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Abstract

We consider a predictor–corrector numerical method for solving Caputo–Hadamard fractional differential
equation over the uniform mesh log tj = log a +

(
log tN

a

)(
j
N

)
, j = 0, 1, 2, . . . , N with a ≥ 1, where log a =

log t0 < log t1 < · · · < log tN = log T is a partition of [log a, log T ]. The error estimates under the different
smoothness properties of the solution y and the nonlinear function f are studied. Numerical examples are
given to verify that the numerical results are consistent with the theoretical results.
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1. Introduction

Fractional differential equations have recently become an active research area due to the applications in
fields including mechanics, computer science, and biology [1, 2, 3, 4]. There are different fractional deriva-
tives, e.g., Caputo, Riemman–Liouville, Riesz, etc. Such fractional derivatives are well studied in literature.
One particular fractional derivative, the Hadamard fractional derivative, is also important and has been
used to model physical problems in many fields [5, 7, 9, 6, 8, 10, 11]. The Hadamard fractional derivative
was first introduced in early 1892 [12], and the Caputo–Hadamard derivative was suggested by Jarad et
al. [8]. In this paper, we will discuss the numerical method for solving a Caputo–Hadamard fractional initial
value problem. We will be analyzing the smoothness properties of various aspects of such equations and
explain how these properties will affect the convergence order of the numerical method.

Consider the following Caputo–Hadamard fractional differential equation, with α > 0, [8]

CHD
α
a,ty(t) = f

(
t, y(t)

)
, δky(a) = y(k)

a , k = 0, 1, . . . , dαe − 1, (1)

for 1 ≤ a ≤ t ≤ T . Here, dαe denotes the least integer bigger than or equal to α. Here, f(t, y) is a

nonlinear function with respect to y ∈ R, and the initial values y
(k)
a are given. We also define α such that

n − 1 < α < n, for n = 1, 2, 3 . . . . Here, the fractional derivative CHD
α
a,t denotes the Caputo–Hadamard

derivative defined as ,

CHD
α
a,ty(t) =

1

Γ(dαe − α)

∫ t

a

(
log

t

s

)dαe−α−1

δny(s)
ds

s
, t ≥ a ≥ 1, (2)

with δny(s) = (s dds )ny(s). It is well known that (1) is equivalent to the following Volterra integral equation,
with α > 0, [13, 14]
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y(t) =

dαe−1∑
ν=0

y(ν)
a

(log t
a )ν

ν!
+

1

Γ(α)

∫ t

a

(
log

t

s

)α−1

f
(
s, y(s)

)ds

s
. (3)

Let us begin by reviewing some different numerical methods for solving (1). Diethelm et al. [15] first
introduced the fractional Adams method for the Caputo fractional differential equation as a generalization
of the classical numerical method for solving first-order ODEs. They discussed the error estimates for the
proposed method, including the convergence orders under the different smoothness assumptions of y and
f . This work was then extended by Liu et al. [16] to show that when CD

α
a,ty(t) /∈ C2[0, T ], the optimal

convergence order is not achieved but can be recovered by implimenting a graded mesh. Gohar et al. [7]
studied the existence and uniqueness of the solution of (1), and several numerical methods were introduced
including the Euler and predictor–corrector methods. Gohar et al. [13] extended their work by introducing
the rectangular, trapezoidal, and predictor–corrector methods for solving (1) with a uniform mesh under
the smooth assumptions CHD

α
a,ty(t) ∈ C2[a, T ] with α ∈ (0, 1). Green et al. [14] extended the results in [16]

to the Caputo–Hadamard differential Equation (1). Numerical methods for solving Caputo–Hadamard time
fractional partial differential equations can be found in [7, 17]. More recent works on numerical methods
for solving fractional differential equations can be referred to [17, 19, 20, 18, 21].

Caputo–Hadamard type fractional differential equations have the significant interests when they come
to real applications due to the logarithmic nature of the integral kernel. This is especially true in mechanics
and engineering. An example of this is the use of Hadamard type equations in fracture analysis and the
modeling of elasticity [22]. Furthermore, the Caputo–Hadamard fractional derivative has been used in
fractional turbulent flow models [23]. In biology, the Hadamard fractional derivative has been used in
modeling for cancer treatments by radiotherapy [24]. Many of these models require efficient numerical
methods for solving them. In literature, the error estimates of the numeircal methods proposed for solving
the Caputo–Hadamard fractional differential Equation (1) are based on the assumptions that the solution
y and f are sufficiently smooth [7, 13]. In this paper, we will consider the error estimates of the numerical
methods under the different smoothness assumptions of y and f .

Diethelm et al. [15] considered a variety of smoothness assumptions of y and f to the fractional Adams
method for solving Caputo differential equations. The aim of this work is to extend the ideas in [15] for
solving Caputo fractional differential equation to Caputo–Hadamard fractional differential Equation (1).

Let us start by briefly recalling the Adams–Bashforth–Moulton method for the Caputo–Hadamard frac-
tional derivative. To construct such a method, we require an approximation of the integral in (3). We will
apply the following product trapezoidal quadrature rule,∫ tk+1

a

(
log(tk+1)− log(z)

)α−1
g(z)

dz

z
≈
∫ tk+1

a

(
log(tk+1)− log(z)

)α−1
g̃k+1(z)

dz

z
, (4)

where the approximation g̃k+1(z) is the piecewise linear interpolant for g at tj , j = 0, 1, 2, . . . , k + 1. Using
the standard techniques from quadrature theory, we can write the right hand side integral as,∫ tk+1

a

(
log(tk+1)− log(z)

)α−1
g̃k+1(z) =

k+1∑
j=0

aj,k+1g(tj), (5)

where,

aj,k+1 =

∫ tk+1

a

(
log(tk+1)− log(z)

)α−1
φj,k+1dz, (6)

and,

φj,k+1(z) =


log z−log tj−1

log tj−log tj−1
, if tj−1 < z < tj ,

log tj+1−log u
log tj+1−log tj

, if tj < z < tj+1,

0, otherwise.

(7)
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we get,

aj,k+1 =
1

α(α+ 1)


1

log
t1
a

A0, j = 0,

1

log
tj+1
tj

Aj + 1

log
tj−1
tj

Bj , j = 1, 2, . . . , k,(
log tk+1

tk

)α
, j = k + 1,

(8)

Aj =
(

log
tk+1

tj+1

)α+1

−
(

log
tk+1

tj

)α+1

+ (α+ 1)
(

log
tj+1

tj

)(
log

tk+1

tj

)α
, j = 0, 1, ..., k,

Bj =
(

log
tk+1

tj

)α+1

−
(

log
tk+1

tj−1

)α+1

+ (α+ 1)
(

log
tj
tj−1

)(
log

tk+1

tj−1

)α
, j = 1, 2, ..., k.

This gives us the formula for the corrector, known as the fractional one-step Adams–Moulton method,

yk+1 = y0 +
1

Γ(α)

( k∑
j=0

aj,k+1f(tj , yj) + ak+1,k+1f(tk+1, y
P
k+1)

)
. (9)

We now must determine the predictor formula required to calculate yPk+1. For this, we will generalize
the one-step Adams–Bashforth method for ODEs. To do this, we follow a similar method, but now, we will
be replacing the integral on the right-hand side by the product rectangle formula rule,∫ tk+1

a

(
log(tk+1)− log(z)

)α−1
g(z)

dz

z
≈

k∑
j=0

bj,k+1g(tj), (10)

where,

bj,k+1 =
1

Γ(α+ 1)

[(
log

tk+1

tj

)α
−
(

log
tk+1

tj+1

)α]
, j = 0, 1, 2, . . . , k. (11)

Therefore, the predictor can be calculated using the fractional Adams–Bashforth method,

yPk+1 = y0 +

k∑
j=0

bj,k+1f(tj , yj). (12)

Finally, we can conclude that our basic method, the fractional Adams–Bashforth–Moulton method, is
described with the predictor Equation (12), the corrector Equation (9), and weights (8) and (11). For this
method, however, we will be using a uniform mesh defined below.

