

Energy Savings for Air Conditioning System Using Fuzzy Logic Controller Design for Northeastern Nigeria

^aMaxwell Francis^{*}, ^bLuqman Raji, ^cDadiyo Charles, ^dAnjili Audu

^aDepartment of Mechanical Engineering, Faculty of Engineering, Federal Polytechnic Kaltungo, Gombe, Nigeria

^bDepartment of Mechanical Engineering, Faculty of Engineering, Federal Polytechnic Mubi, Adamawa, Nigeria

Pg Student Department of Mechanical Engineering, Faculty of Engineering, University of Maiduguri, Borno, Nigeria

Received August 4, 2022; Revised September 1, 2022; Accepted September 1, 2022; Published October 1, 2022

ABSTRACT

Efficient air cooling in an air conditioning system minimizes power consumption. The air conditioning system is considered one of the home appliances in which a massive amount of electrical energy is recorded, especially in the urban area. In this work, the fuzzy logic controller is designed to save energy for northeastern Nigeria using six and two input and output parameters respectively. The input parameters consist of the temperature of the user, temperature difference, number of occupants, time of the day, dew point temperature, and weather conditions. The output parameters consist of compressor speed and operation mode. The controller performance was simulated. The controller is designed in such a way that it can control the compressor speed leading to energy savings, and the operation mode to optimize humidity conditions, and when the room gets hot, it switches to air conditioning. The simulated result showed that a good percentage of electrical power could be saved when fuzzy logic is utilized.

INTRODUCTION

With the increased usage of cooling devices in Nigeria, air conditionings usages are becoming an important part of our daily life. Air conditioning system significantly affects the electrical grid by consuming power in residential buildings. Precise prediction of air conditioner variations can improve the stability of the grid [1]. Energy consumption in an air conditioning system is a key area to concentrate on reducing energy consumption to ensure thermal comfort when designing the air conditioning system. With the increase in the usage of air conditioners, there is a simultaneous increase in electrical power consumption [2] 90% of energy is consumed by air conditioning systems [3]. When input variables are considered, the functioning of the AC can be modified greatly and minimize the power consumption in AC compressor/fan while making good use of available resources in an effective way [2]. Efficient management of the cost and energy of

*Corresponding Author: maxwellkamo4life@gmail.com

IJATR is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

KEYWORDS

Air conditioning Control Energy system Fuzzy logic Savings

a building's thermal properties requires heating, ventilation, and air conditioning (HVAC) systems controllers to be working in the best settings [4].

Fuzzy logic is a form of many-valued logic or probabilistic logic; it deals with reasoning that is approximate rather than fixed and exact [2], [5]. Fuzzification, inference mechanism, Fuzzy rule base, and defuzzification are fuzzy logic control input and output major components [6].

Fuzzy Logic Control (FLC) saves energy and performs more desirable than the other control systems studied; it makes an enormous change in the development of uncertainty in artificial intelligence systems. FLC is used widely in uncertainty and robust development [7]. 35.2, 30.6, and 54.9 % of electrical energy can be saved in the morning, afternoon, and night respectively, when the FLC is put to use [8]d.

Due to the lack of power supply in Nigeria, there is a need to think of a better way of reducing energy consumption in our homes, especially for devices that are mainly designed for cooling and heating purposes due to their high-power consumption.

This work is focused on energy savings using FLC. The main aim of designing the controller is to optimize energy savings by controlling the speed of the compressor for an air conditioning system.

MATERIAL AND METHODS

Air Conditioner

Air conditioning is the most important aspect of increasing the thermal comfort and working efficiency of a human being. In an air conditioner, the compressor is the component that alone consumes 90% of the total energy consumption [9].

Figure 1. Schematic view of crack-inclusion problem

Fuzzy Logic Controller

The decision table is formed in the fuzzy logic controller to design a basic rule. This table includes input parameters and output parameters. The input parameters are the temperature of the user (Tu), Temperature Difference (Td), Number of occupant (Noc), time of the day (Tod), dew point temperature (Dpt), and weather condition (WC), while the output parameters are speed of compressor (Soc) and mode of operation. These rules were based on the user's experience.

