the modelled output assuming H. fraxineus mortality. The baseline climate scenario shows a 

steady increase in Timber species diversity across habitats (Appendix B.3.2, Fig. B.8); with 

the residual fertility of the grassland starting habitats being the likely cause of their higher 

scores, also increasing as soil pH is predicted to recover from sulphur deposition (Fig. 3.3, 

A). The lowest scores for timber species coincide with higher temperatures in the predicted 

climate data (Appendix B.4, Fig. B.10), this is assumed to be linked to drought stress, 

already recognised as a concern for UK native timber species (Broadmeadow, Ray and 

Samuel, 2005). Possible F. excelsior loss is a large concern as Broadmeadow et al. (2005) 

suggested it might have been one of the species that would perform better under climate 

change (alongside Fagus sylvatica and Acer pseudoplatanus). 

 

For the Woody flora group with and without F. excelsior (Fig. 3.5) the planting scenario 

scores under baseline and predicted climate differ much less than for Timber species 

(Appendix B.3.2, Fig. B.9, B&D varies more than Fig. B.8 B&D). Thus, climate may have 

less of an effect on over all Woody flora species presence, but is expected to impact 

abundance or species performance (e.g. Broadmeadow et al., 2005; Hastings et al., 2014). 

The Timber species (Appendix B.3.2, Fig. B.8) and Woody flora scores results (Appendix 

B.3.2 Fig. B.9, A&B to C&D) decrease with the removal of F. excelsior, this change is 

notable in the vegetation type results (Fig. 3.7) as the lower canopy or scrubby woody 

species are modelled as a likely replacement of F. excelsior. These results suggests Woody 
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flora species will be present and prevalent in all future scenarios with climate change and 

recent empirical work across Europe suggests increases in non-tree woody flora due to 

changing climate (Perring et al., 2020).  

 

Modelled diversity for Nectar plants and AWI species (Fig. 3.4) remain below the baseline 

broadleaved woodland reference in all habitats and throughout the modelled time interval. 

The implication is that despite gradual change in soil conditions resulting from forest 

development, legacy differences in soils persist and inhibit change toward conditions more 

typical of baseline forest (Valtinat, Bruun and Brunet, 2008). For the modelled dark diversity 

vegetation to become realised into the future dispersal establishment process would need to 

facilitate this; for example dispersal from local patches holding species (Brunet et al., 2012) 

or planting (Ashwood et al., 2019). An improvement on the ENM here would be to model 

dispersal and establishment to give greater insight into potential future communities 

(Boulangeat, Gravel and Thuiller, 2012). 

 

The few instances across Fig. 3.4 where scores are above baseline scores are later years in 

the scenarios with predicted climate. This is especially notable in the Nectar plants where 

broadleaved woodland modelled under a predicted climate shows higher scores in 2050 

than baseline. This result suggests that Nectar plants are favoured by predicted climates in 

2050 and this is notable in individual species results: Rubus fruticosus (Appendix B.3, Fig. 

B.4, C); Hyacinthoides non-scripta (Appendix B.3, Fig. B.3, C), & Crataegus monogyna 

(Appendix B.3, Fig. B.4, A). However, this is not consistent across the species group results 

as these decline in some years suggesting species shuffle as the climate changes. 

 

Within Fig. 3.4, no modelled planted habitat reaches the AWI median prior to 2050, so even 

after three-decades predictions don’t reach baseline diversity scores even where climate 

change appears to increase estimated diversity. However, under planted scenarios less 
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intensively management starting habitats, Neutral grassland and Bracken (Fig. 3.4 and 

Appendix B.3.2, Fig. B.7, B) show the most positive response in later years. This applies 

especially to AWI scores under climate change. As above (3.4.11) habitats with starting 

conditions closest to the desired end habitat provide cases of “most benefit”. While this is a 

negative answer to research question ii., the “most benefit” & “most change” response 

narrative suggests some more positive prospects for afforestation aims. 

 

Results for individual species highlight the likely importance of differences in legacy fertility in 

constraining community assembly (Valtinat, Bruun and Brunet, 2008; Mayer et al., 2020). 

The main example being improved grassland starting broad habitats (Fig. 3.6, IG); and 

reflecting the habitats residual fertility consistently across years Urtica dioica is followed by 

Galium aparine in the IG results. 

 

High residual fertility on ex-agricultural land highlights the likely need for planting of young 

trees and shrubs. Rather than relying on dispersal and establishment as planting will often 

be needed to overcome strong space pre-emption by perennial grasses and Rubus spp. 

quickly dominating when agricultural management ceases.  

 

3.4.3.1 | Fraxinus excelsior loss and Vegetation 

The results emphasise the importance of F. excelsior in UK forests and the impact of its loss 

is of great concern (Mitchell et al., 2016; Skovsgaard et al., 2017; Carroll, 2020). With young 

F. excelsior trees likely to go as soon as they grow due to ash-dieback, H. fraxineus 

(Skovsgaard et al., 2017), the species that are predicted as the most likely replacements 

(research question i.) into the future are: Rubus fruticosus, Crataegus monogyna, Corylus 

avellana, H. helix, Urtica dioica, & Galium aparine (Fig. 3.6). 
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Consistent with established research on H. fraxineus (Mitchell et al., 2016) Fig. 3.6 &  Fig. 

3.7 suggest that within the next 20-30 years F. excelsior dominant forest is likely to remain in 

the same community type or see an increase in acid woodland (W10 communities) by 2050. 

This is likely to be realised as low canopy woodland or scrub given the species predicted as 

replacers (Rubus fruticosus, Crataegus monogyna, Corylus avellana, H. helix, Urtica dioica, 

& Galium aparine) and the occurrence of scrub in the vegetation type results (Fig. 3.7). 

Mitchell et al. (2016) also determined that W10 and W8 sub-communities were the closest 

ecological analogue to British F. excelsior-dominated forest (see, Appendix B.3.1, Table 

B.2). We add to Mitchell et al. (2016) by modelling the potential composition of newly planted 

secondary forest in a range of starting points under a scenario of F. excelsior loss and 

climate change (research question iii.).  

 

3.4.3.1.1 Acer pseudoplatanus replacement of Fraxinius excelsior 

While Acer pseudoplatanus is often an expected beneficiary of H. fraxineus (Mitchell et 

al., 2016; Skovsgaard et al., 2017) it is infrequent in the top 6 species predictions (Fig. 

3.7). Exceptions to this and the scrub or low canopy woodland predicted above are 

(within or near) broadleaved woodland habitat where Acer pseudoplatanus features 

more prominently in the top three positions (Fig. 3.7). Alternatively, if planted by land-

managers it is likely to establish well in grasslands as it can be seen in the top 10 

species in the improved and neutral grasslands results (Appendix B.3.1, Table B.2). 

Thus, while A. pseudoplatanus is not consistently the top ranked replacement species 

here it is still the likely high canopy replacement amongst the woody flora for F. excelsior 

(research question i.) as all the other species in the top 20 (Appendix B.3.1, Table B.2) 

are herbaceous, graminoid or scrubby. However, Acer pseudoplatanus casts a heavier 

shade than F. excelsior thus understory ground flora diversity may reduce from current 

levels observed in woodlands (Mitchell et al., 2016). This is likely to take a decadal time-

frame to be observed in woodland communities given successional timescales. 
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The removal of F. excelsior from the species pool is a simplification of reality as the trees 

would be more likely to decline over time with H. fraxineus infection (Pautasso et al., 2013; 

Mitchell et al., 2016; Skovsgaard et al., 2017). However, we have not applied an 

incremented reduction in F. excelsior. This is due to no data being found on H. fraxineus 

effects on F. excelsior abundance with sufficient robustness to estimate change, despite our 

searching. This is an area that may merit further research to measure dieback impacts at 

largescale and long-term. Therefore, removal of F. excelsior from the plantation scenarios 

seems to be an at least adequate representation of possible future realities. 

 

Also, Mitchell et al. (2016) suggests management response to ash-dieback will be a 

determining factor in vegetation community realisation as this is effected by the disturbance 

regime (felling, grazing etc.). Our modelling of dark diversity suggests that planting a range 

of tree species suited to F. excelsior sites will allow for rapid re-establishment of high canopy 

forests rather than scrub. This, as ever, suggests that higher biodiversity (more high canopy 

tree species) gives ecosystems more resilience to change.  

 

3.4.4 | Management and Policy 

To pursue forest establishment for biodiversity loss mitigation and net zero 2050 goals with 

climate change and tree disease being influential factors we suggest the following points for 

management and policy decisions. The literature 30-50 year time range for successional 

forest establishment that abandonment / no intervention rewilding takes, in comparison with 

the 20-40 years taken for some variables modelled here to reach broadleaved woodland 

baseline values, does suggest that in the right context for certain outcomes planting can be a 

more rapid method of afforestation. To give UK forest ecosystems the best opportunities to 

establish we make five recommendations for management and policy: 
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1. Species selection in its simplest form can be done by local observation (10 km, as for 

the dark diversity method here) of desirable endpoint forest habitats via tree species 

matching, but would likely be best done by consideration of site environmental 

conditions or species selection tools e.g. timber species suggested via the Forestry 

Commission’s ESC tool, URL: http://www.forestdss.org.uk/geoforestdss/ (Pyatt, Ray 

and Fletcher, 2001). 

2. Planting method must be of minimum soil disturbance to reduce and possible carbon 

loss e.g. by spade and hand as suggested in Berdeni et al. (2021), this could also 

reduce negative carbon priming effects (De Graff et al., 2006) especially if this 

practice happens at scale. 

3. Planting adjacent to or in close proximity to established woodland (especially ancient 

or long term) as older sites are far more likely to have desirable species (as seen in 

the Broadleaved woodland and Bracken habitat results) that will colonise as 

plantations establish to forests (Brunet, De Frenne, Holmström, & Mayr, 2012; Di 

Sacco & Hardwick et al., 2020; Thomaes et al., 2012). 

4. Consideration of “most creation” versus “most change” (see the results discussed in, 

3.4.11) for example planting up a neutral grassland site adjacent to an ancient 

woodland may provide the “most creation” but greater biodiversity and soil condition 

recovery (“most change”) may come from planting an adjacent arable field. 

5. Lastly policy and legislative support (including forest planning support) especially as 

it is unreasonable to expect land-managers to hold the necessary ecological 

knowledge to make decisions that are, economically viable for them as well as 

mitigating biodiversity loss and climate change. While policy documentation  to some 

extend does acknowledge this (Davies, 2016; Defra, 2018), legislation or supportive 

schemes directly applied to ecosystem management (rather than land management) 

is rare. However, the new UK Environmental Land Stewardship scheme (ELMs) 

presents an opportunity to change this (Defra, 2020a). 

 

3.5 | Conclusions and implications 

 

The plant species and vegetation modelling suggests that woodland with F. excelsior absent 

is most likely to establish as scrub or low canopy woodland within the next 30 years. 

Alternatively, where it is present in the local area within established woodlands, A. 

http://www.forestdss.org.uk/geoforestdss/
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pseudoplatanus will become the main replacement. While F. excelsior dominated vegetation 

is likely to shift substantially, new species compositions do not appear likely to emerge, even 

under predicted climate up to 2050. Likely new replacement dominants (other than A. 

pseudoplatanus) being Crataegus monogyna, Corylus avellana, Rubus fruticosus and in 

some circumstances Pteridium aquilinum and Dryopteris Spp. 

 

Plantation scenarios do not show consistent convergence with the baseline across all the 

species and soil variables. Thus, we cannot say definitively that plantation can establish to 

equivalent baseline broadleaved woodland conditions even after 30 years. However, as the 

baseline woodlands are likely to be hundreds-of-years-old (The Woodland Trust, 2020) 

complete congruence would be unlikely, particularly for Ancient Woodland Indicators. Our 

results do show some convergence with broadleaved woodland within 20 years for soils and 

some habitats (Bracken, Improved & Neutral grassland’s) show overlapping herbaceous 

species group diversity scores in their upper ranges from the late 2020s or 2030s onwards.  

 

As results suggest plantations could show establishment within successional time frames for 

certain contexts, management to achieve this has to be applied correctly at a “by site level” 

from the right starting conditions (see, 3.4.4 ). This is especially pertinent when modelling 

dark diversity (species that could potentially colonise), as this is a far more diverse species 

pool then the observed baseline plots pool. Therefore, a key component of afforestation not 

well tackled here is a species or seed source for colonisation, natural or otherwise. If this 

seed source is lacking in areas immediately adjacent to a site intended for afforestation 

(Brunet et al., 2012; Broughton et al., 2021) then planting or introduction is vital otherwise 

afforestation will not occur even at times scales over five decades as seen in McGovernor et 

al. (2013) and Marrs et al. (2018).  
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Determining sites to achieve forest establishment within less than successional timeframes 

would be highly beneficial for 2050 goals and is an important avenue for further research; as 

availability of land for planting as well as suitability of land is important for afforestation. 

Lastly given the fact that the UK already has extremely fragmented and degraded habitats 

(Watson et al., 2011; Hayhow et al., 2019; Forest Research, 2020) it seems unwise to 

abandon them to already degraded successional processes under the assumption they will 

sort themselves out. 
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4 | Abstract 

Nitrogen (N) represents one of the major limiting nutrients to biological growth and its 

increased availability as a result of the Haber-Bosch process has supported the progressive 

global increase in food security. However, the prolific use of N fertilisers and the subsequent 

exposure of natural and semi-natural ecosystems to unused N (‘nitrogen surplus’) has led to 

higher biomass production but has also created conditions that favour fewer species, 

eroding biodiversity. In addition to fertiliser use, gaseous N emissions from agriculture and 

fossil fuel burning may also subsequently lead to atmospheric deposition and accidental 

increases of N on land. Fertiliser application as well as N deposition, can be thought of as a 

‘hard rain’ impacting vegetation chemically; positively in stimulating higher crop yields or 

negatively via lowering diversity. As N change in grasslands is mechanistically tied to soil 

and plant community composition and state, this work explores links from fertiliser use and N 

pollution to the state or composition of vegetation and soils. The overall aim is to determine if 

N change will reflect a shift from high to low N abundance or a reverse of this, explored via 

changes in plant species groups related to ecosystem service and function. Also, an overall 

research aim is to determine over what timescale changes in vegetation and soil can (or 

cannot) be measured. To explore this we have established a modelling workflow of: fertiliser-

induced soil change using novel generalised linear mixed effect models; and, Bayesian 

models to estimate vegetation change caused by N deposition. Hence we created scenarios 

reflecting change in N abundance as inputs to an ecological niche modelling platform that 

covers c. 1300 British plant taxa. As expected across the scenarios, results differed between 

habitats that varied in starting fertility level. The modelled trends showed that responses to 

change in N abundance were context dependent and specific to both the species groups 

explored and the habitat they were explored within. A novel result in the context of managing 

expectations from agri-environment schemes (AES) is that some changes in management 

are expected to take decadal timescales for measurable change to be observed. The 

variables and species groups explored often showed little change over the decade modelled. 
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This suggests that these indicators don’t perform well for determining AES management 

induced change or determining success over the time modelled. Thus, proof of management 

change as well indicators are advisable for results-based policy to determine AES outcomes. 
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4.1 | Chapter introduction 

 

4.1.1 | Nitrogen and global change 

The planetary boundaries concept demonstrates a range of global change issues 

(Rockström et al., 2009; Steffen et al., 2015), with the most prevalent two in discussion being 

climate change (IPCC, 2018) and biodiversity loss (Díaz et al., 2020). However, closely tied 

to these is the disruption of biogeochemical cycles with the Nitrogen (N) cycle now 

containing more anthropogenic-sourced reactive nitrogen (Nr) than natural Nr  (Galloway et 

al., 2008; Gruber and Galloway, 2008). Another key factor is the Haber-Bosch process which 

generates anthropogenic Nr using  1%-2% of worldwide energy use (Kyriakou et al., 2020). 

This alongside biogeochemical disruption means that good Nr management (Sutton et al., 

2019; Raghuram et al., 2021) is crucial for staying within planetary boundaries (Rockström et 

al., 2009; Steffen et al., 2015) and ensuring sustainable land management practices are 

developed for the benefit of future generations (Zhang et al., 2015; Häyhä et al., 2018). In 

addition to deliberate Nr use, N deposition from the increased N abundance from fossil fuel 

burning and fertiliser use, results in accidental increases in Nr on land from the atmosphere 

(Tipping et al., 2019; Hall, Lohse and Matson, 2021).  

 

The positive ecosystem response to a greater abundance of Nr should not be ignored, 

however. As N is one of the major limiting nutrients to biological growth (Tipping et al., 2019) 

its increased abundance through the Haber-Bosch process has provided an increase in 

global food supply (Zhang et al., 2015; Metson et al., 2021). The prolific use of N fertilisers 

has led to higher productivity land which provides more biomass production for food but also 

creates conditions that favour fewer species, eroding biodiversity (Stevens et al., 2006, 

2016; Emmett, 2007; Maskell et al., 2013). 
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Fertiliser spreading (manure or chemical spray) as well as N deposition, can be thought of 

as a ‘hard rain’ impacting vegetation chemically; positively with greater biomass or 

negatively via lowering diversity (Emmett, 2007). These two pathways for Nr to enter 

ecosystems, fertiliser (deliberate) and deposition (accidental), form the focus of this work. 

 

4.1.2 | N pathways 

If the above impacts of Nr are considered in the context of where they are best studied, e.g. 

Europe (Hall, Lohse and Matson, 2021; Henniges et al., 2022) this should allow for the 

greatest information to be gained to guide sustainable management. Given the N and 

vegetation data available for the  UK (Carey, Wallis, Emmett, et al., 2008; Stevens et al., 

2016; Tipping et al., 2019; Levy et al., 2020; Henniges et al., 2022) its data resources make 

it well suited to exploring the interconnected flows of N and how changes in climate or N use 

will impact ecosystems over time (Fowler et al., 2013; Galloway et al., 2013). 

 

Past research into the N cycle has provided excellent insight into how N moves through 

systems (Fernández‐Martínez, 2021) both globally (Gruber and Galloway, 2008; Zhang et 

al., 2015); nationally (Stevens et al., 2016) and: locally, or at fine-scale within landscapes 

(Maskell et al., 2013; Smart et al., 2017). If we consider two groups of Nr molecules entering 

the landscape of the UK via specific pathways, similarly to the emitted NOx molecule 

example in Gruber and Galloway (2008), this illustrates N pathways at a molecular to 

national scale. The two Nr groups considered here are the fertiliser molecules (NrF) and the 

deposition molecules (NrD). Their pathways are both demonstrated in Gruber and Galloway 

(2008). The NrF group becomes Nr from the Haber-Bosch process capturing atmospheric N 

and is then available as fertiliser which is applied by the land-manager to increase crop yield. 

The other group, NrD is formed partly from Nr escape from the NrF pathway but also from 

fossil fuel burning (and some natural processes, Gruber and Galloway (2008)). This ends up 

deposited onto the soil surface, freshwaters and vegetation. Then both NrF & NrD enter the 
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soil N pool also becoming captured within vegetation. This illustrates part of the current N 

cycle providing the basis of the scenarios explored here. 

 

4.1.3 | Land management 

Ecosystem homogenisation through modern agricultural practice lowers biodiversity and 

reduces ecosystem service provision (Smart et al., 2006; Gossner et al., 2016). Also, in the 

context of ecosystem services there is a trade-off between fertility and wider ecosystem 

service provision (Maskell et al., 2013). These factors along with wider environmental 

degradation (climate change and biodiversity loss) are the reason Agri-environment 

schemes (AES) were established as policy tools for mitigation of the long-term effects of 

agricultural intensification (Rose, 2011; Welsh Government, 2016; Defra, 2018; Pe’Er et al., 

2019; Rural Payments Agency, 2022a). Specific examples of this include: Glastir Welsh AES 

options 15,19,26,159 which pay farmers to use less or no fertiliser (Rose, 2011; Welsh 

Government, 2016); the English Countryside Stewardship organic farming option types OR’s 

OT’s and OP’s (Rural Payments Agency, 2022a); and the Defra 25-year environment plan 

aims to “limit inputs of nitrogen-rich fertilisers” (Defra, 2018). 

 

A more recent policy recommendation to promote diversity is to scale up AES from the land 

parcel to the landscape scale for consistency of biodiversity provision (Gossner et al., 2016). 

An example of this in current UK policy is the facilitation fund (Rural Payments Agency, 

2022b). However, within the UK, measures of environmental variables to confirm the 

effectives of AES practices for environmental benefit are now being developed (Defra, 2018, 

2020a, 2020b). Metrics for this have already been developed for nitrogen in the context of 

critical loads (Rowe et al., 2016) and wider plant monitoring (Stevens et al., 2006; Payne et 

al., 2013; Smart et al., 2017; National Plant Monitoring Scheme, 2019). 
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4.1.4 | N impact versus recovery 

A perturbation within an ecosystem takes time to recover from and the duration of the 

recovery is linked to the size of the impact (Ogle et al., 2015). A change in N abundance (or 

fertility) in an ecosystem is not always considered a perturbation in the classical ecological 

succession sense (Novotny et al., 2007) but the response can be: rapid, 3-5 years (Maskell 

et al., 2014b; Defra, 2015); decadal for returns to pre-perturbation levels (Valtinat, Bruun and 

Brunet, 2008); while changes in fertility induced by farming can also persist for over 2000 

years (Dupouey et al., 2002). This is a key consideration for global change mitigation and 

AES N management as if implementation times are too short (West et al., no date; Horrocks 

et al., 2014) to allow for ecosystems to change or for changes to be detected then success 

or failure cannot be determined or the scheme will have been deemed to fail because the 

time under intervention was too short. For grasslands, areas where fertiliser use covers a 

wide gradient, 3 to 10 years appears to be the minimum time for change in vegetation  

(Maskell et al., 2014b) thus 10 years is the time period modelled here. 

 

4.1.5 | Why Grasslands? 

Semi-natural habitats, specifically grasslands cover a wide gradient of management from 

natural through to heavily fertilised and grazed. They have, however, been identified as 

places where biodiversity and natural resource production can be traded off to allow for a 

win-win scenario to be pursued (Lavorel et al., 2011; Simons & Weisser, 2017). Indicators 

have been identified at the local habitat level in grasslands where N enrichment is becoming 

a problem for biodiversity and ecosystem function (Stevens et al., 2004; Posch, Aherne and 

Hettelingh, 2011; Phoenix et al., 2012; Rowe et al., 2016). 

 

4.1.6 | Methodological modelling approach 

The dataset here proportionally represents three grassland types across Britain (Fig. 4.1) 

using nested 200m2 quadrats with soil data taken from the edge of the central 2 × 2 m 
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quadrat. This provides a high-resolution national scale dataset to model N abundance 

change effects on soils and plant communities, as these are mechanistically tied together 

(Stevens et al., 2004; Emmett, 2007; Rowe et al., 2016). Modelling N source effects through 

different scenarios should provide evidence on when AES management changes may be 

measurable, helping determine if public money is effectively used for public goods. 

 

Measuring change can, however, be challenging especially where baseline and monitoring 

data is lacking, as data from past AES effects on plants and soils have rarely been gathered 

by the statutory authorities adjudicating them. However, the UK vascular flora is one of the 

best studied in the world (Henniges et al., 2022); with UK climate data available to 1 km 

resolution (Lowe et al., 2018); deposition data available to 5 km resolution (Tipping et al., 

2019); and national plant and soils monitoring data available since the 1970s (Carey, Wallis, 

Chamberlain, et al., 2008). These provide robust highly suitable inputs to model change at 

the national scale with a fine resolution (Diekmann and Falkengren‐Grerup, 2002). 

This level of data availability led to Stevens et al. (2016) to explore the impact of N 

deposition on vegetation Ellenberg fertility score (EbN, (Ellenberg, Dull and Weber, 1992; 

Hill, Preston and Roy, 2004)) from the past into the future. This approach is emulated here to 

explore the NrD or N deposition scenario (Table 4.1). As Stevens et al. (2006) found no 

significant relationship between top soil N and N deposition, thus modelling EbN provides 

greater insight (Stevens et al., 2016). The deposition scenario is then compared with the NrF, 

fertiliser scenarios (Table 4.1) that were constructed using the results from a literature 

review of the effects of fertiliser application on soil properties. This allowed models to be 

trained to predict soil change with differing levels of fertiliser use. The timescale selected for 

modelling, 2007 to 2017 is to increase the chance that a signal is detected across the plant 

community with management change. This is consistent with studies of UK grasslands 

taking 3-10 years to change (Maskell et al., 2014b; Defra, 2015) and the findings from prior 

research on agri-environment scheme effects on UK grasslands (West et al., no date; 
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Horrocks et al., 2014). The end-point of the scenarios modelled as described in the NrF & NrD 

pathways is the soil and vegetation proxy N availability or N abundance represented by: EbN  

(Rowe et al., 2016; Stevens et al., 2016); Total soil N% (Stevens et al., 2006; Seaton et al., 

2020); leaf N content (Lavorel et al., 2008, 2011; Kattge et al., 2020). Also, plant species 

diversity change itself will be modelled via use of an ecological niche model, MutliMOVE 

(Smart et al., 2010; Henrys, Smart, et al., 2015); which will predict how species linked to N 

abundance respond to change in the scenarios (Rowe et al., 2016; Smart et al., 2017). 
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Table 4.1. The four scenarios detailed here are listed in decreasing management intensity; however, the baseline 
is used as a start for the time series of the other three scenarios. Scenarios L & L<50  represent levels of 
Nitrogen use based on the Soil Nitrogen Supply status for Long-term grassland found in the RB209 Nutrient 
Management Guide (AHDB, 2021). Neutral management refers to management being assumed to be the same 
as baseline, however other alterations may have been made to the scenario as detailed. Edaphic GLME’s refers 
to Generalised Linear Mixed Effect models constructed to represent differing levels of nitrogen application to 
grasslands. Bayesian EbN refers to Bayesian models constructed to represent how Ellenberg nutrient scores 
(EbN) change with nitrogen deposition. 

Scenario 
code Scenario description 

Nitrogen 
application 
(kg ha-1 yr-1) 

Models 
used 

Recovery from 
acidification 

applied 
Deposition 

represented 
Years 

modelled 

L 

Management 
representative of livestock 
grazing with N applications 
of 50-100 kg ha-1 yr-1 

50-100 Edaphic 
GLME’s No No 2008-2017 

L<50 

Management 
representative of livestock 
grazing with N applications 
<50 kg ha-1 yr-1 

>0 to <50 Edaphic 
GLME’s No No 2008-2017 

Ndep Background N deposition 
with neutral management. 0 Bayesian 

EbN Yes Yes 2008-2017 

Baseline Neutral management. Baseline None No No 2007 

 

 

4.1.61 | Environmental condition indicators and metrics 

Creation of a common set of environmental indicators to establish standard survey 

methodologies within ecological research has been a long-term pursuit across branches of 

ecology (Carey, Wallis, Chamberlain, et al., 2008; Smart et al., 2017; National Plant 

Monitoring Scheme, 2019; Kattge et al., 2020). However, the idea of pursuing this within 

AES policy to ensure positive outcomes is newly to be implemented within the UK (Defra, 

2018, 2020b). For the sake of robustly established indicators new AES development would 

do well to explore the established indicators from ecological research. 

 

4.1.7 | Residual fertility 

Within the data utilised for this work, three broad habitats are explored as they represent a 

range of management histories and fertility levels: these are improved grassland (IG); 

neutral grassland (NG); and acid grassland (AG). These are described in Jackson (2000), 

Carey et al. (2008) and C.1 where the habitats residual fertility from their history and 

management varies from the lowest in AG, to higher in NG, and IG representing the highest 
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levels of fertility (e.g. Willett et al., 2004). The variation in these broad habitats starting points 

and their management regimes means they are likely to have differing responses to changes 

in their N abundance or N inputs. 

