
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

8-13-2022

Bot-Mgat: A Transfer Learning Model Based On A Multi-View Bot-Mgat: A Transfer Learning Model Based On A Multi-View

Graph Attention Network To Detect Social Bots Graph Attention Network To Detect Social Bots

Eiman Alothali
United Arab Emirates University

Motamen Salih
American University of Sharjah

Kadhim Hayawi
Zayed University

Hany Alashwal
United Arab Emirates University

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alothali, Eiman; Salih, Motamen; Hayawi, Kadhim; and Alashwal, Hany, "Bot-Mgat: A Transfer Learning
Model Based On A Multi-View Graph Attention Network To Detect Social Bots" (2022). All Works. 5345.
https://zuscholars.zu.ac.ae/works/5345

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5345?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5345&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Citation: Alothali, E.; Salih, M.;

Hayawi, K.; Alashwal, H. Bot-MGAT:

A Transfer Learning Model Based on

a Multi-View Graph Attention

Network to Detect Social Bots. Appl.

Sci. 2022, 12, 8117. https://doi.org/

10.3390/app12168117

Academic Editors: Huan Wang and

Wen Zhang

Received: 30 June 2022

Accepted: 8 August 2022

Published: 13 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Bot-MGAT: A Transfer Learning Model Based on a Multi-View
Graph Attention Network to Detect Social Bots
Eiman Alothali 1 , Motamen Salih 2, Kadhim Hayawi 3 and Hany Alashwal 1,*

1 College of Information Technology, United Arab Emirates University,
Al Ain P.O. Box 15551, United Arab Emirates

2 College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
3 College of Technological Innovation, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
* Correspondence: halashwal@uaeu.ac.ae; Tel.: +971-3-7673333

Abstract: Twitter, as a popular social network, has been targeted by different bot attacks. Detecting
social bots is a challenging task, due to their evolving capacity to avoid detection. Extensive research
efforts have proposed different techniques and approaches to solving this problem. Due to the scarcity
of recently updated labeled data, the performance of detection systems degrades when exposed
to a new dataset. Therefore, semi-supervised learning (SSL) techniques can improve performance,
using both labeled and unlabeled examples. In this paper, we propose a framework based on the
multi-view graph attention mechanism using a transfer learning (TL) approach, to predict social bots.
We called the framework ‘Bot-MGAT’, which stands for bot multi-view graph attention network. The
framework used both labeled and unlabeled data. We used profile features to reduce the overheads
of the feature engineering. We executed our experiments on a recent benchmark dataset that included
representative samples of social bots with graph structural information and profile features only. We
applied cross-validation to avoid uncertainty in the model’s performance. Bot-MGAT was evaluated
using graph SSL techniques: single graph attention networks (GAT), graph convolutional networks
(GCN), and relational graph convolutional networks (RGCN). We compared Bot-MGAT to related
work in the field of bot detection. The results of Bot-MGAT with TL outperformed, with an accuracy
score of 97.8%, an F1 score of 0.9842, and an MCC score of 0.9481.

Keywords: semi-supervised learning; transfer learning; GNN; prediction; bot detection; Twitter

1. Introduction

Despite the early recognition of social bots on Twitter, and the good performance of
different bot detection techniques that have been proposed in the literature [1–3], detection
performance drops when they are tested on new data [4,5], for two main reasons. The first
reason is that labeled data play an important role in supervised learning (SL) performance.
Thus, the majority of proposed work in bot detection has been performed in this manner,
using human annotation to label Twitter accounts as humans or bots [6,7]. SL techniques
are based on labeled data for training and testing the learning model. Therefore, the issue
of obtaining labeled data that contain representative samples of different generations of
bots, for this problem, is a very challenging task in terms of time, cost, and effort. In
fact, obtaining labeled data for real-world problems, such as bot detection, is one of the
limitations associated with SL techniques [8]. The second reason is that bots adapt their
behavior and features very quickly to avoid being detected by artificial intelligence and
Chatbot advancements [6,9]. For this reason, learning models fail to detect new updated
versions of bot accounts, and show a significant drop in performance.

Consequently, semi-supervised learning (SSL) techniques aim to mitigate this lim-
itation in SL, by using both labeled and unlabeled data to build learning models for
classification problems [10]. Both graph and non-graph SSL have been implemented to

Appl. Sci. 2022, 12, 8117. https://doi.org/10.3390/app12168117 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168117
https://doi.org/10.3390/app12168117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2527-3761
https://orcid.org/0000-0002-8092-4590
https://doi.org/10.3390/app12168117
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168117?type=check_update&version=1

Appl. Sci. 2022, 12, 8117 2 of 18

enhance classification or to obtain more hidden information that unlabeled data can re-
veal [11]. The common techniques of SSL that have been proposed in the literature vary
in their mechanisms. For example, there are graph neural network (GNN) techniques
that have been shown to be successful in several domains, such as graph convolutional
networks (GCN) and graph attention networks (GAT). Additionally, there are SSL wrapper
techniques, such as self-training (another name is self-labeling or pseudo-labeling) and
co-training. Furthermore, there are generative model techniques, where the focus is on
generating data using labeled data such as generative adversarial networks (GAN). In our
case, we focused on graph SSL techniques, in particular GAT, as we aimed to work out the
hidden relationships between nodes of a trending hashtag, to be able to predict the label of
a given node. Non-graph techniques cannot reveal such information, due to the absence of
graph structural information.

In this paper, we address the issue of labeled data for the bot detection problem, to
enhance performance using related labeled and unlabeled data within a graph attention
network mechanism by using the transfer learning (TL) approach. We aimed to combine
the success of GNN and TL approaches, to overcome the issue of the scarcity of data for
the bot detection problem, and to enhance classification. Our framework, Bot-MGAT, was
designed based on multi-view graph attention networks, to distinguish the importance
of different nodes within the neighborhood using node representations to predict the
label. GAT has efficiency in operating, and can be applied to different degrees of nodes, in
contrast to GCN, where nodes have equal or pre-defined weights. Bot-MGAT uses profile
features only, as they have been shown to be effective in detecting social bots [12]. Our
model evaluation was compared using baseline models and cross-domain evaluation. The
success of this classification task will save the effort and tedium of manual labeling for
learning models. Additionally, it will improve the detection of bots, as it will accelerate
the labeling process, to obtain large amounts of data for models that require large volumes
of data to improve prediction. Additionally, using a deep learning attention mechanism
is more efficient for applying node representation learning, and discovering hidden link
information in embedding space that a regular classifier fails to detect.

Our work’s contributions were as follows:

• We proposed a framework based on the transfer learning model, using the multi-view
graph attention mechanism to enhance bot detection on Twitter;

• We built our model using two different types of links: friendship and interaction;
• We used profile features only, to predict labels and apply cross-validation, in order to

estimate accuracy and avoid uncertainty in the model performance;
• We performed a cross-domain evaluation of Bot-MGAT performance, by training the

model using a diverse dataset, and testing the model using two other datasets that
were not used in training.

The rest of this paper is organized as follows: the review of the literature is presented in
Section 2; in Section 3, we present background details; Section 4 discusses the materials and
methods; Section 5 discusses the results of the proposed framework; Section 6 highlights
the challenges that remain in this domain, and considers future directions for research
efforts that aim to address this problem.

2. Related Work

In this section, we briefly review the related literature on graph neural networks
as an SSL technique, and related bot detection work that has been recently proposed in
the literature. In addition, we discuss and highlight the remaining issues relating to the
detection of social bots on Twitter.

2.1. Graph Neural Networks

Deep learning has demonstrated successful performance in recent years in different
domains. Research efforts have proven the powerfulness of this machine-learning approach
to extracting complex patterns from massive amounts of irregular data [13]. Therefore,

Appl. Sci. 2022, 12, 8117 3 of 18

using these machine-learning techniques to analyze graphs has been frequently proposed
in recent years. The objective of this task was to overcome the challenges that remain in
applying traditional deep learning to graphs [14]. These challenges included the irregular
structures of graphs, the heterogeneity and diversity of graphs, and large-scale graphs.

