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Abstract  
  

The Internet of things (IoT) comprises things interconnected through the 

internet with unique identities. Congestion management is one of the 
most challenging tasks in networks. The Constrained Application 

Protocol (CoAP) is a low-footprint protocol designed for IoT networks 

and has been defined by IETF. In IoT networks, CoAP nodes have 

limited network and battery resources. The CoAP standard has an 
exponential backoff congestion control mechanism. This backoff 

mechanism may not be adequate for all IoT applications. The 

characteristics of each IoT application would be different. Further, the 
events such as unnecessary retransmissions and packet collision caused 

due to links with high losses and packet transmission errors may lead to 

network congestion. Various congestion handling algorithms for CoAP 
have been defined to enrich the performance of IoT applications. Our 

paper presents a comprehensive survey on the evolution of the 

congestion control mechanism used in IoT networks. We have classified 

the protocols into RTO-based, queue-monitoring, and rate-based. We 
review congestion avoidance protocols for CoAP networks and discuss 

directions for future work.  

Keywords: CoCoA+,  pCoCoA, AdCoCoA, CoAP-Eifel 

 

1. Introduction 
 

The internet of things (IoT) is a network of devices (physical and virtual) that can auto-
configure. The protocols used for this network are standard and enable interoperability [33]. Further, 

the network is dynamic. These IoT devices exchange data over a network, which may have lossy links, 

packet transmission errors, and poor throughput. These conditions could lead to packet losses and 

unnecessary packet retransmissions, which could cause congestion in the network. Hence, a proficient 
congestion handling technique is required to reduce uncalled-for resending and determine the correct 

retransmission timeout (RTO) value.  

In the IoT protocol stack, Constrained Application Protocol (CoAP) [1] has reliable 
transmission as an option utilizing RTO and aggressive backoff. UDP is the transport CoAP protocol 

for CoAP. CoAP is designed for light applications which require congestion handling. CoAP has a 

request and response model for end-to-end operation. The RTO is initially set at random. After that, 

binary exponential backoff (BEB) is used for calculating the RTO. However, this random value at the 
start can cause retransmissions which could cause avoidable congestion. We broadly classify the 

congestion control mechanisms for CoAP networks into three categories – RTO-based, queue-

monitoring, and rate-based. 
RTO-based mechanisms: CoCoA [2] calculates RTO by using the value of round-trip time 
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(RTT). CoCoA+ [3] has step-function techniques with scaling factors to calculate the RTO for 
retransmission. CoCoA-E [4] is a modified version of CoCoA+, which uses a new scaling factor based 

on the Eifel retransmission timer. Bhalerao et al. [5] have further improved the RTO estimation 

mechanism of CoCoA+ using an adaptive technique based on retransmission attempts. Lee et al. [6] 

have defined a method for congestion control that uses RTT. This mechanism considers retransmission 
count for accurately measuring the RTT value and estimating the RTO value. pCoCoA [7] estimates 

the RTT precisely using timestamps and a modified RTO estimation mechanism. Hence, it helps 

minimize unnecessary retransmissions.  
An improved adaptive CoAP [8] determines the RTO value using packet loss ratio and RTT. 

RTT-CoAP [9] has a novel approach to detecting congestion in the network. It uses the checks variance 

of RTT against predefined thresholds for loss of COAP messages. CoAP Eifel [10] is a modified version 
of CoAP which uses only strong RTT to estimate the RTO value. In AdCoCoA [11], link quality, delay, 

and RTT deviation are considered to calculate the RTO value. CACC [12] categorizes RTT into three 

types, as per the receipt of an ACK – without retransmission (strong) or with retransmission (weak; one 

or more retransmissions) or no ACK at all (failed), to determine the condition of the network, and adapt 
the congestion control mechanism. FASOR [13] determines whether the loss of packets is because of 

poor links or congestion in the network. FASOR has three distinctive features – an adaptation of the 

RTO backoff and RTO computation which can be fast or slow. DCC-CoAP [14] efficiently predicts 
network congestion; it combines the separation of nodes and multiple RTT measurements, reducing 

CoAP message loss. CoCoA++ [15] uses the delay gradients method to measure network congestion 

and introduces a new backoff mechanism called probabilistic backoff to deal with congestion.  
Queue monitoring mechanisms: In a Bird flock model [16], a node monitors its neighbor 

node's buffer at each hop to avoid congestion. The backpressure congestion-control mechanism [17] 

uses the MAC and network layer's information to prevent congestion at each hop. Rate-based 

mechanism: CoAP-R [18] is designed to utilize the maximum available bandwidth and uses max-min 
fairness to allocate bandwidth. BDP-CoAP [19] design copes with lossy links and problems of unfair 

access over the short-term, which typically occurs in IoT networks.  