 

4.1.8 | Research aims 

As N abundance varies by multiple factors: management input (one); time (two) and habitat 

characteristics e.g. residual fertility or species diversity (three); disentangling effects and 

flows linked to these is contextually dependent. We explore point one through the creation of 

the scenarios; with modelling over time (2007-2017) exploring point two; and the habitat 

characteristics (three) are explored by coarse consideration of different starting points via the 

broad habitat types and location-based species pool construction. Inherent habitat 

processes altering N abundance are not emphasised or specifically explored as part of the 

modelling and are likely to take considerably longer periods of time to be detectable 

(Dupouey et al., 2002; Maskell et al., 2014a).  

 

Here we use N abundance to refer to N within or entering ecosystems, examples include: 

Improved Grassland has high residual N abundance; fertiliser application provides an 

increase in N abundance; and with varying starting N abundance levels different broad 

habitats will respond according to the direction of change. For this reason, we consider the 

below in the context of an overall hypothesis (1.) and one to three above: 

1. Responses to N change will reflect a shift from high to low N abundance or a reverse 

of this. 

i. Nitrogen fixing species diversity will decrease with higher N abundance. 

ii. Nitrophobic species will decrease with higher N abundance. 

iii. Nitrophilous species will increase with higher N abundance from deposition. 

iv. Modelled Nitrogen held within vegetation will increase with higher nitrogen 

abundance. 
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These simple relationship hypotheses should then achieve the research aim to estimate over 

what timescale change can (or cannot) be measured using the metrics modelled here as 

indicators. This can inform results-based policy for agri-environment schemes (Defra, 2020a, 

2020b) seeking to confirm desirable results empirically.  

 

4.2 | Methods 

 

The map (Fig. 4.1) shows the locations that the input data to the modelling workflow 

represents. The workflow diagram (Fig. 4.2) is a methodological representation of the 

modelling approach used in the study. Each stage of the workflow is numbered after the title 

in parentheses (as for Fig. 4.2) and is described below, covering the modelling period 2007-

2017. All modelling and statistical analysis was conducted in R statistical software (R Core 

Team, 2019). 
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Figure 4.1. Map of the Countryside Survey 1 km squares surveyed across Britain in 2007. Digits within squares 
represent the number of quadrats within a square when >1 (no. of quadrats = 420). To preserve data 
confidentiality square locations are represented using the ‘Point cluster’ function (set to 5 mm) within QGIS Layer 
Properties.  
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4.2.1 | Data spatial structure 

The spatial structure of the data beginning at 2×2 m quadrats represents the location 

modelled and where the soil samples were taken from; this sits within a nested quadrat (200 

m2, Maskell et al., 2008).The climate data (Lowe et al., 2018; Met Office Hadley Centre, 

2018) is at 1 km resolution (Fig. 4.2, 2.0) and the nitrogen deposition data (Tipping et al., 

2019; Levy et al., 2020) is at 5 km. The species pool uses the summation of species 

recorded in each quadrat within the local 1 km cell and those additional species in the wider 

10 km pool (Fig. 4.2, 3.1) from the Botanical Society of Britain and Ireland Distribution 

Database (BSBI, 2018). The map (Fig. 4.1) shows the Countryside Survey squares (Carey, 

Wallis, et al., 2008) the quadrats are within. 

 

4.2.2 | Countryside Survey data (1.1) 

The Countryside Survey (CS) is a nationally representative survey of Great Britain’s plants 

and soils that has occurred roughly every 10 years since 1978 (Carey, Wallis, et al., 2008; 

Bunce et al., 2012b; Reynolds et al., 2013; Bunce et al., 2014; Barr, Bunce, Gillespie, 

Hallam, et al., 2014; Barr, Bunce, Gillespie, Howard, et al., 2014; Barr, Bunce, Clarke, 

Gillespie, et al., 2014, 2014; Barr, Bunce, Smart and Whittaker, 2014; Brown et al., 2014). 

The methodology to record the plant and soil survey data can be found in Maskell et al. 

(2008) and Emmet et al. (2008), respectively. 
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Figure 4.2. Graphical representation of the modelling workflow. Box numbering refers to the relevant text in the 
methods section: brown being soil related; blue, climate related; green, vegetation related; purple being 
nitrogen deposition related; and black numbers refer to ecological niche modelling (7.0) and the results. Green 
boxes represent a coded process; grey boxes represent model runs; white boxes are datasets; white boxes 
with dashed outlines represent input data. 
 

4.2.3 | Baseline soil conditions (1.2) 

Five soil cores (5 cm in diameter, 15 cm deep)  were taken from the edge of the 2×2 m 

quadrat. (Emmett et al., 2008). Here four soil variables derived from each sample were used 

as model inputs: pH, total soil carbon (%), total soil nitrogen (%) and moisture content (%). 

These are key soil attributes when differentiating broad habitat types within the UK (Seaton 

et al., 2020) and thus form fundamental niche dimensions of the plants species we model, 

see, Fig. 4.2, 7.0; (Diekmann, Michaelis and Pannek, 2015; Henrys, Smart, et al., 2015). 

See, C.1 , for broad habitat type descriptions. 

 

4.2.4 | Baseline vegetation (1.3) 

Within the CS survey data, plant species and vegetation data was recorded within nested 

quadrats (Maskell et al., 2008). This data includes: species presence and percentage cover; 
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species average vegetative (non-flowering) canopy height (for Fig. 4.2, 6.1) obtained from 

published sources (Stace, 1997; Hill, Preston and Roy, 2004) as for 2.2.5. 

 

4.2.5 | Met Office Data (2.0) 

The climate data we utilised was from the UKCP18 observation datasets (Lowe et al., 2018; 

Met Office et al., 2019). This was derived from UK land surface observations (HadUK-Grid) 

interpolated from meteorological station data onto a uniform 1 km grid  (Lowe et al., 2018; 

Met Office et al., 2019).  

 

4.2.6 | Climate data (2.1) 

The wider dataset was subsetted by only selecting data for the relevant years and 

georeferencing CS plot locations. This was averaged from 1981 to each year in the explored 

years (2007-2017) to give a long-term average that tracks with each modelled year. 

 

4.2.7 | Georeferencing and climate variable averaging (2.2) 

Three mean variables (minimum January & maximum July temperature, and total annual 

precipitation) are the climatic inputs to the ecological niche models (ENM, Fig. 4.2, 7.0). 

Long term annual average values of these three variables were originally used to train the 

MultiMOVE models and are used as inputs in predictive mode (Smart et al., 2010; Henrys, 

Smart, et al., 2015). 

 

4.2.6 | BSBI species records and species pool construction (3.0 & 3.1) 

To build a species pool from which to filter for dark diversity (Pärtel, Szava-Kovats and 

Zobel, 2011), a species list was constructed for each 10 x 10 km grid cell (hectads) in which 

each CS 1 km square was located. This list was based on species recorded by the Botanical 
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Society of Britain and Ireland distribution database (BSBIdb) covering records till to 2018 

(BSBI, 2018). This is the same method as applied in Chapter 2 (see, 2.2). 

 

4.2.7 | Species pool for modelling (3.2) 

We focussed our modelling on groups of plant species likely to be especially sensitive to 

changes in nitrogen availability given their ecology. These groups are as follows (and see, 

C.2): 

• Nitrogen fixers (Smart et al., 2017); 21 species. 

• Nitrophiles (Rowe et al., 2016; Smart et al., 2017); 68 species. 

• Nitrophobes (Rowe et al., 2016; Smart et al., 2017); 273 species. 

• Species with leaf N content data from the TRY plant functional trait database (Kattge 

et al., 2020); 148 species. 

 

4.2.8 | Modelling change in response to nitrogen availability (4.0-6.1) 

The ENM (Fig. 4.2, 7.0) requires inputs in the form of mean Ellenberg scores. These are 

scores representing the position of a species along ecological gradients of wetness 

(Ellenberg F), fertility (Ellenberg N) and reactivity (Ellenberg R) created by Ellenberg et al. 

(1992) and contextualised to the modelling used here by Smart et al. (2010). 

 

The intention to model soil and vegetation change with differing N inputs was tackled using 

two different but complimentary approaches. First, we created generalised linear mixed 

effect (GLME) models based on analysis of evidence from the literature indicating how direct 

fertiliser use (NrF) changes soil conditions. Secondly, we revisited the approach used in 

Stevens et al. (2016) and built new Bayesian models conveying the effect of atmospheric N 

deposition on mean Ellenberg nutrient (EbN) scores (Bayesian modelling). These two 

approaches reflect the type and form of data and underlying processes of the causes of the 

change. As soil variables are known to change linearly (Poulton et al., 2003; Thomaes et al., 

2012) under fertiliser use they favour the GLME approach. N deposition effects on EbN are 
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prone to a high amount of noise being dependent on multiple factors, thus favouring a 

Bayesian approach. Bayesian models were conducted in Stan (Stan Development Team, 

2019) in the R environment (R Core Team, 2019)  to allow for greater model construct 

complexity. 

 

For the Ndep scenario (Table 4.1) we also included an annual incremental increase in soil 

pH consistent with long-term recovery from deposition-based acidification. We used trends in 

Emmett et al. (2010) for each broad habitat type, as for 2.2.4. 

 

4.2.9 | Soil Generalised Linear Mixed Effect Models (4.0) 

In order to build the soil change, fertiliser models a literature review was conducted.  This 

was to find empirical soils data from time-series or chronosequences that measured change 

in soil conditions where chemical fertiliser had been used (often with liming). Care was taken 

to ensure the soil variables were measured in the same way as the CS data  (Emmett et al., 

2008). As a result, we located 15 published data sets. Full datasets were requested from 

authors where necessary (see, C.3). 

 

Once the data was gathered it was categorised into four levels of N use based on the soil 

nitrogen supply status levels for long-term grass found in the RB209 Nutrient Management 

Guide (AHDB, 2021). However, as the data contained mostly lower levels of N application 

(100 <kg ha-1 yr-1) the low level was split into above and below 50 kg ha-1 yr-1. This led to the 

creation of four levels: 

1. Zero, 0 kg ha-1 yr-1 applications, level “0”. 

2. Less than 50 kg ha-1 yr-1, level “L<50”. 

3. Low, 50 -100 kg ha-1 yr-1, level “L”. 

4. Moderate, 100-250 kg ha-1 yr-1, level “M”. 

The levels were assigned by either taking the kg ha-1 yr-1 directly or calculating it from the 

quoted appropriated N g kg-1 or equivalent N content if manure was applied with fertiliser. 



148 

 

 

However, as the control sites used for level 0, likely had fertiliser used on them during 

historic management it’s not a good representation of 0 N management. This in combination 

with spill over of fertiliser applications from neighbouring sites where plots sizes were small, 

lead to poor results and rejection for use. The M level was also rejected for use as it also 

produced poor results most likely as it contained the fewest data points. This left levels, 2 

and 3, “L<50” & “L” for modelling, analysis and comparison with the deposition scenario. 

 

As the datasets did not consistently measure all four soil variable inputs to the workflow 

variables were modelled independently by the creation of individual generalised linear mixed 

effect (GLME) models using the R package lme4 (Bates et al., 2014). Given the similarity of 

the study sites and management types within the literature review data, we interpret the 

change in soil variables as reasonably correlated, although, in reality they interact in varied 

ways. The GLME model’s components were, starting value of the variable modelled, time 

(years) and N application level. These were the covariates used in each model predicting 

change over time in each soil variable. Also, all models used a random effect for each study 

to avoid bias. Due to variation in the datasets of the variables, each was modelled slightly 

differently. A summary of the constructs of the soil variable models that were selected by 

seeking low AIC values, significance of model components, producing realistic results and 

higher R2 values are below: 

• Change in soil pH per year ~ (time * N application level * starting value of pH) + (with 

random effect for study sites) 

• Change in soil Carbon per year ~ (starting value of Carbon * time) + N application 

level + (with random effect for study sites) 

• Change in soil N per year ~ (starting value of N * N application level) + time + (with 

random effect for study sites) 

As soils moisture is not targeted by grassland management this was not modelled here. See, 

C.3  for construction data details. 
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4.2.10 | Nitrogen deposition (5.0) 

The N deposition data used within this workflow is the Concentration Based Estimated 

Deposition (CBED) dataset for years 1986-2018 (Levy et al., 2020), a measurement-derived 

statistical dataset, with years 1970-1986 inferred from the Fine Resolution Atmospheric 

Multi-Pollutant Exchange (FRAME) dataset as used in Tipping et al. (2019). Both of these 

are at a 5 km resolution and used to cover 1970 to 2017.  This dataset combination uses a 

similar approach to work exploring direct N deposition impacts on ecosystems across the UK 

- scaling the CBED distributions by the magnitude of change as modelled by the FRAME 

model to CBED data to make predictions into the future (Dragosits et al., 2020). We use it 

here to make predictions about Ellenberg N changes using a method adapted from Stevens 

et al. (2016) and detailed below. The Ellenberg N data was source from grassland habitat 

plots from the CS years, 1978, 1990, 1998 & 2007 (Barr et al., 2014; Barr, Bunce, Gillespie, 

Hallam, et al., 2014; Bunce et al., 2014) . 

 

4.2.11 | Bayesian Modelling of Ellenberg Nutrient Score (5.1) 

To georeference CS squares with the 5 km square deposition, estimates from both datasets 

were  joined in QGIS (QGIS.org, 2022) then the modelling work was conducted in R (R Core 

Team, 2019). The same approach with lme4 as Stevens et al. (2016) was used to inform 

model structures but Stan (Stan Development Team, 2019) was used rather than 

OpenBUGS as it allowed more complex better performing models to be created. 

 

4.2.11.0 | Data transformations 

Prior to beginning the modelling, the data needed some transformation to align with the 

methods in Stevens et al. (2016) and to prevent the propagation of temporal and spatial 

autocorrelation relics. Firstly, where the georeferenced CS 1 km squares intersected with 
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more than one deposition cell a mean of all the cell values at the square intersected was 

taken. 

 

Next, this square grid average value for each location was then cumulatively summed for 

each year in the deposition data (Fig. 4.2, 5.0) to provide cumulative N deposition values for 

each of the squares per year within the modelling (CumN). 

CumN = � (square grid average nitrogen deposition value)
𝑛𝑛

1970

 

Equation 1. Cumulative nitrogen deposition calculation. 

Where CumN is generated on a per square basis and “n” is one of the years within the 

modelling period (1978, 1990, 1998, and 2007-2017). 

 

The prevention of temporal and spatial autocorrelation relics was achieved by transforming 

CS square CumN values and CS plot EbN values. The transformations below show how the 

statistical relics were removed from the explanatory (CumN) and response (EbN) variables 

in the deposition modelling 

 

4.2.11.1 | Explanatory variable statistical relic removal 

Square CumN values across the CS years were averaged to get a square mean (SqCumN), 

this was to remove collinearity between years and locations. 

 

SqCumN =
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1978) + (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1990) + (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1998) + (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2007)

𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 

Equation 2. Explanatory variable transformation. 

 

4.2.11.2 | Response variable statistical relic removal 

As the desired outcome of the modelling was a change in EbN per plot for the year 

modelled, independence from autocorrelation was required. This was achieved by creating a 
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response variable based on deviation from the cross-year EbN average so that change over 

time is modelled but spatial differences in the change over time between sites are still 

retained. The calculations below were conducted per vegetation plot which is a finer 

resolution than the CS square level, referring to the individual quadrats (Maskell et al., 

2008). The plot EbN values were centred and standardised across each plots time series. 

This involved working out each plot's value per year change from the EbN mean and 

calculating the standard deviation of the mean. 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛.𝑆𝑆. =
𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 −

∑ (𝐸𝐸𝐸𝐸𝐸𝐸)𝑛𝑛
𝑖𝑖=1

n

�1
𝑛𝑛∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 − MeanEbN)2𝑛𝑛

𝑖𝑖=1

 

Equation 3. Response variable transformation. 

Where “i” is the first year recorded in the data and “n” is the last (n=4 as CS covers 4 dates). 

The final value (EbNnC.S) is the centred standardised deviation of a plot's EbN value per year 

from the plot EbN mean over the CS years, giving the required response variable. 

 

4.2.11.3 | Management intensity data division 

The dataset was also split into two, reflecting variation in management intensity. Firstly, a 

high intensity management dataset only including improved grassland (IG) habitat and 

secondly a lower intensity neutral and acid grasslands (NG & AG) dataset.  

 

4.2.11.4 | Bayesian models construction 

The same workflow was applied to both data sets, exploring relationships using lme4 before 

using the parameters within these as estimates for initial construction parameters for Stan 

(Stan Development Team, 2019) and brms (Bürkner, 2017) model building. 

To aid with convergence increasing the ease of computation SqCumN was transformed as 

follows: 

SqCumN𝑇𝑇 =
SqCumN − 1000

1000
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Equation 4. Convergence aid transformation 

 

4.2.11.5 | Bayesian models performance 

Beyond ensuring convergence via 10,000 iterations (1/3 being burn-in), the highest Bayesian 

R2 (Gelman et al., 2019) and LOO cross validation (Vehtari, Gelman and Gabry, 2017) 

values were used to select the best performing models as well as selecting for simpler 

models. The two final model constructs were: 

• For Neutral and Acid grassland: 

EbNC.S.~ SqCumNT * year modelled+ (random effect for CS square) 

• For Improved grassland: 

EbNC.S.~ SqCumNT * year modelled + (random effect for CS square) 

 

4.2.11.6 | Bayesian model predictions 

To make EbN predictions for the post CS years (2008-2017) their SqCumN data was 

inputted into the “posterior_predict()” function in brms (Bürkner, 2017) again splitting into IG 

and NG&AG. Then the posterior predictive estimates were back transformed (undoing 

Equation 3) then averaged across the iterations giving a dataset of predictions of EbN values 

per plot per year.  

 

4.2.12 | Variable model results (6.0.1) 

The outputs of the Fig. 4.2, 4.0, GLME soil models were used as inputs to neural network 

models (Fig. 4.2, 6.0) used to predict Ellenberg community values. Also the Bayesian model 

predictions were used to provide the Ellenberg N scores for the deposition scenario. Both of 

these sets of results then provided the Ellenberg scores for their scenarios for inputs to the 

ENM, Fig. 4.2, 7.0 (as for Chapter 2, West et al. (no date)). 
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4.2.13 |  Neural network calibration code (6.0.2) 

To improve on the linear models that use soils variables to predict Ellenberg scores 

constructed in Smart et al. (2010) neural networks were constructed that performed better. 

This is the same method as in Chapter 2, West et al. (no date) the details of which can be 

found in A.3. 

 

4.2.14 | Ellenberg data and data collation (6.1) 

The 2007 baseline data was put through the workflow unaltered. However, the L<50 and L 

scenarios (Table 4.1) where constructed by using the baseline data as inputs to the GLME 

models (Fig. 4.2, 4.0) to predict soil variable change. The predicted soil changed data was 

then inputted into the neural networks (Fig. 4.2, 6.0) to gain Ellenberg scores. The Ndep 

scenario (Table 4.1) is constructed differently as pH is the only altered soil variable, having 

the acid deposition recovery increment applied to it. Then with altered soil pH the rest of the 

soil baseline data is inputted into the neural networks to gain Ellenberg wetness and 

reactivity scores. The Ndep Ellenberg nutrient scores are gained for the Bayesian models 

posterior predictions (Fig. 4.2, 5.1). 

 

An additional biotic input to the workflow is cover-weighted canopy height calculated as for 

the baseline data in Fig. 4.2, 1.3; as for 2, West et al. (no date). This expresses both the 

successional stage of the plot modelled and the light at ground level. 

 

4.2.15 | Scenarios and model inputs (6.2) 

The final model inputs per plot for the plant species ENM were Ellenberg R; Ellenberg N; 

Ellenberg F; cover-weighted canopy height; minimum January & maximum July temperature, 

and total annual precipitation. The values of these variables reflect the climate at each 

location and the way abiotic conditions are expected to vary as fertiliser inputs and N 

deposition change over the 10-year period modelled as detailed in Table 4.1. 
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4.2.16 | Plant species ENM (7.0, the MultiMOVE R package) 

We used the MutliMOVE R package to model the response of each plant species in terms of 

its movement in ecological niche space. MultiMOVE has been used and validated multiple 

times (West et al., no date; De Vries et al., 2010; Henrys, Smart, et al., 2015; Rowe et al., 

2015; Emmett et al., 2017; Smart et al., 2019). The MultiMOVE ENM consists of a small 

ensemble of five modelling methods to provide a habitat suitability score for each plant 

species. The output is a habitat suitability score (weighted model average) that ranges 

between 0 and 1, where 1 = maximum suitability of conditions. Details of the MultiMOVE R 

package can be found in Henrys et al. (2015) and Smart et al. (2019). 

 

4.2.17 | Species scores and soil variables (7.1.0) 

Both the outputs from 7.0 and 6.1 (Fig. 4.2) are combined to form the modelling results. All 

results are considered in the context of their trajectory from the baseline in 2007 in response 

to N abundance change from fertiliser or the atmosphere. The data presented here (Fig. 

4.2,7.2 and Results) includes: habitat suitability scores from the ENM (Fig. 4.2, 7.0); Soil 

variable results from the GLME models (Fig. 4.2, 4.0); EbN values from the Bayesian 

modelling (Fig. 4.2, 5.1); the N deposition data (Fig. 4.2, 5.0). 

 

To represent the species group’s (Fig. 4.2, 3.2) variation between scenarios, all the species 

per group’s habitat suitability scores were summed to give an estimated species diversity 

score per modelled plot location (Calabrese et al., 2014). An exception to this is species leaf 

N content data used to calculate a virtual abundance-weighted community mean (vCWM) as 

for Lavorel et al. (2008) used as a proxy for nitrogen stock in the vegetation. The use of 

vCWM refers to the use of modelled habitat suitability scores being used as a virtual proxy 

for abundance. 
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To test model performance two approaches were applied. The first was logistical regression 

to determine if the species present at the 2007 baseline had significantly higher species, 

suitability scores than those that were absent. The second was to test, via unpaired t-test, for 

significant differences between 2007 baseline variables and modelled variables (Table 4.2). 

See Appendix C.4., for these results. 

 

4.2.18 | Visualising the outputs (7.2) 

Data plots have been created predominantly as boxplots or mapping. The former where the 

overall trends in the data vary by habitat, management or year allowing us to show concisely 

both baseline and modelled results for clarity and ease of comparison. The latter where 

spatial variation is a key factor in trends of change. The exceptions to this are figures 

created to synthesise data that are more complex, their subtext provides descriptions of their 

development. 

 

4.3 | Results 

 

4.3.1 | Scenarios 

The three scenarios have been run independently through the workflow, however, a key 

difference between the (two) fertiliser scenarios and the deposition (Ndep) scenario is the 

creation of the Ellenberg (Eb) score inputs. The fertiliser scenario Eb scores are driven by 

the soil models feeding neural networks to generate Eb scores. But, the deposition soil 

results are held as for the baseline with one exception, pH has a recovery from acidification 

increment applied for each year. This soil data through the neural network drives the 

wetness (EbF) and reactivity (EbR) Eb scores but the Eb nutrient score (EbN) is driven by 

the Bayesian deposition modelling. Thus, due to the differences in the inputs workflows the 
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soil data is not presented as the Eb scores for the scenarios provides a better comparison 

(Fig. 4.3). 

 

The habitat suitability score outputs (weighted model averages, WMA) generated by 

MultiMOVE from the environmental inputs) are comparable and the data source for the 

species group results presented (Fig. 4.3 & Fig. 4.5). 

 

4.3.2 | Baseline observations and modelled results 

Logistical regression on the species recorded as present in 2007 versus those included in 

the modelled pool but absent showed that an increase in a habitat suitability score increases 

the probability of the species being observed as present. Within the plots, overall predictions 

from the baseline input data suggests habitat suitability score of 0.386 or more gives a gives 

a fitted presence value of 0.51 (logistical regression WMA model coefficients P-value 

<0.001; Appendix C.4, Fig. C.1). 

 

The tabulated p-values (Table 4.2) show little deviation of the modelled results from the 

baseline results. Exceptions to these occur in later years and more regularly in the fertiliser 

scenarios, however only the Ellenberg R and N scores show any significant differences 

(Table 4.2, EbR & EbN). 
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Table 4.2. Significant differences of variables for the years modelled from the 2007 observed baseline values 
based on an unpaired t-test. Significance indicators: NS = Not significant; * = p-value<0.05; - = Not applicable. 
Variables: EbN = Ellenberg nutrient score; EbR = Ellenberg reactivity score; pH = soil pH; C% = total soil carbon 
content by percentage; N% = total soil nitrogen content by percentage. Scenarios: Ndep = Background Nitrogen 
deposition; L<50 = Management representative of livestock grazing with N applications of less than 50 kg ha-1 yr-

1; L = Management representative of livestock grazing with N applications of 50-100 kg ha-1 yr-1. The increasing 
shading represents from light to dark and increase in N abundance change within the scenarios. Scenarios L & 
L<50  represent levels of Nitrogen use based on the Soil Nitrogen Supply status for Long-term grass found in the 
RB209 Nutrient Management Guide (AHDB, 2021). 

Scenario 
Year 

Modelled 

Broad Habitat 
Grassland 

Type 

Significant difference from baseline (2007) 

EbR EbN pH C% N% 
Ndep 2009 Improved NS NS NS - - 
Ndep 2009 Neutral NS NS NS - - 
Ndep 2009 Acid NS NS NS - - 
Ndep 2013 Improved NS NS NS - - 
Ndep 2013 Neutral NS NS NS - - 
Ndep 2013 Acid NS NS NS - - 
Ndep 2017 Improved NS NS NS - - 
Ndep 2017 Neutral NS NS NS - - 
Ndep 2017 Acid * NS NS - - 
L<50 2009 Improved NS NS NS NS NS 
L<50 2009 Neutral NS NS NS NS NS 
L<50 2009 Acid NS NS NS NS NS 
L<50 2013 Improved NS NS NS NS NS 
L<50 2013 Neutral NS NS NS NS NS 
L<50 2013 Acid * NS NS NS NS 
L<50 2017 Improved NS NS NS NS NS 
L<50 2017 Neutral NS * NS NS NS 
L<50 2017 Acid * NS NS NS NS 

L 2009 Improved NS NS NS NS NS 
L 2009 Neutral NS NS NS NS NS 
L 2009 Acid * NS NS NS NS 
L 2013 Improved NS NS NS NS NS 
L 2013 Neutral NS NS NS NS NS 
L 2013 Acid * NS NS NS NS 
L 2017 Improved NS NS NS NS NS 
L 2017 Neutral NS * NS NS NS 
L 2017 Acid * NS NS NS NS 

 

 

4.3.3 | Broad habitats 

Differences were apparent between habitats. The residual fertility of Improved grassland 

(IG); Neutral grassland (NG); and Acid grassland (AG), are best expressed in the baseline 

2007 values of the EbN results (Fig. 4.3) and Nitrophobic species results (Fig. 4.5, D-E). 
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These show IG to have the highest residual fertility (or EbN), NG to be second to this and 

AG to have the lowest residual fertility; this reflects the historic management of each habitat 

and is an expected pattern (see, Appendix C.1  and Willet et al. (2004)). Due to this residual 

fertility, the results in the following section are presented by habitat. 

 

4.3.4 | Soils  

The soils data for each scenario are presented in Appendix C.4, Fig. C.2. However, the 

differences between the fertiliser scenarios are described briefly here, these being the < 50 

kg-1 ha-1 yr (L<50), and Low level application (L) 50 – 100 kg-1 ha-1 yr (Table 4.1). 

 

Within the IG and the NG soil variable results the habitats show a stable state for pH and 

carbon under L<50. The same habitats under L show a slight rise in pH and a stable soil C 

level. For all IG and NG, L<50 and L results N shows a slight rise. The AG (of the lowest 

residual fertility) results differ though, under L<50, pH and N rise whereas C drops, and 

under L all 3 variables drop. See, Appendix C.4, Fig. C.2, for the soil variable results for the 

scenarios. 

