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Abstract 9 

This study focusses on the vibration transmission and energy flow characteristics of low dimensional 10 

models of dynamical systems with Coulomb friction. The Karnopp friction model and smooth Coulomb 11 

friction models are employed to estimate the dry friction force. The steady-state responses of the system 12 

are determined by the harmonic balance (HB) approximations with numerical continuations and a time-13 

marching method. The level of vibration transmission and energy dissipation within the system are 14 

assessed by the force transmissibility and power flow variables. For the single degree-of-freedom 15 

oscillator system, in the low- or high-frequency ranges away from the resonance, it is found that the dry 16 

frictional contact can suppress the vibration response and effectively dissipate vibrational energy. For 17 

the coupled oscillator, the existence of frictional contact at the interface can lead to a significant growth 18 

in the force transmissibility and energy transfer from the force-excited subsystem to the secondary 19 

system, especially at high excitation frequencies. The interfacial frictional contact can also result in a 20 

large amount of energy dissipation at the interface. The studies show that vibration transmission and 21 

energy dissipation in a dynamic system with contacting subsystems can be tailored by adjusting the 22 

properties of the frictional contact. Design strategies can be developed using frictional contacts for 23 

vibration suppression by minimizing vibration energy transmission or maximizing energy dissipation.  24 
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1 Introduction  27 

Engineering structures and systems often contain numerous parts or subsystems which are 28 

assembled in various ways. Friction can arise from the contacting surfaces of components subjected to 29 

relative motion, for example, in manipulator joints [1], drill-strings [2], disk brakes [3] and clutch 30 

structures [4]. Dry friction is usually undesirable due to the introduction of complexity associated with 31 

the nonlinear dynamics of the system. With the discontinuities introduced by frictions in the dynamic 32 

governing equations [5], engineering systems with friction can exhibit rich nonlinear phenomena [6, 7]. 33 
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In many applications, friction at a contact interface may cause unwanted effects to a system, such as 34 

frictional chatter [8], wear of components and noise due to the friction-related slipping [9]. On the other 35 

hand, in some applications, as in the case of the contact between the tyres of a vehicle and the road, 36 

friction can be necessary and useful. Given the energy dissipation effect, the friction within mechanical 37 

systems can be considered as a frictional damper, which consequently can be used to enhance the system 38 

performance for passive vibration control [10, 11].  39 

To achieve an enhanced design of dynamical systems with contact interfaces, it is necessary to 40 

investigate the dynamics of systems with consideration of the influence of friction. For dynamic 41 

analysis of the engineering systems with dry friction nonlinearity, mass-spring models have been widely 42 

used in the past research. Some researchers investigated such systems under periodic loading. The 43 

classical work by Den Hartog [12] presented a piecewise analytical solution of the dynamic response 44 

for force-excited mass-spring systems based on the Coulomb damping model. Multiple-lockup 45 

characteristic of the mass for a certain time duration in each oscillation cycle was validated by 46 

experiment. Hundal [13] obtained the response of a single degree-of-freedom (DOF) Coulomb friction 47 

oscillator under base excitation. For the same base-excited mass-spring system, Marui and Kato [14] 48 

studied experimentally the stopping region of motion by placing a block mass excited by an eccentric 49 

cam and a ring spring on a flat-type guide with a rough surface. Marino and Cicirello [15] proposed an 50 

experimental framework for a single-DOF (SDOF) system under joined base-wall excitation and 51 

reported a design of a single-storey building set-up with a metal-to-metal contact. There were quite a 52 

few studies on friction-induced self-sustained vibration problems considering discrete SDOF or two-53 

DOF (2DOF) coupled mass-spring systems placed on a continuously moving belt [16-18]. A pin-on-54 

disc configuration was applied for experimental investigation of such systems [19]. Those mass-spring 55 

systems can exhibit stick-slip motion demonstrating strong influence of friction nonlinearity on the 56 

dynamic system responses. 57 

A lot of previously reported work was focussed on the nonlinear dynamic analysis of forced 58 

systems with friction. Shaw [20] analysed a harmonically excited SDOF system with dry friction and 59 

determined the asymptotic stability. Aperiodic motions containing two distinct frequency components 60 

were found. Feeny [21] applied a qualitative technique to describe the dynamics of a forced multi-61 

valued Coulomb friction oscillator and constructed the strange attractor for chaotic motion. Moreover, 62 

the geometric nature of the chaotic attractor was described using experimental Poincare maps by 63 

attaching a harmonically excited mass to the end of a cantilevered elastic beam [22]. Hong and Liu [23] 64 

investigated the dynamic motion of SDOF Coulomb friction oscillators subjected to harmonic loading 65 

and identified normal or abnormal zero-duration stop. Luo and Gegg [24] developed the force criteria 66 

for stick and non-stick motions in forced friction oscillators based on the local theory of non-smooth 67 

dynamical systems. Oancea and Laursen [25] explored experimentally the nature of transients entering 68 

and exiting stick phases in a forced mass-spring system with dry friction contact by using an elastic-69 

mounted steel sphere sliding on a harmonically excited friction plate. Duan and Singh [26] studied a 70 
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2DOF torsional system with friction and found that the system can lose stability near the super-harmonic 71 

peak frequencies. Papangelo and Ciavarella [27] performed quasi-static analysis for a forced SDOF 72 

Coulomb frictional oscillator. Pascal [28] examined a linearly coupled 2DOF oscillator with one of the 73 

masses sliding on a rough surface and the friction force is characterized by Coulomb friction law. 74 

Several kinds of periodic orbits including one or more stops per cycles were observed. Sun et al. [29] 75 

established an extended energy balance method to predict the resonances for a forced SDOF system 76 

with friction contact from its nonlinear modes. Wiercigroch et al. [30] developed an experimental 77 

frictional oscillator consisting of a block mass moving along the guiding posts and a second mass with 78 

a vertical plate providing dry friction. With the use of such experimental rig, Wojewoda et al. [31] 79 

validated various qualitative nonlinear responses of a SDOF frictional oscillator. A novel experiment 80 

rig was further developed [32] to study the friction-related stick-slip nonlinear dynamic phenomena in 81 

the drill-bit rock interactions.  82 

There has been a growing interest in the investigation of nonlinear friction damping for vibration 83 

attenuation purpose. Friction damping can be added as a connecting element in the adjacent engineering 84 

structures for vibration suppression purpose [33]. It also exists in the form of bolted joints [34]. The 85 

damping effect of friction has been considered for passive vibration control of turbine blades [35], 86 

machinery foundations and vehicles [36] and high-speed rotors [37]. The nonlinear dynamic behaviour 87 

of such systems and vibration suppression performance of the embedded friction damping have been 88 

studied [38]. Krack et al. [34] examined the nonlinear modal interactions in a jointed system induced 89 

by friction damping. It showed the possibility of taking advantage of friction damping to tune the system 90 

to obtain a minimum response level. The nonlinear vibration characteristics of bladed disks coupled by 91 

joints were analysed and it was shown that the friction damping within the joints may assist the vibration 92 

mitigation and improve the system integrity [39]. Claeys et al. [40] employed harmonic balance (HB) 93 

method to obtain the nonlinear vibration responses of a metallic assembly with friction damping under 94 

constant force input and conducted local analysis on the stick-slip behaviour in friction zone 95 

experimentally. Donmez et al. [41] revealed that the addition of friction damping to a quasi-zero stiffness 96 

(QZS) isolator can improve the isolation performance. 97 

To achieve high performance vibration suppression of a built-up structure, it is important to 98 

establish comprehensive understanding on the mechanisms of vibration transmission through the 99 

nonlinear contacting interface and the energy dissipation at the interface of subsystems. In particular, 100 

the effects of the nonlinear friction contact on the vibration transmission and dissipation need to be 101 

investigated. Some researchers considered force transmissibility [42] and displacement transmissibility 102 

[33, 43] of SDOF mass-spring systems with friction damping. Ciğeroğlu and Özgüven [44] examined 103 

pseudo-receptance for the bladed disks with dry friction represented by lumped parameter model. 104 

Regarding the dissipative effect of friction, the friction damping at the connecting joint can largely 105 

affect the energy transfer and dissipation characteristics in the dynamical systems. However, much less 106 

work has been carried out on the vibration transmission of such systems from vibration energy flow 107 
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perspective. Lopez et al. [45] estimated the energy dissipation in a SDOF system with friction damper 108 

based on the classical Coulomb friction law and the theoretical results were validated by experiment 109 

[46]. Nicolas [47] numerically assessed the energy transfer via a friction-elastic-viscous link between a 110 

mass and a base with harmonic motion. 111 

There is a limited number of investigations on energy transmission and dissipation in the coupled 112 

systems considering friction at the connecting interface [48]. The vibration power flow analysis (PFA) 113 

approach has been widely adopted as a tool for investigating the dynamic behaviour of coupled 114 

structures and complex systems. The power flow indices consider the combined effects of force and 115 

velocity amplitudes as well as their relative phase angle in a single concept, and thus can provide a 116 

qualitative measure of vibration energy transmission between subsystems and energy dissipation within 117 

an integrated dynamic system [49]. This approach has been used for the evaluation of vibration 118 

transmission in linear systems [50, 51]. In recent years, the PFA approach has been applied for 119 

investigating the dynamic behaviour of nonlinear systems [52-57] including non-smooth systems, such 120 

as bilinear systems and impact oscillators [58-60], from the energy flow viewpoint. 121 

In this paper, the vibration energy flow transmission and dissipation characteristics of nonlinear 122 

non-smooth systems with frictional contact are investigated. The Coulomb frictional contact modelled 123 

by various approaches is considered to exist in a SDOF system and at the interface of coupled systems. 124 

The harmonic balance method with alternate-frequency-time (AFT) technique and numerical 125 

continuations are employed to investigate the vibration force transmission and power flow behaviour 126 

of systems with dry friction nonlinearity. Direct numerical integration is also conducted for comparison 127 

and validation of the analytical results. The effects of the nonlinear frictional contact on the dynamic 128 

responses, vibration transmission and energy dissipation characteristics are studied. The remaining 129 

content of this paper is organised as follows. Different Coulomb friction models and a general energy 130 

flow analysis framework for systems with friction are presented in Section 2. The dynamics and 131 

vibration transmission behaviour of the SDOF oscillator with dry friction is studied in Section 3. The 132 

influence of the frictional contact on the vibration energy transmission and dissipation at the interface 133 

of a coupled system is studied in Section 4. Conclusions are drawn at the end of the paper. 134 

 135 

2 Energy flow analysis of systems with frictional contact 136 

In this section, different models for the modelling of dry friction contact in dynamic systems are 137 

firstly introduced. These include the classical Coulomb friction model, the Karnopp model and the 138 

smooth approximation models using tanh-regularization approach or signum function approach. Using 139 

dry friction contact models, a general vibration energy flow analysis framework for the non-smooth 140 

systems with Coulomb friction is presented. 141 
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2.1 Dry friction contact models 142 

Figure 1(a) shows a schematic of two contacting objects with masses 𝑚𝑚a and 𝑚𝑚b. Mass 𝑚𝑚a is 143 

subjected to a constant force 𝑓𝑓e in the horizontal direction. Normal and dry friction forces exist at the 144 

contact interface. Fig. 1(b) shows the classical Coulomb friction model, which is widely used to describe 145 

the relationship between the friction force 𝑓𝑓c and the relative velocity 𝑣𝑣r of the two objects. It shows 146 

that when there is relative motion between contact surfaces (i.e., the slip state), there exists dynamic 147 

friction force, with its direction opposite to that of the relative motion. When there is no relative motion 148 

between the contacting surfaces (i.e. the stick state), there may be static friction force counteracting the 149 

external force 𝑓𝑓e.  150 
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Figure 1. Schematic representation of (a) dry friction between two contacting solid bodies of 𝑚𝑚a and 𝑚𝑚b under 152 
resultant external force 𝑓𝑓e in tangential direction; the relationship between friction force 𝑓𝑓c and relative velocity 153 
𝑣𝑣r in (b) the classical Coulomb model and (c) the Karnopp model with magnitude of the dynamic friction force 154 
𝑓𝑓d and maximum static friction force 𝑓𝑓ms. In (c), 𝑣𝑣d is the boundary velocity of the dead zone for Karnopp model. 155 

Mathematically, the classical Coulomb friction force can be expressed as 156 

  𝑓𝑓c = �
   𝑓𝑓d sgn(𝑣𝑣r),                    if 𝑣𝑣r ≠ 0,                           
𝑓𝑓ms sgn(𝑓𝑓e) ,                 if 𝑣𝑣r = 0 and |𝑓𝑓e| ≥ 𝑓𝑓ms,
𝑓𝑓e ,                                   if 𝑣𝑣r = 0 and |𝑓𝑓e| < 𝑓𝑓ms,      

                      (1) 157 

where 𝑓𝑓d is the magnitude of the dynamic friction force, being the product of the coefficient of dynamic 158 

friction and the normal force, 𝑓𝑓ms is the maximum static friction force, 𝑣𝑣r is the relative velocity of the 159 

contacting objects, 𝑓𝑓e is the resultant external force acting on a reference body in the tangential direction 160 

and sgn(𝑣𝑣r) is the signum function expressed by 161 

sgn(𝑣𝑣r)  = �
−1,      𝑣𝑣r < 0,
   0,      𝑣𝑣r = 0,
   1,      𝑣𝑣r > 0.

