

International Journal of Communication Networks and

Information Security

ISSN: 2073-607X, 2076-0930

Volume 14 Issue 02 Year 2022 Page 111:123

Available online at: https://ijcnis.org 111

A Survey on Congestion Control Protocols for CoAP

1 Sneha R Deshmukh, 2Vijay T Raisinghani
Department of Information Technology, Mukesh Patel School of Technology Management and

Engineering,
NMIMS Deemed-to-be University, Mumbai, India

1 sneha.deshmukh@nmims.edu, 2 vijay.raisinghani@nmims.edu

Article History

Received: 13 Feb 2022

Revised: 26 May 2022
Accepted: 12 August 2022

CC License

CC-BY-NC-SA 4.0

Abstract

The Internet of things (IoT) comprises things interconnected through the

internet with unique identities. Congestion management is one of the
most challenging tasks in networks. The Constrained Application

Protocol (CoAP) is a low-footprint protocol designed for IoT networks

and has been defined by IETF. In IoT networks, CoAP nodes have

limited network and battery resources. The CoAP standard has an
exponential backoff congestion control mechanism. This backoff

mechanism may not be adequate for all IoT applications. The

characteristics of each IoT application would be different. Further, the
events such as unnecessary retransmissions and packet collision caused

due to links with high losses and packet transmission errors may lead to

network congestion. Various congestion handling algorithms for CoAP
have been defined to enrich the performance of IoT applications. Our

paper presents a comprehensive survey on the evolution of the

congestion control mechanism used in IoT networks. We have classified

the protocols into RTO-based, queue-monitoring, and rate-based. We
review congestion avoidance protocols for CoAP networks and discuss

directions for future work.

Keywords: CoCoA+, pCoCoA, AdCoCoA, CoAP-Eifel

1. Introduction

The internet of things (IoT) is a network of devices (physical and virtual) that can auto-
configure. The protocols used for this network are standard and enable interoperability [33]. Further,

the network is dynamic. These IoT devices exchange data over a network, which may have lossy links,

packet transmission errors, and poor throughput. These conditions could lead to packet losses and

unnecessary packet retransmissions, which could cause congestion in the network. Hence, a proficient
congestion handling technique is required to reduce uncalled-for resending and determine the correct

retransmission timeout (RTO) value.

In the IoT protocol stack, Constrained Application Protocol (CoAP) [1] has reliable
transmission as an option utilizing RTO and aggressive backoff. UDP is the transport CoAP protocol

for CoAP. CoAP is designed for light applications which require congestion handling. CoAP has a

request and response model for end-to-end operation. The RTO is initially set at random. After that,

binary exponential backoff (BEB) is used for calculating the RTO. However, this random value at the
start can cause retransmissions which could cause avoidable congestion. We broadly classify the

congestion control mechanisms for CoAP networks into three categories – RTO-based, queue-

monitoring, and rate-based.
RTO-based mechanisms: CoCoA [2] calculates RTO by using the value of round-trip time

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 112

(RTT). CoCoA+ [3] has step-function techniques with scaling factors to calculate the RTO for
retransmission. CoCoA-E [4] is a modified version of CoCoA+, which uses a new scaling factor based

on the Eifel retransmission timer. Bhalerao et al. [5] have further improved the RTO estimation

mechanism of CoCoA+ using an adaptive technique based on retransmission attempts. Lee et al. [6]

have defined a method for congestion control that uses RTT. This mechanism considers retransmission
count for accurately measuring the RTT value and estimating the RTO value. pCoCoA [7] estimates

the RTT precisely using timestamps and a modified RTO estimation mechanism. Hence, it helps

minimize unnecessary retransmissions.
An improved adaptive CoAP [8] determines the RTO value using packet loss ratio and RTT.

RTT-CoAP [9] has a novel approach to detecting congestion in the network. It uses the checks variance

of RTT against predefined thresholds for loss of COAP messages. CoAP Eifel [10] is a modified version
of CoAP which uses only strong RTT to estimate the RTO value. In AdCoCoA [11], link quality, delay,

and RTT deviation are considered to calculate the RTO value. CACC [12] categorizes RTT into three

types, as per the receipt of an ACK – without retransmission (strong) or with retransmission (weak; one

or more retransmissions) or no ACK at all (failed), to determine the condition of the network, and adapt
the congestion control mechanism. FASOR [13] determines whether the loss of packets is because of

poor links or congestion in the network. FASOR has three distinctive features – an adaptation of the

RTO backoff and RTO computation which can be fast or slow. DCC-CoAP [14] efficiently predicts
network congestion; it combines the separation of nodes and multiple RTT measurements, reducing

CoAP message loss. CoCoA++ [15] uses the delay gradients method to measure network congestion

and introduces a new backoff mechanism called probabilistic backoff to deal with congestion.
Queue monitoring mechanisms: In a Bird flock model [16], a node monitors its neighbor

node's buffer at each hop to avoid congestion. The backpressure congestion-control mechanism [17]

uses the MAC and network layer's information to prevent congestion at each hop. Rate-based

mechanism: CoAP-R [18] is designed to utilize the maximum available bandwidth and uses max-min
fairness to allocate bandwidth. BDP-CoAP [19] design copes with lossy links and problems of unfair

access over the short-term, which typically occurs in IoT networks.