Graph neural networks (GNNs) were promoted after the success of neural networks
and their ability to learn to extract latent representation from complex relations and inter-
actions of a given network. GNNs are categorized into: recurrent graph neural networks
(RGNNs), convolutional graph neural networks (CGNNs), graph auto-encoders (GAEs)
and spatial–temporal graph neural networks (STGNNs) [15]. GNNs can graph structured
data to perform tasks such as node classification, link prediction, and graph classification.
Therefore, GNNs can be trained in a semi-supervised manner by using the labeled nodes
to classify the unlabeled ones in the graph [16].

Spatially based GNN models such as GAT are preferred, as they maintain efficiency,
generalizability, and flexibility of implementation compared to spectral models. This
is because spatial models can handle multi-source graph inputs, in contrast to spectral
models that only handle undirected graphs [15]. In addition, spatial models are more
scalable, as they perform graph convolutions locally on individual nodes, and share weights
across different locations and structures. GAT models as a spatial model are considered
a GCN model with an attention mechanism, and have achieved good performance in
the literature [17]. This has encouraged research to expand this model into multi-view
perspectives, where different views of data are integrated [18,19].

Recent studies have proposed using GCNNs to enhance bot detection using relational
graph convolution networks (BotRGCN) [20] and GCNNs for spam bot detection [21].
In [20], the authors aimed to construct a heterogeneous graph of Twitter, and to apply rela-
tional GCN to detect bot communities. In [21], the authors deployed graph convolutional
neural networks to a well-known spam bot dataset that outperformed previous methods
with regard to the results. Hence, the issue with previous datasets is that they were easily
detected and did not include recent generations of bots.

2.2. Bot Detection

Social bots differ in their behavior patterns, based on their goals. Thus, common
approaches proposed in the literature to detect social bots, using SL, include feature-
based, network or graph-based, and crowdsourcing approaches [6,22]. In the feature-based
approach, machine learning algorithms are applied, to identify social bot accounts based
on selected features. In the graph-based approach, an understanding of social network
information, through links and edges of relationships between accounts, is applied to
detect activity. In the crowdsourcing approach, human expert ability is utilized to identify,
evaluate, and determine the behavior of social bots. Table 1 summarizes the strengths and
limitations for each of the bot detection approaches in SL.

Accordingly, researchers have been looking for techniques other than SL, that might
improve the classification task of social bot detection. A recent work was proposed by [23],
using the GAN method and long short-term memory (LSTM), to detect bots based on
textual content. Their goal was to detect the behavioral patterns of bot samples for a
given classifier, by improving true positive rates and reducing false negatives. Feng,
et al., proposed a self-learning framework (SATAR) for Twitter bot detection, where the
framework adapted itself by pre-training a massive number of users [24]. They aimed to
solve the issue of failing to adapt to new generations of Twitter bots. They constructed
their framework based on tweet semantics, profile properties, and neighbors’ networks;
the strength of this work lay in considering these three aspects for bot detection, as the
experimental results conveyed.

Appl. Sci. 2022, 12, 8117 4 of 18

Table 1. Supervised learning approaches’ strengths and limitations.

Detection Approach Strengths Limitations

Feature-Based

Good overall performance, as the literature
reported [6];
Easy to implement when trained data are
available, especially as some literature works
provide their code for testing [7];
Commonly used, enabling combination of
techniques and avoidance of pitfalls and
mistakes reported in previous work [25];

Bias to trained datasets (including
representative samples), performs less well
with new data [26];
Available datasets do not include the full list
of features, due to user privacy issues;
therefore, not all features are available for
testing and analyzing [27];
Some techniques are based on assumptions
which lack wide application [22];
Using the accuracy rate is not enough to
evaluate the performance of the proposed
work [28].

Graph-Based

Helpful when detecting influence
ranking [29].
Using visualization mapping to more easily
identify influence/rank [29];
Understanding links/behavior patterns;
Detecting communities based on
similarities/dissimilarities [30].

Computational cost, as a social network’s
size is usually large [31];
Simulation of behavior of a network can be
sensitive to chosen scalability
measurements [32].

Crowdsourcing

Humans are more able to distinguish
differences in the Turing test [33];
Good with a small amount of data;
Useful to build a ground-truth baseline [34].

Needs an expert;
Lack of an automation tool to make the task
easier [35];
Inconsistent quality, as there are cyborg
accounts [36];
Workload- and time-consuming for large
datasets [34].

3. Background

In this section, we model our problem, and provide details about graph attention
networks, multi-view graph attention networks, and transfer learning.

3.1. Problem Definition

We let G be a graph defined as G = (V, E), where V was a set of nodes of size N; each
node represented a Twitter account, and E was the adjacency matrix. Nodes of the graph
were described using the feature matrix X = {xi}N

i=1 of dimension N × F, where F was the
number of features in total for each node, and each row was the feature vector of node i.
Each account was associated with a set of numerical features, Nu, and categorical features,
C. Therefore, xi = {Nui, Ci} for i = 0, 1, 2, 3, . . . , N.

The relationships among the different nodes were presented in the adjacency matrix
E of size N × N, where eij ∈ {0, 1} indicated whether there was an edge (relationship)
between node i and j. The diagonal elements of this matrix were the self-loop edges of the
nodes (an edge from the node to itself). As our graph was undirected, the adjacency matrix
was symmetric, and hence eij = eji.

Labels of the nodes were included in the label vector l of size N, where li ∈ {0, 1}
was the ground truth of node i, to indicate if this node was a human account (0) or a bot
account (1).

The Twitter bot detection problem was modeled as a binary classification task under
the semi-supervised learning schema shown in Figure 1. This was because we had a large
dataset, but only a few nodes were labeled. Here, we found a function f : (Nui, Ci , E)→ l′ i
that mapped each feature vector of a node to its true label, such that the predicted label
l′ was close to the ground truth l for maximum prediction accuracy (or minimum predic-
tion error).

Appl. Sci. 2022, 12, 8117 5 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18

that mapped each feature vector of a node to its true label, such that the predicted label 𝑙
was close to the ground truth 𝑙 for maximum prediction accuracy (or minimum predic-
tion error).

Figure 1. Semi-supervised learning uses nodes’ embedding to predict the node class. Both labeled
and unlabeled nodes are used in SSL.

3.2. Graph Attention Network
Graph attention networks (GATs) are a type of graph neural network in which the

edges of the graph are weighted differently, to indicate the importance of nodes with
respect to other nodes. The weighting is performed through a self-attention mechanism
[37]. Initially, the node representations (node embeddings) are the raw features 𝒉𝟎 = 𝑿
with a size 𝑁 × 𝐹. Then, a series of linear transformations can be applied through weight
matrix multiplication, as follows in Equation (1): 𝒉(𝒍) = 𝜎 𝑾() × 𝒉(𝒍 𝟏) 𝑏() (1)

where 𝑾() is the weight matrix of the 𝑙 linear layer, with a size of 𝐹 × 𝐹. Consider 𝐹
as the number of inputs of the 𝑙 layer, and 𝐹 as the number of outputs of the 𝑙
layer. 𝑏() is the additive bias vector of the 𝑙 layer, and of size 𝐹 . The activation
function to add non-linearity is 𝜎(.). The linear layer can be applied separately for nu-
merical features 𝑁𝑢 and categorical features 𝐶 of each node.

To calculate the weight of each edge (including the self-loops), we used Equation (2): 𝑒 = 𝑎 𝑾 × ℎ() ,𝑾 × ℎ() (2)

where 𝑎(.) was the self-attention mechanism. These weights were not normalized, and
therefore a Softmax function was utilized for normalization, as in Equation (3):

𝛼 = softmax (𝑒) = exp 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 𝑒∑ exp 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 𝑒∈𝒩 (3)

where 𝛼 was the attention coefficient; 𝒩 represented the neighbors of node 𝑖 ;
LeakyReLU was an activation function, defined as follows in Equation (4): 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑥) = 𝑥 , 𝑥 0𝜇 × 𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4)

where 𝜇 was the negative slope.
The attention mechanism was performed by concatenating the representation of

node 𝑖 and node 𝑗 (after linear transformation), and multiplying this by a learnable

Figure 1. Semi-supervised learning uses nodes’ embedding to predict the node class. Both labeled
and unlabeled nodes are used in SSL.

