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This work proposes a novel partitioning technique on the density-cube-based data model for the Spatio-
temporal clustering method. This work further adapts this clustering approach to Spatio-temporal data.
We have compared the IMSTAGRID-the proposed algorithm to the ST-DBSCAN, AGRID+, and ST-AGRID
algorithms and have found that the IMSTAGRID algorithm improves the data partitioning technique
and the interval expansion technique and is able to achieve uniformity in the spatial and temporal
dimensional values. Three types of Spatio-temporal data sets have been used in this experiment: a storm
data set and two synthetic data sets – synthetic data set 1 and synthetic data set 2. Both the storm data
set and synthetic data set 2 were comparable in terms of the scattering of the data points, while synthetic
data set 1 contained clustered data. The performance of the IMSTAGRID clustering method was measured
via a silhouette analysis, and its results surpassed the other algorithms investigated; the silhouette index
for synthetic data set 2 was 0.970, and 0.993 using synthetic data set data set 1. The IMSTAGRID algo-
rithm also outperformed the baseline algorithms (ST-DBSCAN, AGRID+, and ST-AGRID) in labeling accu-
racy for the storm data set, yielding results of 82.68%, 38.36%, 76.13%, and 78.66%, respectively.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

DBSCAN (density-based spatial clustering of applications with
noise) is a clustering method that is commonly used to handle
large and dense volumes of spatial data even in the presence of
noise. DBSCAN can also identify data clusters of various shapes,
including linear, oval, and concave clusters (Ester, Sander,
Kriegel, & Xu, 1998). The DBSCAN algorithm requires that the eps
value for the eps-neighborhood of each data point in a cluster is
larger than zero and that the eps-neighborhood must contain a
minimum number of points (MinPts), which means that the den-
sity in an eps-neighborhood must be larger than a specified
threshold.

Many algorithms have been inspired by DBSCAN and have
sought to improve its efficiency and effectiveness. In recent stud-
ies, The DBSCAN algorithm is still utilized to apply the clustering
task, and the results were satisfying (Wu, Shi, & Mamoulis, 2018;
Shi & Pun-cheng, 2019; Deng et al., 2022; Latifi-Pakdehi &
Daneshpour, 2021; Zhu et al., 2021).

One of the methods used to improve efficiency is the use of a
grid-based approach. Grid-based algorithms speed up distance cal-
culations in the formation of clusters by transforming the data into
representative grids/boxes which occupy a particular minimum
area (Cook et al., 2022). Each representative grid must have a min-
imum number of points to satisfy a specified threshold (MinPts),
which speeds up the cluster formation process (Sun et al., 2005).

The processing methods of density- and grid-based clustering
algorithms do not depend on the size of the database (Wang
et al., 2019); they depend on the number of transformed dimen-
sions for the gridded data (Huang & Bian, 2009; Sun et al., 2005).
The number of transformed dimensions is heavily affected by the
distance selection method used in the formation of the gridded
area (eps); thus, eps selection is essential in determining the effi-
ciency of an algorithm (Hu et al., 2021). A smaller eps distance will
reduce efficiency, while a larger eps distance will reduce clustering
accuracy. The minimum number of data points, MinPts, in a grid is
also essential. This value determines whether or not a grid is a core
stering
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grid (Huang & Bian, 2009). Eps and MinPts are determined at the
beginning of a clustering process.

All algorithms derived from the DBSCAN algorithm include a
distance calculation process to generate neighborhood statistics
for all points; therefore, neighboring query efficiency is also essen-
tial (Sander, Ester, Kriegel, & Xu, 1998). Neighborhood calculations
can be approached in many ways. DBSCAN uses an indexing
method, R* Tree (Ester et al., 1998), to improve data query effi-
ciency. Other methods such as R + Tree, Quadtrees, and X Tree
(Birant & Kut, 2007) may also be used to increase spatial access
efficiency.

Many existing density- and grid-based clustering algorithms
are exclusively applied to spatial data (Tork, 2012). Some adjust-
ments are needed to enable such algorithms to perform spatial
and temporal data clustering (Wang et al., 2019). In density-
based Spatio-temporal data clustering, two distances must be con-
sidered (Birant & Kut, 2007): eps 1 and eps 2; where eps 1 is the
distance for the spatial data, and eps 2 is the corresponding dis-
tance for the non-spatial data. Subsequently, the spatial and tem-
poral neighbor selection process is implemented by comparing
non-spatial attributes to form both spatial and temporal clusters.