The paper contents are as follows – Section II provides an outline of the CoAP protocol.
Review of various CoAP congestion handling techniques is in section III. Section IV presents further

research directions and the conclusion.

2. Constrained Application Protocol (CoAP)

Confirmable

(CON)

Non confirmable

(NON)

Acknowledgment

(ACK)

Reset (RST)

Figure 1: CoAP message types

CoAP (RFC 7252) [1] has a client-server type of model with requests and responses. CoAP uses a

stop-and-wait approach, retransmissions, and exponential backoff for confirmable (CON) messages.

Figure 1(sourced from reference [1]) shows four types of CoAP messages: Reset (RST),
Acknowledgement (ACK), Non-confirmable (NON), and Confirmable (CON). A message identifier

helps in duplicate identification. An ACK is returned for a CON message. ACK is not required for

NON. RST from the receiver to the sender indicates that the receiver could not process the message.

https://ijcnis.org/

A Survey on Congestion control protocols for CoAP

Available online at: https://ijcnis.org 113

CoAP implements an optional reliability mechanism. When no ACK not received for a transmitted

CON, the sender retransmits the message.

Figure 2: Working Binary exponential backoff (BEB) in CoAP

On sending a CON message, the sender chooses an initial value from 2s to 3s for the RTO.

The sender assumes the CON message is lost. Suppose an ACK is not received from the destination

before the expiry of the RTO timer. The sender does retransmission and doubles the current RTO value
to reduce needless retransmissions to avoid congestion, as shown in figure 2 (sourced from reference

[1]). The sender does not consider RTT to compute the RTO. As a result, the RTO value would tend to

be inaccurate and could lead to unnecessary retransmissions. The RTO value will grow exponentially

if the retransmissions increase, leading to an increase in the retransmission delay.

The following section discusses the evolution of the various techniques for congestion control

for IoT (CoAP) networks.

3. Congestion control mechanisms for CoAP

We have classified the mechanisms based on the approach used to control network congestion – RTO,
queue-monitoring, and rate-based mechanisms. The protocols CoCoA [2], CoCoA+ [3], CoCoA-E [4],

4-State Strong CoCoA [5], Enhanced CoCoA [6], pCoCoA [7], RTT-CoAP [9], improved adaptive

CoAP [8], CACC [12], FASOR [13], CoCoA++ [15], CoAP Eifel [10], AdCoCoA [11], DCC-CoAP
are RTO based congestion control mechanisms. Back pressure [17] and bird flock [16] are queue-

monitoring-based congestion control mechanisms. The protocols CoAP-R [18] and BDP-CoAP [19]

are rate-based congestion control mechanisms.

3.1 CoCoA

In contrast to CoAP [1], the CoCoA [2] [26] sender measures RTT values to determine RTO before
transmitting the first CON message. RTT is the time from sending a CON message to receipt of an

ACK for this message. CoCoA computes two RTO for every receiver. Weak and strong RTO values

calculations use a weighted average of the weak and strong RTTs. A node maintains separate strong
and weak values for RTTcurrent, RTTVARcurrent (RTT variance) and RTOcurrent for each destination, where

RTTcurrent = (1-α) * RTTprevious + α* RTTcurrent; RTTVARcurrent = (1-β) * RTTVARcurrent + β * |RTTprevious

- RTTcurrent|; and RTOcurrent = RTTcurrent+ K* RTTVARcurrent. The smoothing factors α, β, and K values

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 114

are 0.25, 0.125, and 4, respectively. The last updated RTO is considered RTOcurrent, and a weighted
average of RTOprevious and RTOcurrent is used to calculate the RTOoverall, where RTOoverall_current=

0.5* RTOcurrent + 0.5 * RTOoverall_previuos. RTOinit is a random value between 1 to 1.5 times RTOoverall, for

the first transmission. The RTO value is doubled for every retransmission.

3.2 CoCoA+

CoCoA+ [3], an improved version of CoCoA, consists of an RTO estimator, a variable backoff factor
(VBF) policy for retransmission attempts, and an aging mechanism for updating an obsolete RTO value.

The RTT, RTTVAR, and RTO computations of CoCoA+ are the same as CoCoA, with a few

modifications added, as shown in figure 3[3]. Following are the improvements introduced in CoCoA+

[3] (sourced from reference [3]). (1) RTT change: For weak RTT computation, the value of smoothing
factor (K) changed from 4 to 1. (2) RTO change: for calculating RTOoverall, weak RTO weight changed

from 0.5 to 0.25. (3) Backoff policy change: For the retransmission, the old RTO value is multiplied

by a value ranging from 1 to 3 to determine RTOnew. If the RTOprevious is less than 1s, between 1-3 s,
or greater than 3s, then it is multiplied by 3, 2, or 1.3, respectively. (4) RTO aging: To update an

obsolete RTO value, aging that updates the RTO at regular intervals. If RTOcurrent > 2s has not

changed for the past 30s, then it is changed to (2 +RTOcurrent)/ 2.