The paper contents are as follows – Section II provides an outline of the CoAP protocol. 
Review of various CoAP congestion handling techniques is in section III. Section IV presents further 

research directions and the conclusion.  

 

2. Constrained Application Protocol (CoAP)  
 

 

Confirmable 

(CON) 

 

Non confirmable 

(NON) 

 

Acknowledgment 

(ACK) 

 

Reset (RST)  

Figure 1: CoAP message types 

CoAP (RFC 7252) [1] has a client-server type of model with requests and responses. CoAP uses a 

stop-and-wait approach, retransmissions, and exponential backoff for confirmable (CON) messages. 

Figure 1(sourced from reference [1]) shows four types of CoAP messages: Reset (RST), 
Acknowledgement (ACK), Non-confirmable (NON), and Confirmable (CON). A message identifier 

helps in duplicate identification. An ACK is returned for a CON message. ACK is not required for 

NON. RST from the receiver to the sender indicates that the receiver could not process the message. 
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CoAP implements an optional reliability mechanism. When no ACK not received for a transmitted 

CON, the sender retransmits the message. 

 

Figure 2: Working Binary exponential backoff (BEB) in CoAP 

On sending a CON message, the sender chooses an initial value from 2s to 3s for the RTO. 

The sender assumes the CON message is lost. Suppose an ACK is not received from the destination 

before the expiry of the RTO timer. The sender does retransmission and doubles the current RTO value 
to reduce needless retransmissions to avoid congestion, as shown in figure 2 (sourced from reference 

[1]). The sender does not consider RTT to compute the RTO. As a result, the RTO value would tend to 

be inaccurate and could lead to unnecessary retransmissions. The RTO value will grow exponentially 

if the retransmissions increase, leading to an increase in the retransmission delay. 
 

The following section discusses the evolution of the various techniques for congestion control 

for IoT (CoAP) networks. 
 

3. Congestion control mechanisms for CoAP 

We have classified the mechanisms based on the approach used to control network congestion – RTO, 
queue-monitoring, and rate-based mechanisms. The protocols CoCoA [2], CoCoA+ [3], CoCoA-E [4], 

4-State Strong CoCoA [5], Enhanced CoCoA [6], pCoCoA [7], RTT-CoAP [9], improved adaptive 

CoAP [8], CACC [12], FASOR [13], CoCoA++ [15], CoAP Eifel [10], AdCoCoA [11], DCC-CoAP 
are RTO based congestion control mechanisms. Back pressure [17] and bird flock [16] are queue-

monitoring-based congestion control mechanisms. The protocols CoAP-R [18] and BDP-CoAP [19] 

are rate-based congestion control mechanisms. 

3.1 CoCoA 

In contrast to CoAP [1], the CoCoA [2] [26] sender measures RTT values to determine RTO before 
transmitting the first CON message. RTT is the time from sending a CON message to receipt of an 

ACK for this message. CoCoA computes two RTO for every receiver. Weak and strong RTO values 

calculations use a weighted average of the weak and strong RTTs. A node maintains separate strong 
and weak values for RTTcurrent, RTTVARcurrent (RTT variance) and RTOcurrent for each destination, where 

RTTcurrent = (1-α) * RTTprevious + α* RTTcurrent; RTTVARcurrent = (1-β) * RTTVARcurrent + β * |RTTprevious 

- RTTcurrent|; and RTOcurrent = RTTcurrent+ K* RTTVARcurrent. The smoothing factors α, β, and K values 
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are 0.25, 0.125, and 4, respectively. The last updated RTO is considered RTOcurrent, and a weighted 
average of RTOprevious and RTOcurrent is used to calculate the RTOoverall, where RTOoverall_current= 

0.5* RTOcurrent + 0.5 * RTOoverall_previuos. RTOinit is a random value between 1 to 1.5 times RTOoverall, for 

the first transmission. The RTO value is doubled for every retransmission. 