                                                        (2) 162 

The classical Coulomb friction model introduces strong discontinuities at 𝑣𝑣r = 0, which can create 163 

computational challenges for dynamic analysis. For instance, when applying a time-marching method 164 

to solve dynamic governing equations, the detection of 𝑣𝑣r = 0 for switching friction state can yield 165 

inaccuracies due to the use of discrete and variable time steps. In this paper, a modified Coulomb friction 166 

model, the Karnopp model [61], is used in the numerical integration for determining the response of the 167 

systems with dry friction. As shown in Fig.1(c), compared to the classical Coulomb model, the Karnopp 168 

model assumes a small region of velocity dead zone [−𝑣𝑣d, 𝑣𝑣d], where the contact interface is considered 169 
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to be stuck and the relative velocity 𝑣𝑣r is regarded null. In this way, some of the numerical issues 170 

encountered when using the classical Coulomb model can be avoided while the main characteristics of 171 

the friction model can still be captured. The Karnopp friction model is expressed as  172 

𝑓𝑓c = �
   𝑓𝑓d sgn(𝑣𝑣r),                if |𝑣𝑣r| > 𝑣𝑣d ,                          
𝑓𝑓ms sgn(𝑓𝑓e) ,             if |𝑣𝑣r| ≤ 𝑣𝑣d and |𝑓𝑓e| ≥ 𝑓𝑓ms ,
𝑓𝑓e ,                               if |𝑣𝑣r| ≤ 𝑣𝑣d and |𝑓𝑓e| < 𝑓𝑓ms .      

                     (3) 173 

As in many applications 𝑓𝑓d ≈ 𝑓𝑓ms,  it is assumed that  𝑓𝑓d = 𝑓𝑓ms throughout the paper. 174 

The classical Coulomb friction force model contains discontinuities at 𝑣𝑣r = 0 . It can be 175 

approximated by using smooth functions to facilitate dynamic analysis of systems with friction 176 

employing analytical or semi-analytical approaches based on the HB method [62].  One way is to use a 177 

smooth regularized hyperbolic tangent curve to approximate the friction force:  178 

𝑓𝑓c = 𝑓𝑓d tanh(𝑣𝑣r 𝜀𝜀⁄ ) = 𝑓𝑓d
exp(𝑣𝑣r 𝜀𝜀⁄ )−exp(−𝑣𝑣r 𝜀𝜀⁄ )
 exp(𝑣𝑣r 𝜀𝜀⁄ )+exp(−𝑣𝑣r 𝜀𝜀⁄ )

,                                   (4) 179 

where 𝜀𝜀 is the tolerance parameter of the tanh-regularization. This tanh-regularization approach can 180 

eliminate the need for detection of stick-slip state transitions [63] and therefore the computational cost 181 

associated with dynamic analysis can be reduced.  182 

Note that for dry friction modelling following the macro-slip approach, the Coulomb friction force 183 

is approximated by 𝑓𝑓c ≈ 𝑓𝑓dsgn(𝑣𝑣r) and this can be named as the signum function approach [64]. For 184 

periodic responses with the relative velocity 𝑣𝑣r ≈ ∑ (𝑣𝑣�s sin(𝑘𝑘𝑘𝑘𝑘𝑘) + 𝑣𝑣�c cos(𝑘𝑘𝑘𝑘𝑘𝑘))𝑁𝑁H
𝑘𝑘=1 , the friction force 185 

will be a periodic square wave and can be approximated using a smooth function based on Fourier series: 186 

𝑓𝑓c  ≈ ∑ 𝑎𝑎𝑘𝑘 cos(𝑘𝑘𝑘𝑘𝑘𝑘)∞
𝑘𝑘=1 + ∑ 𝑏𝑏𝑘𝑘 sin(𝑘𝑘𝑘𝑘𝑘𝑘)∞

𝑘𝑘=1 .                                    (5) 187 

where 𝑎𝑎𝑘𝑘 = 𝜔𝜔
𝜋𝜋 ∫ 𝑓𝑓dsgn(𝑣𝑣r)

2𝜋𝜋
𝜔𝜔
0 cos(𝑘𝑘𝑘𝑘𝑘𝑘) d𝑡𝑡  and 𝑏𝑏𝑘𝑘 = 𝜔𝜔

𝜋𝜋 ∫ 𝑓𝑓dsgn(𝑣𝑣r)
2𝜋𝜋
𝜔𝜔
0 sin(𝑘𝑘𝑘𝑘𝑘𝑘) d𝑡𝑡 . As the signum 188 

function is an odd function, 𝑎𝑎𝑘𝑘 should all be zero. For instance, when 𝑣𝑣r ≈ 𝑣𝑣�s sin(𝜔𝜔𝜔𝜔), the friction force 189 

can be approximated by using a fifth order Fourier expansion as 190 

𝑓𝑓c ≈
4𝑓𝑓d
𝜋𝜋
�sin(𝜔𝜔𝜔𝜔) + 1

3
sin(3𝜔𝜔𝜔𝜔) + 1

5
sin(5𝜔𝜔𝜔𝜔)� .                                  (6) 191 

Figures 2(a) and (b) show two ways of smoothing and approximating the Coulomb friction force, 192 

which are named as the tanh-regularization approach and the Fourier series expansion of the signum 193 

function approach, respectively. In Fig. 2(a), the magnitudes of the dynamic and static friction forces 194 

for those four cases are set as 𝑓𝑓d = 𝑓𝑓ms = 0.06 and the tolerance parameter 𝜀𝜀 changes from 0.1 to 0.2 195 

and to 0.3. It is shown that a smaller value of 𝜀𝜀 can provide a better approximation of the friction force 196 

based on the classical Coulomb model. Fig. 2(b) presents the time histories of the Coulomb friction 197 

force represented by using the Fourier series approximations of the signum function. It shows that the 198 

first-order Fourier expansion can provide a rough approximation to the Coulomb friction force. As the 199 

number of the Fourier terms increases to 3, the wave form of the Coulomb friction force can be better 200 

captured and approximated. By further increasing the Fourier terms, the square wave force can be 201 

almost completely represented. In this paper, the Fourier series expansion of the signum function 202 
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approach is used in the analytical derivation of the frequency-response relationship to gain physical 203 

insights of the system dynamics. The tanh-regularization approach is used in the semi-analytical HB 204 

approximations of the steady-state responses. To ensure the accuracy of the truncation when using the 205 

Fourier expansion, the original time domain expression of the friction force is also used for the 206 

determination of the dynamic response using the time marching method. 207 

Figure 2.  Smoothing the Coulomb friction force 𝑓𝑓c by (a) the tanh-regularization approach and (b) the Fourier 209 
series expansion of the signum function approach.  In (a), the red line is for the classical Coulomb friction model, 210 
the blue, black and pink lines are for regularized hyperbolic tangent curves with 𝜀𝜀 = 0.1, 0.2 and 0.3, respectively. 211 
In (b), the red colour marks the square wave Coulomb friction force. The blue and black curves are for its 1st order 212 
and 3rd order Fourier series representations. 213 

2.2 Energy flow formulations  214 

For a general Q-DOF chain oscillator system with friction at coupling interfaces, the dimensionless 215 

equation of motion and the energy flow balance equation can be expressed in a matrix form as 216 

𝐌𝐌𝐗𝐗′′ + 𝐂𝐂𝐗𝐗′ + 𝐊𝐊𝐊𝐊 + 𝐅𝐅c�Δ(𝐗𝐗′)� = 𝐅𝐅ef(𝜏𝜏),                                  (7a) 217 

𝐗𝐗′T𝐌𝐌𝐗𝐗′′ + 𝐗𝐗′T𝐂𝐂𝐗𝐗′ + 𝐗𝐗′T𝐊𝐊𝐊𝐊+ 𝐗𝐗′T𝐅𝐅c�Δ(𝐗𝐗′)� = 𝐗𝐗′T𝐅𝐅ef(𝜏𝜏),                   (7b) 218 

respectively, where 𝐗𝐗 , 𝐗𝐗′  and 𝐗𝐗′′  denote the displacement, velocity and acceleration vectors, 219 

respectively, 𝐌𝐌, 𝐂𝐂 and 𝐊𝐊 are the mass, damping and stiffness matrices, respectively, 𝐅𝐅c�Δ(𝐗𝐗′)� is the 220 

dimensionless nonlinear friction force induced by frictional contact and Δ(𝐗𝐗′) is the relative velocity 221 

between the two contacting masses, 𝐅𝐅ef(𝜏𝜏) represents harmonic force excitation applied to the q-th DOF 222 

(1 ≤  𝑞𝑞 ≤ 𝑄𝑄)  of the system with 𝐅𝐅ef(𝜏𝜏) = {… , 𝐹𝐹0eiΩ𝜏𝜏, …}T , of which 𝐹𝐹0  and Ω  are the non-223 

dimensional force amplitude and excitation frequency, respectively, and 𝜏𝜏 is the dimensionless time. 224 

 For the numerical determination of the steady-state response of the system, the nonlinear friction 225 

force 𝐅𝐅c�Δ(𝐗𝐗′)� in Eq. (7) can be firstly modelled by the Karnopp model. Eq. (7a) can then be solved 226 

by the adaptive Runge-Kutta (RK) Dormand-Prince method with variable step size. The energy 227 

dissipation and the force transmission between sub-systems can be determined subsequently. For the 228 

implementation of the Runge-Kutta method, a fourth-order and a fifth-order approximations from one 229 

point to the next point are calculated and compared. An optimum step size is then obtained to reduce 230 
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the total computing time while the estimated error in each step is ensured to be smaller than the tolerance. 231 

In the treatment of the non-smooth friction force term in the governing equation, conditional execution 232 

statements are made in the numerical algorithm to capture the existence of discontinuities in the friction 233 

force based on the Karnopp model. It should be mentioned that the Karnopp model may be more 234 

efficient and accurate than the classical Coulomb model from numerical aspects. However, the resultant 235 

external force applied to the contact interface, which is needed in the Karnopp model, may be difficult 236 

to define in the multi-DOF system (i.e. 𝑄𝑄 > 2) [62].  237 

As for comparisons, the semi-analytical harmonic balance approximation method is also used for 238 

obtaining the steady-state periodic response of the system with dry friction. Here the dry friction force 239 

𝐅𝐅c�Δ(𝐗𝐗′)� in Eq. (7) can be modelled by the tanh-regularization approach considering the friction force 240 

as a continuous and differentiable function of the relative velocity. The steady-state displacement 241 

response 𝐗𝐗 and the nonlinear friction force 𝐅𝐅c�Δ(𝐗𝐗′)� can be approximated by a truncated 𝑁𝑁-order 242 

Fourier series with a fundamental frequency of Ω: 243 

𝐗𝐗 = �∑ 𝑅𝑅�(1,𝑛𝑛)
𝑁𝑁
𝑛𝑛=0 ei𝑛𝑛Ω𝜏𝜏, … ∑ 𝑅𝑅�(𝑞𝑞,𝑛𝑛)

𝑁𝑁
𝑛𝑛=0 ei𝑛𝑛Ω𝜏𝜏, … ∑ 𝑅𝑅�(𝑄𝑄,𝑛𝑛)

𝑁𝑁
𝑛𝑛=0 ei𝑛𝑛Ω𝜏𝜏�

T
 ,          (8a)  244 

𝐅𝐅c�Δ(𝐗𝐗′)� = �∑ 𝐻𝐻�(1,𝑛𝑛)
𝑁𝑁
𝑛𝑛=0 ei𝑛𝑛Ω𝜏𝜏, … ∑ 𝐻𝐻�(𝑞𝑞,𝑛𝑛)

𝑁𝑁
𝑛𝑛=0 ei𝑛𝑛Ω𝜏𝜏, … ∑ 𝐻𝐻�(𝑄𝑄,𝑛𝑛)

𝑁𝑁
𝑛𝑛=0 ei𝑛𝑛Ω𝜏𝜏�

T
 ,   (8b) 245 

respectively, where 𝑅𝑅�(𝑞𝑞,𝑛𝑛)and 𝐻𝐻�(𝑞𝑞,𝑛𝑛) are the complex Fourier coefficients of the 𝑛𝑛-th order Fourier 246 

approximation corresponding to the 𝑞𝑞-th DOF, 𝐗𝐗′ and 𝐗𝐗′′ can then be obtained by differentiating the 247 

displacement 𝐗𝐗 with respect to time 𝜏𝜏. To determine the Fourier coefficients 𝐻𝐻� of the nonlinear friction 248 

force 𝐅𝐅c�Δ(𝐗𝐗′)� in Eq. (8b), the AFT technique can be used, which has been widely applied for the 249 

treatment of nonlinear forces in the analysis of nonlinear dynamical systems [65]. The basic idea of the 250 

