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ABSTRACT

Hybrid finite analytic solution (HFAS), Galerkin’s method based finite element solution (FES) and fully implicit finite difference solution (FIFDS)

of one dimensional nonlinear Boussinesq equation and Analytical solution of Boussinesq equation linearized by Baumann’s transformation

(analytical solution I, AS I) as well as linearized by Werner’s transformation (analytical solution II, AS II) were employed to obtain water table

rise in a horizontal unconfined aquifer lying between two canals located at finite distance having different elevations and subjected to various

patterns of recharge, i.e. zero recharge, constant recharge, as well as time varying recharge. Considering HFAS as benchmark solution, water

table in mid region as obtained from FES followed by FIFDS was observed quite close to that obtained from HFAS and as per L2 and Tche-

bycheff norms computation, it was ranked at first and second place, respectively. Both AS I and AS II predicted higher water table at t¼ 5

days but at t¼ 10 days, AS I predicted lower and AS II predicted higher water table at all distances due to linearization effect. So, analytical

solutions of linearized Boussinesq equation were rated lower than numerical solutions of nonlinear Boussinesq equation.

Key words: analytical solutions, canal seepage, linearized and nonlinear Boussinesq equation, numerical solutions, time-varying recharge,

unconfined aquifer

HIGHLIGHTS

• Two analytical solutions of linearized Boussinesq equation and three numerical solutions i.e., fully implicit finite difference solution, finite

element solution and hybrid finite analytic solutions (HFAS) of nonlinear Boussinesq equation, were developed.

• L2 and Tchebycheff norms values showed that values from Numerical solutions are quite close to HFAS compared to approximate analyti-

cal solutions.

1. INTRODUCTION

To improve agricultural production, planners and policymakers consider canal irrigation as one of the effective methods of

providing irrigation to crops growing in the command area. But most of the canals and their distribution networks are unlined
and act as a source of seepage. Before planning for any intervention to control seepage loss, it is essential to have knowledge
of spatial and temporal variations of the water table profile in an unconfined aquifer, which can be achieved by representing
physical situation in a mathematical term and solving a problem (consisting of governing equation and initial and boundary

conditions) employing analytical and numerical solutions.
Many researchers have attempted to study the effect of recharge due to canal seepage and field irrigation resulting in water

table rise in the affected areas. Kraijenhoff van de Leur (1958), Maasland (1959), Hantush (1967) and Marino (1974) have

carried out initial pioneering studies on this aspect.
Gill (1984) presented analytical solution of 1D Boussinseq equation linearized using Werner’s transformation to describe

transient water table profiles in an unconfined horizontal aquifer as a result of seepage occurring from single or more than

one canal. Later, Mustafa (1987) incorporated constant replenishment from land surface and developed analytical solution of
a linearized Boussinesq equation using Laplace transformation to describe water table variation in a finite aquifer bounded by
two recharging canals. Rai & Singh (1992) considered a variable rate of recharge and employing Laplace transformation
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developed analytical solution of the linearized Boussinesq equation. Ram et al. (1994) also obtained analytical solution of

linearized solution of Boussinesq equation by devising unique transformation and showed that water table profiles between
two canals were fairly closed with those obtained by Mustafa (1987).

All the above studies either considered no recharge or constant recharge from land surface. Bear (1979) advocated con-

sideration of recharge rate, which is similar to infiltration rate (i.e. decreasing with time in exponential form due to
sediment clogging of soil pores beneath the recharge basin). Later, Abdulrazzak & Morel-Seytoux (1983), Zomorodi
(1991), Rai & Singh (1996), Manglik et al. (1997), Rai & Manglik (1999), Upadhyaya (1999), Upadhyaya & Chauhan
(2001a) considered time-varying recharge rate.

To describe water table fluctuations in a sloping aquifer, Singh et al. (1991) obtained analytical solution of the linearized
Boussinesq equation incorporating transient recharge function employing an eigenvalue–eigenfunction expansion method.
Rai & Singh (1995) developed analytical solution of 1D Boussinesq equation to obtain water table fluctuation in a finite aqui-

fer due to transient recharge from a strip basin. Ramana et al. (1995) studied water table fluctuations as a result of transient
recharge in a sloping two-dimensional (2D) aquifer system. Upadhyaya & Chauhan (2002) obtained analytical solution of the
linearized Boussinesq equation and a fully implicit finite difference numerical solution of the nonlinear Boussinesq equation

to describe water table rise in unconfined sloping aquifer as a result of seepage from two canals located above the sloping
impermeable barrier and constant recharge from land surface. They reported that numerical solution underestimates water
table elevations compared to analytical solution, assuming it as the reference solution. Rai et al. (2006) used Fourier Cosine

Transform and presented an analytical solution of a 2D-linearized Boussinesq equation to predict water table variations in a
horizontal aquifer induced by time-varying recharge/withdrawal from any number of recharge basins, pumping wells and
leakage sites. Singh & Jaiswal (2006) presented a numerical solution of 2D free flow of water subjected to time-varying
recharge to aquifer underlain by a slanting impervious base and studied the impact of time-varying recharge and depth-depen-

dent ET on water table profile. Song et al. (2007) used perturbation solution of the nonlinear Boussinesq equation for 1D tidal
groundwater flow in a coastal unconfined aquifer. Teloglou et al. (2008) presented the analytical solution using Hankel Trans-
form of a linearized Boussinesq equation to describe the water table fluctuation in an unconfined aquifer overlying a semi-

impervious layer in response to transient recharge. Bansal & Das (2010) studied the analytical solution of the linearized Bous-
sinesq equation using Laplace and its inverse to characterize transient groundwater flow in a downward sloping unconfined
aquifer of semi-infinite extent. Bansal & Das (2011) studied the response of an unconfined sloping aquifer to constant

recharge and seepage from the stream of varying water level. Sontakke & Rokade (2014) predicted the water table fluctu-
ations in an unconfined aquifer due to time-varying recharge from the rectangular basin for one canal using the finite
difference method. Moshirpanahi et al. (2016) employed the differential quadrature method (DQM) in the discretization
of governing equation and compared water table rise between two canals overlying sloping impermeable barrier with

those obtained from the discretization of governing equation employing explicit, implicit and Crank–Nicolson numerical
scheme-based finite difference methods. The DQM of discretization was reported to be efficient, and results were exactly
same as finite difference method. Saeedpanah & Azar (2017) derived analytical solutions for unsteady flow in a leaky aquifer