3.2. Graph Attention Network

Graph attention networks (GATs) are a type of graph neural network in which the
edges of the graph are weighted differently, to indicate the importance of nodes with
respect to other nodes. The weighting is performed through a self-attention mechanism [37].
Initially, the node representations (node embeddings) are the raw features h0 = XT with a
size N × F. Then, a series of linear transformations can be applied through weight matrix
multiplication, as follows in Equation (1):

h(l) = σ
(

W(l) × h(l−1) + b(l)
)

(1)

where W(l) is the weight matrix of the lth linear layer, with a size of F′ × F. Consider F as
the number of inputs of the lth layer, and F′ as the number of outputs of the lth layer. b(l)

is the additive bias vector of the lth layer, and of size F′. The activation function to add
non-linearity is σ(.). The linear layer can be applied separately for numerical features Nui
and categorical features Ci of each node.

To calculate the weight of each edge (including the self-loops), we used Equation (2):

eij = a
(

W× h(l−1)
i , W× h(l−1)

j

)
(2)

where a(.) was the self-attention mechanism. These weights were not normalized, and
therefore a Softmax function was utilized for normalization, as in Equation (3):

αij = softmax
(
eij
)
=

exp
(

LeakyReLU
(
eij
))

∑k∈Ni
exp

(
LeakyReLU

(
eij
)) (3)

where αij was the attention coefficient; Ni represented the neighbors of node i; LeakyReLU
was an activation function, defined as follows in Equation (4):

LeakyReLU (x) =
{

x, x ≥ 0
µ× x, otherwise

(4)

where µ was the negative slope.
The attention mechanism was performed by concatenating the representation of node

i and node j (after linear transformation), and multiplying this by a learnable weighting

Appl. Sci. 2022, 12, 8117 6 of 18

vector z of size 2F′. The result was passed through the LeakyReLU function. Thus, the
attention coefficient in Equation (3) could be re-written as shown in Equation (5):

αij =
exp

(
LeakyReLU

(
zT ×

[
W× h(l−1)

i

∣∣∣∣W× h(l−1)
j

]))
∑k∈Ni

exp
(

LeakyReLU
(

zT ×
[
W× h(l−1)

i

∣∣∣∣W× h(l−1)
k

])) (5)

where (.)T represented the transpose operator and || was the concatenation operator.
In [38], the authors discovered that the implementation of the GAT had a static atten-

tion nature. The reason for this was the application of the W and zT in the above equation
sequentially. The authors fixed this by altering the operations, in which multiplication by W
was performed after concatenating the nodes’ representations, a LeakyReLU was applied,
and multiplication by zT was carried out as a final step. This is shown in Equation (6):

αij =
exp

(
zT × LeakyReLU

(
W×

[
h(l−1)

i

∣∣∣∣h(l−1)
j

]))
∑k∈Ni

exp
(

zT × LeakyReLU
(

W×
[

h(l−1)
i

∣∣∣∣h(l−1)
k

])) (6)

This is called modified GAT (or GATv2), and we used it in our framework.
To obtain the final node representations h′, we included the learned attention coeffi-

cients when aggregating the representations of the neighbors, as in Equation (7):

h′i = σ
(

αii ×W(l) × h(l−1)
i

)
+ σ

(
∑

j∈Ni

αij ×W(l) × h(l−1)
j

)
(7)

The first term was for the self-loops, and the second term was the weighted sum of
the neighbors’ representations. These final representations could be utilized for different
prediction tasks. In our work, we decided to use the single-head attention mechanism.

3.3. Multi-View Graph Attention Networks

A multi-view graph is a relational graph that consists of different relationships among
the nodes (or, technically, multiple graphs with the same nodes, but different edges). This
inspired [39] to extend the graph convolutional networks (GCNs) to relational graph convo-
lutional networks (RGCNs), to consider them. LetR be the number of relations. In regard
to Twitter, relationships can include following/follower, tweet/retweet, replies/mentions,
or any interaction. The updated node representation was modified to include the relations,
as indicated in Equation (8):

h′i = σ
(

W(l)
0 × h(l−1)

i

)
+ σ

∑
rεR

∑
j∈N r

i

1
N r

i
×W(l)

r × h(l−1)
j

 (8)

where N r
i represented the neighbors of node i with respect to relation r. W(l)

0 was the
relation-independent weight matrix for the self-loop edges to include node i representa-
tion. This equation summed the nodes’ representations across all relations, to obtain the
final nodes’ representations. As can be seen, RGCN—which was modeled using Equation
(8)—did not consider the importance of the neighbors among the relations. We propose
our framework, a multi-view graph attention network which was adopted from [18], and
combines both GAT and RGCN. The new model calculated the relation-wise attention
coefficients for ranking the influence of the neighbors among different interactions (relation-
ships). We simply modified Equation (8) to define the view-specific node representation as
follows:

h′i,r = σ
(

αr
ii × h(l−1)

i,r

)
+ σ

 ∑
j∈N r

i

αr
ij ×W(l)

r × h(l−1)
j

 (9)

Appl. Sci. 2022, 12, 8117 7 of 18

The relation-specific attention coefficient in Equation (9) was described by αr
ij. This

time, the attention for the self-loop term was relation-specific. The reason for this was
because every node had a different set of neighbors in each relation. The formula for
calculating αr

ij is shown in Equation (10):

αr
ij =

exp
(

zT
r × LeakyReLU

(
Wr ×

[
h(l−1)

i,r

∣∣∣∣h(l−1)
j,r

]))
∑k∈N r

i
exp

(
zT

r × LeakyReLU
(

Wr ×
[

h(l−1)
i,r

∣∣∣∣h(l−1)
k

])) (10)

Finally, we aggregated the nodes’ representations across the different views by using
a weighted sum with parameter β (number between 0 and 1). This differed from the
approach used in [18], as we did not want to add overhead to the training of the model.
Additionally, because we had datasets with different types of relations (edges), we decided
to combine them into two views only (R = 2), where a view contained a set of the edges,
and the rest were in the other view. This was done for each dataset. Thus, the aggregation
across the views is shown in Equation (11):

h f inal
i = β × h′i,r1

+ (1− β)× h′i,r2
(11)

where r1 and r2 were the two views (R = {r1 , r2}). The model was trained by optimizing
the loss function, using the Adam optimizer. We used the binary cross-entropy loss function,
as we had only two classes (human and bot):

Loss = ∑
i∈ϕ

[
−li × log

(
l′i
)
− (1− li)× log

(
1− l′i

)]
(12)

We considered only a portion of the labeled samples for calculating the training loss,
as indicated by ϕ.

3.4. Transfer Learning (TL)

Transfer learning is one of the machine learning tools that leverage knowledge (fea-
tures, weights, etc.) from previously trained models to train newer models. It aims to solve
the issue of insufficient training data for a learning model [40]. There are three categories
of TL. Inductive transfer learning occurs when the labels are available only in the target
domain, and are missing in the source. Both source and target tasks are related but different.
Unsupervised transfer learning is another category of TL, in which no labels exist in both
source and target domains. A transductive transfer learning technique is applied when
source labels are available but target labels are missing [41].

In our scenario, there were similarities between the source and target tasks, in that both
were Twitter datasets. The difference was that the source dataset was built on friendship
links (i.e., account A followed account B), while the target dataset was built on interaction
links. In this setting, the source domain had a lot of labeled data, while the target domain
had none. Therefore, we adopted the transductive TL in our work, as shown in Figure 2. We
trained our model using TwiBot-20 (source), which has different types of bots, to transfer as
much knowledge as possible, so as to distinguish between bots and human classes in new
data (target). We used this approach to make our model more generalized for bot detection,
especially with the growth of sophisticated bots that are able to avoid being detected. The
results of our model in Section 5 emphasize that our model outperformed previous models,
and that it had the ability to predict unlabeled data classes, successfully using the transfer
learning approach.

