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Abstract: With the continuous progress of renewable energy technology and the large-scale con-
struction of microgrids, the architecture of power systems is becoming increasingly complex and
huge. In order to achieve efficient and low-delay data processing and meet the needs of smart grid
users, emerging smart energy systems are often deployed at the edge of the power grid, and edge
computing modules are integrated into the microgrids system, so as to realize the cost-optimal control
decision of the microgrids under the condition of load balancing. Therefore, this paper presents a
bilevel optimization control model, which is divided into an upper-level optimal control module
and a lower-level optimal control module. The purpose of the two-layer optimization modules is to
optimize the cost of the power distribution of microgrids. The function of the upper-level optimal
control module is to set decision variables for the lower-level module, while the function of the
lower-level module is to find the optimal solution by mathematical methods on the basis of the upper-
level and then feed back the optimal solution to the upper-layer. The upper-level and lower-level
modules affect system decisions together. Finally, the feasibility of the bilevel optimization model is
demonstrated by experiments.

Keywords: edge computing; microgrid; power distribution; cost; optimization

1. Introduction

With the vigorous development of renewable energy, the power system structure is
becoming increasingly complex and huge, the number of distributed power resources in
the distribution network is increasing, and the terminals on the microgrid user side are
also various [1–3]. The traditional power purchase mode of distribution users in the main
network is not adequate for the current power requirements [4–6]. In order to adapt to the
new situation of continuous development and change, an intelligent microgrid consisting of
photovoltaic power generation, a combined cooling heating and power system, an energy
storage system and a response load is suggested in the literature [7]. In the microgrid,
electrical energy is transmitted in both directions. That is, the electrical energy, according
to the actual situation and demand, is able to be effectively transferred to the transmission
network; it is not just a one-way transmission [8].

A common smart microgrid is an independent system composed of small-scale power
generation and distribution systems, as shown in Figure 1, where the distribution system is
composed of a distributed generation unit, energy storage, energy converter, related loads,
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monitoring and protection. The microgrid is usually deployed on the user side, which can
avoid voltage instability, blackouts and other trouble [5]. The microgrid usually needs to
be connected to the main power grid system through connecting lines. With the addition
of various microgrids, the power system architecture has become increasingly complex
and huge [6], which not only raises the complexity of equipment deployment and system
configuration, but also increases their cost.

User Load

Photovoltaics
Wind Power 

Generation

Diesel Power 

Generation

Distributed Generation Unit Energy Storage Subsystem

Energy Storage 

Device

Energy Management
Communication 

Controller

Energy Management Subsystem

Power Distribution Network Subsystem Distribution Network Substation

Monitoring and Protection Subsystem

Grid-connected Switch 

Protective Device

Executive Body

Communication Network

Electric Power Line

Secondary Line

Block Diagram

Figure 1. Sketch map of smart microgrid.

Nowadays, with the access to a large number of terminals and the emergence of
more users on the demand side, the data flow between electrical equipment terminals and
monitoring and control centers, enterprises and power users as well as mobile terminals is
growing rapidly [9–12]. Faced with these new power services and massive data, traditional
relational databases have been unable to meet the requirements of efficient data processing.
How to improve the efficiency of data processing and power distribution while ensuring
the safe and stable operation of the entire power system has been widely valued in the
industry [13–16].

In the deployment process of data processing, computing resources can be deployed
simultaneously in the cloud and at the edge of the network, while edge computing is a
new computing system and technology that sinks its computing power from the former to
the latter to achieve real-time business, efficient data processing, application intelligence,
security and privacy protection [17–19].

Edge computing has the advantages of a low latency, real-time and efficient data
processing capacity [20], data security and privacy protection, personalized configuration
and localized processing. It also meets the different application needs of power grid
intelligence. Therefore, this paper proposes a bilevel optimization model for microgrid
users based on edge computing, which is divided into an upper-level module and a lower-
level module. The purpose of the bilevel optimization model is to optimize the power
distribution of the microgrid. The decision variables of the microgrid are set in the upper-
level module while the optimal solution of the upper-level module is calculated through
mathematical methods in the lower-level module. The optimal solution is also fed back
to the upper-level module and influences the decision variables. The upper-level and the
lower-level affect each other. The combined modules determine the cost-optimal control
decision of the microgrid under the load balance condition.

The contributions of this paper are summarized as follows:
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1. We put forward a bilevel optimization model, aiming to realize the cost-optimal
control decision under the condition of load balancing for microgrid users. The model
consists of an upper-level module and a lower-level module.

