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Tomonaga–Luttinger liquid behavior and spinon
confinement in YbAlO3

L.S. Wu1,2, S.E. Nikitin3,4, Z. Wang 5, W. Zhu6,7, C.D. Batista 5,8, A.M. Tsvelik9, A.M. Samarakoon1,

D.A. Tennant 8,10, M. Brando3, L. Vasylechko11, M. Frontzek 1, A.T. Savici 1, G. Sala 1, G. Ehlers 12,

A.D. Christianson 1,10, M.D. Lumsden 1 & A. Podlesnyak 1

Low dimensional quantum magnets are interesting because of the emerging collective

behavior arising from strong quantum fluctuations. The one-dimensional (1D) S= 1/2 Hei-

senberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as

spinons, carry fractional spin S= 1/2. These fractional modes can be reconfined by the

application of a staggered magnetic field. Even though considerable progress has been made

in the theoretical understanding of such magnets, experimental realizations of this low-

dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets

because of the large effective spin anisotropy induced by the combination of strong spin–orbit

coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite

YbAlO3 provides a realization of a quantum spin S= 1/2 chain material exhibiting both

quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement

transitions in different regions of magnetic field–temperature phase diagram.
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The spin S= 1/2 antiferromagnetic Heisenberg Hamiltonian
is one of the simplest models of condensed matter physics
containing fractional quantum number excitations. The

phase diagram of this model includes both quantum critical (for
easy-plane anisotropy) and gapped phases (for the easy-axis ani-
sotropy). Spinons are topological excitations which can be pic-
tured as domain walls between different Néel ground states of the
system (this picture is especially appropriate for the moments with
easy-axis anisotropy). In view of its exotic physics, it is exciting to
find realizations of this model and it is particularly exciting to find
them in unexpected places. The three-dimensional metallic system
Yb2Pt2Pb is a recent example, where the neutron scattering
revealed the existence of one-dimensional spinon continuum1,2.
The unusual properties of Yb2Pt2Pb were initially attributed to its
peculiar crystal structure3,4, but more recent work1 demonstrated
that the peculiar form of exchange interactions in rare earth ions
plays a dominant role. However, the metallic nature of this
material complicates the analysis of its magnetic properties.

Here we discuss the insulating analog of Yb2Pt2Pb, namely
Yb-based quasi-1D quantum magnet, YbAlO3

5. RKKY inter-
actions are not present because YbAlO3 is an insulator. Despite
the strong uniaxial single-ion anisotropy of the Yb magnetic
moments, our neutron scattering data demonstrate that,
unlike Yb2Pt2Pb, YbAlO3 is described by a nearly isotropic
(Heisenberg) intrachain interaction, which results in
Tomonaga–Luttinger liquid behavior6–8 over a finite window
of applied magnetic field values. Below the Néel temperature
TN= 0.88 K, the ordered moments from neighboring chains
produce a staggered molecular field that confines the fractional
spinon excitations. An additional advantage of YbAlO3 is that
the moments can be saturated with a relatively low magnetic
field of 1.1 T, enabling exploration of the entire magnetic
field–temperature phase diagram.

Results
Magnetization, single-ion anisotropy, and two magnetic sub-
lattices. YbAlO3 crystallizes in an orthorhombically distorted
perovskite structure9, with room temperature lattice constants
a= 5.126 Å, b= 5.331 Å, and c= 7.313 Å (in conventional Pbnm
notation). The local point-group symmetry of the Yb3+ ions splits
the eight-fold degenerate J= 7/2 (L= 3, S= 1/2) ground state
multiplet (2J+ 1= 8) into four doublet states. The ground
doublet state mJ= ±7/2 with small admixture of other states is
well separated from the first excited levels5. This ensures that the
low temperature and low field magnetic properties can be
described by a pseudospin 1/2 model.