4.3.5 | Deposition 

The atmospheric N deposition while modelled on a per year per site basis (Tipping et al., 

2019; Levy et al., 2020) accumulates over time, hence the use of the cumulative N 

deposition statistic shown in 2007 ( Fig. 4.6, D) being lower versus the 2017 maps (Fig. 4.6, 

A-C). This accumulation of N is what drives the Ndep scenario and fuels the deposition-

based species trajectories shown in Fig. 4.4-4.6. 
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Figure 4.3. Boxplots show Ellenberg Nutrient (N, top row) and Reactivity (R, bottom row) scores under each scenario, broad habitat and year. Columns are nitrogen scenarios: 
A = Nitrogen deposition from Bayesian modelling N deposition effects on Ellenberg N and a recovery from acidification increment applied to pH before generating Ellenberg R 
from soil variables (field moisture %, pH, C%, N%); B = Application of less than (L<50) 50 kg ha-1 yr-1 of N; C = Low (L) level application of N, 50-100 kg ha-1 yr-1. Both B&C 
Ellenberg values are driven by soil variable (pH;C%;N%) generalised linear mixed effect models of different categorised levels of fertiliser applications feeding into neural 
networks. Broad Habitats (BH): IG = Improved grassland (blue); NG = Neutral grassland (pink); AG = Acid grassland (orange); the dashed line in each part of each plot 
represents the BH’s 2007 median value. 
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4.3.6 | Ellenberg scores 

As the Ellenberg scores are all modelled from the 2007 baseline the plots show the medians 

of these for each broad habitat as a dashed line from which trajectories can be seen (Fig. 

4.3). These trajectories are described from the highest residual fertility habitat to the lowest. 

 

The IG results for EbR are consistent across scenarios with a smaller rise under Ndep due 

to the recovering from acidification increment and a larger rise in the fertiliser scenarios due 

to lime application in the soils model training data (Fig. 4.3). The EbN results for IG however, 

show a stable trajectory under the fertiliser scenarios and a slight rise under the Ndep 

scenario. 

 

Broad habitat type NG shows a rise from the observed EbN in 2007 for all three scenarios, 

the Ndep scenario shows a gradual rise whereas the fertiliser scenarios show a clear step 

up (Fig. 4.3). This reflects the cumulative increase of N deposited (Fig. 4.6) and the targeted 

application of N within the fertiliser scenarios. For EbR in Fig. 4.3 the move from baseline to 

the predicted results shows a step up in EbR values, however, within the soil pH results 

there is more variation in response between the scenarios (see, Appendix C.4, Fig. C.2). 

 

 

The AG, EbN and EbR results show increases from the baseline consistent with this being 

the habitat with the lowest residual fertility moving toward a higher fertility status (Fig. 4.3). 

There is however, a far more marked rise in EbR & EbN in the fertiliser scenarios (Fig. 4.3, 

B&C) results reflecting the change from lower to higher management intensity. 

  



161 

 

  
Figure 4.4. Boxplots show virtual Community Weighted Mean (vCWM) leaf N content (mg g-1) under each scenario, board habitat, and year. The Nitrogen scenarios (A-C) 
used Ellenberg values as inputs (alongside climate and vegetation data) for an ecological niche model, this outputted habitat suitability scores that provided the virtual 
abundance weighting for the vCWM; with leaf N content data from the TRY plant trait database. Nitrogen Scenarios: A = Nitrogen deposition (Ndep) from Bayesian modelling N 
deposition effects on Ellenberg N (EbN) and a recovery from acidification increment applied to pH before generating Ellenberg R (EbR) from soil variables (field moisture %, 
pH, C%, N%); B = Application of less than (L<50) 50 kg ha-1  yr-1 of N; C = Low (L) level application of N, 50-100 kg ha-1  yr-1. Both B&C Ellenberg values are driven by soil 
variable (pH;C%;N%) generalised linear mixed effect models of different categorised levels of fertiliser applications feeding into neural networks. Broad Habitats (BH): IG = 
Improved grassland (blue); NG = Neutral grassland (pink); AG = Acid grassland (orange); the dashed line in each part of each plot represents the BH’s 2007 median value. 
 
  



162 

 

 
Figure 4.5. Boxplots show diversity scores for the species groups Nitrogen fixers (A-C), & Nitrophobes (D-F), under each scenario, board habitat, and year. The Nitrogen 
scenarios used Ellenberg values as inputs (alongside climate and vegetation data) for an ecological niche model which outputted habitat suitability scores that are summed to 
provide the diversity score for each species group. Nitrogen Scenarios: A&D = Nitrogen deposition (Ndep) from Bayesian modelling N deposition effects on Ellenberg N (EbN) 
and a recovery from acidification increment applied to pH before generating Ellenberg R (EbR) from soil variables (field moisture %, pH, C%, N%); B&E = Application of less 
than (L<50) 50 kg ha-1  yr-1 of N; C&F = Low (L) level application of N, 50-100 kg ha-1  yr-1. Plots B,C,E&F Ellenberg values are driven by soil variable (pH;C%;N%) generalised 
linear mixed effect models of different categorised levels of fertiliser applications feeding into neural networks. Broad Habitats (BH): IG = Improved grassland (blue); NG = 
Neutral grassland (pink); AG = Acid grassland (orange); the dashed line in each part of each plot represents the BH’s 2007 median value. 
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4.3.7 | Vegetation community 

The four species groups show a variety of responses to the scenarios through changes in 

their group diversity scores (summed, suitability scores / WMA, of each species in the group) 

as can be seen across the results (Fig. 4.5). Also, within the species results is the vCWM 

leaf N content data (mg g-1) providing an indication (Fig. 4.4) of the amount of N that may be 

held in vegetation. 

 

The vCWM leaf N content results (nitrogen held within vegetation) are a representation of N 

abundance in the vegetation pool modelled (Fig. 4.4). As this represents varying levels of N 

within vegetation biomass, it also covers a wider range of species growth strategies (Kattge 

et al., 2020). The IG results shows the least response to the scenarios, but vCWM leaf N 

content does decline under the fertiliser scenarios (Fig. 4.4, B-C). The NG leaf N content 

vCWM declines under all scenarios but has a more marked step down from baseline under 

the fertiliser scenarios, particularly under L. The AG results show the opposite trend from the 

other two habitats showing a rise, with greater change from Ndep to L<50 to L (Fig. 4.4, A-

C). The Ndep scenario results show the least change for all three broad habitat types vCWM 

leaf N content (Fig. 4.4, A). 

 

The N fixing species diversity results (Fig. 4.5, A-C) do not show consistent patterns 

between the scenarios and habitats. For IG under Ndep (Fig. 4.5, A) a slight decline in N 

fixer diversity is seen and under the fertiliser scenarios (Fig. 4.5, B-C), where diversity is 

fairly stable apart from the final years dropping below the median. With the NG results, 

diversity is stable under deposition but steps down from the baseline onward in the fertiliser 

scenarios, these results are representative of the step up in management intensity (Fig. 4.5, 

A-C). For the Ndep scenario AG N fixer diversity steps up from the baseline and for the 

fertiliser scenarios shows a slight rising trend. This is likely due to conditions changing to 

favour a greater number of species than in AG broad habitats at baseline (Fig. 4.5, A-C). 
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The nitrophobic species (N-phobe) diversity results are reflective of each habitats residual 

fertility (Fig. 4.5, D-F). Under all three scenarios, IG N-phobe results remain stable around 

the baseline consistent with the high fertility of the habitat as for the lower N-phobe diversity 

(Fig. 4.5, D-F). Within AG differing trends are seen in the Ndep (rising diversity, Fig. 4.5, D) 

versus the fertiliser scenarios (stable to slight rises in some years, Fig. 4.5, E-F). The NG 

results, however, show the opposite trend to the other two habitats showing declines across 

the scenarios. 

 

4.3.8 | Deposition and Nitrophiles 

Cumulative N shows a clear increase from 2007 to 2017 in Fig. 4.6 but the Nitrophilous 

species diversity scores across the broad habitats do not align with this increase. In IG while 

the number of points decreasing versus increasing is similar in Fig. 4.6, A (103 decreasing 

versus 100 increasing) there are more points with a larger decrease resulting in an overall 

decline in Nitrophile diversity (see, Appendix C.4, Fig. C.3). For NG again the number of 

increasing and decreasing points is similar (56 versus 61) but only a few larger decreases 

contribute to an overall decline by 2017 of a few decimal points (see, Appendix C.4, Fig. 

C.3). The AG results having the lowest residual fertility does, however, show a positive 

response in Nitrophiles species diversity with considerably more points increasing than 

decreasing (43 versus 27). The Nitrophilous species diversity across all three grassland 

broad habitats can be seen (Fig. 4.6, D) as varied but with high diversity scores clustered 

around areas (in blue) where N accumulation is highest, these are most notably the uplands 

(> 300 m a.m.s.l.) in north Wales and north-west England. 
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Figure 4.6. Nitrophilous species group diversity and change under nitrogen deposition maps. Cumulative N 
deposition units are kg ha-1 from 1970 to the year mapped, A-C (2017) and D (2007). The 2007 species 
diversity scores are the summed Nitrophilous habitat suitability scores from an ecological niche model output 
and the diversity change is the 2017 species diversity minus the 2007 species diversity. From 2007 to 2017 
triangles pointing up represent positive changes & negative changes are represented by arrows pointing down. 
Broad Habitats: IG = Improved grassland (blue); NG = Neutral grassland (purple); AG = Acid grassland 
(orange). 

4.4 | Discussion 
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4.4.1 | Model workflow testing 

The logistical regression results (appendix C.4, Fig. C.1) suggest that at the baseline the 

workflow produces habitat suitability scores that correlate well with observed species 

presence building confidence in the modelling approach.  

 

Overall, however, modelling showed surprisingly little response over time with only small 

deviations from baseline values (e.g. Table 4.2). 

 

4.4.2 | Habitat trajectories 

As expected across the scenario results with differing habitat residual fertilities responses 

have varied. Overall results show where residual N abundance is high a positive change in N 

abundance has led the indicators explored: EbN (Fig. 4.3), soil N (Appendix C.4, Fig. C.2), 

to remain stable or increase and for Nitrophobous species (Fig. 4.5, D-F) to remain stable or 

decrease. This demonstrates how high or increasing fertility is known to change habitats and 

have a lasting impact on them as demonstrated in past research (Emmett, 2007; Maskell et 

al., 2013; Zhang et al., 2015; Tipping et al., 2019). 

 

A novel caveat to this for trying to determine likely measurable change, is that reverse trends 

to the above are not occurring e.g. there is no obviously lower N abundance relating to lower 

soil N, lower fertility and higher Nitrophobous species diversity within the results.  Within the 

indicators explored two species groups demonstrate this well: Nitrophobous species 

increase within lower fertility habitats (acid grassland) under lower N inputs (deposition, Fig. 

4.5, D); however, Nitrophilious species also increase under lower N inputs (Fig. 4.6, C). 

Despite the responses of the groups being expected to oppose each other. 

 

This inconsistency of expected trends across the results is logical if we consider specifics in 

the context of the scenarios and habitat types. If we consider higher fertility, improved 
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grasslands, the EbN results under the highest fertiliser scenario are stable (Fig. 4.3, C). This 

is most likely due to the fact that the L scenario is representative of low fertiliser use in 

comparison to typically high intensity grassland management (AHDB, 2021). Therefore, little 

deviation from the baseline median is seen as the input is likely insufficient to trigger a 

response. Under low fertility, the Nitrophilious species diversity increases in acid grasslands 

(Fig. 4.6, C) representative of them having a low fertility that is increased by deposition. To 

summarise, the trend for each of these examples respectively are: 

A. High N abundance with N input being lower than typical for the habitat results in 

stability and little change over time in already highly modified and fertile habitats 

(improved grasslands). 

B. Low residual fertility habitats (acid grasslands) with a low N input resulting in 

fertility increases are reflected by Nitrophilious species diversity increases as 

expected. 

This is reflective of there being a strong dependence on starting conditions and management 

legacy when exploring vegetation and soil variable change. 

4.4.3 | Ellenberg Scores 

A possible confounding factor within the results is under improved grassland, where EbN is 

surprisingly stable under the fertiliser scenarios. While this reflects a possible continuation of 

typical management it is under low fertiliser application scenarios and applications of over 

double the values of N kg-1 ha-1 aren’t unknown (AHDB, 2021). This, alongside the rise in 

EbN under the Ndep scenario, suggests that a change in management or fertiliser use here 

may take over 10 years to be reflected in a change in fertility in these habitats. Timescale far 

exceeding this are also not unheard of meaning measurable change maybe a long time 

coming (Dupouey et al., 2002; Phoenix et al., 2012).  

 

The neutral grassland EbN increases away from baseline reflecting deposition effects 

congruent with those in Stevens et al. (2016), despite N deposition decreasing in some parts 

of Europe (Stevens et al., 2004). The step-up style increase (Fig. 4.3, B&C; and, Fig. 4.4, 
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B&C) is reflective of the management intensity going up pushing neutral grassland closer to 

the same state as improved grassland, as fertiliser use is known to do (Willett et al., 2004; 

Emmett, 2007; Gossner et al., 2016). This leads to the same high fertility concerns in neutral 

grassland as described in improved grassland above; a higher fertility, lower diversity state 

takes time to move away from. 

 

The consistent pattern in EbR change within neutral grassland across the scenario results 

does not reflect what might be expected with deposition and fertiliser effects on pH (Phoenix 

et al., 2012; Xu et al., 2020). This is a result of EbR being reflective of vegetation change 

under all variables which coarsens the differences observable in the soil pH results 

(Appendix C.4, Fig. C.2). 

 

With acid grassland being the habitat with the lowest residual fertility both fertiliser and 

deposition effects clearly move it toward higher fertility (Fig. 4.3 & Fig. 4.5). Within the 

fertiliser scenarios, this is very much a reflection of the effect of fertilisers on habitats 

(Diekmann and Falkengren‐Grerup, 2002; Emmett, 2007; Phoenix et al., 2012) as the 

increase in management intensity pushes acid grassland closer to the higher fertility states 

of neutral and improved. While this has led to higher diversity for N fixers (Fig. 4.5, A-C) in 

acid grassland it also comes with the above concerns surrounding higher fertility and loss of 

wider diversity (Emmett, 2007; Rowe et al., 2016). 

 

4.4.4 | Soils 

The soil variable results (Appendix C.4, Fig. C.2) are only related to the fertiliser scenarios 

(L<50 & L) due to the modelling methodology. Fertiliser effects on soils are explored for the 

sake of monitoring the indicators used here for sustainable land management. The fertiliser 

application levels here do elicit differing responses. The L<50 scenario, a lower application 

rate, seems to leave pH stable; and higher application, the L scenario leading to a pH rise in 
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IG and NG. This is likely due to liming effects (Xu et al., 2020) as this is applied within the 

soil variable model construction data. 

 

The differences in the L<50 and L; C% and N% are likely due to the capacity of soil to hold 

onto nutrients (Posch, Aherne and Hettelingh, 2011; Phoenix et al., 2012; Tipping et al., 

2017) as the higher drop in soil C under L in acid grassland leads to less N being held in the 

soil (Novotny et al., 2007; Phoenix et al., 2012). For improved and neutral grasslands, soil C 

is lower but consistently stable accompanied by a rise in N (Appendix C.4, Fig. C.2). This is 

likely due to the management history of these grasslands including some manure and 

fertiliser application or species compositions meaning extra fertility is utilised by species able 

exploit this. (Diekmann and Falkengren‐Grerup, 2002; Willett et al., 2004; Horrocks et al., 

2014). The drop in the L scenario N is likely linked to C also dropping as stoichiometrically 

the soil cannot hold the extra N coming into the system and may be leached out or lost to 

biomass harvesting (Novotny et al., 2007; Jones et al., 2017). This is likely due to greater 

turn-over and net primary production fuelled by the biotic community utilising the increased N 

availability under lower C:N conditions (Novotny et al., 2007; Jones et al., 2017; Tipping et 

al., 2019). 

 

The above reflects the need to monitor and manage soils at a national scale to ensure good 

soil health and function, and the soil indicators used here are shown to be important for this 

nationally by Seaton et al. (2020). 

 

4.4.5 | Plant responses 

The plant species responses to the scenarios covered do provide good indications into 

changing N abundances in habitats as they were selected having been informed by Rowe et 

al. (2016) and Smart et al. (2017). 
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The trajectories of the Nitrophobous and Nitrophilous species group diversity are discussed 

above but here links are made to the input variables in the differing N scenarios and residual 

habitat fertilities. For the fertiliser scenario soil and Ellenberg results in improved and neutral 

grasslands, the rise in the variables relating to fertility and N does tie in with Nitrophobous 

species diversity decreases. Whereas for Nitrophilous species under deposition (Fig. 4.6) 

the diversity score changes can be linked to, habitats with similarly high residual fertility 

(improve & neutral grasslands) having declining diversity; and low residual fertility habitats 

(acid grasslands) having Nitrophile diversity increasing. Also, Nitrophobic species increases 

in acid grassland under deposition could be a response to increasing pH with the increment 

applied (see, 4.2.8) to represent recovery from deposition based acidification (Emmett et al., 

2010; Rose et al., 2016) 

 

Within the N fixing species, the inconsistent response to the scenarios is likely reflective of 

the variation in habitats residual fertility and plant diversity between habitat types. This is 

noticeable in N fixing species diversity change under the Ndep scenario (Fig. 4.5, A). Here, 

the decrease in N fixer diversity under high fertility (improved grassland), and the increase in 

diversity under low fertility (acid grassland); is likely linked to leguminous species being 

better adapted to taking advantage of systems with low N, using their biological fixation as a 

competitive advantage (Diekmann and Falkengren‐Grerup, 2002; Lee et al., 2003). Whereas 

when N is high it is not limiting other species are better or as well suited to the conditions 

(Diekmann and Falkengren‐Grerup, 2002; Lee et al., 2003). Within the fertiliser scenarios 

(although less well defined than in the Ndep scenario), a similar response of N fixer diversity 

to N abundance is seen in higher versus lower fertility habitats, neutral versus acid 

grasslands, respectively (Fig. 4.5, B&C). As within the higher fertility habitat where N 

abundance rises N fixers lose their competitive advantage, leading to a decline in diversity 

(Diekmann and Falkengren‐Grerup, 2002; Lee et al., 2003) and in lower fertility, the rise in N 

abundance brings the habitat closer to the higher fertility habitat and diversity level. 
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However, this response is likely to be altered for all three grassland habitats under elevated 

CO2 levels and climate change (Lee et al., 2003; West et al., 2005). 

 

Foliar biomass N content is known to rise in response to greater N availability (Diekmann 

and Falkengren‐Grerup, 2002; Fernández-Martínez, 2022). However, leaf N content as a 

plant functional trait is affected by species and functional type identity (Orwin et al., 2010). 

This means that the interpretation of leaf N content vCWM (Fig.3; hereafter, LNvCWM) 

needs consideration in the context of three key factors: habitat residual fertility, scenario N 

abundance change and species traits. The LNvCWM response does demonstrate a 

response to the increasing gradient of scenarios N abundance from Fig. 4.4, A (Ndep) to 

Fig. 4.4, C (L, N 50-100 kg ha-1 yr-1). Within the Ndep scenario, LNvCWM results in little 

change, reflective of the least change in fertility (Fig. 4.3, A). Whereas under the fertiliser 

scenarios the habitats typically receiving N inputs in their management (improved 

grasslands) show minimal change in LNvCWM representing a status quo; whereas a rise in 

N application for the mid-fertility habitat (neutral grassland) leads to a loss of diversity 

(Appendix C.4, Fig. C.4) and lowering of LNvCWM. This is due to N enrichment and has 

been described in previous research (Emmett, 2007; Maskell et al., 2013). The rise in the 

lowest fertility habitat (acid grassland) LNvCWM we attribute to its fertility levels and thus 

LNvCWM moving towards that of the higher fertility habitats, described as ecosystem 

homogenisation elsewhere (Gossner et al., 2016). 

 

The LNvCWM results here are reflective of species expected to be dominants based on 

MultiMOVE’s outputs and those with high leaf N content values. This may not be reflective of 

real world typical values due to the species pool being constructed to represent dark 

diversity thus being larger than expected real pools (Pärtel, Szava-Kovats and Zobel, 2011). 

The realised species pool is subject to colonisation and establishment filters that determine 

which species end up present in plots, all species groups modelled here are subject to this. 
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4.5 | Conclusion 

 

The trends above, mainly within the Habitat trajectories section, show good congruence with 

the hypothesis (1.); however, there are many exceptions across the results. This variation 

provides novel insights into factors that confound the research aim, to estimate over what 

timescale change can (or cannot) be measured. As both N fertilisation and deposition are 

well known to impact upon soils and plant communities (Willett et al., 2004; Emmett, 2007; 

Phoenix et al., 2012; Xu et al., 2020) the key insight from this study comes from estimating 

the detectability of changes over time. This knowledge, however, is critical in the context of 

designing sustainable land management policies (De Vries et al., 2010; Posch, Aherne and 

Hettelingh, 2011; Rowe et al., 2016). The finding that none of the measured soil variables 

were significantly different from baseline values alongside few differences in Ellenberg 

values (Table 4.2) suggests that these indicators don’t perform well for determining AES 

management induced change or determining success over the time modelled (double typical 

AES prescription times). These indicators could be reinterpreted to be expressed as a 

percentage change from a start point or toward a desirable point to better represent change 

but, within the results shown (Fig. 4.3) values would still be low. However, within the species 

results (Fig. 4.5) changes are larger suggesting these are better indicators of AES 

management induced change, especially as plants are responding to multiple environmental 

variables (model inputs). All the indicators, however, show differences between habitats 

suggesting that more time may be needed to see change; this negates possible concerns 

that results are an expression of poor data rather than low performance indicators. 

 

The assumption within the main hypothesis (1.) is that the response to a change in N will be 

reflective of the direction of change in N abundance. However, our results show a strong 

dependence of modelled response on starting conditions, meaning the hypothesis is not 

consistently confirmed. For example, within the improved grassland broad habitats, where 
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changes in N abundance in either direction in comparison to the habitats past high N inputs 

regularly fails to elicit a response, by way of little to no deviation from the baseline. Other 

patterns are summarised below within answering the sub-hypotheses: 

i. N fixing species diversity does regularly decrease with higher N abundance in 

improved and neutral grassland broad habitats. The reverse is true in acid 

grasslands which is expected to be linked to habitat homogenisation (Smart et al., 

2006; Gossner et al., 2016).  

ii. With an increase in N abundance and fertility across the scenarios in neutral 

grassland, Nitrophobic species diversity does drop; although it remains stable or near 

stable in acid and improved grassland. The one exception to this is a rise in diversity 

in acid grassland under N deposition where this may reflect decreases in N 

deposition in some locations (Stevens et al., 2004) as well as recovery from 

acidification (Emmett et al., 2010; Rose et al., 2016), particularly in the uplands 

where acid grassland is most common (see, Fig. 4.5  and 4.4.5 , Plant responses). 

iii. Nitrophilous species diversity change is dependent on the broad habitat type and 

associated residual fertilities. Acid grassland with a low residual fertility which rises 

under N deposition confirming the main hypothesis and this sub-hypothesis with a 

rise in diversity. However, neutral grassland with a higher residual fertility shows a 

decline in diversity. 

iv. Modelled N held within vegetation biomass (LNvCWM results) doesn’t rise 

consistently with higher N abundance and often shows little response to change in 

the scenarios thus this hypothesis is rejected. It is expected to be more closely 

related to a combination of, species and functional type identity; also N abundance 

change contextualised to starting conditions and past management (Diekmann and 

Falkengren‐Grerup, 2002; Orwin et al., 2010) as well as previously observed species 

idiosyncratic responses to N change (Novotny et al., 2007). 

 

While changes (deviations from baseline medians) are observed within some of the results 

grassland AES agreements typically last 3-5 years, however, N-based changes in 

ecosystems are hard to measure in under 10 years (Rose, 2011; Rural Payments Agency, 

2022a); especially here for soil variables. This is supported by the significance testing of the 

differences of the modelled results from the baseline and finding few instances of significant 

deviation. Even with results being habitat and scenario (management history and 
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management) dependent, decadal timescales for change to be observed can be widely 

expected. 

 

Our results show that the effect of fertilisers on Ellenberg scores discussed above, as well as 

the findings of Phoenix et al. (2012) suggest that even very low (< 10 kg ha-1 yr-1) N addition 

can accumulate leading to N impacts building up. The recommendation here is, that use of N 

fertilisers matches the equivalent of L<50 levels specified here (< N 50 kg ha-1 y-1), with 

application limited to habitats that already have higher fertility levels (improved grassland). 

This could reduce further plant diversity loss. We also make a strong suggestion to policy 

makers that AES require confirmation of a change of management as well as using 

established plant species indicators to ensure land-managers are rewarded for 

environmentally beneficail changes in the practices as well as the results (when observed) of 

their efforts. 

 

In terms of the research aim looking at measurable changes in the indicators we have 

focused on here these indicators alone are not likely to be sufficient for results-based policy 

for agri-environment schemes (Defra, 2020a, 2020b) seeking to confirm desirable results 

empirically. 
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Chapter five, synthesis and conclusion 

 

5 | The only certain thing is change: How can land 

management work with plants and soils to tackle 

global change? 
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5.1 | Land management for global change 

 

The multiple global environmental change issues are well captured within the planetary 

boundary concept; climate change, land system-change, water use and degradation, 

biogeochemical cycle disruption, biosphere integrity degradation and polluting novel entities 

(Rockström et al., 2009; Steffen et al., 2015; Häyhä et al., 2018). While land use change has 

contributed to the worsening of all these issues (Watson et al., 2011; IPCC, 2018; Hayhow et 

al., 2019; Díaz et al., 2020), through research-led good practice, land management has the 

potential to mitigate and reverse these trends (Minasny et al., 2017; Simons and Weisser, 

2017; Helm et al., 2020; IUCN, 2020). A concern beyond the issues themselves is the 

increasing time pressure of their impacts, especially in the context of climate change (Smith, 

Knapp and Collins, 2009; Zhongming et al., 2022) and ongoing evolution of initiatives such 

as the European Union (EU) Common Agricultural Policy (CAP) and UN Sustainable 

Development Goals (Pe’Er et al., 2019). The current state of anthropogenic influences on 

the planet represents a situation where intentions for the sake of pragmatism should ideally 

shift from prevention alone to also include damage mitigation. 

 

Achieving ecologically-evidenced sustainable land management represents a top priority for 

mitigating and preventing the impacts of environmental change. Agri-environment schemes 

(AES) represent trans-national (EU CAP) policy tools for encouraging implementation of 

sustainable land management practice (Rose et al., 2016; Oatway et al., 2018; Pe’Er et al., 

2019). The novel research work here has aimed to contribute to the ecological evidence 

base assessing the likely efficacy of AES-prescribed management within the UK when 

subject to interacting global change drivers. This is highly topical and current as not only are 

environmental issues becoming more time pressured but also as new policy is required due 

to the UK’s exit from the EU (Brexit) (Arnott et al., 2019; Defra, 2020a). 
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5.1.1 | Current and future UK AES 

The UK AES have been developed in their current form to tackle targeted ecological and 

environmental goals but need reform in the context of Brexit and the desire to ensure public 

money is spent on public goods (Defra, 2018, 2020a; Arnott et al., 2019). These goals or 

aims can be summarised into seven key word-based themes featuring in past, current, and 

future AES policy documents naming them as key areas for subsidised action: 

1. Climate: climate change mitigation or adaptation. 

(Rose et al., 2016; Defra, 2018, 2020a; Oatway et al., 2018) 

2. Soil: healthy soil and carbon sequestration. 

(Rose et al., 2016; Defra, 2018, 2020a; Oatway et al., 2018) 

3. Biodiversity: maintaining or improving biodiversity. 

(Rose et al., 2016; Defra, 2018, 2020a; Oatway et al., 2018) 

4. Water: water quantity and quality. 

(Rose et al., 2016; Defra, 2018, 2020a; Oatway et al., 2018) 

5. Flood & Drought: reducing climate-based hazard impacts. 

(Defra, 2018, 2020a) 

6. Trees: maintaining forest and planting trees. 

(Rose et al., 2016; Defra, 2018, 2020a) 

7. Heritage: sustaining heritage landscape features. 

(Defra, 2018, 2020a) 

These are largely implemented by paying land-managers for implementing AES 

management options, although the individual options are not always specifically linked back 

to the points above. Example of utilised options can be found in the AES guidance, Welsh 

Government (2016) and Rural Payments Agency (2022a). 