between two parallel streams employing the Laplace transform method and observed that obtained results agreed very well
with the results of MODFLOW. Kankarej (2021) developed analytical solution of Boussinesq equation linearized employing
Werner’s transformation in order to describe water table rise in a sloping unconfined aquifer as a result of seepage from two

canals and constant recharge from land surface. Special case for the horizontal aquifer yielded quite close to water table rise
compared to the values obtained from solution of Mustafa (1987). Doulgeris & Zissis (2021) studied the numerical solutions
for 1D Boussinesq equation and 2D Richards equation by embedding infinite elements in the finite element analysis to

discretize only the key subsurface flow region close to the stream.
In India and other countries, canals generally run on the ridge lines. Many a times situation occurs, where two canals

separated apart run parallel for a long distance and seepage from these canals as well as recharge from land surface replenish
the aquifer. The spatial and temporal rise of water table between two canals can be very well described by obtaining solution

of 1D Boussinesq equation.
Analytical solutions of the linearized Boussinesq equation are always approximate and either over- or underpredict the

water table profile due to the linearization of governing equation. Numerical solutions of the nonlinear Boussinesq equation

are always better than approximate analytical solutions. So, various solutions like hybrid finite analytic solution (HFAS)
presented by Chen (1988) and fully implicit finite difference solution (FIFDS) of 1D nonlinear Boussinesq equation and
analytical solution of Boussinesq equation linearized by Baumann’s transformation (analytical solution I, AS1) as well as
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analytical solution of Boussinesq equation linearized by Werner’s transformation (analytical solution II, AS2) were obtained

to describe transient water table variation in a horizontal unconfined aquifer lying between two canals located at finite
distance having different elevations and subjected to various patterns of recharge, i.e. zero recharge, constant recharge, as
well as time-varying recharge. For comparison of water table profiles, decision about bench mark solution is important.

Upadhyaya & Chauhan (2001b) reported that HFAS, where the nonlinear Boussinesq equation is locally linearized and
solved analytically after approximating unsteady term by a simple finite difference formula to approximately preserve overall
nonlinear effect by the assembly of locally analytic solutions, predicted fall of midpoint water tables between two drains in a
horizontal/sloping unconfined aquifer quite close to the existing experimental results. So, HFAS was considered as bench-

mark solution in this study and water table profiles obtained from all other solutions were compared with it.

2. PROBLEM DEFINITION

Figure 1 shows the definition sketch of the problem identified for the study. An unconfined aquifer lying over the horizontal
impermeable barrier is receiving seepage from two canals located at different elevations h1 and h2 above the impermeable

barrier as well as time-varying recharge from land surface.
The recharge rate is considered to be decreasing exponentially from an initial value of R1þR0 to a lower value R0 and

becoming constant thereafter. Due to this, there is a water table rise in an unconfined aquifer. It has been assumed that (i)

aquifer is homogeneous, isotropic and incompressible with time invariant hydraulic properties, (ii) the rate of recharge is
small compared to hydraulic conductivity and vertically percolated water flows almost horizontally after meeting water
table and (iii) flow is characterized by 1D Boussinesq equation derived using Dupuit’s assumptions and Darcy’s Law.

2.1. Governing equation and initial and boundary conditions

The 1D nonlinear Boussinesq equation incorporating the time-varying recharge term is given below.

h
@2h
@x2

þ @h
@x

� �2

þ R0 þ R1 e�r t

K

� �
¼ f

K
@h
@t

(1)

The linearized Boussinesq equation after employing Boumann’s transformation, in which (∂h/∂x)2 is neglected and h
associated with (∂2h/∂x2) is replaced by the average depth of flow ‘D’, is written as follows:

@2h
@x2

þ R0 þ R1 e�r t

KD

� �
¼ f

KD
@h
@t

: (2)

Figure 1 | Water table rise in an unconfined aquifer as a result of seepage from two canals and time-varying recharge from land surface.
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The linearized Boussinesq equation after employing Werner’s transformation, in which (∂h/∂x)2 is absorbed by putting

z¼ h2� h0
2, is written as follows:

@2z
@x2

þ 2 (R0 þ R1 e�r t)
K

� �
¼ f

KD
@z
@t

(3)

Initial and boundary conditions corresponding to Equations (1) and (2) are:

h(x, 0) ¼ h0 at t ¼ 0 for 0,x,L (4a)

h(0, t) ¼ h1, h(L, t) ¼ h2 at t. 0 for x ¼ 0 and x ¼ L (4b)

and initial and boundary conditions corresponding to Equation (3) are written as below.

z(x, 0) ¼ z0 ¼ 0 at t ¼ 0 for 0 , x , L (5a)

z(0, t) ¼ z1 ¼ h2
1–h

2
0 at x ¼ 0 and t . 0, z(L, t) ¼ z2 ¼ h2

2–h
2
0 at x ¼ L and t . 0 (5b)

2.2. Numerical and analytical solutions

In this section, numerical solutions of the nonlinear Boussinesq equation and analytical solutions of the linearized Boussi-

nesq equation have been presented.

2.2.1. Hybrid finite analytic solution

To obtain HFAS of nonlinear 1D Boussinesq equation along with initial and boundary conditions defined by Equations (1),
(4a) and (4b), nondimensionalization was performed with the help of a set of variables, H¼ h/h2, X¼ x/L and T¼Kh2t/fL

2.

Transforming Equation (1) from these nondimensional variables, the nondimensionalized governing equation along with
initial and boundary conditions may be written as follows:

1
2
@2H2

@X2 þ R0 þ R1e� (rfL2T=K h2)

K h2
2

" #
L2 ¼ @H

@T
(6)

H(X, 0) ¼ h0

h2
atT ¼ 0 for 0 , X , 1 (7a)

H(0, T ) ¼ h1

h2
atT. 0 forX ¼ 0 (7b)

H(1, T ) ¼ h2

h2
¼ 1 atT. 0 for X ¼ 1 (7c)

To absorb the time-varying recharge in terms of the nondimensionalized equation, the transformation is devised as:

H ¼ V þ R0L2T
Kh2

2

� R1e�(rfL2T=Kh2)

frh2
(8)

@2V
@X2 þ 1

Ha

@V
@X

� �2

¼ 1
Ha

@V
@T

(9)

Assuming that the terms 1/Ha (∂V/∂X )2 and 1/Ha (∂V/∂T ) equal to constants C1 and E1, respectively, in a small sub-region
and performing integration one gets the following equation:

dV
dX

¼ (E1 � C1)Xþ F1 (10)
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Solution to first-order ordinary differential Equation (10) is as follows:

V(X) ¼ (E1 � C1)X2

2
þ F1Xþ I1 (11)

At DX ¼ 0 Vnþ1
i ¼ I1 (12)

Vnþ1
i�1 ¼ (E1 � C1)

2
DX2 � F1DXþ I1 (13)

Vnþ1
iþ1 ¼ (E1 � C1)

2
DX2 þ F1DXþ I1 (14)

Adding Equations (13) and (14), one gets

Vnþ1
i�1 þ Vnþ1

iþ1 ¼ (E1 � C1)DX2 þ 2Vnþ1
i (15)

The discretization of Equation (15) in space and time and some simplifications yield the solution as:

AiVnþ1
i�1 þ BiVnþ1

i þ CiVnþ1
iþ1 ¼ DiVn

i þ Ei (16)

In Equation (16), the coefficients Ai, Bi, Ci, Di and Ei are as below.