3.2 CoCoA+  

CoCoA+ [3], an improved version of CoCoA, consists of an RTO estimator, a variable backoff factor 
(VBF) policy for retransmission attempts, and an aging mechanism for updating an obsolete RTO value. 

The RTT, RTTVAR, and RTO computations of CoCoA+ are the same as CoCoA, with a few 

modifications added, as shown in figure 3[3]. Following are the improvements introduced in CoCoA+ 

[3] (sourced from reference [3]). (1) RTT change:  For weak RTT computation, the value of smoothing 
factor (K) changed from 4 to 1. (2) RTO change: for calculating RTOoverall, weak RTO weight changed 

from 0.5 to 0.25. (3) Backoff policy change: For the retransmission, the old RTO value is multiplied 

by a value ranging from 1 to 3 to determine RTOnew. If the RTOprevious is less than 1s, between 1-3 s, 
or greater than 3s, then it is multiplied by 3, 2, or 1.3, respectively. (4) RTO aging:  To update an 

obsolete RTO value, aging that updates the RTO at regular intervals. If RTOcurrent > 2s has not 

changed for the past 30s, then it is changed to (2 +RTOcurrent)/ 2. 

 

Figure 3: CoCoA+ mechanism 

3.3 CoCoA-E  

CoCoA-E [4] is an improvement on CoCoA+,  which estimates RTO using the retransmission timer of 
Eifel [21][22], which had initially been proposed for estimating TCP timeouts. The authors, while 

analysing the Eifel retransmission timer for a large sending rate, have claimed that the standard values 

of α (1/4), β (1/8), and K (4) (RFC 6298 [23]) would not be perfect. Hence, they suggest a different 

technique for determining RTO using a new factor γ rather than α and β. γ = RTT/RTO. If γ is less than 
0.5, then γ is the smoothing factor; else, 1- γ is used. The RTO value adjustment is as per the value of 

γ. The smoothed RTT and RTT variance calculations are the same as CoCoA[2]. 

3.4 CoCoA -4 states 

Bhalerao et al. [5] have improved CoCoA+ [3] using a state estimator with an adaptive variable backoff 

factor policy for retransmissions. The protocol maintains the state of retransmissions for each source-
destination pair. A transaction starts with state one. Each time a CoAP packet is acknowledged before 

the RTO timer expires, the transaction's condition is unchanged. On each retransmission, the state value 

is increased by 1 to a maximum of 4. 
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Variable backoff factors and weight control the amount of time a transaction must wait before 
retransmitting a packet after a timeout. Each time a retransmitted packet is acknowledged before the 

RTO timer expires; the transaction's state is lowered. bf1, bf2, bf3, and bf4, are the backoff factors used 

for each transaction, with the value increasing from bf1 to bf4. Based on the RTO estimate and the 

current state of the transaction, an appropriate variable backoff factor is used to prevent excessive 
backoff. In addition, a weight w is used, which increases according to the transaction state; for 

computing the RTOcurrent value, RTOcurrent = w * RTOcurrent + (1-w) * RTOprevious. 

3.5 Enhanced CoCoA 

The formula to compute RTT and RTTVAR is the same as CoCoA, but this mechanism does not 

maintain strong and weak RTTs. Lee et al. [6] have proposed a scheme that improves CoCoA+ by 
introducing a packet's retransmission count (RC) to estimate every packet's RTT correctly. The RC 

field in the CoAP packet helps to measure the RTT accurately. Hence, it improves the accuracy of RTO 

estimation and thus minimizes unnecessary retransmissions. In addition, a fixed lower bound for 
RTTVAR is used while computing the RTO to ensure that the RTT and RTO values are not close. The 

mechanism for aging the RTO and backoff using varied factors is the same as CoCoA+ [3]. 