2. We introduce the modeling process of both the upper-level module and the lower-level
module and the model solution procedure in detail. The purpose on the two-layer
optimization modules is to optimize the cost of power distribution of microgrids.

3. Extensive simulations are conducted to demonstrate the proposed bilevel optimization
model. The results indicate that the proposed model is feasible for the control decision
of power distribution of microgrid users.

The remainder of the paper is organized as follows. Section 2 describes the background
knowledge of the Dijkstra algorithm. Section 3 illustrates the presented bilevel optimization
model in detail. Section 4 introduces the model solution procedure. The experimental
results obtained from simulation are given in Section 5. Finally, the paper is concluded in
Section 6.

2. Background
2.1. Dijkstra Algorithm

Inspired by the idea of the greedy algorithm, the Dijkstra algorithm is widely used
to obtain the optimal solution of the shortest route problem [21]. The Dijkstra algorithm
needs to calculate the shortest distance between all user nodes. The details are as follows.

1. First, the parameters are initialized: start node i = 1, 2, 3...n, destination node
j = 1, 2, 3...n, intermediate variable di,j = li,j, where di,j represents the intermediate
value of the shortest distance solution process and li,j denotes the distance between
adjacent nodes i and j. If the two nodes are nonadjacent, set li,j = +∞. Initialize
mi,j = +∞, where i 6= j and mi,j is the shortest distance from node i to node j. This
shortest distance includes the distances passing through intermediate nodes.

2. Second, compare all distances between adjacent nodes i and j ( i 6= j) and let
mi,j = min{di,j}, where j = 1, 2, 3...n.
For all j = 1, 2, 3...n, if di,j = mi,j 6= +∞, set Ni,j = j, where Ni,j is an intermediate
variable. Ni,j = j indicates that the node j has been compared with node i.
For all j = 1, 2, 3...n, if Ni,j 6= j, let di,j = min{mi,k + lk,i, di,j}, where intermediate
node k = 1, 2, 3...n, mi,k is the shortest distance from node i to node k and lk,i denotes
the distance from intermediate node k to the adjacent node i.

3. Next, judge whether all Ni,j = j, where j = 1, 2, 3...n. If not, recompare all new
distances li,j except the distance of node Ni,j. Otherwise, check whether i is more
than or equal to n. If so, the algorithm ends; if not, let i = i + 1 and reinitialize the
parameters: di,j = li,j, mi,j = +∞, where j = 1, 2, 3...n and i 6= j. Then, continue to
execute the algorithm.

3. Bilevel Optimization Model

To realize cost-optimal microgrid control decisions under load balance, a bilevel
optimization model for a microgrid is put forward in this paper, as shown in Figure 2.
The upper-level module mainly establishes the electricity consumption behavior model of
microgrid users according to the users’ behavior parameters such as electricity consumption,
electricity sale, electricity transmission, electricity consumption time and so on. It considers
the comprehensive cost in the process of power grid planning, and then the selection of
microgrid nodes is analyzed from the perspective of economic indicators. The lower-level
module is mainly to find the optimal solution for the path selection in the network [22,23].
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Figure 2. Schematic diagram of bilevel optimization model.

In the bilevel optimization model, the upper-level and lower-level modules are inter-
connected through intermediate variables, and each module has its own objective function
and constraints. The two-layer optimization modules are modeled as follows:

min F = F(αinv, s)
s.t G(αinv) <= 0

H(αinv) = 0
(1)

where F(·) is the upper-level objective function, αinv and s are the decision variables of the
upper-level module, with the caveat that s is affected by the lower-level module, and G(·)
and H(·) represent the inequalities and constraints of the upper-level module, respectively.

The lower-level module is modeled as follows:
min s = f (αinv, αnd)

s.t g(αinv, αnd) <= 0

h(αinv, αnd) = 0

(2)

where s(·) represents the lower-level objective function, αinv and αnd are the decision
variables of the lower-level module, with the caveat that αinv is affected by the upper-
level module, and g(·) and h(·) denote the inequalities and constraints of the lower-level
module, respectively.

The overall objective function is shown in Equation (3):

min JFtotal = λ1 f1 + λ2 f2 + . . . λn fn (3)

where λ1, λ2, · · · , λn are weight ratios from 0 to 1 and λ1 + λ2 + · · ·+ λn = 1. The value
of λ1, λ2, · · · , λn is changed by decision-makers according to the emphasis of differ-
ent objectives.