The AGRID + algorithm is another clustering algorithm, similar
to DBSCAN, based on data and grid density applicable to multidi-
mensional data (Zhao, Cao, Zhang, & Zhang, 2011). This algorithm
has been proven to identify clusters with reasonable accuracy
and relatively fast computation speeds. Since the algorithm can
process n-dimensional data, it can be utilized for Spatio-temporal
clustering, and with modifications, it can be made applicable to
Spatio-temporal data sets. Algorithms based on density and grid
approaches are suitable for spatial data (Huang & Bian, 2009).
However, there are some obstacles to their implementation for
Spatio-temporal data. Generally, Spatio-temporal data have three
dimensions; two spatial and one temporal dimension. Spatio-
temporal data also have specific characteristics: there are latitude
and longitude coordinates in the spatial dimension, represented by
either positive or negative real values, and a temporal dimension
that includes data with time units (for example, daily, weekly, or
monthly).

ST-AGRID (Fitrianah, Hidayanto, Fahmi, Lumban Gaol, &
Arymurthy, 2015) is an adaptation of the AGRID + algorithm that
modifies the partitioning stage, the distance threshold stage, and
the density complexity calculation stage. These directly affect the
transformation of multidimensional data from n-dimensions to
three dimensions: two spatial dimensions (longitude and latitude)
and a temporal dimension. However, the distribution of the spatial
and temporal intervals is suboptimal when the ST-AGRID algo-
rithm is used. The partitioning technique of the ST-AGRID algo-
rithm only tackles the issue of spatial dimensions (latitude and
longitude). The algorithm cannot equalize intervals for the tempo-
ral dimension, which can be an aggregate of daily, monthly, or even
yearly data. Therefore, some cells may be imbalanced (not cube-
shaped) and cannot be included in the distance threshold radius
in the determination of neighbors (neighboring points) and neigh-
borhoods (neighboring cells) for L_spatial.

To address this weakness, the authors have improved a parti-
tioning technique by equally distributing the data in both the spa-
tial and temporal dimensions to achieve a cubed cell as a
dimensional data unit. The issues solved in the proposed algorithm
improvement are as follows:

1. The algorithm improves the development of a precise data par-
titioning method and results in representative spatial and tem-
poral sub-units usable in subsequent processes.

2. The algorithm enhances the creation of a density-and cube-
based Spatio-temporal clustering algorithm that can process
data efficiently and generate accurate results.
2

1.1. Related works

Spatio-temporal data mining is often used to analyze data based
on remote sensing data and geographic information system appli-
cations (Roddick & Lees, 2001; Roddick & Spiliopoulou, 1999). Such
datasets are typically large and heavily dependent on spatial and
temporal scale data and contain multidimensional interactions,
such as season and weather patterns, that can be used to explore
cause and effect relationships (Roddick & Lees, 2001). Spatio-
temporal clustering is one approach used in Spatio-temporal data
mining to analyze object data without including class labels
(Georgoulas et al., 2013). The algorithm makes it suitable for
extracting information from vast repositories with unknown data
labels (Kantardzic, 2003; Shi & Pun-cheng, 2019). The Spatio-
temporal clustering method is extensively used, and examples
can be found in the medicine, security, environment, biology,
pathology, health, and fishery fields (Sahu & Mardia, 2005;
Lorena et al., 2014; Anbaroglu, Heydecker, & Cheng, 2014; Liu
et al., 2018). Spatio-temporal clustering methods can be imple-
mented in one clustering stage or two clustering stages: beginning
with spatial information and followed by temporal information, or
vice versa. Each clustering approach produces slightly different
results since each approach emphasizes a different dimension –
either the spatial or the temporal dimension (Abraham &
Roddick, 1998; Yao et al., 2018).

A DBSCAN-based Spatio-temporal clustering implementation
has been developed into an algorithm known as ST-DBSCAN
(Birant & Kut, 2007). This algorithm can find spatial, non-spatial,
and temporal clusters. ST-DBSCAN uses four parameters: Eps1,
Eps 2, MinPts, and D2. The first three parameters are consistent
with parameters in the original DBSCAN algorithm. In contrast,
the fourth parameter, D2, is used to prevent clusters from unifying
due to slight differences in the non-spatial values of neighboring
locations. An additional distance metric is included in ST-
DBSCAN to determine clusters’ radius, et, and neighbors in the
temporal dimension. These two parameters are determined using
a k-dist graph and are then used as inputs for ST-DBSCAN.