Ai ¼ 1 (17)

Bi ¼ � 1
Ha

(DX)2

DT

 !
� 2 (18)

Ci ¼ 1 (19)

Di ¼ � 1
Ha

(DX)2

DT

 !
(20)

Ei ¼ � 1
Ha

(DV)2 (21)

Solving the tridiagonal matrices the values of V at different nodes are obtained. Again by applying inverse transformation the
values of dimensionless height, H, are obtained. Water table elevation, h, is computed by multiplying dimensionless heights
H with h2.

2.2.2. Galerkin’s method-based finite element solution

Finite element solution (FES) of the nondimensionalized, nonlinear Boussinesq equation as shown in Equation (6) along with

initial and boundary conditions (7a–7c) to describe water table rise in an unconfined aquifer between two canals was
obtained using Galerkin’s method, the details of which are given in Pinder & Gray (1977). The flow domain is discretized
as 0¼X1,X2,X3,X4,…,XN�1,XN¼ 1 (here N represents the number of nodes. ΔX¼Xiþ1�Xi, where i¼ 1, 2, 3,

… , N� 1¼M, the number of elements). The solution was approximated by HA (X, T ) with the help of the basis functions
as follows.

HA(X, T ) ¼
XN
i¼1

Zi(T )�Ni(X) (22)

in which Zi (T ) are unknown coefficients to be determined as a part of the solution and basis function Ni (X ), Ni�1 (X ) and

Journal of Hydroinformatics Vol 24 No 4, 936

Downloaded from http://iwaponline.com/jh/article-pdf/24/4/932/1080753/jh0240932.pdf
by guest
on 19 August 2022



Niþ1(X ) as defined by Prenter (1975) are given below.

Ni(X) ¼ (X� Xi�1)
(Xi �Xi�1)

for Xi�1 � X � Xi (23a)

Ni(X) ¼ (Xiþ1 � X)
(Xiþ1 �Xi)

for Xi � X � Xi þ1 (23b)

Ni�1(X) ¼ (Xi � X)
(Xi �Xi�1)

for Xi�1 � X � Xi (23c)

Niþ1(X) ¼ (X� Xi)
(Xiþ1 �Xi)

for Xi � X � Xi þ1 (23d)

The values of all other basis functions are zero over the elements (Xi�1, Xi) and (Xi, Xiþ1). In Equation (22), the multiplier
Zi (T ) associated with Ni(X ) at node i is the value of H at i. Because there are only two nonzero basis functions over an
element (Xi, Xiþ1), the summation is performed only over two consecutive indices i and iþ 1 in order to approximate the

solution HA (X,T ) over the element.
To carry out finite element analysis, Equation (6) may be written as:

L(H) ¼ 1
2
@2H2

@X2 þ R0 þ R1e� (rfL2T=K h2)

K h2
2

" #
L2 � @H

@T
¼ 0 (24)

HA (X,T ) is an approximation for H(X,T ). Hence, its substitution in Equation (6) leaves a residual L(HA), which is used to
determine the coefficients Zi (T ). As there are N unknown coefficients to be determined, therefore N constraints have to be
imposed on the residual L(HA) to evaluate these coefficients. In Galerkin’s finite element method, the coefficients Zi (T ) are
determined by forcing the residual L(HA) to be orthogonal to the basis functions Ni (X ), i¼ 1, 2, 3,… , N. For this, the inner
product of L(HA) with Ni (X ) has to be zero, i.e.

hL(HA) �Ni(X)i ¼ 0 for i ¼ 1, 2, 3, . . . , N (25)

Substitution of Equation (24) in Equation (25) yields:

1
2

@2H2

@X2 , Ni (X)
� �

þ R0 þ R1e� (rfL2nDT=K h2)

K h2
2

" #
L2, Ni(X)

* +
� @H

@T
, Ni(X)

� �
¼ 0

for i ¼ 1, 2, 3, . . . , N

(26)

Hereafter, for convenience, HA is written as H. Integration of Equation (26) yields:

ð1
0

1
2
@2H2

@X2 �Ni (X) dxþ
ð1
0

R0 þ R1e�(rfL2nDT=K h2)

K h2
2

" #
L2 �Ni(X) dx �

ð1
0

@H
@T

�Ni(X) dx ¼ 0

for i ¼ 1, 2, 3, . . . , N

(27)

Substituting the value of H from Equation (22) into Equation (27), a system of N integral equations is obtained as below.

XN
j¼1

ð1
0
Ni(X)Nj(X)

@Zj

@T
dXþ 1

2

XN
j¼1

ð1
0

d Ni(X)
dX

:
dN2

j (X)

dX
Z2
j dx ¼ H

@H
@X

:Ni(X)
� �����

X¼1
� H

@H
@X

:Ni(X)
� �����

X¼0

þ R0 þ R1e�(rfL2nDT=K h2)

K h2
2

" #
L2
ð1
0
Ni(X)dx

for i ¼ 1, 2, 3, . . . , N

(28)
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or

XN
j¼1

XM
e¼1

ð
e
Ni(X)Nj(X)

@Zj

@T
dXþ 1

2

XN
j¼1

XM
e¼1

ð
e

dNi(X)
dX

:
dN2

j (X)

dX
Z2
j dx

¼ H
@H
@X

: Ni(X)
� �����

X¼1
� H

@H
@X

: Ni(X)
� �����

X¼0
þ R0 þ R1e� (rfL2nDT=K h2)

K h2
2

" #
L2
XM
e¼1

ð1
0
Ni(X)dx

for i ¼ 1, 2, 3, . . . , N

(29)

Equation (29) can be rewritten as follows:

