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Dynamic Network Characteristics 
of Power-electronics-based Power 
Systems
Yuxi Ji1, Wei He1, Shijie Cheng1, Jürgen Kurths2,3,4 & Meng Zhan1 ✉

Power flow studies in traditional power systems aim to uncover the stationary relationship between 
voltage amplitude and phase and active and reactive powers; they are important for both stationary 
and dynamic power system analysis. With the increasing penetration of large-scale power electronics 
devices including renewable generations interfaced with converters, the power systems become 
gradually power-electronics-dominant and correspondingly their dynamical behavior changes 
substantially. Due to the fast dynamics of converters, such as AC current controller, the quasi-stationary 
state approximation, which has been widely used in power systems, is no longer appropriate and should 
be reexamined. In this paper, for a better description of network characteristics, we develop a novel 
concept of dynamic power flow and uncover an explicit dynamic relation between the instantaneous 
powers and the voltage vectors. This mathematical relation has been well verified by simulations on 
transient analysis of a small power-electronics-based power system, and a small-signal frequency-
domain stability analysis of a voltage source converter connected to an infinitely strong bus. These 
results demonstrate the applicability of the proposed method and shed an improved light on our 
understanding of power-electronics-dominant power systems, whose dynamical nature remains 
obscure.

Power systems have been gradually changing in its primary equipment recently with the increasing penetration of 
large-scale power electronics devices, including renewable energy devices such as wind turbines and photovoltaic 
cells, and high voltage direct current. Such a change with high shares of power electronic converters has been 
generally believed as the second revolution of power systems since the first established over 100 years ago, and the 
new-generation power system has been called power-electronics-based or power-electronics-dominant1. Due to 
the broad substitution of the primary equipment with power electronics devices, the system dynamical behavior 
changes substantially accompanying with the change of device characteristics. So far, a variety of serious accidents 
in the power-electronics-dominant power system have been happening worldwide, and their physical mechanism 
remains under-explored2. It is a great challenge to establish a new framework for the new-generation power sys-
tem dynamics, and to deal with these frequently occurring oscillatory accidents. Due to the faster dynamics of 
controllers of power electronic converters, it becomes necessary to study the corresponding network dynamics.

The traditional power system consists of generating equipment, network, and loads, and the basic function in 
the power-electronics-dominant power system for energy conversion and transmission is unchanged. Both device 
and network characteristics are of key importance in determining the system dynamics3–5 For the synchronous 
generator (SG), which is dominant in the traditional power system, the rotor’s rotation frequency only slightly 
fluctuates around the working frequency due to the large inertia of the rotor. Hence, this device characteristic 
of SG makes it reasonable to neglect the influence of frequency variations on network parameters and treat the 
system variables as stationary working always around the working frequency. As a result, the classical power 
flow (or called load flow) calculation for uncovering the stationary relation between the amplitude and phase of 
the voltage and the active and reactive powers has been directly borrowed. The so-called quasi-stationary state 
(QSS) approximation has been broadly and successfully used in the traditional power system dynamics study, 
which simplifies the dynamical behavior analysis of the grid. With the so-called differential-algebraic description 
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including differential equations for the dynamic device and algebraic equations for the stationary network, the 
physical picture for the traditional power system electromechanical transient becomes clear and the system com-
plexity in analysis and calculation is greatly reduced. For some recent studies in nonlinear dynamics community 
under such a differential-algebraic description, such as cascading failure for power blackout and synchronization 
in coupled 2-order Kuromoto oscillators, see, e.g6–16.,

On the contrary, in power-electronics-dominant power systems, both device and network characteristics fun-
damentally change. In analyzing power system stability, we care more about the dynamics of equipment compo-
nents and control loops in system level. The dynamics of switching components (above several kHz) is usually 
neglected, and thus the extremely fast switching dynamics of converters are completely not considered in this 
paper. In this respect, the time-scales are decomposed according to the statuses of the different equipment com-
ponents or the response speeds of the different control loops after a disturbance. For instance, a direct-driven 
wind turbine connected to a grid through a voltage source converter (VSC) is typically featured with a multi-time 
scale character, namely, the AC current controller typically has the shortest time constant (around 10 ms), the 
DC voltage controller has a medium time constant (around 100 ms), and the mechanical speed controller has the 
longest time constant (around 1000 ms), depending on the level of energy storage with which the corresponding 
controller is associated17. Thus, within the fastest time scale of power-electronics devices, such as that of the 
AC current controller, the assumption of a stationary network may not be satisfied, since power converters, in 
contrast to synchronous generators, have fast time constants that are in a similar range as the time constants of 
electromagnetic transients. Under this situation, the dynamics of the non-reduced network should be carefully 
considered in the whole system analysis. Note that some studies on the propagation of disturbances in renewable 
energy grids still used the stationary assumption for networks18.