AFT scheme is to substitute the expressions of the approximated harmonic responses of 𝐗𝐗, 𝐗𝐗′ and 𝐗𝐗′′ 251 

into the nonlinear force expression of 𝐅𝐅c�Δ(𝐗𝐗′)�. The time histories of nonlinear friction force can be 252 

obtained and can then be Fourier transformed to find the Fourier coefficients 𝐻𝐻�.  253 

After the determination of the Fourier coefficients 𝐻𝐻�, Eq. (8) can be substituted into the governing 254 

equation of Eq. (7a) and by balancing the corresponding coefficients of the 𝑛𝑛-th (0 ≤ 𝑛𝑛 ≤ 𝑁𝑁) order 255 

harmonic terms of the resultant equation, we have  256 

 (−(𝑛𝑛Ω)2𝐌𝐌+ i(𝑛𝑛Ω)𝐂𝐂 + 𝐊𝐊)𝐑𝐑�𝑛𝑛 = 𝐒𝐒�𝑛𝑛 − 𝐇𝐇�𝑛𝑛,                                     (9) 257 

where 𝐑𝐑�𝑛𝑛 = �𝑅𝑅�(1,𝑛𝑛), … 𝑅𝑅�(𝑞𝑞,𝑛𝑛), … 𝑅𝑅�(𝑄𝑄,𝑛𝑛)�
T

, 𝐇𝐇�𝑛𝑛 = �𝐻𝐻�(1,𝑛𝑛), … 𝐻𝐻�(𝑞𝑞,𝑛𝑛), … 𝐻𝐻�(𝑄𝑄,𝑛𝑛)�
T

 and 258 

𝐒𝐒�𝑛𝑛 = {0, … 𝐹𝐹0, … 0}T . By sorting 𝑁𝑁  harmonic equations of Eq. (9), a set of real nonlinear 259 

algebraic equations with the total number of 𝑄𝑄(2𝑁𝑁 + 1)  can be obtained. The Newton-Raphson 260 

iterative method can be employed to solve those equations and an arc-length continuation method is 261 

also used to trace the solution path in the frequency domain [66]. Subsequently, the steady-state 262 

response of the system can be obtained. The level of force transmission and power flow behaviour 263 

within the oscillator system can then be evaluated.  264 
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Note that the value of 𝑁𝑁 for the truncation of the Fourier expansion of the friction force should be 265 

carefully selected. A larger 𝑁𝑁 used in high-order HB can yield a better representation of the nonlinear 266 

friction force, hence providing more accurate predictions of the steady-state responses. However, the 267 

computational cost increases quickly with 𝑁𝑁. Therefore, a sufficiently large value of 𝑁𝑁 is used after 268 

validating the corresponding HB results using the numerical integration results to ensure the accuracy 269 

of truncation.  270 

For the power flow analysis of the oscillator system with dry friction, the total instantaneous input 271 

vibration power into the system is the product of the harmonic excitation force 𝐹𝐹0eiΩ𝜏𝜏  and the 272 

corresponding velocity 𝑋𝑋𝑞𝑞′  of the q-th DOF. Note that the velocity 𝑋𝑋𝑞𝑞′  can be obtained by taking 273 

differentiation of Eq. (8a) as 𝑋𝑋𝑞𝑞′ = ∑ i𝑛𝑛Ω𝑅𝑅�(𝑞𝑞,𝑛𝑛)
𝑁𝑁
𝑛𝑛=0 ei𝑛𝑛Ω𝜏𝜏, hence we have  274 

𝑃𝑃in = ℜ�𝑋𝑋𝑞𝑞′ }ℜ{𝐹𝐹0𝑒𝑒iΩ𝜏𝜏� = ℜ�∑ i𝑛𝑛Ω𝑅𝑅�(𝑞𝑞,𝑛𝑛)
𝑁𝑁
𝑛𝑛=0 𝑒𝑒i𝑛𝑛Ω𝜏𝜏}ℜ{𝐹𝐹0𝑒𝑒iΩ𝜏𝜏�,                      (10) 275 

where the symbol ℜ represents the operation of taking the real part of a complex number. The steady-276 

state time-averaged input vibration power into the system is  277 

𝑃𝑃�in = 1
𝜏𝜏p
∫ 𝑃𝑃in
𝜏𝜏0+𝜏𝜏p
𝜏𝜏0

d𝜏𝜏 = 1
2
𝐹𝐹0ℜ��iΩ𝑅𝑅�(𝑞𝑞,1)�

∗�,                                 (11) 278 

where 𝜏𝜏0 and 𝜏𝜏p are the starting time for averaging and the averaging time span, respectively, and in 279 

the current study, 𝜏𝜏p  is set as one period of excitation with 𝜏𝜏p = 2𝜋𝜋 Ω⁄ , the symbol * denotes the 280 

mathematical operation of taking the complex conjugate of a complex number. 281 

The maximum kinetic energy has been widely used as one of the performance indicators of 282 

vibration suppression systems [50]. For the current system, the non-dimensional maximum kinetic 283 

energy 𝐾𝐾𝑞𝑞 for the q-th DOF is defined as 284 

𝐾𝐾𝑞𝑞 = 1
2

(�𝑋𝑋𝑞𝑞′ �max)2,                                                      (12) 285 

where �𝑋𝑋𝑞𝑞′ �max is the maximum magnitude of velocity for the q-th DOF in the steady-state response. 286 

3 Single-DOF systems with dry friction contacts  287 

In this section, the vibration energy transmission and dissipation characteristics of SDOF systems 288 

with dry friction are studied. Two SDOF systems comprising a vertical wall separated or jointed with 289 

the ground are firstly presented. Then the dynamic responses of the systems are obtained by the 290 

analytical, semi-analytical or direct numerical integration approaches based on different friction models. 291 

The force transmissibility and vibration energy dissipation within the system are formulated. Parametric 292 

studies of the influence of friction on the force transmission and vibration energy flow behaviour of the 293 

system are carried out. 294 

3.1 Dynamic response analysis 295 

Figures 3(a) and (b) show two SDOF systems comprising a mass 𝑚𝑚1 connected to the ground via 296 

a viscous damper with damping coefficient 𝑐𝑐1 and a linear spring with stiffness coefficient 𝑘𝑘1. The mass 297 
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is also sliding on a vertical rough wall and the dry friction force 𝑓𝑓c  exists in the contact with the 298 

magnitude of 𝑓𝑓d. The vertical wall is separated from the base ground in Fig. 3(a) while jointed with the 299 

base ground in Fig. 3(b). The mass is subjected to a harmonic force excitation with the forcing amplitude 300 

𝑓𝑓0 and frequency 𝜔𝜔. The equilibrium position of the mass is set as the reference with 𝑥𝑥1 = 0. The 301 

governing equation of the system is 302 

𝑚𝑚1𝑥̈𝑥1 + 𝑐𝑐1𝑥̇𝑥1 + 𝑘𝑘1𝑥𝑥1 + 𝑓𝑓c = 𝑓𝑓0cos𝜔𝜔𝜔𝜔,                                        (13) 303 

where 𝑓𝑓c is the nonlinear dry friction force. When the Karnopp model is used, we have 𝑣𝑣r = 𝑥̇𝑥1 and 304 

𝑓𝑓e = 𝑓𝑓0cos𝜔𝜔𝜔𝜔 − 𝑘𝑘1𝑥𝑥1  in Eq. (3). The following non-dimensional parameters and variables are 305 

introduced for our parametric studies: 306 

      𝜔𝜔1 = �𝑘𝑘1
𝑚𝑚1

,     𝜁𝜁1 = 𝑐𝑐1
2𝑚𝑚1𝜔𝜔1

,     𝑋𝑋1 = 𝑥𝑥1
𝑙𝑙0

,      𝐹𝐹d = 𝑓𝑓d
𝑘𝑘1𝑙𝑙0

,      𝜂𝜂 = 𝜀𝜀
𝜔𝜔1𝑙𝑙0

,             (14a-14e) 307 

  𝑉𝑉d = 𝑣𝑣d
𝜔𝜔1𝑙𝑙0

,      𝐹𝐹0 = 𝑓𝑓0
𝑘𝑘1𝑙𝑙0

,      Ω = 𝜔𝜔
𝜔𝜔1

,     𝜏𝜏 = 𝜔𝜔1𝑡𝑡,                           (14f-14i) 308 

where 𝜔𝜔1 and 𝜁𝜁1 are the undamped natural frequency and the damping ratio of the system without 309 

considering the friction, respectively, 𝑙𝑙0 is the undeformed length of the linear spring at the bottom, 𝑋𝑋1 310 

is the dimensionless displacement of the mass, 𝐹𝐹d is the non-dimensional magnitude of the dynamic dry 311 

friction force (which is named magnitude of friction hereafter), 𝜂𝜂 is the ratio of tolerance parameter in 312 

the tanh-regularization approach and 𝑉𝑉d is the dimensionless boundary velocity of the dead zone in the 313 

Karnopp model, 𝐹𝐹0, Ω and 𝜏𝜏 are the non-dimensional excitation amplitude, excitation frequency and the 314 

dimensionless time, respectively. By using those defined parameters in Eq. (14), Eq. (13) can be 315 

transformed into its non-dimensional form described as 316 

𝑋𝑋1′′ + 2𝜁𝜁1𝑋𝑋1′ + 𝑋𝑋1 + 𝐹𝐹c = 𝐹𝐹0cosΩ𝜏𝜏,                                           (15) 317 

where the prime denotes differentiation with respect to 𝜏𝜏, and 𝐹𝐹c is the non-dimensional friction force.  318 

x1

k1

f0 cosωt  

m1

c1

(a)  (b)  

x1

k1

m1

c1

Frictional Contact Frictional Contact

Jointed 
wall

f0 cosωt 

Normal 
Force

Normal 
Force

Base 
Ground

Base 
Ground  319 

Figure 3. A generic harmonic excited SDOF mass-spring-damper system with (a) a vertical wall separated from 320 
the horizontal base and (b) a vertical wall jointed with the horizontal base. Coulomb frictional contact exists 321 
between the vertical wall and the vibrating mass. 322 

To obtain analytical approximations of the frequency-response solution of Eq. (15), the steady-323 

state periodic dimensionless response of the system is assumed to be 324 



11 
 

𝑋𝑋1 = 𝑅𝑅0 + 𝑅𝑅1 cos(Ω𝜏𝜏 + 𝜙𝜙) = 𝑅𝑅0 + 𝑅𝑅1 cos𝜃𝜃 = 𝑅𝑅1(cos𝜃𝜃 − cos𝜃𝜃0),             (16a) 325 

𝑋𝑋1′ = −Ω𝑅𝑅1 sin(Ω𝜏𝜏 + 𝜙𝜙) = −Ω𝑅𝑅1 sin𝜃𝜃,  𝑋𝑋1′′ = −Ω2𝑅𝑅1 cos(Ω𝜏𝜏 + 𝜙𝜙) = −Ω2𝑅𝑅1 cos𝜃𝜃,   (16b, 16c) 326 

where 𝜃𝜃 = Ω𝜏𝜏 + 𝜙𝜙, 𝜃𝜃0 = cos−1(−𝑅𝑅0 𝑅𝑅1⁄ ), 𝑅𝑅0 and 𝑅𝑅1 are the dimensionless displacement amplitudes 327 

for the static and fundamental frequency components, respectively. By using the signum function 328 

approach, the third order Fourier series expansion on the non-dimensional dry friction force 𝐹𝐹c based 329 

on Eq. (6) is expressed as: 330 

𝐹𝐹c ≈ 𝐹𝐹dsgn(𝑋𝑋1′) ≈ − 4
𝜋𝜋
�sin𝜃𝜃 + 1

3
sin 3𝜃𝜃�𝐹𝐹d.                                  (17) 331 

By inserting Eqs (16) and (17) into Eq. (15) and balancing the static term and the coefficients of 332 

the cos𝜃𝜃 and sin𝜃𝜃 terms, we obtain 333 

𝑅𝑅0 = 0,       (1 − Ω2)𝑅𝑅1 = 𝐹𝐹0 cos𝜙𝜙,     −2Ω𝜁𝜁1𝑅𝑅1 −
4
𝜋𝜋
𝐹𝐹d = 𝐹𝐹0 sin𝜙𝜙.          (18a, b, c) 334 

By a manipulation of Eqs (18b) and (18c) in order to cancel out the trigonometric terms of 𝜙𝜙, we obtain 335 