 

While AES scheme design has been acknowledged as being robust with some positive 

outcomes evidenced (Keenleyside et al., 2011; Bright et al., 2015; Oatway et al., 2018; 

Dadam and Siriwardena, 2019; MacDonald et al., 2019) there are many examples of limited 

success, lack of monitoring, or at best maintenance of the status quo (Kleijn and Sutherland, 

2003; Critchley, Burke and Stevens, 2004; Davey et al., 2010; Mountford and Smart, 2014; 
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Norton, Henrys and Crowe, 2014; Arnott et al., 2018; Staley et al., 2018). These concerns 

are why a number of land management prescriptions aligned with AES have been modelled 

here to enable a prospective assessment of the potential performance of interventions given 

the increasing impact of global change drivers beyond the immediate control of the land-

manager. 

 

I explore the near future impact of four generalised AES option types: reducing fertiliser use; 

reducing livestock density on land; management of vegetation height, and planting native 

trees species. Chapters 2 , 3 & 4, of this thesis focus on these example AES prescription 

types, through modelling their management effects on plants and soils. 

 

The plant and soil focused models used in this thesis have directly explored ecological 

outcomes of management directly related to the key word-based AES areas identified here 

with the numbering used above: 

2. By modelling soil variable change with management and fertiliser application 

change. 

3. By using ecological niche modelling (ENM) of plant species and vegetation 

change. 

6. By construction of a modelling workflow emulating tree planting. 

There are also links to key word-based AES areas 1, 4 & 5 above: as carbon increase in soil 

and tree planting can mitigate climate change (Rowe et al., 2016; Minasny et al., 2017; Di 

Sacco & Hardwick et al., 2020); afforestation can reduce flooding (Marshall et al., 2014; 

Stratford et al., 2017); and tree planting and fertiliser use reduction is linked to water quality 

(Emmett, 2007; Horswill et al., 2008). 

 

While ecological monitoring has been part of UK AES for a number of years (Rose, 2011; 

Oatway et al., 2018), national scale monitoring schemes with methodologies in common are 

rare. For this reason when large monitoring datasets do become available, it adds value to 
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the survey efforts to go beyond monitoring and attempt to model into the future; especially in 

the context of global change (Ormerod, 2012a, no date; Emmett, Alexander, et al., 2016). 

Thus within the work here, the Glastir Monitoring and Evaluation Program (Emmett et al., 

2017) data and the Countryside Survey (Carey, Wallis, Emmett, et al., 2008) datasets 

alongside the other datasets described in 1.7   have allowed large scale monitoring data to 

be used for future casting to inform on long-term AES performance. 

 

5.2 | Insights from Modelling AES impacts on plants and soils 

 

This thesis has modelled the management of grassland and creation of woodlands as these 

respectively represent: semi-natural habitats where anthropogenic land use can be traded 

off with ecological benefits (Simons and Weisser, 2017); and late stage succession habitats 

the restoration or creation of which provides biodiversity and carbon capture potential (Green 

et al., 2005; Stafford et al., 2021). The findings of the work within Chapters 2 , 3  & 4  are 

summarised below and synthesised into key ecological considerations at the end of this 

section then used to make recommendations for application to AES design in section, 5.2.1. 

 

All three analysis chapters focus on the modelling potential improvement to, creation of or 

restoring habitats. Within Chapters  2  & 4 , grassland habitat diversity trajectories are 

modelled with desirable end-points being biodiversity increases from improved to 

unimproved grassland habitats. The assumption was when habitats transition from 

intensively managed improved habitats to reduced intensity management or unimproved 

habitats, biodiversity gains should be seen; this, however, was not consistently the case 

(see, 4.5  & 2.3 ). Also, within Chapter 2 , little predicted change in soil conditions were seen. 

Chapter 3  modelled tree planting, predicting how several habitats establish to woodland 

after planting. Within this, biodiversity improvements for both the species groups selected 
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and soil condition improvements were seen within less than 30 years although not 

consistently reaching established (baseline) woodland levels. 

 

A consistent theme across the analysis chapters was that for AES options expecting habitat 

transitions, their agreement times were largely too short for significant ecological change to 

be completed. This consideration is connected with wider ecological theory of the 

relationship between intervention (or perturbation) level and the recovery or change 

timeframe; however, this can be altered by global change drivers as seen in 4 and described 

in Smith et al. (2009). This is also further affected by a site’s historic management and 

ecological state (Dupouey et al., 2002; Ogle et al., 2015). The differences between habitats 

with shorter-lived versus longer-lived species e.g. grasslands (many annuals) and 

woodlands (many perennials) explored here, also affects response time (Smith, Knapp and 

Collins, 2009). This is directly related to the findings of Chapters 2  & 3  where AES 

management prescription times are too short for major changes to occur. Given that AES 

designs are typically determined to be robust, but only occasionally deliver their goals 

(Keenleyside et al., 2011; Oatway et al., 2018; Dadam and Siriwardena, 2019; MacDonald et 

al., 2019), their timeframes are a likely cause of their ecologically, inconclusive or poor 

performance outcomes. 

 

The AES options explored in Chapter 2  represent a broad-shallow extensification of 

management, this refers to widely funded AES prescriptions to reduce stocking densities 

and fertiliser application. Chapter 3  however represents an intervention (tree planting) to 

deliberately transition from starting habitats to forest. These two changes in management 

differ both ecologically and in their level of intervention at the point of implementation, 

therefore the differences in ecological response are to be expected. 
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All three modelling chapters (2 , 3 & 4 ) predict changes in habitat suitability of individual 

species and then sum these to estimate ‘dark diversity’ (Pärtel, Szava-Kovats and Zobel, 

2011) at each modelled quadrat location. By modelling the local species pool drawn from 

species observed in each quadrat location at baseline and also known to occur in the wider 

10km square we estimate the extent to which new soil and climate conditions favour a 

different subset of plant species to those present at baseline, before and after each 

intervention is applied. Hence potential future colonisers are those with higher modelled 

suitability scores. While this is useful for exemplifying restoration potential, realising new 

assemblages will require dispersal and establishment filters to be overcome (see, 5.3.1.3 ). 

 

The UK has habitats which have become progressively degraded over long time periods and 

current evidence suggest this trajectory is not changing (Hayhow et al., 2019). This can be 

addressed in several ways. Firstly, if natural process are to be relied on, then adjacent high 

quality habitat needs to be present to provide a colonising population source for both forest 

(Brunet et al., 2012; Di Sacco & Hardwick et al., 2020) and grassland restoration (Stevens, 

2010; Wagner et al., 2014). Relying on an already degraded national landscape (Watson et 

al., 2011; Hayhow et al., 2019; Forest Research, 2020) for natural dispersal processes 

therefore seems unwise, particularly for afforestation. Alternatives to this regularly explored 

in grassland and forest restoration is direct seeding or planting of species (Pywell et al., 

2007; Wagner et al., 2014; Di Sacco & Hardwick et al., 2020; Berdeni, Williams and Dowers, 

2021). This provides a more definite outcome by skipping at least the dispersal stage and, 

where planting is concerned some of the establishment stage as well. 

 

5.2.0.1 | AES Ecological considerations 

The ecological insight gained from modelling and analysis in this work aims to ensure AES 

interventions are well evidenced. This will also help policy makers expectations to be 
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realistic. Due to this, three well established aspects of wider ecological theory are provided 

as key considerations for AES design into the future: 

A. Time for change - if ecological restoration is desired then realistic ecological 

timeframes must be used. 

B. Intervention level - lighter management change will result in smaller responses (and 

longer responses times). 

C. Dispersal and establishment - if biodiversity gain goals are to be met, then sources of 

plant species must be acquired through local population sources or deliberate 

introduction. 

 

5.2.1 | AES policy and management recommendations 

The modelling workflows within the analysis chapters represent a variety of land 

management scenarios. These have been constructed (using data from literature review) as 

near matches to AES prescribed management types, thus direct application to management 

needs careful consideration. The section below, however, provide management and policy 

recommendations that can be directly applied to AES design for sustainable management of 

plants and soils. 

 

5.2.1.1 | Habitat restoration and creation, based AES improvement 

While the two habitats explored in the analysis chapters differ ecologically, the work here 

has highlighted two requirements for ecological management of grassland and forests: 

I. Extending the length of agreement times and/or offering increased incentives for 

continually signing up to the same intervention regime or sequentially improving 

ecological management interventions to increase the chances of positive changes to 

plant diversity and soil conditions. As Chapters 2 , 3 & 4 all suggests typical 

agreement times (3-13 years as in, Rose; Rural Payments Agency, (2011; 2022a)) 

could be lengthened for more desirable outcomes. 

II. Ensuring plants are present to establish, either seeding and planting desirable 

species; or by dispersal from adjacent sites harbouring target communities. As 

sections 2.4.1 & 3.4.3 suggest for grasslands and woodlands. 
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Both of these can be summarised as longer and stronger interventions, management 

prescriptions with greater duration and applied targeting. Although as land-managers are 

more amenable to lighter interventions (Arnott et al., 2018), longer funding times are likely to 

be more attractive to land-managers if incentivised suitably. The ongoing development of the 

UK’s Environmental Land Management Scheme (ELMS) should consider these opportunities 

and constraints (Defra, 2020a). 

 

5.2.1.2 | Grassland Management AES improvement 

The first (2) and third (3) analysis chapters both focus on grassland, the first looking 

specifically at lighter touch AES application and the second on fertiliser use. The findings of 

both are synthesised below: 

 

5.2.1.2.1 | Fertiliser use 

A reduction in fertiliser use modelled in Chapters 2 & 4  failed to elicit much ecological 

response in less than 10 years. Therefore, the recommendation here is that fertiliser 

application is limited only to habitats that already have higher fertility levels (improved 

grasslands) and application levels do not exceed 50 kg N ha-1 yr-1 (see, 4.5 ). This allows 

lower fertility habitats to continue on trajectories uninfluenced by fertilisers, and more fertile 

habitats to maintain production ecosystem services while slowly transitioning away from high 

fertility and low diversity states (thus toward AES goals). 

 

5.2.1.2.2 | Detectability 

Given the call within newly the developing UK AES, ELMS, for results based schemes a 

measurable change with the results from government-funded land management 

prescriptions is required (Defra, 2018, 2020a, 2020b), thus any lack of measurable change is 

a concern. In both chapters I showed that environmental condition metrics and indicators 

(Carey, Wallis, Chamberlain, et al., 2008; Emmett et al., 2010; Seaton et al., 2020) often 
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showed little or no change up with 10 years of modelled intervention. Therefore, the 

recommendation is lengthening AES (as for 5.2.1.1  I.) to increase the likelihood of 

detectable change or results. However, it will remain important to incentivise beneficial 

management practice prior to this. Therefore, the suggestion to policy makers is that AES 

implementation should include compliance monitoring (ensuring the intervention has been 

applied appropriately on the ground and in the right places) plus ongoing monitoring to 

detect possible ecological change (results-based success) thus ensuring land-manager’s 

sustainable practice efforts are rewarded. 

 

Also, environmental condition metrics and indicators used to determine change need careful 

consideration. In particular, tension may arise between selecting indicators sensitive to a 

particular intervention while also achieving backwards compatibility with existing time series. 

For example, GMEP and ERAMMP use established metrics and indicators (Emmett, 

Alexander, et al., 2016; Emmett et al., 2017) that date back to the 1970s (Carey, Wallis, 

Chamberlain, et al., 2008; Reynolds et al., 2013). Also further exploration of plant-based 

indicators such as those within Rowe et al. (2015) could provide vegetation-based indicators 

that respond faster than decadal time scales. 

 

5.2.1.2.3 | Stronger interventions 

Given the slow response of grasslands to the changes in management modelled in Chapters 

2  & 4 , stronger management interventions should lead to more desirable habitat developing 

faster. Examples of this include: switching to manure or green manure based fertilisation (but 

keeping below the N application level in 5.2.1.2.1 ); stricter vegetation height management 

with limitation of grazing and cutting; seeding in approved native, seed mixes or spreading of 

green hay; and manipulation of soil or bare ground to provide colonisation sites. These are 

all management interventions drawn from grassland restoration ecology (Pywell et al., 2007; 
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Stevens, 2010; Hayes and Lowther, 2014; Wagner et al., 2014; Staley et al., 2018; Török et 

al., 2021). 

 

5.2.1.3 | Afforestation AES improvement 

The afforestation practices modelled here apply specifically to broadleaved woodlands 

where we explore benefits for biodiversity and carbon benefits. While I modelled plantation 

scenarios, aspects of passive afforestation (natural succession) are also included with the 

AES prescribed management improvements below. A key consideration for afforestation 

policy is facilitating the “right tree in the right place” narrative (Di Sacco & Hardwick et al., 

2020). Achieving this requires the following sequential activities: 

1. Site selection. 

As availability and suitability of land for afforestation is needed for successful 

afforestation; guidance and forest-planning support is key. Therefore, the publishing 

of regularly reviewed site (and species) selection guidance as well as covering forest 

planning consultancy fees should improve afforestation success by tailoring planting 

to the “site level”. This is best emphasised in the “most benefit” versus “most 

creation” contrast in section 3.4.11. 

This is pertinent as not all land-managers can be expected to hold the forest ecology 

knowledge to make decisions that are, economically viable as well as mitigating 

biodiversity loss and climate change. While policy documentation does acknowledge 

this (Davies, 2016; Defra, 2018), schemes that directly address these issues are 

rare. However, the new UK Environmental Land Stewardship scheme (ELMs) 

presents an opportunity to change this (Defra, 2020a) that should not be missed. 

2. Species selection.  

Next, guidance and forest planning support should also cover which species to 

establish in a site given its environmental conditions (kept up-to-date with climate 

change and tree pathogen concerns, Pautasso et al. (2010)). Also, while local 

colonisation (see, 5.2.1.1: II.) is a potential tree source, within Chapter 3, the time-

scales for some variables to reach established woodland values, does suggest that 

as for 5.2.1.3 : 1., well implemented planting schemes at a “by site level” can be a 

preferable method for accelerated afforestation and restoration. 
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3. Planting methods.  

To align with AES goals (5.1.1 : 1., 2. & 6.), establishing forests to mitigate climate 

change and improve soil condition (and carbon), minimum soil disturbance planting 

should be incentivised (see, 3.4.4). Planting practices aligning to this can be found in 

Berdeni et al. (2021). 

4. Monitoring and restocking. 

To ensure forests establish beyond the AES prescribed management times (5.2.1.1 : 

I.), follow up management should be incentivised. An example of this would be: post-

funding tree planting, fund monitoring tree loss at 10-20 years in combination with a 

further 10 years of competing vegetation management (e.g. removal of, Clematis 

vitalba or Pteridium aquilinum removal as well as non-natives such as Prunus 

laurocerasus or Rhododendron Sp.), restocking of tree losses and thinning. 

 

5.2.2 | Revisiting the research questions 

The new knowledge produced within this thesis helps answer the three research questions 

posed in the Introduction (1.7.1 ). Below I discuss these and how the results of the research 

provide novel insight into the performance of agri-environment scheme management: 

1. Plant communities will reassemble toward desirable compositions or reference 

habitats provided they are given suitable management with sufficient time to achieve 

this. However, the AES prescription tested within this thesis are not of sufficient 

duration to be consistently successful (see, Chapters 2 & 4). 

2. Assembly or reassembly of modelled habitats takes over 10 years for grasslands and 

over 40 years for forests. However, rare or desirable vegetation types or indicator 

species were not observed to reach target levels within the timeframes modelled 

(see, Chapters 2  & 3). 

3. Ecosystem function and service linked variables (species groups diversity scores and 

soil conditions) show varied responses depending on the habitat and management. 

For grasslands minimal response to, or response times longer than the duration of, 

AES prescriptions occurred regularly in the results (Chapters 2  & 4). However, for 

soil carbon, timber species and nectar-producing species under modelled 

afforestation results were promising although again at longer than AES prescription 

times and climate change appears to aid these species groups (Chapter 3). 
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5.3 | Methodological considerations: statistical analysis and 

monitoring 

 

The methodological approach used within the analysis is only achievable thanks to the 

environmental data available within the UK. The colloquialism (inclusive of citizen scientists) 

“There are more botanists in the UK than plant species” is a good reflection  of the world 

class data availability for the UK (K. Walker et al., 2010; Henniges et al., 2022). While a 

similar turn of phrase can’t be used about soil science or climate modelling, the datasets 

available are still of a very high standard (Emmett et al., 2010; Lawley, Emmett and 

Robinson, 2014; Lowe et al., 2018). The datasets linked to the referenced works here and 

those used in the analyses (see, 1.6 ) are very much representative of the rise of big data in 

ecology in the past 10-20 years in the UK. However, long-term ecological datasets for 

ecosystem responses to management and global change in combination are still rare (see, 

5.3.3). 

 

This rise in data availability is also reflective of the development of MultiMOVE which utilised 

national datasets as its construction data (Smart et al., 2010; Henrys, Smart, et al., 2015) 

and can make use of the more recent environmental datasets as inputs e.g. UKCP18 (Lowe 

et al., 2018). While the ecological modelling workflow is larger than just MultiMOVE, it does 

form its ecological niche modelling centre. 

 

Both the modelling workflow methodologies for plants and soils applied here; and the 

ecological monitoring schemes assessing ecosystems and land management practice 

impacts; have many possibilities available for improvement. Those considered most useful to 

the work here are described within the following sections. 
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5.3.1 | The land management modelling workflow 

The modelling workflow used throughout the data analysis chapters is adapted to fit the 

research aims of each. However, for Chapters 2, 3 & 4 the most desirable possibilities for 

improvement of the model workflow are the same. These are summarised in the following 

sections. 

 

5.3.1.1 | Uncertainty and variation 

The full scale of uncertainty propagated through the empirical and modelled results was not 

fully explored here, although this would be possible with high performance computing (HPC) 

clusters (e.g.: Clematis, Mineter and Marciano, 2003; Hallgren et al., 2016). This was not 

pursued as the focus here is on scenarios with a high degree of reality applied to a specific 

representation of AES prescriptions. The major disadvantage of this being that the model-

generated results are only applicable to the specific real-world scenarios the modelling was 

based on, matching management and variables equivalent to the baselines here. An 

example being, within Chapter 2 the AES scenarios explored are linked to Welsh grasslands 

and AES over the short-term (13 years ending in 2029). Thus, the modelled scenarios 

applied to AES in grasslands here would not be appropriate for generalizing across 

European grasslands. The trade-off here is that we wished to understand specific regional 

impacts using a high quality and high-resolution baseline in response to specific 

interventions. The main ecological findings (see, 5.2 ), can, however, be applied elsewhere, 

as they are reflective of ecological processes rather than the management or environmental 

specifics within each analyses chapter’s results. 

 

To consider how to explore this, different sources of uncertainty and variation need to be 

identified across the workflow (Lehmann and Rillig, 2014). These occur at all the entry points 

of empirical field recorded data or modelled data (Fig. 5.1). 
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Figure 5.1. A simplified graphical representation of the workflow used across all chapters with uncertainty and 
variation sources above their respective entry points. Dashed edged boxes represent datasets, white for workflow 
inputs or output data, grey for mid-workflow datasets. Grey boxes represent data manipulation steps and green 
boxes represent coded processes. Uncertainty and variability definitions are as for Lehmann and Rillig (2014). 
Acronyms: a.t.o, across the observations; f.t.m.u., for the model(s) used. 
 

Variability across the observed data is captured simply by running all this data through the 

workflow (the observed plot data). The uncertainty in the species recorded (not the suitability 

score) and modelled at each site is not included here as it should be captured sufficiently by 

the modelling of the dark diversity pool (see, 3.2.34 and Fig. 3.2). 

 

When the models are used predictively to generate change, they introduce uncertainties. 

These are best represented by the standard deviations around the mean predicted values 
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(or confidence intervals where SD’s are unavailable). Using these it would be possible to 

represent variability in the outcome of the modelled changes by sampling values from these 

means and SD. To do this for all variables across the workflow however rapidly multiplies up 

the number of simulations needed. For example, 100 random draws from the 13 variables 

uncertainty ranges above (Fig. 5.1), goes from 1 to 10013 runs needed for the combination of 

generated values. Hence to achieve this within a reasonable timeframe would require HPC 

clusters and a workflow tailored to this (e.g. Hallgren et al., 2016 or Bastin et al., 2013). 

 

The above however does not prevent propagation of uncertainty. This means mitigation is 

needed via correct application of theory and method to avoid error propagation that would 

lead false conclusions from the results (Hallgren et al., 2016; Bastin et al., 2013). The first 

key assumption made throughout the modelling here is that working with median or mean 

values provides a good representation of the observed environmental conditions when 

specifically applied to the scenarios and habitats analysed. Statistical testing plant and soil 

results show this has largely been achieved: in Appendix A.5.1 higher plant habitat suitability 

scores do suggest species presence to be more likely; and within soils modelling (Appendix 

D, Table D.1) there are few significant differences between observations and predictions. 

See next section for more details. This provides confidence that the model outputs are fit for 

the assumptions made. Although as Fig. 5.1 shows possible entry points of uncertainty, 

including as examples: measurement and input parameter; spatial and temporal; model 

construct and output; and transmission between models’ uncertainties (Bastin et al., 2013). 

Therefore, this does not express how well uncertainties known to enter the workflow may 

lead to error propagation. 

 

While the scale of possible propagation can only be explored with the HPC methods 

described earlier in this section, this can affect confidence in the findings. Although the 

conducted modelling performs well construction parsimony and the complexity of reality 
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means there are limitations (Bastin et al., 2013), for example: if a site n in year i in the 

modelling conducted in the analyses Chapter 2, has a low pH, above median soil carbon and 

above median soil nitrogen with climate variables suggesting i to be a warm wet year leading 

to higher productivity then the vegetation likely to present at the survey could suggest the 

habitat to be improved grassland. In a different year however, acid grassland might be a 

better categorisation. If the modelled results in Fig. 2.3 showing acid grassland to progress 

to a more diverse range of habitats than improved grassland then when applied to site n at i 

then a poor result for AES goals would be expected. This scenario represents a known 

possible failure of predictions due to uncertainty but true unknows for more outlier sites true 

unknows are more likely and hard to account for. This makes the specificity of model and 

application of knowledge generated key. The mitigation for this and the above is rigorous 

application of statistical methods through: high numbers of replicates, careful data sourcing, 

multiple techniques for model testing throughout workflows, and specificity of application of 

results to habitats and scenarios. Although application of HPC techniques to explore error 

propagation would be a good avenue for future research. 

 

5.3.1.2 | Model Validation 

Good model performance is ensured through application of rigorous statistical 

methodologies, however, validating predictions into the future is challenging. Within the 

modelling chapters I carried out statistical tests to ensure good performance, for example: 

AIC comparisons, R2 and Bayesian R2. For MultiMOVE predictions of individual species 

habitat suitability, I used logistic regression to test the ability of the species niche models to 

predict observed presence and absence data (see, Appendixes A.5 & C.4, with Fig. C.1). 

Beyond this the prediction results have been compared to baseline values to ensure realism 

and build credibility in the modelling approach and the modelled results (e.g., Fig. 3.3 & 

Table 4.2). However, this doesn’t provide model validation and without construction of an 

independent workflow for comparison (too resource costly to be in scope here) it must be 
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acknowledged that a robust falsifiable validation method is lacking here. The first challenge 

in gaining suitable validation data is finding land that has been managed under the same 

management as the modelled scenarios. Within 4  this initially appears possible as the 

predictions using the Countryside Survey data (Carey, Wallis, Chamberlain, et al., 2008) 

could be compared to the GMEP data (Emmett et al., 2017), however ensuring matching 

management has not been possible and comparison of the datasets shows them as often 

significantly different; Appendix D.1 demonstrates an example of this. 

 

Given the time-frame needed (> 10 years) for ecological change the first opportunity to gain 

real world data for validating the predictions from Chapters 2 & 4’s workflows is 2026. While 

comparing the numeric predictions is statistically straightforward e.g. ensuring total soil 

carbon % or Ellenberg nutrient scores etc. observed in 2026 fall with the standard deviations 

of the predictions; this is not as simple with the modelling of the species habitat suitability 

results. Given that workflow species outputs are representative of dark diversity (local 

potential colonising species) the number of species predicted with habitat suitability scores 

suggesting occurrence is possible in 2026 (for example F. excelsior in 3.3.3), is far higher 

than the number likely to be observed. This is useful at the point of prediction as it provides a 

species pool to consider for ecological restoration as well as representing uncertainty in 

outcomes. However, this is less useful for predictions of species observations. Thus, while 

one plot’s observed species in 2026 is unlikely to show all the species within the dark 

diversity pool it is expected that across the number of plots modelled the dark diversity pool 

would be well, but not completely, represented. Moreover, comparing model predictions with 

later observed data can specifically focus on species observed at baseline and any extra 

species appearing at time 1+n. 
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5.3.1.3 | Modelling improvement 

Within the modelling workflow the methods used to model management or global change 

were based on past research. Examples being: the generalised linear mixed effect models 

used for soil change have been previously proven to robustly represent soil macronutrient 

change over time (Poulton et al., 2003; Thomaes et al., 2012); and the application of 

Bayesian models for Nitrogen deposition effects having been previously employed with 

success (Stevens et al., 2016). Whereas for climate based global change models, the most 

up-to-date data available for the UK were used (Lowe et al., 2018; Robinson et al., 2022). 

Thus, these are thought to be well suited to their use here. Improving on these is likely to 

only be possible with dedicated and specifically applied research efforts applied to the 

variables and scenarios explored. 

 

The ecological niche modelling package used (MultiMOVE) has undergone several updates 

since its creation in 2015 (Henrys, Butler, et al., 2015; Henrys, Smart, et al., 2015) and could 

benefit from further additions beyond the simple inclusion of more taxa or observation data. 

To bring the ecological modelling here closer to reality, the inclusion of a vegetation 

abundance predictor and model component(s) representative of dispersal and establishment 

would be desirable (Boulangeat, Gravel and Thuiller, 2012; Weber et al., 2017). 

 

Ecological niche models have been proven to be able to determine abundance levels where 

their outputs correlate with training data abundances (Weber et al., 2017). Relating model 

outputs to abundance via additional modelling would be a worthwhile methodological 

development within the workflow here to better predict future vegetation communities. This 

could be achieved by correlating observed cover or frequency estimates in MultiMOVE’s 

training data with habitat suitability predictions for these same data. Functions predicting 

cover given habitat suitability could then be readily constructed for each species. The exact 
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relationship could then be modelled (using the ensemble approach for robustness as for the 

rest of MultiMOVE). 

 

It is also likely to be beneficial to including a categorical variable for the taxa who’s 

abundance is being estimated. This is because relationships between model outputs and 

rarer species abundances are likely to be less well correlated due to lower data availability. 

