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Abstract: The autonomous landing of an unmanned aerial vehicle (UAV) on a moving platform is an
essential functionality in various UAV-based applications. It can be added to a teleoperation UAV
system or part of an autonomous UAV control system. Various robust and predictive control systems
based on the traditional control theory are used for operating a UAV. Recently, some attempts were
made to land a UAV on a moving target using reinforcement learning (RL). Vision is used as a typical
way of sensing and detecting the moving target. Mainly, the related works have deployed a deep-
neural network (DNN) for RL, which takes the image as input and provides the optimal navigation
action as output. However, the delay of the multi-layer topology of the deep neural network affects
the real-time aspect of such control. This paper proposes an adaptive multi-level quantization-based
reinforcement learning (AMLQ) model. The AMLQ model quantizes the continuous actions and states
to directly incorporate simple Q-learning to resolve the delay issue. This solution makes the training
faster and enables simple knowledge representation without needing the DNN. For evaluation, the
AMLQ model was compared with state-of-art approaches and was found to be superior in terms
of root mean square error (RMSE), which was 8.7052 compared with the proportional–integral–
derivative (PID) controller, which achieved an RMSE of 10.0592.

Keywords: unmanned aerial vehicle (UAV); autonomous landing; deep-neural network; reinforcement
learning; multi-level quantization; Q-learning

1. Introduction

Unmanned aerial vehicle (UAV) applications are increasing daily and are part of
many recent technological applications. Some examples of UAV or drone applications are
shipping [1], surveillance [2,3], battlefield [4], rescuing applications [5,6], inspection [7,8],
tracking [3], etc. One of the appealing applications of UAVs is traffic sensing [9] and con-
gestion estimation [10], and/or detection, which is beneficial for intelligent transportation
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systems (ITS) [11]. The UAV has the advantage of having no humans on board, making
it a fixable and desirable platform for exploring and applying new ideas. Subsequently,
UAV technology has opened the door to many sustainability-related studies, including
agriculture, air quality, fire control, pollen count, etc.

The UAV’s control system is categorized into three parts: teleoperated [12,13], semi-
autonomous [14,15], and full autonomous [7,16]. Each category defines the involvement
level of humans in UAV flight control and daily activities. The sustainability of UAV appli-
cations requires essential autonomous features that provide a high degree of autonomy in
the UAV systems. These autonomous features improve the UAV’s performance in complex
environments and sustain its safety. One essential autonomous feature is auto-landing on a
moving target. In various applications such as ground-aerial vehicle collaboration, aerial
vehicles need to identify a certain landing area. This functionality has to be autonomous
because of the challenging aspect of the teleoperation when landing on a moving target.
In addition, there is a risk of failure, which might cause damage to the aerial vehicle and
other properties. It is necessary to include the functionality of autonomous landing in all
categories of the operation of UAVs, even in the teleoperation category. Hence, the landing
of UAVs on moving targets is an essential function of robotics competitions [17,18]. The
UAVs have a limited flight time. When the targeted task is far from the ground station, one
solution is to use a mobile carrier such as a truck, helicopter, or ship. For example, a flight
landing on a moving ship deck requires identifying the landing spot and assuring a safe
and precise landing while the ship is moving [19].

The mathematical function of the plant is important for ensuring a reliable controller
in nonlinear and dynamic control systems. The controller’s stability is assessed using
complex mathematical approaches and techniques. The accuracy of the mathematical
model of the plant is questioned in many real-world applications. Engineers have also
used mathematical approximations to make model development easier. These estimates
are based on assumptions limiting the controller’s generalizability, resulting in difficulties
in application and reliability. The concept of free model control has been utilized to avoid
such approximations and invalid assumptions. Instead of utilizing it to tune a simplified
controller through repeated trial and error, it can be used to construct an accurate controller
that incorporates enough plant knowledge [20].