Figure 3: CoCoA+ mechanism

3.3 CoCoA-E

CoCoA-E [4] is an improvement on CoCoA+, which estimates RTO using the retransmission timer of
Eifel [21][22], which had initially been proposed for estimating TCP timeouts. The authors, while

analysing the Eifel retransmission timer for a large sending rate, have claimed that the standard values

of α (1/4), β (1/8), and K (4) (RFC 6298 [23]) would not be perfect. Hence, they suggest a different

technique for determining RTO using a new factor γ rather than α and β. γ = RTT/RTO. If γ is less than
0.5, then γ is the smoothing factor; else, 1- γ is used. The RTO value adjustment is as per the value of

γ. The smoothed RTT and RTT variance calculations are the same as CoCoA[2].

3.4 CoCoA -4 states

Bhalerao et al. [5] have improved CoCoA+ [3] using a state estimator with an adaptive variable backoff

factor policy for retransmissions. The protocol maintains the state of retransmissions for each source-
destination pair. A transaction starts with state one. Each time a CoAP packet is acknowledged before

the RTO timer expires, the transaction's condition is unchanged. On each retransmission, the state value

is increased by 1 to a maximum of 4.

https://ijcnis.org/

A Survey on Congestion control protocols for CoAP

Available online at: https://ijcnis.org 115

Variable backoff factors and weight control the amount of time a transaction must wait before
retransmitting a packet after a timeout. Each time a retransmitted packet is acknowledged before the

RTO timer expires; the transaction's state is lowered. bf1, bf2, bf3, and bf4, are the backoff factors used

for each transaction, with the value increasing from bf1 to bf4. Based on the RTO estimate and the

current state of the transaction, an appropriate variable backoff factor is used to prevent excessive
backoff. In addition, a weight w is used, which increases according to the transaction state; for

computing the RTOcurrent value, RTOcurrent = w * RTOcurrent + (1-w) * RTOprevious.

3.5 Enhanced CoCoA

The formula to compute RTT and RTTVAR is the same as CoCoA, but this mechanism does not

maintain strong and weak RTTs. Lee et al. [6] have proposed a scheme that improves CoCoA+ by
introducing a packet's retransmission count (RC) to estimate every packet's RTT correctly. The RC

field in the CoAP packet helps to measure the RTT accurately. Hence, it improves the accuracy of RTO

estimation and thus minimizes unnecessary retransmissions. In addition, a fixed lower bound for
RTTVAR is used while computing the RTO to ensure that the RTT and RTO values are not close. The

mechanism for aging the RTO and backoff using varied factors is the same as CoCoA+ [3].

3.6 pCoCoA

In contrast to CoCoA+ [3], pCoCoA [7] eliminated the use of weak RTO estimation, modified

RTTVAR and smoothed RTT (SRTT) formulas, and introduced a dynamic smoothing factor for
computing an accurate RTO value to reduce spurious retransmissions. A transmission count (TC)

parameter is included in the CoAP message header for weak RTO elimination, which maps a specific

ACK to its CON message. TC=1, when a sender has sent a CON message. TC increments by one on
every retransmission until the TC equals the maximum retransmission count (value=4). The receiver

copies this TC value in the corresponding ACK. CON and its TC-mapped ACK are used to compute

the RTT precisely. If the sender sends the packet for the first time, pCoCoA uses the default CoAP

RTO mechanism. Subsequently, it uses the VBF backoff policy for retransmissions and the RTO aging
mechanism borrowed from CoCoA+. If there is a difference between the TC value of a CON and the

ACK, it implies that spurious retransmission occurred; the RTTVAR is multiplied by scaling factor

K=6, else K=4.

For each destination, a node maintains SRTTcurrent, RTTVARcurrent, SRTOcurrent, and RTOcurrent. The

values of smoothing factors (SF) α=1/8, β=1/4, ϒ=1/32, and δ=1/2. pCoCoA selects one of the

smoothing factors (α, β, and ϒ) for estimating RTTVAR based on the RTT variance in the network.

The SRTT, RTTVAR and SRTO are estimated as follows: SRTTcurrent = (1- α) SRTTprevious + α*
RTTcurrent; RTTVARcurrent = (1- SF) RTTVARprevious + SF * |SRTTcurrent - RTTcurrent|; SRTOcurrent =

SRTOprevious + max (K*RTTVARcurrent, mdevmax); RTOcurrent = (1-δ) * SRTOcurrent + δ *RTOprevious. The

mdevmax is a lower bound to limit the influence of fluctuation in RTTVAR on the RTO computation.
Suppose RTTVARprevious is less than the gap between SRTT and RTT. In that case, the lower weight

(β) applies to RTTVARprevious or higher weight (α), which helps suppress the effect of a sudden change

in RTT variance in the network. These weights will help to estimate a large enough RTO value to
minimize spurious retransmissions. The mdevmax increases gradually by a small amount and decreases

cautiously based on the RTTVAR to ensure the RTO value is large enough to prevent spurious

retransmissions.