(1 − Ω2)2𝑅𝑅12 + (2Ω𝜁𝜁1𝑅𝑅1 + 4
𝜋𝜋
𝐹𝐹d)2 = 𝐹𝐹02,                                      (19) 336 

where 𝑅𝑅1  is then obtained by solving the quadratic equation. Then the steady-state dimensionless 337 

response amplitude 𝑋𝑋1_amp of the mass can be determined as 338 

𝑋𝑋1_amp = |𝑅𝑅1| =
−8𝐹𝐹d+�64𝐹𝐹d

2−{[16𝐹𝐹d
2−𝜋𝜋2𝐹𝐹02][(1−Ω2)2 (Ω𝜁𝜁1)2⁄ +4]}

𝜋𝜋[(1−Ω2)2 (Ω𝜁𝜁1)⁄ +4Ω𝜁𝜁1] .                         (20) 339 

The HB-AFT scheme illustrated in Subsection 2.2 can also be used as a semi-analytical 340 

approximation method to obtain the steady-state response of the system governed by Eq. (15). For the 341 

implementation, the non-dimensional friction force is approximated by 342 

𝐹𝐹c = 𝐹𝐹d
exp(𝑋𝑋1′ 𝜂𝜂⁄ )−exp(−𝑋𝑋1′ 𝜂𝜂⁄ )
 exp�𝑋𝑋1′ 𝜂𝜂⁄ �+exp(−𝑋𝑋1′ 𝜂𝜂⁄ )

 ,                                                (21) 343 

based on the tanh-regularization representation from Eq. (4). For dynamic analysis using direct 344 

numerical integration based on the Runge-Kutta Dormand-Prince method. A variable step size is 345 

adopted while ensuring the estimated error is below a pre-defined value. The friction force 𝐹𝐹c  is 346 

expressed by 347 

    𝐹𝐹c = �
   𝐹𝐹d sgn(𝑋𝑋1′),                  if |𝑋𝑋1′| > 𝑉𝑉d ,                         
𝐹𝐹d sgn(𝐹𝐹e) ,                  if |𝑋𝑋1′ | ≤ 𝑉𝑉d and |𝐹𝐹e| ≥ 𝐹𝐹d ,
𝐹𝐹e ,                                  if |𝑋𝑋1′ | ≤ 𝑉𝑉d and |𝐹𝐹e| < 𝐹𝐹d ,      

                   (22) 348 

based on the Karnopp model from Eq. (3), where 𝐹𝐹e = 𝐹𝐹0eiΩ𝜏𝜏 − 𝑋𝑋1 is the non-dimensional resultant 349 

force applied to the contacting interface in the tangential direction.  350 

In Fig. 4, the effects of dry friction on the steady-state response amplitude 𝑋𝑋1_amp of the mass 351 

shown in Fig. 3 are investigated. Fig. 4(a) presents a comparison of 𝑋𝑋1_amp results obtained by different 352 

approaches. The red and black lines represent the results obtained by the semi-analytical HB-AFT 353 

method for the linear frictionless system (𝐹𝐹d = 0) and the nonlinear system with frictional contact (𝐹𝐹d =354 

0.04), respectively. With a trade off between the accuracy and computational time, the order 𝑁𝑁 used in 355 

HB-AFT approximations is set as 7 throughout the paper. The squares and rhombus denote the response 356 
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amplitude for the same nonlinear frictional system (𝐹𝐹d = 0.04) computed by the Runge-Kutta method 357 

with adaptive-step-size and the analytical HB method, respectively. When employing the Runge-Kutta 358 

method, the non-smoothness of the friction force is reflected by the conditional statement in the 359 

algorithm and the relative error tolerance is set as 10−6  throughout this paper. The other system 360 

parameters are fixed as 𝜁𝜁1 = 0.01, 𝑉𝑉d = 1 × 10−4, 𝜂𝜂 = 1 × 10−4 and 𝐹𝐹0 = 0.1.  361 

Figure 4.  (a) Comparison of steady-state response solutions from HB-AFT, analytical HB and RK approaches, 363 
and (b) the effects of the magnitude of friction 𝐹𝐹d on the steady-state response amplitude 𝑋𝑋1_amp. In (a), the red 364 
and black lines are for the results obtained by the HB-AFT method with 𝐹𝐹d  = 0 and 0.04 respectively. The squares 365 
and rhombuses are for the results obtained by the RK method and analytical-HB method, respectively, with 𝐹𝐹d  = 366 
0.04; In (b), the red, blue and black lines are for HB-AFT results with 𝐹𝐹d  = 0, 0.02 and 0.04, respectively. Circular, 367 
triangular and square symbols denote RK results. 368 

Figure 4(a) shows that the analytical HB yields relatively accurate approximations of the responses 369 

when the excitation frequency is in the vicinity of the resonance. However, due to the relatively low 370 

number of Fourier terms used in the analytical HB, at low or high frequencies differences appear 371 

between the analytical and the numerical integration results. In comparison, the HB-AFT results agree 372 

well with the numerical results over the whole frequency range, demonstrating the accuracy of the 373 

truncation in Fourier expansion approximations. Therefore, for a better demonstration of the effects of 374 

the strong friction nonlinearity on the vibration transmission and energy dissipation, only the 7th order 375 

HB-AFT results and RK results are presented in the following content. Fig. 4(b) shows the effects of 376 

the presence of the dry friction on the system response, with the magnitude of friction 𝐹𝐹d being 0, 0.02 377 

and 0.04, respectively. The other parameters are set the same as those used in Fig. 4(a). The results 378 

obtained by the HB-AFT approximations are represented by different colours of lines, while those 379 

obtained by using the RK method are denoted by symbols. Fig. 4(b) shows that by comparing to the 380 

linear system with 𝐹𝐹d = 𝜌𝜌 = 0, the involvement of the dry friction contact between the mass and wall 381 

can suppress the vibration of the mass in a broad frequency band, demonstrated by reductions in steady-382 

state response amplitude 𝑋𝑋1_amp. It shows that as the magnitude of friction 𝐹𝐹d increases from 0.02 to 383 

0.04, there is a stronger suppression effect on the 𝑋𝑋1_amp in a wide frequency range. Of contrast to the 384 

effects of dry friction on the response amplitude, it is well-documented that for a SDOF mass-spring-385 
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damper linear system, an increase in the viscous damping ratio 𝜁𝜁1 can lead to a substantial reduction in 386 

the peak response amplitude, but small changes in the response amplitude when away from the resonant 387 

frequency region. Fig. 4(b) indicates that a major difference in the effects of dry friction and viscous 388 

damping on the dynamic response and vibration suppression is the frequency range being affected.  389 

Figure 5 presents the steady-state time histories of the responses, specifically the friction force 𝐹𝐹c 390 

and the viscous damping force 𝐹𝐹cd (𝐹𝐹cd = 2𝜁𝜁1𝑋𝑋1′) at particular frequencies in Fig. 4. The system with 391 

dry frictional contact is investigated by setting the magnitude of friction 𝐹𝐹d = 0.02 in Fig. 5(a) and 392 

𝐹𝐹d=0.04 in Figs 5(b) and (c) while setting viscous damping ratio 𝜁𝜁1 of the system to be 0.01. In Figs 393 

5(d), (e) and (f), the linear system without dry friction (𝐹𝐹d = 0) is examined with 𝜁𝜁1 = 0.01 in Fig. 5(d) 394 

and 𝜁𝜁1 = 0.03 in Figs 5(e) and (f). Parameters are set as 𝑉𝑉d = 1 × 10−4, 𝜂𝜂 = 1 × 10−4 and 𝐹𝐹0 = 0.1, 395 

the same as those used in Fig. 4. The results are obtained by using the RK method and the Karnopp 396 

model.  397 

Figure 5. Time histories of the forces and the responses in the steady-state for the system considering dry friction 399 
with 𝐹𝐹d = 0.02 in (a) and 𝐹𝐹d = 0.04 in (b) and (c), respectively; For the linear system with 𝜁𝜁1 = 0.01 in (d) and 400 
𝜁𝜁1 = 0.03 in (e) and (f), respectively. The excitation frequency Ω is Ω = 0.25 in (a), (b), (d) and (e), and Ω = 1 401 
in (c) and (f). The red line is the dry friction force 𝐹𝐹c from the frictional contact in (a), (b) and (c), while in (d), (e) 402 
and (f) is the damping force 𝐹𝐹cd from the viscous damper. The blue and black lines are the response displacement 403 
and velocity of the mass, respectively. 404 

Figures 5(a) and (b) show the time histories of the displacement responses and the friction force at 405 

a low excitation frequency of Ω = 0.25. It shows that the system with dry friction can exhibit stick-slip 406 

behaviour in steady-state motion. When increasing the magnitude of friction 𝐹𝐹d from 0.02 to 0.04, the 407 

displacement response amplitude of the mass is suppressed. In contrast, for the linear system without 408 

dry friction in Figs 5(d) and (e), it is found that as the damping ratio 𝜁𝜁1 of the system damping 𝑐𝑐1 409 
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increases from 0.01 to 0.03, the viscous damping force is still small and steady-state responses of the 410 

mass at the excitation frequency change a little. This behaviour arises from the fact that the viscous 411 

damping force 𝐹𝐹cd is proportional to the velocity. Since the velocity is small at low frequencies, a 412 

relatively small damping force is induced by the viscous damper. Figs 5(c) and (f) present the time 413 

histories of the friction force and the damping force when the system is excited at Ω = 1 near resonance, 414 

respectively. Fig. 5(c) shows that the magnitude of the friction force 𝐹𝐹c remains as |𝐹𝐹c| = |𝐹𝐹d| = 0.04 415 

independent of the excitation frequency. In comparison, Fig. 5(f) shows that there is a significant 416 

increase in the amplitude of damping force 𝐹𝐹cd from the viscous damper at Ω = 1 compared to its 417 

amplitude at Ω = 0.25 as shown in Fig. 5(e). This is because that the velocity amplitude near the 418 

resonant frequency is relatively large, leading to a larger amplitude of the damping force. Figs 4 and 5 419 

demonstrate that the response amplitude of the mass is sensitive to the changes in the magnitude of 420 

friction over a broad frequency range. This is of direct contrast to the influence of viscous damping 421 

ratio, which mainly leads to reductions of the peak response. 422 

3.2 Force transmissibility and vibration energy flow 423 

To evaluate the level of vibration transmission between subsystems of an integrated linear or 424 

nonlinear structure, the force transmissibility and time-averaged vibration power flow variables are 425 

widely employed as indicators [50]. For the current SDOF system with friction, the force 426 

transmissibility 𝑇𝑇𝑅𝑅B can be defined as the ratio between the maximum magnitude of the transmitted 427 

force to the base and the amplitude of the excitation force: 428 

        𝑇𝑇𝑅𝑅B = max( |ℜ{𝐹𝐹tB}|)
𝐹𝐹0

,                                                    (23) 429 

where 𝐹𝐹tB  represents the non-dimensional transmitted force from mass 𝑚𝑚1  to the base. 𝐹𝐹tB = 𝑋𝑋1 +430 

2𝜁𝜁1𝑋𝑋1′  is for the system with separated wall and base shown in Fig. 3(a) while 𝐹𝐹tB = 𝐹𝐹c + 𝑋𝑋1 + 2𝜁𝜁1𝑋𝑋1′  431 

is for the system with jointed wall and base shown in Fig. 3(b). For enhanced suppression of vibration 432 

transmission, a low value of force transmissibility is desirable.  433 

The instantaneous input power 𝑃𝑃in and time-averaged input power 𝑃𝑃�in as well as the maximum 434 

kinetic energy 𝐾𝐾1  of the mass 𝑚𝑚1  can be obtained by setting 𝑞𝑞 = 1 using Eqs (10), (11) and (12), 435 

respectively. The instantaneous dissipated power 𝑃𝑃d1 by the viscous damper 𝑐𝑐1 and the instantaneous 436 

dissipated power 𝑃𝑃df by the dry friction contact are expressed as 437 

 𝑃𝑃d1 =  2𝜁𝜁1(ℜ{𝑋𝑋1′})2,             𝑃𝑃df = ℜ{𝑋𝑋1′}ℜ{𝐹𝐹c},                      (24a, 24b) 438 

respectively, and the velocity 𝑋𝑋1′  is obtained by differentiating Eq. (8a) to have 𝑋𝑋1′ =439 

∑ i𝑛𝑛Ω𝑅𝑅�(1,𝑛𝑛)𝑒𝑒i𝑛𝑛Ω𝜏𝜏𝑁𝑁
𝑛𝑛=0 . The corresponding time-averaged dissipated power are 440 

𝑃𝑃�d1 = 1
𝜏𝜏p
∫ 𝑃𝑃d1
𝜏𝜏0+𝜏𝜏p
𝜏𝜏0

d𝜏𝜏,           𝑃𝑃�df = 1
𝜏𝜏p
∫ 𝑃𝑃df
𝜏𝜏0+𝜏𝜏p
𝜏𝜏0

d𝜏𝜏 ,                (25a, 25b) 441 

respectively. The power dissipation ratio provides the proportion of the vibration energy dissipated 442 

within the total input energy into the system. The corresponding power dissipation ratios are 443 
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𝑅𝑅d1 = 𝑃𝑃�d1
𝑃𝑃�in

,                  𝑅𝑅df = 𝑃𝑃�df
𝑃𝑃�in

 ,                                    (26a, 26b) 444 

for the system viscous damper 𝑐𝑐1 and the dry frictional contact, respectively. It is noted that according 445 

to the principle of conservation of energy, over a cycle of periodic response, we have 𝑅𝑅d1 + 𝑅𝑅df = 1 as 446 

all energy input should have been dissipated to have zero net change in the mechanical energy. 447 