Appl. Sci. 2022, 12, 8117 8 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18

Figure 2. Illustration of transfer learning in our case scenario. Twibot20 was used as a source to
train our model, Bot-MGAT, and to train target data that were new and unlabeled, to predict the
labels.

4. Methodology
In this section, we provide details of the used datasets and preprocessing steps. We

then discuss the selected features and environmental setup for the experiments. Then, we
provide the required details of our proposed framework and parameter settings.

4.1. Data and Preprocessing
For our experiments, we used a recent benchmark dataset TwiBot20 [42] that in-

cluded samples from the Twittersphere to train our model. The authors of TwiBot-20 di-
vided users into four interest domains: politics; business; entertainment; and sports. For
each user, TwiBot-20 contains the tweets, profile properties, and neighborhood infor-
mation of a Twitter user. This dataset includes 229,573 Twitter users, 33,488,192 tweets,
and 455,958 following relationship links.

TwiBot20 includes 38 features for profile metadata. These features are called the
user’s metadata, as they represent the profile information. We extracted 18 profile fea-
tures in addition to the account label, either as a human user or bot, from three files,
Train/Test/dev. These profile features are shown in Table 2. The total number of labeled
accounts that the three files had was 11,826. According to the data, 55.7% of the samples
consisted of bot accounts, and 45.3% were human. Figure 3 depicts the distribution clas-
ses of bots and humans in the TwiBot-20 data.

To test our model, we used two different hashtag datasets from NodeXL [43,44]. The
first dataset was for a climate hashtag, “#actonclimate”, and we refer to it as “climate
hashtag”. This dataset had a total of 5664 nodes and 15,651 edges. The second dataset was
constructed based on the keywords “#IStandWithPutin” OR “#IStandWithRussia” OR
“#StandWithRussia” OR “#NaziUkraine”. This dataset contains 4941 nodes, and 6944
links. We refer to this dataset as “Russian hashtag”. For both datasets, we extracted the
profile features shown in Table 2, in addition to the links of interaction to build the
graphs for the attention mechanism. Table 3 provides the summary statistics of the used
datasets.

For data preprocessing, we deleted the IDs and lang features for better processing,
as the lang value was null for all the records. We thus worked with 16 out of the 18 fea-
tures in Table 2. To avoid any encoding process, we tried to deal with features in terms of
numerical value. Therefore, we considered the screen name length instead of the screen
name character encoding. Furthermore, the Boolean and string features were converted
to 0 and 1 to indicate the changing of default status. In addition, the created date string
was used to calculate the account age in days. The labels in the account type represented
humans with zero and bot accounts with one.

Figure 2. Illustration of transfer learning in our case scenario. Twibot20 was used as a source to train
our model, Bot-MGAT, and to train target data that were new and unlabeled, to predict the labels.

4. Methodology

In this section, we provide details of the used datasets and preprocessing steps. We
then discuss the selected features and environmental setup for the experiments. Then, we
provide the required details of our proposed framework and parameter settings.

4.1. Data and Preprocessing

For our experiments, we used a recent benchmark dataset TwiBot20 [42] that included
samples from the Twittersphere to train our model. The authors of TwiBot-20 divided
users into four interest domains: politics; business; entertainment; and sports. For each
user, TwiBot-20 contains the tweets, profile properties, and neighborhood information of a
Twitter user. This dataset includes 229,573 Twitter users, 33,488,192 tweets, and 455,958
following relationship links.

TwiBot20 includes 38 features for profile metadata. These features are called the user’s
metadata, as they represent the profile information. We extracted 18 profile features in
addition to the account label, either as a human user or bot, from three files, Train/Test/dev.
These profile features are shown in Table 2. The total number of labeled accounts that the
three files had was 11,826. According to the data, 55.7% of the samples consisted of bot
accounts, and 45.3% were human. Figure 3 depicts the distribution classes of bots and
humans in the TwiBot-20 data.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18

Figure 3. Distribution of the popularity of bots (class = 1) and humans (class = 0) in TwiBot-20.

Table 2. List of extracted profile features and their description.

Feature Type Description Selected *
1 ID Numerical Unique identifier for the user account (64-bit).

2 Follower count Numerical
The number of users who are following this user ac-
count.

✓

3 Favorites count Numerical The number of tweets a user has liked since the account
creation date.

✓

4 Statuses count Numerical Total number of tweets and retweets issued by the user. ✓
5 Friends count Numerical Total number of accounts this user is following. ✓

6 Age in days Numerical
The total number of days since the account was created
until the day of retrieving the data.

✓

7 Screen name length Numerical Total number of digits in the screen name. ✓

8 Listed count Numerical The number of public lists of which this user is a mem-
ber.

9 Protected Boolean True if the user has chosen to protect their tweets.
10 Verified Boolean Indication that the user has a verified account. ✓
11 Profile image Boolean

12 Default profile Boolean TRUE that the user has not altered the theme or back-
ground of their profile.

✓

13 Default profile image Boolean TRUE that the user has not uploaded a profile image
and the default image is used.

✓

14 Profile background image Boolean True if the user has changed the background image.

15 Geo enabled Boolean
TRUE if the current user attaches geographic data when
tweeting or retweeting.

✓

16 Lang String The language that Twitter detects for a user account; if
no language is detected (undefined).

17 Location String An optional value where the user has defined their lo-
cation in their account profile.

18 Description String
An optional value where user writes a description on
their profile.

* The final selected profile features in our model shown with (✓).

Figure 3. Distribution of the popularity of bots (class = 1) and humans (class = 0) in TwiBot-20.

Appl. Sci. 2022, 12, 8117 9 of 18

Table 2. List of extracted profile features and their description.

Feature Type Description Selected *

1 ID Numerical Unique identifier for the user
account (64-bit).

2 Follower count Numerical The number of users who are
following this user account. X

3 Favorites count Numerical
The number of tweets a user has
liked since the account
creation date.

X

4 Statuses count Numerical Total number of tweets and
retweets issued by the user. X

5 Friends count Numerical Total number of accounts this user
is following. X

6 Age in days Numerical
The total number of days since the
account was created until the day
of retrieving the data.

X

7 Screen name length Numerical Total number of digits in the
screen name. X

8 Listed count Numerical The number of public lists of
which this user is a member.

9 Protected Boolean True if the user has chosen to
protect their tweets.

10 Verified Boolean Indication that the user has a
verified account. X

11 Profile image Boolean

12 Default profile Boolean
TRUE that the user has not altered
the theme or background of
their profile.

X

13 Default profile image Boolean
TRUE that the user has not
uploaded a profile image and the
default image is used.

X

14 Profile background
image Boolean True if the user has changed the

background image.

15 Geo enabled Boolean
TRUE if the current user attaches
geographic data when tweeting
or retweeting.

X

16 Lang String
The language that Twitter detects
for a user account; if no language
is detected (undefined).

17 Location String
An optional value where the user
has defined their location in their
account profile.

18 Description String
An optional value where user
writes a description on
their profile.

* The final selected profile features in our model shown with (X).

To test our model, we used two different hashtag datasets from NodeXL [43,44]. The
first dataset was for a climate hashtag, “#actonclimate”, and we refer to it as “climate
hashtag”. This dataset had a total of 5664 nodes and 15,651 edges. The second dataset
was constructed based on the keywords “#IStandWithPutin” OR “#IStandWithRussia” OR
“#StandWithRussia” OR “#NaziUkraine”. This dataset contains 4941 nodes, and 6944 links.
We refer to this dataset as “Russian hashtag”. For both datasets, we extracted the profile
features shown in Table 2, in addition to the links of interaction to build the graphs for the
attention mechanism. Table 3 provides the summary statistics of the used datasets.

Appl. Sci. 2022, 12, 8117 10 of 18

Table 3. Summary statistics for the used datasets.