3.7 RTT CoAP

RTT-CoAP [9] is an enhancement of CoAP, which uses a rate-based algorithm. RTT-CoAP aims to
reduce traffic burstiness and packet loss by controlling the interarrival time of packets transmitted. This

protocol considers only RTT measurements (r) without retransmission and uses timestamps to measure

RTT precisely. A CoAP sender maintains long-term RTT (SRTTL), short-term RTT (SRTTS), and RTT

variance in this algorithm. The variables SRTTL, SRTTS and RTTVARL are computed as follows:
SRTTS=αS*r+ (1−αS) * SRTTS; SRTTL=αL*r + (1−αL) * SRTTS; and RTTVARL = βL* |SRTTL−r| +

(1−βL) * RTTVARL. A larger smoothing factor (αS) is used to smooth out the short-term RTT variations

due to spikes in the network. A smaller smoothing factor (αL) is used to reduce the impact of noise on
RTT measurements while estimating long-term RTT. The RTT variance determines the state of the

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 116

network state and estimates the rate for sending. RTT-CoAP has defined four network states

corresponding to varying levels of congestion from low to high.

In a low congestion state, the sending rate increases aggressively with no change observed in RTT

variance. In a normal state, RTT variations and packet loss ratio are determined to decide the sending

rate. In a medium variability state, if short-term RTT variance grows, the network might get congested,
and sending rate is decreased. In a high variability state, the network is congested if the value of short-

term RTT is greater than that of the long-term RTT value. Hence, the sending rate decreases

aggressively. RTT-CoAP increases or decreases the sending rate by a fixed amount to adjust the packet

transmission speed.

3.8 Improved Adaptive CoAP

Ouakasse and Rakrak's protocol [8] uses the fraction of packets lost (PLR) to adjust the value of RTO

for every retransmission. Initially, the RTO value is set to a random value ranging from 2 to 3 seconds.

The CoAP sender sends a CON message; on receiving the ACK, it estimates PLR. If the PLR is less
than 50% then RTOrecent = RTT * PLR + (1- PLR) * RTOprevious. If the more than 50% of the packets

are lost, then RTOrecent = RTOprevious * PLR+ (1- PLR) * RTT. The PLR is used to determine the

condition of the network. Using PLR helps estimate an RTO that is large enough to avoid excessive

waiting time (if RTO is larger than RTT) and unnecessary retransmissions (if RTO is close to RTT).

3.9 CoCoA++

In contrast to CoCoA+ [3], CoCoA++ [15] monitors network conditions for fixed interval and uses a

delay gradient mechanism [29] to estimate RTO. The RTO estimation mechanism is borrowed from

CoCoA+. Two gradients help to monitor RTT variations. CoCoA++ updates RTO when periodically
the delay gradients are estimated. CoCoA++ has introduced a new probabilistic backoff factor (PBF)

mechanism to estimate the backoff probability.

Figure 4: CoCoA++ mechanism (source: reference [15])
As shown in figure 4 [15] (figure derived from [15]), CoCoA++ stores the RTT samples and computes

RTTmin and RTTmax within an interval of time n. The minimum and maximum values obtained from

RTT samples are termed RTTmin and RTTmax. The gradients gmin and gmax help track the RTT variance
change for RTTmin and RTTmax, respectively, over n and n-1. g m̅in and g ̅max denote average gradients

calculated over multiple time intervals. The protocol uses the RTT variance difference to compute the

backoff probability. The probability increases as change the RTT variance increases.

https://ijcnis.org/

A Survey on Congestion control protocols for CoAP

Available online at: https://ijcnis.org 117

If RTTmax equals the maximum possible value, and RTTmin growth has not stopped (gmin>0), it indicates
congestion. In this situation, the congestion window will be decreased by 30%, increasing by 1. Further,

it will reduce the load in the network and minimize unnecessary retransmission.

3.10 FASOR

An RTO-based congestion control mechanism named FASOR [13] is capable of working in buffer bloat

[30] conditions and copes with high link error rate scenarios. FASOR [27] consists of three components:
Fast and Slow RTO estimation and a novel retransmission timer backoff mechanism. If the RTT

samples are definite, then a fast RTO calculation is used. If the RTT samples are unclear, then a slow

RTO computation is done to prevent excessive packet buffering and extreme congestion. This approach

controls the flow, reduces delays, and handles cases with link errors.

The RTT variation initialization formula is modified RTTVAR = RTT measurement / 2K, where K is

a scaling factor (value =4) for achieving fast convergence with minimum exchanges. The Fast RTO

calculation is derived from TCP RTO calculation [21], but there is no lowest value fixed for the RTO.
The RTO value is initially kept at 2 seconds and considers actual RTT samples. Slow RTO considers

ambiguous RTT samples. For every retransmission, Slow RTO increases the RTO by 1.5 times.

Karn's algorithm and Slow RTO work similarly. The FASOR backoff mechanism has three states of
backoff. If the sender starts with the least conservative state (FAST), it sends the packet and waits for

ACK. On successful ACK, the sender will remain in the least conservative state. If the sender requires

retransmissions, it uses a backoff factor and retransmits the packet. If more than one retransmission

occurs, the sender goes to the intermediate conservative state. In this state, the backoff timer is large

enough to minimize the retransmissions.

Further, if more retransmissions occur, the sender goes to the most conservative states. In this state, the

sender uses a larger backoff factor to minimize the retransmissions. As the number of retransmissions
reduces, the sender gradually returns to the least conservative from the most conservative state, which

minimizes unnecessary retransmissions.