Crystalline electrical field (CEF) calculations and magnetiza-
tion measurements reveal strong uniaxial (Ising-like) single-ion
anisotropy, with easy-axis in the ab-plane. Figure 1a–c shows the
field dependence of magnetization, M, measured at T= 2 K. At
B= 5 T, the angle-dependent magnetization (Fig. 1d) is well
described by the function

M � Ms

2
cosðθ � φÞj j þ cosðφþ θÞj jð Þ; ð1Þ

where φ= 23.5° is the tilting angle of the local easy-axis relative to
the a-axis, θ indicates the direction of the applied field in the ab-
plane, and Ms= 3.8 μB/Yb is the saturation moment5. The effective
g-factors from magnetization measurements are: gxx≃ gyy= 0.46,
and gzz= 7.6 (ref. 5), which are consistent with early studies
by Mössbauer effect and electron paramagnetic resonance
measurements10,11.

In addition to the g-tensor anisotropy, the field-dependent
magnetization reveals that the coupling between Ising moments
with different tilting angles ±φ is weak: only one transition is
observed for B || a, B || b (Fig. 1a, b), while two successive
transitions are found for B || [110] (Fig. 1c), suggesting that
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Fig. 1 Single-ion anisotropy of YbAlO3. a–c Field-dependent magnetization M (black circles) and magnetic susceptibility dM/dB (red line) of YbAlO3,
measured at T= 2 K with field along the axes B || a, B || b and B || [110], as indicated. The insets are sketches of the magnetic moment configurations in
different field ranges. d Angle-dependent magnetization measured at T= 2 K and B= 5 T. Red arrows schematically show a moment configuration of Yb3+

at zero field with angle φ= 23.5° between the a-axis and the Yb magnetic moment. The solid line is the calculation, as described in the text
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magnetic moments with different easy-axis orientation can be
individually tuned.

Model Hamiltonian and zero-field inelastic neutron scattering
spectrum. The most important aspect of the Yb-physics is the
exchange interaction. Contrary to naive expectations, the Yb
Kramers doublets do not behave as classical Ising spins when they
interact with each other. The exchange processes between the
pseudospins on the same chain include spin flip terms of quan-
tum origin. The reason for this was described in ref. 1: the super-
exchange interaction between total angular momenta of rare earth
ions includes matrix elements between all eigenstates, not just
between those differing by δJz= ±1. Being projected on the lowest
Kramers doublet, this interaction acquires the familiar SaSa form.
We remind the reader that spin S= 1/2 operators Sa act on the
Kramers doublet and, to a very good approximation, only Sz is
linearly related to the total angular moment: Jz= gzzSz with gzz≃
7.6 gxx ’ gyy � gzzð Þ.

The magnetic coupling between different sublattices is
dominated by the long-range dipole–dipole interaction, which
results in a weak ferromagnetic (FM) Ising-like coupling of type
Szi S

z
j in terms of the effective spins (see Supplementary Note 2). In

contrast, the intrachain interaction between neighboring spins is
dominated by antiferromagnetic (AFM) super-exchange. This
combination leads to an AxGy-type AFM ordering5 below the
Néel temperature TN= 0.88 K (see Fig. 2a). Above TN, the weaker
dipole–dipole interchain interaction can be neglected, since
thermal fluctuations have destroyed the interchain ordering. In
this free-standing 1D chain picture, the elementary excitations are
fractional spinons, instead of the conventional magnons (S= 1)
of the magnetically ordered state. As illustrated in Fig. 2b–d, a
pair of domain walls can propagate along the chain direction,
behaving as free spin 1/2 spinons for T > TN. Below TN, the
staggered interchain molecular field (Bst) produces a confining
potential that increases linearly in the distance between both
spinons (Fig. 2e). Consequently, spinons get confined into bound
states at temperatures below TN12.

In view of these considerations, the magnetic properties of
YbAlO3 can be described with an effective 1D spin-1/2 Hamiltonian

H ¼ J
X
i

Si � Si þ 1 � Bst

X
i

ð�1ÞiSzi � Bex

X
i

Szi ; ð2Þ

where x, y, and z are defined in Fig. 2b, J is the intrachain
Heisenberg exchange, Bst is the effective staggered molecular field
generated below TN, and Bex is the external magnetic field applied
along the local moments easy z-axis. The pseudospin S= 1/2
operators Sa act on the Kramers doublet, consisting of the mJ= ±7/
2 states to a good approximation, which explains the g-tensor
anisotropy. In other words, the magnetic field and the magnetic
moment of the neutron can couple only to the diagonal operator Sz