Indeed, there are several other recent studies on modeling of some detailed inductor and capacitor in net-
works directly by their differential and integral equations, instead of setting a constant reactance at the working 
frequency. Most of them focused on a small-signal stability analysis. For example, the current of each transmis-
sion line was chosen as state variables, and the system state matrix was derived in a common rotating DQ frame 
by combining the state equation of the network with other components such as converters and loads19,20 The 
network dynamics was considered under the relation between the node current and voltage, and the admittance 
matrix of the network in the frequency domain was obtained21. In22, the small-signal frequency domain model 
of network in the polar coordinates was established, based on a transfer function matrix defined by a generalized 
impedance concept. A few models of dynamic network have also been built and studied numerically in electro-
magnetic transient simulations23,24 In addition, the concept of dynamic phasor was proposed to generalize the 
idea of quasi-static phasors, by representing voltage and current signals by Fourier series expansions in which 
the harmonic components are evaluated over a moving time window25. This gives an accurate representation of 
the system, while using a relatively larger numerical step size compared to the electromagnetic transient simula-
tions26. In27, power networks were modeled using dynamic phasors in the dq0 reference frame, which offers a high 
accuracy and fast simulation. It is notable that most of these studies relied on the direct relation between current 
and voltage, and focused on the small-signal stability. However, we would like to emphasize that the essence of 
oscillations in a power system is power conversion. A direct relation between current and voltage may fail to 
reflect the contribution of networks as an energy transfer element to the system oscillations. In order to have a 
better understanding of the oscillation mechanism in power-electronics-dominant power systems, we need an 
extension from the stationary power flow. Note that along this line, Zhang et al. have made a fundamental contri-
bution by proposing a power-synchronization control and a Jacobian transfer matrix approach for the network 
dynamics, but still within the framework of small-signal stability28–30.

In the studies of power-electronics-dominant power system dynamics, a novel method of so-called 
amplitude-phase motion equation has been proposed and developed very recently31–35 Basically, it borrows the 
electromechanical motion equation for the SG’s rotor, the swing equation, namely, the rotor’s motion (or state) 
is solely determined by the imbalance between the input mechanical power and the electromagnetic power, and 
intends to describe the dynamics (motion equation) of various types of power electronics devices in a unified 
mechanical-like way. From a system science point of view, each device should be expressed by its unique external 
characteristics as an electromotive force (EMF). Correspondingly, the network, as usual, works as a reservoir 
for the interaction of all these devices connected to the grid. To sum up, the amplitude-phase motion equation 
method views each device by taking the imbalanced powers as input, and the amplitude and phase of the EMF 
as output, and meanwhile it treats the network by taking EMF as input and power as output. A schematic show-
ing the interaction of devices through the network is illustrated in Fig. 1. It establishes a functional connection 
between various power-electronics devices in a general, unified manner, and focuses on the external charac-
teristics of devices and network by simple input-output relations. Until now in this direction, several models of 
devices, such as wind turbine at different time scales, have been well established31,34,35 To further study the whole 
system dynamics as a closed loop under the same framework, we need to develop a dynamic network model, 
which is emphasized by the large black box in Fig. 1.

In the paper, we will concentrate on the dynamic network characteristics of power systems. The resistance of 
typical overhead transmission line is usually around one tenth of its reactance. We assume that the network is 
purely inductive for simplicity, since inductors are the main parts of transmission lines in transmission networks 
working on several hundred kV3, and the results can be easily extended to include resistive elements of transmis-
sion lines. Similar to the power flow concept in traditional power systems, it characterizes the relation between 
the active and reactive powers and the amplitude and phase of the bus voltage. Nevertheless, differently now all 
voltage states have a time-varying frequency (not constant fundamental frequency) and should be treated as a 
space vector (not phasor, which is valid and built on the fundamental frequency). The restriction for a sufficiently 
slow frequency variation used in the traditional power system could be removed. The so-obtained dynamical 
relation between the power and voltage vector is expected to be general and appropriate not only for traditional 
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power systems, but also for power-electronics-dominant ones. The essence of the dynamic process of power 
systems is the interaction of imbalanced powers and system states. Describing the characteristic of devices and 
networks in the model of amplitude-angle motion equation reflects their own contribution in such a process. As 
a result, the complicated dynamic phenomena and mechanism in power systems are expected to be clear in a 
physical and unified manner.