Let N be a positive integer and let a = t0 < t1 < · · · < tN = T be the partition on [a, T ]. We define the
following uniform mesh on [log(a), log(T )] with log a = log t0 < log t1 < · · · < log tN = log T,

log tj − log a

log tN − log a
=

j

N
, (13)

which implies that,

log tj = log a+ jh, with h = (log tN − log a)/N. (14)

when j = N we have log tN = log T and when j = 0, we have log t0 = log a. By applying such a mesh on
our weights, we can simplify them to,

aj,k+1 =
hα

Γ(α+ 2)
×


(
kα+1 − (k − α)(k + 1)α

)
, if j = 0,

(k − j + 2)α+1 + (k − j)α+1 − 2(k − j + 1)α, if 1 ≤ j ≤ k,
1, if j = k + 1,

(15)
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and

bj,k+1 =
hα

Γ(α+ 1)

(
(k + 1− j)α − (k − j)α

)
. (16)

The fractional Adams–Bashforth–Moulton method has many useful properties. First, we may use this
method to solve nonlinear fractional differential equation by transforming the nonlinear equation into a
Volterra integral equation with a singular kernel and approximating the corresponding Volterra integral
equation with some suitable quadrature formula. Second, the fractional Adams–Bashforth–Moulton method
is an explicit method, and as such, it can save computer memory and can be more computationally time-
efficient. Finally, this method has been shown to have a convergence order of O(h2−α) for suitable meshes.

We shall consider the error estimates of the predictor–corrector schemes (9) and (12) under the various
smoothness assumptions of f and y in this paper. The paper is organized as follows. In Section 2, we will
consider some auxiliary results that will aid us for the remainder of the paper in proving the error estimates.
In Section 3, we consider the error estimates of the predictor–corrector method for solving (1) with a uniform
mesh under different smoothness conditions. In Section 4, we will provide several numerical examples that
support the theoretical conclusions made in Sections 2 and 3.

2. Auxiliary Results

For the remainder of this work, we will be using the Adams method described by the predictor Equation
(12) and the corrector Equation (9) and the uniform mesh described by (13) to solve the fractional initial
value problem (1). To begin, we must apply some conditions on the function f , namely that f is continuous
and follows the Lipschitz condition with respect to its second argument with the Lipschitz constant, L, on
a suitable set G. By forcing these conditions, we may use [25] to show that a unique solution y of the initial
value problem exists on the interval [a, T ]. Our goal is to find a suitable approximation for this unique
solution.

As such, we will introduce several auxiliary results on certain smoothness properties to help us in our
error analysis of this method. Our first result is taken from [13].

Theorem 2.1. (a) Let α > 0. Assume that f ∈ C2(G) where G ⊂ R2 is a suitable set. Define v̂ = d 1
αe− 1.

Then, there exists a function φ ∈ C1[a, T ] and some constants c1, c2, . . . , cv̂ ∈ R such that the solution y of
(1) can be expressed in the following form:

y(t) = φ(t) +
v̂∑
v=1

cv

(
log

t

a

)vα
. (17)

(b) Assume that f ∈ C3(G). Define v̂ = d 2
αe−1. and ṽ = d 1

αe−1. Then, there exists a function ψ ∈ C2[a, T ]
and some constants c1, c2, . . . , cv̂ ∈ R and d1, d2 . . . , dṽ ∈ R such that the solution y of (1) can be expressed
in the form,

y(t) = ψ(t) +

v̂∑
v=1

cv

(
log

t

a

)vα
+

ṽ∑
v=1

dv

(
log

t

a

)1+vα

. (18)

We can also relate such smoothness properties of the solution with that of the Caputo–Hadamard deriva-
tives. From [13], we have,

Theorem 2.2. If y ∈ Cm[a, T ] for some m ∈ N and 0 < α < m, then,

CHD
α
a,ty(t) = Φ

(
log

t

a

)
+

m−dαe−1∑
l=0

δl+dαey(a)

Γ(dae − α+ l + 1)

(
log

t

a

)dae−α+l

, (19)

where Φ ∈ Cm−dαe[a, T ] and δny(s) = (s d
ds )ny(s) with n ∈ N. Moreover, the (m − dαe)th derivative of g

satisfies a Lipschitz condition of order dαe − α.
4



A useful corollary can then be drawn from this theorem and can be used to generalize the classical result
for derivatives of integer order.

Corollary 2.1. Let y ∈ Cm[a, T ] for some m ∈ N and assume that 0 < α < m. Then, CHD
α
a,ty(t) ∈ C[a, T ].

We will now introduce some error estimates for both the product rectangle rule and product trapezoidal
rule, which we have implemented as the predictor and corrector of our method. Doing so will aid us in
producing error estimates and convergence orders of the fractional Adams method.

Theorem 2.3. (a) Let z(t) = z
(

log t
a

)
∈ C1[a, T ] and δz = (t ddt )z. Let h be defined by (14). Then,

∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

bj,k+1z
(

log
t

a

)∣∣∣ ≤ 1

α
||δz||∞

(
log

tk+1

a

)α
h. (20)

(b) Let z
(

log t
a

)
=
(

log t
a

)p
for some p ∈ (0, 1). Then,

∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

bj,k+1z
(

log
t

a

)∣∣∣ ≤ CReα,p( log
tk+1

a

)α+p−1

h. (21)

Proof: Using the construction of the product rectangle formula rule, we can show that in both cases
above, the quadrature error can be represented by,

∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

bj,k+1z
(

log
tj
a

)

=

k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1
(
z
(

log
t

a

)
− z
(

log
tj
a

))dt
t
. (22)

We will begin by proving statement (a). We first apply the Mean Value Theorem on z in the second factor
of the integrand and note that δz(t) = (t ddt )z(t) = z′(log t

a ). This gives us, with ‖δz‖∞ = maxt∈[0,T ] |δz(t)|,

∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

bj,k+1z
(

log
tj
a

)∣∣∣∣
≤||δz||∞

k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1

(log t− log tj)
dt

t

=||δz||∞
h1+α

α

k∑
j=0

(
1

1 + α

[
(k + 1− j)1+α − (k − j)1+α

]
− (k − j)α

)

=||δz||∞
h1+α

α

(
(k + 1)1+α

1 + α
−

k∑
j=0

jα
)

= ||δz||∞
h1+α

α

(∫ k+1

0

tα −
k∑
j=0

jα
)
. (23)

The final bracket can be interpreted as the remainder of the standard rectangle quadrature formula for
the function tα over the interval [0, k + 1]. We can then apply a standard result from quadrature theory
that states that this term is bounded by the total variation of the integrand, (k + 1)α. Therefore, we can
conclude that,∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

bj,k+1z
(

log
tj
a

)∣∣∣∣ ≤ ||δz||∞h1+α

α
(k + 1)α. (24)
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Now to prove (b). We use the fact that z
(

log t
a

)
=
(

log t
a

)p
is monotonic and repeated applications of

the Mean Value Theorem. We are required to take cases when 0 < α < 1 and α > 1.
Case 1: 0 < α < 1,

∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

bj,k+1z
(

log
tj
a

)∣∣∣∣
≤

k∑
j=0

∣∣∣∣z( log
tj+1

a

)
− z
(

log
tj
a

)∣∣∣∣ ∫ tj+1

tj

(
log

tk+1

t

)α−1 dt

t

=
hα+p

α

k∑
j=0

(
(j + 1)p − jp

)(
(k + 1− j)α − (k − j)α

)
≤h

α+p

α

(
(k + 1)α − kα + pα

k−1∑
j=1

jp−1(k − j)α−1 + (k + 1)p − kp
)

≤h
α+p

α

(
αkα−1 + pα

k−1∑
j=1

jp−1(k − j)α−1 + pkp−1

)
.