The purpose of the two-level optimization modules is to optimize the power distri-
bution of the microgrid users. The upper-level module sets the decision variables for the
lower-level module. The upper-level module needs to calculate the weight ratio between
the attribute values of the microgrid users so that the optimal solution is able to be found
in the lower-level optimization module. After the optimal solution is fed back to the upper-
level module, it also affects the decision variables simultaneously. The upper-level and
lower-level modules influence each other.

3.1. Upper-Level Module

The upper-level module is based on the optimization of the comprehensive cost of
power distribution at the user node of the microgrid as the objective function, involving
parameters of the cost of purchasing electricity, the cost of selling electricity and the cost of
electricity transmission. Taking into account the attributes of each user node graph in the
microgrid [24] and the economic benefits of the operation of the distribution network [25],
the upper-level objective function is represented in Equation (4):
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min Ftotal = CSA + CST + CTR (4)

where Ftotal is the comprehensive cost of the distribution network, CSA is the electricity
purchasing cost between consumers, CST is the electricity selling cost and CTR is the
electricity transmission cost. The details are as follows.

1. The electricity purchasing cost for consumers is represented in Equation (5):

CSA = ∑
τ

∑
t

Epr
t Pτ (5)

where Epr
t is the electricity price at time t and Pτ is the exchange power between

different microgrids in the τ(τ = 1, 2, 3, 4) season.
2. The electricity selling cost is defined in Equation (6):

CST = ∑
τ

∑
t

Epr
t

(
Ppv

t + ∆Ppv
t

)
(6)

where Epr
t is the electricity price at time t, Ppv

t is the photovoltaic power generation at
time t and ∆Ppv

t is the deviation value of photovoltaic power generation at time t.
3. The transmission cost is demonstrated in Equation (7):

CTR =

(
W f re −Wsre

W f re
t

)
γ (7)

where Wsre is the value of the meter on the input side, W f re is the value of the meter
on the output side and γ is the normalization factor.

In addition, the two-level optimization model in the distribution network should also
meet the following series of equations and constraints.

1. The line power constraint is defined in Equation (8):

0 ≤ PK ≤ PMAX (8)

where PK is the line power and PMAX is the maximum allowable line power, which is
a fixed value determined when the transmission line is constructed.

2. The electric power constraint of the microgrid is shown in Equation (9):

PE = PM_A + PCH + PREG_sel f + PCT (9)

where PE is the electrical power output of the microgrid, PM_A is the purchased power
of the consumers, PCH is the amount of electricity converted by the photovoltaic
inverter, PREG_sel f is the self-consumption of microgrid distributed renewable energy
and PCT is power consumption.

3. The microgrid price constraint is presented in Equation (10):

Epr_min
t < Epr

t < Epr_max
t (10)

where Epr_min
t and Epr_max

t are the upper and lower limits of the electricity price, respectively.
4. The microgrid cost constraint is defined in Equation (11).

CTR =


ηa0
Epr

t
Epr

t ∈
(

Epr_min
t , Epr_med

t

)
ηa1 × Epr

t Epr
t ∈

(
Epr_med

t , Epr_max
t

) (11)

We see that if the electricity price is less than Eprt_med, the electricity price is inversely
proportional to the transmission cost, and the higher the electricity price, the lower
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the transmission cost. If the electricity price is greater than Eprt_med, the electricity
price is directly proportional to the transmission cost, and the higher the electricity
price, the higher the transmission cost.

3.2. Lower-Level Module

The main consideration in the upper-level optimal control module was the comprehen-
sive cost. It mainly analyzed the selection of microgrid nodes from the economic indicators.
While in the lower-level module, the main goal is to calculate the optimal solution of the
path selection through the graph-based path-search algorithm.

1. After the modeling and operation of the upper-level module, we obtain the weight
values between the microgrid user nodes. Then, these weight values are combined
into a digraph matrix. The lower-level objective function is defined in Equation (12).

min s = ∑ lij (12)

where lij is an element of the digraph matrix that represents the weight between the
microgrid user nodes. lij is obtained via Equation (3). The digraph matrix is as follows:

Γ =


l1,1 l1,2 · · · l1,n
l2,1 l2,2 · · · l2,n

...
...

