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Molecular movie of ultrafast coherent rotational
dynamics of OCS
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Recording molecular movies on ultrafast timescales has been a longstanding goal for
unravelling detailed information about molecular dynamics. Here we present the direct
experimental recording of very-high-resolution and -fidelity molecular movies over more than
one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS)
molecules. Utilising the combination of single quantum-state selection and an optimised two-
pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-
free alignment, (cos26,p) = 0.96 ({cos28) = 0.94) is achieved, exceeding the theoretical limit
for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully
recovered by the angular probability distribution obtained from solutions of the time-
dependent Schrédinger equation with parameters refined against the experiment. The
populations and phases of rotational states in the retrieved time-dependent three-dimen-
sional wavepacket rationalises the observed very high degree of alignment.
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he filming of nuclear motion during molecular dynamics

at relevant timescales, dubbed the “molecular movie”, has

been a longstanding dream in the molecular sciences!-2.
Recent experimental advances with X-ray-free-electron lasers
and ultrashort-pulse electron guns have provided first glimpses
of intrinsic molecular structures®>> and dynamics®%’. How-
ever, despite the spectacular progress, the fidelity of the
recorded movies, in comparison to the investigated dynamics,
was limited so far. Especially for high-precision studies of small
molecules, typically only distances between a few atoms were
determined*>"7.

Rotational quantum dynamics of isolated molecules provides
an interesting and important testbed that provides and requires
direct access to angular coordinates. Furthermore, different from
most molecular processes, it can be practically exactly described
by current numerical methods, even for complex molecules.
Rotational wavepackets were produced through the interaction of
the molecule with short laser pulses®-19, which couple different
rotational states through stimulated Raman transitions. The
resulting dynamics were observed, for instance, by time-delayed
Coulomb-explosion ion imaging®!1-12, photoelectron imaging!?
or ultrafast electron diffraction!4. The rotational wavepackets
were exploited to connect the molecular and laboratory frames
through strong-field alignment®® and mixed-field orienta-
tion!>16 as well as for the determination of molecular-structure
information in rotational-coherence spectroscopy!”:!8, Coherent
rotational wavepacket manipulation using multiple pulses!®
or appropriate turn-on and -off timing?® allowed enhanced or
diminished rephasing, and it was suggested as a realisation of
quantum computing!®. Furthermore, methods for rotational-
wavepacket reconstruction of linear molecules?! and for ben-
zene?? were reported.

Here, we demonstrate the direct experimental high-
resolution imaging of the time-dependent angular probability-
density distribution of a rotational wavepacket and its complete
characterisation in terms of the populations and phases of field-
free rotor states. Utilising a state-selected molecular sample and
an optimised two-laser-pulse sequence, see Supplementary
Note 1, a broad phase-locked rotational wavepacket was cre-
ated. Using mid-infra-red-laser strong-field ionisation and
Coulomb-explosion ion imaging, an unprecedented degree of
field-free alignment of (cos20,p) = 0.96, or {cos?0) = 0.94, was
obtained at the full revivals, whereas in between a rich angular
dynamics was observed with very high resolution, from
which the complete wavepacket could be uniquely derived.
While the dynamics has low dimensionality, the resulting—
purely experimentally obtained—movie provides a most direct
realisation of the envisioned molecular movie. We point out
that the data also is a measurement of a complete quantum
carpet23.

Results

Experimental approach. In order to achieve such a high degree
of alignment, better than the theoretical maximum of (cos26)
=092 for single-pulse alignment?*?>, we performed a
pump-probe experiment with ground-state-selected carbo-
nylsulfide (OCS) molecules2°, with >80% purity, as a showcase.
Two off-resonant near-IR pump pulses of 800 nm central
wavelength, separated by 38.1(1) ps and with a pulse duration
of 250 fs, that is much shorter than the rotational period of OCS
of 82.2 ps, were used to create the rotational wavepacket. These
pulses were linearly polarised parallel to the detector plane.
The probe pulse with a central wavelength of 1.75um was
polarised perpendicularly to the detector plane to minimise the
effects of geometric alignment and ensures that the observed

degree of alignment was a lower boundary of the real value. The
probe pulse multiply ionised the molecules, resulting in
Coulomb explosion into ionic fragments. Two-dimensional
(2D) ion-momentum distributions of OT fragments, which
reflect the orientation of the molecules in space at the
instance of ionisation, were recorded by a velocity map imaging
(VMI) spectrometer?’ for different time delays between the
alignment pulse sequence and the probe pulse. Further details
of the experimental setup are presented in the “Methods”
section.