Dataset Released Nodes Edges

Twibot20 May 2021 229,573 455,958
Climate hashtag April 2022 5664 15,651
Russia hashtag May 2022 4941 6944

For data preprocessing, we deleted the IDs and lang features for better processing, as
the lang value was null for all the records. We thus worked with 16 out of the 18 features
in Table 2. To avoid any encoding process, we tried to deal with features in terms of
numerical value. Therefore, we considered the screen name length instead of the screen
name character encoding. Furthermore, the Boolean and string features were converted
to 0 and 1 to indicate the changing of default status. In addition, the created date string
was used to calculate the account age in days. The labels in the account type represented
humans with zero and bot accounts with one.

4.2. Selected Features

Many proposed works in the literature addressed feature selection to train learning
models. However, the number of selected features varied from 1000 [4] to much less [3,12].
In our experiments, we aimed to focus on using fewer features to enhance the efficiency and
interpretability of our learning model. This will assure lower complexity costs when used
in an online manner. In addition, recent studies [12,45,46] have shown that profile features
are predictive enough to detect social bots. Therefore, we used profile numerical features,
and we considered the availability of a value for a certain feature such as description, to
eliminate any encoding process. Thus, if a user filled in the description field or location,
we considered this as 1; otherwise, it would be 0; we employed a similar treatment for a
number of other features, so as to avoid any language processing costs. Our final selected
features are shown in the last column in Table 2.

4.3. Environmental Setup

In our work, all our experiments were undertaken on a workstation with a processor
model Intel core i7-1087 = CPU with a RAM of 32 GB and NVIDIA GeForce RTX 3070
Max-Q GPU with 6 GB of VRAM. All the machine-learning models were built using python
Scikit-learn library. All the graph-learning models were implemented using PyTorch geo-
metric (PyG) (https://pytorch-geometric.readthedocs.io/en/latest/index.html accessed
on 1 September 2021).

4.4. Proposed Framework

Our proposed framework model architecture utilized the transfer learning approach,
as Figure 4 demonstrates. In this framework, there are two learning phases. The first
phase is called “Source Training Phase”. The model is trained to use multi-view graph
attention networks on a partially labeled dataset. Once the model is trained, phase two
starts. This phase is called “Target Training Phase”. In this phase, another dataset, that
is totally unlabeled, is tested, to predict the classes for data points using the trained
model from the first phase. The output of this phase is labels for the new data that
are unlabeled. Consequently, an evaluation process takes place to evaluate the output
predictions, after applying a machine-learning classifier to ensure that the model can
distinguish between classes.

https://pytorch-geometric.readthedocs.io/en/latest/index.html

Appl. Sci. 2022, 12, 8117 11 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18

linear layer or an attention layer, we decided to use a fixed value to reduce the complex-
ity of the model. In Table 4, we present Bot-MGAT’s parameters.

Figure 4. Bot-MGAT model architecture using the transfer learning approach.

Figure 5. Multi-view perspectives in Bot-MGAT.

Once the model was trained on TwiBot-20, we transferred the learning by utilizing
the model with target data, namely unlabeled “climate hashtag”. We applied the same
steps for preprocessing and feature selection. Then, we applied the MGAT model to
predict the label for every node in the target data. Once we obtained the labels, we eval-
uated the labeling process using a machine-learning classifier. We chose random forest
(RF), as it performs well in this classification problem, as shown in different studies
[12,47].

We used the “Russian hashtag” dataset, which was not used in the training or test-
ing phases, to validate our model. We applied the same steps and model to verify our
results. We evaluated our model using three different evaluation metrics: accuracy, F1
score, and MCC. The accuracy aimed to evaluate the model correctness. The F1 score and

Figure 4. Bot-MGAT model architecture using the transfer learning approach.

Accordingly, we used TwiBot-20 as the input for the source domain model. We ex-
tracted the features into multi-view perspectives. These views can provide a different view
of the data, for example (following, followers, mentions...etc.). In our case, as Figure 5
depicts, we used the edges’ views that represented the following links (i.e., friendship) and
interaction graphs. We implemented a linear layer to transform the input features into
sufficient higher-level expressive representation for every node, as shown in Section 3.2.
An importance weight was calculated using the attention mechanism for every node and
its neighboring nodes. We applied an activation function (LeakyReLU) to maintain non-
linearity. We used only one message-passing layer in each view, to avoid over-smoothing,
which could occur when we had cascaded message-passing layers. This was because it
would result in nodes with the same representations, and this would make the classification
process more difficult.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18

linear layer or an attention layer, we decided to use a fixed value to reduce the complex-
ity of the model. In Table 4, we present Bot-MGAT’s parameters.

Figure 4. Bot-MGAT model architecture using the transfer learning approach.

Figure 5. Multi-view perspectives in Bot-MGAT.

Once the model was trained on TwiBot-20, we transferred the learning by utilizing
the model with target data, namely unlabeled “climate hashtag”. We applied the same
steps for preprocessing and feature selection. Then, we applied the MGAT model to
predict the label for every node in the target data. Once we obtained the labels, we eval-
uated the labeling process using a machine-learning classifier. We chose random forest
(RF), as it performs well in this classification problem, as shown in different studies
[12,47].

We used the “Russian hashtag” dataset, which was not used in the training or test-
ing phases, to validate our model. We applied the same steps and model to verify our
results. We evaluated our model using three different evaluation metrics: accuracy, F1
score, and MCC. The accuracy aimed to evaluate the model correctness. The F1 score and

Figure 5. Multi-view perspectives in Bot-MGAT.

We used a weighted sum with parameter β to aggregate the representations from the
different views of our graph. Although this parameter can be learnable through a linear
layer or an attention layer, we decided to use a fixed value to reduce the complexity of the
model. In Table 4, we present Bot-MGAT’s parameters.

Appl. Sci. 2022, 12, 8117 12 of 18

Table 4. Bot-MGAT parameters.

Parameter Value

Activation function Leaky ReLU
Learning rate 0.001

Optimizer Adam
Epoch 100

Dropout 0.5
Weight decay 0.00003

Message passing layers 2
Folds 10

Embedding size 128
β 0.001

Once the model was trained on TwiBot-20, we transferred the learning by utilizing
the model with target data, namely unlabeled “climate hashtag”. We applied the same
steps for preprocessing and feature selection. Then, we applied the MGAT model to predict
the label for every node in the target data. Once we obtained the labels, we evaluated the
labeling process using a machine-learning classifier. We chose random forest (RF), as it
performs well in this classification problem, as shown in different studies [12,47].

We used the “Russian hashtag” dataset, which was not used in the training or testing
phases, to validate our model. We applied the same steps and model to verify our results.
We evaluated our model using three different evaluation metrics: accuracy, F1 score, and
MCC. The accuracy aimed to evaluate the model correctness. The F1 score and Matthews
correlation coefficient (MCC) were used as more balanced evaluation metrics for the binary
classification task. Bot-MGAT’s performance is shown in Section 5. We summarized the
steps in Algorithm 1.

Algorithm 1 Bot-MGAT with TL

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18

Matthews correlation coefficient (MCC) were used as more balanced evaluation metrics

for the binary classification task. Bot-MGAT’s performance is shown in Section 5. We

summarized the steps in Algorithm 1.

Table 4. Bot-MGAT parameters.