and the INS spectrum of YbAlO3 is dominated by longitudinal
fluctuations: the very weak g-factor along the transverse directions,
(gxx/gzz)2 ≈ 1/273, renders transverse fluctuations, Sxy(Q, E),
“hidden” to neutrons. Thus, the magnetic excitations observed in
YbAlO3 only arise from longitudinal fluctuations, as demonstrated
by the neutron polarization factor presented in Supplementary
Note 4, and by all the simulated spectra shown in Fig. 3c, d. As we
will see later, the exchange anisotropy turns out to be surprisingly
small in this material. This unexpected situation encountered in an
increasing number of compounds1,13,14 has been analyzed
theoretically in ref. 1 and later in greater detail in ref. 13.

Single crystal inelastic neutron scattering measurements have
been performed to match the Hamiltonian parameters to
experimental observables. The zero-field spectra (Bex= 0) are
presented in Fig. 3a, b at different temperatures (see also
Supplementary Note 3). Gapless spinon excitations along the
chain direction (00L) are observed at 1.0 K (T > TN), with a broad
two-spinon continuum extending from 0 up to about 0.7 meV in
energy transfer (Fig. 3a). No gap in the spin excitation can be
resolved in the paramagnetic (PM) state of YbAlO3 at the
magnetic Brillouin zone center of Q= (001), within the instru-
mental resolution about 0.05 meV. Note that the temperature
(1.0 K) is comparable to the instrumental resolution (0.05 meV),
both of which are much smaller than the bandwidth of the two-
spinon continuum in Fig. 3a, implying that we can safely exclude a
scenario where the continuum arises from thermal or instru-
mental broadening (see also Supplementary Note 5).

In contrast, and in agreement with the analytical result for the
spin-1/2 Heisenberg model in a staggered magnetic field15, a
significant gap is observed below the ordering temperature, with a
massive triplet mode and multi-spinon continuum extending
from about 0.3 to 0.7 meV (Fig. 3b).

As demonstrated in ref. 15, the staggered field leads to strong
confinement of the spinons. In the continuum limit, one can use
bosonization and the Hamiltonian is reduced to the sine-Gordon

Ground state

Spinon

a

a b

c

d

e

b

c

Spinon

z

T>TN
Deconfined

Bst

T<TN
Confined

y

x

Fig. 2 Illustration of the magnetic structure and spinon confinement in YbAlO3. aMagnetic structure below TN= 0.88 K, where the Yb Ising moments align
antiferromagnetically (AFM) in chains along the c-axis. These one-dimensional (1D) chains are ferromagnetically (FM) coupled in ab-plane, which results
in a net staggered field (Bst), as indicated by the large red and blue arrows. b–e Sketch of the spinon generation and confinement in a 1D AFM chain. Since
only longitudinal fluctuations of ΔSz= 0 are observed in YbAlO3, even numbers of Yb moments are flipped in the AF ground state (b), creating pairs of
spinons (c). These spinons can propagate freely (deconfined) along the chain at T > TN (c, d), while in the presence of the effective staggered field at T <
TN, propagation of the spinons costs energy (confined) as the separation increases (e)
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model. The corresponding Lagrangian density is

L ¼ 1
2 c�1ð∂τϕÞ2 þ cð∂xϕÞ2
� �� αBst sinðβϕÞ;

β2 ¼ 2π; c ¼ πJ=2:
ð3Þ

and the spin is related to field ϕ(x):

Szn ¼
β

2π
∂xϕþ ð�1ÞnA sinðβϕÞ; ð4Þ

where A is a nonuniversal amplitude. Here the staggered field is
determined self-consistently as the one generated by the ordered
moments of neighboring chains: Bst ¼ J? Szst

� �
. The exact solution

of the sine-Gordon model for this value of β yields the spectra

EnðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcpÞ2 þ Δ2

n

q
with two excitation branches correspond-

ing to a triplet n= 1 and singlet n= 2 with

Δ2 ¼
ffiffiffi
3

p
Δ1;Δn � JB2

st

� �1=3
. The inverse gap c/Δ ~ (J/Bst)2/3 is

the confinement radius. Since Bst is proportional to the order
parameter, it vanishes at the transition point and the confinement
radius becomes infinite. The triplet excitations with S= 1 are seen
in the dynamical spin susceptibility.