In Figs 6, 7 and 8, the influence of frictional contact on the force transmissibility, power flow 448 

behaviour and the maximum kinetic energy of the system is presented. The HB-AFT results are 449 

represented by different colours of lines while the RK results are denoted by different kinds of symbols. 450 

In Fig. 6, the effects of the dry friction on the force transmissibility 𝑇𝑇𝑅𝑅B  are illustrated. Fig. 6(a) 451 

presents the 𝑇𝑇𝑅𝑅B results for the system with the vertical wall separated from the base, as shown in Fig. 452 

3(a) while Fig. 6(b) shows the 𝑇𝑇𝑅𝑅B results corresponding to the system having a jointed vertical wall 453 

and base, as shown in Fig. 3(b). The magnitude of the dry friction 𝐹𝐹d changes from 0 to 0.02 and to 0.04 454 

in Fig. 6(a) or (b) while the damping ratio 𝜁𝜁1 of the viscous damper is fixed as 𝜁𝜁1 = 0.01. The other 455 

parameters are set as 𝑉𝑉d = 1 × 10−4, 𝜂𝜂 = 1 × 10−4 and 𝐹𝐹0 = 0.1.  456 

 457 

Figures 6(a) and (b) show that variations in the level of dry friction have a relatively large effect 462 

on the force transmissibility 𝑇𝑇𝑅𝑅B over a wide frequency band. Fig. 6(a) shows that when the vertical 463 

frictional contact wall is separated from the base, as the magnitude of dry friction 𝐹𝐹d increases from 0 464 

to 0.04, the force transmission to the base is reduced in a broad frequency range due to the frictional 465 

resistance. Fig. 6(b) suggests that when the vertical wall is jointed with the base, compared with the 466 

reference case for the system without friction (i.e., 𝐹𝐹d = 0), the increase in the value of 𝐹𝐹d from 0 to 467 

0.04 leads to reductions in the force transmissibility 𝑇𝑇𝑅𝑅B near the peak frequency Ω = 1. However, at 468 

a prescribed frequency in the high-frequency range away from the peak, the force transmissibility 469 

increases with 𝐹𝐹d. This is due to the nonlinearity of the discontinuous friction force introduced into the 470 
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system. At the peak frequency, the amplitudes of the displacement and velocity responses are 471 

suppressed due to the friction force, resulting in a smaller transmitted force 𝐹𝐹tB to the base and a smaller 472 

value of 𝑇𝑇𝑅𝑅B. At high/low frequencies, the response amplitude is smaller while the amplitude of the 473 

friction force is not changed as shown in Fig. 5(b).  Therefore, there can be a larger amplitude of 𝐹𝐹tB 474 

and hence a larger value of 𝑇𝑇𝑅𝑅B compared to that of the corresponding linear system (𝐹𝐹d = 0).  475 

In Fig. 7, the effects of the dry friction on the time-averaged input power 𝑃𝑃�in into the system and 476 

the maximum kinetic energy 𝐾𝐾1 of the mass are studied, respectively. Cases 1 and 2 examine the system 477 

responses  considering the dry friction force 𝐹𝐹d set as 0.02 and 0.04, respectively, while keeping the 478 

damping ratio 𝜁𝜁1 of the viscous damper constant at 0.01. Cases 3 and 4 are the corresponding linear 479 

frictionless systems (i.e., 𝐹𝐹d = 0) with the damping ratio 𝜁𝜁1 set as 0.01 and 0.03, respectively. The other 480 

system parameters are set as 𝑉𝑉d = 1 × 10−4, 𝜂𝜂 = 1 × 10−4 and 𝐹𝐹0 = 0.1. Figure 7(a) shows that the 481 

presence of friction for the system in Case 1 results in a relatively lower peak of 𝑃𝑃�in, compared with the 482 

corresponding system with viscous damping only, i.e., Case 3 with 𝐹𝐹d = 0. However, at the low or high 483 

excitation frequencies, the dry frictional contact leads to a substantial increase in the amount of input 484 

power into the oscillating system. The reason for this phenomenon will be further explored in the later 485 

content. By a comparison of Cases 1 and 2 with the magnitude of friction 𝐹𝐹d increasing from 0.02 to 486 

0.04, it is found that the peak value of 𝑃𝑃�in reduces, which is caused by a lower amplitude of resonant 487 

velocity due to the stronger frictional resistance. In contrast, when Ω is away from the peak, the increase 488 

of 𝐹𝐹d yields a larger amount of input power into the system. Fig. 7(b) indicates that the presence of the 489 

dry friction in Case 1 can lead to a smaller peak value of the maximum kinetic energy 𝐾𝐾1, compared to 490 

that of frictionless system in Case 3. In the frequency range with the excitation frequency Ω between 491 

approximately 0.15 and 0.5, the values of 𝐾𝐾1 for Cases 1 and 2 with dry friction become larger than the 492 

corresponding values for Cases 3 and 4 without friction. By a comparison of the time histories of the 493 

velocity responses of the systems excited at Ω = 0.25, as shown in Figs 5(a) and (d), it is found that the 494 

dry friction nonlinearity can yield a larger maximum velocity of the mass, leading to a larger value of 495 

kinetic energy. Fig. 7(b) also indicates that in the high-frequency range, the maximum kinetic energy 496 

𝐾𝐾1 of the system with dry friction can be smaller than that of the system without friction. Moreover, an 497 

increase of the magnitude of friction 𝐹𝐹d from 0.02 to 0.04 can slightly lower the peak height of 𝐾𝐾1 and 498 

also reduce the values of 𝐾𝐾1 at high excitation frequencies. However, the maximum kinetic energy 499 

becomes slightly larger with the increasing 𝐹𝐹d when Ω locates approximately between 0.25 and 0.5. 500 

In Figs 8(a) and (b), the influence of the magnitude of dry friction on its time-averaged dissipated 501 

power 𝑃𝑃�df and the corresponding power dissipation ratio 𝑅𝑅df is investigated. Three cases are considered 502 

by changing the value of 𝐹𝐹d from 0.01 to 0.02 and to 0.04. The other parameters are set as 𝜁𝜁1 = 0.01, 503 

𝑉𝑉d = 1 × 10−4, 𝜂𝜂 = 1 × 10−4 and 𝐹𝐹0 = 0.1. Figure 8(a) shows that as the magnitude of friction 𝐹𝐹d 504 

increases from 0.01 to 0.04, there is more power dissipation by the dry friction contact in a wide 505 

frequency band. Fig. 8(b) shows that there is a minimum value of the power dissipation ratio 𝑅𝑅df 506 
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associated with dry friction at the resonant frequency of Ω = 1. As the excitation frequency increases 507 

from 0 to 2, the value of 𝑅𝑅df firstly decreases from approximately 1 to a local minimum, and then 508 

increases to the value close to 1. It suggests that the frictional contact is effective for energy dissipation 509 

when the system is not in resonance. By increasing the magnitude of friction from 0.01 to 0.04, the 510 

value of the local minimum point of 𝑅𝑅df increases substantially. In comparison, when the excitation 511 

frequency is away from Ω = 1, the changes in 𝐹𝐹d lead to much smaller variations in 𝑅𝑅df.  512 

Figure 7.  Effects of the magnitude of friction 𝐹𝐹d on (a) the time-averaged input power 𝑃𝑃�in into the system and (b) 514 
the maximum kinetic energy 𝐾𝐾1 of the mass. The black and pink lines are for the nonlinear system having dry 515 
friction with 𝐹𝐹d  = 0.02 and 0.04, respectively. The red and blue lines are for the linear system with 𝜁𝜁1 = 0.01 516 
and 0.03, respectively. Square, diamond, circular and triangular symbols denote RK results. 517 

Figure 8. Effects of the magnitude of friction 𝐹𝐹d on (a) the time-averaged dissipated power by the dry friction 519 
contact 𝑃𝑃�df and (b) the corresponding power dissipation ratio 𝑅𝑅df. The system parameters are fixed as 𝜁𝜁1 = 0.01, 520 
𝑉𝑉d = 1 × 10−4, 𝜂𝜂 = 1 × 10−4 and 𝐹𝐹0 = 0.1. The blue, black and pink lines are for the nonlinear system having 521 
dry friction with 𝐹𝐹d  = 0.01, 0.02 and 0.04, respectively. Triangular, square and diamond symbols denote RK 522 
results.  523 

In Fig. 9, the mechanisms for the friction influence on 𝑃𝑃�in and 𝑃𝑃�df at low frequencies shown in 524 

Figs 7(a) and 8(a), are further explored. Figs 9(a) and (b) present the time histories of the steady-state 525 

instantaneous input power 𝑃𝑃in  into the system with the magnitude of friction 𝐹𝐹d = 0.02 and 0.04, 526 
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respectively, while setting damping ratio 𝜁𝜁1 = 0.01. For comparison, Figs 9(d) and (e) present the 𝑃𝑃in 527 

for the corresponding linear frictionless systems with the damping ratio 𝜁𝜁1  being 0.01  and 0.03, 528 

respectively. The excitation frequency is prescribed to be Ω = 0.25 and the other system parameters 529 

are set the same as those used in Figs 6, 7 and 8. Figs 9(a) and (b) show the stick-slip characteristic at 530 

low frequencies for the system with dry friction, making the positive part of the instantaneous input 531 

power to be significantly larger than the negative part. When increasing the magnitude of friction 𝐹𝐹d 532 

from 0.02 to 0.04, the negative part of 𝑃𝑃in is further reduced while the positive part is increased, leading 533 

to a much larger amount of input energy into the system over one cycle of periodic response. Compared 534 

to the 𝑃𝑃in in the linear frictionless systems shown in Figs 9(d) and (e), it is found that the increase of 535 

damping ratio 𝜁𝜁1 from 0.01 to 0.03 has a smaller effect on the 𝑃𝑃in at this frequency. Fig. 9(c) depicts 536 

the time histories of the instantaneous dissipated power 𝑃𝑃df by the friction at Ω = 0.25 with 𝐹𝐹d = 0.02 537 

or 𝐹𝐹d = 0.04. It shows that in the low-frequency range, the increase in the magnitude of friction can 538 

lead to a much larger amount of power dissipation by the frictional contact. In comparison, Fig. 9(f) 539 

presents the time histories of the instantaneous dissipated power 𝑃𝑃d1 by the viscous damper 𝑐𝑐1 of the 540 

corresponding linear system at the same frequency of Ω = 0.25. It shows that the increase of the 541 

damping ratio 𝜁𝜁1 from 0.01 to 0.03 has little influence on the power dissipation 𝑃𝑃d1 when the excitation 542 

frequency is low. From Figs 7, 8 and 9, it can be deduced that comparing to viscous damping, the dry 543 

friction nonlinearity can strongly affect the energy flow characteristics of the system when the excitation 544 

frequency is away from the resonance. 545 

Figure 9. Time histories of instantaneous power flow in the steady state at Ω = 0.25 for the system with dry 547 
friction in (a), (b) and (c), and for the frictionless linear system in (d), (e) and (f). In (a), (b), (d) and (e): the 548 
instantaneous input power 𝑃𝑃in; in (c): the instantaneous power dissipation 𝑃𝑃df by the dry friction contact, and the 549 
red and blue lines are for the frictional system with 𝐹𝐹d = 0.02 and 0.04, respectively; in (f): the instantaneous 550 
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power dissipation 𝑃𝑃d1 by the system viscous damper, and the red and blue lines are for the frictionless system 551 
with 𝜁𝜁1 = 0.01 and 0.03, respectively.  552 

4 Energy flow of 2DOF system coupled with frictional contact  553 

In this section, the vibration transmission and energy dissipation characteristics of a coupled 554 

system with dry friction at the interface are investigated. The mathematical model of the 2DOF system 555 

with interfacial friction is firstly introduced. Then, the approaches for determining the dynamic response 556 

of the system by the HB-AFT or numerical integration methods are discussed. The force transmissibility 557 

and vibration energy flow for the coupled system are subsequently formulated. Finally, the dynamics 558 

and vibration energy flow results of the coupled system are presented. In particular, the effects of the 559 

interfacial friction on the vibration transmission and energy dissipation within the system are examined. 560 

4.1 Mathematical modelling 561 

Figure 10(a) shows two SDOF systems, each representing a dominant mode of a substructure, 562 

connected via a spring of stiffness coefficient 𝑘𝑘3. The SDOF primary system comprises the primary 563 

mass 𝑚𝑚1 subjected to a harmonic force excitation with amplitude of 𝑓𝑓0 and frequency of 𝜔𝜔, a linear 564 

spring with a stiffness coefficient 𝑘𝑘1 and a viscous damper with damping 𝑐𝑐1. The SDOF secondary 565 

system has the secondary mass 𝑚𝑚2, a viscous damper of damping 𝑐𝑐2, and a linear spring with stiffness 566 