Parameter Value

Activation function Leaky ReLU

Learning rate 0.001

Optimizer Adam

Epoch 100

Dropout 0.5

Weight decay 0.00003

Message passing layers 2

Folds 10

Embedding size 128

𝛽 0.001

Algorithm 1 Bot-MGAT with TL

Input : Source data: TwiBot-20 dataset with 𝑁𝑢𝑖
𝑡𝑤𝑖 , 𝐶𝑖

𝑡𝑤𝑖 , 𝑙𝑖
𝑡𝑤𝑖 , 𝐸𝑡𝑤𝑖 , 𝑖 = 1, 2, 3, … , 𝑁

Target data: unlabeled data of different hashtags with 𝑁𝑢𝑗
𝑢𝑛, 𝐶𝑗

𝑢𝑛, 𝐸𝑢𝑛, 𝑗 =

1, 2, 3, … , 𝐽 (𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒)

Output : Node labels for the unlabeled data 𝑙𝑗
𝑢𝑛

Train Phase:

1. 𝑚𝑜𝑑𝑒𝑙 ← Initialize parameters (𝑾, 𝑏)

For 𝑒𝑝𝑜𝑐ℎ in 𝑒𝑝𝑜𝑐ℎ𝑠:

 For 𝑖 in 𝑁:

 𝑙
𝑖

𝑡𝑤𝑖′
← 𝑚𝑜𝑑𝑒𝑙(𝑁𝑢𝑖

𝑡𝑤𝑖 , 𝐶𝑖
𝑡𝑤𝑖, 𝐸𝑡𝑤𝑖) using Equations (1) and (9)–(11)

 End For

 𝑙𝑜𝑠𝑠 ← 𝐵𝐶𝐸(𝐿𝑡𝑤𝑖′
, 𝐿𝑡𝑤𝑖) using Equation (12)

 Calculate the gradients(∇𝑙𝑜𝑠𝑠𝑾, ∇𝑙𝑜𝑠𝑠𝑏)

Update the parameters through back propagation
 𝑾 ← 𝑾 − ∇𝑙𝑜𝑠𝑠𝑾
 𝑏 ← 𝑏 − ∇𝑙𝑜𝑠𝑠𝑏
End For

Save 𝑚𝑜𝑑𝑒𝑙

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Prediction Phase:

13. For 𝑗 in 𝐽:
 𝑙𝑗

𝑢𝑛 ← 𝑚𝑜𝑑𝑒𝑙(𝑁𝑢𝑗
𝑢𝑛, 𝐶𝑗

𝑢𝑛, 𝐸𝑢𝑛)

End For

Train a random forest model on 𝑙𝑗
𝑢𝑛, 𝑁𝑢𝑗

𝑢𝑛, 𝐶𝑗
𝑢𝑛, 𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝐽

Record performance

14.

15.

16.

17.

5. Results

In this section, we discuss the performance results of Bot-MGAT in two states: with

and without the TL approach. We highlight the performance by addressing evaluation

metrics such as accuracy, MCC, and F1. We compare our performance to baselines, in-

cluding works that addressed the bot detection problem.

Appl. Sci. 2022, 12, 8117 13 of 18

5. Results

In this section, we discuss the performance results of Bot-MGAT in two states: with and
without the TL approach. We highlight the performance by addressing evaluation metrics
such as accuracy, MCC, and F1. We compare our performance to baselines, including works
that addressed the bot detection problem.

5.1. Bot-MGAT without TL

As an initial step, we used TwiBot-20 to train and test Bot-MGAT without the TL
phase. We used the profile features mentioned in Section 4.2. We compared our model
with other graph neural networks models, namely GCN, GAT, and RGCN, as shown in
Table 5. We chose these models as they were close to our model’s implementation, and
remained in the domain of GNN. For example, RGCN is an application of a relational
graph convolutional network for link prediction and classification. We tested a simple
GCN, to find the difference between the base model and the RGCN model. Based on the
results, RGCN performed better than GCN, and (0.01) better than GAT. This highlighted
the reported performance in the literature of RGCN [20]. For GAT, a single attention
graph network was applied, with a single view of the dataset. We applied cross validation
(10 folds) for all models, to ensure confidence that there was no over-fitting issue in the
trained models.

Table 5. Bot-MGAT without TL compared to other GNN models.

Model Accuracy F1 Score MCC

GCN 0.7469 0.7790 0.4867
GAT 0.7962 0.8399 0.6185

RGCN 0.8069 0.8470 0.6371
Bot-MGATno_TL 0.8098 0.8485 0.6491

Bot-MGAT without TL outperformed the other GNN models slightly, with an accuracy
score of 80.98%, an F1 score of 0.8485, and an MCC of 0.6491. This indicated that there was
scope for improvement in Bot-MGAT with TL. In addition, GAT and RGCN both showed
similar performance to Bot-MGAT in terms of accuracy and F1 scores: they achieved a score
of 79.62% and 80.69%, respectively, for accuracy, and 0.8399 and 0.8470, respectively, for F1.
This highlighted the hidden information that attention mechanism models aim to reveal.

5.2. Bot-MGAT with TL

Our objective was to use node representations to predict the label of a given node
by applying the attention mechanism with a multi-view of trained data. As an initial
step, we used an available tool [48] to label both datasets “climate hashtag” and “Russian
hashtag”, using Botometer API (https://botometer.osome.iu.edu/ accessed on 12 May
2022). This tool has been used in the literature [49,50]. The labeling process used a complete
automation probability (CAP) score, with a threshold of 75%, in order to determine that the
account label was a bot if it was higher than the threshold. After the labeling process was
completed, we applied cross-validation (10 folds) and the random forest (RF) classifier to
the climate hashtag and Russian hashtag, as shown in Table 6. We chose RF, as mentioned
previously; it performed well with the bot detection problem.

Table 6. RF results for all datasets, after using Botometer for both hashtags, compared to TwiBot-20.

Dataset Nodes Accuracy F1 Score MCC

TwiBot-20 11,826 0.8015 0.8371 0.5810
Climate hashtag 5664 0.7691 0.64361 0.4582
Russian hashtag 4941 0.7106 0.7581 0.4045

https://botometer.osome.iu.edu/

Appl. Sci. 2022, 12, 8117 14 of 18

The labeling results in Table 6, after using Botometer, show that the Russian hashtag
results were convenient and better, compared to the climate hashtag. This was due to the
issue of imbalance that is common in this problem. In the Russian hashtag, there were
2807 accounts labeled as bots out of the total; for the climate hashtag, there were fewer
accounts labeled as bots. The results, compared to TwiBot-20, were obviously poor and
average, in terms of F1 score. Twibot-20 was able to maintain a good F1 score of 0.8371
among both hashtags. This was due to the sophisticated bots’ design, in order to avoid
being detected [7]. Therefore, TL was useful in our case, especially as both the source and
target datasets were Twitter data, and they had a similar task: the detection of bots.

Consequently, we trained Bot-MGAT with TwiBot-20, as it was a recent diverse dataset
that was available for experimentation. In addition, it covered different domains of both
humans and bots, which increased the probability of detecting different types of bot account
when tested on a specific domain. After the training phase, we tested the model, using the
climate hashtag dataset. Table 7 shows the results of our framework comparison using TL
compared to not using TL.

Table 7. Bot-MGAT performance with TL and without TL.

Approach Datasets Accuracy F1 Score MCC AUC

Bot-MGATno_TL TwiBot-20 0.8098 0.8485 0.6491 0.79

Bot-MGATTL
Climate hashtag 0.9558 0.9739 0.8334 0.84
Russian hashtag 0.9780 0.9842 0.9481 0.98

Bot-MGAT with TL, using the Twibot-20 and climate hashtag datasets, outperformed
the results of the other models, with a 15% improvement in accuracy, a 13% increase in F1
score, and an 18% increase in MCC. This indicated the ability of our model to distinguish
the properties of each view of data with a completely unseen dataset used for testing.
This showed the efficiency and flexibility of GAT-based models that outperformed in the
literature [18,37,51,52].

We used the Russian hashtag dataset, which was not used in training or testing, to
validate our model. We applied the same experiment that we performed with the climate
hashtag dataset. The results are shown in Table 7. It outperformed the model without TL,
demonstrating a score of 0.9780 for accuracy, 0.9842 for F1 score, and 0.9481 for MCC. This
emphasized the effectiveness of TL in the bot detection problem. This incorporated the
fact that GAT models are capable of obtaining hidden representations of each node in the
graph, using self-attention and neighboring nodes embedding for the classification task.

Figure 6 provides the results for BotMGAT with TL receiver operating characteristics
(ROC) and area under the receiver operating characteristic curve (AUC) for Twibot20, the
climate hashtag, and the Russian hashtag. The reason for the high AUC (0.98) in the Russian
hashtag was the number of bots involved. Unlike TwiBot-20 (AUC = 0.79), which was
created based on the different interests of the users, and the climate dataset (AUC = 0.84),
which was created based on the influence of the climate change hashtag, it seems that
modern bots mostly interact with political topics.