Reinforcement learning (RL) is a sort of artificial intelligence (AI) based on model-free
control. It has proven to be a useful and effective control method in nonlinear and highly
dynamic systems, especially when proper modeling is difficult. Furthermore, combining
RL with a deep-neural network for video analysis and decision making based on lengthy
training has made its way into the automotive industry and driverless automobiles as a
valuable AI product [21]. It has also found its way into UAV control [22]. The reason relates
to the ability to train the RL model based on an extensive number of driving scenarios and
then use the learned knowledge for operation. Hence, RL is considered one type of model-
free control as it does not need to build a model for the control. One appealing application
for RL is autonomous landing on a moving target because of its non-linearity and lack
of an accurate plant model. The plant is non-accurate because of various environment
and platform-dependent factors. Furthermore, the autonomous landing on a moving
target includes a dynamic aspect that makes the problem more challenging. Q-learning
is used due to its simplicity in terms of preserving the knowledge as a table of states and
their corresponding actions for optimizing the reward. Unlike other advanced Q-learning
methods, the knowledge is needed in Q-learning for a neural network to preserve it, which
makes it applicable in limited resources hardware, such as the exit in drones.

The problem of the autonomous landing of a quadrotor on a moving target is a
nonlinear control problem with a dynamic nature. The non-linearity comes from various
aspects, e.g., the quadrotor’s nonlinear kinematic model, the motors’ nonlinear response,
the curvature, the geometric trajectory, etc. The dynamical aspect comes from various
aspects, e.g., the dynamic of the target mobility, the air disturbance, the battery changes,
etc., as well as the difficulty in achieving a full mathematical description of the various
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blocks in the system, including the quadrotor, the environment, and the target. Hence,
solving this problem using a model-based approach is ineffective compared to the model-
free approach. Hence, we propose reinforcement learning (RL) as a control algorithm
for accomplishing the smooth control of a quadrotor landing on a moving target while
maintaining various dynamic requirements of control performance. Incorporating RL as an
approach to control the landing process requires a special type of modeling of the interface
between the agent of RL and the environment. The modeling includes the quadrotor’s
low-level control commands, the quadrotor itself, and its geometrical and dynamic relation
with the moving target.

The early works of UAV landing were focused on landing in a safe area representing
a stationary target. An example is the study in [23]. The fusion between inertial sensing
and vision was performed to build a map for the environment. Next, the landing was
performed with the assistance of the map. Other approaches have also used sensor fusion
but between the Global Positioning System (GPS) and the inertial measurement unit (IMU)
in an outdoor environment, such as the work in [24]. Similarly, Ref. [25] proposed a fusion
between differential GPS and onboard sensing of a hexacopter for outdoor landing. Infrared
lamps have been used for guiding the UAV based on a vision system to perform landing
on a stationary area [26]. This work was applied to a fixed-wing aerial vehicle similar
to the work in [27], where the stereo vision was used with a global navigation system
satellite (GNSS) with fusion under the Kalman filtering model. In addition, many classical
works have been built based on the visual servo for control and optical flow for perception.
The authors of [28] proposed an autonomous navigation of UAVs using an adjustable
autonomous agent in an indoor environment. The sensing mainly depended on proximity
sensors and optical flow mechanisms.

The literature includes numerous works related to the development of an autonomous
landing of an aerial vehicle on a moving target. Some of them were based on classical or
modern control, while others were based on RL. One important component in the landing
works is the Kalman filter incorporation for tracking the target [29]. Some algorithms
have used sliding mode control, such as the work in [30], where sliding mode control was
combined with a 2D map representation of the target. Recently, more interest has been
shown towards the use of RL-based landing on a moving target. Deep Q-learning was
used the most for a single drone [31] and multiple UAVs [32]. Similarly, in the work in [33],
an approach for tracking the mobility of moving targets using a camera was developed.
The approach was based on an extended Kalman filter and visual-inertial data. For the
target detection, the AprilTag was used. The approach concentrated more on tracking the
moving target without attention to the landing control. Other approaches have adopted
deep reinforcement learning to handle the continuous nature of control.

In the work in [34], Marker alignment and vertical descent were decomposed as two
discrete jobs during the landing. Furthermore, the divide and conquer paradigm was
employed to divide the tasks into two sub-tasks, each of which was allocated to a deep
Q network (DQN). In [35], a RL framework was combined with the Deep Deterministic
Policy Gradients (DDPG). While Z was isolated, the technique considered tracking in X
and Y as part of the reinforcement control. Furthermore, the work developed a rewarding
function that did not take enough dynamics into account, limiting the applicability of the
strategy to simple landing procedures. In [36], a sequential deep Q network was trained in
a simulator to deploy it to the real world while handling noisy conditions.