Fuzzy Base Class

<u>A</u>	Fuzzy Logic Designer: Untitled MAX	FUZZY WORK FOR ENERGY SAVINGS 2	- ×
File Edit View			
	U titled MAX FUZZY WO	RK FOR ENERGY SAVINGS 2	COMPRESSOR _J FEED
	(m	andani)	OPERATION, ODE
FIS Name: Untitled M. SAVINGS	AX FUZZY WORK FOR ENERGY 2	FIS Type:	mamdani
And method	min 🗸	Current Variable	
Ormethod	max 🗸	Name	TEMP_OF_USER
Implication	min	Type	input [18:34]
Aggregation	max v		1.00.01
Defuzzification	centroid v	Неф	Close
System "Untitled MAX FUZZY WORK FOR ENERGY SAVINGS 2":	6 inputs, 2 outputs, and 100 rules		

Figure 3 shows the fuzzy base class of the work consisting of the input and output parameters.

Figure 3. Fuzzy base class

Fuzzy Input and Output Variables and Fuzzy Rule

The input and output linguistic variables and terms are respectively defined in Table I and II. Status, as titled in the column in table I, presents user temperature (UT), Temperature Difference (Td), Number of Occupants (Noc), Time of the Day (Tod), Dew point Temperature (DPT), and Weather condition of different condition which accordingly represents various changes in the indoor environment. The unit is fixed based on studies by Shodiya et al. [8]. In this study, 100 rules are set accordingly to change the output parameters of different input parameter conditions, as shown in Figure 4.

Table 1. Input variable							
Variables	Status	Unit (°C)					
Temperature of	Low, Medium, High	15(°C) to 45(°C)					
User (Tu)							
Temperature	Negative, Zero,	-5 to 20					
Difference (Td)	Positive, High Positive						
Number of	Zero, Low, Medium,	1 to 10					
Occupants (Noc)	High						
Time of Day	Morning, Afternoon,	1:00 to 10:00 (morning), 11:00 to 17:00					
(Tod)	Night	(Afternoon), 8:00 to 24:00 (Night)					
Dew Point	Optimal, Humid						
Temperature							
(Dpt)							
Weather	Hamatan, Dry Season,	1 to 2 (H_{Tan}) , 3 to 4 (D_{season}) , 5 to 10					
Condition	Raining Season	(R _{season})					

Table 2. Output variable					
Variables	Status	Unit (%)			
Compressor Speed (Soc)	Off, Low, Medium, Fast	30 to 100			
Mode of Operation	Air Conditioner, Dehumidifier				

•	Rule Editor:	Untitled MAX FUZZY WORK	FOR ENERGY SAVINGS 2	- 🗆 🗙
File Edit View Options				
LITCTENP. OF USER & LOW) 2. If (TEMP_OF_USER & HOU) 3. If (TEMP_OF_USER & HOH) 4. If (TEMP_OF_USER & LOW) 5. If (TEMP_OF_USER & MOH) 6. If (TEMP_OF_USER & MOH) 7. If (TEMP_OF_USER & MOH) 9. If (TEMP_OF_USER & MOH) 9. If (TEMP_OF_USER & MOH) 9. If (TEMP_OF_USER & MOH) 4.	and (TEMP_DIFF is NEGETIVE) at M) and (TEMP_DIFF is NEGETIVE) at and (TEMP_DIFF is NEGETIVE) at and (TEMP_DIFF is NEGETIVE) at m) and (TEMP_DIFF is NEGETIVE) at and (TEMP_DIFF is NEGETI	nd (NO_OF_OCCUPANT is ZERO) and and (NO_OF_OCCUPANT is ZERO) and (NO_OF_OCCUPANT is ZERO) and nd (NO_OF_OCCUPANT is ZERO) and	TTHE OD DAY IS MORNING) and (DEW Int COL DAY IS MORNING) and (DEW INT LOL DAY IS MORNING) and (DEW TTHE COL DAY IS MORNING) and (DEW TTHE COL DAY IS MORNING) and (DEW ITTHE COL DAY IS MORNING) and (DEW	PORT_TEMP. is OPTIMAL) and (WEA' A W_PONT_TEMP is OPTIMAL) and (WEA' PONT_TEMP is OPTIMAL) and (WEA' PONT_TEMP is OPTIMAL) and (WEA' W_PONT_TEMP is OPTIMAL) and (WEA' PONT_TEMP is OPTIMAL) and (WEA' PONT_TEMP is OPTIMAL) and (WEA' PONT_TEMP. is OPTIMAL) and (WEA' PONT_TEMP. is OPTIMAL) and (WEA' PONT_TEMP. is OPTIMAL) and (WEA' PONT_TEMP. is OPTIMAL) and (WEA'
If TEMP_OF_USER is LOW MEDIUM HIGH none	and TEMP_DIFF is ZERO POSITIVE H_POSITIVE none	and NO_OF_OCCUPANT is ZERO LOW MEDIUM HIGH none	and TIME_OD_DAY is MORNING AFTERNOON NIGHT none	and DEW_POINT_TEMP. is V OPTIMAL C DES HUMD C DES none HTA
Connection or and	not Weight:	not Delete rule Add ru	not	_ not
Ready			Не	p Close

Figure 4. Fuzzy base rules

FRANCIS MAXWELL, ET. AL.