Results
Stationary power flow in traditional power systems.  In the conventional power system analysis, the 
power flow study involves the calculation of power flows and voltages of a transmission network for specified 
terminal or bus conditions, and it is fundamental for a steady-state as well as a dynamic performance of power 
systems5,3,4

Considering that the instantaneous frequency ωi of node voltage
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where δi(t) usually refers to the node voltage angle. We can treat all system variables as phasors. Denote Ei as the 
phasor voltage to ground at node i, and Ii as the phasor current flowing into the network at node i, we have the 
expression for the complex power
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where Yij represents mutual admittance between nodes i and j (Yii for self-admittance of node i), and Gij and Bij 
are its conductance and susceptance, respectively.

Hence, we can get the well-known power-flow equations

Figure 1.  Simplified framework for a functionally connected power system, including various types of devices 
and network. In the whole system, each device acts as a rotating electromotive force, θE t e( ) j t

i
( )i , and its dynamic 

behavior should be determined by the imbalanced complex powers, Si, including both active and reactive 
powers, and correspondingly the network acts as a reservoir for the interaction of each device states by 
transforming their electromagnetic powers. For a dynamic analysis in the traditional power systems, generally 
the network interaction is described by stationary power flow, whereas for power-electronics-dominant power 
systems, the dynamic power flow induced by the fast time-scale behavior of the devices must be considered. For 
more details, see the text.
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if the situation of very high-voltage loss-less transmission network is considered, based on

= = −G B X0, 1/ij ij ij

where Xij represents reactance between nodes i and j.
Numerically solving the above stationary power flow is basic and important for us to know the power dis-

tribution and the bus voltage information3–5. The classical Gauss-Seidel, Newton-Raphson, and P-Q decoupled 
algorithms have been applied to deal with these nonlinear algebraic equations3. Importantly the power flow cal-
culation has also been generalized to study economic dispatch problem (or the minimum-loss problem) by means 
of optimal power flow (OPF)36, and the steady-state voltage stability problem within the continuation power flow 
(CPF)37. Thus, it plays a central role in the traditional power system analysis.

In addition, in the study of the dynamic performance of power systems, including the small-signal stability 
and transient stability, the stationary power flow calculation has also been directly used. For instance, for the sim-
plest power system with a SG whose internal potential amplitude is E and its phase is δ1, connected to an infinitely 
strong bus, whose bus voltage amplitude is fixed as V and its voltage phase is fixed at zero (δ2 = 0), we have
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Usually the first equation for the sinusoidal relation between the phase angle and active power is well-known, 
called phase-angle relation (or phase-angle curve)3–5 Combined with the SG’s swing equation, it has been used to 
describe the basic physical picture of small-signal stability, such as the system is stable under δ < π/2 and otherwise it 
is unstable, and that of transient stability based on the equal-area criterion as well. Except these, the power flow has 
also been directly used even in the low-frequency oscillation analysis, based on the fact that the oscillation frequency 
is much lower than the working frequency. In addition, the second equation for the relation between the voltage 
magnitude and the reactive power has been used in the (stationary) voltage stability to provide a basic physical 
picture. As a result, the power flow is fundamental and invaluable for our understanding of power system dynamics.

Dynamic power flow in power-electronics- dominant power systems.  In this section, we will go a 
step beyond and study the dynamic network characteristics, as the electromagnetic time scale of power-electronics 
devices is much faster than the electromechanical time scale, such as the rotor motion of the SG. The resistance 
of typical overhead transmission line is usually around one tenth of its reactance3. Thus, to simplify the study, 
we assume that the transmission line is working on high voltage by ignoring its resistance and capacitance. This 
assumption is suitable for transmission lines in high-voltage transmission networks. First, we derive the dynamic 
power flow relation in the time domain, by starting from a small system consisting of two voltage sources con-
nected with a transmission line shown in Fig. 2(a), where E1 and E2 stand for the two time-varying voltage vec-
tors. Then the corresponding simple relation is generalized to multi-machine systems based on the superposition 
theory of linear systems. Finally, the time domain relation is linearized to describe small-signal stability in the 
frequency domain, working as a transfer function matrix of the network.