In [37], the least-square policy iteration was used to produce an autonomous land-
ing based on RL. The target was assumed to be stationary, and the rewarding functions
employed two terms with adaptive weighting: one for position error and the other for
velocity error. The weights were assumed to change exponentially with the error so that
when the error was high, the position error obtained more weight, and when the error is
small, the velocity error obtained more weight. The authors did not cover the quantifica-
tion of velocity and location in their paper. In [38], Kalman filtering and reinforcement
learning were proposed for image-based visual serving. This research demonstrated the
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importance of including velocity inaccuracy in the reward function as well as the efficacy
of asymmetric rewards.

Overall, none of the previous approaches proposed autonomous landing on a moving
target based on standalone RL to address quantization issues. Basically, quantization leads
to the high computation (slow convergence) and low accuracy (less gained knowledge)
tradeoff. In order to avoid this tradeoff, we propose a novel type of the quantization of
actions we call adaptive quantization. It uses a feedback loop from the target to change the
magnitude of the action. This feedback enables an adaptive change of action according to
the state and provides a compact representation of the Q-matrix. Another essential matter
in solving the problem is the dynamic incorporation of the rewarding. More specifically,
using a fixed weighted average reward formula makes it only controllable for a small
interval. However, incorporating the adaptive weighted average formula of rewarding
enables a wide interval of controllability.

Consequently, this article proposes a novel definition of the elements of RL based on
the aimed goal. The definition of the state, actions, and reward can be proposed according
to the nature of the problem to be solved. The article uses Q-learning, which is a special
type of RL that uses a recursive equation to update the Q-values of various state-actions
associations. Q-learning is based on the dynamic programming updating equation named
the Bellman equation. This equation was selected because of its simplicity and sufficiency
in performing the iterative process of updating the Q-value. It yields, after training, the
criterion for selecting the best action from a set of candidate actions to move the UAV toward
the target for landing in an optimized way. The approach of defining the reward in each
action selection based on the next state leads to the definition of the maximum accumulated
reward or the Q-value to accomplish the optimization of the control performance metrics.
Considering that the RL model contains continuous states and actions, a quantization is
needed to preserve the discrete nature of the problem. However, the system will fall into
the problem of a slow convergence-low accuracy tradeoff. To avoid this problem, adaptive
quantization is proposed by using environmental feedback to change the quantization
level. Subsequently, an Adaptive Multi-Level Quantization-based Reinforcement Learning
(AMLQ) model for autonomous landing on moving targets is simulated in this study. The
study has resulted in the following contributions:

1. A novel RL-based formulation of the problem of autonomous landing based on
Q-learning through defining states, actions, and rewards;

2. An adaptive quantization of actions relies on a compact type of Q-matrix. It is useful
for the fast convergence of training and high gained knowledge while preserving the
aimed accuracy;

3. A thorough evaluation process has been made by comparing various types of RL-
based autonomous landing using several types of mobility scenarios of targets and
compares them with classical proportional–integral–derivative (PID)-based control.

This paper is organized as follows. The methods are provided in Section 2. Next, the
results and discussion are illustrated in Section 3. Lastly, the conclusion and future works
are summarized in Section 4.

2. Methods

This section presents the developed methodology of the autonomous control of the
quadrotor on a moving target. It gives the problem formulation and defines the Q-learning
elements: state, reward, and action. Next, the model of the Q-table update, and the
Q-learning of the control algorithm are presented. The terms and symbols that we use
throughout this paper are shown in Table 1. One of the parameters is the granularities gp, gv,
which represent the resolution of decomposition based on the quantization. Increasing the
quantization means a smaller number of decompositions and consequently less granularity.
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Table 1. Symbols in the article and their interpretation.