Experimental movie. In Fig. 1, snapshots of the experimentally
recorded molecular movie, that is 2D ion-momentum dis-
tributions, are shown for several probe times covering a whole
rotational period. The phase of 0 and 27 correspond to t=
38.57 and 120.78 ps after the peak of the first alignment-laser
pulse at t=0, respectively. The simplest snapshot-images,
reflecting an unprecedented degree of field-free alignment
(cos26,p) = 0.96, were obtained for the alignment revivals
at phases of 0 and 27, which correspond to the prompt align-
ment and its revival regarding the second laser pulse. Here, the
molecular axes are preferentially aligned along the alignment-
laser polarisation. For the antialignment at a phase of 7 the
molecules are preferentially aligned in a plane perpendicular to
the alignment-laser polarisation direction. Simple quadrupolar
structures are observed at 77/2 and 37/2. At intermediate times,
at 7/3 or 7n/12, the images display rich angular structures,
which could be observed due to the high angular experimental
resolution of the recorded movie, which is 4° as derived in the
Supplementary Note 4. This rich structure directly reflects the
strongly quantum-state selected initial sample exploited in
these measurements, whereas the structure would be largely lost
in the summation of wavepackets from even a few initially
populated states.

Analysis of the rotational dynamics and the degree of align-
ment. The dynamics was analysed as follows: through the inter-
action of the molecular ensemble with the alignment-laser pulses,
a coherent wavepacket was created from each of the initially
populated rotational states. These wavepackets were expressed as
a coherent superposition of eigenfunctions of the field-free rota-
tional Hamiltonian, that is

Y(0,¢,t) = Za,(t)Y]M(G, ), (1)
T

with the time-dependent complex amplitudes a(t), the spherical
harmonics Y}(6, ¢), the quantum number of angular momen-
tum J, and its projection M onto the laboratory-fixed axis defined
by the laser polarisation. We note that M was conserved and thus
no ¢ dependence existed. The angular distribution is defined as
the sum of the squared moduli of all ¥(0, ¢, t) weighted by the
initial-state populations.

The degree of alignment was extracted from the VMI images
using the commonly utilised expectation value {cos26,p). The
maximum value observed at the alignment revival reached 0.96,
which, to the best of our knowledge, is the highest degree of field-
free alignment achieved to date. Comparing the angular
distributions at different delay times with the degree of alignment
(cos20,p), see Supplementary Fig. 4, we observed the same degree
of alignment for angular distributions that are in fact very
different from each other. This highlights that much more
information is contained in the angular distributions than in the
commonly utilised expectation valuel”. Indeed {cos?6,p), merely
describes the leading term in an expansion of the angular
distribution, for instance, in terms of Legendre polynomials, see
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Fig. 1 Rotational clock depicting the molecular movie of the observed quantum dynamics. Individual experimental VMI images of Ot ion-momentum
distributions depicting snapshots of the rotational wavepacket over one full period. The displayed data were recorded from the first (prompt) revival at
38.57 ps (0) to the first full revival at 120.78 ps (2x); the phase-evolution of z/12 between images corresponds to ~3.43 ps and the exact delay times of the
individual images are specified. Full movies are available as Supplementary Movies 1 and 2

(1) in the Supplementary Note 2. In order to fully characterise the
angular distribution a description in terms of a polynomial series
is necessary that involves the same maximum order as the
maximum angular momentum Jp,,,x of the populated rotational
eigenstates, which corresponds to, at most, 2], lobes in the
momentum maps.