3.6 pCoCoA 

In contrast to CoCoA+ [3], pCoCoA [7] eliminated the use of weak RTO estimation, modified 

RTTVAR and smoothed RTT (SRTT) formulas, and introduced a dynamic smoothing factor for 
computing an accurate RTO value to reduce spurious retransmissions. A transmission count (TC) 

parameter is included in the CoAP message header for weak RTO elimination, which maps a specific 

ACK to its CON message. TC=1, when a sender has sent a CON message. TC increments by one on 
every retransmission until the TC equals the maximum retransmission count (value=4). The receiver 

copies this TC value in the corresponding ACK. CON and its TC-mapped ACK are used to compute 

the RTT precisely. If the sender sends the packet for the first time, pCoCoA uses the default CoAP 

RTO mechanism. Subsequently, it uses the VBF backoff policy for retransmissions and the RTO aging 
mechanism borrowed from CoCoA+. If there is a difference between the TC value of a CON and the 

ACK, it implies that spurious retransmission occurred; the RTTVAR is multiplied by scaling factor 

K=6, else K=4.   

For each destination, a node maintains SRTTcurrent, RTTVARcurrent, SRTOcurrent, and RTOcurrent. The 

values of smoothing factors (SF) α=1/8, β=1/4, ϒ=1/32, and δ=1/2. pCoCoA selects one of the 

smoothing factors (α, β, and ϒ) for estimating RTTVAR based on the RTT variance in the network. 

The SRTT, RTTVAR and SRTO are estimated as follows: SRTTcurrent = (1- α) SRTTprevious + α* 
RTTcurrent; RTTVARcurrent = (1- SF) RTTVARprevious + SF * |SRTTcurrent - RTTcurrent|; SRTOcurrent = 

SRTOprevious + max (K*RTTVARcurrent, mdevmax); RTOcurrent = (1-δ) * SRTOcurrent + δ *RTOprevious. The 

mdevmax is a lower bound to limit the influence of fluctuation in RTTVAR on the RTO computation. 
Suppose RTTVARprevious is less than the gap between SRTT and RTT. In that case, the lower weight 

(β) applies to RTTVARprevious or higher weight (α), which helps suppress the effect of a sudden change 

in RTT variance in the network. These weights will help to estimate a large enough RTO value to 
minimize spurious retransmissions. The mdevmax increases gradually by a small amount and decreases 

cautiously based on the RTTVAR to ensure the RTO value is large enough to prevent spurious 

retransmissions. 

3.7 RTT CoAP 

RTT-CoAP [9] is an enhancement of CoAP, which uses a rate-based algorithm. RTT-CoAP aims to 
reduce traffic burstiness and packet loss by controlling the interarrival time of packets transmitted. This 

protocol considers only RTT measurements (r) without retransmission and uses timestamps to measure 

RTT precisely. A CoAP sender maintains long-term RTT (SRTTL), short-term RTT (SRTTS), and RTT 

variance in this algorithm. The variables SRTTL, SRTTS and RTTVARL are computed as follows: 
SRTTS=αS*r+ (1−αS) * SRTTS; SRTTL=αL*r + (1−αL) * SRTTS; and RTTVARL = βL* |SRTTL−r| + 

(1−βL) * RTTVARL. A larger smoothing factor (αS) is used to smooth out the short-term RTT variations 

due to spikes in the network. A smaller smoothing factor (αL) is used to reduce the impact of noise on 
RTT measurements while estimating long-term RTT. The RTT variance determines the state of the 
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network state and estimates the rate for sending. RTT-CoAP has defined four network states 

corresponding to varying levels of congestion from low to high. 

In a low congestion state, the sending rate increases aggressively with no change observed in RTT 

variance. In a normal state, RTT variations and packet loss ratio are determined to decide the sending 

rate. In a medium variability state, if short-term RTT variance grows, the network might get congested, 
and sending rate is decreased. In a high variability state, the network is congested if the value of short-

term RTT is greater than that of the long-term RTT value. Hence, the sending rate decreases 

aggressively. RTT-CoAP increases or decreases the sending rate by a fixed amount to adjust the packet 

transmission speed. 

3.8 Improved Adaptive CoAP 

Ouakasse and Rakrak's protocol [8] uses the fraction of packets lost (PLR) to adjust the value of RTO 

for every retransmission. Initially, the RTO value is set to a random value ranging from 2 to 3 seconds. 

The CoAP sender sends a CON message; on receiving the ACK, it estimates PLR. If the PLR is less 
than 50% then RTOrecent = RTT * PLR + (1-  PLR) * RTOprevious. If the more than 50% of the packets 

are lost, then RTOrecent = RTOprevious * PLR+ (1-  PLR) * RTT. The PLR is used to determine the 

condition of the network. Using PLR helps estimate an RTO that is large enough to avoid excessive 

waiting time (if RTO is larger than RTT) and unnecessary retransmissions (if RTO is close to RTT). 