Symbol Meaning

{R} Reference frame

{D} UAV frame

θ
Pitch angle. This describes the orientation of the UAV with

respect to YR-axis of the reference frame

φ
Roll angle. This describes the orientation of the UAV with

respect to XR-axis of the reference frame

ψ
Yaw angle. This describes the orientation of the UAV with

respect to ZR-axis of the reference frame

gp The granularity level of position quantization

gv The granularity level of velocity quantization

(xd, yd, zd) The position of the UAV(
vxd, vyd, vzd

)
The velocity of the UAV

(xta , yta, zta) The position of the target

ep = (xd − xta, yd − yta) The final error of the UAV with respect to the position

ev =
(

vxd − vxta, vyd − vyta

)
The final error of the UAV with respect to the velocity

prel The relative position of the UAV with respect to the target

vrel The relative velocity of the UAV with respect to the target

Na The number of actions

sp,max The maximum value of the position in the state

sp,min The minimum value of the position in the state

sv,max The maximum value of velocity in the state

sv,min The minimum value of velocity in the state

dε Decay factor of ε

∆1, ∆2 Coefficients of the position and velocity rewarding term

∆3, ∆4, ∆5, ∆6 Coefficients of the adaptive linear action model

∆7, ∆8, ∆9, ∆10 Coefficients of the adaptive exponential action model

2.1. Autonomous Landing

The classical way of solving the problem of autonomous landing is the use of a PID
controller to control each of the three coordinates of the aerial vehicle and to control the
heading as well. A conceptual diagram of the autonomous landing problem is presented
in Figure 1. The diagram shows the actual axes and the calculated axes that are denoted
by * symbol while the C denoted the planned direction. This landing approach is successful
for the stationary target after careful tuning. However, in the case of moving targets, a
dynamical and nonlinear component is added to the plant, which takes it beyond the
traditional PID control [39].

We used the Q-learning algorithm, which is based on defined states, termination state,
actions, rewarding function, transition function, learning rate, and discounting factor. The
output of the algorithm is the Q-matrix. As we show in Algorithm 1, the algorithm starts
by randomly initiating the values of the Q-matrix. Next, it goes for a certain number of
iterations until convergence. We call each iteration an episode. Each episode starts from a
random state and keeps running until reaching the final state (or the termination state). It
selects an action based on the policy derived from the Q-matrix. It enables the action which
makes the system move from its current state toward the next state. It measures the reward
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and uses this measurement to update the Q-matrix. Whenever the system reaches the final
state, it returns to the outer loop representing the episodes.
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Algorithm 1 Pseudocode of the Q-learning algorithm

Input
X = {1, 2, . . . nX} the states
Xe the final state (the termination state)
A = {1, 2 . . . nA} the actions
R : X× A→ R Reward Function
T : X× A→ X Transition Function
α ∈ [0, 1] learning rate
γ ∈ [0, 1] discounting factor
Output
Q
Start
Step-1: Initiate Q : X× A→ Q0 with arbitrary
Step-2: Check for convergence, if NOT

converged continue; otherwise go to 3.
Step-2.1: Select Random state s from X.
Step-2.2: Check if the state reached terminated state send,

if NOT continue; otherwise, Go to 2.
Step-2.2.1: Select action a based on policy π(s) and exploration strategy
Step-2.2.2: Find the next state based on the transition T.
Step-2.2.3: Receive the reward-based r.
Step-2.2.4: Update the value of Q using α and γ.

Go to Step 2
End

The autonomous landing problem on a moving target assumes a quadrotor moving in an
indoor environment, and it has p = (xd, yd, zd) ∈ R3 as the position, v =

(
vxd, vyd, vzd

)
∈ R3 as

the velocity. It aims to land on a moving target with the position of (xta, yta) ∈ R2 and the veloc-
ity of

(
vxta, vyta

)
∈ R2. The landing is a control problem that brings e = (xd − xta, yd − yta, zd)

to (0, 0, 0). The error measures the accuracy of the landing control after
(

vxd, vyd, vzd

)
= 0.

Figure 2 shows the quadrotor body frame {D} and reference frame {R}. The D and R of the
quadrotor Euler angles (roll ϕ, pitch θ, and yaw ψ) describe the rotations of the quadro-
tor [40]. The positions and velocities of the quadrotor are used to calculate the quadrotor
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position and estimate the target position [39]. The autonomous landing includes tracking
the target in the XY plane and landing on a moving target.
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2.2. Q-Learning

The elements of Q-learning are states, action, and reward. We present each of them in
the following.