𝑘𝑘2. The primary mass is sliding on the rough surface of the secondary mass, where the interactive dry 567 

friction force 𝑓𝑓c is generated between two masses with the magnitude of friction 𝑓𝑓d. The secondary 568 

system is placed horizontally on the smooth surface. The static equilibrium positions of the two masses, 569 

where 𝑥𝑥1 = 𝑥𝑥2 = 0 and the springs 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3 are undeformed, are set as the reference. To highlight the 570 

influence of dry friction on the energy flow and vibration transmission, the frictional contact can be 571 

replaced by a viscous damper at the interface with damping coefficient 𝑐𝑐d for comparison.  572 
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 573 
Figure 10. A 2DOF system with SDOF sub-systems coupled by a linear spring 𝑘𝑘3 and the nonlinear dry frictional 574 
contact or a viscous damper 𝑐𝑐d  at the interface. The primary SDOF system with mass of 𝑚𝑚1  is excited by a 575 
harmonic force 𝑓𝑓0ei𝜔𝜔𝜔𝜔  and the secondary SDOF system with mass of 𝑚𝑚2 is placed on a horizontal smooth surface.  576 

The equations of motion of the system can be written in a matrix form as 577 

�𝑚𝑚1 0
0 𝑚𝑚2

� �𝑥̈𝑥1𝑥̈𝑥2
� + �𝑐𝑐1 0

0 𝑐𝑐2
� �𝑥̇𝑥1𝑥̇𝑥2

� + �𝑘𝑘1 + 𝑘𝑘3 −𝑘𝑘3
−𝑘𝑘3 𝑘𝑘2 + 𝑘𝑘3

� �
𝑥𝑥1
𝑥𝑥2� + �

𝑓𝑓c
−𝑓𝑓c

� = �𝑓𝑓0ei𝜔𝜔𝜔𝜔
0

�,     (27) 578 
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where 𝑓𝑓c represents the dry friction force at the interface being a function of the relative velocity 𝑣𝑣r =579 

𝑥̇𝑥1 − 𝑥̇𝑥2 . The friction can be determined by using the Karnopp model and the tanh-regularization 580 

approach expressed in Eqs (3) and (4), respectively. When the Karnopp model, as shown in Eq. (3), is 581 

used, considering the stick state with no relative motion between the masses, i.e., 𝑥̇𝑥1 = 𝑥̇𝑥2 and 𝑥̈𝑥1 = 𝑥̈𝑥2. 582 

The resultant external force 𝑓𝑓e applied to the coupling interface in the tangential direction is balanced 583 

by the friction force 𝑓𝑓c. From Eq. (27), we have  584 

  𝑓𝑓e = 𝑓𝑓c = 𝑘𝑘3(𝑥𝑥2 − 𝑥𝑥1) + 1
𝑚𝑚1+𝑚𝑚2

[𝑚𝑚1𝑘𝑘2𝑥𝑥2 + (𝑚𝑚1𝑐𝑐2 − 𝑚𝑚2𝑐𝑐1)𝑥̇𝑥1 + 𝑚𝑚2𝑓𝑓0ei𝜔𝜔𝜔𝜔 − 𝑚𝑚2𝑘𝑘1𝑥𝑥1].   (28) 585 

Here the new parameters are defined as  586 

𝜔𝜔2 = �𝑘𝑘2
𝑚𝑚2

,    𝜁𝜁2 = 𝑐𝑐2
2𝑚𝑚2𝜔𝜔2

,    𝑋𝑋2 = 𝑥𝑥2
𝑙𝑙0

,     𝛾𝛾 = 𝜔𝜔2
𝜔𝜔1

,    𝜌𝜌 = 𝑐𝑐d
𝑐𝑐1

 ,   𝜇𝜇 = 𝑚𝑚2
𝑚𝑚1

,     𝜅𝜅 = 𝑘𝑘3
𝑘𝑘1

,      (29a-29g) 587 

where 𝜔𝜔2 and 𝜁𝜁2 are the undamped natural frequency and the damping ratio for the secondary system 588 

without friction, respectively, 𝑋𝑋2 denotes the non-dimensional displacement of the secondary mass, 𝛾𝛾 589 

is the ratio between the undamped natural frequency of the primary system and that of the secondary 590 

system, 𝜌𝜌 represents the damping level of the interfacial viscous damper which is used to replace the 591 

dry friction contact for comparison purpose, 𝜇𝜇 is the mass ratio and 𝜅𝜅 is the stiffness ratio for the linear 592 

spring at the interface. By using them and previously defined parameters in Eq. (14), Eq. (27) can be 593 

transformed into a dimensionless form as 594 

�1 0
0 𝜇𝜇� �

𝑋𝑋1′′

𝑋𝑋2′′
� + �2𝜁𝜁1 0

0 2𝜇𝜇𝜁𝜁2𝛾𝛾
� �
𝑋𝑋1′

𝑋𝑋2′
�+ �1 + 𝜅𝜅 −𝜅𝜅

−𝜅𝜅 𝜇𝜇𝛾𝛾2 + 𝜅𝜅� �
𝑋𝑋1
𝑋𝑋2
� + � 𝐹𝐹c−𝐹𝐹c

� = �𝐹𝐹0eiΩ𝜏𝜏
0

�,      (30) 595 

where 𝐹𝐹c is the non-dimensional dry friction force which can be expressed by replacing 𝑋𝑋1′  with (𝑋𝑋1′ −596 

𝑋𝑋2′ )  in Eq. (21) and Eq. (22) for the use of the tanh-regularization approach and the Karnopp model, 597 

respectively. In Eq. (22) when using the Karnopp model, 𝐹𝐹e is the dimensionless resultant external force 598 

applied to the coupling interface in the tangential direction from Eq. (28): 599 

𝐹𝐹e = 𝑓𝑓e
𝑘𝑘1𝑙𝑙0

= 𝜅𝜅(𝑋𝑋2 − 𝑋𝑋1) + 𝜇𝜇
1+𝜇𝜇

[𝛾𝛾2𝑋𝑋2 + 2(𝜁𝜁2𝛾𝛾 − 𝜁𝜁1)𝑋𝑋1′ + 𝐹𝐹0eiΩ𝜏𝜏 − 𝑋𝑋1].              (31) 600 

For the corresponding case of using an interfacial viscous damper to replace the dry friction contact, 601 

the friction force term 𝐹𝐹c in Eq. (30) is replaced with the damping force term 𝐹𝐹cd = 2𝜁𝜁1𝜌𝜌(𝑋𝑋1′ − 𝑋𝑋2′) by 602 

the interfacial viscous damper. 603 

To obtain the steady-state response of the coupled system, Eq. (30) can be solved using a combined 604 

use of the HB-AFT method and numerical continuations illustrated in Subsection 2.2, where the tanh-605 

regularization approach is used for the approximation of the friction force. The results are compared 606 

with the Runge-Kutta method with the friction force determined by the Karnopp model.  607 

4.2 Force transmissibility and vibration-energy flow 608 

The influence of the interfacial frictional contact on the vibration transmission between the two 609 

subsystems and the vibration energy dissipation at the interface is of interest. The force transmissibility 610 

from the primary mass 𝑚𝑚1 to the secondary mass 𝑚𝑚2 is expressed by 611 
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𝑇𝑇𝑅𝑅S = max(ℜ{|𝐹𝐹ts|})
𝐹𝐹0

 ,                                                      (32) 612 

where 𝐹𝐹ts = 𝜅𝜅(𝑋𝑋1 − 𝑋𝑋2) + 𝐹𝐹c is the dimensionless transmitted force to mass 𝑚𝑚2 for the systems with 613 

dry friction. It is noted that when viscous damping, instead of dry friction, exists at the interface, the 614 

transmitted force is replaced with 𝐹𝐹ts = 𝜅𝜅(𝑋𝑋1 − 𝑋𝑋2) + 𝐹𝐹cd . 615 

For the current system in the steady-state motion, the non-dimensional time-averaged input power 616 

𝑃𝑃�in over one cycle of periodic response is obtained from Eq. (11) by setting 𝑞𝑞 = 1. The time-averaged 617 

dissipated power 𝑃𝑃�d1 by the viscous damper 𝑐𝑐1 is still defined by Eq. 25(a). Over one cycle of periodic 618 

motion, the time-averaged transmitted power to the secondary system is entirely dissipated by the 619 

damper 𝑐𝑐2. Therefore, the time-averaged transmitted power 𝑃𝑃ts to the secondary system and the time-620 

averaged dissipated power 𝑃𝑃�di by the interfacial dissipative element in the form of a friction contact or 621 

a viscous damper, are expressed as  622 

𝑃𝑃�ts = 1
𝜏𝜏p
∫ 𝑃𝑃ts
𝜏𝜏0+𝜏𝜏p
𝜏𝜏0

d𝜏𝜏,                𝑃𝑃�di = 1
𝜏𝜏p
∫ 𝑃𝑃di
𝜏𝜏0+𝜏𝜏p
𝜏𝜏0

d𝜏𝜏,                (33a, 33b) 623 

respectively. The corresponding instantaneous transmitted power 𝑃𝑃ts and the instantaneous dissipated 624 

power 𝑃𝑃di are 625 

𝑃𝑃ts =  2𝜇𝜇𝜇𝜇2𝛾𝛾(ℜ{𝑋𝑋2′ })2,                                                   (34a) 626 

 𝑃𝑃di = �
  ℜ{𝑋𝑋1′ − 𝑋𝑋2′ }ℜ{𝐹𝐹c},       for the dry frictional contact,                   
2𝜁𝜁1𝜌𝜌 (ℜ{𝑋𝑋1′ − 𝑋𝑋2′ })2, for the interfacial viscous damper,             (34b) 627 

respectively. 𝑋𝑋1′  and 𝑋𝑋2′  are obtained by taking the differentiation of 𝑋𝑋1  and 𝑋𝑋2  as 𝑋𝑋1′ =628 

∑ i𝑛𝑛Ω𝑅𝑅�(1,𝑛𝑛)ei𝑛𝑛Ω𝜏𝜏𝑁𝑁
𝑛𝑛=0  and 𝑋𝑋2′ = ∑ i𝑛𝑛Ω𝑅𝑅�(2,𝑛𝑛)ei𝑛𝑛Ω𝜏𝜏𝑁𝑁

𝑛𝑛=0 , respectively. The power dissipation ratio 𝑅𝑅d1 by 629 

the damper 𝑐𝑐1 is still obtained from Eq. (26a). The power dissipation ratio 𝑅𝑅di at the interface and the 630 

power transmission ratio 𝑅𝑅ts are defined as 631 

        𝑅𝑅di = 𝑃𝑃�di
𝑃𝑃�in

,                                   𝑅𝑅ts = 𝑃𝑃�ts
𝑃𝑃�in

,                              (35a, 35b) 632 

respectively. It is noted that in accordance with the principle of conservation of energy, over a period 633 

of cyclic response, we have 𝑅𝑅di + 𝑅𝑅ts + 𝑅𝑅d1 = 1. 634 

4.3 Dynamics and vibration-energy flow results 635 

Here case studies are performed to investigate the influence of friction at the coupling interface on 636 

the vibration transmission through the interface and dissipation in the coupled system. Both HB 637 

approximations and numerical integration results are obtained and presented. Case 1 corresponds to the 638 

linear system with only a spring at the interface (𝐹𝐹d = 𝜌𝜌 = 0). Case 2 and 3 consider the presence of 639 

dry friction at the interface with different magnitude of dry friction. The damping ratio in these two 640 

cases is fixed as 𝜌𝜌 = 0. To highlight the influence of dry friction on vibration transmission and energy 641 

flow, Case 4 presents the frictionless system having an interfacial viscous damper with the damping 642 

ratio 𝜌𝜌 = 4. For all four cases, the system parameters are set as 𝜁𝜁1 = 𝜁𝜁2 = 0.01,𝛾𝛾 = 1, 𝜇𝜇 = 1, 𝜅𝜅 =643 

1,𝑉𝑉d = 1 × 10−4, 𝜂𝜂 = 1 × 10−4 and 𝐹𝐹0 = 0.5. Different colours of lines represent the results of the 644 
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HB-AFT approximation based on the tanh-regularization approach. Different types of symbols are used 645 

to denote the results by using the Runge-Kutta method based on the Karnopp friction model.  646 

In Figs 11(a) and (b), the effects of the interfacial friction on the steady-state maximum 647 

displacement responses 𝑋𝑋1_max and 𝑋𝑋2_max of the primary and the secondary masses are presented. Two 648 

peaks are observed in each curve of 𝑋𝑋1_max and 𝑋𝑋2_max. An anti-peak is found in each curve of 𝑋𝑋1_max 649 

shown in Fig. 11(a). By conducting modal analysis on the corresponding linear system without friction 650 

(𝐹𝐹d = 𝜌𝜌 = 0), it is found that the first peak is corresponding to the in-phase mode while the second 651 

corresponds to the out-of-phase mode.  Fig. 11(a) shows that compared to the linear system in Case 1 652 

with only a spring at the interface (i.e., 𝐹𝐹d = 𝜌𝜌 = 0), the interfacial friction with 𝐹𝐹d = 0.10 or 0.15 in 653 