As we know, in this case the usual QSS approximation for a constant frequency for all bus voltage phasors 
is non-workable, and we have to deal with the interaction of time-varying voltage vectors directly. Meanwhile, 
the stationary relation between voltage and current connected by a reactance on the working frequency should 
be replaced by a direct dynamic relation between voltage and current on inductance, whose value is a constant 
L. Comparatively, the dynamical relation is more essential. Correspondingly, the usual average power concepts 
including active and reactive powers should also be generalized to instantaneous power concepts38. With the help 
of the instantaneous power theory and an addition of auxiliary variables, we obtain the instantaneous dynamic 
relation between powers and voltage vectors.

Nonlinear Relation in the Time Domain
In the simple system in Fig. 2(a), we should first examine the current dynamics based on the voltage vectors on a 
transmission line, with a constant inductance L. It is the same as we have done in the stationary power flow anal-
ysis. It can be expressed in the α-β stationary frame
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A schematic show is given in Fig. 2(b) for the instantaneous vector relation between voltages and current. The 
red lines stand for the time-varying vector E1 and its instantaneous values in the stationary frame, and the blue 
lines stand for that of E2. The green lines refer to the voltage difference EL on L in the stationary frame, and the 
current iα and iβ can be obtained by the integral of ELα and ELβ (the black lines). It is important to note that both 
the voltage amplitude E1,2 and voltage phase θ1,2 are time-varying, and here we treat an arbitrary phase θ(t) (not 
the phasor phase δ(t) in the stationary power flow).

Since the voltage and the current are not necessarily periodic, the concept of average power is no longer avail-
able. By using the instantaneous power theory38, we further get
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These integration relations are very complex and hard to analyze. In the sub-field of mathematics, harmonic 
analysis, such an integral is a so-called oscillatory integral, whose primary function cannot be analytically 
derived39. To solve this difficulty, we introduce an auxiliary complex variable, z, with m(t) and n(t) as their real 
and imaginary parts, respectively, and have the relations between z (t), m(t), and n(t)

∫= + = −θ θ θ− −( ) ( )z m t n t j e E t e E t e dt( ( ) ( ) ) (11)
j t j t j t( )

1
( )

2
( )1 1 2

and further the relation between m(t) (and n(t)) and the voltage vector (E(t) and θ(t))

Figure 2.  (a) A small power system consisting of two time-varying voltage sources, connected by a 
transmission line represented by a constant inductance L. (b) Schematic show for the instantaneous vector 
relation between voltages and current.
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Therefore, the complicated integration relations in (10) can be expressed as the following simpler algebraic 
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where P t( )1  and Q t( )1  are a function of m t( ) and n t( ), respectively, with the same time-varying coefficient E t L( )/1 .
The above differential algebraic equations containing two differential Eq. (14) and two algebraic Eq. (15) could 

fully catch the dynamic network characteristics and play the same role as the familiar stationary power flow in 
the traditional power system. Meanwhile, compared to the stationary power-flow algebraic relation in Eq. (7), the 
dynamic relation described by Eqs. (14) and (15) becomes more complicated.

Next, we study the stationary relation by setting the left side of (14) equals to zero and have
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which are identical to the results of the stationary power flow in (7), as X = ω0L and θ1(t)-θ2(t) = δ1(t)-δ2(t). This 
indicates that the results obtained in the paper for the dynamic power flow can really be reduced to those for the 
stationary power flow.

After the analysis of the dynamic power flow in a small power system, we extend this result to more com-
plicated and realistic larger power systems. By using the superposition theorem in the linear inductance circuit 
excited by multiply voltage sources (signals), we get the following dynamic relations for multi-machine systems
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Note that in the above derivations we indeed consider the interaction of multiple voltage sources, which are 
truly time-varying signals, and have not made any additional assumption or simplification. Therefore, these 
time-domain equations are expected to be rigorous and applicable for a general dynamical analysis of power 
systems, such as large signal stability.

Small-signal Linearized Relation in Frequecy Domain
Based on the above time-domain nonlinear relations, we can easily derive the small-signal linearized relations in 
the frequency-domain around the steady state. We still start from the simple power system in Fig. 2(a), replace the 
differential operator in the time-domain with the Laplacian operator s, and obtain
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where all the steady states have been expressed with the subscript zero, and θ120 = θ10 − θ20. None of the steady 
states is time varying.