2.2.1. State

The state describes the relative difference between the UAV and the target. The same
target with fixed dimensions was used in all experiments. The state is described as a vector
of relative difference with respect to position and velocity in two dimensions, x, and y.

state = (xd − xta, yd − yta) (1)

Moreover, we included the third coordinate zd as a static distance range between
the UAV and the target. The autonomous landing is activated when the UAV is flying
within this range. Subsequently, the target is assumed to be moving within one plane and
has the same value of ztd. Hence, ztd phi/theta angles are fixed during the autonomous
landing process, and the flight control focuses on the dynamic changes of the xd and yd
only to reduce the process complexity. The vision, with the assistance of a marker located
on the moving target, is needed to determine the navigation states of the UAV. In order
to calculate the state, we used the AprilTags code that provides 3D relative information
about the position of a target with respect to the UAV. In addition, the state is quantized
using a quantization vector qs = (q1 q2 . . . q7) for each of the x and y components. The
quantization factor is introduced by dividing xd − xta or yd − yta over the quantization
parameter. The result is used after rounding to indicate the value of the component of the
state. The quantization leads to a number of states equaling 7× 7 = 49. The parameters
qi, i = 1 . . . 7 are not uniform to counter the non-linearity aspect of the model. They can be
set by using tuning to obtain the adjacency matrix S =

{
sij
}
=
{(

qij
)
, i, j = 1, 2, . . . , 7

}
.

2.2.2. Action

The command that moves the UAV on the x-axis based on tilting with respect to
the pitch angle is denoted by cx. The UAV receives a normalized value for this action as
a command of tilting with a positive or negative value which causes the UAV to move
in a positive or negative direction along the x-axis. The set of possible actions in the
Q-learning is given as two sets: the first set includes two vectors, namely, cx and cy.
cx = [−cnx − (cnx − 1) . . .− c2 − c1 0 . . . c1 c2 . . . cnx ], where cy denotes the command that
moves the UAV on the x-axis based on tilting with respect to the roll angle. The UAV
will receive a normalized value for this action as a command of tilting with a positive or
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negative value which causes the UAV to move in a positive or negative direction along the
y-axis. cy =

[
−cny − (cny − 1

)
. . .− c2 − c1 0 . . . c1 c2 . . . cny ].

For the second set, we provided two actions: a control signal that moves the UAV
along the z-axis or c .

z and a control signal that rotates the UAV around the z-axis or cωz .
The c .

z will be responsible for the taking off and landing process, while the cωz will be
responsible for searching for the target for the first time or in the case of target loss, in order
to trigger the autonomous landing process. Figure 3 visualizes the required movements
to be performed by the UAV based on the dynamics of the instant position of the moving
target [40].
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2.2.3. Q-Table Representation

The presentation of the Q-table is determined based on the number of rows equal to
the number of states nx × ny. The number of actions equals ncx × ncy , which represents the
number of columns. We present the Q-table in the form:

Q =


Q(1, 1)

.

.

.
Q
(
nx × ny, 1

)
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

Q
(

1, ncx × ncy

)
.
.
.

Q
(

nx × ny, ncx × ncy

)

 (2)

2.2.4. Reward

The reward presents the ranking of various action state association to select the action
that provides the maximum accumulated reward until the goal is reached. The design of
the reward is critical to the performance of the system. In order to calculate the reward, we
defined the reward function as it is given in the equation below.

R(s, a) = −∆1α1

√
(xd − xta)

2 + (yd − yta)
2 − ∆2α2

√
(vxd − vxta)

2 + (vyd − vyta)
2 (3)

α1 = 1− e−
√
(xd−xta)

2+(yd−yta)
2

(4)

α2 = e−
√
(xd−xta)

2+(yd−yta)
2

(5)

We can observe from the equation that the weighting of the reward is higher for the
position term when the UAV is far from the target α1. However, when the UAV moves
closer to the target, the weighting is higher for the velocity term α2.



Sustainability 2022, 14, 8825 9 of 17

2.2.5. Terminating State

The termination state is defined as the state of landing. The landing is completed when
the UAV coordinates are equal to the target’s coordinate and the UAV has zero velocity. In Q-
learning, each episode ends when the system reaches the termination state. In the termination
state, ep = (xd − xta, yd − yta) = (0, 0), zd = 0, ev =

(
vxd − vxta, vyd − vyta

)
= (0, 0).