The simulated longitudinal spin excitation spectrum is
presented in Fig. 3c, d, using 64-site density matrix renormaliza-
tion group calculations (DMRG) at T= 0 with periodic boundary
conditions16,17. The Hamiltonian (2) captures the main features
of the experimental data measured at 1 and 0.05 K for intrachain
exchange J= 0.21 meV, staggered field Bst= 0 (Fig. 3c), and
Bst/J= 0.27 (Fig. 3d). It is worth noting that a finite temperature
DMRG calculation for the same model18 can account for the
deviations between the experimental data and our DMRG result
at T= 0.

The nearly isotropic nature of the intrachain interaction may
look surprising if we consider that the Yb3+ ground state doublet
is highly anisotropic. However, as was pointed out in ref. 1, the
exchange interaction of rare earth ions has a form of permutation
operator which has matrix elements between all states. Being
projected on the lowest Kramers doublet by the crystal field, it
acquires the familiar Si · Si+1 form. Apart from Yb2Pt2Pb and
YbAlO3 the only known previous example of Heisenberg-like Yb
chains is Yb4As319,20. It should be noted, however, that the shape
of the neutron scattering spectra is not sufficient to determine the
magnitude of a possible easy-plane exchange anisotropy Δ that
would still be compatible with the observed TLL at zero magnetic
field: for an XXZ chain, the transverse (longitudinal) modes for
0.25≲ Δ≲ 1 (0.5≲ Δ≲ 1) almost do not change21,22. Never-
theless, as we explain in a later section, the observation of a free
fermion fixed point at the saturation field B= Bs excludes the
possibility of a significant easy-plane exchange anisotropy.

The temperature evolution of the energy-dependent scattering
at the AFM zone center Q= (001) is presented in Fig. 3e. The
continuous temperature-dependent entropy S in Fig. 3f suggests
that a second-order transition occurs at TN. The gap in spin
excitations closes within a narrow temperature TN ± 0.1 K, which
is unlikely due to thermal broadening. Figure 3f shows the
temperature dependence of the (001) Bragg peak intensity,
indicating that static moments build up at the phase transition.
Meanwhile, the integrated inelastic neutron intensity shows that
about half of the total spectral weight remains inelastic below TN

(see Fig. 3f). The temperature dependence of entropy (S) is over
plotted in Fig. 3f as well. As expected from the ground state
doublets, the full entropy (R·ln2) is reached above T= 10 K;
however, only about 0.4 R·ln2 is released at TN. This value is
consistent with the neutron scattering results: about half of the
magnetic moment keeps fluctuating in the ordered state.
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Magnetic field-induced quantum phase transitions. With a
magnetic field applied along the a-axis, the static AFM order is
suppressed at the critical field Bc= 0.35 T in favor of incom-
mensurate magnetic ordering. As entering the IC-AFM phase at
Bc, the spin excitation gap in the magnetic zone center Q= (001)
closes abruptly (Figs. 4a–c, 5e, f and 6b). Figure 5a shows the field
dependence of the magnetic contribution to the specific heat CM/
T around Bc. The step-like anomaly becomes smaller and broader
upon decreasing T and finally evolves into a weak maximum
around Bc (see also Supplementary Note 1). Meanwhile, the field-
temperature (B–T) phase line becomes very steep (dB/dT →−∞)
as T approaches 0 K (Fig. 6c). This indicates that the system is
tuned through a first-order phase transition at T= 0 K23, which is
consistent with the neutron scattering observations (Fig. 6b).

For B > Bc, the longitudinal (Szz(Q, E)) and transverse (Sxx(Q,
E), Syy(Q, E)) components of the dynamical spin structure factor
behave differently24. The bosonization formula (4) is modified in
the presence of finite magnetization 〈Sz〉=M:

Szn ¼ M þ β

2π
∂xϕþ A sinðβϕþ 2πMnÞ; ð5Þ

Therefore, in the field-induced incommensurate phase, the
interchain interaction becomesX

i;j

JijS
z
i S

z
j !