Further removing the intermediate variables Δm and Δn, we get the explicit expression of the active and 
reactive powers P and Q as a function of the voltage amplitude E1,2 and voltage phase θ1,2 in the frequency domain 
as a transfer function matrix
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which definitely catches the dynamic network characteristics under the linearized condition. It is important to 
emphasize that it has the same form as that in the Jacobian transfer matrix in28.

We can further apply the same idea to multi-machine systems, which are connected by multiple transmission 
lines, and obtain
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which construct a multiple-input-multiple-output (MIMO) transfer matrix and explicitly catch the dynamic net-
work characteristics of multi-machine power systems.

Methods
So far, we have obtained the dynamic power flow equations for the description of dynamic network characteris-
tics, including the original time-domain nonlinear relation and the frequency-domain linearized relation. These 
theoretical results need to be further verified and specified. As two typical examples presented in the paper, in the 
time-domain verification, we study the dynamic interaction in a real small power-electronics-based power system 
consisting of three VSCs connected to an infinite bus in Fig. 3. In the frequency-domain verification, we study 
the small-signal stability of a VSC connected to an infinitely strong bus under the AC current control time scale, 
whose multivariable frequency-domain analysis result will be compared with that of the state-space eigenvalue 
analysis. In addition, some other examples have also been examined.

Validity test for original time-domain nonlinear relation.  The system studied in Fig. 3 is a paradigm 
for renewable energy integration to power grids. The system consists of three VSCs connected to an infinite bus. 
The VSC has four control loops: DC capacitor voltage control, terminal voltage control, PLL control, and current 
control. For simplicity, the VSCs work at the same work point and the control parameters of them are all the same. 
The detailed parameters are listed in Table 1.

Figure 3.  A small power-electronics-based power system consisting of three VSCs connected to an infinite 
strong bus.
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In our test, the system keeps running in a steady state at first, and after 1 second the active power reference of the 
first VSC changes from 0.30 p.u. to 0.33 p.u. suddenly. Therefore, the system must be in a transient process until it enters 
another steady state or becomes unstable. For illustration, Fig. 4 compares the results of active and reactive powers of 
the third VSC, by calculating the dynamic power flow in the differential algebraic Eq. (18) by numerical integration (red 
dashed curve) and performing the time-domain simulation with the aid of the Simulink (blue solid curve). In addition, 
the result of stationary power flow (green solid curve) is also given. With these comparisons in the figures and especially 
in the magnification plots of the transient peaks, clearly the results based on the theory of dynamic power flow and time 
domain simulation coincide, whereas the result of the stationary power flow shows a large deviation. This verifies that 
our theory can reflect the system dynamic very well, while the traditional stationary power flow only can reflect the slow 
dynamics of system. Extensive numerical simulations for other cases also support this point.

Validity test for frequency-domain linearized relation.  As a typical model of a power-electronics- 
dominant power system, a single VSC connected to an infinitely strong bus is chosen for the frequency-domain 
verification. A schematic show for the model is given in Fig. 5. As we are particularly interested in the dynamic 
network characteristics, we will mainly focus on the current control time scale dynamics35. The typical parameters 

Symbol Quantity Value

Ug Grid voltage 0.8165

Pm Active power reference 0.3

Ut Teminal voltage reference 0.8165

Lf Filter inductor 0.1

Lg Network inductor 0.05

Ln Transmission line inductor 0.2

C DC capacitor 0.1(F)

Udc DC capacitor voltage 1200(V)

Kp1,Ki1
DC capacitor voltage 
power control Kp1 = 3.5,Ki1 = 100

Kp2,Ki2 Teminal voltage control Kp2 = 1,Ki2 = 100

Kp3,Ki3 Current control Kp3 = 0.36,Ki3 = 192

Kp4,Ki4 PLL control Kp4 = 50,Ki4 = 2000

Table 1.  Studied system parameters of Fig. 3 p.u. (based on 100 rad/s 2 MW and 690 V).

Figure 4.  Comparison of dynamic power flow, time domain simulation, and stationary load flow, which 
confirms the validity of the original time-domain relation in the dynamic power flow theory.