...
...

ln,1 ln,2 · · · ln,n

 (13)

2. The corresponding lower-level constraints are as follow (14):

Γ
′
=


0/1 0/1 0/1 0/1 · · · 0/1
0/1 0/1 0/1 0/1 · · · 0/1
0/1 0/1 0/1 0/1 · · · 0/1

...
...

...
...

...
...

0/1 0/1 0/1 0/1 · · · 0/1

 (14)

where “0/1” represents whether the edge of the node of the directed graph exists,
which constitutes a constraint graph.

4. Model Solution

First, according to the original data of microgrid users, the electricity purchasing
cost, electricity selling cost, electricity transmission cost and other parameter values are
calculated, and then they are normalized. Second, the optimal solution of the upper
model and the weight proportion of each power price parameter is calculated. Next, the
optimal solution is obtained through Dijkstra’s algorithm [21,26,27], and finally the optimal
distribution scheme is given.

The normalization equation is defined as (15).

x =
Cx − Cmin

Cmax − Cmin
(15)

where Cx is the current cost value (such as CSA, CST and CTR), Cmax is the maximum of
current cost and Cmin is the minimum of current cost.

Thus, we obtain the comprehensive cost of the distribution network (i.e., solution of
the upper-level objective function):

Ftotal_x = CSA−x + CST−x + CTR−x (16)

where CSA−x, CST−x and CTR−x are all calculated according to Formula (15).
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Then, the weight ratios (λ1, λ2, · · · , λn) are obtained via Equations (17)–(19):

λCSA_x =
CSA_x
Ftotal_x

(17)

λCST_x =
CST_x
Ftotal_x

(18)

λCTR_x =
CTR_x
Ftotal_x

(19)

If we set the start node as A and select the adjacent node as B on any branch of the
destination node, the weighted objective function value JFtotal _x (i.e., the overall objective
function) from A to B is obtained via Equation (20):

JFtotal_x = CA·SA_x × λCSA_x + CB·ST_x × λCST_x + CAB·TR_x × λCTR_x (20)

where CA·SA_x is the electricity purchasing cost of node A, CB·ST_x is the electricity selling
cost of node B and CAB·TR_x is the electricity transmission cost between node A and node B.

After we calculate the weighted objective function value JFtotal between all adjacent
nodes, we obtain the digraph matrix Γ.

Last, the best solution is found through Dijkstra’s algorithm, introduced in Section 2.1.

5. Simulated Results

To verify the feasibility of the bilevel optimization model for the microgrid proposed
in this paper, we designed the following simulation experiment.

Taking the monthly electricity consumption data as the experimental dataset, where
Table 1 shows some of the original monthly power consumption data of user nodes, we
conducted some simulations.

Table 1. Some of the original monthly power consumption (kWh) data of microgrid users.

Customer Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May

675 434 441 438 412 402 591 584 583 582 584 593 408 438 445 492 814 308

676 435 434 419 414 410 590 595 590 591 400 403 423 444 442 488 484 304

677 434 445 434 424 404 534 551 538 581 534 580 534 538 549 530 535 591

678 433 429 419 593 585 544 531 543 558 555 559 541 541 534 541 544 545

679 438 403 599 590 531 532 549 553 545 535 584 408 434 449 499 483 498

680 439 444 443 430 433 404 402 588 590 595 403 444 440 488 498 341 353

681 480 499 443 434 438 415 409 419 421 425 413 439 454 444 484 310 303

682 481 453 449 429 403 404 594 402 598 403 418 434 450 448 495 485 485

683 482 485 443 450 442 434 423 413 411 413 422 445 435 485 499 498 309

684 483 435 481 445 443 423 419 419 401 594 589 593 534 532 543 534 582

685 400 452 483 419 418 403 585 581 583 533 544 533 542 583 550 549 558

686 485 424 412 598 585 593 583 544 543 583 401 432 448 490 308 814 341

687 484 444 444 441 422 422 409 409 413 405 411 448 435 305 328 313 322

688 483 443 435 430 438 413 415 413 403 424 429 443 459 300 333 329 320

689 488 449 433 433 455 444 432 433 443 439 453 441 484 494 328 309 312

We selected six users’ node (customer) information to do the simulation. Figure 3
is a relationship diagram of the six microgrid users. The original dataset was processed
with the precedence diagram method [28]. The mean-shift clustering algorithm [29] was
employed to extract data features of users so that the electricity purchasing price was in the
range between 0.28 (CNY/kWh) and 0.84 (CNY/kWh) at time t, the electricity selling price
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was in the range between 0.13 (CNY/kWh) and 0.66 (CNY/kWh), the photovoltaic power
generation was 260 W and the line loss rate was in the range between 3% and 8%. Figure 4
displays one group of data of the microgrid users’ electricity transmission cost.
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Figure 3. A relationship diagram of microgrid users. The direction of the arrow indicates the
transmission direction of electricity. For example, “Charies −→ Doug” denotes that Charies can
transmit electricity to Doug but Doug cannot transmit electricity to Charies, because there is no arrow

going from Doug to Charies. “Mark←−−→ Doug” indicates that they can transmit electricity to each

other because there are two-way arrows between them.
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Figure 4. Users’ electricity transmission cost CTR.