RESULTS AND DISCUSSION

Simulated Results

Various input variables and corresponding output variables were generated using fuzzy logic toolbox in Matlab. This fuzzy logic toolbox consists of the FIS Editor, membership function editor, rule editor, rule viewer, and surface viewer.

FIS Editor

System high-level issues are handled where several input and output parameters are declared with specific names. The shape associated with each parameter of all the membership functions is used to be defined by the editor. In this work, we used the Gaussian Membership function as in the equation below [10].

$$MF_{Gaussian}(x; a, b) = e^{-\frac{1}{2}(\frac{x-a}{b})^2}$$
(1)

Figure. 5 to 12 represents the membership function of the various input and output variables.

Figure 5. Temperature of user (TU) membership functions

Figure 6. Temperature difference (TD) membership function

INTERNATIONAL JOURNAL OF APLLIED TECHNOLOGY RESEARCH

Figure 9. Dew point temperature (DPT) membership functions

Figure 10. Weather condition (WC) membership functions

The fuzzy controller output parameters membership functions are:

Figure 12. Schematic mode of operation (MOO) membership functions

Rule Viewer

To apply fuzzy logic design in this work to simulate input values of the fuzzy membership function, the rule viewer was used to give us ideas of the application, as shown in figure 13. This viewer is used to identify the system. It shows how active rules and the individual membership function relationship influence the result.

The following sets of input parameters were used, and the respective results were obtained as shown in the tables below.

Figure 13. Fuzzy rule viewer

From the rule Viewer, as the Number of Occupants, User Temperature, and Time of the Day change the speed of compressor variation can be tabulated in table 3, table 4, and table 5 respectively.

Table 3. Speed of compressor variation as the number of occupants changes							
INPUT VARIABLES OUTPUT							
					VAI	RIABLES	
Temperatu	Number	Time	Dew Point	Weather	Speed of	Operatio	
re	of	of the	Temperatu	Conditio	Compressor	n Mode	
Difference	Occupant	Day	re	n	(%)		
	S	(Hours					
)					
ο	2	8:00	10	2	50	0.5	
ο	4	8:00	10	2	56	0.5	
0	5	8:00	10	2	58.9	0.5	

Table 4. Speed of compressor variation as user temperature changes

INPUT VARIABLES						OUTP	UT	
						VARIAB	LES	
User	Temperat	Number	Time	Dew	Weathe	Speed of	Opera	
Temperat	ure	of	of the	Point	r	Compress	tion	
ure (°C)	Differenc	Occupan	Day	Temperat	Conditi	or (%)	Mode	
	е	ts	(Hour	ure	on			
			s)					
15	0	5	8:00	10	2	56.1	0.5	
18	0	5	8:00	10	2	58.2	0.5	
27	0	5	8:00	10	2	58.9	0.5	
Table 5. Speed of compressor variation as the time of the day changes								
INPUT VARIABLES OUTPUT					JT			
						VARIAB	LES	
User	Temperat	Number	Time	Dew	Weathe	Speed of	Opera	
		~	C . 3	.		~		

User	Temperat	Number	Time	Dew	Weathe	Speed of	Opera
Temperat	ure	of	of the	Point	r	Compress	tion
ure (°C)	Differenc	Occupan	Day	Temperat	Conditi	or (%)	Mode
	е	ts	(Hour	ure	on		
			s)				
26	0	5	3:00	10	2	16.3	0.5
26	0	5	4:00	10	2	39.7	0.5
26	0	5	12:00	10	2	58.9	0.5

Surface Viewer

Surface viewer Purposely displays the relationship between inputs and outputs Variables. Fuzzy controllers control the mode of operation. Room humidity condition is optimized with the help of

FRANCIS MAXWELL, ET. AL.

the mode of operations. Air conditioning mode is switched on when the temperature is hot, making the room cool faster.