The algorithm inspired by DBSCAN in Spatio-temporal cluster-
ing is the trajectory identification (Chen, Ji, & Wang, 2014). The
algorithm works by considering the time sequential characteristics
along a trajectory. State continuity within a single stop and tempo-
ral disjuncture among stops are two of the premises proposed as a
theoretical basis for regulating the trajectory point selection in
clustering.

Other Spatio-temporal clustering algorithms have been pro-
posed. The first is ST-GRID, a DBSCAN-based algorithm that has
been used to analyze the order of an earthquake (Wang, Wang, &
Li, 2006). ST-GRID partitions both the spatial and temporal dimen-
sions into cells. The second algorithm that examines Spatio-
temporal clustering is ST-AGRID (Fitrianah et al., 2015), which
has been used to investigate the clustering of fish catch data.

1.2. Proposed density cube-based spatio-temporal clustering

This section explains the proposed clustering algorithm
method. It includes a discussion of the data structure, adaptations
made to the baseline algorithm, the partitioning stage, the distance
threshold, and the density compensation calculations.

1.2.1. The spatio-temporal data structure
The proposed algorithm is density- and cube-based. The cube

structure is necessary because three dimensions are represented
in the data: east longitude, south latitude, and time. The cube
structure will be discussed further in later sections, but we begin
by describing the Spatio-temporal data, as seen in Fig. 1 below.



Fig. 2. The illustration of the Cube data space model.
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In general, a Spatio-temporal data model can be represented
using a notation where Z indicates the time dimension, X indicates
latitude, and Y indicates longitude in the spatial dimension. For
each combination, there are non-spatial data. This data model
can be seen in Fig. 3. The figure above illustrates the Spatio-
temporal data model, which consists of location data, represented
by X and Y lines, and time data indicated by cells. Since the time
dimension is aggregated, the data structure is abstractly a cube.
A1, . . . An data cubes and B1, . . . Bn cubes for every cluster formed
spatially and temporally. Each cube consists of data points with
their representative non-spatial data, represented by A11, A12,
. . . Anm. Fig. 2 below shows the image of a cube consisting of other
data points.

For all data points (A11, A12, . . . Anm), the composite data struc-
ture consists of both spatial and temporal data and non-spatial
attributes. It can be concluded that the data structure of the new
proposed algorithm consists of at least a spatial and temporal
dimension. The spatial dimension has either positive or negative
real values (longitude and latitude coordinates). A temporal
dimension consists of a time unit with positive integer data (date,
month, and year) and other data attributes. The structure of the
data points represented in the cube used in the clustering algo-
rithm is shown in Fig. 3 below.

In the above figure, dd is the date attribute, mm is the month
attribute, and yy is the year attribute. All three attributes are tem-
poral data. The spatial attributes are longitude (lon) and latitude
(lat). Finally, atr1 to atr-n are data attributes from related repre-
sentative points.
1.2.2. Improvement of the partitioning technique

� Improvement Stage Analysis In ST-AGRID Algorithm
In order to determine the number of cells in the partitioning

stage of the ST-AGRID algorithm, the cell interval must be calcu-
lated. The cell interval value (L) is obtained by dividing the range
of each dimension (upper bound – lower bound) by the number
of cells, m. This approach emphasizes the similarity of cell numbers
of the spatial dimensions (longitude and latitude), while the tem-
poral dimension can be determined by using daily, weekly, or
monthly temporal units. After each (spatial and temporal) cell is
formed, each data object is inserted into a cell that matches its
Spatio-temporal coordinate—the results in L_spatial and L_tempo-
ral intervals. The partitioning stage algorithm used in the partition-
ing approach for the ST-AGRID algorithm is shown below in Fig. 4.

The partitioning approach in the ST-AGRID algorithm above will
result in an interval value from each cell that will vary for each
dimension (the X and Y spatial and temporal dimensions). This
Fig. 1. Spatio-Tempora
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result in unequal data intervals on each dimension (spatial and
temporal). Therefore, the cell formed in such a process cannot be
a perfect cube. Suppose different data intervals (L) are used. In that
case, some parts of the data within each cell may not be included in
the distance threshold radius that determines neighbors (neigh-
boring points) and neighborhoods (neighboring cells) for L_spatial
(shown in Fig. 5 as GAP). Fig. 5 shows data that have been parti-
tioned using a non-uniform data interval for the spatial and tempo-
ral dimensions.