[G]
dZ
dT

� �
þ [B]{Z2} ¼ {F} (30)

where

[G] ¼ Gi, j ¼
XN
j¼1

XM
e¼1

ð
e

Ni(X)Nj(X)dX (31a)

[B] ¼ Bi, j ¼ 1
2

XN
j¼1

XM
e¼1

ð
e

d Ni(X)
dX

:
dN2

j (X)

dX
dx (31b)

{Fi} ¼ R0 þ R1e� (rfL2nDT=K h2)

K h2
2

" #
L2
XM
e¼1

ð
e
Ni(X)dx for i ¼ 2, 3, . . . , N � 1 (31c)

{F1} ¼ R0 þ R1e� (rfL2nDT=K h2)

K h2
2

" #
L2
XM
e¼1

ð
e
N1(X)dx� H

@H
@X

� �����
X¼0

(31d)

{FN} ¼ R0 þ R1e� (rfL2nDT=K h2)

K h2
2

" #
L2
XM
e¼1

ð
e
NN(X)dxþ H

@H
@X

� �����
X¼1

(31e)

Journal of Hydroinformatics Vol 24 No 4, 938

Downloaded from http://iwaponline.com/jh/article-pdf/24/4/932/1080753/jh0240932.pdf
by guest
on 19 August 2022



The evaluation of coefficient matrix gives:

G 1 1 ¼ 1
3

(X2 �X1) (32a)

GN N ¼ 1
3
(XN �XN�1) (32b)

Gi i ¼ 1
3

(Xiþ1 �Xi�1) for i ¼ 2, 3, 4, . . . , N � 1 (32c)

Gi i� 1 ¼ 1
6
(Xi �Xi�1) for i ¼ 2, 3, 4, . . . , N (32d)

Gi iþ 1 ¼ 1
6
(Xiþ1 �Xi) for i ¼ 1, 2, 3, . . . , N � 1 (32e)

B1 1 ¼ 1
2(X2 �X1)

(32f)

BN N ¼ 1
2(XN �XN�1)

(32g)

B i i ¼ 1
2(Xi �Xi�1)

þ 1
2(XIþ1 �Xi)

for i ¼ 2, 3, 4, . . . , N � 1 (32h)

B1 iþ 1 ¼ � 1
2(XIþ1 �Xi)

for i ¼ 1, 2, 3, . . . , N � 1 (32i)

B1 i� 1 ¼ � 1
2(Xi �Xi�1)

for i ¼ 2, 3, 4, . . . , N (32j)

Equation (30) is written in a finite difference form as:

[G]
Z(T þ DT )� Z(T )

DT

� �
þ [B]{Z2(T þ DT )} ¼ {F(T)} (33)

Let Z(Tþ ΔT )¼Z(T )þV(T ). Substituting it in Equation (33), it gives:

[G]
V(T)
DT

� �
þ [B]{Z2(T )þ 2Z(T )V(T)þ V2(T)} ¼ {F(T )} (34)

Neglecting the terms of O [V2(T )] gives

[[G]þ 2DT [B]{Z(T)}] {V(T )} ¼ �DT [B]{Z2(T)}þ DT {F(T)} (35)

The solution of this system of algebraic equations provided the values of V(T ) at different nodes. This V(T ) value at a
particular node was added to the value of Z(T ) at that node to get the value of Z(Tþ ΔT ) at that particular node for the
next time step.
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2.2.3. Fully implicit finite difference solution

Finite difference solution of nonlinear, nondimensionalized Boussinesq Equation (6) with initial and boundary conditions
defined by Equations (7a)–(7c) was obtained by discretizing in a finite difference form as below:

Hnþ1
m �Hn

m

DT
¼ 1

2(DX)2
[u(Hnþ1

m�1)
2 þ (1� u)(Hn

m�1)
2 � 2u(Hnþ1

m )
2 � 2(1� u)(Hn

m)
2þ u(Hnþ1

mþ1)
2 þ (1� u)(Hn

mþ1)
2]

þ R0 þ R1e�(r f L2nDT=Kh2)

Kh2
2

" #
L2

(36)

where θ is the coefficient used to describe the finite difference scheme. The 1, 0.5 and 0 values of θ describe fully implicit,

Crank–Nicolson and fully explicit finite difference solutions.
Using the procedure described by Jain et al. (1994), let Hnþ1

m ¼ Hn
m þ Vn

m is substituted in the above equation to give

Vn
m ¼ DT

2(DX)2
[u(Hn

m�1 þ Vn
m�1)

2 þ (1� u)(Hn
m�1)

2 � 2u(Hn
m þ Vn

m)
2 � 2(1� u)(Hn

m)
2

þu(Hn
mþ1 þ Vn

mþ1)
2 þ (1� u)(Hn

mþ1)
2]þ R0 þ R1e�(r f L2nDT=Kh2)

Kh2
2

" #
L2 DT

Kh2
2

(37)

Keeping (ΔT/ΔX )¼C and (ΔT/(ΔX )2)¼ λ and neglecting the terms of the order ofO(V2), the following equation is obtained.

Vn
m�1(luH

n
m�1)þ Vn

m(�2luHn
m � 1)þ Vn

mþ1(luH
n
mþ1) ¼ � l

2
[(Hn

m�1)
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m)
2 þ (Hn

mþ1)
2]� R0 þ R1e�(r f L2nDT=Kh2)

Kh2
2

" #
L2 DT

Kh2
2

(38)

For θ¼ 1, it gives FIFDS and becomes:

Vn
m�1(lH

n
m�1)þVn

m(�2lHn
m � 1)þ Vn

mþ1(lH
n
mþ1) ¼ � l

2
[(Hn

m�1)
2 � 2(Hn

m)
2 þ (Hn

mþ1)
2]� R0 þ R1e�(r f L2nDT=Kh2)

Kh2
2

" #
L2 DT

Kh2
2

(39)

This system of algebraic equations formed at a given time step is a tridiagonal matrix for which solution can be obtained
and Vn

m�1, Vn
m, Vn

mþ1 can be computed. To get the values at nþ 1 time step, i.e. the values of Hn
m�1, Hn

m, Hn
mþ1 are added

into Vn
m�1, Vn

m, Vn
mþ1, respectively.