Also, a confidence measure of the abundance predictions would be worthwhile as the 

training data varies across taxa and new input data may cover sites with differing ecological 

histories therefore different species responses e.g. competition interactions within different 

vegetation communities. This, however, does still rely on the assumption that establishment 

and dispersal factors are accounted for by only modelling species present in the plot or 

estimating dark diversity (as for, Chapters 2 , 3  & 4). 

 

Adding a model layer to MultiMOVE could also allow the incorporation of establishment and 

dispersal factors; as has been practiced in ecological niche models elsewhere (Boulangeat, 

Gravel and Thuiller, 2012). Achieving this in combination with abundance estimates would 

represent a significant step beyond simply estimating dark diversity or modelling species 

known to be present. But pragmatics of modelling dispersal and establishment are complex, 

as data would be needed on each taxa’s establishment and dispersal ecology although 

species functional trait data is available (Liu, Cossu and Dickie, 2019; Kattge et al., 2020). 

 

5.3.1.4 | Dynamic mechanistic models 

As mentioned within the introduction (1.4.3.1), the pursuit of creating dynamic and 

mechanistic process-based models is desirable although hungry in training data 

requirements (Kearney and Porter, 2009; Purves et al., 2013; Sillero et al., 2021). Here I 

explore the likely data requirements for the construction of dynamic mechanistic models that 
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would match the number of taxa covered across the scale of MultiMOVE (Henrys, Smart, et 

al., 2015) using a “back of the envelope” calculation estimate. 

 

According to Sillero et al. (2021), 20 to 30 species records are needed for good ecological 

niche model accuracy. MultiMOVE includes 1342 plant taxa (Henrys, Butler, et al., 2015) 

with 9 environmental variables used to represent the niche space occupied. This (at the low 

end) suggests 241,560 data points are needed as a minimum. If mechanistic process are to 

be represented then multiple time-periods will be required (Kearney and Porter, 2009). For 

example, the current MultiMOVE construction data that includes soil data spans four 

sampling years across the past few decades (Carey, Wallis, Emmett, et al., 2008) 

quadrupling the data requirement (to 966,240). As this data does not deliberately include 

taxa’s life cycles or functional traits, the data requirement (Kearney and Porter, 2009; Benito 

Garzón, Robson and Hampe, 2019; Radchuk, Kramer-Schadt and Grimm, 2019) for 

comparable process-based models is easily pushed into the need for millions of points. The 

current data on which MultiMOVE was constructed spans 50 years (Barr et al., 2014; Barr, 

Bunce, Gillespie, Hallam, et al., 2014; Bunce et al., 2014). Even with an increased survey 

effort, this is only likely to decrease to a few decades. Consequently, national scale dynamic 

mechanistic process-based model construction covering > 1000 taxa remains an admirable 

and desirable but distant goal (Benito Garzón, Robson and Hampe, 2019; Radchuk, Kramer-

Schadt and Grimm, 2019). 

 

Given enough data for enough species, wide-scale dynamic mechanistic process-based 

models with fine resolution application like MultiMOVE would become possible to construct 

and utilise. However, this seems unlikely to occur within the next few decades. While HPC 

cluster-led computing power may be sufficient, the data on species responses to changing 

conditions, management and global change, and how this effects their ecological function 
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and the associated processes (e.g. population dynamics) is lacking (Urban et al., 2016; 

Radchuk, Kramer-Schadt and Grimm, 2019; Sillero et al., 2021). 

 

5.3.2 | Environmental land management informed by monitoring 

The EU CAP has adopted monitoring of AES in various forms since the mid-1980s 

(Geijzendorffer et al., 2016), however a standardised approach to monitoring AES outcomes 

does not exist across the UK. Here, approaches have been adapted (Ormerod, 2012b; 

Oatway et al., 2018) to suggest a conceptual model for  (Fig. 5.2) how monitoring over time 

could work. This expands beyond a typical monitoring, reporting and validation thematic 

framework as both ecosystem history and past land management are key priors. Also, 

predictive modelling, as well as the former components are useful informers for sustainable 

land management implementation and policy. The following sections are numbered 

sequentially as for the boxes in Fig. 5.2 as an illustration, as well as the explanatory text 

below. Fig. 5.2 could also be adapted to become an organogram reflecting different sections 

across a government department (e.g. Defra); for example steps 1-3 & 5-6 could be covered 

by Natural England and the remaining steps within 1-10 by the Rural Payments Agency. 

 

5.3.2 | 1 Assemble desk based past data on legacy scheme history 

With the likes of the Countryside Survey (Carey, Wallis, Chamberlain, et al., 2008) and the 

long history of biological recording in the UK (K. Walker et al., 2010; BSBI, 2018; Henniges 

et al., 2022), a desk-based data gathering exercise (Fig. 5.2) can act as a start point for 

information on evidencing AES implementation. This can inform on both the past state of 

habitats as well as past effects of management. Both of these sources of information can 

provide training data for models informing on AES outcomes (Fig. 5.2, step 9) and have 

done so within the analysis chapters here. Examples sources of the type of data that would 

be used for this can be found in 1.6 . 
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5.3.2 | 2 Historic habitats 

Historic habitat data (biotic and abiotic) is widely available in the UK (see, 1.6 ) although, 

particularly for biological species records, it is likely to need georeferencing or appropriate 

data handling to allow for referencing to management data and the impacts. Thus, historic 

abiotic and biotic habitat data often need extraction from wider landscape and land 

management data when sourcing multiple datasets in step 1 (Fig. 5.2). This should provide 

an environmental dataset, depending on the quality of the data source available, informing 

on past states of the land in the focus for AES management applications. 

  



205 

 

 
Figure 5.2. Thematic diagram with sequential steps (white numbered boxes) of how information gathering, monitoring and modelling agri-environment scheme (AES) impacts 
on ecosystems can inform evidenced based AES design and implementation. The left-hand grey dashed vertical strip of boxes are representative of the landscape and land 
management conceptually in the past (top), current (management regime phase, middle) and future (bottom). Brown boxes represent past aspects of management and 
environment (M&E); green boxes represent the current management regime phase and aspects of M&E, dark green boxes being the start and light green boxes being the end; 
orange boxes represent future aspects of M&E. Black outline boxes represent datasets (dashed outline) or processes (plain outline). Step 16 can be considered to become the 
precursor to step 1 once all steps are completed.  
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5.3.2 | 3 Historic management 

While there is little data on long term management effects (see, 5.3.3 ) on the environment 

(Chazal and Rounsevell, 2009), in the UK this is changing with the likes of the GMEP and 

ERAMMP (Emmett, Alexander, et al., 2016; Emmett et al., 2017). Further, while the UK 

statutory authorities lack data on the success of past AES, old policy and AES 

documentation does provide information on management prescriptions e.g. Rose (2011); 

Welsh Government (2016); Rural Payments Agency (2022b). The lack of consistent 

monitoring of past AES (since their inception in the nineteen-eighties) is, however, a real and 

serious knowledge gap and oversight by past administrations. 

 

Cumulatively, however, these datasets and information combined with literature reviews of 

academic research into land management effects can provide (in combination with step 2, 

Fig. 5.2), evidence for improving AES design. This thesis provides an example of having 

achieved this aspiration for a focussed suite of management interventions. 

 

5.3.2 | 4 Historic analysis & summary 

The purpose of step 4 is to compile and summarise information to provide an evidence base 

for AES design in line with Defra’s evidence based policy, policy (Defra, 2011). Therefore, 

informing step 10 along with step 8 & 9 (Fig. 5.2). 

5.3.2 | 5 Habitat baseline data 

To provide an actual baseline (rather than any proxy space-for-time or chronosequence use, 

it would be possible to construct from the data in step 4), a field campaign to survey 

representative landscape and management types to be covered by the AES as well as 

control non-AES land, is needed. This dataset generated provides the first point in a 

timeseries as a baseline, forming a robust start point from which to monitor change (L. R. 

Walker et al., 2010). Examples of project representatives of this can be found in 1.6.1.11 . 
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However, the information from step 4 can give insights into prior expectation of AES 

outcomes especially when used for prediction as in step 9. 

 

5.3.2 | 6 Management baseline data 

Currently practiced management (as defined in, Fig. 5.2) both in and outside AES schemes 

will also need to be a requirement of baseline data gathering. This is because management 

preceding AES implementation or conducted separately from it, will provide useful 

comparators when tailoring AES to by site level implementation (Fig. 5.2). Data gathering for 

this is likely to require major engagement with land-managers across multiple sectors at the 

same scale as step 5. 

 

5.3.2 | 7 Baseline analysis & summary 

Compilation of the data from steps 5 & 6 (Fig. 5.2) provides data that can be used to 

evidence AES design as well as providing data to start step 9. 

 

5.3.2 | 8 Baseline monitoring summary 

Evidence compilation from all prior steps. This informs on the impact of past management, 

the state of ecosystems at the time of baseline survey; and therefore what AES should try to 

achieve, as well as evidencing AES design. 

  

5.3.2 | 9 Predicting management effects 

Predicting the outcomes of AES by statistical modelling and expert opinion using inputs from 

steps 1-8. This will manage the expectation of policy makers and land-managers alike and 

give insight into possible outcomes of the AES prescriptions to be implemented. 
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5.3.2 | 10 Evidence based AES implementation 

Roll out of management prescriptions design using evidence from steps 8&9 (Fig. 5.2). 

Here, a site-level management prescription is emphasised as each land parcel under AES 

will have a different contextual environmental setting that should be accounted for to 

maximise AES prescription effects. 

 

5.3.2 | 11 Post AES management data 

Post the roll out of an AES scheme, data on the number of participants, landscape and 

ecosystem types involved, and actual AES option implemented by land-managers will 

narrow expected outcomes, again informed by steps 8&9 (Fig. 5.2). Here GMEP (Emmett et 

al., 2017) provides an example of steps 5-7 and ERAMMP (Emmett, Alexander, et al., 2016) 

steps 11-13 (see, 1.6.1 , for further details on GMEP and ERAMMP). 

 

5.3.2 | 12 Habitat monitoring post AES 

Step 12 (Fig. 5.2) is a second field campaign to survey representative landscape and 

management types covered by the AES as well as resurvey of the control non-AES land. 

This provides a time 1 as a continuation of step 5 (a second iteration of steps 1-16 would 

provide a time 2 etc.; Fig. 5.2). 

 

5.3.2 | 13 Monitoring summary post AES 

A summary of the complied data from the timeseries generated by steps 5-8 and 10-13. This 

provides a robust outcome post AES management with background changes that can be 

unpicked from the control surveys. This does not only determine the success of AES but 

also informs on better and worse design components. A dataset of this level of spatial and 

temporal detail for land management does not exist in the UK, although this is expected to 

change with the completion of ERAMMP (see, 1.6.1.11 ). 
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5.3.2 | 14 Predictions accuracies 

Informed by the data and evidenced from step 13, the accuracy of the predictions can be 

determined, and further predictions can be improved for step 15 (Fig. 5.2). 

 

5.3.2 | 15 Re-prediction 

Reworking of prediction techniques to improve on or remove errors from those in step 9 (Fig. 

5.2), evidenced by steps 13 and 14. This is to be combined with step 13 to inform step 16. 

 

5.3.2 | 16 Repeated AES development 

The final step in the cycle would be to reflect on multiple years of AES development that 

should result in, well evidenced, robust and pragmatic, bespoke to location, AES design. 

This needs to be a cyclical process for continued robust design with new iterations required 

due to on-going global change and any development of new technologies. Hence the linking 

of step 16 back to 1 in Fig. 5.2. 

 

5.3.3 | Long-term ecological monitoring data 

The desk-based study of ecological data in “5.3.2  | 1” above as well as the environmental 

change models for soil and vegetation fertility change in Chapters 2, 3 & 4  are good 

representations for the need for long term ecological data. This is required both within stable 

ecosystems e.g. the Environmental Change Network with long-term monitoring established 

at sites with constant ecosystem management (Tso et al., 2021) and within more 

anthropogenically managed or disturbed ecosystems e.g. Rothamsted (Rothamsted 

Research, 2016) or the Newcastle University’s research farm (Kidd et al., 2017). Finding 

such sites with relevant data has been challenging throughout this work and De Chazal & 
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Rounsevell (2009) has also noticed the lack of long term ecological data on management 

effects. However the Ecological Continuity Trust website’s “sites” page 

(https://www.ecologicalcontinuitytrust.org/sites)  was a valuable starting resource for finding 

long term land management based ecological monitoring datasets within this work 

(Ecological Continuity Trust, 2020). 

 

A further point of concern involves the length of time for ecological cycles to run their course, 

for example many tree species live for centuries (e.g. the Quercus robur stand in Pitman et 

al. (2014)) covering multiple human generations. Further, biogeochemical processes can 

take even longer e.g. the N cycle Fowler et al., (2013). Given this and the timescale and 

theoretical insights in, figure 1 in Colwell and Rangel (2009): an example of a 100,000 year 

climatic cycle effecting species abundance’s depending on their niche conservatism or 

adaptation strategies; what we currently define as long term data is inadequate in the 

context of long term environmental processes. While this is mitigated by paleoecology or 

historical environmental science techniques, with example including: dendrochronology (e.g.: 

Jansma et al., 2012; Solomina et al., 2022);  sediment pollen records (e.g.: Rackham, 1980; 

Seppä and Bennett, 2003); ice core atmosphere composition (e.g.: Wolff, 2011; Bauska, 

Marcott and Brook, 2021); it is still the case that any timeseries data started now is only 

likely to increase in value into the future. With the likes of the Rothamsted Broadbalk Wheat 

Experiment being the longest continuously running agricultural experiment in the world (Fan 

et al., 2008). It would be beneficial not only for ecological science but also society, for global 

change mitigation insights if experiments of this timescale became more frequent across 

more biomes, ecosystems and natural resource management systems. The likes of 

government AES (for example the approach in 5.3.2 ) could help provide this data. 

 

https://www.ecologicalcontinuitytrust.org/sites
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5.4 | Hectares not words: Big data in ecology to landscape scale 

restoration 

 

A key component of sustainable land management research is the application or delivery of 

its findings to policy and practitioners. This exemplifies the on the ground impact of 

environmental science research being as important as its findings (Lavery et al., 2021). The 

novelty and utility of the work in this thesis concerns the application of established predictive 

methodological tools across wider spatial and temporal scales than previously used and 

inclusion of global change factors. However, sustainable land management research does 

not often tackle the actual pragmatics of implementation at the scales required for change 

(regional and up). The following discussion aims to outline how nature-based solutions 

(IUCN, 2020) could be applied to actual land holdings for transformative change (Díaz et al., 

2019).  While novel research into mitigating or reducing environmental issues is admirable, a 

substantial amount of ecological restoration is achievable through pragmatic implementation 

of established science. This can be alternatively phrased as: focusing on hectares of 

restored habitat rather than words on novel research, although the two are partly congruent 

here. 

However, there is a varying level of political and practitioner willingness to pursue this due to 

economic complexity or (lack of) ease of implementation reasons (Arnott et al., 2018, 2019). 

However, if these socioeconomic reasons can be surpassed (Cortina‐Segarra et al., 2021) 

especially at landscape scales, then transformative change could be achieved. An example 

of who this may be achieved by outside of governance is nature conservation organisations. 

This is because they often have, at the scale’s needed, the economic, pragmatic and 

willingness, required. The Landscape Partnership’s (TLP), landscape-scale conservation 

workshop (The Future of Landscape-scale Conservation in Europe workshop, 2015; The 
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Landscape Partnership, 2018) is an example of this. This at-scale conservation partnership 

concept is progressed here into an ‘ecological pipedream’ aimed at achieving ecological 

transformative change across the hectares owned by The Landscape Partnership’s 

members. 

 

With UK forest cover being amongst the lowest in Europe and its habitats continually 

reported as being degraded, the need for at-scale ecological restoration is widely 

acknowledged (The Future of Landscape-scale Conservation in Europe workshop, 2015; 

Hayhow et al., 2019; Forest Research, 2020). The four main organisations involved in the 

TLP workshop (The Future of Landscape-scale Conservation in Europe workshop, 2015): 

RSPB (Royal Society for the Protection of Birds), The Wildlife Trusts (WTs), National Trust 

(NT), The Woodland Trust (TWT), represent the major conservation organisations in the UK 

and in combination the major land holder (The Landscape Partnership, 2018). This also 

means they have the greatest capacity (economic, pragmatic and willingness) and land to 

achieve landscape-scale ecological restoration. While all of these four have strategies to 

achieve this individually (e.g. National Trust, 2022), the TLP appears to have been the only 

attempt to achieve this a as a networked partnership. However, the NT has conducted some 

work following the ”right tree in the right place” philosophy, this is a good restoration 

example: identify land where tree planting would not have a large impact on existing land-

use or other nature conservation efforts by mapping and modelling these to locate sites 

where minimum or no trade-offs are needed for planting to take place (Halls and Heard, 

2021; National Trust, 2021, 2022). This identification of suitable land is a common crux of 

wide scale ecological restoration efforts (Di Sacco & Hardwick et al., 2020) but a progression 

of the TLP by, RSPB, WTs, NT and TWT could overcome this. The next step after identifying 

land, with the approach of the NT (Halls and Heard, 2021; National Trust, 2021, 2022) being 

exemplar, is to target specific ecosystems which can be restored towards to: compliment 
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historic conditions and land use as well as ecosystem service provisions. This conceptual 

approach is tailored towards a nature-based solutions (NbS) approach (IUCN, 2020; Stafford 

et al., 2021), using ecosystems processes to mitigate global change and increase 

ecosystem service provision. 

 

The considerations of site histories to aid restoration efforts is another aspect where both the 

UK and the four organisations mentioned have an advantage, baseline data and long-

established classifications and surveys. These provide a wide variety of options to the four 

conservation organisations to consider at the local to national level for starting conditions to 

improve landscape condition. 

These environmental information sources include: 

1. National long term UK datasets such as: the Countryside Survey (Carey, Wallis, 

Chamberlain, et al., 2008; Bunce et al., 2014; Emmett, Reynolds, et al., 2016), 

Botanical Society of Britain and Ireland vegetation records (Walker et al., 2010; BSBI, 

2018); UK Soil Observatory (Lawley, Emmett and Robinson, 2014); can provide site 

data or proxy site data (where data is lacking locally) that can inform on starting 

points for possible habitat trajectories.  

2. The UK is fortunate to have established plant community types in the form of the 

National Vegetation Classification (NVC, Rodwell, 1998). This provides a wide range 

of target plant communities that management can move toward or away from 

dependant on local (to national) management and manager goals (set by RSPB, 

WTs, NT or TWT on their land holdings). 

3. The four organisations have their own internal environmental datasets and land use 

histories, both empirical and anecdotal. Also, within the organisation’s staff, the 

institutional knowledge likely to be held is valuable for adapting to local conditions. 

 

It should be noted that the combination of: historic environmental conditions; baseline data; 

target habitat types within the NVC, does not assist with continuing land use or ecosystem 

service provision. The progression of this on from the baseline date sourcing (in 1-3 above) 

would be to explore possible ecosystem service provision within NVC community units. 
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While this connection has not been made, methodologies to connect environmental 

variables and vegetation directly to ecosystem services does exist (Lavorel et al., 2011; 

Grigulis et al., 2013; Kohler et al., 2017). Examples of this within grasslands conducted by 

the Laboratoire d’Ecologie Alpine in Grenoble include: ecosystem service mapping across 

differing land use types (trajectories) using plant functional traits and soil variables to map 

ecosystem service hot and cold spots in Lavorel et al. (2011); also using sites measured 

plant and microbial functional properties to gain models of ecosystem service production 

within Grigulis et al. (2013); also Kohler et al. (2017) used data and models from these 

studies for predicting different habitat trajectories and potential ecosystem service provision. 

This approach could be adapted to make ecosystem service provision estimates for NVC 

community units when used in combination with the Countryside Survey datasets (Carey, 

Wallis, Chamberlain, et al., 2008; Bunce et al., 2014) where more botanical and soil data is 

needed. Field survey proportionally representative of the land to undergo restoration will still 

be needed to gain plant trait data (and soil data where it is lacking), to account for where 

local conditions differ from proxy baseline data. 

 

This so far provides: suitably resourced organisations able to take on restoration efforts (the 

four conservation organisations); a range of habitats to aim restoration efforts at (the NVC); 

baseline data from which to predict suitable target habitats (national monitoring datasets and 

the organisation’s internal data); and while a research gap, the connection between NVC 

community units to ecosystem service provision to compliment local land use and 

management goals. This staged process provides a conceptual but possible approach to 

achieving transformative change at a landscape scale using a NbS approach (restoration 

toward specific NVC units) to both mitigate global change and assist in sustainable 

ecosystem service provision. 
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The above provides a brief conceptual overview of a large-scale complex restoration effort. 

The following attempts to outline a staged methodology of the work required to attempt this: 

i. Identification of land for restoration by TLP members and local mangers and desired 

land use and ecosystem service requirements. This should lead to establishment of 

clear end goals for land selected. 

ii. Baseline (or proxy baseline) data taken from national monitoring datasets with data 

geographically near to the selected site. Alternatively (or additionally), taking site 

baseline data (botanical and soil data) where it is lacking locally in the national 

datasets. 

iii. Identification of which NVC habitats are likely to establish under the local conditions 

and the land-managers goals. Also, identification of species lacking in the local 

species pool that will need to be sourced for restoration efforts. 

iv. Determining the frequencies (or proxy for abundance) of species in the baseline and 

the target vegetation to estimate ecosystem service provision. This ties the approach 

of Kohler et al. (2017) to determine potential ecosystem service provision, via 

community weighted mean calculations of traits (Lavorel et al., 2008) to the 

established frequencies within the NVC unit communities (Rodwell, 1998). 

v. Identification of multiple end points to allow for dynamic decision making for a 

pragmatic approach to evolving conditions for flexible management.  

vi. National site strategies for local staff and managers within TLP member 

organisations to implement on the ground restoration efforts. 

vii. Following the above restoration efforts, continued monitoring and management will 

be required at the decadal timescale to both ensure end goals are reached and to 

account for changing conditions e.g. under global change. 

 

The modelling methodologies applied through out this thesis provide a suite of examples for 

the above. This provides some proof that at least the desk-based work required to achieve i. 

to iv. above is possible. The fine resolution data used to model species responses to 

management change alongside the predictions used for MultiMOVE’s input data to represent 

global change in the analysis chapters can be applied to provide for ii. to v. in the above. 
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While the text here does little to emphasise the scale and number of hectares this could be 

applied across, it is important to acknowledge the difficulty of the task. Although a 

conceptually promising avenue to mitigate global change, the amount of further work and 

trade-offs needed to achieve this is huge. It would also require a very significant buy-in from 

the partnership and organisations described. 

 

However, if this partnership for pragmatic implementation could be achieved it would be a 

nature-based solutions approach to ensure ecosystem service provision and mitigate global 

change, achieving transformative change at a near-national scale. 

 

5.5 | Conclusion 

 

The findings here which concern the applied exploration of AES via modelling can be 

summarised as a recommendation to fund longer and stronger prescriptions to ensure the 

interventions achieve their goals (see, 5.1.1 ). It is arguable that the ecological and 

environmental science to inform good AES design and implementation is already in 

existence. Thus, given the data availability and long-standing ecological research history 

within the UK, novel findings are, that despite evidence of good practice being possible, our 

current management is often insufficient. Therefore, the wider suggestion to improve AES 

delivery is regular monitoring and evaluation to inform ongoing adaptation-based design for 

global change (e.g. 5.3.2  and Fig. 5.2). 

 

Areas for future work should include the increase and improvement of long-term ecological 

monitoring not only for informing on environmental change and its drivers but, specifically for 

effective sustainable land management. A major area for future (at scale) ecological 

restoration and research efforts could be the application of big data techniques providing 
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land-managers with well evidenced management prescriptions suited to their own goals and 

local sites. A grassroots level up but widescale approach like this could provide the 

restoration forests and grasslands need. 
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A | Appendix A. Supporting information and data for  

Chapter two and three 

 

A.1 | Appendix A: Description of grassland Broad Habitat Types 

The three broad habitats, improved grassland, neutral grassland and acid grassland are 

described in Jackson (2000). During the baseline Glastir Monitoring and Evaluation 

Programme (GMEP) survey areas of land were assigned to these three broad habitats 

among others using a vegetation key available online at: 

http://nora.nerc.ac.uk/id/eprint/5194/1/N005194CR.pdf. 

The top 10 most common species in quadrats surveyed in GMEP and assigned to each 

broad habitat were as follows: 

• Improved grassland: Lolium perenne, Trifolium repens, Ranunculus repens, Holcus 

lanatus, Cerastium fontanum, Taraxacum agg., Poa trivialis, Agrostis capillaris, Poa 

annua, Rumex obtusifolius 

• Neutral grassland: Holcus lanatus, Agrostis capillaris, Trifolium repens, Lolium 

perenne, Ranunculus repens, Cerastium fontanum, Anthoxanthum odoratum, 

Taraxacum agg., Cynosurus cristatus, Rumex acetosa 

• Acid grassland: Rhytidiadelphus squarrosus, Galium saxatile, Anthoxanthum 

odoratum, Festuca ovina, Agrostis capillaris, Potentilla erecta, Deschampsia 

flexuosa, Pleurozium schreberi, Vaccinium myrtillus, Hylocomium splendens 

 

A.1 | References 

Jackson, D. L. (2000). Guidance on the interpretation of the Biodiversity Broad Habitat Classification 
(terrestrial and freshwater types): Definitions and the relationship with other habitat 
classifications. Joint Nature Conservation Committee, Peterborough, UK. 

 

http://nora.nerc.ac.uk/id/eprint/5194/1/N005194CR.pdf
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A.2 | Appendix A: Downscaled climatic variables. 

The 1 km climate variables for future projections were taken from a single member (01) of 

the CHESS-SCAPE ensemble (Robinson et al., 2022). This was downscaled from the 

corresponding member (01) of the UKCP18 regional climate model perturbed parameter 

ensemble (RCM-PPE) (Met Office Hadley Centre, 2018). This is an ensemble of RCM 

variants, nested within perturbed parameter variants of the HadGEM3-GC3.05 global climate 

model (GCM) (Murphy et al., 2018). This nesting allows better projection of the dynamics of 

regional UK and European climate without the prohibitive computational cost of running the 

model globally at the high resolution. Ensemble member 01 uses the default model 

parameters (Murphy et al., 2018) and CO2 concentrations prescribed by RCP8.5 (van 

Vuuren et al., 2011). The RCM-PPE data are distributed at 12 km resolution. To produce 

CHESS-SCAPE, these were then downscaled to 1 km using an adapted version of the 

CHESS methodology (Robinson et al., 2017), which interpolates variables to a finer 

resolution while adjusting for local topography using physically-based and empirical methods 

(Robinson et al., in prep.). The resulting files cover the UK land surface, but exclude 

Shetland due to data availability. Variables were reduced from the grid box elevation of the 

climate model to mean sea level, interpolated from 12 km to 1 km, then readjusted to the 

elevation at 1 km resolution given by the Integrated Hydrological Digital Terrain Model 

(IHDTM) (Morris et al., 1990). Daily mean, minimum and maximum air temperatures were 

adjusted using a lapse rate of -0.006 K m-1 (Hough & Jones, 1997), and the interpolation 

was carried out separately for each variable. Rainfall was not interpolated but was adjusted 

for long-term averages in local rainfall rates using a 1 km resolution map of Standardised 

Area Average Rainfall (Spackman, 1993). In this study we use the climate projection without 

bias-correction. 
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The RCM-PPE has a strong climate sensitivity and is at the high end of the range of the 

CMIP5 ensemble, but it is consistent with the current generation of climate models in CMIP6 

(Lowe et al., 2018), particularly the related model HadGEM3-GC.3.1 (Williams et al., 2017). 