Figure 5.  Schematic show for a simple power-electronics-dominant power system with a single VSC connected 
to an infinitely strong bus, where the symbols E, Ut, and Ug represent the internal potential, terminal voltage, 
and voltage of the infinite bus, respectively.
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are listed in Table 2. Under this situation, we determine the transfer function matrix of the network from Eq. 
(20). In the framework of amplitude-phase motion equation theory, the output voltage of a device is defined as 
its internal voltage, since the internal voltage’s dynamic is only determined by the device itself35. To be consistent 
with the analytical results in the previous studies of the amplitude-phase model, now the inputs and outputs of 
the transfer matrix are the voltage vectors and powers, respectively, at the internal potential (E) instead of the ter-
minal voltage (Ut). Namely, the interaction between the VSC and the network is believed as happening at the exit 
point of the internal potential. Therefore, the network conductance L contains both Lf and Lg. The transfer matrix 
of the network is derived by using Eq. (20), and the detailed derivation of that of the VSC is given in the appendix. 
For the system stability of the whole close-loop system, we investigate it with the help of the generalized Nyquist 
criterion on the open-loop transfer matrix of the network40.

The analytical results with the variation of grid strengths are given in the three left panels of Fig. 6. From top to 
bottom, Lg = 0.5, 0.85, and 1.5, corresponding to a stiff, critical, and weak grid, respectively. In contrast, the right three 
panels of Fig. 6 are for the modal analysis of the same system, compared with the left ones by using the linear analysis 
tool in MATLAB. The modal analysis has been widely used and is reliable in determining small-signal stability of power 
systems. It is convincing to test our theory by comparing its results with modal analysis results3. Because the open-loop 
transfer function matrix has two Smith–McMillan poles on the right-half plane, the system is stable if there are two 
counter-clockwise encirclements of the characteristic loci around the (−1,0) point. This is exactly what we see in 
Fig. 6(a). The dominant poles in Fig. 6(b) are on the left side of the imaginary axis. Thus, the system is stable. Compared 
to Fig. 6(a), the characteristic loci in Fig. 6(c) are closer to the (−1,0) point, and in this situation we find that if we 
increase the inductance of the transmission line Lg a little bit, we will have a completely different pattern of plots. Thus, 
the system is regarded as critically stable. The dominant poles in Fig. 6(d) are nearly on the imaginary axis. However, if 
we change the grid parameter a little bit further, we will find that the dominant poles come across the imaginary axis. 
For a much larger Lg, e.g., Lg = 1.5, we see that in Fig. 6(e) the characteristic loci do not encircle the (−1, 0) point again, 
indicative of instability of the system, and in Fig. 6(f) the dominant poles are on the right half plane. Based on these 
comparisons, we find that the system stability and its change with grid strength derived from the generalized Nyquist 
criterion of MIMO systems are the same as those derived from the modal analysis, which has verified the validity of the 
small-signal linearized relation of the dynamic power flow given in the frequency domain.

From all these comparisons, we can see that our theoretical analysis results are consistent with the numerical 
simulation results including time-domain and frequency-domain results under different situations, and thus the 
mathematical relations are correct without any ambiguity.

Discussion and Conclusions
In conclusion, for the first time we have developed a novel theory of dynamic power flow and found an explicit 
dynamic relation between the instantaneous (active and reactive) powers and voltage vectors. Based on this relation, 
the dynamic network characteristics can be well described. This relation can also be specified to the usual stationary 
power flow, the same as the classical power flow equations in the traditional power system analysis. Our theoretic 
results have been well verified by numerical simulations on transient analysis of a small power-electronics-based 
power system consisting of three VSCs connected to an infinite strong bus, and a small-signal frequency-domain 
stability analysis of a voltage source converter connected to an infinitely strong bus as well. Thus, these results 
are expected to be general and applicable to not only the traditional power systems, but also new-generation 
power-electronics-dominant power systems, and invaluable for a dynamic analysis of future power systems.

Finally, it is worthwhile to give some relevant statements as follows.

	(1)	 As the major role of a transmission network playing in a power system is to transfer power between dif-
ferent devices, which can be simplified as voltage sources based on the Thevenin equivalence in the circuit 
theory. Thus, both the dynamic external characteristics of devices and networks are of great importance in 
power system analysis. The novel dynamic power-flow relations for unveiling the dynamic characteristics 
of networks given in this paper are significant. We agree that only after understanding the complicated 
dynamic characteristics of network, can we solve the puzzles in the multi-time scale dynamical behaviors 
of power-electronics-dominant power systems1.