We shall show that,

k−1∑
j=1

jp−1(k − j)α−1 ≤ Ckα+p−1. (25)

Assuming (25) holds at the moment, we then have,

I ≤h
α+p

α

(
αkα−1 + pαCkα+p−1 + pkp−1

)
≤ Chα+p

(
kα+p−1 + Ckα+p−1 + kα+p−1

)
≤Chα+pkα+p−1 = Chα+p

(
log

tk+1

α

)α+p−1

h−(α+p−1) = Ch
(

log
tk+1

α

)α+p−1

.

It remains to prove (25), which we shall do now.

k−1∑
j=1

jp−1(k − j)α−1 = 1p−1(k − 1)α−1 + 2p−1(k − 2)α−1 + · · ·+ (k − 1)p−1(1)α−1.

Let F (x) = xp−1(k − x)α−1 for 0 ≤ x ≤ k. Then,

F ′(x) = xp−2(k − x)α−2
[
(2− α− p)x− (1− p)k

]
.

By letting the parenthesis equal zero, we find that F (x) has a turning point at xp = (1−p)k
2−α−p , meaning

F (x) is decreasing on [0, xp] and increasing on [xp, k]. Therefore,

k−1∑
j=1

jp−1(k − j)α−1 ≤
∫ xp

0

xp−1(k − x)α−1dx+

∫ k

xp

xp−1(k − x)α−1dx

≤(k − xp)α−1

∫ xp

0

xp−1dx+ xp−1
p

∫ k

xp

(k − x)α−1dx

=
(
k − 1− p

2− α− p
k
)α−1xpp

p
+ xp−1

p

(k − xp)α

α

=C1k
α−1kp + C2k

p−1kα ≤ Ckp+α−1.
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Case 2: α > 1,

∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

bj,k+1z
(

log
tj
a

)∣∣∣∣
=
hα+p

α

k∑
j=0

(
(j + 1)p − jp

)(
(k + 1− j)α − (k − j)α

)
≤h

α+p

α

(
(k + 1)α − kα + pα

k−1∑
j=1

jp−1(k − j + 1)α−1 + (k + 1)p − kp
)

≤h
α+p

α

(
α(k + 1)α−1 + pα

k−1∑
j=1

jp−1(k − j + 1)α−1 + (k + 1)p − kp
)
.

We shall show that,

k−1∑
j=1

jp−1(k − j + 1)α−1 ≤ Ckα+p−1. (26)

Assuming (26) holds at the moment, we then have,

I ≤h
α+p

α

(
α(k + 1)α−1 + pαCkα+p−1 + pkp−1

)
≤Chα+p

(
Ckα+p−1 + Ckα+p−1 + Ckα+p−1

)
≤Chα+pkα+p−1 = Chα+p

(
log

tk+1

α

)α+p−1

h−(α+p−1) = Ch
(

log
tk+1

α

)α+p−1

.

It remains to prove (26), which we shall do now.

k−1∑
j=1

jp−1(k − j)α−1 = 1p−1(k)α−1 + 2p−1(k − 1)α−1 + · · ·+ (k − 1)p−1(2)α−1.

Let F (x) = xp−1(k − x)α−1 for 0 ≤ x ≤ k. Then,

F ′(x) = xp−2(k − x)α−2
[
(2− α− p)x− (1− p)(k + 1)

]
.

By letting the parenthesis equal zero, we find that F (x) has a turning point at xp = (1−p)(k+1)
2−α−p , meaning

F (x) is decreasing on [0, xp] and increasing on [xp, k]. Therefore,

(i) If 2− α− p > 0, then xp > 0. Therefore,

k−1∑
j=1

jp−1(k − j)α−1 ≤
∫ xp

0

xp−1(k + 1− x)α−1dx+

∫ p

xk

xp−1(k + 1− x)α−1dx

≤(k + 1− 0)α−1
xpp
p

+ xp−1
p

(k + 1− xp)α

α

=(k + 1)α−1C1(k + 1)p + C2(k + 1)p−1C3(k + 1)α

≤C(k + 1)α+p−1 ≤ Ckα+p−1.
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(ii) If 2−α−p < 0, then xp < 0. This means that F ′(x) < 0 and shows that F (x) is a decreasing function.
Therefore,

k−1∑
j=1

jp−1(k − j)α−1 ≤
∫ k

0

xp−1(k + 1− x)α−1dx

≤(k + 1− 0)α−1

∫ k

0

xp−1dx ≤ (k + 1)α−1 k
p

p
≤ Ckα+p−1,

which gives us the desired result.

�

Next, we come to corresponding results for the trapezoidal formula that has been used for the corrector of
our method. The proofs of this theorem are similar to those of the previous theorem.

Theorem 2.4. (a) Let z(t) = z
(

log t
a

)
∈ C2[a, T ] and δ2z = (t ddt )

2z. Let h be defined by (14). Then, there
exists a constant CTrα depending on α such that,∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

aj,k+1z
(

log
tj
a

)∣∣∣∣ ≤ CTrα ||δ2z||∞
(

log
tk+1

a

)α
h2. (27)

(b) Let z
(

log t
a

)
∈ C1[a, T ] and assume that δz fulfils a Lipschitz condition of order µ for some µ ∈ (0, 1).

Then, there exists a positive constant BTrα,µ and M(z, µ) such that,

∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

aj,k+1z
(

log
tj
a

)∣∣∣∣ ≤ BTrα,µM(z, µ)
(

log
tk+1

a

)α
h1+µ. (28)

(c) Let z
(

log t
a

)
=
(

log t
a

)p
for some p ∈ (0, 2) and ς := min(2, p+ 1). Then,∣∣∣∣ ∫ tk+1

a

(log
tk+1

t
)α−1z

(
log

t

a

)dt
t
−

k∑
j=0

aj,k+1z
(

log
tj
a

)∣∣∣∣ ≤ CTrα,p( log
tk+1

a

)α+p−ς
hς . (29)

Proof: By construction of the product trapezoidal formula rule, we can show that in the first two cases
above, the quadrature error can be represented as,

∫ tk+1

a

(
log

tk+1

t

)α−1

z
(

log
t

a

)dt
t
−

k∑
j=0

aj,k+1

(
log

tj
a

)

=

k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1
(
z
(

log
t

a

)
− P1(t)

)
dt

t
, (30)

where,

P1(t) =
log t

tj+1

log
tj
tj+1

z(tj) +
log t

tj

log
tj+1
tj

z(tj+1), t ∈ [tj , tj+1]. (31)

We will begin by proving statement (a). To find an estimate for (30), we must simplify the second factor
of the integrand by applying the Mean Value Theorem. Therefore,
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z
(

log
t

a

)
− P1(t)

=
log t

tj+1

log
tj
tj+1

(
z
(

log
t

a

)
− z
(

log
tj
a

))
+

log t
tj

log
tj+1
tj

(
z
(

log
t

a

)
− z
(

log
tj+1

a

))

=
log t

tj+1

log
tj
tj+1

δz(c1)(log t− log tj) +
log t

tj

log
tj+1
tj

δz(c2)(log t− log tj+1)

=
(log t− log tj+1)(log t− log tj)

(log tj+1 − log tj)

(
δz(c1)− δz(c2)

)
≤hδ2z(c3)(c1 − c2) ≤ ||δ2z||∞h2.