Although the overall trend is for warming temperatures, the interannual variability of the 

climate model projection is such that 2029 is cooler than 2026. Additionally, there was a 

particularly warm period in the climate model projection from 2017 to 2027, which resulted in 

2026 being outside of the baseline range.  While this is unusual, it is consistent with climate 

variability. The projected trend in rainfall is for an overall decrease in mean annual rainfall by 

2080 (with an increase in winter rainfall but a bigger decrease in summer rainfall), although 

there is little change by the end of the study period (Murphy et al., 2018). Again, interannual 

variability can be seen with higher rainfall in 2021 and 2026, followed by lower in 2029. 

A2.1 | Modelling into future climate space unknowns 

Given the substantial unknowns of attempting this type of work into the future under global 

change the ecological modelling community has a challenge to achieve reliable predictions 

regardless of the methods used (Williams et al., 2017; Williams et al., 2007; Veloz et al., 

2012; Smith et al., 2013; Fitzpatrick & Hargrove, 2009). Considering novel environmental 

space occurrence into the future, we do not attempt to predict climate effects on 

biogeochemical processes here e.g. carbon priming effects (Smith et al., 2013) as we 

restrain consideration of results to those that do not fall outside MultiMOVE operating space 

thus is not expected to be impactful. A greater concern maybe that early successional or 

disturbed ecosystems are at greater risk to climate change impacts (Kröel-Dulay et al., 2015) 

this maybe be mitigated by consideration of species beyond natives but that are likely to be 

ecological functional and non-damaging e.g. tree species examples in Read et al. (2009). 
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A.3 | Appendix A: Ellenberg indices neural network calibration 

MultiMOVE accepts Ellenberg indices as inputs. These convey the ecological position of the 

soil and vegetation along gradients of soil moisture, fertility and pH (MultiMOVE species 

niche viewer Shiny app here https://shiny-apps.ceh.ac.uk/find_your_niche/). Because we 

were interested in how changes in soil conditions change habitat suitability for the plant 

assemblage we constructed neural network models that could predict mean Ellenberg 

indices from measured or modelled soil variables. The latter step was achieved by 

constructing a model per abiotic gradient where the predictors were the soil measurements 

from the 5% of the training data for MultiMOVE that comprised fine resolution joint recording 

of soil and plant species composition. These co-located samples came from a high quality 

unbiased and representative sample of British vegetation types (Carey et al., 2008; Smart et 

al., 2010). Models were tuned, trained and tested using the neural network R package 

(Ripley, 1994). Predictors were standardised by their range to vary between 0 and 1 and the 

data split at random into 70% training and 30% testing. 

 

The neural network method was chosen because we were interested in constructing the 

predictive model with the greatest accuracy but based on a small set of predictors all with 

strong ecological justification for their inclusion. Given the possibility of overfitting we tested 

the transferability of each model by compared the predictions from the final neural networks 

against a similarly designed but totally separate survey of soil and vegetation carried out 

across Wales between 2013 and 2016.   

 

The below is an R markdown filed included here from supplementary material in West et al. 

(no date) to provide the method and code for the neural network construction, titled: 

Creating neural network models that translate soil variables into mean Ellenberg 

values 

https://shiny-apps.ceh.ac.uk/find_your_niche/
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S. Smart, 23/06/2021 

Aim 
Here we build models to produce estimates of mean Ellenberg values for soil moisture, pH and 

fertility given soil %C, %N and gravimetric moisture. A re-working could usefully add in canopy 

height too as we know shade is a also an influential filter on the way the species assemblage 

responds to other abiotic gradients. 

Building the Neural Networks 
The code below derives a new calibration of mean Ellenbergs given soil data. The resulting neural 

network models can then be applied in predictive mode given new soil inputs. To build the models 

we use the Countryside Survey 2000 dataset of mean Ellenberg scores based on plant species 

composition (not weighted by cover/abundance) and co-located soil data that were used to produce 

the first set of transfer functions reported in Smart et al (2010). 

We train models on a random 70% and test on a random 30% of the data. First we need to carry 

out a sensitivity analysis to determine the best number of hidden layers to use in our black-box 

models. We selected neural networks because we have less interest in the form of the regression 

relationships between predictors and response but more interest in generating a model that can 

best fit training and new independent test data. The last step is critical because we need to ensure 

transferability to new areas and samples. 

Some of the following code was modified from: http://www.michaeljgrogan.com/neural-network-

modelling-neuralnet-r/ 

How many hidden layers and neurons do we need? 
“There are some empirically-derived rules-of-thumb, of these the most commonly relied on is ‘the 

optimal size of the hidden layer is usually between the size of the input and size of the output 

layers’. Jeff Heaton, author of ‘Introduction to Neural Networks in Java’ offers a few more. In sum, 

for most problems, one could probably get decent performance (even without a second 

optimization step) by setting the hidden layer configuration using just two rules: (i) number of 

hidden layers equals one; and (ii) the number of neurons in that layer is the mean of the neurons in 

the input and output layers.” 

So here, we experiment with 1 or 2 hidden layers and with 2 or 3 neurons in the first layer. See 

here for further information 

https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-

nodes-in-a-feedforward-neural-network 

library(neuralnet) # NOTE THAT 'COMPUTE' HAS BEEN REPLACED WITH 'PREDICT' 

library(caTools) 

library(dplyr) 

library(haven) 

library(ggplot2) 

 

https://countrysidesurvey.org.uk/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1654-1103.2010.01173.x
http://www.michaeljgrogan.com/neural-network-modelling-neuralnet-r/
http://www.michaeljgrogan.com/neural-network-modelling-neuralnet-r/
https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-network
https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-network
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Loop to select best Neural network model based on different number of neurons and hidden layers and using 

a number of measures of model performance. 

The search for the best model is done separately for each mean Ellenberg score. 

 
## Build the best models 

Soils_and_Ebergs98<- read.csv("C:\\CS98_input.csv") 

Independent testing against data from the Welsh GMEP survey carried out 

between 2013-’16 
Here we compare the predictive performance of the original GBMOVE equations in Smart et al 

(2010) with the hopefully better performance of the neural networks. 

We do each Ellenberg score in sequence as follows: 

1. Ellenberg Wetness scores: 

#load NNet models 

   load(file = 

\C:\\simon\\UKSCAPE\\UKSCAPE_IMP\\Updated_Ellenberg_calibration\\nn_EbW.rda\) 

    

   #Read GMEP data for model testing   

   GMEP<- 

read.csv(\C:\\simon\\UKSCAPE\\UKSCAPE_IMP\\Updated_Ellenberg_calibration\\Test_gm

ep_soils_bergsx1.csv\) 

   Test<-GMEP[,c(4,13,10,9,11)] 

    

   # Calculate Ebergs based on GBMOVE calibration formulae 

    

   Test$GbmW <- (log((Test$MC/(100-Test$MC)))+3.27)/0.55 

    

   # Examine 

   plot(Test$GbmW, Test$EbW) 

   # Delete NAs and preds outside range 

    

   Test1<-subset(Test, GbmW<=12 & GbmW>=1) 

   plot(Test1$EbW, Test1$GbmW) 

    

   # Now solve using NNet 

    

   #MAX-MIN NORMALIZATION 

   normalize <- function(x) { 

     return ((x - min(x)) / (max(x) - min(x))) 

   } 

   normTest <- as.data.frame(lapply(Test1, normalize)) 

   

   # Compute Predictions off Test Set 

   predicted.EbW.values <- compute(EbW, normTest[2:5]) 

    

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1654-1103.2010.01173.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1654-1103.2010.01173.x
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   results <- data.frame(obs = Test1$EbW, GLM_EbW=Test1$GbmW, prediction = 

predicted.EbW.values$net.result) 

   # Note here that the back-transformation requires the values of range and min 

from the  

   # original dataset used to create the neural net - see below for a list of 

these. 

     

   results$predicted<-(results$prediction * 4.866667) + 4.333333 

    

   # Now calculate the separate diagnistic stats. Needed for each comparison of  

   # obs v GLM_Eb* and obs v predicted 

    

   results$GLM_deviation<-((results$obs-results$GLM_EbW)/results$obs) 

   results$GLM_abs_deviation<-(results$obs-results$GLM_EbW) 

    

   GLMmEb_diff=mean(results$GLM_abs_deviation) 

   GLMaccuracy=1-abs(mean(results$GLM_deviation)) 

    

   results$NN_deviation<-((results$obs-results$predicted)/results$obs) 

   results$NN_abs_deviation<-(results$obs-results$predicted) 

    

   NNmEb_diff=mean(results$NN_abs_deviation) 

   NNaccuracy=1-abs(mean(results$NN_deviation)) 

   

   GLMaccuracy 

   GLMmEb_diff 

   NNaccuracy 

   NNmEb_diff 

    

plot(results$obs, results$predicted)  

plot(results$obs, results$GLM_EbW)   

 

 

|                                                 | Neural Nets | GLM (Smart et 

al 2010) | 

|-------------------------------------------------|-------------|----------------

--------| 

| \% agreement pred v observed                    | 0.96        | 0.86                   

| 

| Mean deviation in Ellenberg scores (obs v pred) | 0.30        | 0.79                   

| 

 

Higher accuracy with the Neural network and much lower average absolute difference in mean Ellenberg 

values such that the difference between obersved and predicted is on average 0.3 of an Ellenberg unit. 

 
## 2. Ellenberg N scores: 

 

#load NNet models 
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load(file = "nn_EbN.rda") 

 

#Read GMEP data for model testing   

GMEP<- read.csv("Test_gmep_soils_bergsx1.csv") 

Test<-GMEP[,c(2,13,10,9,11)] 

 

# Calculate Ebergs based on GBMOVE calibration formulae 

 

Test$GbmN <- exp(0.7751 - (0.00006*Test$MC) - (0.00009*(Test$MC^2)) - 

(0.01475*Test$C) + (0.000099*(Test$C^2)) + (0.2639*Test$pH)  

                    - (0.01684*(Test$pH^2)) + (0.1908*Test$N)) 

 

# Examine 

plot(Test$GbmN, Test$EbN) 

 

# Now solve using NNet 

 

#MAX-MIN NORMALIZATION 

normalize <- function(x) { 

  return ((x - min(x)) / (max(x) - min(x))) 

} 

normTest <- as.data.frame(lapply(Test, normalize)) 

 

# Compute Predictions off Test Set 

predicted.EbN.values <- compute(EbN, normTest[2:5]) 

 

results <- data.frame(obs = Test$EbN, GLM_EbN=Test$GbmN, prediction = 

predicted.EbN.values$net.result) 

# Note here that the back-transformation requires the values of range and min 

from the  

# original dataset used to create the neural net - see below for a list of these. 

 

results$predicted<-(results$prediction * 6.083333) + 1.166667 

 

# Now calculate the separate diagnistic stats. Needed for each comparison of  

# obs v GLM_Eb* and obs v predicted 

 

results$GLM_deviation<-((results$obs-results$GLM_EbN)/results$obs) 

results$GLM_abs_deviation<-(results$obs-results$GLM_EbN) 

 

GLMmEb_diff=mean(results$GLM_abs_deviation) 

GLMaccuracy=1-abs(mean(results$GLM_deviation)) 

 

results$NN_deviation<-((results$obs-results$predicted)/results$obs) 

results$NN_abs_deviation<-(results$obs-results$predicted) 

 

NNmEb_diff=mean(results$NN_abs_deviation) 

NNaccuracy=1-abs(mean(results$NN_deviation)) 
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GLMaccuracy 

GLMmEb_diff 

NNaccuracy 

NNmEb_diff 

 

plot(results$obs, results$predicted)  

plot(results$obs, results$GLM_EbN) 

 

Neural 
Net’s 

GLM (Smart et al 
2010) 

% agreement pred v observed 0.88 0.85 

Mean deviation in Ellenberg scores 

(obs v pred) 

-0.25 -0.29 

Neural network model outperforms the GLM on both counts but there is less to separate them than 

for the Ellenberg W models above. 

3. Ellenberg R (pH) scores 

 
#load NNet models load(file = "nn_EbR.rda") 

 

#Read GMEP data for model testing\ 

GMEP<- read.csv("Test_gmep_soils_bergsx1.csv")  

Test<-GMEP[,c(3,13,10,9,11)] 

 

# Calculate Ebergs based on GBMOVE calibration formulae 

 

Test$GbmR <- 0.5293 - (0.02503*Test$MC) + (1.665*Test$pH) - (0.1061(Test$pH^2)) - 

(0.00566*Test$C)  

 

# Examine 

 

plot(Test$GbmR, Test$EbR) 

 

# Now solve using NNet 

 

#MAX-MIN NORMALIZATION normalize \<- function(x) { return ((x - min(x)) / (max(x) 

- min(x))) } normTest \<- as.data.frame(lapply(Test, normalize)) 

 

# Compute Predictions off Test Set 

 

predicted.EbR.values <- predict(EbR, normTest[2:5]) 
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results <- data.frame(obs = Test$EbR, GLM_EbR=Test$GbmR, prediction = 

predicted.EbR.values$net.result)  

 

# Note here that the back-transformation requires the values of range and min 

from the  original dataset used to create the neural net - see below for a list 

of these. 

 

results$predicted<-(results$prediction * 5.25) + 2 

 

# Now calculate the separate diagnistic stats. Needed for each comparison of 

 

# obs v GLM_Eb\* and obs v predicted 

 

results$GLM_deviation<-((results$obs-results$GLM_EbR)/results$obs) 

results$GLM_abs_deviation<-(results$obs-results$GLM_EbR) 

 

GLMmEb_diff=mean(results$GLM_abs_deviation) GLMaccuracy=1-

abs(mean(results$GLM_deviation)) 

 

results$NN_deviation<-((results$obs-results$predicted)/results$obs) 

results$NN_abs_deviation<-(results$obs-results$predicted) 

 

NNmEb_diff=mean(results$NN_abs_deviation) NNaccuracy=1-

abs(mean(results$NN_deviation)) 

GLMaccuracy  

GLMmEb_diff  

NNaccuracy  

NNmEb_diff 

 

plot(results$obs, results$predicted)  

plot(results$obs, results$GLM_EbR) 

 

Neural 
Net’s 

GLM (Smart et al 
2010) 

% agreement pred v observed 0.90 0.84 

Mean deviation in Ellenberg scores 

(obs v pred) 

-0.28 -0.41 

The range of the GLM predictions is substantially narrower than observed values although 

accuracy does not differ much hugely compared to the neural network largely because of the 

residual variation around the observed values between EbR = 3 and 5. However, on balance the 

neural network is again better. The neural network predictions also have a much lower average 

absolute difference from the observations. 
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A.4 | Appendix A: Modelling change in soil variables given 

management intervention 

Determining how soils change in response to management was done via constructing 

generalized linear mixed-effects models trained on data gathered from literature review 

where the effects of interventions on soil variables had been measured over time and where 

interventions could be equated with the AES options that were the focus of our study. 

 

The use of biogeochemistry models to dynamically process the impact of management 

change was not adopted because the necessary soil measurements do not exist for each 

modelled location. Using average inputs coarsely resolved to larger grid squares and 

dominant soil type would have greatly decreased the accuracy and realism of the modelling 

process removing the benefit of filtering the observed plant species composition at our very 

high-resolution sampling sites. The four soil variables (C, N, pH, moisture) were also 

modelled independently of each other as no study measured all these variables together 

over long enough time periods. Hence, our results are strongly dependent on the 

representativeness of the studies selected from literature review and the realism of the 
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modelled change in each variable. A consequence is that we derived separate empirical 

models for each variable even though in reality we know they respond as an intercorrelated 

complex. To some extent, the lack of such long-term fundamental datasets is surprising. 

Despite a number of long-term experiments existing across the UK and ecological science 

being an endeavour that is at least 200 years old there is a lack of fundamental information 

on long-term soil and vegetation changes in response to human management. This is 

notable in the literature with many studies relying on chronosequences and space-for-time 

differences in habitats and management. Despite data availability falling short of the 

representativeness and redundancy we would have liked for our three habitat types, a clear 

benefit is that the models created here summarise changes in soil conditions that have been 

observed to result from management intervention on soil and vegetation starting points that 

equate with the soils and vegetation of the GMEP baseline. Readers can therefore inspect 

the underlying data and assess the representativeness of the observations and the 

robustness of the estimated soil changes.  

 

A.4.1 | Literature sources 

Care was taken to closely match the methods of each study found during literature review to 

the GMEP methods or ensure data values could be converted to match. Non-UK studies 

were omitted. This search resulted in datasets of varying size as requests were made to 

study authors to provide full datasets but not always yielded, and also including relevant 

open access data; these are: 

• Project supplementary material from grassland restoration from arable (Pywell et al., 

2007) 

• UK Department for Environment, Food and Rural Affairs (Defra) report (Wagner et 

al., 2014) 

• Rothamsted Research, Park Grass long-term experiment data (Rothamsted 

Research, 2016) 
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• Project on restoration from farmland (Pywell, Webb, & Putwain, 1994) 

• Full data set provided by author from Marrs et al., (2018). 

• Summary data published in McGovern et al., (2014). 

• Defra project on managing grassland diversity (Defra, 2015) 

• Elan Valley grasslands report (Hayes & Lowther, 2014) 

• A 12-year fertiliser and lime experiment, supplementary material from 

(Kirkham, Dunn, Tallowin, Bhogal, & Chambers, 2011) 

 

A.4.2 | Data categorisation and model construction 

Data was categorised in two ways in order to ensure robust fitting to scenarios; by 

management strategy derived from the practices described in the study and management 

intensity level. The two data categorisation types were used as insufficient data on nitrogen 

was found for it to be modelled per management category. 

The levels of management intensity were: 

• High (H, with constant or near constant grazing or with at least annual cutting and 

chemical/organic fertiliser application to the land) 

• Medium (M, intermittent grazing and cutting and minimal to no fertiliser application) 

• Low (L, treatments with very low grazing density (<6 animals ha-1 or 0 ha-1) with no 

fertiliser applications in an upland environment) 

The management categories were defined as: 

• Mid-intensity management with intermittent grazing and cutting and minimal 

chemical/organic fertiliser application to the land (MIG) 

• Extensification management with intermittent grazing and cutting with no applications 

(EA) 

 

Table A.1. Below summarises the data in the categories, the number of data points taken from the data matched 
as the values at 0 years. 

Intensity or 
Management 

No. of 
studies 

No. of 
data 
points 

No. of 
studies 
with pH  

No. of 
pH data 
points 

No. of 
studies 
with total 
carbon 

No. of 
total 
carbon 
data 
points 

No. of total 
nitrogen 
data points 

No. of 
studies 
with total 
nitrogen 

All 10 260 9 158 6 95 6 71 
High intensity 5 100 4 82 3 42 3 43 
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Medium 
intensity  

8 71 7 39 4 18 5 25 

Low intensity 4 89 3 37 3 35 2 3 
MIG 5 28 4 22 3 7 3 10 
EA 2 32 2 6 0 0 1 4 

 

Models using L and H intensity were not used, as L was atypical and not good 

representations of an AES option, and H as it did not represent management relatable to 

typical high intensity agriculture. Level and intensity were assigned per-treatment per-study, 

where studies used chronosequences data for the cumulative effects of treatments in 

different parts of the experiment including control plots were used to represent change over 

time. 

 

Calculating the change in variables was done by subtracting the value at start time (or 

matched time 0 chronosequence data) with the values at treatment end time and dividing by 

years duration of the study to give a change of X in a variable per year (delta-X). This 

approach takes advantage of the correlation between variables within sites. As a result, 

between-site differences were accounted for by a study site random effect. The delta-X per 

year change was the variable modelled. 

 

Modelling changes in moisture was attempted but returned values very close to the mean 

(no change) or impossible values, confirming the decision to hold moisture constant (no 

change to the observed mean Ellenberg F value) as it is not targeted by management. 
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Table A.2. Scenario’s details. M = medium intensity, minimal fertiliser inputs and intermittent grazing; EA = 
extensification management with intermittent grazing and cutting with no fertiliser inputs; MIG = mid-intensity 
management with intermittent grazing and cutting. As Low inputs and Reduced Stocking scenarios vegetation 
height should be reduced to promote plant diversity cover weighted canopy heights were set as follows: Low =  
~1 CWCH or held constant if observed <1 CWCH at baseline to match management; High = set to 2 CWCH or 
left constant if over 1 CWCH at baseline to match management, (CWCH, 1 = <100 mm, 2 = 101-299 mm). Both 
M&MIG scenarios included adjustment of vegetation height via cutting or grazing. Two climate states were 
applied: H.Clim=High emissions (RCP 8.5 UKCP18 downscale modelled 1 km); and B.Clim=Baseline average 
climate (1981 to 2016). Model categorical settings: M = medium intermittent grazing and cutting and minimal to 
no fertiliser application; MIG = mid-intensity management with intermittent grazing and cutting and minimal 
chemical/organic fertiliser application to the land; EA = extensification management with intermittent grazing and 
cutting with no applications. The Glastir options represent nearest matches as the model construction data 
could not be directly matched to their exact management prescriptions. 

Scenario 
 
Management 

Glastir 
options 
(nearest 
match) 

Soil models 
categorical 
setting 

Recovery 
from 
acidification 
applied 

Scenario 
versions 

 
 
Years 
modelled 

Baseline Observations from the 
GMEP survey. 

NA None No Observed 
climate 
averaged 
(1981 to 
2016).  

2016 

Low 
inputs 

(LU) 

Management using a 
reduced amount of 
fertiliser application, 
with sward height 
managed to promote 
plant diversity. 
 

15b, 15d All: M Yes Low, B.Clim; 
Low, H.Clim; 
High, B.Clim; 
High, H.Clim 

2021,202
6,2029 

Reduced 
stocking 

Grassland with a 
reduced number of 
livestock, with sward 
height managed to 
promote plant 
diversity. 

41a, 41b & 
411 

Carbon and 
pH: MIG 
nitrogen: M 

Yes Low, B.Clim; 
Low, H.Clim; 
High, B.Clim; 
High, H.Clim  
 

2021,202
6,2029 

No inputs No chemical inputs 
applied. 

15a pH: EA 
Carbon and 
nitrogen: M 

Yes B.Clim; 
H.Clim 

2021,202
6,2029 
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A.4.3 | Model construction and formula code 

Model 1, for Delta pH per year by management type: 
Formula: Change in pH per year ~ (Management category * pH value at start) + random effect for study. Used for 
Reduced Stocking and No Inputs scenarios. Ig=MIG. 
> pHMcatXT0=lmer(YrDelta_pH~(Manage_cat.*pH.Matched.0years)+(1|source.code) 
+                ,data=pHdt,REML = T);pHMcatXT0 
Linear mixed model fit by REML ['lmerModLmerTest'] 
Formula: YrDelta_pH ~ (Manage_cat. * pH.Matched.0years) + (1 | source.code) 
   Data: pHdt 
REML criterion at convergence: -539.4186 
Random effects: 
 Groups      Name        Std.Dev. 
 source.code (Intercept) 0.05401  
 Residual                0.02577  
Number of obs: 137, groups:  source.code, 8 
Fixed Effects: 
                      (Intercept)                      Manage_cat.Ig   
                           0.7694                            -1.0365   
                  Manage_cat.Igna                     Manage_cat.uEx   
                          -0.7069                            -0.7926   
                pH.Matched.0years    Manage_cat.Ig:pH.Matched.0years   
                          -0.1448                             0.1939   
Manage_cat.Igna:pH.Matched.0years   Manage_cat.uEx:pH.Matched.0years   
                           0.1382                             0.1422   
> summary(pHMcatXT0) 
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerT
est'] 
Formula: YrDelta_pH ~ (Manage_cat. * pH.Matched.0years) + (1 | source.code) 
   Data: pHdt 
 
REML criterion at convergence: -539.4 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.8923 -0.4907 -0.0383  0.4754  3.4956  
 
Random effects: 
 Groups      Name        Variance Std.Dev. 
 source.code (Intercept) 0.002917 0.05401  
 Residual                0.000664 0.02577  
Number of obs: 137, groups:  source.code, 8 
 
Fixed effects: 
                                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)                         0.76938    0.32765 123.66581   2.348  0.02045 
*  
Manage_cat.Ig                      -1.03655    0.33129 122.83732  -3.129  0.00219 
** 
Manage_cat.Igna                    -0.70694    0.33060 122.83293  -2.138  0.03447 
*  
Manage_cat.uEx                     -0.79257    0.33067 122.62590  -2.397  0.01805 
*  
pH.Matched.0years                  -0.14477    0.05813 126.15768  -2.490  0.01406 
*  
Manage_cat.Ig:pH.Matched.0years     0.19394    0.05861 126.29457   3.309  0.00122 
** 
Manage_cat.Igna:pH.Matched.0years   0.13821    0.05856 126.34836   2.360  0.01980 
*  
Manage_cat.uEx:pH.Matched.0years    0.14223    0.05863 126.36157   2.426  0.01668 
*  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Correlation of Fixed Effects: 
                 (Intr) Mang_ct.Ig Mng_ct.Ign Mng_.E pH.M.0 Mng_ct.Ig:pH.M.0 Mng_
ct.Ign:H.M.0 
Manag_ct.Ig      -0.989                                                                       
Mang_ct.Ign      -0.991  0.986                                                                
Manag_ct.Ex      -0.991  0.984      0.985                                                     
pH.Mtchd.0y      -0.993  0.982      0.984      0.984                                          
Mng_ct.Ig:pH.M.0  0.985 -0.990     -0.977     -0.976 -0.992                                   
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Mng_ct.Ign:H.M.0  0.985 -0.974     -0.990     -0.977 -0.993  0.985                            
Mn_.E:H.M.0       0.984 -0.973     -0.975     -0.989 -0.992  0.983            0.9
84 

 
 
Model 2, for Delta pH per year by management intensity 
Formula: Change in pH per year ~ (years duration * pH value at start) + management intensity + random effect 
for study. Used for Low Inputs scenario. 
> pHYrXT0Ins=lmer(YrDelta_pH~(years.from.origin*pH.Matched.0years)+Intensity+(1|s
ource.code) 
+                 ,data=pHdt,REML = T);pHYrXT0Ins 
Linear mixed model fit by REML ['lmerModLmerTest'] 
Formula: YrDelta_pH ~ (years.from.origin * pH.Matched.0years) + Intensity +   
    (1 | source.code) 
   Data: pHdt 
REML criterion at convergence: -502.6846 
Random effects: 
 Groups      Name        Std.Dev. 
 source.code (Intercept) 0.05317  
 Residual                0.02886  
Number of obs: 137, groups:  source.code, 8 
Fixed Effects: 
                        (Intercept)                    years.from.origin   
                         -0.1227562                            0.0030531   
                  pH.Matched.0years                           IntensityL   
                          0.0267155                           -0.0572121   
                         IntensityM  years.from.origin:pH.Matched.0years   
                         -0.0298726                           -0.0005747   
> summary(pHYrXT0Ins) 
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerT
est'] 
Formula: YrDelta_pH ~ (years.from.origin * pH.Matched.0years) + Intensity +   
    (1 | source.code) 
   Data: pHdt 
 
REML criterion at convergence: -502.7 
 
Scaled residuals:  
     Min       1Q   Median       3Q      Max  
-2.61000 -0.40084 -0.03089  0.64032  2.89936  
 
Random effects: 
 Groups      Name        Variance  Std.Dev. 
 source.code (Intercept) 0.0028267 0.05317  
 Residual                0.0008331 0.02886  
Number of obs: 137, groups:  source.code, 8 
 