2.2.6. Q-Table Update

The Q-table preserves the built knowledge of the system. It combines entries for
states and actions while embedding the current Q-value for each association of states
and actions. Observing the states and actions definitions shows the infinite value due
to their continuous nature. However, we quantized the states and actions to define a
finite size Q table. The quantization is based on the pre-defined value of resolution or
granularity. For the state, (xd − xta, yd − yta) ∈ R2, if we define a granularity factor gs for
the states,

(⌊
xd−xta

yd−yta∈R2, then xd−xtags

⌋
,
⌊

yd−yta
gs

⌋)
∈ Z2. In addition, for the state, we defined

a granularity factor ga, which leads to an action component
(⌊

cx
ga

⌋
,
⌊

cy
ga

⌋)
∈ Z2.

A computation performance tradeoff results from the value of both gs and ga. Fur-
thermore, uniform quantization in the range of state or action is not effective due to the
non-linearity. In order to handle these issues, we used the state non-uniform state quantiza-
tion based on the vector of gs = [g1 g2, . . . gs] where gi ∈ N, and we replaced quantization
with an adaptive model of action using the equations below:

cx = ∆3 + [(vx,d−vx,ta)− ∆4] (6)

cy = ∆5 +
[
(vy,d−vy,ta

)
− ∆6] (7)

cx = ∆7 + (∆8e(vx,d−vx,ta)) (8)

cy = ∆9 + (∆10e(vy,d−vy,ta)) (9)

The model is combined with two ranges; the first one gives an almost fixed value of
cx = α when the relative velocity is around zero or when the UAV is about to catch the
target. The second one gives a linear change of the action when the target does not have a
close speed to the target.

2.3. Adaptive Multi-Level Quantization (AMLQ) Model

The control AMLQ model performs within two phases: the first one is the learning
phase, and the second one is the operation phase. We used the term adaptive because we
selected the actions cx and cy to be adaptive with respect to the relative velocity vx,d−vx,ta
and vy,d−vy,ta. We used the term multi-level because the model performs multi-level
quantization of both actions and states.

2.3.1. Learning Phase

The role of the learning phase is to build the Q-matrix based on consecutive iterations
of training called episodes. In each episode, the algorithm places the target at a certain
location. It searches for the best sequence of actions to enable the traveling of the UAV
from its current location toward the target to perform the landing. We considered that
autonomous landing combines two stages: tracking and landing. The Q-learning part is
responsible for the former, while the latter is performed separately. We placed the target
at four different locations in the environment, and we built a Q-matrix in an accumulated
way based on a set of episodes at each location. We selected the locations at the corners of
the environment.

It is important to point out that the Q-matrix does not know the beginning of the
learning. Hence, the action is selected using a uniform random distribution from the list
of actions. This enables an equal exploration of all actions and their rewards given their
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corresponding states. We have named this strategy a heuristic strategy. It lasts for a certain
number of iterations before the control policy is derived from the Q-matrix. The learning
phase is summarized using the Algorithm 2.

Algorithm 2 Pseudocode of the learning phase in the autonomous landing

Input
Defined actions and states
Rewarding function
List of locations of the target
the number of episodes
number of iterations
duration of the heuristic strategy
Output
Q-matrix
Start
Initiate Q-matrix
For the new location of the target in the list

For each episode of the number of episodes
For each iteration
If (heuristic strategy is on)

select random action using the uniform distribution
update state and reward
update Q-matrix

else
select actions based on policy derived from the Q-matrix
update state and reward
update Q-matrix

end
End

2.3.2. Operation Phase

The operation phase is enabled after the learning phase is performed. The input of
the operation phase is the Q-matrix that was created in the learning phase. The role of the
Q-matrix when it is consulted is to provide the policy of control or the action that will be
selected based on the current state and action at+1 = π(st, at). Once the action is enabled,
the system will move from its current state st+1. Next, the system will also enable the policy
to select the new action at+2, and this process will be repeated until the final state is reached,
which is the termination of the control, as shown in Algorithm 3.