� Proposed Improvements to the Partitioning Technique

Unequal partitioning of multidimensional data causes gaps;
therefore, a partitioning technique capable of producing cube-
shaped dimensional data is proposed. The proposed approach is
to determine a uniform interval (L) for the spatial and temporal
dimensions. In Fig. 5 above, which illustrates partitioning, the
interval partitioning is based on the number of cells, m. The data
ranges in the spatial dimension (longitude and latitude) are differ-
ent; this is also true for the temporal dimension. If a typical m
value is used, each dimension will have a different interval value.
For example, if the data range for the X data is 10�, while the data
range for Y data is 5�, and the temporal dimension consists of
1000 days, if the value of m = 5, then each dimension has a differ-
ent interval (L). The data in the X dimension will have a cell range
with an interval of 2. The data in the Y dimension will have a cell
range with an interval of 1, as shown in Fig. 5. Similarly, in the tem-
poral dimension, the 1000 days will be divided by 5, thus resulting
in each cell having an interval of 200 days.

Based on the explanation above, problems may arise if there is a
gap in the data in one or more dimensions when determining r
(distance threshold), which is the radius that determines neighbors
(neighboring points) and neighborhoods (neighboring cells). The
value of r is L/2. From the illustration shown in Fig. 5, we know
the L_spatial value is obtained from the average intervals in
l Data Illustration.



Fig. 3. Spatio-temporal data structure.

Fig. 4. Dimensional data partitioning algorithm based on m value.

Fig. 5. Partitioning illustration based on numbers of intervals (m).

Fig. 6. Partitioning illustration based on interval value (L).
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the X and Y dimensions ((2 + 2)/2). Therefore, the value of L_spatial
is 1.5. The r value is 1.5/2 = 0.75. The value of r in the Y dimensional
data appears adequate. However, in the X dimension, since L = 2,
the neighborhood radius (r) value should be 1, and the required
value is 0.75. It causes some parts of the data to be excluded from
the radius (r). The effect of exclusion of parts of the X dimension
will result in disjointed clusters. Additionally, this can also cause
misclassification of points.

It is, therefore, necessary to maintain the same interval value for
the spatial dimensions (X and Y), as seen in Fig. 6 below, where the
spatial dimensions are shown to have the same value. The neigh-
bors and neighborhoods can be determined using the spatial
neighboring radius if the same L_spatial value ((1 + 1)/2) = 1, r =
½ = 0.5 is used.

Another problem also arises for L_temporal because of differ-
ences between the spatial and temporal dimensions. Fig. 7 illus-
trates that L_spatial is already a cube while L_temporal is not
because the measurement units differ from the spatial dimension.
L_temporal follows the desired aggregate unit. If the aggregate unit
is based on a daily temporal analysis, its value is 1. Additionally, if
the unit is made based on a weekly temporal analysis, the aggre-
gate value is 7. Consequently, if the unit is made based on a
4

monthly temporal analysis, the aggregate value is 30. This problem
prevents the dimensional data cell from forming a perfect cube.

Standardizing spatial and temporal dimension values using
stretching or interval expansion is proposed to address the above-
mentioned problem. This approach creates the same dimensional
value for spatial and temporal dimensions and achieves an overall
cube shape.

The L_temporal calculation within the partitioning process
determines the entry point for each cell by first counting the total
number of temporal intervals. It is achieved by using Equation (1).
The L_spatial calculation (in Equation 2) utilizes a count of the total
number of spatial intervals; the cell coordinate values are calcu-
lated using Equation (3) after the interval values for the spatial
and temporal dimensions are determined.

M temp ¼ temporal range=temporal aggregate
M spa ¼ dimension range = L spatial
Coordinate value ¼ Coordinate = L spatial � temporal aggregate

Fig. 8 shows the pseudocode of the proposed partitioning tech-
nique for further clarification. The expansion results re shown for
the Cell_ID coordinate which has been adjusted to its temporal
dimension.



Fig. 7. L_spatial and L_temporal illustrations.