3.11 Context-Aware Congestion Control

Context-aware congestion control (CACC) [12] has three RTO estimators to determine whether the loss

of packets loss caused by collision or congestion. The RTO calculations are based on whether the packet
transmission is successful, delayed, or failed. Correspondingly, strong, weak, or failed RTT is

determined. If there are many strong or failed, RTTs collision is assumed. If there are many weak and

failed RTTs, then congestion is assumed.

CACC measures RTT accurately using a retransmission counter. This mechanism runs three RTO
estimators – strong RTT, weak RTT, and failed RTT. A strong RTT means on receipt of an ACK for

a CON message without any retransmission. A weak RTT means receiving an ACK with packet

retransmissions; failed RTT is obtained when ACK is not received even after maximum retries for
packet transmission. The computation is the same as in CoCoA+ [3] for the first RTT measurement,

smoothed RTT, RTTVAR, and RTO.

The terms SR, WR, and FR, represent the number of times strong, weak, and failed RTT has been
determined over the last four transmissions. If FR is higher than SR, it reflects collision in the network.

The weighted average of failed and strong RTT estimates smoothed RTT. If WR is higher than FR,

there is congestion at the nodes. The weighted average of failed and weak RTT estimates smoothed

RTT. If SR is higher than WR or FR, then the weighted average of strong and weak RTT estimates
smoothed RTT. A weighted average of RTTVARprevious and the difference between RTT and SRTT is

used to calculate RTTVAR. Scaling factors α=0.25, β=0.125, and K=4 are used for calculating SRTT,

RTTVAR, and RTO. A lower bound restricts the RTO value from becoming very low, which avoids
spurious retransmissions of CON messages. The RTOoverall and RTO aging mechanism is the same as

that in CoCoA+.

3.12 CoAP Eifel

In contrast to CoAP[1], CoAP Eifel [10] sender considers RTT measurements obtained without any

retransmission to compute RTO. The initial RTO value is two* ticks, where ticks are operating system-

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 118

dependent fractions of seconds. For RTO calculation, the node maintains smoothed RTT (SRTTcurrent),
RTT variance (RTTVARcurrent), and RTO value (RTOcurrent). A scaling factor GAIN = 1/3 estimates

smoothed RTT and RTO. A scaling factor 𝐺𝐴𝐼𝑁̅̅ ̅̅ ̅̅ ̅ (either 1/3 or (1/3)2) is used for estimating RTTVAR.

If RTT variance is greater than zero, then a higher scaling factor (GAIN) is used; a lower scaling factor

(GAIN2) is used. The smoothed RTT and RTT variance are updated on every RTT measurement for

the span of the connection. The sender assumes that the CON message is lost if an ACK is not received
from the destination before the RTO timer expires. The sender initiates retransmission and uses binary

exponential backoff to double the current RTO value.

3.13 AdCoCoA

AdCoCoA[11] improves CoCoA+ [3], and uses retransmission counter to calculate RTT. Figure 5 [11]

shows the detailed working mechanism of the AdCoCoA protocol. AdCoCoA considers network
conditions like link quality, link delay, and RTT deviations for estimating dynamic scaling factors. The

dynamic scaling factors estimate smoothed RTT, RTT variance, and RTO values. AdCoCoA uses the

standard CoAP RTO value for the first transaction. Subsequently, it uses the VBF backoff policy for
retransmissions and the RTO aging mechanism borrowed from CoCoA+ [3]. A node maintains

RTTcurrent, RTTVARcurrent, and RTOcurrent for each destination, as shown in figure 9. The change in RTT

measured and recent RTT is used to determine δ (RTT change). Using δ, it estimates the scaling factors

δα, δb, and δk, used to estimate RTTcurrent, RTTVARcurrent, and RTOcurrent, respectively.

Figure 5: AdCoCoA working mechanism (source: reference [11])

3.14 Distance-based congestion control CoAP (DCC-CoAP)

DCC-CoAP [14] measures RTT using a timestamp and determines the distance between CoAP, the

requestor, and the responder using the Euclidean distance formula [31]. The distance between two

nodes is determined using the node's coordinates (x, y) (either requestor or responder). The scaling

factor is determined based on this distance to estimate the weighted RTO value. If the node is far from
the responder, then a large scaling factor is used; the small scaling factor is used to estimate weighted

RTO. The final RTOdef = RTTstrong + WRTO. DCC-CoAP uses a variable backoff factor mechanism for

estimating RTO value on retransmissions, the same as CoCoA+ [3].

https://ijcnis.org/

A Survey on Congestion control protocols for CoAP

Available online at: https://ijcnis.org 119

3.15 Genetic CoCoA++

Genetic CoCoA++ [28] is an improvised version of CoCoA++ [15], which uses genetic algorithm along

with CAIA Delay-Gradient (CDG) [29] to estimate RTO. While CoCoA++ uses RTTmin and RTTmax,
this protocol uses RTTmin only for computation which helps to achieve better results. RTTmin is the

lowest value selected from the values measured over a fixed interval of 5 seconds. The difference

between RTTmin_current and RTTmin_previous helps estimate the network congestion. The delay gradient and

probabilistic backoff factor computation are the same as CoCoA++ [15].

Above, we described the RTO-based mechanisms. Next, we describe queue-monitoring mechanisms.