2.2.4. Analytical solution I

The analytical solution of Boussinesq equation linearized by Baumann’s transformation (2) with initial and boundary con-
ditions (4a) and (4b) was developed by devising a transformation as:

h ¼ vþ R0t
f

� R1e�rt

fr
(40)

Using this transformation, Equations (2), (4a) and (4b) are transformed to a standard heat transfer boundary-value
problem as:

@2v
@x2

¼ 1
a

@v
@t

(41)

Here a¼KD/f
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With initial and boundary conditions as:

v(x, 0) ¼ h0 þ R1

fr

� �
(42a)

v(0, t) ¼ h1 � R0t
f

þ R1e�rt

fr

� �
(42b)

v(L, t) ¼ h2 � R0t
f

þ R1e�rt

fr

� �
(42c)

Employing the solution of heat transfer boundary-value problem given by Ozisik (1980) for the boundary-value problem
defined by Equations (41)–(42a), (42b), (42c) and applying the inverse of transformation solution are obtained as:

h(x, t) ¼ 4
L
(h0 � h1)

X1
m¼1, 3, 5, ...

e� ab2
mt
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þ 2
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a b2
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1� e� a b2

mt

a b2
m

( )" # (43)

2.2.5. Analytical solution II

The analytical solution of Boussinesq equation linearized by Werner’s transformation described by Equation (3) and initial as

well as boundary conditions described by 5(a) and 5(b) have already been reported by Upadhyaya & Chauhan (2001a) and
are reproduced below.

z(x, t) ¼ 1� x
L

	 

z1 þ x

L
z2 � 2

L

X1
m¼1

Sin bmx
bm

(z1 � (�1)mz2)e�ab2
mt

þ 8 a
L
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m¼1, 3, 5,...

Sin bmx
bm

R1

K

� �
e� rt � e� ab2

mt

ab2
m � r

( )
þ R0

K

� �
1� e� ab2

mt
a b2

m

( )" # (44)

h (x, t) may be determined by adding h0
2 values and taking square root of these values.

To compare water table profiles obtained from analytical and numerical solutions with water table profile obtained from
HFAS, L2 norm giving average difference and Tchebycheff norm giving maximum difference as mentioned by Upadhyaya &
Chauhan (2002) were employed and accordingly results were interpreted.

3. DISCUSSION OF RESULTS

The analytical and numerical solutions describing water table fluctuations between two canals in a horizontal aquifer
subjected to various patterns of recharge, i.e. zero recharge, constant recharge, and time-varying recharge, were studied

and analyzed. A numerical example considered to compare the results obtained from various solutions is given below.

3.1. Numerical example

The flow of water in an unconfined aquifer with hydraulic conductivity K¼ 450 m/day and specific yield f¼ 0.30, bounded by
two canals spaced 1,000 m apart, located at the elevations of h1¼ 12 m and h2¼ 10 m, respectively, above the impermeable
barrier was assumed. The aquifer was assumed to be underlain by a horizontal impermeable barrier initially having water

table at the impermeable barrier with elevation, h0¼ 0 m. The aquifer was subjected to time-varying recharge, R(t)¼R0þ
R1 e

�rt, where R0¼ 0.003 m/day, R1¼ 0.012 m/day and r¼ 0.5 per day. Consistency, convergence and stability are important
issues in numerical solutions. Many values of the dimensionless time increment, ΔT and dimensionless space increment, Δx
were considered before arriving at final values of ΔT and Δx as 0.00001 and 0.01, respectively. Chen (1988) has presented the
effect of range of λ¼ (ΔT/(ΔX )2) varying from 0.01 to 10 on different finite difference (FD) scheme coefficients and finite ana-
lytic (FA) coefficients. From these curves also, it seems that the selection of λ¼ 0.1 is appropriate. The transient water tables
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were computed for t¼ 5 days and t¼ 10 days at every 100 m distance. The results obtained from various solutions have been

presented below.

3.2. Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from HFAS

Dimensionless water table elevations in a horizontal aquifer between two canals were computed at t¼ 5 days and t¼ 10 days
by the hybrid finite analytic method for different patterns of recharge, i.e. zero, constant and time-varying recharge. The vari-
ations of water table heights with distance expressed in dimensionless form for t¼ 5 days and t¼ 10 days are given in Figure 2.

It may be observed from Figure 2 that in a horizontal aquifer, the water table profiles, even with higher seepage from upper
canal, tend to be symmetrical around the midpoint. Due to continuing seepage from canals and continuing recharge from soil
surface, water table in a horizontal aquifer rises with increase in time. For any pattern of recharge, dimensionless water tables

at all the space coordinates are higher for t¼ 10 days than for t¼ 5 days. The effect of various patterns of recharge for the
horizontal aquifer as observed from Figure 2 indicates that the water table elevations at t¼ 5 days and at t¼ 10 days are
the highest for constant recharge of 0.015 m/day followed in a decreasing order for time-varying recharge (with constant

recharge component, R0¼ 0.003 m/day, and exponentially decreasing recharge component, R1¼ 0.012 m/day) and for no
recharge, respectively.

3.3. Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from FES

Dimensionless water table elevations in a horizontal aquifer between two canals were computed at t¼ 5 days and t¼ 10 days
by the finite element method for different patterns of recharge, i.e. zero, constant and time-varying recharge. The variations of

water table heights with distance expressed in a dimensionless form for t¼ 5 days and t¼ 10 days are given in Figure 3.
It may be observed from Figure 3 that the water table profiles, even with higher seepage from the upper canal, tend to be

symmetrical around the midpoint and rise with increase with time. For any pattern of recharge, dimensionless water tables at

all the space coordinates are higher for t¼ 10 days than for t¼ 5 days. The effect of various patterns of recharges indicates that
the water table elevations at t¼ 5 days and at t¼ 10 days are the highest for constant recharge of 0.015 m/day followed in a
decreasing order for time-varying recharge and for no recharge, respectively. Dimensionless water table heights at t¼ 5 days
and t¼ 10 days as obtained from FES are throughout marginally higher (with very little difference) at all distances between

two canals than those obtained from HFAS.

3.4. Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from FIFDS

Dimensionless water table elevations in a horizontal aquifer intercepted by two canals were computed at t¼ 5 days and t¼ 10
days using the fully implicit finite difference scheme for various patterns of recharge, i.e. zero, constant and time-varying

recharge. The variations of water table elevations with distance expressed in a dimensionless form for t¼ 5 days and
t¼ 10 days are presented in Figure 4.