Appl. Sci. 2022, 12, 8117 15 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18

(a) (b)

(c)

Figure 6. (a) The climate hashtag area under the curve (AUC) using Bot-MGATTL was 0.84. (b) The
Russian hashtag area under the curve (AUC) using Bot-MGATTL was 0.98; this highlighted the
number of bots that were in the Russian hashtag compared to the climate change hashtag. (c) The
Twibot20 area under the curve (AUC) was 0.79.

5.3. Comparison with Baselines
Table 8 shows that the performance of our model, Bot-MGAT with TL, outper-

formed other baseline works that aimed to detect social bots in Twitter. In BotRGCN [20],
the proposed framework encoded different types of features (description, profile, tweet)
into numeric features, to avoid feature engineering, to construct a heterogeneous graph
of different types of edges between users in Twitter. The strength of this approach is that
it focused on the following links of the graph to detect bots accounts. However, a recent
study [53] found that bot accounts show a lower number of followers and friends with
respect to humans. This contrasted with the fact that early generations of bots had a
higher ratio of following rate [35]. In [21], an inductive representation learning was
proposed, using GCNN to detect spam bots on Twitter. They used the same approach
proposed by [54,55] to learn the embedding for nodes in the graph structure, using a
neural network and propagation methods. They tested their model using early bot da-
tasets that included fake accounts that proved to be easier to detect and distinguish from
recent bots.

Bot-MGAT with TL outperformed other models because the graph attention mech-
anism with multi-view was able to reveal the hidden representations of nodes. Addi-
tionally, TL was the key player in enhancing the model, as shown in Table 8; using a
training dataset that is recent, and rich in different domains of samples of bots, made it
reliable to detect bot accounts in a specific domain (for example, a hashtag). It is clear,
therefore, that semi-supervised graph neural network models with profile features can
predict bot accounts with good performance.

Figure 6. (a) The climate hashtag area under the curve (AUC) using Bot-MGATTL was 0.84. (b) The
Russian hashtag area under the curve (AUC) using Bot-MGATTL was 0.98; this highlighted the
number of bots that were in the Russian hashtag compared to the climate change hashtag. (c) The
Twibot20 area under the curve (AUC) was 0.79.

5.3. Comparison with Baselines

Table 8 shows that the performance of our model, Bot-MGAT with TL, outperformed
other baseline works that aimed to detect social bots in Twitter. In BotRGCN [20], the
proposed framework encoded different types of features (description, profile, tweet) into
numeric features, to avoid feature engineering, to construct a heterogeneous graph of
different types of edges between users in Twitter. The strength of this approach is that it
focused on the following links of the graph to detect bots accounts. However, a recent
study [53] found that bot accounts show a lower number of followers and friends with
respect to humans. This contrasted with the fact that early generations of bots had a higher
ratio of following rate [35]. In [21], an inductive representation learning was proposed,
using GCNN to detect spam bots on Twitter. They used the same approach proposed
by [54,55] to learn the embedding for nodes in the graph structure, using a neural network
and propagation methods. They tested their model using early bot datasets that included
fake accounts that proved to be easier to detect and distinguish from recent bots.

Table 8. Bot-MGAT performance compared to baselines.

REF# Dataset Approach Accuracy F1 Score MCC

BotRGCN [20] TwiBot-20 RGCN 0.8462 0.8707 0.7021
Alhosseini et al. [21] Yang C et al. [56] 2013 GCNN 0.94 0.84 -

Bot-MGATno_TL TwiBot-20
MGAT

0.8098 0.8485 0.6491
Bot-MGATTL TwiBot-20 + Climate hashtag 0.9558 0.9739 0.8334
Bot-MGATTL TwiBot-20 + Russian hashtag 0.9780 0.9842 0.9481

Bot-MGAT with TL outperformed other models because the graph attention mecha-
nism with multi-view was able to reveal the hidden representations of nodes. Additionally,

Appl. Sci. 2022, 12, 8117 16 of 18

TL was the key player in enhancing the model, as shown in Table 8; using a training
dataset that is recent, and rich in different domains of samples of bots, made it reliable
to detect bot accounts in a specific domain (for example, a hashtag). It is clear, therefore,
that semi-supervised graph neural network models with profile features can predict bot
accounts with good performance.

6. Conclusions

The evolving nature of recent bot accounts makes bot detection a challenging task.
Using traditional techniques has proved to perform poorly with new bot generations. In
this paper, we propose the Bot-MGAT framework with a transfer learning approach based
on the attention mechanism. The results show that our model outperformed other GNN
models and baseline work, with an accuracy of 97.80%, an F1 score of 0.9842, and an MCC
score of 0.9481. We evaluated our model using two different datasets that were not used in
the training phase, and the results were the best reported.

Bot-MGAT with TL outperformed other models because the graph attention mecha-
nism with multi-view was able to reveal the hidden representations of nodes. The results
showed that our model was able to identify bot class very effectively, using profile features
only, and the implementation of TL with a multi-view approach. In addition, this should
reduce the effort and the tedious process of manual labeling, and highlight the sophisticated
design of recent social bots that are able to avoid detection. For future work, we will test
our model using additional views for graphs, and different parameters for the model.

Author Contributions: Conceptualization, E.A. and H.A.; Data curation, E.A. and M.S.; Formal
analysis, E.A. and M.S.; Methodology, E.A.; Project administration, H.A.; Software, E.A. and M.S.;
Supervision, H.A.; Validation, K.H. and H.A.; Visualization, E.A.; Writing—original draft, E.A.;
Writing—review and editing, M.S., K.H. and H.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: We used public datasets for our experiments, as cited in Section 4.1,
and have provided a reference to them in the list of references.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Davis, C.A.; Varol, O.; Ferrara, E.; Flammini, A.; Menczer, F. Botornot: A system to evaluate social bots. In Proceedings of the 25th

International Conference Companion on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 273–274.
2. Cresci, S.; Di Pietro, R.; Petrocchi, M.; Spognardi, A.; Tesconi, M. The paradigm-shift of social spambots: Evidence, theories, and

tools for the arms race. In Proceedings of the 26th International World Wide Web Conference 2017, WWW 2017 Companion,
Geneva, Switzerland, 3–7 April 2017; pp. 963–972.

3. Kudugunta, S.; Ferrara, E. Deep neural networks for bot detection. Inf. Sci. 2018, 467, 312–322. [CrossRef]
4. Varol, O.; Ferrara, E.; Davis, C.; Menczer, F.; Flammini, A. Online human-bot interactions: Detection, estimation, and characteriza-

tion. In Proceedings of the International AAAI Conference on Web and Social Media, ICWSM 2017, Atlanta, GA, USA, 6–9 June
2017; pp. 280–289.

5. Antenore, M.; Camacho-Rodriguez, J.M.; Panizzi, E. A comparative study of Bot Detection techniques methods with an application
related to COVID-19 discourse on twitter. arXiv 2021, arXiv:2102.01148.

6. Orabi, M.; Mouheb, D.; Al Aghbari, Z.; Kamel, I. Detection of Bots in Social Media: A Systematic Review. Inf. Process. Manag.
2020, 57, 102250. [CrossRef]

7. Cresci, S. A decade of social bot detection. Commun. ACM 2020, 63, 72–83. [CrossRef]
8. Latah, M. Detection of malicious social bots: A survey and a refined taxonomy. Expert Syst. Appl. 2020, 151, 113383. [CrossRef]
9. Cresci, S.; Di Pietro, R.; Petrocchi, M.; Spognardi, A.; Tesconi, M. Social Fingerprinting: Detection of Spambot Groups Through

DNA-Inspired Behavioral Modeling. IEEE Trans. Dependable Secur. Comput. 2018, 15, 561–576. [CrossRef]
10. Teljstedt, C.; Rosell, M.; Johansson, F. A Semi-automatic Approach for Labeling Large Amounts of Automated and Non-automated

Social Media User Accounts. In Proceedings of the 2nd European Network Intelligence Conference, ENIC 2015, Karlskrona,
Sweden, 21–22 September 2015; pp. 155–159.