3.9 CoCoA++ 

In contrast to CoCoA+ [3], CoCoA++ [15] monitors network conditions for fixed interval and uses a 

delay gradient mechanism [29] to estimate RTO. The RTO estimation mechanism is borrowed from 

CoCoA+. Two gradients help to monitor RTT variations. CoCoA++ updates RTO when periodically 
the delay gradients are estimated. CoCoA++ has introduced a new probabilistic backoff factor (PBF) 

mechanism to estimate the backoff probability.   

 

Figure 4: CoCoA++ mechanism (source: reference [15]) 
As shown in figure 4 [15] (figure derived from [15]), CoCoA++ stores the RTT samples and computes 

RTTmin and RTTmax within an interval of time n. The minimum and maximum values obtained from 

RTT samples are termed RTTmin and RTTmax. The gradients gmin and gmax help track the RTT variance 
change for RTTmin and RTTmax, respectively, over n and n-1.  g m̅in and g ̅max denote average gradients 

calculated over multiple time intervals.   The protocol uses the RTT variance difference to compute the 

backoff probability. The probability increases as change the RTT variance increases.  
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If RTTmax equals the maximum possible value, and RTTmin growth has not stopped (gmin>0), it indicates 
congestion. In this situation, the congestion window will be decreased by 30%, increasing by 1. Further, 

it will reduce the load in the network and minimize unnecessary retransmission. 

3.10 FASOR 

An RTO-based congestion control mechanism named FASOR [13] is capable of working in buffer bloat 

[30] conditions and copes with high link error rate scenarios. FASOR [27] consists of three components: 
Fast and Slow RTO estimation and a novel retransmission timer backoff mechanism. If the RTT 

samples are definite, then a fast RTO calculation is used. If the RTT samples are unclear, then a slow 

RTO computation is done to prevent excessive packet buffering and extreme congestion. This approach 

controls the flow, reduces delays, and handles cases with link errors.  

The RTT variation initialization formula is modified RTTVAR = RTT measurement / 2K, where K is 

a scaling factor (value =4) for achieving fast convergence with minimum exchanges. The Fast RTO 

calculation is derived from TCP RTO calculation [21], but there is no lowest value fixed for the RTO. 
The RTO value is initially kept at 2 seconds and considers actual RTT samples. Slow RTO considers 

ambiguous RTT samples. For every retransmission, Slow RTO increases the RTO by 1.5 times. 

Karn's algorithm and Slow RTO work similarly. The FASOR backoff mechanism has three states of 
backoff. If the sender starts with the least conservative state (FAST), it sends the packet and waits for 

ACK. On successful ACK, the sender will remain in the least conservative state. If the sender requires 

retransmissions, it uses a backoff factor and retransmits the packet. If more than one retransmission 

occurs, the sender goes to the intermediate conservative state. In this state, the backoff timer is large 

enough to minimize the retransmissions. 

Further, if more retransmissions occur, the sender goes to the most conservative states. In this state, the 

sender uses a larger backoff factor to minimize the retransmissions. As the number of retransmissions 
reduces, the sender gradually returns to the least conservative from the most conservative state, which 

minimizes unnecessary retransmissions. 

3.11 Context-Aware Congestion Control 

Context-aware congestion control (CACC) [12] has three RTO estimators to determine whether the loss 

of packets loss caused by collision or congestion. The RTO calculations are based on whether the packet 
transmission is successful, delayed, or failed. Correspondingly, strong, weak, or failed RTT is 

determined. If there are many strong or failed, RTTs collision is assumed. If there are many weak and 

failed RTTs, then congestion is assumed. 

CACC measures RTT accurately using a retransmission counter. This mechanism runs three RTO 
estimators – strong RTT, weak RTT, and failed RTT.  A strong RTT means on receipt of an ACK for 

a CON message without any retransmission. A weak RTT means receiving an ACK with packet 

retransmissions; failed RTT is obtained when ACK is not received even after maximum retries for 
packet transmission. The computation is the same as in CoCoA+ [3] for the first RTT measurement, 

smoothed RTT, RTTVAR, and RTO. 