Fixed effects: 
                                      Estimate Std. Error         df t value Pr(>
|t|)     
(Intercept)                         -1.228e-01  4.441e-02  7.939e+01  -2.764 0.00
7093 **  
years.from.origin                    3.053e-03  1.054e-03  1.283e+02   2.898 0.00
4421 **  
pH.Matched.0years                    2.672e-02  7.140e-03  1.301e+02   3.742 0.00
0273 *** 
IntensityL                          -5.721e-02  2.518e-02  7.353e+01  -2.272 0.02
6012 *   
IntensityM                          -2.987e-02  8.304e-03  1.294e+02  -3.598 0.00
0456 *** 
years.from.origin:pH.Matched.0years -5.747e-04  2.057e-04  1.284e+02  -2.794 0.00
6003 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Correlation of Fixed Effects: 
            (Intr) yrs.f. pH.M.0 IntnsL IntnsM 
yrs.frm.rgn -0.672                             
pH.Mtchd.0y -0.874  0.718                      
IntensityL  -0.172 -0.044  0.062               
IntensityM  -0.047  0.002 -0.049  0.061        
yrs..:H.M.0  0.649 -0.943 -0.746 -0.013 -0.004 
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Model 3, for Delta carbon percentage per year by management intensity 
Formula: Change in carbon percentage per year ~ (management intensity * C% value at start) + years duration + 
random effect for study. Used for Reduced Stocking and No Inputs scenarios. 
> CPCim13=lmer(CPCdt$YrDelta_C ~ (Intensity*C.Matched.0years)+years.from.origin 
+              +(1 | source.code),data=CPCdt,REML = T) 
> summary(CPCim13) 
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerT
est'] 
Formula: CPCdt$YrDelta_C ~ (Intensity * C.Matched.0years) + years.from.origin +   
    (1 | source.code) 
   Data: CPCdt 
 
REML criterion at convergence: -33.6 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-3.5579 -0.1663 -0.0633  0.2198  3.3315  
 
Random effects: 
 Groups      Name        Variance Std.Dev. 
 source.code (Intercept) 0.09018  0.3003   
 Residual                0.01397  0.1182   
Number of obs: 59, groups:  source.code, 5 
Fixed effects: 
                              Estimate Std. Error         df t value Pr(>|t|)     
(Intercept)                  0.8959917  0.2178622  7.9705284   4.113 0.003405 **  
IntensityL                  -0.3706922  0.1484784 50.7574350  -2.497 0.015827 *   
IntensityM                  -0.1367721  0.1980646 50.8212039  -0.691 0.492995     
C.Matched.0years            -0.0995763  0.0246210 51.9935396  -4.044 0.000174 *** 
years.from.origin           -0.0146191  0.0042731 15.0718376  -3.421 0.003767 **  
IntensityL:C.Matched.0years  0.0994388  0.0246415 51.9476422   4.035 0.000180 *** 
IntensityM:C.Matched.0years  0.0005473  0.0309115 49.6696321   0.018 0.985945     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Correlation of Fixed Effects: 
            (Intr) IntnsL IntnsM C.Mt.0 yrs.f. IL:C.M 
IntensityL  -0.420                                    
IntensityM  -0.200  0.138                             
C.Mtchd.0yr -0.602  0.611  0.165                      
yrs.frm.rgn -0.497 -0.143  0.069  0.120               
IntnL:C.M.0  0.583 -0.624 -0.163 -0.994 -0.108        
IntnM:C.M.0  0.127 -0.091 -0.942 -0.100 -0.042  0.099 

 
Model 4, for Delta nitrogen percentage per year by management intensity 
Formula: Change in nitrogen percentage per year ~ (management intensity * N% value at start) + random effect 
for study. Used for Low Inputs, Reduced Stocking and No Inputs scenarios. 
> NPCim11=lmer(YrDelta_N ~ (Intensity*N.Matched.0years)+(1 | source.code),data=NP
Cdt,REML = T) 
> summary(NPCim11) 
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerT
est'] 
Formula: YrDelta_N ~ (Intensity * N.Matched.0years) + (1 | source.code) 
   Data: NPCdt 
 
REML criterion at convergence: -252.2 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-3.7592 -0.2131 -0.0442  0.1360  3.1300  
 
Random effects: 
 Groups      Name        Variance  Std.Dev. 
 source.code (Intercept) 0.0005973 0.02444  
 Residual                0.0001159 0.01077  
Number of obs: 49, groups:  source.code, 5 
Fixed effects: 
                             Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)                  0.043373   0.015868 10.516691   2.733  0.02020 *  
IntensityL                  -0.031562   0.014851 41.475345  -2.125  0.03957 *  
IntensityM                  -0.018501   0.017154 36.260943  -1.079  0.28792    
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N.Matched.0years            -0.070606   0.021202 42.999959  -3.330  0.00179 ** 
IntensityL:N.Matched.0years  0.058143   0.025051 42.982285   2.321  0.02510 *  
IntensityM:N.Matched.0years  0.009155   0.028098 38.126062   0.326  0.74634    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Correlation of Fixed Effects: 
            (Intr) IntnsL IntnsM N.Mt.0 IL:N.M 
IntensityL  -0.436                             
IntensityM  -0.489  0.251                      
N.Mtchd.0yr -0.633  0.563  0.356               
IntnL:N.M.0  0.496 -0.717 -0.284 -0.839        
IntnM:N.M.0  0.409 -0.207 -0.936 -0.294  0.234 

 
 

 

A.4.4 | Literature data and sources for the edaphic variable modelling 

constructions 

The collation of data from the literature below can be found in the file: 

Table A.3.Appendix A.4.4.Soil change with management change data from literature.csv 
 
listed with this document but available at the DOI: 
http://dx.doi.org/10.13140/RG.2.2.10410.90560. 
  

http://dx.doi.org/10.13140/RG.2.2.10410.90560
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Figure A.1. Boxplots (median, IQ range and range) of grassland soil variables (%C, %N and pH) by year, scenario and broad-habitat type in each GMEP quadrat at baseline 
and modelled. Scenarios (LI, NI, RS) represent three groups of grassland management options representative of agri-environmental scheme option. Broad-habitat type and 
year are displayed on the X-axis of each plot: I.G. = improved grassland; N.G. = neutral grassland; A.G. = acid grassland. Soil variables were measured in 2016 as part of the 
Glastir Environmental Monitoring Program with subsequent years’ values modelled. 
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A.5 | Appendix A: Workflow output graphical plots. 

 

A.5.1 | Model testing 

 

 
Figure A.2. Results of testing the species ecological niche model MultiMOVE outputs against the observed 
baseline.  A. Logistic regression (LR) of weighted model averages (WMA) of species per X-plot observed as 
present (light blue) or not present (brown). A species within a plot having a WMA of 0.43 or over according to 
the LR is more likely to be observed as present (fitted presence of 0.51) than absent within the input data 
(logistical regression WMA model coefficients P-value <0.001). B. Average rank plots of WMA values with rank 
standard deviations for absent species (brown, Absent) versus present in each modelled quadrat (light blue, 
Present). 
 

Logistical regression showed that an increase in a habitat suitability score increases the 

probability of the species being observed as present in a plot within the input data (0.43 or 

over gives a fitted presence value of 0.51, logistical regression WMA model coefficients P-

value <0.001; Fig. A.2). 

 

The grassland broad habitat summarised vegetation NVC unit grouping within the paper’s 

Fig. 2.3, “Plant community profiles of modelled baseline (2016) versus scenario-driven 

species composition (2029)” can be found within the file: 

Table A.4. Appendix A.5.1.MASTER_NVC_grouping and scenario counts.csv 
listed with this document but available at the DOI: 
http://dx.doi.org/10.13140/RG.2.2.10410.90560. 
 

http://dx.doi.org/10.13140/RG.2.2.10410.90560
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A.5.2 | Modelling workflow outputs 

The full species list MultiMOVE uses with the categorisation columns of the ecosystem 

functions or services species groups can be found within the file:  

Table A.5. Appendix A5.1.MultiMOVE and ecosystem functions or services species list.csv 
listed with this document but available at the DOI: 
http://dx.doi.org/10.13140/RG.2.2.10410.90560.

http://dx.doi.org/10.13140/RG.2.2.10410.90560
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Figure A.3. Modelled, baseline versus scenario (2021) vegetation. Grassland broad habitat plot’s top five closest National Vegetation Classification (NVC) unit matches 
counted into summarised vegetation groups: modelled baseline (dark grey, 2016); scenarios observed climate (blue, 2021) & predicted climate (orange, 2021). Broad habitat 
types (rows): IG = Improved grassland (348 plots); NG = Neutral grassland (292 plots); AG = Acid Grassland (188 plots). X-axes show counts of fits to each NVC community 
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group from the top 5 matching coefficients for each plot. Observed climate (grey & blue) = UKCP18, HadUK-Grid 1981-2016 (averages); projected climate= UKCP18 (RCP 8.5) 
downscaled data for 2021 (orange). Management scenario (columns): LI = Low inputs; NI = No inputs; RS = Reduced stocking. For Low inputs & Reduced stocking, vegetation 
height is as stipulated in the Glastir agri-environment scheme (at ~ 7 cm). Summarised vegetation was derived by grouping (see, Appendix A.5.1, Table A.4) NVC unit matches 
for the baseline and modelled GMEP plots, matches are from MAVIS processing of the habitat suitability outputs from ecological niche modelling. 
 

 
Figure A.4. Boxplots of diversity scores of species groups providing ecological functions, disservices or services (Smart et al., 2017). Data modelled represents different 
climate and management scenarios using the Glastir Monitoring and Evaluation Program data as a modelled baseline (2016) and as inputs for future year scenarios. The three 
broad habitat types shown are improved (I.G.), neutral (N.G.) and acid (A.G.) grasslands. Scenarios (columns) were created by using observed (2016, see, Fig. A.6) and 
predicted climate data (UKCP18, temperatures spike in 2026 outside of modelling space so are excluded from interpretation) along with soil variable change with management 
change models as inputs for species ecological niche modelling in the R package MultiMOVE, which uses these to predict plant habitat suitability to changing soil, vegetation 
height and climate conditions. Scenarios representing one of the three management types: LI = Low input (representative of Glastir agri-environment scheme options 15b entry 
& advanced, also 15d advanced); RS = Reduced stocking (representative of Glastir options 411&41b advanced, also 41a entry & advanced); NI = No inputs (representative of 
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Glastir options 15a entry & advanced). Boxplots show the species group weighted model average (WMA) diversity score for X-plots in the broad habitat type and year shown 
on the x-axis, rows show results for each species group as follows: N fixers = nitrogen fixing species (top); nectar plants = nectar producing plants (second); forage grasses, 
species for livestock forage (third); injurious weed species (bottom). The plot y-axes (WMA “group” diversity) is a dark diversity estimate created via summing WMA 
probabilities output from the MultiMOVE ensemble. Within each scenario for climate and cover weighted canopy height colours of boxplots represent: LI & RS light blue 
represents cover weighted canopy height set to 1 (equivalent to < 100 mm) or held constant if observed lower with observed climate & orange represents the same cover 
weighted canopy height as light blue but with predicted climate, dark blue represents cover weighted canopy height over 1 (set to 2, equivalent to 101-299 mm, where 
observed as under 1) with observed climate and dark red represents the same cover weighted canopy height but with predicted climate; NI, light blue represents observed 
climate & orange represents predicted climate, both NI colours cover weighted canopy height is left as the observed. 

 
Figure A.5. Example boxplots of diversity scores of for a given species group with a legend showing how modelled dark diversity trends across years (2016, 2021, 2029) are 
defined and appear in a box-plot form.  
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Figure A.6. Boxplots showing Glastir Environmental Monitoring Program X-plot climate data from UKCP18 at 1 km square scale from 2016 (averaged from 1981 to 2016 as a 
baseline) through subsequent predicted years up to 2029. Observed (2016) data was sourced from Met Office HadUK-Grid, 1 km climate data and averaged. Predictions data 
from the UKCP18 high emissions scenario, RCP8.5, UK regional 12 km scale probabilistic data, was downscaled to 1km. A. Total annual precipitation in mm, B. minimum 
January temperature in °C and C. Maximum July temperature in °C; georeferenced to the 1 km square each X-plot was within. Left hand Y-axes shows variable ranges to 
derive boxplot values from (black observed average for 2016; blue beyond 2016 predicted). The dashed orange lines show the top and bottom of ranges the R package 
MultiMOVE was constructed within. X-axis labels show the X-plot groups of year and board habitat type: I.G. = improved grassland; N.G. = neutral grassland; A.G. = acid 
grassland. 
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Figure A.7. Boxplots of Anthoxanthum odoratum MutliMOVE output results. Data modelled represents different climate and management scenarios using the Glastir 
Monitoring and Evaluation Program data as a modelled baseline (2016) and as inputs for future year scenarios. The three broad habitat types shown are improved (I.G.), 
neutral (N.G.) and acid (A.G.) grasslands. Scenarios (columns) were created by using observed (2016, see, Fig. A.6)) and predicted climate data (UKCP18, temperatures spike 
in 2026 outside of modelling space so are excluded from interpretation) along with soil variable change with management change models as inputs for species ecological niche 
modelling in the R package MultiMOVE, which uses these to predict plant habitat suitability to changing soil, vegetation height and climate conditions. Scenarios representing 
one of the three management types: LI = Low inputs management left; RS = Reduced stocking density management centre; NI = No inputs management right. Boxplots show 
the species weighted model average (WMA) or suitability score for X-plots in the broad habitat type and year shown on the x-axis. Within each scenario for climate and cover 
weighted canopy height colours of boxplots represent: LI & RS light blue represents cover weighted canopy height set to 1 (equivalent to < 100 mm) or held constant if 
observed lower with observed climate & orange represents the same cover weighted canopy height as light blue but with predicted climate, dark blue represents cover 
weighted canopy height over 1 (set to 2, equivalent to 101-299 mm, where observed as under 1) with observed climate and dark red represents the same cover weighted 
canopy height but with predicted climate; NI, light blue represents observed climate & orange represents predicted climate, both NI colours cover weighted canopy height is left 
as the observed. 
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Figure  A.8. Boxplots of Rumex obtusifolius MutliMOVE output results. Data modelled represents different climate and management scenarios using the Glastir Monitoring and 
Evaluation Program data as a modelled baseline (2016) and as inputs for future year scenarios. The three broad habitat types shown are improved (I.G.), neutral (N.G.) and 
acid (A.G.) grasslands. Scenarios (columns) were created by using observed (2016, see, Fig. A.6)) and predicted climate data (UKCP18, temperatures spike in 2026 outside of 
modelling space so are excluded from interpretation) along with soil variable change with management change models as inputs for species ecological niche modelling in the R 
package MultiMOVE, which uses these to predict plant habitat suitability to changing soil, vegetation height and climate conditions. Scenarios representing one of the three 
management types: LI = Low inputs management left; RS = Reduced stocking density management centre; NI = No inputs management right. Boxplots show the species 
weighted model average (WMA) or suitability score for X-plots in the broad habitat type and year shown on the x-axis. Within each scenario for climate and cover weighted 
canopy height colours of boxplots represent: LI & RS light blue represents cover weighted canopy height set to 1 (equivalent to < 100 mm) or held constant if observed lower 
with observed climate & orange represents the same cover weighted canopy height as light blue but with predicted climate, dark blue represents cover weighted canopy height 
over 1 (set to 2, equivalent to 101-299 mm, where observed as under 1) with observed climate and dark red represents the same cover weighted canopy height but with 
predicted climate; NI, light blue represents observed climate & orange represents predicted climate, both NI colours cover weighted canopy height is left as the observed. 
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Figure  A.9. Boxplots of Cirsium palustre MutliMOVE output results. Data modelled represents different climate and management scenarios using the Glastir Monitoring and 
Evaluation Program data as a modelled baseline (2016) and as inputs for future year scenarios. The three broad habitat types shown are improved (I.G.), neutral (N.G.) and 
acid (A.G.) grasslands. Scenarios (columns) were created by using observed (2016, see, Fig. A.6)) and predicted climate data (UKCP18, temperatures spike in 2026 outside of 
modelling space so are excluded from interpretation) along with soil variable change with management change models as inputs for species ecological niche modelling in the R 
package MultiMOVE, which uses these to predict plant habitat suitability to changing soil, vegetation height and climate conditions. Scenarios representing one of the three 
management types: LI = Low inputs management left; RS = Reduced stocking density management centre; NI = No inputs management right. Boxplots show the species 
weighted model average (WMA) or suitability score for X-plots in the broad habitat type and year shown on the x-axis. Within each scenario for climate and cover weighted 
canopy height colours of boxplots represent: LI & RS light blue represents cover weighted canopy height set to 1 (equivalent to < 100 mm) or held constant if observed lower 
with observed climate & orange represents the same cover weighted canopy height as light blue but with predicted climate, dark blue represents cover weighted canopy height 
over 1 (set to 2, equivalent to 101-299 mm, where observed as under 1) with observed climate and dark red represents the same cover weighted canopy height but with 
predicted climate; NI, light blue represents observed climate & orange represents predicted climate, both NI colours cover weighted canopy height is left as the observed. 
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Figure  A.10. Boxplots of Lotus corniculatus MutliMOVE output results. Data modelled represents different climate and management scenarios using the Glastir Monitoring and 
Evaluation Program data as a modelled baseline (2016) and as inputs for future year scenarios. The three broad habitat types shown are improved (I.G.), neutral (N.G.) and 
acid (A.G.) grasslands. Scenarios (columns) were created by using observed (2016, see, Fig. A.6)) and predicted climate data (UKCP18, temperatures spike in 2026 outside of 
modelling space so are excluded from interpretation) along with soil variable change with management change models as inputs for species ecological niche modelling in the R 
package MultiMOVE, which uses these to predict plant habitat suitability to changing soil, vegetation height and climate conditions. Scenarios representing one of the three 
management types: LI = Low inputs management left; RS = Reduced stocking density management centre; NI = No inputs management right. Boxplots show the species 
weighted model average (WMA) or suitability score for X-plots in the broad habitat type and year shown on the x-axis. Within each scenario for climate and cover weighted 
canopy height colours of boxplots represent: LI & RS light blue represents cover weighted canopy height set to 1 (equivalent to < 100 mm) or held constant if observed lower 
with observed climate & orange represents the same cover weighted canopy height as light blue but with predicted climate, dark blue represents cover weighted canopy height 
over 1 (set to 2, equivalent to 101-299 mm, where observed as under 1) with observed climate and dark red represents the same cover weighted canopy height but with 
predicted climate; NI, light blue represents observed climate & orange represents predicted climate, both NI colours cover weighted canopy height is left as the observed. 
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B | Appendix B. Supporting information and data for  

Chapter three only 

 

B.1 | Appendix B. Description of Broad Habitat Types 

The six broad habitats are described in Jackson (2000). During the baseline Glastir 

Monitoring and Evaluation Programme (GMEP) survey areas of land were assigned to these 

six broad habitats among others using a vegetation key available online at: 

http://nora.nerc.ac.uk/id/eprint/5194/1/N005194CR.pdf. 

The top 10 most common species in quadrats surveyed in GMEP and assigned to each 

broad habitat were as follows: 

• Broadleaved woodland (BW), Broadleaved, Mixed and Yew Woodlands being the 

full name: Rubus fruticosus, Dryopteris dilatata, Hedera helix, Fraxinus excelsior, 

Thuidium tamariscinum, Corylus avellana, Hyacinthoides non-scripta, Dryopteris filix-

mas, Sorbus aucuparia, Pteridium aquilinum. 

• Coniferous Woodland (CW): Picea sitchensis, Dryopteris dilatata, Vaccinium 

myrtillus, Thuidium tamariscinum, Plagiothecium undulatum, Mnium hornum, Rubus 

fruticosus, Rhytidiadelphus loreus, Deschampsia flexuosa, Sorbus aucuparia. 

• Arable and Horticulture (A&H): Poa annua, Poa trivialis, Ranunculus repens, 

Trifolium repens, Lolium perenne, Agrostis stolonifera, Taraxacum agg., Persicaria 

maculosa, Rumex obtusifolius, Triticum aestivum. 

• Improved grassland (IG): Lolium perenne, Trifolium repens, Ranunculus repens, 

Holcus lanatus, Cerastium fontanum, Poa trivialis, Taraxacum agg., Agrostis 

capillaris, Poa annua, Rumex obtusifolius. 

• Neutral grassland (NG): Holcus lanatus, Agrostis capillaris, Trifolium repens, Lolium 

perenne, Ranunculus repens, Cerastium fontanum, Anthoxanthum odoratum, 

Taraxacum agg., Cynosurus cristatus, Rumex acetosa. 

http://nora.nerc.ac.uk/id/eprint/5194/1/N005194CR.pdf
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• Bracken (Br): Pteridium aquilinum, Agrostis capillaris, Rhytidiadelphus squarrosus, 

Pseudoscleropodium purum, Anthoxanthum odoratum, Galium saxatile, Holcus 

lanatus, Festuca ovina, Potentilla erecta, Pleurozium schreberi. 

 

B.1 | References 

Jackson, D. L. (2000). Guidance on the interpretation of the Biodiversity Broad Habitat Classification 
(terrestrial and freshwater types): Definitions and the relationship with other habitat 
classifications. Joint Nature Conservation Committee, Peterborough, UK. 

 

 

B.2 | Appendix B. Modelling change in soil variables under 

afforestation 

Determining how soils change in response to afforestation via planting or natural succession 

was completed by constructing generalized linear mixed-effects models trained on data 

gathered from a review of the literature where the effects of afforestation on soil variables 

had been measured under time series or chronosequences. The use of biogeochemistry 

models to dynamically process the impact of afforestation was not adopted because the 

necessary soil measurements do not exist for each modelled location. Using average inputs 

coarsely resolved to larger grid squares and dominant soil type would have greatly 

decreased the accuracy and realism of the modelling process removing the benefit of 

filtering the observed plant species composition at our very high-resolution sampling sites. 

 

The four soil variables (C, N, pH, moisture) were modelled independently of each other as 

an insufficient number of studies measured all the variables together so there was too little 

data to account for relationships. A consequence is that we derived separate empirical 

models for each variable even though in reality we know they respond as an intercorrelated 
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complex. Thus, the modelled results are strongly dependent on the studies selected from the 

literature and the realism of the modelled change in each variable. 

 

Despite data availability falling short of the representativeness and robustness we would 

have liked for the study habitat types, a clear benefit is that the models created here 

summarise changes in soil conditions that have been observed resulting from afforestation 

on soil and vegetation starting points that equate with the soils and vegetation of the GMEP 

baseline. Readers can therefore inspect the underlying data (see below) and assess the 

representativeness of the observations and the robustness of the estimated soil changes. 

The collation of data from the literature below can be found in the file: 

Table B.1. Appendix B.2.afforestation_soils_change.csv 
listed with this document but available at the DOI: 
http://dx.doi.org/10.13140/RG.2.2.10410.90560. 
 
 
To some extent, the lack of such long-term fundamental datasets is surprising. Despite a 

number of long-term experiments existing across the UK and ecological science being an 

endeavour that is at least 200 years old, there is a lack of fundamental information on long-

term soil and vegetation changes in response to human management. 

 

B.2.1 | Literature sources 

Care was taken to closely match the methods of each study found during the literature 

review to the GMEP methods or to ensure that data values could be converted to match. 

Non-UK studies were omitted. This search resulted in datasets of varying size. Requests 

were made to study authors to provide full datasets, while we also included relevant open 

access data; A summary of the studies is as follows: 

• A 100 year chronosequence of 40 plots in Kielder forest (Vanguelova et al., 2019) 

• Forest conditions development under different tree species in a chronosequence 

(Ovington, 1953) 

http://dx.doi.org/10.13140/RG.2.2.10410.90560
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• A pooled selection of former agricultural sites planted up with broadleaves (Ashwood 

et al., 2019) 

• Rothamsted regenerating broadleaved woodland post-abandonment from arable 

(Jenkinson, 1971; Poulton et al., 2003) 

• A study of succession on lowland heaths (Mitchell et al., 1997) 

• Plots extracted from the UK Centre for Ecology and Hydrology’s Countryside Survey 

data showing vegetation trends (increase in scrub, bracken or tree species cover) as 

having undergone afforestation (Reynolds et al., 2013) 

• Dataset of afforestation provided by Aidan Keith from work on short rotation forestry 

soil development (Keith et al., 2015; R. L. Rowe et al., 2016)  

 

B.2.2 | Data categorisation and model construction 

Data was categorised in two ways (for: total C%, total N%, pH) in order to ensure robust 

fitting to scenarios, by afforestation type (planted broadleaved, planted conifer, or 

succession), and by taxon (gymnosperm trees, angiosperm trees, or bracken). The two 

different data categorisation types were used as insufficient data on nitrogen was found for it 

to be modelled according to its afforestation type. This categorisation was done per-

treatment within each study. Where studies used chronosequences, controls e.g. grassland 

or arable sites, were used as time 0 matches for each variable. Also where multiple controls 

or multiple treatments were replicated the variables of these were averaged to become start 

or end values as appropriated. This was also done where samples had been taken from 

multiple soil depths e.g. samples taken from 0-5, 5-10 and 10-15 cm where averaged to give 

a 0-15 cm depth value. All soil data recovered during the literature review was taken from 

within the O horizon to match the baseline GMEP data which was taken from the field layer 

(0-15 cm). 

 

Calculating the change in variables was done by subtracting the value at start time (or 

matched time 0 for chronosequence data) with the values at treatment end time and dividing 
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by years duration of the study to give a change of X in a variable per year. This approach 

takes advantage of the correlation between variables within sites, between-site differences 

were accounted for by a study site random effect. However, given the variability in the data 

different model constructions were used these being: 

 

 pH change per year as determined by afforestation type & time are predictors 

 Change in total carbon per year was transformed then afforestation type & 

value at the start were used as interacting terms alongside time as predictors 

 Total nitrogen was the same as carbon but time & value at start were used as 

interacting terms alongside afforestation type 

Exact model constructions can be found in the Boxes 1-4 below. 

 

As the poorest data was found for soil field moisture% with only a few treatments with this 

data gathered this data was categorised by habitat type (conifer forest or broadleaved 

forest). Also as this data was so noisy, no good model could be made for the raw field 

moisture data thus the neural networks used in the model workflow to calculated Ellenberg 

wetness (EbF) were used to gain EbF values and these were modelled. The model 

construction can be found in Box 4. The planted results from the Ellenberg wetness model 

show no convergence (Appendix B.2.2,Fig. B.1) towards baseline woodland most likely due 

to planted forest holding onto underlying soil properties from the baseline habitats, thus are 

not explored in the main body of work. 