X
i;j

JijA
2 cos β ϕi � ϕj

	 
h i
: ð6Þ

The oscillatory term does not survive after summing over the
phases. As we have mentioned above, the spectral gap is
suppressed when the magnetic field exceeds the critical value,
and the single-chain system becomes critical. However, the
interchain coupling remains relevant and leading to long-range
magnetic ordering and the corresponding thermodynamic phase
transition (see Figs. 5b and 6c). Below the transition one can
expand the cosine in (6) and obtain the quadratic action for ϕ so
that the interaction leads to a gapless phason mode, which
explains a finite low-energy spectral weight on Fig. 5f, and a
significant CM/T values below the transition:

ω2 ¼ v2q2jj þ
X
j

ajsin
2ðqej=2Þ: ð7Þ

At higher energies one can again approximateP
j cos β ϕi � ϕj

	 
h i
� cos βϕi

P
j cos βϕj

D E
to obtain the effec-

tive sine-Gordon model, as it was done in ref. 15. The gapped
S= 1 excitations of the sine-Gordon model are allowed to decay
into low-energy phasons and become resonances.

Figures 4a–c and 6b include the experimental spin excitation
spectra of YbAlO3 for different external fields. The low energy
features discussed above are obscured in the color pictures since the
main spectral weight remains in the single chains. The Q-cuts show
that the incommensurate (IC) zero energy soft modes are
symmetrically located around the AF zone center (Fig. 4d–f)24.
The shift of these IC wave vectors QL= 1 ±ΔqL is directly
proportional to the field-induced magnetization M, i.e., ΔqL~
2πM/Ms. As one can see in Fig. 6a, the INS zero energy soft point
traced the magnetization curve up to about 1.0 T. Finally, all the
magnetic moments become fully polarized above the saturation field
Bs= 1.1 T. As we have emphasized before, no magnon-like spectra
can be observed for B > Bs, because the modes become purely
transverse.

For Bc < B < Bs, the Yb3+ moments are highly fluctuating even in
the ordered phase. Figure 5d–f shows the energy-dependent neutron
scattering intensity integrated over the first Brillouin zone. The
integrated intensity up to 0.8meV, Sint ¼

RR
S Q; Eð Þ dQdE, is then an

estimate of the square of the fluctuating moment. In zero field, Sint at

0.05 K (AFM ordered state) is about 0.37/0.85≃ 44% (normalized by
the intensity at T= 1 K and B= 0); while in 0.6 T, it reaches about
0.72/0.85≃ 85%. Similar conclusions are found in the temperature-
dependent specific heat and entropy as well. The integrated
temperature-dependent entropy shown in Fig. 5c reveals that only
10–20% of R·ln2 is released at the IC-AFM phase transition. These
together suggest that large moment fluctuations coexist with a small
ordered moment (10–20% of the full moment) in the IC-AFM phase
(Fig. 6c).

Since the interchain molecular field is proportional to the
magnitude of the ordered moments, in a first approximation
we can ignore it for Bc < B < Bs. This simplification reduces
the Hamiltonian (1) to the conventional Heisenberg model in an
external field Bex. We again use the DMRG calculation to
obtain the longitudinal spin structure factor Szz(Q, E) above Bc, in
various external fields Bex/J= 0.8, 1.2, 1.6, as presented in
Fig. 4g–i. We note that, although a self-consistent treatment of
the static moments from neighboring chains is required to obtain
a more accurate excitation spectrum, overall qualitative agree-
ment with the experimental data is already achieved at this level
of approximation.

It is interesting to note that an M/Ms= 1/3 magnetization
plateau appears at 0.75 T, indicating the stabilization of a new
magnetic structure. A rather abrupt increase of the magnetic
susceptibility is also observed atM/Ms= 1/2, although no obvious
magnetization plateau can be resolved.

A key and surprising observation of this work is that YbAlO3 can
be modeled by nearly isotropic Heisenberg spin 1/2 chains, despite
the very strong g-tensor anisotropy. This unusual combination
together with the dominant dipolar interchain interactions make
YbAlO3 an ideal material for studying the competition between
sliding TLL’s and spin density wave ordering. Our measured phase
diagram reflects such competition. Each chain behaves as a TLL at
temperatures TN<T � J , while spin density wave ordering (SDW)
develops below TN. The intrachain Hamiltonian has a divergent
longitudinal magnetic susceptibility χ(q, ω) at q= 2kf and ω= 0,
where kf is the Fermi wave vector of the fermionic system associated
with the TLL. Given that kf= ± (m/2+ 1/2)π, with m=M/Ms, kf
increases linearly with M between Bc and Bs (kf= π/2 for 0 ≤ B <
Bc). The Ising-like interchain dipolar interaction favors a collinear
structure with maximum amplitude of the local moment at each
site. However, the magnitude of the moment Szi