The terms SR, WR, and FR, represent the number of times strong, weak, and failed RTT has been 
determined over the last four transmissions. If FR is higher than SR, it reflects collision in the network. 

The weighted average of failed and strong RTT estimates smoothed RTT. If WR is higher than FR, 

there is congestion at the nodes. The weighted average of failed and weak RTT estimates smoothed 

RTT. If SR is higher than WR or FR, then the weighted average of strong and weak RTT estimates 
smoothed RTT. A weighted average of RTTVARprevious and the difference between RTT and SRTT is 

used to calculate RTTVAR. Scaling factors α=0.25, β=0.125, and K=4 are used for calculating SRTT, 

RTTVAR, and RTO. A lower bound restricts the RTO value from becoming very low, which avoids 
spurious retransmissions of CON messages. The RTOoverall and RTO aging mechanism is the same as 

that in CoCoA+. 

3.12 CoAP Eifel 

In contrast to CoAP[1], CoAP Eifel [10] sender considers RTT measurements obtained without any 

retransmission to compute RTO. The initial RTO value is two* ticks, where ticks are operating system-
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dependent fractions of seconds. For RTO calculation, the node maintains smoothed RTT (SRTTcurrent), 
RTT variance (RTTVARcurrent), and RTO value (RTOcurrent).  A scaling factor GAIN = 1/3 estimates 

smoothed RTT and RTO.   A scaling factor 𝐺𝐴𝐼𝑁̅̅ ̅̅ ̅̅ ̅ (either 1/3 or (1/3)2) is used for estimating RTTVAR. 

If RTT variance is greater than zero, then a higher scaling factor (GAIN) is used; a lower scaling factor 

(GAIN2) is used. The smoothed RTT and RTT variance are updated on every RTT measurement for 

the span of the connection. The sender assumes that the CON message is lost if an ACK is not received 
from the destination before the RTO timer expires. The sender initiates retransmission and uses binary 

exponential backoff to double the current RTO value. 

3.13 AdCoCoA 

AdCoCoA[11] improves CoCoA+ [3], and uses retransmission counter to calculate RTT. Figure 5 [11] 

shows the detailed working mechanism of the AdCoCoA protocol. AdCoCoA considers network 
conditions like link quality, link delay, and RTT deviations for estimating dynamic scaling factors. The 

dynamic scaling factors estimate smoothed RTT, RTT variance, and RTO values. AdCoCoA uses the 

standard CoAP RTO value for the first transaction. Subsequently, it uses the VBF backoff policy for 
retransmissions and the RTO aging mechanism borrowed from CoCoA+ [3]. A node maintains 

RTTcurrent, RTTVARcurrent, and RTOcurrent for each destination, as shown in figure 9. The change in RTT 

measured and recent RTT is used to determine δ (RTT change). Using δ, it estimates the scaling factors 

δα, δb, and δk, used to estimate RTTcurrent, RTTVARcurrent, and RTOcurrent, respectively. 

 

Figure 5: AdCoCoA working mechanism (source: reference [11]) 

3.14  Distance-based congestion control CoAP (DCC-CoAP) 

DCC-CoAP [14] measures RTT using a timestamp and determines the distance between CoAP, the 

requestor, and the responder using the Euclidean distance formula [31]. The distance between two 

nodes is determined using the node's coordinates (x, y) (either requestor or responder). The scaling 

factor is determined based on this distance to estimate the weighted RTO value.  If the node is far from 
the responder, then a large scaling factor is used; the small scaling factor is used to estimate weighted 

RTO. The final RTOdef = RTTstrong + WRTO. DCC-CoAP uses a variable backoff factor mechanism for 

estimating RTO value on retransmissions, the same as CoCoA+ [3]. 
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3.15 Genetic CoCoA++ 

Genetic CoCoA++ [28] is an improvised version of CoCoA++ [15], which uses genetic algorithm along 

with CAIA Delay-Gradient (CDG) [29] to estimate RTO. While CoCoA++ uses RTTmin and RTTmax, 
this protocol uses RTTmin only for computation which helps to achieve better results. RTTmin is the 

lowest value selected from the values measured over a fixed interval of 5 seconds. The difference 

between RTTmin_current and RTTmin_previous helps estimate the network congestion. The delay gradient and 

probabilistic backoff factor computation are the same as CoCoA++ [15]. 