Cases 2 or 3 leads to minor changes in the first peak of 𝑋𝑋1_max near Ω = 1 but a substantial reduction 654 

in its second peak value. This is because at the first peak frequency, two masses have in-phase motion 655 

and the relative velocity between the two masses is small, therefore, the dry frictional contact has a 656 

small effect on the motion of two masses. However, at the second peak frequency near Ω = 1.74 657 

corresponding to the out-of-phase mode, the masses are moving in opposite directions such that the 658 

friction acts as a resistance force for the motion of both masses. As a result, the displacement responses 659 

of two masses are suppressed by the friction force. Fig. 11(a) also shows that compared with Case 4 660 

considering an interfacial viscous damper with 𝜌𝜌 = 4, the interfacial friction in Cases 2 and 3 results in 661 

smaller values of 𝑋𝑋1_max at low or high excitation frequencies, but larger values of 𝑋𝑋1_max when Ω is 662 

near the second peak or the anti-peak. Moreover, as the magnitude of friction 𝐹𝐹d increases from 0.10 to 663 

0.15, there is an increase in the anti-peak value of 𝑋𝑋1_max but further reductions in the second peak 664 

value as well as the values in the low- or high-frequency ranges. Fig. 11(b) shows that compared to 665 

Case 1 with 𝐹𝐹d = 𝜌𝜌 = 0, the existence of the interfacial friction can substantially reduce the second 666 

peak value of 𝑋𝑋2_max but its first peak value is less affected. This is again due to the differences in the 667 

dominant modes. At a prescribed excitation frequency Ω away from the peaks, the interfacial viscous 668 

damping with 𝜌𝜌 = 4 considered in Case 4 yields similar values of 𝑋𝑋2_max  compared to that in the 669 

reference Case 1. In contrast, the interfacial friction in Cases 2 and 3 leads to a significant increase in 670 

the values of 𝑋𝑋2_max compared with Case 1, particularly at high frequencies. With the increase of Ω, the 671 

differences in the values of 𝑋𝑋2_max between the viscous damper case (i.e., Case 4) and frictional contact 672 

cases (i.e., Cases 2 and 3) become larger. Fig. 11(b) also shows that when 𝐹𝐹d changes from 0.10 to 0.15, 673 

the height of the second peak of 𝑋𝑋2_max is further reduced due to a larger interfacial friction force 674 

resisting the vibration. However, the values of  𝑋𝑋2_max  increase at low or high frequencies. This 675 

behaviour is further explored in Fig. 12. 676 

Figures 12(a), (b), (d) and (e) present the steady-state time histories of the friction force and the 677 

velocities of the system with interfacial dry friction excited at Ω = 0.4, Ω = 1.41, Ω = 1.74 and Ω =678 

3, respectively. The magnitude of friction is set as 𝐹𝐹d = 0.15 while 𝜌𝜌 = 0. For comparison, Figs 12(c) 679 

and (f) show the time histories of the velocity responses and the interfacial viscous damping force of 680 
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the frictionless system with 𝜌𝜌 = 4 and 𝐹𝐹d = 0 excited at Ω = 1.41 and Ω = 3, respectively. The other 681 

parameters are the same as those used in Fig. 11. The red lines in Figs 12(a), (b), (d) and (e) represent 682 

the interfacial friction force 𝐹𝐹c, while those in Figs 12(c) and (f) denote the interfacial damping force 683 

𝐹𝐹cd. The blue and black lines correspond to the velocities 𝑋𝑋1′  and 𝑋𝑋2′  of two masses, respectively.  684 

Figure 11.  Effects of the magnitude of friction 𝐹𝐹d on the steady-state maximum response displacement (a) 𝑋𝑋1_max 686 
for the primary mass and (b) 𝑋𝑋2_max for the secondary mass, respectively. The red and blue lines are for the linear 687 
system with 𝜌𝜌 = 0 and 4, respectively. The black and pink lines are for the nonlinear system having dry friction 688 
at the interface with 𝐹𝐹d  = 0.10 and 0.15, respectively. Symbols: RK results. 689 

Figure 12. Time histories of the forces and the velocity responses in steady-state for the frictional contact case 691 
with 𝐹𝐹d = 0.15, 𝜌𝜌 = 0 at (a) Ω = 0.4, (b) Ω = 1.41, (d) Ω = 1.74 and (e) Ω = 3, respectively; For the viscous 692 
damper case with 𝐹𝐹d = 0, 𝜌𝜌 = 4 at (c) Ω = 1.41 and (f) Ω = 3, respectively. The red line is the dry friction force 693 
𝐹𝐹c by the interfacial friction contact in (a), (b), (d) and (e), while in (c) and (f) is the damping force 𝐹𝐹cd by the 694 
interfacial viscous damper. The blue and black lines are the response velocity of the primary and the secondary 695 
masses, respectively. 696 
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Figure 12(a) shows that at a low excitation frequency of Ω = 0.4, over a portion of an excitation 697 

cycle, the two masses are in the stick state and moving at the same velocity, i.e., 𝑋𝑋1′ = 𝑋𝑋2′ . By examining 698 

the time history of the friction force 𝐹𝐹c in Fig. 12(a), it is known that the magnitude of the resultant 699 

external force 𝐹𝐹e has not reached the maximum static friction force, i.e., the magnitude of friction 𝐹𝐹d. 700 

However, when the absolute value of 𝑋𝑋1′  becomes larger than a certain value, the stick state at the 701 

interface is switched into the slip state because 𝐹𝐹e becomes larger than 𝐹𝐹d. In the slip region, the value 702 

of the friction force remains as a constant, i.e., 𝐹𝐹c = 𝐹𝐹d. As |𝑋𝑋1′ | > |𝑋𝑋2′ | in the slip state, the friction 703 

force acts in the same direction as the moving direction of mass 𝑚𝑚2 but opposite to the motion of mass 704 

𝑚𝑚1. Consequently, the interfacial friction can lead to a larger maximum displacement of the secondary 705 

mass but a smaller maximum displacement of the primary mass at low excitation frequencies, as shown 706 

in Fig. 11. Fig. 12(b) demonstrates that for the system with dry friction excited near the frequency of 707 

the anti-peak in the frequency response shown in Fig. 11(a), there exists a phase difference of 708 

approximately 𝜋𝜋/2 between the periodic velocity responses of two masses.  709 

By comparing to the velocity responses in the corresponding system with interfacial viscous 710 

damping at the same excitation frequency shown in Fig. 12(c), it is found that the dry friction at the 711 

coupling interface can lead to a much higher amplitude of 𝑋𝑋1′  but a lower amplitude of 𝑋𝑋2′ . Fig. 12(d) 712 

shows that when the excitation frequency Ω is Ω = 1.74 at the second peak in the frequency response 713 

curves shown in Fig. 11, two masses are moving in opposite directions and the motions are hence 714 

suppressed by the frictional resistance force at the interface. By comparing the time histories of the 715 

velocities with interfacial dry friction or viscous damping at high frequencies away from peaks, e.g., 716 

Ω = 3, as shown by Figs 12(e) and (f), it is found that the amplitude of the friction force by the frictional 717 

contact can be much larger than that of the damping force by the interfacial viscous damper at this 718 

frequency. The frictional contact case has a smaller amplitude of the response velocity 𝑋𝑋1′  but a larger 719 

amplitude of 𝑋𝑋2′ . 720 

In Fig. 13, the influence of the magnitude of the interfacial friction on the steady-state maximum 721 

relative displacement |𝑋𝑋1 − 𝑋𝑋2|max between two masses is studied. Only one peak can be found in each 722 

curve of |𝑋𝑋1 − 𝑋𝑋2|max  at the out-of-phase mode of the corresponding linear system. It shows that 723 

compared to Case 1 with 𝐹𝐹d = 𝜌𝜌 = 0, the presence of the dry friction at the interface in Cases 2 and 3 724 

(with 𝐹𝐹d = 0.10 and 0.15, respectively) can reduce the values of |𝑋𝑋1 − 𝑋𝑋2|max in a wide frequency 725 

band. The reason is that the dry friction force at the interface always resista motions of the two masses 726 

when moving in oposite directions. As a result, the existence of the frictional contact at the interface 727 

can suppress the relative motion of the coupled masses in a broad frequency range. Fig. 13 also shows 728 

that compared to Case 4 having an interfacial viscous damper with 𝜌𝜌 = 4, Cases 2 and 3 with dry 729 

friction at the interface have a higher peak of |𝑋𝑋1 − 𝑋𝑋2|max but much lower values of |𝑋𝑋1 − 𝑋𝑋2|max at 730 

low or high frequencies. At a prescribed excitation frequency, as the magnitude of friction 𝐹𝐹d increases 731 

from 0.10 to 0.15, there is a further reduction in the value of |𝑋𝑋1 − 𝑋𝑋2|max due to a stronger frictional 732 
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resistance force. It can be summarized that the interfacial friction can effectively attenuate the amplitude 733 

of the relative motion between the coupled masses when Ω locates in the low- or high-frequency ranges. 734 

Figure 13. Effects of the magnitude of friction 𝐹𝐹d  on the steady-state maximum relative displacement 736 
|𝑋𝑋1 − 𝑋𝑋2|max between two masses. The red and blue lines are for the linear system with 𝜌𝜌 = 0 and 4, respectively. 737 
The black and pink lines are for the nonlinear system having dry friction at the interface with 𝐹𝐹d  = 0.10 and 0.15, 738 
respectively. Symbols: RK results. 739 

In Figs 14(a) and (b), the effects of the interfacial friction on the force transmissibility 𝑇𝑇𝑅𝑅S to the 740 

secondary mass and the time-averaged input power 𝑃𝑃�in into the system are investigated, respectively. 741 

Only one peak is observed in each curve of 𝑇𝑇𝑅𝑅S in Fig. 14(a), which is corresponding to the out-of-742 

phase mode of the linear system with 𝐹𝐹d = 𝜌𝜌 = 0. In Fig. 14(b), two peaks can be found in each curve 743 

of 𝑃𝑃�in. Fig. 14(a) shows that compared to the reference linear system considered in Case 1 with 𝐹𝐹d =744 

𝜌𝜌 = 0, the presence of the interfacial friction in Cases 2 and 3 (with 𝐹𝐹d = 0.05 and 0.15, respectively) 745 

can lead to a slight reduction in the peak value of 𝑇𝑇𝑅𝑅S but significantly larger values of 𝑇𝑇𝑅𝑅S when the 746 

excitation frequency is away from the peak. The reason is that at the peak frequency (Ω ≈ 1.74), the 747 

masses are moving in the opposite directions, the friction force acting at the coupling interface restrains 748 

the relative motion of two masses. Therefore, a smaller spring force at the interface is obtained due to 749 

the smaller relative displacement between masses, resulting in a smaller total transmitted force and a 750 

lower peak of 𝑇𝑇𝑅𝑅S.   751 

At low or high excitation frequencies, the relative displacement between the masses is small, 752 

leading to a relatively small spring force at the coupling interface. Based on the Karnopp friction model 753 

expressed in Eq. (22), the amplitude of friction force is only depending on the magnitude relationship 754 

between the resultant external forces applied at the interface, 𝐹𝐹e and 𝐹𝐹d. In the low- or high-frequency 755 

ranges, the amplitude of friction force is a constant as the same to the magnitude of friction 𝐹𝐹d . 756 

Therefore, the existence of the interfacial dry friction can increase the maximum total transmitted force 757 

to the mass 𝑚𝑚2 via the interface in those frequency ranges and results in larger force transmissibility 758 

𝑇𝑇𝑅𝑅S. Moreover, Fig. 14(a) shows that as the excitation frequency further increases, the value of 𝑇𝑇𝑅𝑅S in 759 

Cases 2 and 3 with dry friction may become close to a constant value. This is because with the increasing 760 
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frequency, the force generated by the interfacial spring becomes smaller and the value of the maximum 761 

magnitude of the transmitted force in Eq. (32) becomes approximately equal to the constant value of 762 

the magnitude of friction 𝐹𝐹d. Fig. 14(a) also shows that an increase of 𝐹𝐹d from 0.05 to 0.15 can further 763 

reduce the peak value of 𝑇𝑇𝑅𝑅S but increase the values of 𝑇𝑇𝑅𝑅S when the excitation frequency Ω is away 764 

from the resonance. Fig. 14(b) shows that the presence of dry friction has negligible effect on the first 765 

peak of time-averaged input power at Ω = 1 but can suppress the second peak of 𝑃𝑃�in near Ω = 1.74. 766 

The figure also shows that compared with Case 1, the existence of interfacial friction in Cases 2 or 3 or 767 

viscous damping in Case 4 can increase the amount of input power into the system in the low- or high-768 

frequency ranges. However, the cases with interfacial friction can have much larger values of 𝑃𝑃�in when 769 