Fig. 8. Data dimension partitioning alogrithm based on L value and expansion.
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1.2.3. Threshold distance (r) calculation stage
Next, the distance threshold (r) is adapted, as previously

described for the ST-AGRID algorithm. The distance threshold
value or r is very influential in determining neighbors (neighboring
points in each cell) and neighborhoods (adjacent neighboring
cells). The AGRID + algorithm has only one distance threshold
value because the data in the n dimensions are the same. There-
fore, in that application, only one distance threshold is needed to
define proximity between points. Implementing a single distance
threshold value for the new proposed algorithm is undesirable
because the intervals found in the temporal dimension differ from
the intervals in the spatial dimension, which contain the longitude
and latitude coordinates.

Based on the characteristics of the Spatio-temporal data, this
study proposes a different distance threshold for each dimension:
spatial and temporal. This distance threshold approach in the spa-
tial dimension is consistent with the approach in the AGRID + algo-
rithm: r < L/2. Fig. 9 below shows the algorithm used to determine
the distance thresholds in spatial and temporal dimensions.
Fig. 9. Distance Threshold
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1.2.4. Density compensation calculation stage
The density compensation calculation is related to the determi-

nation of the threshold (density threshold) that determines
whether a group can be considered a cluster. Therefore, the density
compensation calculation is essential in this clustering process.
This calculation depends on the number of dimensions. It happens
because the compensation of each cell is based on the ratio of the
cell volume and the volume in neighboring cells. The volume of all
neighboring cell cubes is calculated based on the total number of
dimensions, as shown in Eq. (4).
Cdensities Oið Þ ¼ densities Oið Þ

� volume of Oi cube
volume of all Oi neighboring cubes

ð4Þ

In Eq. (4), the parameter densities (Oi) is obtained by dividing
the number of data points in a cube (Oi) by the volume of that cube
using the formula. Some modifications are required because there
calculation algorithm.
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are only three dimensions. For instance, if a point a in a cube, Ca, is
in the top left corner, then only the cube in the top left corner will
be included in clustering, as shown in Fig. 10.

Fig. 11 illustrates the calculation of the volume of all Oi neigh-
boring cubes, based on order of proximity with the i-th neighbor.

Based on Fig. 11, there are four areas (neighbors) where the vol-
ume must be determined. The above is the cube where the points
are located, considered the same area, and are the neighbor’s
boundary. To calculate the volume of all Oi neighboring cubes,
Equation (5) is used:

volneighbor ¼ k0ðr þ aÞ2rtempþk1 r þ að Þ r � að Þ rtemp
� �

þ k2 r þ að Þ r � að Þ rtemp
� �þ k3 r � að Þ2 rtemp

� � ð5Þ
Therefore, the formula to determine the density compensation

is given by Eq. (6).

C densitiesðOiÞ ¼ densities Oið Þ

� 2rð Þd0
k0 r þ að Þ2rtempþk1;2 r þ að Þ r � að Þ rtemp

� �� �2 þ k3 r � að Þ2 rtemp
� �

ð6Þ
The following is the algorithm used to calculate the density

compensation (Fig. 12).
2. Results and experimental analysis

Now that the three adaptations have been explained in the pre-
vious sections, the next step is to describe experiments that were
conducted using the proposed partitioning technique, adapted dis-
tance thresholds, and density compensation calculation procedure.
Fig. 10. i-th neighbor order of

Fig. 11. (a) shows a point which neighborhood of a is the area inside the dotted lines
assumption that there is a diagonal area.

6

2.1. Experimental data sets

In this study we utilized a storm data set, and two synthetic
data sets. Each data set is as follows:

� Storm data set

The storm data set contained spatio-temporal data related to
the tracking of storms based on wind speed. The data can be down-
loaded from www.unisys.com. Table 1 explains the data structure
of the storm data used. The storm category status is determined
from the Saffir-Simpson Scale.

Fig. 13 below shows a plot of the storm data used in this study.
These storm data spanned 15 years; from 2000 to 2014. The data
were collected in the South Pacific Sea (coordinates: 140� BT �
190� BT and 10� LS � 50� LS).