Applying the above to (30), we get,

k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1
(
z
(

log
t

a

)
− P1(t)

)
dt

t

≤
k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1

||δ2z||∞h2 dt

t
= ||δ2z||∞h2

k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1 dt

t

= ||δ2z||∞h2
k∑
j=0

[−1

α

(
log

tk+1

t

)α]tj+1

tj

= ||δ2z||∞h2−1

α

k∑
j=0

(
log

tk+1

tj+1

)α
−
(

log
tk+1

tj

)α
=

1

α
||δ2z||∞h2

k∑
j=0

hα(k − j + 1)α − hα(k − j)α =
1

α
||δ2z||∞h2hα(k + 1)α

=
1

α
||δ2z||∞h2

(
log

tk+1

a

)α
.

Now to prove (b). As z ∈ C1[a, T ], this time, we are unable to apply the mean value theorem for a
second time. Instead, we will apply the Lipschitz condition of order µ on δz for some µ ∈ (0, 1). Therefore,

z
(

log
t

a

)
− P1(t)

=
log t

tj+1

log
tj
tj+1

(
z
(

log
t

a

)
− z
(

log
tj
a

))
+

log t
tj

log
tj+1
tj

(
z
(

log
t

a

)
− z
(

log
tj+1

a

))

=
log t

tj+1

log
tj
tj+1

δz(c1)(log t− log tj) +
log t

tj

log
tj+1
tj

δz(c2)(log t− log tj+1)

=
(log t− log tj+1)(log t− log tj)

(log tj+1 − log tj)

(
δz(c1)− δz(c2)

)
≤hM |c1 − c2|µ ≤Mh1+µ,

where M is a constant depending on z and µ. Applying the above to (30), we get,
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k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1
(
z
(

log
t

a

)
− P1(t)

)
dt

t

≤
k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1

Mh1+µ dt

t
= Mh1+µ

k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1 dt

t

=Mh1+µ
k∑
j=0

[−1

α

(
log

tk+1

t

)α]tj+1

tj
= Mh1+µ−1

α

k∑
j=0

(
log

tk+1

tj+1

)α
−
(

log
tk+1

tj

)α
=

1

α
Mh1+µ

k∑
j=0

hα(k − j + 1)α − hα(k − j)α =
1

α
Mh1+µhα(k + 1)α

=
1

α
Mh1+µ

(
log

tk+1

a

)α
.

Finally, we shall prove (c). We will start by proving the theorem when 0 < p < 1.
Case 1: 0 < α < 1. Let

A =

∣∣∣∣ ∫ tk+1

a

(log
tk+1

t
)α−1z

(
log

t

a

)dt
t
−

k∑
j=0

aj,k+1z
(

log
tj
a

)∣∣∣∣
=

∣∣∣∣ k∑
j=0

∫ tj+1

tj

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
( log t

tj+1

log
tj
tj+1

(
log

tj
a

)p
+

log t
tj

log
tj+1

tj

(
log

tj+1

a

)p)]dt
t

∣∣∣∣
≤
∣∣∣∣ ∫ t1

t0

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
(

log t
t0

log t1
t0

(
log

t1
a

)p)]dt
t

∣∣∣∣
+

∣∣∣∣ k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
( log t

tj+1

log
tj
tj+1

(
log

tj
a

)p
+

log t
tj

log
tj+1

tj

(
log

tj+1

a

)p)]dt
t

∣∣∣∣
=I + II.

For I, we have,

I =

∣∣∣∣ ∫ t1

t0

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
(

log t
t0

log t1
t0

(
log

t1
a

)p)]dt
t

∣∣∣∣
=

∣∣∣∣ ∫ t1

t0

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
(

log t
a

h
hp
)]

dt

t

∣∣∣∣
≤
∫ t1

t0

(
log

tk+1

t

)α−1

hp
dt

t
= hphα

[
(k + 1)α − kα

α

]
=hα+pαk

α−1

α
= hp+αkα−1 = Chp+α(k + 1)α−1 = Chp+1 log

( tk+1

a

)α−1

.

For II, we have,
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II =

k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
( log t

tj+1

log
tj
tj+1

(
log

tj
a

)p
+

log t
tj

log
tj+1

tj

(
log

tj+1

a

)p)]dt
t

=

k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1
[ log t

tj+1

log
tj
tj+1

((
log

t

a

)p
−
(

log
tj
a

)p)

+
log t

tj

log
tj+1

tj

((
log

t

a

)p
−
(

log
tj+1

a

)p)]dt
t

=

k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1
[ log t

tj+1

log
tj
tj+1

pξp−1
2 (log t− log tj+1)

+
log t

tj

log
tj+1

tj

pξp−1
1 (log t− log tj)

]
dt

t

=C

k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1 log t
tj

log t
tj+1

log
tj+1

tj

[
ξp−1
2 − ξp−1

1

]dt
t
.

Therefore,

|II| ≤C
k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1
∣∣∣∣ log t

tj
log t

tj+1

log
tj+1

tj

∣∣∣∣[( log tja )p−1

−
(
log

tj+1

a

)p−1
]
dt

t

≤Chp
k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1[
jp−1 − (j + 1)p−1

]dt
t

=Chp+α
[ k−1∑
j=1

[
jp−1 − (j + 1)p−1

][
(k + 1− j)α − (k − j)α

]
+
[
kp−1 − (k + 1)p−1

]]

≤Chα+p
[ k−1∑
j=1

∣∣∣(p− 1)jp−2
∣∣∣[α(k − j)α−1

]
+ kp−2

]

≤Chα+p
[ k−1∑
j=1

jp−2(k − j)α−1 + kp−2

]
.

Similar to our previous proof, we now must find the bounds for the summation.

k−1∑
j=1

jp−2(k − j)α−1 ≤
∫ xp

1

xp−2(k − x)α−1dx+

∫ k

xp

xp−2(k − x)α−1dx

≤(k − xp)α−1

∫ xp

1

xp−2dx+ xp−2
p

∫ k

xp

(k − x)α−1dx

=(k − xp)α−1 1

1− p
+ xp−2

p

(k − xp)α

α

=C1k
α−1 + C2k

p−2 · C3k
α ≤ Ckα−1 + Ckα+p−2.
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Thus,

|II| ≤Chα+p

[ k−1∑
j=1

jp−2(k − j)α−1 + kp−2

]
≤ Chα+p

[
Ckα−1 + Ckα+p−2 + kp−2

]
≤Chα+p

[
Ckα−1 + Ckα+p−2 + kα+p−2

]
≤ Chα+p

[
Ckα−1 + Ckα+p−2

]
≤Chp+1 log

( tk
a

)α−1

+ Ch2 log
( tk+1

a

)α+p−2

≤ Chp+1 log
( tk+1

a

)α−1

.

Thus, we get the desired result.
Case 2: 1 < α < 2. Let

A =

∣∣∣∣ ∫ tk+1

a

(log
tk+1

t
)α−1z

(
log

t

a

)dt
t
−

k∑
j=0

aj,k+1z
(

log
tj
a

)∣∣∣∣
≤
∣∣∣∣ ∫ t1

t0

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
(

log t
t0

log t1
t0

(
log

t1
a

)p)]dt
t

∣∣∣∣
+

∣∣∣∣ k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
( log t

tj+1

log
tj
tj+1

(
log

tj
a

)p
+

log t
tj

log
tj+1

tj

(
log

tj+1

a

)p)]dt
t

∣∣∣∣
=I + II.

For I, we have,

I =

∣∣∣∣ ∫ t1

t0

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
(

log t
t0

log t1
t0

(
log

t1
a

)p)]dt
t

∣∣∣∣
=

∣∣∣∣ ∫ t1

t0

(
log

tk+1

t

)α−1
[(

log
t

a

)p
−
(

log t
a

h
hp
)]

dt

t

∣∣∣∣
≤
∫ t1

t0

(
log

tk+1

t

)α−1

hp
dt

t
= hphα

[
(k + 1)α − kα

α

]
=hα+pα(k + 1)α−1

α
= hp+α(k + 1)α−1 = hp+α(k + 1)α−1 = Chp+1tα−1

k+1 .