3.16 Bird Flocking Congestion Control Mechanism

Bird flock [16] is used to avoid congestion in CoAP/RPL [32] /6LoWPAN [20] networks, which operate

at each hop. The Routing protocol for low-power and lossy networks (RPL) [32] creates an acyclic
graph rooted at the destination node. Each node has a spherical model with two layers – zone of

repulsion (ZoR) and zone of attraction (ZoA). The ZoR of a node are the immediate successors (one

hop away), and the ZoA of a node contains two hop away nodes, the successor's successor.

Each node has a buffer for received packets. The current buffer status of nodes in ZoR and ZoA is
communicated to the current node, which will help it select the next hop node for forwarding a packet.

Each node maintains two parameters in its routing table for each successor node, the available buffer

of the immediate successor (QsZoR – one-hop information) and the available buffer of the successor's
successor (QsZoA – two-hop information). The criteria to select a successor for forwarding a packet is

that the successor and the successor's successor should have the lowest congestion, as compared to

others, both in ZoR and ZoA. If the successor has a higher packet transmission rate, then the congestion
in ZoA is lower. The reciprocal of this success rate indicates the level of congestion (QsZoA). The

successor with lesser QsZoA is selected.

For estimating QsZoR, the current node eavesdrops on the successors' activities. The node increases

the QsZoR for a successor when its successor receives a packet. When the packet is sent ahead, the
QsZoR is decreased. The nodes track the packets and ACKs using messages and identify packets

retransmitted if the RTO expires before receipt of an ACKtted. On every retransmission, the RTO is

recomputed as α * scaling factor. If the QsZoR is higher, then α will be higher, delaying the

retransmission, thus decongesting the successor path.

3.17 Back Pressure Congestion Control Mechanism

Castellani et al.[17] implemented congestion control at the network layer using algorithms based on

backpressure routing. This mechanism is designed for both CON and NON-messages. The

backpressure techniques are implemented in the network layer, which the authors call a layer three
device (L3D). The following are the types of L3Ds –IdealBP, griping, deaf, and fuse. All the nodes in

a network will use the same L3D. Below we explain the mechanism of these L3Ds.

The griping device sends an explicit message to the sender to notify congestion if its queue length

exceeds a predefined threshold on receiving a datagram. The IdealBP sender selects the next hop node
for forwarding a datagram only if the next hop's queue length is lesser than that of the sender and has a

predetermined threshold. The sender uses the Additive Increase Multiplicative Decrease (AIMD) policy

transmission rate. If a deaf receiver's queue length exceeds a predefined threshold, it stops sending

layer two acknowledgments.

The deaf sender handles layer three retransmissions using a backoff timer mechanism. A fuse device

follows either agent deaf mechanism based on its queue size and predefined thresholds. If the queue
length is less threshold, then the fuse receiver adopts griping behavior. Further, it adopts deaf device

behavior when the network layer is full, does not send MAC layer ACKs, and sends an explicit

notification to the sender as a griping device.

Above, we described the queue-monitoring mechanisms. Next, we describe the techniques which use

sending rate for congestion control.

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 120

3.18 CoAP-R

COAP-R [18] is an enhancement of CoAP[1], which considers the transmission rate for controlling the

sending rate of CoAP senders. A COAP-R generates a tree topology with the receiver node considered
the root. Each CoAP node in the tree receives packets to send to the receiver. Each CoAP sender

estimates the link's capacity to its ancestor node by measuring the time taken for the packet to leave the

source and reach the receiver at the next hop. COAP-R runs two parallel link capacity estimators, one
for a long-term link and another for a short-term one. The receiver node gathers the updates of least the

bandwidth subtrees with active nodes. The receiver node uses a progressive filling algorithm [24] to

fairly calculate the transmission rate for all senders in the tree and share transmission rate details with

all the tree nodes.

3.19 BDP-CoAP

Bandwidth-Delay Product BDP-CoAP [19] considers transmission rate. It is an enhancement that

considers bandwidth and RTT for estimating transmission rates. BDP-CoAP uses the highest and lowest

transmission rate measurements to estimate bottleneck bandwidth. BDP-CoAP algorithm has three core

functions (i) to transmit packets, (ii) to compute pacing gain (iii) to receive an acknowledgment. The
algorithm considers the bandwidth measurement obtained on receiving an ACK without retransmission.

The bandwidth-delay product is computed as throughput times RTT. If the packets are to be transmitted

>= BDP, the sender waits for an ACK or RTO expiry; if RTO expires, it retransmits the packet. On
receiving the ACK, the node updates bottleneck bandwidth, RTT, and a scaling factor pacing gain.

Based on the retransmission count, the scaling factor value is determined to estimate the packet

transmission rate of the node.

Table 1 shows a comprehensive assessment of the protocols discussed in this paper.