Algorithm 3 Pseudocode of the operation phase

Input
Q-matrix
Final state
Output
Actions
Start
While not reaching the final state

Measure the target position using the vision
Update the state
Select the action based on the state using the Q-matrix
Enable the action

End
Perform the landing using a gradual decrease in altitude
End
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2.4. Evaluation Metrics

The generated performance metrics reflect the difference between the position of the
target and the UAV based on the tested scenario.

2.4.1. Mean Square Error (MSE)

This metric estimates the difference between the output signal of the control and the
target. In our system, which is a multi-input multi-output system MIMO, we proved the
MSE for each of the three coordinates x, y, and z. Assuming any of them is the signal y,
then MSE is given in the following Equation (10).

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (10)

where N denotes the number of samples that are used for evaluation, i denotes the index of
the sample, ŷi denotes the output signal of the system, and yi denotes the target signal of
the system.

2.4.2. Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is the square root of the average of the set, which is
MSE. The equation of RMSE is shown below.

RMSE =

√
∑t

i=1(yi − ŷi)
2

t
(11)

2.5. Experimental Design

The evaluation considered a target moving in a circular path in the plane. The ex-
perimental design as based on the parameters of the scenarios provided in Table 2. The
radius of the circle was 1.5 m, and the speed of the target in each circle was 15 cm/s. The
parameters used for the AMLQ-based autonomous landing are shown in Table 3.

Table 2. PID gains used in the simulation.

PID Type P I D

x −1.0 −0.05 −0.005

y −1.0 −0.05 −0.005

z 0.8 0.1 0.1

ψ 0.8 0.1 0.1

Table 3. The parameters used for the AMLQ-based autonomous landing.

Parameter Name Parameter Value

α 0.8

γ 0.9

εmax 1.0

εmin 0.01

dε 0.001

∆1 0.5

∆2 0.5

∆3, ∆5 4

∆4, ∆6 0.032

∆7, ∆8, ∆9, ∆10 0.25
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3. Results and Discussion

The evaluation results of the circular trajectory are presented in Figure 4. We used two
types of the AMLQ model, the first one was with four actions, and we used the suffix 4A,
the second one was with four actions, and we used the suffix 5A. The error with respect
to X is presented in Figure 4. The figure shows that the AMLQ-4A model had a better
performance and fewer errors than the AMLQ-5A model. This result can be explained by
the less capable convergence of the five actions due to the bigger size of the latter. Similarly,
we present the relative error with respect to Y-axis in Figure 5 for both the AMLQ-4A and
AMLQ-5A models. It was also observed that the performance of the AMLQ-4A was better
than the AMLQ-5A in terms of the magnitude of the error.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 17 
 

of the circle was 1.5 m, and the speed of the target in each circle was 15 cm/s. The param-
eters used for the AMLQ-based autonomous landing are shown in Table 3. 

Table 2. PID gains used in the simulation. 

PID Type 𝑷 𝑰 𝑫 𝑥 −1.0 −0.05 −0.005 𝑦 −1.0 −0.05 −0.005 𝑧 0.8 0.1 0.1 𝜓 0.8 0.1 0.1 

Table 3. The parameters used for the AMLQ-based autonomous landing. 

Parameter Name  Parameter Value 𝛼  0.8 𝛾 0.9 𝜖  1.0 𝜖  0.01 𝑑𝜖 0.001 ∆  0.5 ∆  0.5 ∆ , ∆  4 ∆ , ∆  0.032 ∆ ,∆ , ∆ ,  ∆  0.25  

3. Results and Discussion 
The evaluation results of the circular trajectory are presented in Figure 4. We used 

two types of the AMLQ model, the first one was with four actions, and we used the suffix 
4A, the second one was with four actions, and we used the suffix 5A. The error with re-
spect to X is presented in Figure 4. The figure shows that the AMLQ-4A model had a better 
performance and fewer errors than the AMLQ-5A model. This result can be explained by 
the less capable convergence of the five actions due to the bigger size of the latter. Simi-
larly, we present the relative error with respect to Y-axis in Figure 5 for both the AMLQ-
4A and AMLQ-5A models. It was also observed that the performance of the AMLQ-4A 
was better than the AMLQ-5A in terms of the magnitude of the error.  