For II, we have,

|II| ≤C
k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1
∣∣∣∣ log t

tj
log t

tj+1

log
tj+1

tj

∣∣∣∣[( log
tj
a

)p−1

−
(

log
tj+1

a

)p−1
]
dt

t

≤Chp
k∑
j=1

∫ tj+1

tj

(
log

tk+1

t

)α−1[
jp−1 − (j + 1)p−1

]dt
t

=Chp+α
[ k−1∑
j=1

[
jp−1 − (j + 1)p−1

][
(k + 1− j)α − (k − j)α

]
+
[
kp−1 − (k + 1)p−1

]]

≤Chα+p

[ k−1∑
j=1

∣∣∣(p− 1)jp−2
∣∣∣[α(k − j + 1)α−1

]
+ kp−2

]

≤Chα+p

[ k−1∑
j=1

jp−2(k − j + 1)α−1 + kp−2

]
.
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Similar to our previous proof, we now must find the bounds for the summation.

k−1∑
j=1

jp−2(k − j + 1)α−1 ≤
∫ xp

1

xp−2(k + 1− x)α−1dx+

∫ k

xp

xp−2(k + 1− x)α−1dx

=(k + 1− xp)α−1 1

1− p
+ xp−2

p

(k + 1− xp)α

α

=C1(k + 1)α−1 + C2(k + 1)p−2 · C3(k + 1)α

≤C(k + 1)α−1 + C(k + 1)α+p−2.

Thus,

|II| ≤Chα+p

[ k−1∑
j=1

jp−2(k − j)α−1 + kp−2

]
≤ Chα+p

[
C(k + 1)α−1 + C(k + 1)α+p−2 + kp−2

]
≤Chα+p

[
C(k + 1)α−1 + C(k + 1)α+p−2 + (k + 1)α+p−2

]
≤Chα+p

[
C(k + 1)α−1 + C(k + 1)α+p−2

]
≤Chp+1 log

( tk+1

a

)α−1

+ Ch2 log
( tk+1

a

)α+p−2

≤ Chp+1 log
( tk+1

a

)α−1

.

Thus, we get the desired result. The proof for this theorem when 1 < p < 2 is similar to when 0 < p < 1.
As such, it has been omitted.

�

Remark 2.1. In the final part of Theorem 2.4, there is a case when α, p < 1. This would result in a
ς = p+ 1, and, in turn, this would make the right hand side exponent of log(tk+1/a) become negative, taking
a value of α− 1. This results in a case in which the error increases as the interval of integration decreases.
The explanation for such a situation is that as the interval of integration decreases, so too does the weight
function, making the integral more difficult to calculate and resulting in an increase in error.

3. Error Analysis for the Adams Method

In this section, we will be presenting the main error estimates for the Adams method for solving (1). We
will be investigating different smoothness conditions for each of y and f and how they affect the error and
convergence order.

3.1. A General Result

Using the error estimates established in the previous section, we will present the general convergence
order of the Adams–Bashforth–Moulton method relating to the smoothness properties of the given function
f and the solution y.

Lemma 3.1. Assume that the solution y of (1) is such that,∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1[
CHD

α
a,ty(t)

]dt
t
−

k∑
j=0

bj,k+1

[
CHD

α
a,ty(tj)

]∣∣∣∣ ≤ C1

(
log

tk+1

a

)γ1
hδ1 , (32)

and, ∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1[
CHD

α
a,ty(t)

]dt
t
−

k∑
j=0

aj,k+1

[
CHD

α
a,ty(tj)

]∣∣∣∣ ≤ C1

(
log

tk+1

a

)γ2
hδ2 , (33)

13



with some γ1, γ2 ≥ 0 and δ1, δ2 > 0. Let yj be the approximate solution of (1). Then, for some suitably
chosen T > 1, we have,

max
0≤j≤N

∣∣y(tj)− yj
∣∣ = O(hq),

where q = min{δ1 + α, δ2}.

Proof: We will show that, for sufficiently small h,

|y(tj)− yj | ≤ Chq, (34)

for all j ∈ {0, 1, 2, . . . , N}, where C is a suitable constant. This proof will be based on mathematical
induction. By using the initial conditions, we can confirm the basis step at j = 0. We now assume that
(34) is true for all j = 0, 1, . . . , k for some k ≤ N − 1. Finally, we will prove that inequality (34) is true for
j = k + 1. To show this, we must start by finding the error of the predictor yPk+1. By the definition of the
predictor, we can show the following:

|y(tk+1 − yPk+1| =
1

Γ(α)

∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

f(t, y(t))
dt

t
−

k∑
j=0

bj,k+1f(tj , yj)y(tj)

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

CHD
α
a,ty(t)

dt

t
−

k∑
j=0

bj,k+1CHD
α
a,ty(tj)

∣∣∣∣
− 1

Γ(α)

k∑
j=0

bj,k+1

∣∣f(tj , y(tj)
)
− f(tj , yj)

∣∣
≤
C1 log

( tk+1

a

)γ1
Γ(α)

hγ1 +
1

Γ(α)

k∑
j=0

bj,k+1LCh
q

≤
C1 log

( tk+1

a

)γ1
Γ(α)

hγ1 +
CL
(

log T
a

)α
Γ(α+ 1)

hq.

For this proof, we have used several properties. These include the Lipschitz condition placed on f , the
assumption of the error on the rectangle formula, and the understanding of the underlying predictor weights,
bj,k+1 > 0 for all j and k and,

k∑
j=0

bj,k+1 ≤
1

α

(
log

T

a

)α
. (35)

Now, we have a bound for the predictor error. We also need to analyze the corrector error. To do so,
we will be using a similar argument as with the predictor case as well as using the assumption made for
mathematical induction. Note that,
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|y(tk+1)− yk+1|

=
1

Γ(α)

∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1

f
(
t, y(t)

)dt
t
−

k∑
j=0

aj,k+1f(tj , yj)− ak+1,k+1f(tk+1, y
P
k+1)

∣∣∣∣
≤
∣∣∣∣ ∫ tk+1

a

(
log

tk+1

t

)α−1[
CHD

α
a,ty(t)

]dt
t
−

k∑
j=0

aj,k+1

[
CHD

α
a,ty(tj)

]∣∣∣∣
+

1

Γ(α)

k∑
j=0

aj,k+1

∣∣f(tj , y(tj)
)
− f(tj , yj)

∣∣
+

1

Γ(α)
ak+1,k+1

∣∣f(tk+1, y(tk+1)
)
− f(tk+1, y

P
k+1)

∣∣
≤
C2 log

( tk+1

a

)γ2
Γ(α)

hδ2 +
CL

Γ(α)
hq

k∑
j=0

aj,k+1 + ak+1,k+1
L

Γ(α)

(
C1

(
log T

a

)γ1
Γ(α)

hγ1 +
CL
(

log T
a

)α
Γ(α+ 1)

hq
)

≤
(
C2

(
log T

a

)γ2
Γ(α)

+
CL
(

log T
a

)α
Γ(α+ 1)

+
C1L

(
log T

a

)γ1
Γ(α)Γ(α+ 2)

+
CL2

(
log T

a

)α
Γ(α+ 1)Γ(α+ 2)

hα
)
hq.

Due to both γ1 and γ2 being non-negative and the relations δ2 ≤ q and δ1 + α ≤ q, we may choose a
sufficiently small T such that the second summand in the parentheses is bounded above by C/2. Then, by
fixing the value of T, we may bound the rest of the terms by C/2 as well, given a small enough value of
h and by choosing a large C value. Finally, we can state that the error estimate for the corrector is now
bounded above by Chq.