Above, we described the RTO-based mechanisms. Next, we describe queue-monitoring mechanisms. 

3.16 Bird Flocking Congestion Control Mechanism 

Bird flock [16] is used to avoid congestion in CoAP/RPL [32] /6LoWPAN [20] networks, which operate 

at each hop. The Routing protocol for low-power and lossy networks (RPL) [32] creates an acyclic 
graph rooted at the destination node. Each node has a spherical model with two layers – zone of 

repulsion (ZoR) and zone of attraction (ZoA). The ZoR of a node are the immediate successors (one 

hop away), and the ZoA of a node contains two hop away nodes, the successor's successor.   

Each node has a buffer for received packets. The current buffer status of nodes in ZoR and ZoA is 
communicated to the current node, which will help it select the next hop node for forwarding a packet. 

Each node maintains two parameters in its routing table for each successor node, the available buffer 

of the immediate successor (QsZoR – one-hop information) and the available buffer of the successor's 
successor (QsZoA – two-hop information). The criteria to select a successor for forwarding a packet is 

that the successor and the successor's successor should have the lowest congestion, as compared to 

others, both in ZoR and ZoA. If the successor has a higher packet transmission rate, then the congestion 
in ZoA is lower. The reciprocal of this success rate indicates the level of congestion (QsZoA). The 

successor with lesser QsZoA is selected.  

For estimating QsZoR, the current node eavesdrops on the successors' activities. The node increases 

the QsZoR for a successor when its successor receives a packet. When the packet is sent ahead, the 
QsZoR is decreased. The nodes track the packets and ACKs using messages and identify packets 

retransmitted if the RTO expires before receipt of an ACKtted. On every retransmission, the RTO is 

recomputed as α * scaling factor. If the QsZoR is higher, then α will be higher, delaying the 

retransmission, thus decongesting the successor path. 

3.17 Back Pressure Congestion Control Mechanism 

Castellani et al.[17] implemented congestion control at the network layer using algorithms based on 

backpressure routing. This mechanism is designed for both CON and NON-messages. The 

backpressure techniques are implemented in the network layer, which the authors call a layer three 
device (L3D). The following are the types of L3Ds –IdealBP, griping, deaf, and fuse. All the nodes in 

a network will use the same L3D. Below we explain the mechanism of these L3Ds. 

The griping device sends an explicit message to the sender to notify congestion if its queue length 

exceeds a predefined threshold on receiving a datagram. The IdealBP sender selects the next hop node 
for forwarding a datagram only if the next hop's queue length is lesser than that of the sender and has a 

predetermined threshold. The sender uses the Additive Increase Multiplicative Decrease (AIMD) policy 

transmission rate.  If a deaf receiver's queue length exceeds a predefined threshold, it stops sending 

layer two acknowledgments.  

The deaf sender handles layer three retransmissions using a backoff timer mechanism. A fuse device 

follows either agent deaf mechanism based on its queue size and predefined thresholds. If the queue 
length is less threshold, then the fuse receiver adopts griping behavior. Further, it adopts deaf device 

behavior when the network layer is full, does not send MAC layer ACKs, and sends an explicit 

notification to the sender as a griping device.  

Above, we described the queue-monitoring mechanisms. Next, we describe the techniques which use 

sending rate for congestion control. 
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3.18 CoAP-R  

COAP-R [18] is an enhancement of CoAP[1], which considers the transmission rate for controlling the 

sending rate of CoAP senders. A COAP-R generates a tree topology with the receiver node considered 
the root. Each CoAP node in the tree receives packets to send to the receiver. Each CoAP sender 

estimates the link's capacity to its ancestor node by measuring the time taken for the packet to leave the 

source and reach the receiver at the next hop. COAP-R runs two parallel link capacity estimators, one 
for a long-term link and another for a short-term one. The receiver node gathers the updates of least the 

bandwidth subtrees with active nodes. The receiver node uses a progressive filling algorithm [24] to 

fairly calculate the transmission rate for all senders in the tree and share transmission rate details with 

all the tree nodes.  