Figure 2 | Dimensionless water table elevations in a horizontal aquifer between two canals for t¼ 5 and 10 days as obtained from HFAS.
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It may be observed from Figure 4 that in a horizontal aquifer, the water table profiles even with higher seepage from the
upper canal tend to be symmetrical around the midpoint and are almost similar to Figures 2 and 3. Due to continuing seepage
from canals and continuing recharge from soil surface, water table in a horizontal aquifer rises with increase in time. The
effect of various patterns of recharges is also similar as observed in the case of water table profiles obtained in Figures 2

and 3. Water table profiles computed by FIFDS are marginally higher (with a very little difference) at all the distances
between two canals than those obtained from HFAS.

3.5. Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from ASI based on
Baumann’s method of linearization

Dimensionless water table elevations in a horizontal aquifer between two canals were computed at t¼ 5 days and t¼ 10 days
using ASI based on Baumann’s method of linearization for various patterns of recharge, i.e. zero, constant and time-varying

recharge. The variations of water table heights with distance expressed in a dimensionless form for t¼ 5 days and t¼ 10 days
are presented in Figure 5.

Water table profiles as obtained by ASI as shown in Figure 5 also follow the same trend as shown in Figures 2–4, but there is

difference in values of water table heights. On t¼ 5 days, water table heights in the midregion are higher and lower in other
regions than those obtained from HFAS. But at t¼ 10 days, water table heights obtained from HFAS are always higher at all
distances than those obtained from ASI, and this difference is attributed to the linearization of Boussinesq equation.

Figure 3 | Dimensionless water table elevations in a horizontal aquifer between two canals for t¼ 5 and 10 days as obtained from FES.

Figure 4 | Dimensionless water table elevations in a horizontal aquifer between two canals for t¼ 5 and 10 days as obtained from finite
difference solution.

Journal of Hydroinformatics Vol 24 No 4, 943

Downloaded from http://iwaponline.com/jh/article-pdf/24/4/932/1080753/jh0240932.pdf
by guest
on 19 August 2022



3.6. Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from ASII based
on Werner’s method of linearization

Dimensionless water table elevations in a horizontal aquifer between two canals were computed at t¼ 5 days and t¼ 10 days

using ASII based on Werner’s method of linearization for various patterns of recharge, i.e. zero, constant and time-varying
recharge. The variations of water table heights with distance expressed in a dimensionless form for t¼ 5 days and t¼ 10
days are given in Figure 6.

It may be observed from Figure 6 that in a horizontal aquifer, the water table profiles as obtained by ASII are following the

similar trend as shown in Figures 2–5.

3.7. Comparison of dimensionless water table elevations as obtained by various solutions with HFAS

3.7.1. Comparison of ASI based on Baumann’s method of linearization with HFAS

Dimensionless water table elevations between two canals in the horizontal aquifer and receiving zero or constant recharge
computed for 5 and 10 days by HFAS and ASI based on Baumann’s method of linearization were compared graphically and

are presented in Figure 7.

Figure 5 | Dimensionless water table elevations in a horizontal aquifer between two canals for t¼ 5 and 10 days as obtained from ASI based
on Baumann’s linearization method.

Figure 6 | Dimensionless water table elevations in a horizontal aquifer between two canals for t¼ 5 and 10 days as obtained from ASII based
on Werner’s linearization method.
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It may be seen from Figure 7 that at t¼ 5 days, water table elevations in a horizontal aquifer receiving zero or constant
recharge as predicted by ASI are higher in the midregion and lower in other regions than those predicted by HFAS. At

t¼ 10 days, water table elevations predicted by HFAS are always higher at all distances than those obtained from ASI.

3.7.2. Comparison of ASII based on Werner’s method of linearization with HFAS

Dimensionless water table elevations between two canals in a horizontal aquifer receiving zero or constant recharge com-

puted for t¼ 5 days and t¼ 10 days by HFAS and ASII based on Werner’s method of linearization were compared
graphically as shown in Figure 8.

It may be seen from Figure 8 that at t¼ 5 days and at t¼ 10 days, water table elevations in a horizontal aquifer receiving

zero or constant recharge as predicted by ASII are consistently higher at all distances (with more difference in the midregion)
than those predicted by HFAS.

3.7.3. Comparison of FIFDS with HFAS

Dimensionless water table elevations between two canals in a horizontal aquifer receiving zero and constant recharges com-

puted for t¼ 5 days and t¼ 10 days by HFAS and FIFDS were compared graphically as shown in Figure 9.

Figure 7 | Dimensionless water table elevations in a horizontal aquifer between two canals as predicted by HFAS and ASI based on Bau-
mann’s linearization method.

Figure 8 | Dimensionless water table elevations in a horizontal aquifer between two canals as predicted by HFAS and ASIIII based on
Werner’s linearization method.
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It may be seen from Figure 9 that at t¼ 5 days and at t¼ 10 days, water table elevations in a horizontal aquifer receiving
zero or constant recharge as predicted by FIFDS are marginally higher (with a very little difference) at all the distances

between two canals than those predicted by HFAS.

3.7.4. Comparison of FES with HFAS

Dimensionless water table elevations between two canals in a horizontal aquifer receiving zero and constant recharge com-

puted for t¼ 5 days and t¼ 10 days by HFAS and FES were compared graphically as presented in Figure 10.
It may be seen from Figure 10 that at t¼ 5 days and t¼ 10 days, dimensionless water table heights in a horizontal aquifer

receiving zero or constant recharge as predicted by FES are throughout marginally higher (with a very little difference) at all
the distances between two canals than those predicted by HFAS.

3.8. L2 and Tchebycheff norms

Prenter (1975) described about L2 and Tchebycheff norms and Upadhyaya & Chauhan (1998) employed these L2 and Tche-
bycheff norms to compute average and maximum differences, respectively, between the HFAS (benchmark) and other fully

implicit finite difference numerical solution as well as linearized ASI and ASII. Values of L2 and Tchebycheff norms indicat-
ing average and maximum differences between two solutions were computed and are given in Table 1.

Figure 9 | Dimensionless water table elevations in a horizontal aquifer between two canals as predicted by HFAS and finite difference
solution.

Figure 10 | Dimensionless water table elevations in a horizontal aquifer between two canals as predicted by HFAS and FES.
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It may be observed from Table 1 that for both t¼ 5 days and t¼ 10 days, L2 and Tchebycheff norms were minimum for FES
followed by FIFDS, ASI based on Baumann’s method of linearization and maximum for ASII based on Werner’s method of
linearization. It indicates that the theoretical performance of various solutions with respect to HFAS in a decreasing order

may be ranked as FES, FIFDS, ASI and ASII, respectively.