Ω is away from the peak frequencies. When increasing the magnitude of friction from 0.05 to 0.15, the 770 

second peak value of 𝑃𝑃�in is further reduced but the value of 𝑃𝑃�in increases at a prescribed value of Ω away 771 

from the peaks.  772 

Figure 14.  Effects of the magnitude of friction 𝐹𝐹d on (a) the force transmissibility to the secondary system 𝑇𝑇𝑅𝑅S 774 
and (b) the time-averaged input power 𝑃𝑃�in into the system, respectively. The red and blue lines are for the linear 775 
system with 𝜌𝜌 = 0 and 4, respectively. The black and pink lines are for the nonlinear system having dry friction 776 
at the interface with 𝐹𝐹d  = 0.05 and 0.15, respectively. Circular, square, diamond and triangular symbols denote 777 
RK results. 778 

In Figs 15(a) and (b), the influence of the interfacial friction on the time-averaged transmitted 779 

power 𝑃𝑃�ts to the secondary system and the power transmission ratio 𝑅𝑅ts is examined, respectively. In 780 

Fig. 15(a), two peaks can be found in each curve of 𝑃𝑃�ts, of contrast to the force transmissibility 𝑇𝑇𝑅𝑅S 781 

curve in Fig. 14(a), where only one peak is observed in each curve. This phenomenon indicates that 782 

attention would be placed on the proper use of performance indices for the evaluation of the vibration 783 

transmission level. Figure 15(a) shows that compared with the reference linear system in Case 1 with 784 

𝐹𝐹d = 𝜌𝜌 = 0, it is found that the interfacial friction with 𝐹𝐹d = 0.05 or 0.15 in Cases 2 or 3 can reduce 785 

the amount of power transmitted to the secondary system near the second peak frequency at Ω ≈ 1.74. 786 

When comparing the power transmission between Case 4 considering the interfacial viscous damping 787 
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with 𝜌𝜌 = 4 and that of the dry friction cases, the presence of dry friction can significantly increase the 788 

amount of power transmission to the secondary system, especially in the high-frequency range.  789 

Figure 15. Effects of the interfacial friction on (a) the time-averaged transmitted power 𝑃𝑃�ts , (b) the power 791 
transmission ratio 𝑅𝑅ts, and on time histories of the instantaneous transmitted power 𝑃𝑃ts at the excitation frequency 792 
of Ω = 5 for (c) the frictional contact cases and for (d) the viscous damper cases, respectively. In (a) and (b), the 793 
red and blue lines are for the linear system with 𝜌𝜌 = 0 and 4, respectively. The black and pink lines are for friction 794 
cases with 𝐹𝐹d  = 0.05 and 0.15, respectively. In (c), the red and blue lines are for friction cases with 𝐹𝐹d  = 0.1 and 795 
0.15, respectively. In (d), the red and blue lines are for the linear system with 𝜌𝜌 = 2 and 4, respectively. Circular, 796 
square, diamond and triangular symbols denote RK results. 797 

With the increasing excitation frequency, the differences in the values of 𝑃𝑃�ts between the interfacial 798 

viscous damper case (i.e., Case 4) and the dry friction cases are enlarged, as shown in Fig. 15(a). The 799 

reason is that at high frequencies, compared to the interfacial viscous damper, the dry friction at the 800 

coupling interface can result in a larger transmitted force to the secondary system and also a larger 801 

amount of input power into the integrated system, as depicted in Figs 14(a) and (b). Therefore, there is 802 

an increasing amount of input power that is transmitted to the secondary system. Fig. 15(a) also shows 803 

that an increase in the magnitude of friction 𝐹𝐹d from 0.05 to 0.15 can further reduce the height of the 804 

second peak of 𝑃𝑃�ts but increase the values of 𝑃𝑃�ts in the low- or high-frequency ranges. Moreover, it is 805 

noted that the interfacial friction has little influence on the first peak of 𝑃𝑃�ts when Ω is near the frequency 806 

of the in-phase mode of the corresponding linear system. # 807 
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To further explore the differences in the amount of the power transmission between dry friction 808 

cases and the viscous damper case in the high-frequency range, Fig. 15(c) presents the time histories of 809 

the instantaneous transmitted power 𝑃𝑃ts for the dry friction cases with 𝐹𝐹d = 0.1 and 0.15 while Fig. 15(d) 810 

shows time histories of 𝑃𝑃ts for the viscous damper cases with 𝜌𝜌 = 2 and 4. The system is excited at Ω = 811 

5. It shows that for the dry friction cases, there is much more power transmitted to the secondary system 812 

than that of the viscous damper case. A larger magnitude of friction can lead to a significantly higher 813 

amplitude of 𝑃𝑃ts, as shown in Fig. 15(c). In comparison, with the increase of damping ratio 𝜌𝜌, only a 814 

slight increase of the amplitude of 𝑃𝑃ts can be observed. Fig. 15(b) shows that for the systems in Cases 815 

2 or 3 with interfacial friction, two peaks exist in each curve of the power transmission ratio 𝑅𝑅ts. In 816 

comparison, only one peak can be found in Case 1 for the reference linear system or Case 4 for the 817 

system with interfacial viscous damper. By comparing to the reference Case 1 with 𝐹𝐹d = 𝜌𝜌 = 0, the 818 

interfacial dry friction in Cases 2 or 3 can lead to a much smaller portion of input power being 819 

transmitted to the secondary system in the range of approximately Ω < 5. At high frequencies with Ω >820 

6, the system with interfacial viscous damper in Case 4 has a smaller value of power transmission ratio 821 

𝑅𝑅ts than that of Case 1. In contrast, the interfacial dry friction cases have a larger value of 𝑅𝑅ts compared 822 

to that of Case 1. When the magnitude of friction 𝐹𝐹d increases from 0.05 to 0.15, the power transmission 823 

ratio increases when the excitation frequency Ω is high but reduced when Ω is near the second peak 824 

frequency or locates in the low-frequency range with Ω being smaller than 1. 825 

In Figs 16(a) and (b), the effects of the interfacial friction on the time-averaged dissipated power 826 

𝑃𝑃�di at the interface and the corresponding power dissipation ratio 𝑅𝑅di are studied. Fig. 16(a) shows that 827 

when the excitation frequency Ω is near the out-of-phase mode (Ω ≈ 1.74), there are relatively small 828 

difference in the values of power dissipation 𝑃𝑃�di between systems with interfacial dry friction and the 829 

system with interfacial viscous damper. However, at low or high frequencies with Ω away from the 830 

peak frequency, there can be a much larger amount of power dissipation by the interfacial friction than 831 

that by the interfacial viscous damping. As the magnitude of friction 𝐹𝐹d increases from 0.05 to 0.15, 832 

there is a slight reduction in the peak value of power dissipation 𝑃𝑃�di but a significant increase in its 833 

values when the excitation frequency is away from the peak. Fig. 16(b) shows that for the system with 834 

interfacial viscous damper with 𝜌𝜌 = 4, there is a local minimum point near the in-phase mode of the 835 

corresponding linear system in the curve of the power transmission ratio 𝑅𝑅di. For the considered systems 836 

with interfacial dry friction, there is an extra local minimum point of 𝑅𝑅di appearing near the out-of-837 

phase mode of the linear system. In the low- or high-frequency ranges, the values of 𝑅𝑅di for interfacial 838 

friction cases are close to 1, indicating that a large portion of the input power is dissipated at the interface. 839 

Fig. 16(b) also shows that an increase in the magnitude of friction 𝐹𝐹d from 0.05 to 0.15 can increase the 840 

values of 𝑅𝑅di near the frequencies of two local minimum points. By combining the curves of power 841 

transmission ratio 𝑅𝑅ts shown in Fig. 15(b), it can be summarized that the interfacial frictional contact 842 

can significantly alter the energy distribution within the coupled system. 843 
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Figure 16.  Effects of the magnitude of friction 𝐹𝐹d on (a) the time-averaged dissipated power 𝑃𝑃�di at the interface 845 
and (b) the power dissipation ratio 𝑅𝑅di, respectively. The blue line is for the frictionless linear system with 𝜌𝜌 = 4. 846 
The black and pink lines are for the nonlinear system having dry friction at the interface with 𝐹𝐹d  = 0.05 and 0.15, 847 
respectively. Square, diamond and triangular symbols denote RK results. 848 

In Fig. 17, the influence of the interfacial dry friction on the power dissipation is further 849 

investigated by examining the steady-state instantaneous power dissipation 𝑃𝑃di at different excitation 850 

frequencies. Figs 17(a), (b) and (c) present the time histories of 𝑃𝑃di considering interfacial friction with 851 

𝐹𝐹d = 0.05 or 0.15 (𝜌𝜌 = 0) while Figs 17(d), (e) and (f) show the corresponding results associated with 852 

the interfacial viscous damper case with 𝜌𝜌 = 2 or 4 (𝐹𝐹d = 0) for comparison. The excitation frequency 853 

is set as 0.4 in Figs 17(a) and (c), 1.74 in Figs 17(b) and (d), and 5 in Figs 17(c) and (f). The other 854 

parameters are set the same as those used in Fig. 16. Fig. 17(a) shows that at Ω = 0.4 in the low-855 

frequency range, over a portion of an excitation cycle, there is no power dissipation by the dry frictional 856 

contact. This is because that the masses are in the stick state due to the non-smooth friction nonlinearity. 857 

As suggested by Eq. (34b), the dry friction contact cannot dissipate power in the stick state without 858 

relative motion between the masses. By comparing to the viscous damper case excited at the same 859 

frequency as shown in Fig. 17(d), it is found that the interfacial friction can lead to a much higher 860 

amplitude of 𝑃𝑃di and hence a larger time-averaged power dissipation 𝑃𝑃�di at the interface.  861 

In Figs 17(b) and (e), the systems are excited at Ω = 1.74 near the peak frequency of 𝑃𝑃�di associated 862 

with the out-of-phase mode. A comparison between the subfigures shows that the interfacial friction 863 

and viscous damping can result in similar amount of power dissipation. The increase of magnitude of 864 

friction 𝐹𝐹d can lead to a slight increase in the amplitude of power dissipation 𝑃𝑃di at the interface, as 865 

shown in Fig. 17(b). In contrast, an increase of viscous damping coefficient can reduce the amplitude 866 

of 𝑃𝑃di, as shown in Fig. 17(e). It is due to the smaller relative motion between two masses when there 867 

is stronger interfacial viscous damping. Figs 17(c) and (f) present the results associated with the systems 868 

excited at Ω = 5 with interfacial friction or viscous damping, respectively. It shows that there is more 869 

energy dissipation by the dry friction compared to that by the interfacial viscous damper. Fig. 17 870 



30 
 

demonstrates that interfacial friction can effectively dissipate vibration energy when the system is 871 

excited at low or high frequencies.  872 

Figure 17. Instantaneous dissipated power 𝑃𝑃di for the frictional contact cases in (a), (b) and (c). (d), (e) and (f) are 874 
for the viscous damper cases. The systems are excited at Ω = 0.4 in (a) and (c), at Ω = 1.74 in (b) and (e), and at 875 
Ω = 5 in (c) and (f). In (a), (b) and (c), the red and blue lines are for frictional cases with 𝐹𝐹d  = 0.05 and 0.15, 876 
respectively. In (d), (e) and (f), the red and blue lines are for viscous damper cases with 𝜌𝜌 = 2 and 4, respectively. 877 

5 Conclusions 878 

This study is focussed on the vibration transmission and energy dissipation in systems with 879 

Comloub frictional contact. A general energy flow analysis framework for systems with friction has 880 

been presented and was applied to study a forced SDOF system and a coupled system with interfacial 881 

frictional contact. Both the Karnopp discontinuous model and smooth Coulomb friction models were 882 

used in the HB approximations and direct numerical integration. The effects of having frictional contact 883 

on the vibration transmission and energy dissipation within the SDOF and 2DOF systems were 884 

evaluated quantitatively by the force transmissibility and time-averaged power flow variables.  885 

For the SDOF system with frictional contact, it was shown that the friction can effectively suppress 886 

the dynamic response when the excitation frequency locates in the low- or high-frequency ranges away 887 

from the resonance. It can remarkably increase the force transmission and the time-averaged input 888 

power into the system in these frequency ranges. The existence of the frictional contact in the system 889 

can reduce the maximum kinetic energy at high frequencies but can increase its value in the low-890 

frequency range. Moreover, the change of the magnitude of dynamic dry friction force can significantly 891 

affect the energy flow characteristics at frequencies away from the resonance.  892 
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For the coupled system with dry friction at the contacting interface, it was shown that the interfacial 893 

dry friction can suppress the motion of the system excited at the out-of-phase mode but can considerably 894 

increase the response amplitude of the secondary mass at high frequencies. In the high-frequency range, 895 

the presence of the frictional contact can lead to larger force transmissibility to the secondary system, 896 

and a larger amount of the time-averaged transmitted power from the force-excited system, through the 897 

interface to the secondary system. Moreover, a higher level of friction can lead to more substantial 898 

increases in the energy dissipation at the interface in the low or high-frequency ranges, compared to the 899 

influence of increasing interfacial viscous damping. The energy distribution within the coupled system 900 

can be tuned by the interfacial frictional contact. The study demonstrated that frictional contact within 901 

dynamical systems can be properly designed to achieve desirable vibration energy flow transmission 902 

and dissipation behaviour for better dynamic performance. 903 
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