 
Figure 4. The relative position of Y of the UAV with respect to the target for two variants of AMLQ:  
top AMLQ with five actions and bottom AMLQ with four actions. (the trajectory was circular at 1.5 
m). 

0 20 40 60 80 100 120 140 160 180
time (s)

-1.5

-1

-0.5

0

0.5

Xq
 - 

Xt
 (m

)

AMLQ-5A

0 20 40 60 80 100 120 140 160 180
time (s)

-1.5

-1

-0.5

0

Xq
 - 

Xt
 (m

)

AMLQ-4A

Figure 4. The relative position of Y of the UAV with respect to the target for two variants of AMLQ: top
AMLQ with five actions and bottom AMLQ with four actions. (the trajectory was circular at 1.5 m).
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Figure 5. The relative position of X of the UAV with respect to the target for two variants of AMLQ: top
AMLQ with five actions and bottom AMLQ with four actions (the trajectory was circular at 1.5 m).
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The performance of the developed AMLQ-4A and AMLQ-5A was compared with the
PID control. The graphs of the relative error concerning X and Y are presented in Figure 6.
It was observed that the magnitude of the error of the PID was higher than its equivalent
of the AMLQ-4A and AMLQ-5A. However, the latter generated more oscillation compared
with the PID. This result can be explained by the quantization of the actions in the QL. An
approximating model of the Q-function via a neural network is recommended to solve
this issue.
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Figure 6. The relative position of the UAV concerning the target based on PID control: top X
coordinates and bottom Y coordinates (the trajectory was circular at 1.5 m).

In addition to the error concerning X and Y, we present the conducted trajectory by
the UAV and the target in Figure 7a–c for each of the AMLQ-5A, AMLQ4A, and PIDs.
We observed that in both of the AMLQ models, the oscillation was higher for the ALMQ
compared with the PIDs. However, the errors resulting from the AMLQ were fewer, as it
was observed in the response graphs of the error on both X and Y. The main issue with the
ALMQ was the low resolution of quantization which led to sudden actions of the UAV and
more oscillation. On the other hand, increasing the resolution of the quantization led to a
slow and even reduced convergence of the Q-matrix. In summary, we provided an RMSE
for each of the three controllers: AMLQ-4A, AMLQ-5A, and PID, in Table 4. As is observed
in Table 4, the lowest RMSE was scored by the AMLQ-5A.

Table 4. Summary of the steady error for each of the controllers.

Criterion AMLQ-4A AMLQ-5A PID

RMSE 8.9695 8.7052 10.0592

MSE 80.4523 75.7811 101.1883
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Figure 7. The trajectory of the target and the tracking of the UAV for the preparation of the au-
tonomous landing in (a) AMLQ-5A, (b) AMLQ-4A, and (c) PID. The orange lines represent the target
movement trajectory.

The results reveal that the developed AMLQ can reduce the error of landing on the
target. This issue is regarded as a valuable functionality that can be added to the UAV
management software. Furthermore, it enhances human–UAV interaction and provides a
safer condition for their collaboration.

4. Conclusions and Future Works

The problem of the autonomous landing of a UAV on a moving target is a nonlinear
control problem with high dynamics. It includes tracking the target in the XY plane and
landing on a moving target. To conduct the tracking, adaptive multi-level Q-learning was
proposed. The definition of states considered quantizing the relative position between the
UAV and the target in the X and Y coordinates. The definition of the action considered
the quantization of the control signal in the X and Y plane using pre-defined quantization
levels. One of the actions was proposed to be adaptive concerning the velocity to mitigate
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the problem of the low granularity of quantization which led to oscillation. The evaluation
was conducted on various scenarios of trajectories of the moving target, namely linear
and circular. For the evaluation, we provided the time response of the relative position
of the UAV with respect to the target in the X and Y coordinates. The evaluation showed
fewer resulted errors in the X and Y coordinates for the AMLQ model as compared with
the PIDs-based tracking model. However, the lower levels of quantization resolution in the
Q-matrix caused an oscillation performance when compared with the PIDs. Future work
could involve the incorporation of a neural network to approximate the Q-function and to
enable the handling of the continuous representation of states and actions, consequently
obtaining smoother control and less oscillation.
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