�

3.2. Error Estimates with Smoothness Assumptions on the Solution

In this subsection, we will be introducing some error estimates given certain smoothness assumptions
being placed on the solution of our inital value problem. To do this, we will be using the general error
estimate introduced above as well as the auxiliary results demonstrated in Section 2. For our first case, we
will assume that y is sufficiently differentiable. This means the outcome is dependent on α—more specifically,
when α < 1 and when α ≥ 1.

Theorem 3.1. Let α > 0 and assume CHD
α
a,ty ∈ C2[a, T ] for some suitable T . Then,

max
0≤j≤N

|y(tj)− yj | =

{
O(h2) α ≥ 1,

O(h1+α) α < 1.
(36)

We can note from this theorem that the order of convergence depends on α. More specifically, a larger
value of α gives a better order of convergence. The reason for this is due to the fact that we have chosen
to discretize an integral operator that will behave more smoothly as the value of α increases, thus creating
a higher order. We could have chosen to discretize the differential operator directly from the inital value
problem. It can be shown that the opposite result occurs compared to the integral operator. As α increases,
the smoothness of the operator deteriorates, and the convergence order diminishes. More specifically, it has
been shown that when α ≥ 2, no convergence is achieved. This means that such a method is effective when
α is small but will be ineffective for larger α values. This is one of the main advantages of this method for
the Caputo–Hadamard derivative, as convergence is not only achieved but is most optimal at larger values
of α.
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Proof: By applying Theorems 2.3 and 2.4 and Lemma 3.1 with γ1 = γ2 = α > 0, δ1 = 1, and δ2 = 2,
we can show that the an O(hq) error bound where,

q = min{1 + α, 2} =

{
2 if α ≥ 1,

1 + α if α < 1.
(37)

�

We can note from this theorem that this is for an optimal situation. The function we must approximate
when applying the Adams method is the function f(·, y(·)) = CHD

α
a,ty. Therefore, the error bound is heavily

dependent on obtaining a good approximations of f . To obtain such good error bounds, we can look to
quadrature theory, which gives a well-known condition for obtaining this, namely the function f ∈ C2 over
the interval of the integral. As we can see from the above theorem, that is the case that we are looking at
here. Therefore, this can be considered as an optimal situation. However, this can be also considered as an
unusual situation. Rarely are we given enough information such that we can determine the smoothness of y
or, in this case, CHD

α
a,ty, so we cannot rely on such a theorem. In general, we must formulate our theorems

using the data given on the function f , which will be considered in the next subsection.
We next move on to giving some theorems that now give the smoothness assumptions based on the

unknown solution y instead of CHD
α
a,ty. Theorem 2.2 implies that the smoothness of y often implies the

nonsmoothness of CHD
α
a,ty; we are expecting some difficulties in finding the error estimates. However,

Theorem 2.2 also gives us the form of CHD
α
a,ty under such smoothness conditions and gives us information

about the singularities and smoothness of CHD
α
a,ty. As such, we can use this information to give the

following result.

Theorem 3.2. Let α > 1 and assume that y ∈ C1+dαe[a, T ] for some suitable T . Then,

max
0≤j≤N

|y(tj)− yj | = O(h1+dαe−α). (38)

Proof: By applying Theorem 2.2, we have that CHD
α
a,ty(t) = C

(
log t

a

)dαe
+ g
(

log t
a

)
where g ∈ C1[a, T ]

and δg follows the Lipschitz condition of order dαe − α. Therefore, by applying Theorems 2.3 and 2.4 and
Lemma 3.1, we get that γ1 = 0, γ2 = α − 1, δ1 = 1 and δ2 = 1 + dαe − α. With α > 1, we can say that
δ1 + α = 1 + α > 2 > δ2. Therefore, min{δ1 + α, δ2} = δ2, so an error bound of O(hδ2) is finally given.

�

From the above theorem, we can draw some conclusions, namely that the fractional part of α plays a
huge role in the overall convergence order. More specifically, as dαe − α increases or the fractional part
of α decreases, the convergence order improves. This means that the convergence order no longer forms a
monotonic function of α but rather oscillates between 1 and 2 depending on α. However, this theorem does
show that under such smoothness properties, this method converges for all α > 0.

Theorem 3.3. Let 0 < α < 1 and assume that y ∈ C2[a, T ] for some suitable T . Then, for 1 ≤ j ≤ N ,

|y(tj)− yj | ≤ C
(

log
tj
a

)α−1

×

{
h1+α if 0 < α < 1

2 ,

h2−α if 1
2 ≤ α < 1,

(39)

where C is a constant independent of j.

From this, we can take the following corollary.

Corollary 3.1. Under the assumption of Theorem 3.3, we have,

max
0≤j≤N

|y(tj)− yj | =

{
O(h2α) if 0 < α < 1

2 ,

O(h) if 1
2 ≤ α < 1.

(40)
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Moreover, for every ε ∈ (a, T ), we have,

max
tj∈[ε,T ]

|y(tj)− yj | =

{
O(h1+α) if 0 < α < 1

2 ,

O(h2−α) if 1
2 ≤ α < 1.

(41)

Proof of Theorem 3.3: For this proof, we would be following that of Theorem 3.2. However, as
0 < α < 1, we have that γ2 = α− 1 < 0, meaning that we can no longer apply Lemma 3.1. We will need to
adapt the proof of this lemma in order to apply it to this case. To do so, we will retain the main structure of
the proof and application of mathematical induction but will now change the induction hypothesis to that of

(39). With such a change in hypothesis, we must now find estimates for the terms
∑k−1
j=1 bj,k+1

(
log

tj
a

)δ2
and∑k−1

j=1 aj,k+1

(
log

tj
a

)δ2
. By applying the Mean Value Theorem, it is known that 0 ≤ bj,k+1 ≤ hα(k − j)α−1

and 0 ≤ aj,k+1 ≤ chα(k − j)α−1 for 1 ≤ j ≤ k − 1 and c is independent of j and k. Applying these bounds

for the weights, we reduce the problem to finding bounds for the sum Sk :=
∑k−1
j=1 j

γ2(k − j)α−1. Looking

back at Theorems 2.3 and 2.4, we have shown similar results, and it is easily shown that Sk = Ckγ2+α when
both the indices γ2 and α− 1 are in the interval (0, 1). By applying this, we can complete this proof using
structure of Lemma 3.1.

�

3.3. Error Estimates with Smoothness Assumptions on the Given Data

In this final subsection, we will be looking at how changing the smoothness assumptions of the given
function f can change the error and convergence order for this method. We will be looking at both when
α < 1 and when α > 1.

Theorem 3.4. Let α > 1. Then, with f ∈ C3(G),

max
0≤j≤N

∣∣y(tj)− yj
∣∣ = O(h2). (42)

Proof: We will split this proof into when α ≥ 2 an when 1 < α < 2. When α ≥ 2, we can adapt a result
from Miller and Feldstein [26] to apply here which shows that y ∈ C2[a, T ]. Then, given the smoothness
assumpions on f , and applying the chain rule, CHD

α
a,ty ∈ C2[a, T ]. This then fulfills the conditions of

Theorem 3.1, which gives the desired result.
Now, for when 1 < α < 2, we wish to apply Lemma 3.1. To do this, we must find the constants

γ1, γ2, δ1 and δ2 in the lemma. As in the case of our previous theorems, we must determine the behavior
and smoothness of y. We find this information by applying Theorem 2.1b, which tells us that y is in the
form,

y(t) = ψ(t) +

v̂∑
v=1

cv

(
log

t

a

)vα
+

ṽ∑
v=1

dv

(
log

t

a

)1+vα

. (43)

As ψ ∈ C2[a, T ], this implies that y ∈ C1[a, T ]. Similar to the case of α ≥ 2, we can deduce CHD
α
a,ty ∈

C1[a, T ]. This then fulfills the conditions of Theorem 2.3a, giving us that γ1 = α and δ1 = 1. Furthermore,
we may apply Theorem 2.4a,c to find the remaining values such that γ2 = min{α, 2α− 2} = 2α− 2 ≥ 0 and
δ2 = 2. By applying Lemma 3.1, the required result is achieved.