� ��� �� is necessarily
modulated for general values of 2kf, leading to competition between
intrachain exchange and the interchain Ising-like dipolar interac-
tion that penalizes any longitudinal modulation of the magnetic
moments. The only exceptions are 2kf equal to 0 (↑↑↑), π (↑↓↑↓) or
±2π/3(↑↑↓). The magnitude of the local moments is not modulated
for these particular ordering wave vectors, implying that intrachain
and interchain interactions can be satisfied simultaneously. Note
that the ↑↑↓ ordering only contains Fourier components q= ±2π/3
plus the field-induced q= 0 component. The lack of competition
for these special cases explains the observed magnetization plateaus
at m= 0, 1, and 1/3. A spin density wave with dominant 2kf
ordering wave vector is expected for other magnetization values, as
it is confirmed by the fact that the ordering wave vector extracted
from the INS data tracks the magnetization curve (see Fig. 4a).
However, we expect that higher harmonics will be induced for this
magnetization values producing spin superstructures similar to
those emerging from the anisotropic next-nearest-neighbor Ising
(ANNNI) model25–27.

Quantum critical scaling and universality class. The quantum
phase transition at the saturation field is of second order, implying
a quantum critical point (QCP) at B= Bs and T= 0. This QCP is
a Gaussian fixed point because the effective dimension of the
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low-energy effective theory is D= 3+ 1 (the dynamical exponent is
z= 1 because of the exchange anisotropy). For temperatures higher
than the exchange anisotropy and the interchain coupling, we expect
a crossover into a regime controlled by a free fermion fixed point (ν
= 1/2) in dimension D= 1+ 2 (the dynamical exponent becomes z
= 2 because the field couples to a conserved quantity in the absence
of exchange anisotropy)28,29.

Figure 7a shows the field-dependent magnetization M at
different temperatures for T > 0.5 K. Near the QCP, the magnetic

susceptibility scales as

dM
dB

¼ ~Bνðd þ zÞ�2φ
T
~Bνz

� 
; ð8Þ

where d is the spatial dimension and ~B ¼ B� Bsj j. The values d,
ν, and z can be obtained by minimizing the deviations from this
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scaling behavior (see Supplementary Note 6), giving:

νz ¼ 1:04; ð9Þ

2� νðd þ zÞ ¼ 0:51: ð10Þ

As shown in Fig. 7b, this set of exponents collapses the measured
susceptibility data.

In addition, the field-dependent specific heat should obey the
following scaling relation30–33:

ΔCM

T
¼ ~Bνðd�zÞψ

T
~Bνz

� 
¼ ~B�0:5ψ

T
~B

� 
; ð11Þ

where

ΔCM

T
¼ CMðBÞ

T
� CMðBsÞ

T
: ð12Þ

The measured temperature-dependent CM/T curves, shown in
Fig. 7c, collapse into a single curve for T ≥ 0.3 K, once they are
rescaled with νz= 1 and d= 1 (see Fig. 7d).

CM(B)/T exhibits a clear two-peak structure in the vicinity of
the quantum critical region for each fixed temperature T ≥ 0.3 K
(star markers in Fig. 7e). This is consistent with the expectation of
the 1D TLL behavior as discussed in ref. 34. Defining this peak
position as the crossover temperature T* into the quantum critical
regime, the linear dependence T� � ~Bνz with νz= 1 for T ≥ 0.3 K
again agrees with the free fermion fix point (Fig. 7e, f). We note
that the free fermion fixed point is only compatible with an
isotropic exchange interaction because the applied magnetic field
is nearly orthogonal to the uniaxial symmetry chain axis (as
shown in Fig. 2, the magnetic moments are nearly perpendicular
to the chains). Any type of exchange anisotropy would then
change the universality class of this QCP to Ising in D= 1+ 1
(z= ν= 1). The single-chain Hamiltonian must then be isotropic
(Heisenberg) for the model to retain a U(1) symmetry in the
presence of the external magnetic field. Based on the above-
described analysis and the value of the exchange parameter
(J ≈ 0.21 meV), we can narrow down the range of the exchange
anisotropy to 0.88≲ Δ≲ 1.