4. CONCLUSIONS

Water table rise in an unconfined horizontal aquifer lying between two parallel canals due to time-varying recharge from land
surface and seepage from canals was studied by obtaining analytical and numerical solutions of 1D Boussinesq equation

incorporating time-varying recharge term. Analytical solutions of Boussinesq equation linearized by Baumann’s transform-
ation (AS I) as well as Werner’s transformation (AS II). FES and FIFDS of nonlinear Boussinesq equation were developed
and compared with HFAS of nonlinear Boussinesq equation (considering it as benchmark solution). Comparison of water

table profiles as well as L2 and Tchebycheff norm values showed that water table profiles at t¼ 1 day and t¼ 5 days as
obtained by FES were quite close to the water table profiles obtained from HFAS, FIFDS followed by FES. Therefore,
FES was ranked at the first place and FIFDS at the second place. As far as analytical solutions are concerned, at t¼ 5

days, both AS I and AS II predicted higher water table values, but at t¼ 10 days, AS I predicted lower and AS II predicted
higher water table values at all distances due to the linearization effect. According to L2 and Tchebycheff norm values, AS I
was ranked at the third place and AS II at the fourth place.

ACKNOWLEDGEMENTS

The authors thankfully acknowledge help and support provided directly or indirectly by individuals and respective insti-
tutions in carrying out this study.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

CONFLICT OF INTEREST

The authors declare there is no conflict.

REFERENCES

Abdulrazzak, M. J. & Morel-Seytoux, H. J. 1983 Recharge from an ephemeral stream following wetting front arrival to water-table. Water
Resour. Res. 19, 194–200.

Table 1 | L2 and Tchebycheff norms to compare dimensionless water table heights in a horizontal aquifer between two canals as predicted
by various analytical and numerical solutions with those predicted by HFAS

Norms Day Condition ASI ASII Finite difference solution FES

L2 5 Without recharge 0.1257 0.2125 0.0037 0.0036

Tchebycheff 5 Without recharge 0.2001 0.4465 0.0077 0.0074

L2 5 With time-varying recharge 0.1233 0.2134 0.0057 0.0056

Tchebycheff 5 With time-varying recharge 0.1962 0.4481 0.0127 0.0125

L2 5 With constant recharge 0.1209 0.2128 0.0062 0.0061

Tchebycheff 5 With constant recharge 0.1929 0.4478 0.0123 0.0121

L2 10 Without recharge 0.0935 0.1029 0.0056 0.0055

Tchebycheff 10 Without recharge 0.1483 0.1743 0.0104 0.0102

L2 10 With time-varying recharge 0.0924 0.0998 0.0075 0.0074

Tchebycheff 10 With time-varying recharge 0.1456 0.1678 0.0135 0.0134

L2 10 With constant recharge 0.0922 0.0933 0.0069 0.0068

Tchebycheff 10 With constant recharge 0.1427 0.1518 0.0013 0.0012

Journal of Hydroinformatics Vol 24 No 4, 947

Downloaded from http://iwaponline.com/jh/article-pdf/24/4/932/1080753/jh0240932.pdf
by guest
on 19 August 2022

http://dx.doi.org/10.1029/WR019i001p00194


Bansal, R. K. & Das, S. K. 2010 Analytical study of water table fluctuation in unconfined aquifers due to varying bed slopes and spatial
location of the Recharge basin. J. Hydrol. Eng. 15 (11), 909–917.

Bansal, R. K. & Das, S. K. 2011 Response of an unconfined sloping aquifer to constant recharge and seepage from the stream of varying water
level. Water Resour. Manage. 25 (3), 893–911. doi:10.1007/s11269-010-9732-7.

Bear, J. 1979 Hydraulics of Groundwater. McGraw-Hill, New York, p. 569.
Chen, C. J. 1988 Finite analytic method. In: Handbook of Numerical Heat Transfer (Minkowycz, W. J., Sparrow, E. M., Schneider, G. E. &

Pletcher, R. H., eds). John Wiley & sons Inc, New York, pp. 723–746.
Doulgeris, C. & Zissis, S. T. 2021 Finite-infinite analysis for flow simulation in a phreatic aquifer. Comput. Geosci. 155, 104874.
Gill, M. A. 1984 Water table rise due to infiltration from canals. J. Hydrol. 70, 337–352.
Hantush, M. S. 1967 Growth and decay of ground water mounds in response to uniform percolation. Water Resour. Res. 3 (1), 227–234.
Jain, M. K., Iyenger, S. R. K. & Jain, R. K. 1994 Computational Methods for Partial Differential Equations. Wiley Eastern Ltd, New Delhi.
Kankarej, M. M. 2021 Water table rise in sloping aquifer due to canal seepage. Turk. Online J. Qual. Inq. 12 (6), 6451–6465.
Kraijenhoff van de Leur, D. A. 1958 A study of non-steady ground water flow with special reference to a reservoir coefficient. De Ing.

70, 87–94.
Maasland, M. 1959 Water table fluctuations induced by intermittent recharge. J. Geophys. Res. 64, 549–559.
Manglik, A., Rai, S. N. & Singh, R. N. 1997 Response of an unconfined aquifer induced by time varying recharge from a rectangular basin.

Water Resour. Manage. 11, 185–196.
Marino, M. 1974 Water table fluctuation in response to recharge. J. Irrig. Drain. Div. 100 (2), 117–125.
Moshirpanahi, D., Meraji, S. H. & Ghaheri, A. 2016 Modeling water table rise between two canal in aquifer with differential quadrature

method. Iran. J. Soil Water Res. 47 (2), 307–317. doi:10.22059/IJSWR.2016.58336.
Mustafa, S. 1987 Water table rise in a semi-confined aquifer due to surface infiltration and canal recharge. J. Hydrol. 95, 269–276.
Ozisik, M. N. 1980 Heat Conduction 71/72. Wiley, New York, pp. 201–203.
Pinder, G. F. & Gray, W. G. 1977 Finite Element Simulation in Surface and Subsurface Hydrology. Academic Press, New York, p. 295.
Prenter, P. M. 1975 Spline and Variational Methods. John Wiley & Sons, New York, pp. 6–11.
Rai, S. N. & Manglik, A. 1999 Modelling of water table variation in response to time-varying recharge from multiple basins using the

linearized Boussinesq equation. J. Hydrol. 220, 141–148.
Rai, S. N. & Singh, R. N. 1992 Water table fluctuations in an aquifer system owing to time-varying surface infiltration and canal recharge.

J. Hydrol. 136, 381–387.
Rai, S. N. & Singh, R. N. 1995 An analytical solution for water table fluctuation in a finite aquifer due to transient recharge from a strip basin.