3.19  BDP-CoAP 

Bandwidth-Delay Product BDP-CoAP [19] considers transmission rate. It is an enhancement that 

considers bandwidth and RTT for estimating transmission rates. BDP-CoAP uses the highest and lowest 

transmission rate measurements to estimate bottleneck bandwidth. BDP-CoAP algorithm has three core 

functions (i) to transmit packets, (ii) to compute pacing gain (iii) to receive an acknowledgment. The 
algorithm considers the bandwidth measurement obtained on receiving an ACK without retransmission. 

The bandwidth-delay product is computed as throughput times RTT. If the packets are to be transmitted 

>= BDP, the sender waits for an ACK or RTO expiry; if RTO expires, it retransmits the packet. On 
receiving the ACK, the node updates bottleneck bandwidth, RTT, and a scaling factor pacing gain. 

Based on the retransmission count, the scaling factor value is determined to estimate the packet 

transmission rate of the node. 

Table 1 shows a comprehensive assessment of the protocols discussed in this paper.  

 

Table 1. Consolidated summary of CoAP protocols for handling congestion 

 

Protocol Backoff 

mechanism 

RTT estimators RTO 

aging 

Derived 

from 

Scaling 

factors (S, 

D, F)* 

CoAP BEB None None None N 

CoCoA BEB Strong and weak Yes LinuxRTO F 

CoCoA+ VBF Strong and weak Yes CoCoA F 

CoCoA-S VBF Strong and weak Yes CoCoA F 

CoCoA-E VBF Strong and weak Yes CoCoA and 

Eifel 

F 

4-State-

Strong 

4-state VBF Four estimators Yes CoCoA F 

Enhanced 

CoCoA 

VBF Strong  Yes CoCoA F 

pCoCoA VBF Strong  Yes CoCoA F 

RTT CoAP Increase/decrease

s as per estimated 
δ 

Strong Yes CoAP, and 

CoCoA 

F 

Improved 

Adaptive 

CoAP 

VBF Strong Yes  CoCoA D 

CoCoA++ PBF CAIA Delay-

Gradient 

No CoCoA F 

FASOR - Strong Yes CoCoA S and D 

CACC Dynamic RTO Strong, weak, and 

failed 

No CoCoA Sand D 

CoAPefiel - Strong  Yes  CoAP F 

https://ijcnis.org/


A Survey on Congestion control protocols for CoAP 

Available online at: https://ijcnis.org  121 

AdCoCoA VBF Strong  Yes  CoCoA Sand D 

DCC-CoAP  strong yes CoAP and 

CoCoA 

Sand D 

Genetic 

CoCoA++ 

PBF CAIA Delay-
Gradient 

No CoCoA F 

CoAP-R Rate control Monitoring RTT 

variations 

No CoAP and 

RTT 

monitoring 

F 

BDP-CoAP Rate control Strong Yes TCP BBR F 

*(N=None, S=Static, D=Dynamic, F=Fixed). 

 

4. Conclusion 
 

This paper comprehensively reviewed the progression of CoAP congestion control protocols. To 

understand the trends, we categorized the protocols into three categories based on the mechanism – 

RTO, queue-monitoring, and rate-based mechanism. All the RTO-based protocols aim to minimize the 
number of retransmissions attempts by estimating the RTO value appropriately. Whereas queue 

monitoring-based protocols aim to prevent congestion by controlling the packet-sending rate. The rate-

based protocols consider the bandwidth available to control the senders' transmission rate. Based on the 
review of the existing protocols, we have identified some future research directions. While evaluating 

the current protocols, the authors had not considered the effects of wireless transmission errors and 

challenges in real networks. The existing protocols need further evaluation in the presence of realistic 

wireless transmission errors.  As per the results presented in [10], a single protocol is inadequate for all 
scenarios. Hence, a hybrid protocol is needed to control congestion in various scenarios. For example, 

Hybrid TCP [33] has two modes – RTT monitoring is used to activate a specific method. RTO 

calculation based on the type of IoT application should be explored further. RTO could be estimated 
periodically by monitoring RTT changes for static applications like intelligent meter readings. For 

dynamic applications like connected cars, RTO could be evaluated after each RTT. Estimating the RTO 

value more precisely based on a single parameter might be insufficient. Considering other parameters 
(packet loss, delay, link loss, etc.) would help to determine RTO precisely and would also help to 

regulate the packet sending rate. Our analysis shows a strong need for a hybrid or flexible mechanism 

to handle congestion in CoAP networks. 
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