�
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4. Numerical Examples

In this section, we will be considering some numerical examples to confirm the theoretical results pre-
sented in the previous sections. We will be presenting examples below with 0 < α < 2 as the applications
for α ≥ 2 are not currently of interest. We will be solving the following examples for a = 1 and T = 2. The
following examples and graphs were created in blueMATLAB using the following algorithm.

1. Give an initial value y0.

2. Find yP1 using (11) and (12) such that,

yP1 = y0 + b0,1f(t0, y0), (44)

where,

b0,1 =
1

Γ(α+ 1)

[(
log

t1
t0

)α
−
(

log
t1
t1

)α]
=

1

Γ(α+ 1)

(
log

t1
a

)α
. (45)

3. Find y1 using (8) and (9) such that,

y1 = y0 +
1

Γ(α)

(
a0,1f(t0, y0) + a1,1f(t1, y

P
1 )

)
. (46)

4. Repeat steps 2–3 to find y2, y3, . . . , yN .

Example 4.1 (CHD
α
a,ty is smooth). Consider the following nonlinear fractional differential equation, with

0 < α < 2, {
CHD

α
a,ty(t) = f(t, y), 1 ≤ a < t ≤ T,

y(a) = 0, δy(a) = 0,
(47)

where,

f(t, y) =
Γ(9)

Γ(9− α)

(
log

t

a

)8−α
− 3

Γ(5 + α/2)

Γ(5− α/2)

(
log

t

a

)4−α/2
+

9

4
Γ(α+ 1) (48)

+
(3

2

(
log

t

a

)α/2
−
(

log
t

a

)4)3

− y3/2.

This example has a nonlinear and non smooth f . However, due to the form of this equation, it is well known
that the solution y is given as,

y(t) =
(

log
t

a

)8

− 3
(

log
t

a

)4+α/2

+
9

4

(
log

t

a

)α
. (49)

As such we can say,

CHD
α
a,ty(t) =

Γ(9)

Γ(9− α)

(
log

t

a

)8−α
− Γ(5 + α/2)

Γ(5− α/2)

(
log

t

a

)4−α/2
+

9

4
Γ(α+ 1). (50)

For α ≤ 4, we have that CHD
α
a,ty ∈ C2[a, T ]; this fulfills the requirements for Theorem 3.1. As such,

we can show the theorem holds for such an example. Let N be a positive integer and let log a = log t0 <
log t1 < · · · < log tN = log T be the uniform mesh on the interval [log a, log T ]. such that log tj = log a+ jh

for j = 0, 1, 2, . . . , N and h =
(

log T
a

)
/N . Therefore, we have by Theorem 3.1,
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||eN ||∞ = max
0≤j≤N

|y(tj)− yj | =

{
O(h2) α ≥ 1,

O(h1+α) α < 1.
(51)

In Tables 1 and 2, we can see the maximum absolute error and experimental order of convergence (EOC)
for the predictor–corrector method at varying α and N values. For our different 0 < α < 2, we have chosen
N values as N = 10 × 2l, l = 0, 1, 2, . . . , 7.The maximum absolute errors ||eN ||∞ were obtained as shown

above with respect to N, and we calculate the experimental order of convergence or EOC as log
(
||eN ||∞
||e2N ||∞

)
.

As we can see, the EOCs for the above example follow that of Theorem 3.1.
In Figure 1, we have plotted the order of convergence for Example 4.1. From Equation (51), we have for

α < 1, (
log2 ||eN ||

)
≤
(

log2 C
)

+
(

log2 h
(1+α)

)
≤
(

log2 C
)

+
(
1 + α

)(
log2 h

)
. (52)

We can now plot this graph such that y =
(

log2 ||eN ||
)

and let x =
(

log2 h
)

and h = 1
5×2l , l = 0, 1, . . . , 7.

Doing this, we get that the gradient of the graph would equal the EOC. To compare this to the theoretical
order of convergence, we have also plotted the straight line y = (1 + α)x. For figure 1, we use α = 0.8. We
can observe that the two lines drawn are parallel. Therefore, we can conclude that the order of convergence
of this predictor–corrector method is O(h1+α) for when α < 1. A similar result can be obtained for when
α > 1. Figure 2 shows the same graph but for α = 1.75. However, now we can see that the line is parallel
to the straight line y = 2x, which is what we expected as the convergence order should tend to 2 for α > 1.

Example 4.2 (y is smooth). Consider the following nonlinear fractional differential equation, with 0 <
α < 2, {

CHD
α
a,ty(t) = f(t, y), 1 ≤ a < t ≤ T,

y(a) = 0, δy(a) = 1,
(53)

where,

f(t, y) =


2

Γ(3−α)

(
log t

a

)2−α
− y +

(
log t

a

)2

− log t
a , for α > 1,

2
Γ(3−α)

(
log t

a

)2−α
− 1

Γ(2−α)

(
log t

a

)1−α
− y +

(
log t

a

)2

− log t
a , for α ≤ 1.

(54)

The exact solution of this equation is,

y(t) =
(

log
t

a

)2

− log
t

a
. (55)

In Tables 3–5, we can see the maximum absolute error and experimental order of convergence (EOC)
for the predictor–corrector method at varying α and N values. For our different 0 < α < 2, we have chosen
N values as N = 10 × 2l, l = 0, 1, 2, . . . , 7. As y ∈ C2[a, T ] we can apply Theorems 3.2 and 3.3 and more
specifically, Corollary 3.1. As we can see, the EOCs for the above example verifies these theorems. When
α ≤ 0.5, we find that the EOC is close to 1 + α and when 0.5 < α < 1, we find that the EOC is close to
2− α. Finally, when α > 1, we have that the EOC is close to 1 + dαe − α.
Example 4.3 (f is smooth). Consider the following nonlinear fractional differential equation, with 0 <
α < 2, {

CHD
α
a,ty(t) = −y(t), 1 ≤ a < t ≤ T,

y(a) = 1, δy(a) = 0.
(56)

The exact solution of this equation is y(t) = Eα,1
(
− (log t)α

)
. Therefore, CHD

α
a,ty(t) = −Eα,1

(
− (log t)α

)
,

where Eα,γ(z) is defined as the Mittag–Leffler function,
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Eα,γ(z) =

∞∑
k=0

zk

Γ(αk + γ)
, α, γ > 0. (57)

Therefore, f is smooth. As such, this equation fulfils the conditions of Theorem 3.4. In Tables 6 and
7, we can see the maximum absolute error and experimental order of convergence (EOC) for the predictor–
corrector method at varying α and N values. For our different 0 < α < 2, we have chosen N values as
N = 10 × 2l, l = 0, 1, 2, . . . , 7. As f is sufficiently smooth, we can apply Theorem 3.4. As we can see, the
EOCs for the above example verifies these theorems. When 0 < α < 1, we have that the EOC is close to
1 + α. For α > 1, we have the EOC is close to 2.

5. Conclusions

In this paper, we proposed a predictor–corrector method for solving Caputo–Hadamard fractional dif-
ferential equations. Both the initial data f and the unknown solution y were investigated to see how the
different smoothness conditions affected the convergence order. It was found under optimal conditions and
with α ≥ 1 that we can obtain a theoretical convergence order of 2. However, under certain smoothness
conditions, a suboptimal convergence order is achieved, often depending on the fractional part of α. Sev-
eral numerical simulations are given to support the theoretical results obtained above in terms of the error
estimates.