Water Resour. Manage. 9, 27–37.
Rai, S.N.&Singh,R. 1996Analyticalmodeling ofunconfinedflow inducedby timevarying recharge.Proc. IndianNatl. Sci.Acad.62A (4), 253–292.
Rai, S. N., Mangalik, A. & Singh, V. S. 2006 Water table fluctuation owing to time varying recharge, pumping and leakage. J. Hydrol.

324, 350–358.
Ram, S., Jaiswal, C. S. & Chauhan, H. S. 1994 Transient water table rise with canal seepage and recharge. J. Hydrol. 163, 197–202.
Ramana, D. V., Rai, S. N. & Singh, R. N. 1995 Water table fluctuation due to transient recharge in a 2-D aquifer system with inclined base.

Water Resour. Manage. 9, 127–138.
Saeedpanah, I. & Azar, R. G. 2017 New analytical solutions for unsteady flow in a leaky aquifer between two parallel streams. Water Resour.

Manage. 31, 2315–2332. doi:10.1007/s11269-017-1651-4.
Singh, S. & Jaiswal, C. S. 2006 Numerical solution of 2D free surface to ditch drains in presence of transient recharge and depth dependent

ET in sloping aquifers. Water Resour. Manage. 20 (5), 779–793.
Singh, R. N., Rai, S. N. & Ramana, D. V. 1991 Water table fluctuation in a sloping aquifer with transient recharge. J. Hydrol. 126, 315–326.
Song, Z., Li, L., Kong, J. & Zhang, H. 2007 A new analytical solution of tidal water table fluctuations in a coastal unconfined aquifer.

J. Hydrol. 340 (3–4), 256–260.
Sontakke, B. R. & Rokade, G. L. 2014 Water table fluctuations due to time varying recharge in a 1-D flow system from recharge basin.

Int. J. Differ. Equaions Appl. 13 (2), 51–59.
Teloglou, S. I., Zissis, S. T. & Panagopoulos, C. A. 2008 Water table fluctuation in aquifers overlying a semi-impervious layer due to transient

recharge from a circular basin. J. Hydrol. 348 (1–2), 215–223.
Upadhyaya, A. 1999 Mathematical Modelling of Water Table Fluctuations in Slopping Aquifers. PhD Thesis, G. B. Pant University of

Agriculture and Technology, Pantnagar, India.
Upadhyaya, A. & Chauhan, H. S. 1998 Solutions of Boussinesq equation in semi-infinite flow region. J. Irrig. Drain. Eng. ASCE 124 (5),

265–270.
Upadhyaya, A. & Chauhan, H. S. 2001a Water table fluctuations due to canal seepage and time varying recharge. J. Hydrol. 244, 1–8.
Upadhyaya, A. & Chauhan, H. S. 2001b Falling water tables in a horizontal/sloping aquifer. J. Irrig. Drain. Eng. ASCE 127 (6), 376–384.
Upadhyaya, A. & Chauhan, H. S. 2002 Water table rise in sloping aquifer due to canal seepage and constant recharge. J. Irrig. Drain. Eng.

128 (3), 160–167.
Zomorodi, K. 1991 Evaluation of the response of a water-table to a variable recharge rate. Hydrol. Sci. J. 36, 67–78.

First received 14 March 2022; accepted in revised form 8 June 2022. Available online 21 June 2022

Journal of Hydroinformatics Vol 24 No 4, 948

Downloaded from http://iwaponline.com/jh/article-pdf/24/4/932/1080753/jh0240932.pdf
by guest
on 19 August 2022

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000267
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000267
http://dx.doi.org/10.1007/s11269-010-9732-7
http://dx.doi.org/10.1007/s11269-010-9732-7
http://dx.doi.org/10.1016/j.cageo.2021.104874
http://dx.doi.org/10.1016/0022-1694(84)90131-8
http://dx.doi.org/10.1029/WR003i001p00227
http://dx.doi.org/10.1029/JZ064i005p00549
http://dx.doi.org/10.1023/A:1007998810835
http://dx.doi.org/10.1061/JRCEA4.0000972
http://dx.doi.org/10.1016/0022-1694(87)90005-9
http://dx.doi.org/10.1016/S0022-1694(99)00074-8
http://dx.doi.org/10.1016/S0022-1694(99)00074-8
http://dx.doi.org/10.1016/0022-1694(92)90019-R
http://dx.doi.org/10.1007/BF00877387
http://dx.doi.org/10.1016/j.jhydrol.2005.09.029
http://dx.doi.org/10.1016/0022-1694(94)90139-2
http://dx.doi.org/10.1007/BF00872464
http://dx.doi.org/10.1007/s11269-017-1651-4
http://dx.doi.org/10.1007/s11269-005-9007-x
http://dx.doi.org/10.1007/s11269-005-9007-x
http://dx.doi.org/10.1016/0022-1694(91)90162-B
http://dx.doi.org/10.1016/j.jhydrol.2007.04.015
http://dx.doi.org/10.1016/j.jhydrol.2007.09.058
http://dx.doi.org/10.1016/j.jhydrol.2007.09.058
http://dx.doi.org/10.1016/S0022-1694(00)00328-0
http://dx.doi.org/10.1061/(ASCE)0733-9437(2001)127:6(378)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2002)128:3(160)
http://dx.doi.org/10.1080/02626669109492485

	Analytical and numerical solutions to describe water table fluctuations due to canal seepage and time-varying recharge
	Recommended Citation

	Analytical and numerical solutions to describe water table fluctuations due to canal seepage and time-varying recharge
	INTRODUCTION
	PROBLEM DEFINITION
	Governing equation and initial and boundary conditions
	Numerical and analytical solutions
	Hybrid finite analytic solution
	Galerkin's method-based finite element solution
	Fully implicit finite difference solution
	Analytical solution I
	Analytical solution II


	DISCUSSION OF RESULTS
	Numerical example
	Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from HFAS
	Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from FES
	Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from FIFDS
	Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from ASI based on Baumann's method of linearization
	Dimensionless water table elevations in a horizontal aquifer between two canals as obtained from ASII based on Werner’s method of linearization
	Comparison of dimensionless water table elevations as obtained by various solutions with HFAS
	Comparison of ASI based on Baumann's method of linearization with HFAS
	Comparison of ASII based on Werner's method of linearization with HFAS
	Comparison of FIFDS with HFAS
	Comparison of FES with HFAS

	L2 and Tchebycheff norms

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	REFERENCES