� Synthetic Data Sets

Synthetic data set 1 consisted of 600 Spatio-temporal data
points, randomly generated using a Gaussian distribution centered
at each cluster. There were five clusters, each with a predeter-
mined centroid: Cluster 1 consisted of 100 data points with a cen-
troid located at 0, 0, 7; Cluster 2 consisted of 120 data points with a
centroid located at 5, 1, 6. Cluster 3 consisted of 200 data points
with a centroid located at 0, 5, 20, while Cluster 4 consisted of
70 data points with a centroid located at 5, 5, 20, and finally, Clus-
ter 5 consisted of 110 data points with a centroid located at 2.5, 2.5,
10. The first two attributes are spatial coordinates, and the last
attribute is the temporal coordinate. Synthetic data set 2 consisted
of 5000 Spatio-temporal data points, raised using random distribu-
tion. Synthetic data set 1 contained grouped data; therefore, the
an a point of a Ca cube.

(b) estimated volume of the areas in the neighborhood and neighbor of a with the

http://www.unisys.com


Fig. 12. Density compensation calculation algorithm.

Table 1
Storm data catalog.

No. Attribute Type Description Data Sample

1. Date Storm occurance date 01
2. Month Storm occurance month 12
3. Year Storm occurance year 2000
4. Lat Latitude coordinate 26,5� LS
5. Lon Longitude coordinate 113,4�BT
6. Wind Wind speed 45 Knots
7. Status Storm name Tropical Storm, Cyclone-1
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data already formed distinctively separated clusters, while syn-
thetic data set 2 contained scattered data. Plots of synthetic data
sets 1 and 2 can be seen in Fig. 14(a) and (b).
2.2. Experiment results and discussion

In the proposed partitioniong technique experiment, the inter-
vals for the spatial dimension (the X and Y dimensions) were
equalized in the partitioning stage. Dimensional range standardiz-
ing or stretching was then applied to equalize the temporal dimen-
sions. This change was made so that the interval ranges of both the
spatial and temporal dimensions could be equalized, enabling the
formation of cube-shaped dimensional data. Moreover, the density
compensation calculation was modified as previously discussed.
This combination of improved procedures will be identified as
the IMSTAGRID algorithm in the remainder of this paper.

The IMSTAGRID Spatio-temporal clustering algorithm was
implemented on the three previously described data sets: the
Fig. 13. Tropical storm data pl
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storm data set, synthetic data set 1, and synthetic data set 2. In
the first experiment, the L interval parameter within the algorithm
was tuned. The L values used were 0.25, 0.5, 1, 1.25, 1.5, 1.75, 2,
2.25, 2.5, 3. This tuning was applied to investigate the silhouette
index’s sensitivity to the cube’s size. The theta parameter was
tuned from the second experiment to determine the density
threshold – DT. It has been reported that lowering the theta value
will increase the DT value, resulting in the formation of smaller
clusters, thus increasing the chance that data points may be
misidentified as noise (Zhao et al., 2011). Lower DT values will
result in larger clusters, reducing noise.

The silhouette index results of each experiment for each data
set are shown in Fig. 15. The storm data set and synthetic data
set 2 were scattered data sets; the lower L values result in better
silhouette index values. Conversely, synthetic data set 1 is grouped
data, and the lower L values result in lower silhouette index values.

Table 2 below shows the silhouette index values for each exper-
imental result on all data sets investigated, in addition to further
details.

Table 2 above shows that the highest silhouette index value is
achieved for the lowest L value in the storm data set. In other
words, smaller cubes result in better silhouette index values.

Conversely, in synthetic data set 1, a higher L value (or larger
cube) results in a better silhouette index value. The results for syn-
thetic data set 2 are comparable to those for the storm data set:
smaller cubes result in better silhouette index values. Based on
these results, a smaller cube is best for scattered data because
IMSTAGRID will perform similarly to a density-based clustering
algorithm. On the other hand, if the data have already been
grouped, it is better to use a larger cube since IMSTAGRID will per-
form similarly to a grid-based clustering method. To conclude,
using lower L values quickly and compactly forms clusters, which
is better for scattered data while using higher L values will achieve
more optimal cluster results for grouped data. Table 3 provides
more detailed results on each Spatio-temporal data set.

Table 3 shows the result of the IMSTAGRID algorithm imple-
mentation for the data sets explored in this study. Based on the
table, a suitable silhouette index value can be achieved from lower
L values on scattered data. In contrast, higher L values produce bet-
ter silhouette index values for grouped data. Table 4 shows the
experimental accuracy achieved for the storm data set with (DS)
and without (TS) stretching.

Table 4 shows that the IMSTAGRID clustering algorithm with
the application of a stretching technique produces more accurate
ot in South Indian Ocean.



Fig. 14. Synthetic data plots.