Author contribution: We contributed equally to this work. C.W.H.G. considered the theoretical
analysis, performed the numerical simulation, and wrote the original version of the work. Y.Y. introduced
and guided this research topic. All authors have read and agreed to the published version of the manuscript.
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Table 1: Table showing the maximum absolute error and EOC for solving (47) using the predictor–corrector method for
0 < α < 1.

N α = 0.4 EOC α = 0.6 EOC α = 0.8 EOC
10 6.839 × 10−2 2.607 × 10−2 1.350 × 10−2

20 2.064 × 10−2 1.728 7.433 × 10−3 1.810 3.542 × 10−3 1.930
40 6.576 × 10−3 1.650 2.209 × 10−3 1.751 9.534 × 10−4 1.894
80 2.193 × 10−3 1.584 6.768 × 10−4 1.706 2.610 × 10−4 1.869
160 7.561 × 10−4 1.536 2.120 × 10−4 1.675 7.225 × 10−5 1.853
320 2.671 × 10−4 1.502 6.744 × 10−5 1.653 2.015 × 10−5 1.842
640 9.600 × 10−5 1.476 2.169 × 10−5 1.637 5.652 × 10−6 1.834
1280 3.497 × 10−5 1.457 7.026 × 10−6 1.626 1.591 × 10−6 1.829

Table 2: Table showing the maximum absolute error and EOC for solving (47) using the predictor–corrector method for α > 1.

N α = 1.25 EOC α = 1.50 EOC α = 1.75 EOC
10 6.166 × 10−3 5.475 × 10−3 5.369 × 10−3

20 1.463 × 10−3 2.076 1.319 × 10−3 2.053 1.319 × 10−3 2.026
40 3.497 × 10−4 2.065 3.207 × 10−4 2.040 3.259 × 10−4 2.017
80 8.408 × 10−5 2.056 7.853 × 10−5 2.030 8.091 × 10−5 2.010
160 2.033 × 10−5 2.049 1.934 × 10−5 2.022 2.014 × 10−5 2.006
320 4.935 × 10−6 2.042 4.783 × 10−6 2.016 5.022 × 10−6 2.004
640 1.203 × 10−6 2.036 1.187 × 10−6 2.011 1.253 × 10−6 2.002
1280 2.943 × 10−7 2.031 2.951 × 10−7 2.008 3.131 × 10−7 2.001

Figure 1: Graph showing the experimental order of convergence (EOC) at T = 2 in Example 4.1 with α = 0.8.
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Figure 2: Graph showing the experimental order of convergence (EOC) at T = 2 in Example 4.1 with α = 1.75.

Table 3: Table showing the maximum absolute error and EOC for solving (53) using the predictor–corrector method for
0 < α ≤ 0.5.

N α = 0.1 EOC α = 0.3 EOC α = 0.5 EOC
10 2.225 × 10−2 9.375 × 10−3 5.123 × 10−3

20 1.261 × 10−2 0.819 3.345 × 10−3 1.487 1.622 × 10−3 1.660
40 5.625 × 10−3 1.164 1.196 × 10−3 1.484 5.255 × 10−4 1.626
80 2.387 × 10−3 1.237 4.343 × 10−4 1.461 1.739 × 10−4 1.595
160 1.004 × 10−3 1.249 1.606 × 10−4 1.436 5.856 × 10−5 1.571
320 4.242 × 10−4 1.243 6.033 × 10−5 1.412 1.998 × 10−5 1.552
640 1.805 × 10−4 1.233 2.299 × 10−5 1.392 6.884 × 10−6 1.537
1280 7.742 × 10−5 1.221 8.864 × 10−6 1.375 2.389 × 10−6 1.527

Table 4: Table showing the maximum absolute error and EOC for solving (53) using the predictor–corrector method for
0.5 < α < 1.

N α = 0.7 EOC α = 0.9 EOC
10 5.507 × 10−3 1.162 × 10−2

20 1.931 × 10−3 1.512 5.100 × 10−3 1.188
40 7.031 × 10−4 1.457 2.300 × 10−3 1.151
80 2.635 × 10−4 1.416 1.051 × 10−3 1.129
160 1.008 × 10−4 1.386 4.847 × 10−4 1.116
320 3.920 × 10−5 1.363 2.247 × 10−4 1.109
640 1.541 × 10−5 1.347 1.045 × 10−4 1.105
1280 6.110 × 10−6 1.335 4.863 × 10−5 1.103
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Table 5: Table showing the maximum absolute error and EOC for solving (53) using the predictor–corrector method for α > 1.

N α = 1.25 EOC α = 1.50 EOC α = 1.75 EOC
10 6.166 × 10−3 5.475 × 10−3 5.369 × 10−3

20 1.463 × 10−3 2.076 1.319 × 10−3 2.053 1.319 × 10−3 2.026
40 3.497 × 10−4 2.065 3.207 × 10−4 2.040 3.259 × 10−4 2.017
80 8.408 × 10−5 2.056 7.853 × 10−5 2.030 8.091 × 10−5 2.010
160 2.033 × 10−5 2.049 1.934 × 10−5 2.022 2.014 × 10−5 2.006
320 4.935 × 10−6 2.042 4.783 × 10−6 2.016 5.022 × 10−6 2.004
640 1.203 × 10−6 2.036 1.187 × 10−6 2.011 1.253 × 10−6 2.002
1280 2.943 × 10−7 2.031 2.951 × 10−7 2.008 3.131 × 10−7 2.001

Table 6: Table showing the maximum absolute error and EOC for solving Example 4.3 using the predictor–corrector method
for α < 1.

N α = 0.3 EOC α = 0.6 EOC α = 0.9 EOC
10 1.353 × 10−3 6.520 × 10−4 3.414 × 10−4

20 4.324 × 10−4 1.646 1.937 × 10−4 1.751 8.704 × 10−5 1.972
40 1.466 × 10−4 1.560 6.019 × 10−5 1.686 2.270 × 10−5 1.939
80 5.159 × 10−5 1.507 1.919 × 10−5 1.649 5.990 × 10−6 1.922
160 1.863 × 10−5 1.470 6.211 × 10−6 1.628 1.591 × 10−6 1.913
320 6.863 × 10−6 1.441 2.027 × 10−6 1.615 4.239 × 10−7 1.908
640 2.570 × 10−6 1.417 6.652 × 10−7 1.608 1.132 × 10−7 1.905
1280 9.752 × 10−7 1.398 2.189 × 10−7 1.604 3.026 × 10−8 1.904

Table 7: Table showing the maximum absolute error and EOC for solving Example 4.3 using the predictor–corrector method
for α > 1.

N α = 1.25 EOC α = 1.50 EOC α = 1.75 EOC
10 2.457 × 10−4 2.108 × 10−4 1.507 × 10−4

20 5.847 × 10−5 2.071 5.141 × 10−5 2.036 3.723 × 10−5 2.017
40 1.400 × 10−5 2.062 1.261 × 10−5 2.027 9.236 × 10−6 2.011
80 3.374 × 10−6 2.053 3.109 × 10−6 2.020 2.298 × 10−6 2.007
160 8.213 × 10−7 2.039 7.693 × 10−7 2.015 5.728 × 10−7 2.004
320 2.016 × 10−7 2.027 1.909 × 10−7 2.011 1.430 × 10−7 2.003
640 4.975 × 10−8 2.019 4.748 × 10−8 2.008 3.570 × 10−8 2.002
1280 1.233 × 10−8 2.013 1.183 × 10−8 2.005 8.919 × 10−9 2.001
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