 

In grassland and bracken habitats N is modelled to reach 0 or negative values for a handful 

of plots from 2046 onwards. These plots’ values represent where the model fails to 

reproduce a possible reality and are thus excluded from all the plant results. 
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Figure B.1. Box plots of Ellenberg Wetness per Broad Habitat (BH) type and year. The year 2016 for each BH 
type represents the observed data (black boxes), subsequent years data were predicted by using 2016 data as 
inputs to generalised linear mixed effect models of broadleaved woodland plantation (blue boxes). Asterisks (*) at 
Y=7.5 represent significant differences (p-value=0.05) of logged variables of the 2016 Broadleaved Woodland 
baseline compared to the Broad Habitat type and year below each asterisk. 
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B2.3 | Model construction and formula code 

Box 1. pH model construction and summary from R. Formula: Change in pH per year ~ afforestation type + years 
from start year + random effect for treatment site; planted_vs_succession = afforestation type. 
> formula(pHMX2a) 
YrDelta_pH ~ planted_vs_succession + Years_From_Origin + (1 |  
    Source_Code) 
> summary(pHMX2a) 
Linear mixed model fit by REML. T-tests use Satterthwaite’s method 
[‘lmerModLmerTest’] 
Formula: YrDelta_pH ~ planted_vs_succession + Years_From_Origin + (1 |      
Source_Code) 
   Data: pHdt 
 
REML criterion at convergence: -454.7 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-4.2257 -0.4419 -0.0919  0.5194  4.0527  
 
Random effects: 
 Groups      Name        Variance  Std.Dev. 
 Source_Code (Intercept) 0.0002494 0.01579  
 Residual                0.0005705 0.02388  
Number of obs: 109, groups:  Source_Code, 9 
 
Fixed effects: 
                                       Estimate Std. Error         df t value 
Pr(>|t|)   
(Intercept)                          -1.998e-02  9.170e-03  1.437e+01  -2.178   
0.0465 * 
planted_vs_successionplanted conifer  5.165e-03  6.422e-03  1.050e+02   0.804   
0.4231   
planted_vs_successionsuccession      -1.251e-02  1.326e-02  9.632e+00  -0.943   
0.3687   
Years_From_Origin                     2.783e-04  1.099e-04  1.001e+02   2.531   
0.0129 * 
Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
              (Intr) pln__c plnt__ 
plntd_vs_sccc -0.501               
plntd_vs_sccs -0.449  0.303        
Yrs_Frm_Org   -0.468  0.143 -0.084 

 
Box 2. Carbon model construction and summary from R. Formula: transformed total soil carbon change per year 
~ (afforestation type + total soil carbon at start year) + years from start year + random effect for treatment site. 
Transformation: (X+5)2.6, where X is total soil carbon change per year; planted_vs_succession = afforestation 
type. 
> formula(CPCim13) 
CPCdt$T_CPC ~ (planted_vs_succession * Percent_C_Matched_0Yrs) +  
    Years_From_Origin + (1 | Source_Code) 
> summary(CPCim13) 
Linear mixed model fit by REML. T-tests use Satterthwaite’s method 
[‘lmerModLmerTest’] 
Formula: CPCdt$T_CPC ~ (planted_vs_succession * Percent_C_Matched_0Yrs) +   
    Years_From_Origin + (1 | Source_Code) 
   Data: CPCdt 
 
REML criterion at convergence: 285.9 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.0777 -0.1764 -0.0215  0.1116  4.0838  
 
Random effects: 
 Groups      Name        Variance Std.Dev. 
 Source_Code (Intercept) 101.4    10.07    
 Residual                382.0    19.54    
Number of obs: 35, groups:  Source_Code, 4 
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Fixed effects: 
                                                            Estimate Std. Error       
df t value 
(Intercept)                                                 69.73412   10.59073  
2.34748   6.584 
planted_vs_successionplanted conifer                         6.26961   10.93693 
28.99879   0.573 
planted_vs_successionsuccession                             80.09064   23.74397 
28.95766   3.373 
Percent_C_Matched_0Yrs                                      -0.40362    1.49225 
28.99626  -0.270 
Years_From_Origin                                            0.04571    0.17815  
8.44266   0.257 
planted_vs_successionplanted conifer:Percent_C_Matched_0Yrs -0.34601    1.53944 
27.69725  -0.225 
                                                            Pr(>|t|)    
(Intercept)                                                  0.01460 *  
planted_vs_successionplanted conifer                         0.57089    
planted_vs_successionsuccession                              0.00213 ** 
Percent_C_Matched_0Yrs                                       0.78871    
Years_From_Origin                                            0.80364    
planted_vs_successionplanted conifer:Percent_C_Matched_0Yrs  0.82381    
Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
              (Intr) pln__c plnt__ P_C_M_ Yr_F_O 
plntd_vs_sccc -0.441                             
plntd_vs_sccs -0.075 -0.107                      
Prcn_C_M_0Y   -0.352  0.581 -0.420               
Yrs_Frm_Org   -0.327 -0.180  0.241 -0.414        
p__c:P_C_M_    0.298 -0.656  0.430 -0.978  0.402 
fit warnings: 
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient 

 
Box 3. Nitrogen model construction and summary from R. Formula: transformed total soil nitrogen change per 
year ~ (Years from start year * Total soil carbon at start year) + taxon + random effect for treatment site. 
Transformation: (X+1)4.9, where X is Total Soil Nitrogen change per year. 
> formula(NPCimYrT1Man1) 
T_NPC ~ (Years_From_Origin * Percent_N_Matched_0Yrs) + taxon +  
    +(1 | Source_Code) 
> summary(NPCimYrT1Man1) 
Linear mixed model fit by REML. T-tests use Satterthwaite’s method 
[‘lmerModLmerTest’] 
Formula: T_NPC ~ (Years_From_Origin * Percent_N_Matched_0Yrs) + taxon +      +(1 
| Source_Code) 
   Data: NPCdt 
 
REML criterion at convergence: -36.4 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.4144 -0.3123 -0.0083  0.1783  3.9178  
 
Random effects: 
 Groups      Name        Variance Std.Dev. 
 Source_Code (Intercept) 0.008763 0.09361  
 Residual                0.008369 0.09148  
Number of obs: 41, groups:  Source_Code, 5 
 
Fixed effects: 
                                           Estimate Std. Error         df t value 
Pr(>|t|)     
(Intercept)                               1.1242621  0.0596648  3.1052138  18.843 
0.000264 *** 
Years_From_Origin                        -0.0008210  0.0007631 25.1889857  -1.076 
0.292194     
Percent_N_Matched_0Yrs                   -0.2888201  0.0409102 30.6600991  -7.060 
6.68e-08 *** 
taxongymnosperm                           0.0312140  0.0390797 32.2923006   0.799 
0.430284     
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Years_From_Origin:Percent_N_Matched_0Yrs  0.0029235  0.0015408 24.3850602   1.897 
0.069676 .   
Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) Yr_F_O P_N_M_ txngym 
Yrs_Frm_Org -0.404                      
Prcn_N_M_0Y -0.341  0.340               
txngymnsprm -0.193  0.103 -0.191        
Y_F_O:P_N_M  0.063 -0.631 -0.495 -0.123 

 
Box 4. Ellenberg wetness (EbF) model construction and summary from R. Formula: over all change in EbF ~ 
(Habitat type * EbF at start year) + random effect for treatment site; conifer_broadleaved_openscurb = Habitat 
type. 
> formula(GWCNPCim11) 
GWCdt$delta_EbF ~ (conifer_broadleaved_openscurb * EbF_Matched_0Yrs) +  
    (1 | Source_Code) 
> summary(GWCNPCim11) 
Linear mixed model fit by REML. T-tests use Satterthwaite’s method 
[‘lmerModLmerTest’] 
Formula: GWCdt$delta_EbF ~ (conifer_broadleaved_openscurb * EbF_Matched_0Yrs) +   
    (1 | Source_Code) 
   Data: GWCdt 
 
REML criterion at convergence: 18.6 
 
Scaled residuals:  
     Min       1Q   Median       3Q      Max  
-2.94916 -0.15189  0.04419  0.26634  3.14888  
 
Random effects: 
 Groups      Name        Variance Std.Dev. 
 Source_Code (Intercept) 0.01316  0.1147   
 Residual                0.07987  0.2826   
Number of obs: 32, groups:  Source_Code, 3 
 
Fixed effects: 
                                                      Estimate Std. Error      df 
t value Pr(>|t|) 
(Intercept)                                             3.3695     1.1140 19.8506   
3.025  0.00673 
conifer_broadleaved_openscurbconifer                   -2.4103     1.2445 24.0523  
-1.937  0.06461 
EbF_Matched_0Yrs                                       -0.6549     0.2072 18.7795  
-3.161  0.00520 
conifer_broadleaved_openscurbconifer:EbF_Matched_0Yrs   0.4461     0.2279 21.9075   
1.958  0.06312 
                                                         
(Intercept)                                           ** 
conifer_broadleaved_openscurbconifer                  .  
EbF_Matched_0Yrs                                      ** 
conifer_broadleaved_openscurbconifer:EbF_Matched_0Yrs .  
Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) cnfr__ EF_M_0 
cnfr_brdlv_ -0.886               
EbF_Mtch_0Y -0.994  0.899        
c__:EF_M_0Y  0.899 -0.995 -0.917 
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B.3 | Appendix B. Workflow outputs and graphical plots. 

 

B.3.1 | Fraxinus excelsior plot Species and NVC units 

Results within the Fraxinus excelsior plots and NVC units table are a subset of the total data, 

only including sites where Fraxinus excelsior habitat suitability scores (weighted model 

average) of 0.383 or over suggest the species is likely to be present (>0.51) according to 

logistic regression conducted on baseline scores.  

 

Within Fraxinus excelsior plots the top 20 species by the number of plots they occur in and 

National Vegetation Classification (NVC, matched using the software MAVIS) units 

determined with and without F. excelsior can be found in the file:  

https://doi.org/https:/doi.org/10.23637/ERADOC-1-34803
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Table B.2. Appendix B.2.Top_20Sp._in_Fraxinus_excelsior_plots_and_NVCunits.xlsx 
 
listed with this document but available at the DOI: 
http://dx.doi.org/10.13140/RG.2.2.10410.90560. 
 

B.3.2 | Species within MultiMOVE and the ecosystem function and service 

groups 

The full species list MultiMOVE uses with the categorisation columns of the ecosystem 

functions or services species groups can be found within the file:  

Table B.3. Appendix B.2.MultiMOVE and forest ecosystem functions or services species list.csv 
 
listed with this document but available at the DOI: 

http://dx.doi.org/10.13140/RG.2.2.10410.90560. 

  

http://dx.doi.org/10.13140/RG.2.2.10410.90560
http://dx.doi.org/10.13140/RG.2.2.10410.90560
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Figure B.2. Boxplots showing Glastir Environmental Monitoring Program X-plot climate data from UKCP18 at 1 
km square scale from 2016 (averaged from 1981 to 2016 as a baseline) through subsequent predicted years up 
to 2056. Observed (2016, black edged box plots) data was sourced from Met Office HadUK-Grid, 1 km climate 
data and averaged. Predictions data (blue edged box plots) from the UKCP18 high emissions scenario, RCP8.5, 
UK regional 12 km scale probabilistic data, was downscaled to 1km. A. Total annual precipitation in mm, B. 
minimum January temperature in °C and C. Maximum July temperature in °C; georeferenced to the 1 km square 
each X-plot was within. Left hand Y-axes shows variable ranges to derive boxplot values from (black observed 
average for 2016; blue beyond 2016 predicted). The dashed orange lines show the top and bottom of ranges the 
R package MultiMOVE was constructed within. X-axis labels show the X-plot groups of year and board habitat 
type: A&H = arable and horticulture; I.G. = improved grassland; N.G. = neutral grassland; Br = Bracken. 
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Figure B.3. Boxplots of Arum maculatum(A), Circaea lutetiana(B), Hyacinthoides non-scripta(C), and Oxalis acetosella(D), MutliMOVE output results. Data represents 
broadleaved woodland at baseline in 2016 from Glastir Monitoring and Evaluation Program data under predicted climate data (UKCP18). 
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Figure B.4. Boxplots of Crataegus monogyna(A), Hedera helix(B), Rubus fruticosus(C), and Stachys sylvatica(D), MutliMOVE output results. Data represents broadleaved 
woodland at baseline in 2016 from Glastir Monitoring and Evaluation Program data under predicted climate data (UKCP18). 
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Figure B.5. Boxplots of Acer pseudoplatanus(A), Fagus sylvatica(B), Fraxinus excelsior(C) and Quercus Sp. (D), MutliMOVE output results. Data represents broadleaved 
woodland at baseline in 2016 from Glastir Monitoring and Evaluation Program data under predicted climate data (UKCP18). 
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Figure B.6. Boxplots of Corylus avellana, MutliMOVE output results. Data represents broadleaved woodland at 
baseline in 2016 from Glastir Monitoring and Evaluation Program data under predicted climate data (UKCP18). 
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Figure B.7. Boxplots of species group diversity scores: A, Broadleaved woodland habitat ancient woodland indicator (A.W.I.) species at baseline in 2016 and later years with 
predicted climate; B, the four habitats A.W.I. species scores at baseline and modelled as being planted broadleaf in subsequent years, with baseline and predicted climate; D 
Broadleaved woodland habitat nectar producing (N.P.) species at baseline in 2016 and later years with predicted climate; C the four habitats N.P. species scores at baseline 
and modelled as being planted broadleaf in subsequent years, with baseline and predicted climate. The dashed blue line represents the median A.W.I. score for broadleaved 
woodland at baseline in A&B and the same N.P. mean for D&C. The data used to create these boxplots was generated using an ecological niche model MultiMOVE, inputs 
were altered to represent baseline (1981-2016) and future climates using downscale UKCP18 climate data, incremental increase of cover weighted canopy height representing 
tree growth and generalised linear mixed effect models of soil variable change under broadleaved plantation. 
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Figure B.8. Boxplots of diversity scores of timber species group diversity (TSGD): A, Broadleaved woodland habitat TSGD at baseline in 2016 and later years with predicted 
climate; B, the four habitats at baseline and modelled as being planted broadleaf TSGD in subsequent years, with baseline and predicted climate; D is the same as A but with 
Fraxinus excelsior removed; C is the same as B with Fraxinus excelsior removed. The dashed blue line represents the mean TSGD for broadleaved woodland at baseline in 
A&B and the mean TSGD without F. excelsior for broadleaved woodland at baseline for D&C. The data used to create these boxplots was generated using an ecological niche 
model MultiMOVE, inputs were altered to represent baseline (1981-2016) and future climates using downscale UKCP18 climate data, incremental increase of cover weighted 
canopy height representing tree growth and generalised linear mixed effect models of soil variable change under broadleaved plantation.   
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Figure B.9. Boxplots of diversity scores of woody flora (WFD): A, Broadleaved woodland habitat WFD at baseline in 2016 and later years with predicted climate; B, the four 
habitats at baseline and modelled as being planted broadleaf WFD in subsequent years, with baseline and predicted climate; D is the same as A but with Fraxinus excelsior 
removed; C is the same as B with Fraxinus excelsior removed. The dashed blue line represents the median WFD for broadleaved woodland at baseline in A&B and the 
median WFD without F. excelsior for broadleaved woodland at baseline for D&C. The data used to create these boxplots was generated using an ecological niche model 
MultiMOVE, inputs were altered to represent baseline (1981-2016) and future climates using downscale UKCP18 climate data, incremental increase of cover weighted canopy 
height representing tree growth and generalised linear mixed effect models of soil variable change under broadleaved plantation. 
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B.4 | Climatic variables 

 
Figure B.10. Boxplots showing Glastir Environmental Monitoring Program X-plot climate data from UKCP18 at 1 km square scale from 2016 (averaged from 1981 to 2016 as a 
baseline) through subsequent predicted years up to 2056. Observed (2016, black edged box plots) data was sourced from Met Office HadUK-Grid, 1 km climate data and 
averaged. Predictions data (blue edged box plots) from the UKCP18 high emissions scenario, RCP8.5, UK regional 12 km scale probabilistic data, was downscaled to 1km. A. 
Total annual precipitation in mm, B. minimum January temperature in °C and C. Maximum July temperature in °C; georeferenced to the 1 km square each X-plot was 
within. Left hand Y-axes shows variable ranges to derive boxplot values from (black observed average for 2016; blue beyond 2016 predicted). The dashed orange lines 
show the top and bottom of ranges the R package MultiMOVE was constructed within. X-axis labels show the X-plot groups of year and board habitat type: A&H = arable and 
horticulture; I.G. = improved grassland; N.G. = neutral grassland; Br = Bracken.
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C | Appendix C. Supporting information and data for  

Chapter four 

 

C.1 | Description of grassland Broad Habitat Types 

The three broad habitats, improved grassland, neutral grassland and acid grassland are 

described in Jackson (2000). During the baseline Glastir Monitoring and Evaluation 

Programme (GMEP) survey areas of land were assigned to these three broad habitats 

among others using a vegetation key available online at: 

http://nora.nerc.ac.uk/id/eprint/5194/1/N005194CR.pdf. 

The top 10 most common species in quadrats surveyed in GMEP and assigned to each 

broad habitat were as follows: 

• Improved grassland: Lolium perenne, Trifolium repens, Ranunculus repens, Holcus 

lanatus, Cerastium fontanum, Taraxacum agg., Poa trivialis, Agrostis capillaris, Poa 

annua, Rumex obtusifolius 

Management: Regular fertiliser application and possibly manure too with cutting and 

grazing. 

• Neutral grassland: Holcus lanatus, Agrostis capillaris, Trifolium repens, Lolium 

perenne, Ranunculus repens, Cerastium fontanum, Anthoxanthum odoratum, 

Taraxacum agg., Cynosurus cristatus, Rumex acetosa 

Management: Regular grazing possible with cutting with little to no fertiliser 

application or manure. 

• Acid grassland: Rhytidiadelphus squarrosus, Galium saxatile, Anthoxanthum 

odoratum, Festuca ovina, Agrostis capillaris, Potentilla erecta, Deschampsia 

flexuosa, Pleurozium schreberi, Vaccinium myrtillus, Hylocomium splendens 

Management: Grazing with rarely if ever occurring fertiliser application and cutting. 

 

http://nora.nerc.ac.uk/id/eprint/5194/1/N005194CR.pdf
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C.1 | References 

Jackson, D. L. (2000). Guidance on the interpretation of the Biodiversity Broad Habitat Classification 
(terrestrial and freshwater types): Definitions and the relationship with other habitat 
classifications. Joint Nature Conservation Committee, Peterborough, UK. 

 

 

C.2 | Appendix C. Species pool for modelling 

The species group lists below can be found in the table included with this document: 

• Nitrogen fixers (Smart et al., 2017); 21 species; N_fixers in Table C.1. 

• Nitrophiles (Rowe et al., 2016; Smart et al., 2017); 68 species; Nitrophilous_Sp. in 

Table C.1. 

• Nitrophobes (Rowe et al., 2016; Smart et al., 2017); 273 species; Nitrophobous_Sp. 

in Table C.1. 

• Species with leaf N content data from the TRY plant functional trait database (Kattge 

et al., 2020); 148 species; N_holders in Table C.1. 

 

The species list can be found within the .csv file: 

Table C.1.Appendix C.2. N_Sp._groups.csv 
listed with this document but available at the DOI: 
http://dx.doi.org/10.13140/RG.2.2.10410.90560. 
 
C.2 | References 
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D. A., Aakala, T., & Abedi, M. (2020). TRY plant trait database–enhanced coverage and open 
access. Global Change Biology, 26(1), 119–188. 

Rowe, E. C., Ford, A. E. S., Smart, S. M., Henrys, P. A., & Ashmore, M. R. (2016). Using qualitative 
and quantitative methods to choose a habitat quality metric for air pollution policy evaluation. 
PloS One, 11(8), e0161085. 

Smart, S. M., Henrys, P. A., Norton, L. R., Wallace, H., Wood, C. M., Williams, B., & Bunce, R. G. H. 
(2017). Changes in the frequency of common plant species across linear features in Wales 
from 1990 to 2016: implications for potential delivery of ecosystem services. New Journal of 
Botany, 7(2–3), 112–124. https://doi.org/10.1080/20423489.2017.1408190 

 

 

http://dx.doi.org/10.13140/RG.2.2.10410.90560
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C.3 | Appendix C. Modelling change in soil variables with N use 

Determining how soils change in response to management was achieved via constructing 

generalized linear mixed-effects models trained on data gathered from literature review 

where the effects of N use on soil variables had been measured over time. The use of 

biogeochemistry models to dynamically process the impact of management change was not 

adopted because the necessary soil measurements do not exist for each modelled location. 

Using average inputs coarsely resolved to larger grid squares and dominant soil type would 

have greatly decreased the accuracy and realism of the modelling process removing the 

benefit of filtering the observed plant species composition at our very high resolution 

sampling sites. 

 

The three soil variables (C, N, pH) were also modelled independently of each other as no 

study measured all these variables together over long enough time periods. Hence, our 

results are strongly dependent on the representativeness of the studies selected from 

literature review and the realism of the modelled change in each variable. 

 

Readers can inspect the underlying data and assess the representativeness of the 

observations and the robustness of the estimated soil changes via review of the below.  

 

C.3 | Literature sources 

Care was taken to closely match the methods of each study found during literature review to 

the CS methods or ensure data values could be converted to match. Non-UK studies were 

omitted. This search resulted in datasets of varying size as requests were made to study 

authors to provide full datasets but not always yielded, and also including relevant open 

access data; these are: 



281 

 

 

1. Project supplementary material from grassland restoration from arable (Pywell et al., 

2007) 

2. UK Department for Environment, Food and Rural Affairs (Defra) report (Wagner et 

al., 2014) 

3. Defra project on managing grassland diversity (Defra, 2015) 

4. Sheep grazing removal experiment, full data set provided by author (Marrs et al., 

2018) 

5. Project on restoration from farmland (Pywell, Webb and Putwain, 1994) 

6. Upland long term environmental change experiment, summary data (Mcgovern et al., 

2013) 

7. A 12-year fertiliser and lime experiment, supplementary material from (Kirkham et al., 

2011) 

8. Soil organic carbon stocks in upland grasslands (Eze, Palmer and Chapman, 2018) 

9. Changes in soil C and N stoichiometry 21 years after land use change (Baddeley, 

Edwards and Watson, 2017) 

10. Effects of long-term grassland management on the carbon and nitrogen pools (Egan, 

Crawley and Fornara, 2018) 

11. Species-rich grasslands response to long-term simulated nitrogen deposition 

(Horswill et al., 2008) 

12. Improved grassland, 19 years of restoration management effects on soil and 

vegetation (Pavlů, Pavlů and Fraser, 2021) 

13. Grassland 120 years of fertiliser addition impacts (Kidd et al., 2017) 

14. Elan Valley grasslands report (Hayes and Lowther, 2014) 

15. Rothamsted Research, Park Grass long-term experiment data, full data set provided 

(Rothamsted Research, 2016) 

 

This data was then used as described in the main text to created generalised linear mixed 

effect models for soil pH, total soil C%, and total soil N%. The data can be found within the 

.csv: 

Table C.2. Appendix C.3. Soil N use data.csv 
listed with this document but available at the DOI: 
http://dx.doi.org/10.13140/RG.2.2.10410.90560. 
 

http://dx.doi.org/10.13140/RG.2.2.10410.90560
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C.4 | Appendix C.  Workflow output graphical plots. 

 

 
Figure C.1. Results of testing the species ecological niche model MultiMOVE outputs against the observed 2007 
baseline.  Left, Logistic regression (LR) of weighted model averages (WMA, or habitat suitability) of species per 
X-plot observed as present (light blue) or not present (brown). A species within a plot having a WMA of 0.386 or 
over according to the LR is more likely to be observed as present (fitted presence of 0.51) than absent within the 
input data (logistical regression WMA model coefficients P-value <0.001). Right, Boxplots with median rank of 
WMA values shown as the central thicker horizontal line, central hinges and out whiskers represent the 1st, 2nd & 
3rd Interquartile ranges from bottom to top. 
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Figure C.2. Boxplots show soil pH (top row); total soil carbon% (middle row); total soil nitrogen% (bottom row) 
under each scenario, board habitat and year. Columns are nitrogen fertiliser application scenarios: L50 = 
Application of less than 50 kg ha-1  yr-1 of N; L = Low level application of N, 50-100 kg ha-1  yr-1. All values are 
driven by soil variable (pH;C%;N%) generalised linear mixed effect models of different categorised levels of 
fertiliser applications. X-axis = Broad Habitats (BH): IG = Improved grassland (blue); NG = Neutral grassland 
(pink); AG = Acid grassland (orange); the dashed line in each part of each plot represents the BH’s 2007 median 
value.
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Figure C.3. Boxplots show the Nitrophilous species group diversity score under each scenario, board habitat and year. Scenarios bracketed beside the Y-axis are: SSD = 
Nitrogen deposition (Ndep) from Bayesian modelling N deposition effects on Ellenberg N and a recovery from acidification increment applied to pH before generating Ellenberg 
R from soil variables (field moisture %, pH, C%, N%); SSL50 = Application of less than 50 kg ha-1  yr-1 of N; SSL = Low level application of N, 50-100 kg ha-1  yr-1. SSL50 & 
SSL values are driven by soil variable (pH;C%;N%) generalised linear mixed effect models of different categorised levels of fertiliser applications. X-axis = Broad Habitats (BH): 
IG = Improved grassland (blue); NG = Neutral grassland (pink); AG = Acid grassland (orange); the dashed line in each part of each plot represents the BH’s 2007 median 
value. 
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Figure C.4. Boxplots show the species group diversity score of species with Leaf nitrogen content data from TRY (Kattge et al., 2020) under each scenario, board habitat and 
year. Scenarios bracketed beside the Y-axis are: SSD = Nitrogen deposition (Ndep) from Bayesian modelling N deposition effects on Ellenberg N and a recovery from 
acidification increment applied to pH before generating Ellenberg R from soil variables (field moisture %, pH, C%, N%); SSL50 = Application of less than 50 kg ha-1  yr-1 of N; 
SSL = Low level application of N, 50-100 kg ha-1  yr-1. SSL50 & SSL values are driven by soil variable (pH;C%;N%) generalised linear mixed effect models of different 
categorised levels of fertiliser applications. X-axis = Broad Habitats (BH): IG = Improved grassland (blue); NG = Neutral grassland (pink); AG = Acid grassland (orange); the 
dashed line in each part of each plot represents the BH’s 2007 median value. 
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Figure C.5. Boxplots show the climate data from UKCP18 at 1 km square scale for each board habitat and year 
in the scenarios (climate data is the same for all scenarios). The right hand Y-axes with associated horizontal 
lines shows the operating space of the ecological niche model MultiMOVE reflective of the range of its training 
data. Broad Habitats (BH): IG = Improved grassland (blue); NG = Neutral grassland (pink); AG = Acid grassland 
(orange). 
 

D | Appendix D. Supporting information and data for  

Chapter five 

D.1 | Appendix D. Comparison of modelled and observed data for 

validation 

The table below (Table D.1) shows the comparison of the scenarios constructed within 

Chapter 4  with the observed baseline Glastir Monitoring and Evaluation Program data 

(Emmett et al., 2017). 
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Table D.1. Significant differences comparing variables from modelled scenarios using Countryside Survey data 
with observed data from the Glastir Monitoring and Evaluation Program (GMEP). The data here considers only 
one year, 2016 as this is the year the GMEP surveying completed. The comparison was determined using an 
unpaired t-test with significance indicated by: NS = Not significant; * = p-value<0.05; - = Not applicable. 
Variables: EbN = Ellenberg nutrient score; EbR = Ellenberg reactivity score; pH = soil pH; C% = total soil carbon 
content by percentage; N% = total soil nitrogen content by percentage. Scenarios: Ndep = Background Nitrogen 
deposition; L<50 = Management representative of livestock grazing with N applications of less than 50 kg ha-1 yr-

1; L = Management representative of livestock grazing with N applications of 50-100 kg ha-1 yr-1. The increasing 
shading represents from light to dark and increase in N abundance change within the scenarios. Scenarios L & 
L<50  represent levels of Nitrogen use based on the Soil Nitrogen Supply status for Long-term grass found in the 
RB209 Nutrient Management Guide (AHDB, 2021). 

Scenario Countryside 
Survey Plots 

GMEP 
Plots Year Grassland 

Habitat 

Significant difference of predictions 
versus (GMEP) observations 

EbR EbN pH C% N% 
N dep 44 22 2016 Improved * * - - - 
N dep 12 8 2016 Neutral * * - - - 
N dep 6 4 2016 Acid * * - - - 
L<50 44 22 2016 Improved * * * NS NS 
L<50 12 8 2016 Neutral * * NS * * 
L<50 6 4 2016 Acid * * NS NS NS 

L 44 22 2016 Improved * * * NS NS 
L 12 8 2016 Neutral * * NS * * 
L 6 4 2016 Acid * * NS NS NS 

 
This comparison was explored to validate the predictions from the three scenarios within 

Chapter 4 , however a robust comparison was not possible. This is because data measuring 

the real amount of N deposition or fertiliser applied within the GMEP data is not available, so 

it is unknown if the data (Table D.1) is a robust like-for-like comparison. The number of 

occurrences of significant differences between the modelled data and the observed data 

suggests it is not, like-for-like. 
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