	(2)	 As is well known, the stationary power flow in the traditional power system has been widely used and is 
essentially important. However, the stationary power flow has shown its shortage in not reflecting relatively 
faster dynamic process of the system, as shown in Fig. 4. Since the proportion of power electronics devices in 
power systems is becoming higher gradually, the faster dynamic process of systems, including not only de-
vices, but also grid, should be carefully examined. We expect that the dynamic power flow relation could play 

Symbol Quantity Value

Ug Grid voltage 1.0

P Active power reference 1.0

Ut Teminal voltage reference 1.0

Lf Filter inductor 0.1

Lg Network Relatively Stiff Grid: 0.5 Almost Critical 
Condition: 0.85 Relatively Weak Grid: 1.5

Kp1,Ki1 Current control Kp1 = 0.3,Ki1 = 160

Kp2,Ki2 PLL control Kp2 = 50,Ki2 = 2000

Table 2.  Studied System Parameter s of Fig. 5 p.u. (based on 100 rad/s 2 MW and 690 V).
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a similar active role in future power grids. One possible test case is the sub-synchronous oscillation41. In the 
traditional power system, even for the low-frequency oscillation analysis, as the oscillation frequency is much 
lower than the working frequency, the network dynamics can be ignored. However, in the sub-synchronous 
oscillation, as the frequency is around a dozen of Hz, comparable to and below the working frequency, the 
network dynamics was usually studied with various electromagnetic transient simulation software42.

	(3)	 For the short transmission line, usually a constant conductance (or a reactance working on the working 
frequency) is satisfying for the system description. However, for a medium-length transmission line, a nomi-
nal-π circuit should be used. In addition, for transmission lines in low-voltage (or medium-voltage) distribu-
tion networks, the resistance cannot be neglected compared to the reactance. Further work on the impact of 
capacitive elements on transmission lines within the same framework should be performed by including the 
dynamics of capacitors, and accordingly, the equation forms are expected to become more complicated.

	(4)	 The major objective of this paper is to provide a theoretical picture for the relation of the imbalanced 
powers and voltage magnitude and phase of the dynamical network, and to work as an interface in the am-
plitude-phase motion theory31–35. It would not substitute all existing electromagnetic transient simulations 
for calculating the instantaneous relation of the current and voltage on the network.

	(5)	 Finally, the concept of dynamic power flow has also been proposed by some other researchers in several 
recent works on integration of renewable energies, such as the photovoltaic system, wind power, etc.43,44. 

Figure 6.  Comparative studies of small-signal frequency-domain stability analysis between the dynamic 
power flow theory and the standard modal analysis. On the left, the generalized Nyquist criterion method for 
MIMO systems is used, and on the right, the eigenvalue analysis is conducted by using the linear analysis tool in 
MATLAB. From top to bottom, different network strengths, Lg = 0.5, 0.85, and 1.5, correspond to a stiff, critical, 
and weak grid, respectively.
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Nevertheless, they actually considered it in a much slower time scale, such as the maximum power point 
tracking due to the fluctuation of renewables, and were fundamentally different from ours. In addition, 
with the same objective to study the frequency variation effect of dynamic network characteristics of 
power-electronics-based power systems, similar equations for the instantaneous relation of voltages and 
currents have been analyzed and obtained in ref. 45. But they were further handled with an integral by part 
and finally described in a form of infinite series, whose convergence was not proved. In contrast, our results 
including differential and algebraic equations in this paper are rigorous.

Appendix
Here we present the detailed derivation of the transfer matrix of the VSC in the AC current control time scale. The 
current loop PI control is given in (1). As the assumption in35, the dynamic of the voltage outer loop is neglected 
in the AC current control time scale, which regards the current reference value as constant. As the input of the 
current loop PI control is the imbalanced current in the PLL frame, we need to build the relationship between the 
current in the PLL frame and the power of the internal voltage as shown in (2) and (3). The subscript sands for the 
values in the internal voltage frame, whose D axis aligns with the internal voltage vector
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The output of the current loop PI control is the internal voltage in the PLL frame. However, the output what 
we need is its amplitude and angle, so the following relationship is necessary
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Then the initial values calculated in (8)–(14), where all the variables with d or q as subscript stand for the val-
ues in the terminal voltage coordinate system and x or y stands for those in the polar coordinate system rotating 
at the synchronous speed
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After eliminating unnecessary variables using (1–7), we can obtain the transfer matrix of the VSC in the 
current control time scale by taking internal voltage as inputs and the powers on it as outputs. Such a process is 
presented in (15–18) by matrix operations
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