Fig. 15. Silhouette value comparison towards L on each data set type.

Table 2
Results of IMSTAGRID implementations on three types of data (daily data).

Storm data set Synthetic data set 1 Synthetic data set 2

L Silhouette index Time (seconds) Silhouette index Time (seconds) Silhouette index Time (seconds)

0.25 0.999 1.621 0.454 0.717 0.938 7.983
0.5 0.999 1.668 0.382 1.296 0.763 10.187
1 0.956 1.830 0.923 1.971 0.343 22.033
1.25 0.953 1.872 0.747 2.082 0.180 29.634
1.5 0.924 1.868 0.911 2.077 0.120 35.364
1.75 0.881 1.895 0.946 2.098 �0.012 44.746
2 0.899 1.917 0.970 1.938 �0.083 58.683
2.25 0.886 1.932 0.993 2.194 �0.135 81.640
2.5 0.871 1.968 0.972 2.316 �0.135 82.074
3 0.867 1.940 0.980 2.629 �0.199 121.789

Table 3
Results of IMSTAGRID best implementations based on different temporal data set types.

Daily data Weekly Data Monthly data

L Sil. Index Time (seconds) L Sil. Index Time (seconds) L Sil. Index Time (seconds)

Storm data set 0.25 0.999 1.621 0.25 0.999 1.648 0.25 0.987 1.639
Synthetic data 1 2.25 0.993 2.194 2.25 0.987 2.412 3 0.975 4.106
Synthetic data 2 0.25 0.9382 7.983 0.25 0.905 20.360 0.25 0.710 10.106
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Table 6
Algorithms comparison on synthetic data set 2.

Algorithms Total clusters Silhouette index Time (seconds)

ST-DBSCAN 158 �0.934 3416.941
AGRID+ 588 0.787 34.424
ST-AGRID 107 0.939 11.425
IMSTAGRID 31 0.970 11.272

Table 7
Algorithms comparison with aggregate data set 1 synthetic 1.

Algorithms Total cluster Silhouette index Time (Seconds)

ST-DBSCAN 11 0.367 1.494
AGRID+ 26 0.245 2.0142
ST-AGRID 7 0.921 2.567
IMSTAGRID 20 0.993 2.194

Table 8
Clustering method performance accuracy comparison.

Methods Accuracy (%)

IMSTAGRID 82.68
ST-AGRID 78.66
AGRID+ 76.13
ST-DBSCAN 38.36

Table 4
Comparison of IMSTAGRID performance with data stretching and without data
stretching.

Accuracy (%) Silhouette Index

With stretching 83.29 0.59
Without stretching 81.74 0.33
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results when compared with preceding the application of the
stretching technique: 83.29 % compared with 81.74 %. The average
silhouette index value with stretching is better (0.59) than without
stretching (0.33). Therefore, the use of stretching or spatial and
temporal dimension standardization succeeded in improving the
accuracy of the IMSTAGRID algorithm.

Visual inspection of the cluster results from synthetic data set 1
shows that the data are relatively accurately clustered. In synthetic
data set 1, the L value was set to 3 with the theta parameter = 1 and
the temporal aggregate = 4. The IMSTAGRID Spatio-temporal clus-
tering algorithm identified clusters per the original data. However,
some clusters were less than indicated in the original dataset
because some points were misidentified as noise. Fig. 16 below
shows the clustering results.

Table 5 provides an overview of the performance of the IMSTA-
GRID algorithm in comparison with the baseline algorithms.

ST-DBSCAN is an adequate Spatio-temporal clustering algo-
rithm for identifying spatial or temporal clusters. This algorithm
uses a density-based approach in the formation of clusters. Each
data point is processed individually. It increases computation time,
mainly if the algorithm is applied to Spatio-temporal data based on
real-world phenomena. AGRID + is a density- and grid-based algo-
rithm. If fewer intervals are used, its performance is comparable to
a density-based algorithm. If the number of intervals increases, its
performance is comparable to a grid-based algorithm. Although
AGRID + is designed to operate on data with multiple dimensions,
it cannot be used directly to process Spatio-temporal data. Adapta-
tions are needed in order to use this algorithm on Spatio-temporal
Fig. 16. (a) synthetic data set 1 plot

Table 5
Differences of four algorithms along with their techniques.