Table 1. Consolidated summary of CoAP protocols for handling congestion

Protocol Backoff

mechanism

RTT estimators RTO

aging

Derived

from

Scaling

factors (S,

D, F)*

CoAP BEB None None None N

CoCoA BEB Strong and weak Yes LinuxRTO F

CoCoA+ VBF Strong and weak Yes CoCoA F

CoCoA-S VBF Strong and weak Yes CoCoA F

CoCoA-E VBF Strong and weak Yes CoCoA and

Eifel

F

4-State-

Strong

4-state VBF Four estimators Yes CoCoA F

Enhanced

CoCoA

VBF Strong Yes CoCoA F

pCoCoA VBF Strong Yes CoCoA F

RTT CoAP Increase/decrease

s as per estimated
δ

Strong Yes CoAP, and

CoCoA

F

Improved

Adaptive

CoAP

VBF Strong Yes CoCoA D

CoCoA++ PBF CAIA Delay-

Gradient

No CoCoA F

FASOR - Strong Yes CoCoA S and D

CACC Dynamic RTO Strong, weak, and

failed

No CoCoA Sand D

CoAPefiel - Strong Yes CoAP F

https://ijcnis.org/

A Survey on Congestion control protocols for CoAP

Available online at: https://ijcnis.org 121

AdCoCoA VBF Strong Yes CoCoA Sand D

DCC-CoAP strong yes CoAP and

CoCoA

Sand D

Genetic

CoCoA++

PBF CAIA Delay-
Gradient

No CoCoA F

CoAP-R Rate control Monitoring RTT

variations

No CoAP and

RTT

monitoring

F

BDP-CoAP Rate control Strong Yes TCP BBR F

*(N=None, S=Static, D=Dynamic, F=Fixed).

4. Conclusion

This paper comprehensively reviewed the progression of CoAP congestion control protocols. To

understand the trends, we categorized the protocols into three categories based on the mechanism –

RTO, queue-monitoring, and rate-based mechanism. All the RTO-based protocols aim to minimize the
number of retransmissions attempts by estimating the RTO value appropriately. Whereas queue

monitoring-based protocols aim to prevent congestion by controlling the packet-sending rate. The rate-

based protocols consider the bandwidth available to control the senders' transmission rate. Based on the
review of the existing protocols, we have identified some future research directions. While evaluating

the current protocols, the authors had not considered the effects of wireless transmission errors and

challenges in real networks. The existing protocols need further evaluation in the presence of realistic

wireless transmission errors. As per the results presented in [10], a single protocol is inadequate for all
scenarios. Hence, a hybrid protocol is needed to control congestion in various scenarios. For example,

Hybrid TCP [33] has two modes – RTT monitoring is used to activate a specific method. RTO

calculation based on the type of IoT application should be explored further. RTO could be estimated
periodically by monitoring RTT changes for static applications like intelligent meter readings. For

dynamic applications like connected cars, RTO could be evaluated after each RTT. Estimating the RTO

value more precisely based on a single parameter might be insufficient. Considering other parameters
(packet loss, delay, link loss, etc.) would help to determine RTO precisely and would also help to

regulate the packet sending rate. Our analysis shows a strong need for a hybrid or flexible mechanism

to handle congestion in CoAP networks.

References

[1] Z. Shelby, K. Hartke, and C. Bormann, "The Constrained Application Protocol (CoAP),"RFC

7252, p. 112, 2014.

[2] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells, "Congestion Control in Reliable CoAP
Communication,"Proc. 16th ACM Int. Conf. Model. Anal. Simul. Wirel. Mob. Syst., pp. 365–

372, 2013.

[3] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells, "CoCoA+: An advanced congestion
control mechanism for CoAP,"Ad Hoc Networks, vol. 33, pp. 126–139, 2015.

[4] E. Balandina, Y. Koucheryavy, and A. Gurtov, "Computing the Retransmission Timeout in

CoAP,"Internet Things, Smart Spaces, Next Gener. Netw., pp. 352–362, 2013.

[5] R. Bhalerao, S. Srinivasa Subramanian, and J. Pasquale, "An Analysis and Improvement of
Congestion Control in the CoAP Internet-of-Things Protocol,"IEEE Annu. Consum.

Commun. Netw. Conf., 2016.

[6] J. J. Lee, K. T. Kim, and H. Y. Youn, "Enhancement of congestion control of Constrained
Application Protocol/ Congestion Control/Advanced for Internet of Things environment,"Int.

J. Distrib. Sens. Networks, vol. 12, no. 11, 2016.

[7] S. Bolettieri, G. Tanganelli, C. Vallati, and E. Mingozzi, "pCoCoA: A precise congestion
control algorithm for CoAP,"Ad Hoc Networks, vol. 80, pp. 116–129, 2018.

[8] F. Ouakasse and S. Rakrak, "An improved adaptive CoAP congestion control algorithm,"Int.

J. Online Eng., vol. 15, no. 3, pp. 96–109, 2019.

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 122

[9] E. Ancillotti, S. Bolettieri, and R. Bruno, "RTT-based congestion control for the internet of
things," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 10866 LNCS, pp. 3–15.

[10] V. J. Rathod, S. Krishnam, A. Kumar, G. Baraskar, and M. P. Tahiliani, "Effective RTO

estimation using Eifel Retransmission Timer in CoAP,"Proc. CONECCT 2020 - 6th IEEE Int.
Conf. Electron. Comput. Commun. Technol., no. ii, 2020.

[11] S. Deshmukh and V. T. Raisinghani, "AdCoCoA- Adaptive Congestion Control Algorithm

for CoAP,"2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, 2020.
[12] G. A. Akpakwu, G. P. Hancke, and A. M. Abu-Mahfouz, "CACC: Context-aware congestion

control approach for lightweight CoAP/UDP-based Internet of Things traffic,"Trans. Emerg.