We utilized the particle swarm algorithm [27] to find the optimal solution, where the
learning factor was set to 2, the inertia weight was set to 0.5 and the maximum number of
iterations was set to 300. We conducted four experiments, and the convergence curves of the
objective function are demonstrated in Figure 5. We see that after repeating the operation
four times, the values of the objective function all converge to 0.76, so this output is the
optimal solution. The parameters corresponding to the optimal solution were CSA = 0.28,
CST = 0.31 and CTR = 0.17.

Then, according to the weight ratio Equations (17)–(19), we obtained the optimal
weight ratios as λCSA_X = 0.368, λCST_X = 0.407 and λCTR_X = 0.223. The weight ratios
corresponding to different CSA, CST and CTR are demonstrated in Table 2.
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Figure 5. Convergence of objective function versus iterations.

Table 2. Weight ratios of different cost.

Parameter Group

Weight Ratios Cost Parameter
CSA CST CTR

1 0.263 0.625 0.425

2 0.163 0.431 0.235

3 0.218 0.342 0.117

4 0.284 0.523 0.425

5 0.412 0.321 0.241

6 0.251 0.325 0.415

7 0.368 0.407 0.223

In addition, we calculate the weighted objective function value of microgrid users
with Equation (20), as shown in Table 3.

Table 3. The weighted objective function value between user nodes in the microgrid.

Initial Nodes

Weighted Objective
Function Value

Destination Nodes

Doug Mark Charies Michael Bridget Alice

Doug 0 6.2 inf inf inf inf
Mark 6.2 0 inf inf inf 19.6
Charies 4.3 inf 0 inf inf inf
Michael 4.6 inf inf 0 9.6 6.8
Bridget 15.1 inf inf 9.6 0 10.6
Alice 6.7 9.5 26.2 6.8 10.6 0

Where “inf” means that there is no direct connection between the two nodes, i.e., the
two nodes are in an unreachable state. In this case, the weight ratio between the parameters
is 1:1:1.

If setting Bridget as the start node and Doug as the destination node, from Table 3
and Figure 3, we find that there are five paths from Bridget to Doug, i.e., five schemes in
total as presented in Table 4. Then, from Tables 3 and 4, we get the total weighted objective
function value on the five paths, as shown in Figure 6.



Sensors 2022, 22, 7710 10 of 12

Table 4. Different schemes from start node to destination node.

Scheme Path

1 Bridget→Michael→ Doug

2 Bridget→ Doug

3 Bridget→ Alice→ Doug

4 Bridget→Michael→ Alice→ Doug

5 Bridget→ Alice→Michael→ Doug

From Figure 6, we see that the weighted comprehensive cost of scheme 1 corresponding
to parameter group 7 is minimal. Thus, it is the optimal solution from Bridget to Doug,
that is, when CSA = 0.28, CST = 0.31 and CTR = 0.17, the comprehensive cost is optimal
from Equation (4). In addition, from Figure 6, for the scheme recommendations with fixed
parameters, scheme 2 is the optimal option for the second group of parameters, and scheme
3 is the optimal option for the fifth group of parameters.
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Figure 6. Comparison of weighted comprehensive costs with different schemes.

6. Conclusions

To realize the cost-optimal control decision of microgrids under the condition of load
balance, this paper proposed a bilevel optimization model for microgrid users based on
edge computing. The modeling process of both the upper-level module and the lower-level
module was introduced in detail. The model solution was also provided. Finally, the
experimental results indicated that the presented bilevel optimization model was feasible
for the control decision of power distribution of microgrid users.

In the follow-up work, we will further optimize the bilevel model, for instance, con-
sidering more complex microgrid structures, more user nodes and more parameters. In
addition, we think that it is meaningful to analyze the impact of different attributes of each
user on the performance of the bilevel model.
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