Algorithms Density based Grid based i-th o

ST-DBSCAN U

AGRID+ U U U

ST-AGRID U U U

IMSTAGRID U U U

9

data. The performance of each algorithm was compared using the
synthetic data sets: synthetic data set 2 (scattered data type) and
synthetic data set 1 (grouped data). The results of the experiment
using synthetic data set 2 can be seen in Table 6, and the results of
the experiment using synthetic data set 1 can be seen in Table 7.

For consistency, L = 1 and the distance threshold was set to 0.5
for the AGRID+, ST-AGRID, and IMSTAGRID algorithms. The Eps
value was set to 0.5 for the ST-DBSCAN algorithm.
(b) clustering results with L = 3.

rder Density compensation Spatio-temporal clustering

U

U

U U

U U



Fig. 17. Clustering results from different theta values.
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In comparisons using aggregated synthetic data set 1, the dis-
tance threshold = 1.125 with L = 2.25 for the AGRID+, ST-AGRID,
and IMSTAGRID algorithms. The eps value was set to 1.125 for
the ST-DBSCAN algorithm.

The clustering accuracy of each algorithm was tested using the
storm data set because it had predefined classes. There were seven
classes in the storm data set: CYCLONE 1, CYCLONE 2, CYCLONE 3,
CYCLONE 4, CYCLONE 5, TROPICAL DEPRESSION, and TROPICAL
STORM. A KNN approach was utilized in order to improve accuracy.
The data set was divided into training and test data in 70 % – 30 %.
A 10-fold cross validation is utilized. Based on the confusion matrix
result, the test data and predicted results were compared with the
actual data. The comparison of the results can be seen in Table 8.

Based on the performance accuracy results above, the IMSTA-
GRID algorithm achieved the highest accuracy. The IMSTAGRID
10
algorithm successfully classified data points according to the exist-
ing classes within the storm data set.

After analyzing the influence of L interval values on clustering
and the determination of the performance accuracy, further exper-
iments were conducted to investigate the importance of the value
of theta to clustering. This experiment used several theta values
with a temporal aggregate of 4. Synthetic data set 1 was used,
which was known to have five data groups of varying densities.
The clustering results can be seen in Fig. 17.

Fig. 17 shows that changing theta affects the number of clusters
formed. Higher theta values result in a lower density threshold
(DT). A lower DT will produce lower noise, while a higher DT will
produce more noise. It causes the outermost points to be consid-
ered noise and omitted. Data points that were omitted because
they were misidentified as noise can be observed in the lower theta
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values; this is shown in Fig. 17(a). Groups that had varied center
densities did not converge during clustering.

The data group in the middle of the density is very diverse. It
means that during clustering process, this group is still unable to
converge. With the increase in theta value, a small DT will result
in less noise being removed.

Based on the results that have been achieved in several experi-
ments, the proposed algorithm accommodates Spatio-temporal
data structure, either the scatter type data or the grouped data.
The proposed algorithm can provide better results in partitioning
data to produce representative spatial and temporal sub-units
usable in subsequent processes. This algorithm also showed supe-
riority in classifying predicted data over the other algorithms. Yet
the proposed algorithm still needs a lot of improvement, including
determining the interval value optimally and automatically
according to the volume of data (without pre-determination at
the beginning).

3. Conclusions

The IMSTAGRID density- and cube-based Spatio-temporal clus-
tering algorithm has been successfully developed by adapting the
partitioning process, the distance threshold calculation, and the
density compensation calculation during clustering. The dimension
partition that produces the best result is based on an equal interval
(L) and the addition of an expansion technique on the spatial and
temporal dimensions. Based on the data sets, lower L values pro-
duce better silhouette index values for scattered data. Conversely,
higher L values produce better silhouette index values for grouped
data. From the experiment results, for the storm data set, the
IMSTAGRID outperformed the ST-DBSCAN, AGRID+, and ST-
AGRID algorithms in accuracy; the accuracy percentages were
82.68 %, 38.36 %, 76.13 %, 78.66 %, respectively. We also learn that
the changes in h (theta) or parameter tuning can be used to find
clusters of varied densities.

4. Further study

In future work, an adjustable interval value (L) should be opti-
mally and automatically determined for the spatial and temporal
dimensions based on the spread of the data. It would enable the
partitioning of the data cubes considering the volume of data. Fur-
thermore, an optimal determination of h (theta), which affects the
algorithm’s ability to discover clusters of varied densities, is
required to improve the current iterative approach.
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