As the probe laser is polarised perpendicularly to the detector
plane, the cylindrical symmetry as generated by the alignment-laser
polarisation was broken and an Abel inversion to retrieve the 3D
angular distribution directly from the experimental VMI images
was not possible. In order to retrieve the complete 3D wavepacket,
the time-dependent Schrodinger equation (TDSE) was solved for a
rigid rotor coupled to a non-resonant ac electric field representing
the two-laser pulses as well as the dc electric field of the VMI
spectrometer. For a direct comparison with the experimental data
the rotational wavepacket and thus the 3D angular distribution was
constructed and, using a Monte-Carlo approach, projected onto a
2D screen using the radial distribution extracted from the
experiment at the alignment revival at 120.78 ps. The relation
between the 3D rotational wavepacket and the 2D projected density
is graphically illustrated in Supplementary Fig. 2. The anisotropic
angle-dependent ionisation efficiency for double ionisation, result-
ing in a two-body breakup into O" and CS™ fragments, was taken
into account by approximating it by the square of the measured
single-electron ionisation rate. Non-axial recoil during the frag-
mentation process is expected to be negligible and was not included
in the simulations.

Fitting procedure and the computed molecular movie. The
initial-state distribution in the quantum-state selected OCS
sample as well as the interaction volume with the alignment and
probe lasers were not known a priori and used as fitting para-
meters. For each set of parameters the TDSE was solved and the
2D projection of the rotational density, averaged over the initial-
state distribution and the interaction volume of the pump and
probe lasers, was carried out. The aforementioned expansion in
terms of Legendre polynomials was realised for the experimental
and simulated angular distributions and the best fit was deter-
mined through least squares minimisation, see Supplementary
Note 2. Taking into account the eight lowest even moments of the
angular distribution allowed to precisely reproduce the experi-
mental angular distribution. The results for the first four
moments are shown in Fig. 2a; the full set is given in Supple-
mentary Fig. 3 as well as the optimal fitting parameters in Sup-
plementary Note 2. The overall agreement between experiment
and theory is excellent for all moments. Before the onset of the
second pulse, centred around t = 38.1 ps, the oscillatory structure
in all moments is fairly slow compared to later times, which
reflects the correspondingly small number of interfering states in
the wavepacket before the second pulse, and the large number
thereafter.

Theoretical images, computed for the best fit parameters, are
shown in Fig. 2b; a full movie is provided as Supplementary
Movie 1. The theoretical results are in excellent agreement with
the measured ion-momentum angular distributions at all times,
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Fig. 2 Decomposition of angular distributions into their moments. a Comparison of the decomposition of the experimental and theoretical angular
distributions in terms of Legendre polynomials. b Simulated and experimental angular-distribution VMI images for selected times; the radial distributions in
the simulations are extracted from the experimental distribution at 120.78 ps, see text for details
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Fig. 3 Populations and phase differences in the rotational wavepacket at alignment and antialignment times. a Rotational-state populations and b phase
differences to the phase of the state with largest population, J =2, J = 6, respectively, at the alignment revival following a single-pulse excitation, 2.78 ps
(blue dots), and the two-pulse excitation, 120.78 ps (red dots) as well as for the antialignment at 79.58 ps (black dots, populations coincide with the red

dots). Only states with even angular momentum are populated due to the Raman-transition selection rules AJ=+2

see Supplementary Note 3, and prove that we were able to fully
characterise the 3D rotational wavepacket with the amplitudes
and phases of all rotational states included.

Populations and phases in the wavepacket. In Fig. 3a, the
extracted rotational-state populations are shown for the wave-
packet created from the rotational ground state after the first and
the second alignment-laser pulse. It clearly shows that the
rotational-state distribution is broader after the second pulse,
reaching up to J>16. This also matches the convergence of the
Legendre-polynomial series, with eight even terms, derived from
the fit to the data above. In Fig. 3b the corresponding phase
differences for all populated states relative to the state with the
largest population in the wavepacket are shown, where ¢(J) is
the phase of the complex coefficient g; in (1). Combining these
populations and phases it became clear that the very high degree
of alignment after the second alignment pulse arises from the
combination of the broad distribution of rotational states,
reaching large angular momenta, and the very strong and flat
rephasing of all significantly populated states at the revival at
120.78 ps, Fig. 3b (red). Similarly, the antialignment at 79.58 ps
occurs due to alternating phase differences of 7 between adjacent
populated rotational states, Fig. 3b (black).

Discussion

We were able to record a high-resolution molecular movie of the
ultrafast coherent rotational motion of impulsively aligned OCS
molecules. State-selection and an optimised two-pulse sequence
yielded an unprecedented degree of field-free alignment of
(cos20,, = 0.96), with a very narrow angular confinement of
13.4° FWHM, shown in Supplementary Note 5. Limiting the
analysis to a determination of {cos?6,p), as it is common in
experiments on time-dependent alignment, did not allow to
capture the rich rotational dynamics, while the use of a poly-
nomial expansion up to an appropriate order did. We completely
unravelled the rotational wavepacket, from which the complex
coefficients and, hence, the full information about the rotational
wavepacket under study was extracted. The 2D projection of the
obtained rotational wavepacket allowed a direct comparison with
the experimentally measured data.