Telecommun. Technol., vol. 31, no. 2, pp. 1–19, 2020.
[13] I. Jarvinen, I. Raitahila, Z. Cao, and M. Kojo, "FASOR Retransmission Timeout and

Congestion Control Mechanism for CoAP," in 2018 IEEE Global Communications

Conference, GLOBECOM 2018 - Proceedings, 2019.

[14] S. Bansal and D. Kumar, "Distance-based congestion control mechanism for CoAP in
IoT,"IET Commun., vol. 14, no. 19, pp. 3512–3520, 2020.

[15] M. P. T. Vishal Rathod, Natasha Jeppu, Samanvita Sastry, Shruti Singala, "CoCoA++: Delay

gradient based congestion control for Internet of Things,"Futur. Gener. Comput. Syst., vol.
Volume 100, p. Pages 1053-1072, May 2019.

[16] H. Hellaoui and M. Koudil, "Bird Flocking Congestion Control for CoAP/RPL/6LoWPAN

Networks,"IoT-Sys '15 Proc. 2015 Work. IoT challenges Mob. Ind. Syst., pp. 25–30, 2015.
[17] A. P. Castellani, M. Rossi, and M. Zorzi, "Back Pressure Congestion Control for

CoAP/6LoWPAN Networks,"Ad Hoc Networks, vol. 18, pp. 71–84, 2013.

[18] E. Ancillotti, R. Bruno, C. Vallati, and E. Mingozzi, "Design and Evaluation of a Rate-Based

Congestion Control Mechanism in CoAP for IoT Applications," in 19th IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2018,

2018.

[19] E. Ancillotti and R. Bruno, "BDP-CoAP: Leveraging Bandwidth-Delay Product for
Congestion Control in CoAP," in 2019 IEEE 5th World Forum on Internet of Things (WF-

IoT), Limerick, Ireland, 2019, pp. 656–66.

[20] Shelby, Zach, and Bormann, Carsten, "6LoWPAN: The Wireless Embedded Internet," in

Wiley Publishing, 2010.
[21] R. Ludwig and K. Sklower, “The Eifel retransmission timer,” ACM SIGCOMM Comput.

Commun. Rev., vol. 30, no. 3, pp. 17–27, 2000.

[22] R. Ludwig and R. H. Katz, "The Eifel algorithm: Making TCP robust against spurious
retransmissions,"Comput. Commun. Rev., vol. 30, no. 1, pp. 30–36, 2000.

[23] V. Paxson and M. Allman, “Computing TCP’s retransmission timer (RFC6298),” Ietf, pp. 1–

11, 2011.
[24] D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall, 1992.

[25] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, "BBR: Congestion-

Based Congestion Control," ACM Queue, vol. 14, no. 5, pp. 50:20–50:53, October 2016.

[26] Kranenburg, R.V., 2008. The Internet of Things: A Critique of Ambient Technology and the
All-Seeing Network of RFID, Institute of Network Cultures.

[27] I. J¨arvinen, M. Kojo, I. Raitahila, and Z. Cao, "Fast-Slow Retransmission and Congestion

Control Algorithm for CoAP," Internet Draft, Jun. 2018, Work in progress.
[28] R. K. Yadav, N. Singh, and P. Piyush, "Genetic CoCoA++: Genetic Algorithm based

Congestion Control in CoAP," 2020 4th International Conference on Intelligent Computing

and Control Systems (ICICCS), 2020, pp. 808-813, DOI:
10.1109/ICICCS48265.2020.9121093.

[29] K.K. Jonassen, Implementing CAIA delay-gradient in Linux (Master's thesis), Department of

Informatics, University of Oslo, Norway, 2015.

[30] J. Gettys and K. Nichols, "Bufferbloat: Dark Buffers in the Internet," ACM Queue, vol. 9, no.
11, Nov. 2011.

https://ijcnis.org/

A Survey on Congestion control protocols for CoAP

Available online at: https://ijcnis.org 123

[31] Shahi, G. S., Batth, R. S., & Egerton, S. (2020). MRGM: An adaptive mechanism for
congestion control in smart vehicular network. International Journal of Communication

Networks and Information Security, 12(2), 273-280.

[32] Angurala, M., Bala, M., & Khullar, V. (2022). A survey on various congestion control

techniques in wireless sensor networks. International Journal on Recent and Innovation Trends
in Computing and Communication, 10(8), 47-54. doi:10.17762/IJRITCC.V10I8.5667

[33] Liberti, Leo & Lavor, Carlile & Maculan, Nelson & Mucherino, Antonio. (2012). Euclidean

Distance Geometry and Applications. SIAM Review. 56. 10.1137/120875909.
[34] J. Tripathi, J. de Oliveira, and J. P. Vasseur, "A performance evaluation study of RPL: Routing

protocol for low power and lossy networks," in CISS'10, March 2010, pp. 1–6.

[35] J.Katto, K.Ogura, Y.Akae, T.Fujikawa, K.Kaneko, and S.Zhou: "Simple Model Analysis and
Performance Tuning of Hybrid TCP Congestion Control," IEEE Globecom 2008, Dec 2008.

https://ijcnis.org/