Discussion
Our results demonstrate that f-electron-based magnets can provide
realizations of various aspects of quasi-one-dimensional physics.
This is so despite the presence of strong spin–orbit coupling
combined with crystal field splitting that produce a ground state
Kramers doublet with well separated values of mJ. Naively one
would think about such doublets should behave as classical (Ising)
spins. This unexpected situation, which is appearing in an
increasing number of Yb-based compounds1,13,14, enables the
study of model Hamiltonians, which have traditionally been
regarded as “toy models” due to the combination of interactions
that do not appear together. The array of TLL’s coupled by
density–density interactions is a clear example of a model that was
originally introduced to study the possible existence of sliding TLL
phases, but it is difficult to find in real materials due to the very
unusual combination of intrachain XXZ exchange and pure Ising
interchain interaction. YbAlO3 provides a natural realization of the
spin 1/2 version of this model, enabling the observation of a
quantum fractional spinon continuum above TN and the transition
into a confined (magnetically ordered) low-temperature state
characterized by massive excitations. Both, the gapless spinon
spectrum and the critical behavior around the saturation field at
T > TN unambiguously demonstrate that the intrachain exchange is
Heisenberg-like to a very good approximation.

Rau and Gingras13 derived an isotropic super-exchange interac-
tion for Yb-based compounds with edge-sharing octahedra. While it
is not yet clear that this result applies directly to our material, it
shows that Yb-based compounds can support nearly isotropic
super-exchange of the type that we are finding in YbAlO3. Also,
note that further experiments such as an electron spin resonance
would help quantify the small anisotropies in this system.

Our observations in YbAlO3 suggest that it is worth exploring
other members of the rare earth perovskite family RMO3.
Compared to most of the d-electron-based spin chains with cri-
tical fields of the order 10–100 T, YbAlO3 can be saturated with a
field of order 1 T owing to the much weaker exchange interaction
J and large value of the effective g-factor. In addition, the crystal
structure naturally adapts to existing standard perovskite thin
film substrates. These properties can be exploited in future
spinon-based research35 for material engineering under easily-
accessible laboratory conditions.

Methods
Sample preparation and thermal property measurements. YbAlO3 single
crystals were grown by the Czochralski technique9. Magnetization measurements
were carried out using three magnetometers for different temperature ranges:
commercial vibration sample magnetometer Quantum Design Magnetic Property
Measurement System (MPMS-VSM) for the high-temperature measurements
T= 1.8–400 K, MPMS-3 with 3He insert for the temperatures T= 0.5–4 K, and
high-resolution capacitive Faraday magnetometer36 for the low-temperature range
T= 0.05–0.9 K. The specific heat measurements were carried out using the
relaxation time method, with a Quantum Design Physical Property Measurements
System down to temperatures of 0.36 K and a custom compensated heat-pulse
calorimeter with dilution refrigerator insert at MPI CPfS37.

Neutron scattering. Neutron scattering measurements were performed at two
fixed incident energy of 3.32 meV (λi= 4.97 Å) and 1.55 meV (λi= 7.26 Å), with
the time-of-flight Cold Neutron Chopper Spectrometer38,39, at the Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory. A single crystal of
YbAlO3 of about 0.59 g was aligned in the (0KL) scattering plane, with magnetic
field along the vertical [100] direction. A dilution refrigerator insert that can access
temperatures as low as 0.05 K was used. The software packages DAVE40 and
MantidPlot41 were used for data reduction and analysis.

We applied two different methods to remove the background near |Q|= 0 from
the direct beam. For zero field data we used an empty can file. For measurements
under different fields, we used the high field data at 2 T for background subtraction
(almost all the magnetic inelastic signal of the Yb Ising moments is suppressed
above the saturation field of 1.1 T). As presented in Figs. 3–5, the background
correction produces some uncertainty within the instrumental resolution of
±0.05meV, but it removes the instrumental background for all the other inelastic
energy range.

Data availability
The datasets generated during the current study are available from the corre-
sponding author on reasonable request.
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