Regarding the extension toward the investigation of chemical
dynamics, we point out that strong-field-ionisation-induced
Coulomb-explosion imaging can be used, for instance, to image
the configuration of chiral molecules?® or internal torsional
dynamics?. Following the dynamics of such processes with the
detail and quality presented here would directly yield a mole-
cular movie of the chemical and, possibly, chirality dynamics3°.
Furthermore, the very high degree of field-free alignment
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achieved here would be extremely useful for stereochemistry

studies3132 as well as for molecular-frame imaging experi-
mentsh5:14,33-38

Methods

Experimental setup. A cold molecular beam was formed by supersonic expansion
of a mixture of OCS (500 ppm) in helium, maintained at a backing pressure of 90
bar from a pulsed Even-Lavie valve?® operated at 250 Hz. After passing two
skimmers, the collimated molecular beam entered the Stark deflector. The beam
was dispersed according to quantum state by a strong inhomogeneous electric
field?® with a nominal strength of ~200 kV/cm. Through a movable third skimmer,
the molecular beam entered the spectrometer. Here, it was crossed at right angle by
laser beams, where the height of the laser beams allowed to probe state-selected
molecular ensembles, that is a practically pure rovibronic-ground-state sample of
0CS16:20,40,

The laser setup consisted of a commercial Ti:Sapphire laser system (KM labs)
delivering pulses with 30 m] pulse energy, 35 fs (full width at half maximum
(FWHM)) pulse duration, and a central wavelength of 800 nm at a 1 kHz repetition
rate. One part (20 mJ) of the laser output was used to pump a high-energy tunable
optical parametric amplifier (HE-TOPAS, Light Conversion) to generate pulses
with a central wavelengths of 1.75 um, a pulse duration of 60 fs, and a pulse energy
of ~1.5m]J. Totally, 900 puJ of the remaining 800 nm laser output was used for the
laser-induced alignment, that is the generation of the investigated rotational
wavepackets. This beam was split into two parts with a 4:1 energy ratio using a
Mach-Zehnder interferometer. A motorised delay stage in one beam path allowed
for controlling the delay between the two pulses. This delay was optimised
experimentally and maximum alignment was observed for 7., = 38.1 +0.1 ps, in
perfect agreement with the theoretically predicted 7, = 38.2 ps. The pulses were
combined collinearly and passed through a 2 cm long SF;; optical glass to stretch
them to 250 fs pulse duration (FWHM). Then the alignment pulses were collinearly
overlapped with the 1.75 pm mid-infra-red pulses using a dichroic mirror. All
pulses were focused into the VMI spectrometer using a 25 cm focal-distance
calcium fluoride lens.

At the centre of the VMI the state-selected molecular beam and the laser beams
crossed at right angle. Following strong-field multiple ionisation of the molecules, the
generated charged fragments were projected by the VMI onto a combined
multichannel-plate phosphor-screen detector and read out by a charge-coupled device
camera. The angular resolution of the imaging system is 4°, limited by the 1 megapixel
camera, see Supplementary Note 4. 2D ion-momentum distributions of OF fragments
were recorded as a function of the delay between the 800 nm pulses and the ionising
1.75 um pulses in order to characterise the angular distribution of the molecules
through Coulomb-explosion imaging. The polarisation of the 800 nm alignment
pulses was parallel to the detector screen whereas that of the 1.75 um ionising laser
was perpendicular in order to avoid geometric-alignment effects in the angular
distributions. For this geometry, unfortunately, it was not possible to retrieve 3D
distributions from an inverse Abel transform. Totally, 651 images were recorded in
steps of 193.4 fs, covering the time interval from —0.7 ps up to 125 ps, which is more
than one-and-a-half times the rotational period of OCS of 82.2 ps.

Data availability

All datasets generated in this study are available from the corresponding author on
reasonable request. The original data are also available as the individual frames of the
movie files in the Supplementary Movies 1 and 2 of this paper.
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