Figure 14. Surface viewer graph of temp. diff. vs no. of occupants vs operation mode

Figure 15. Viewer graph of no. of occupants vs time of day vs compressor speed

INTERNATIONAL JOURNAL OF APLLIED TECHNOLOGY RESEARCH

Figure 16. Schematic viewer graph of temp. of user vs time of day vs operation mode

Figure 17. Schematic view graph of no. of occupants vs time of day vs operation mode

Figure 18. Viewer graph of weather condition vs no. of occupants vs compressor speed

Figure 19. Schematic viewer graph of temp. of user vs weather condition vs compressor speed

INTERNATIONAL JOURNAL OF APLLIED TECHNOLOGY RESEARCH

Figure 20. Schematic viewer graph temp. of user vs weather condition vs operation mode

Figure 21. Schematic viewer graph of time-of-day vs no. of occupants vs operation mode

Ready

Figure 23. Schematic viewer graph of weather condition vs temp. of user vs compressor speed

Figure 24. Schematic viewer graph of time of mood of the day vs weather condition vs compressor speed

CONCLUSION

The Fuzzy logic controller was designed to control the speed of the compressor to maintain a set point temperature of a room and to also control the mode of operation. Math lab Fuzzy Logic toolbox was used to simulate the controller performance. The indoor environment parameters are optimized by the controller as it has the capability of optimizing. The selected time of the day based on Morning, Afternoon, and Night results shows that early hours of the morning, 3:00 hours, 4:00 hours, and 6:00 hours the compressor speed dropped to 16.3%, 39.7%, and 58.1% respectively. This shows that the fuzzy design rule gives a satisfactory result in terms of energy savings, as 62% of energy can be saved when this fuzzy logic design is put into use.

REFERENCES

- [1] N. A. Hisham, S. A. Z. S. Salim, A. Hagishima, F. Yakub, and H. F. S. Saipol, "Statistical analysis of air-conditioning and total load diversity in typical residential buildings," *Bull. Electr. Eng. Informatics*, vol. 10, no. 1, pp. 1–9, 2021, doi: 10.11591/eei.v10i1.2299.
- [2] S. K. Dash and G. Mohanty, "Intelligent Air Conditioning System using Fuzzy Logic," Int. J. Sci. Eng. Res., vol. 3, no. 12, pp. 1–6, 2012.
- [3] A. Saepullah, "Comparative Analysis of Mamdani, Sugeno and Tsukamoto Method of Fuzzy Inference System for Air Conditioner Energy Saving," J. Intell. Syst., vol. 1, no. 2, pp. 143–147, 2015.
- [4] A. T. M. Abdo-Allah, "Dynamic modeling and fuzzy logic control of a large building

HVAC system," Memorial University of Newfoundland, 2020. [Online]. Available: https://research.library.mun.ca/14485/1/thesis.pdf

- [5] H. S. Dizaji, S. Jafarmadar, and S. Khalilarya, "Novel experiments on COP improvement of thermoelectric air coolers," *Energy Convers. Manag.*, vol. 187, pp. 328–338, 2019, doi: 10.1016/j.enconman.2019.03.025.
- [6] H. Nasution, K. Sumeru, A. A. Aziz, and M. Y. Senawi, "Experimental study of air conditioning control system for building energy saving," *Energy Procedia*, vol. 61, pp. 63–66, 2014, doi: 10.1016/j.egypro.2014.11.907.
- [7] M. A. Islam and M. S. Hossain, "The Development of Fuzzy Logic Controller (FLC) in Air Conditioning System Using Several Types of Fuzzy Numbers," *Intern. J. Fuzzy Math. Arch.*, vol. 1, no. x, pp. 2320–3250, 2021, [Online]. Available: www.researchmathsci.orgdoi:http://dx.doi.org/10.22457/ijfma.v19n1a01223
- [8] S. Shodiya, U. . Mukhtar, and A. . Abdurazaq, "Fuzzy Logic Control of Domestic Airconditioning System for Energy Savings," *Niger. J. Eng. Sci. Technol. Res.*, vol. 3, no. 2, pp. 57–67, 2017.
- [9] V. Singh, "Design Analysis of Fuzzy logic Model for the Control of Compressor Motor Speed of an Air Conditioning System," 2014.
- [10] S. Saha, S. K. Saha, I. S. Iqbal, A. K. Kundu, M. T. H. Khan, and S. K. Pramanik, "Designing of a Air Conditioning System Using Fuzzy Logic with Advantage of Energy Savings: International Conference on Imformatics," 2014. doi: 10.1109/ICIEV.2014.6850757.