11. van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]

http://doi.org/10.1016/j.ins.2018.08.019
http://doi.org/10.1016/j.ipm.2020.102250
http://doi.org/10.1145/3409116
http://doi.org/10.1016/j.eswa.2020.113383
http://doi.org/10.1109/TDSC.2017.2681672
http://doi.org/10.1007/s10994-019-05855-6

Appl. Sci. 2022, 12, 8117 17 of 18

12. Alothali, E.; Hayawi, K.; Alashwal, H. Hybrid feature selection approach to identify optimal features of profile metadata to detect
social bots in Twitter. Soc. Netw. Anal. Min. 2021, 11, 84. [CrossRef]

13. Xia, F.; Sun, K.; Yu, S.; Aziz, A.; Wan, L.; Pan, S.; Liu, H. Graph Learning: A Survey. arXiv 2021, arXiv:210500696. [CrossRef]
14. Zhang, Z.; Peng, C.; Wenwu, Z. Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 249–270. [CrossRef]
15. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]
16. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:160902907.
17. Thekumparampil, K.K.; Wang, C.; Oh, S.; Li, L.J. Attention-based graph neural network for semi-supervised learning. arXiv 2018,

arXiv:180303735.
18. Xie, Y.; Zhang, Y.; Gong, M.; Tang, Z.; Han, C. MGAT: Multi-view graph attention networks. Neural Netw. 2020, 132, 180–189.

[CrossRef]
19. Cui, W.; Du, J.; Wang, D.; Kou, F.; Xue, Z. MVGAN: Multi-view graph attention network for social event detection. ACM Trans.

Intell. Syst. Technol. 2021, 12, 1–24. [CrossRef]
20. Feng, S.; Wan, H.; Wang, N.; Luo, M. BotRGCN: Twitter Bot Detection with Relational Graph Convolutional Networks. arXiv

2021, arXiv:210613092.
21. Ali Alhosseini, S.; Bin Tareaf, R.; Najafi, P.; Meinel, C. Detect me if you can: Spam bot detection using inductive representation

learning. In Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 148–153.
22. Alothali, E.; Zaki, N.; Mohamed, E.A.; Alashwal, H. Detecting Social Bots on Twitter: A Literature Review. In Proceedings of the

2018 International Conference on Innovations in Information Technology (IIT), Al Ain, United Arab Emirates, 18–19 November
2018; pp. 175–180.

23. Najari, S.; Salehi, M.; Farahbakhsh, R. GANBOT: A GAN-based framework for social bot detection. Soc. Netw. Anal. Min. 2022,
12, 4. [CrossRef]

24. Feng, S.; Wan, H.; Wang, N.; Li, J.; Luo, M. SATAR: A Self-supervised Approach to Twitter Account Representation Learning and
its Application in Bot Detection. arXiv 2021, arXiv:2106.13089. Available online: https://arxiv.org/abs/2106.13089 (accessed on
21 September 2021).

25. Yang, K.; Varol, O.; Davis, C.A.; Ferrara, E.; Flammini, A.; Menczer, F. Arming the public with artificial intelligence to counter
social bots. Hum. Behav. Emerg. Technol. 2019, 1, 48–61. [CrossRef]

26. Albadi, N.; Kurdi, M.; Mishra, S. Hateful People or Hateful Bots? Detection and Characterization of Bots Spreading Religious
Hatred in Arabic Social Media. arXiv 2019, arXiv:190800153.

27. Botometer. Datasets. 2020. Available online: https://botometer.osome.iu.edu/bot-repository/datasets.html (accessed on 2
July 2021).

28. Nazer, T.H.; Davis, M.; Karami, M.; Akoglu, L.; Koelle, D.; Liu, H. Bot detection: Will focusing on recall cause overall performance
deterioration? In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Cham, Switzerland, 2019; pp. 39–49. [CrossRef]

29. Rizoiu, M.A.; Graham, T.; Zhang, R.; Zhang, Y.; Ackland, R.; Xie, L. DEBATENIGHT: The role and influence of socialbots on
twitter during the first 2016 U.S. presidential debate. In Proceedings of the 12th International AAAI Conference on Web and
Social Media, ICWSM 2018, Palo Alto, CA, USA, 25–28 June 2018; pp. 300–309.

30. Mehrotra, A.; Sarreddy, M.; Singh, S. Detection of fake Twitter followers using graph centrality measures. In Proceedings of the
Contemporary Computing and Informatics (IC3I), 2016 2nd International Conference, Greater Noida, India, 14–17 December
2016; pp. 499–504.

31. Grover, P.; Kar, A.K.; Dwivedi, Y.K.; Janssen, M. Polarization and acculturation in US Election 2016 outcomes—Can twitter
analytics predict changes in voting preferences. Technol. Forecast. Soc. Chang. 2019, 145, 438–460. [CrossRef]

32. Jia, J.; Wang, B.; Gong, N.Z. Random Walk Based Fake Account Detection in Online Social Networks. In Proceedings of the
Dependable Systems and Networks (DSN), 2017 47th Annual IEEE/IFIP International Conference, Denver, CO, USA, 26–29 June
2017; pp. 273–284.

33. Alarifi, A.; Alsaleh, M.; Al-Salman, A. Twitter turing test: Identifying social machines. Inf. Sci. 2016, 372, 332–346. [CrossRef]
34. Gilani, Z.; Farahbakhsh, R.; Tyson, G.; Crowcroft, J. A Large-scale Behavioural Analysis of Bots and Humans on Twitter. ACM

Trans. Web 2019, 13, 1–23. [CrossRef]
35. Gilani, Z.; Kochmar, E.; Crowcroft, J. Classification of twitter accounts into automated agents and human users. In Proceedings of

the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, Sydney, Australia, 31
July–3 August 2017; pp. 489–496.

36. Chu, Z.; Gianvecchio, S.; Wang, H.; Jajodia, S. Who is tweeting on twitter: Human, bot, or cyborg? In Proceedings of the Annual
Computer Security Applications Conference, ACSAC, Austin, TX, USA, 6–10 December 2010; pp. 21–30.

37. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:171010903.
38. Brody, S.; Alon, U.; Yahav, E. How attentive are graph attention networks? arXiv 2021, arXiv:210514491.
39. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling relational data with graph convolutional

networks. In European Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2018; pp. 593–607.

http://doi.org/10.1007/s13278-021-00786-4
http://doi.org/10.1109/TAI.2021.3076021
http://doi.org/10.1109/TKDE.2020.2981333
http://doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://doi.org/10.1016/j.neunet.2020.08.021
http://doi.org/10.1145/3447270
http://doi.org/10.1007/s13278-021-00800-9
https://arxiv.org/abs/2106.13089
http://doi.org/10.1002/hbe2.115
https://botometer.osome.iu.edu/bot-repository/datasets.html
http://doi.org/10.1007/978-3-030-21741-9_5
http://doi.org/10.1016/j.techfore.2018.09.009
http://doi.org/10.1016/j.ins.2016.08.036
http://doi.org/10.1145/3298789

Appl. Sci. 2022, 12, 8117 18 of 18

40. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2018;
pp. 270–279.

41. Pan, S.J. Transfer learning. In Data Classification: Algorithms and Applications; Springer: Cham, Switzerland, 2014; Volume 21,
pp. 537–570. [CrossRef]

42. Feng, S.; Wan, H.; Wang, N.; Li, J.; Luo, M. TwiBot-20: A Comprehensive Twitter Bot Detection Benchmark. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, Gold Coast, QLD, Australia, 1–5 November
2021; pp. 4485–4494.

43. Socialmedia Research Foundation. NodeXLgraph Gallery (#actonclimate). Available online: https://nodexlgraphgallery.org/
Pages/Graph.aspx?graphID=274361 (accessed on 15 April 2022).

44. Socialmedia Research Foundation. NodeXLgraphGallery (#IStandWithPutin OR #IStandWithRussia...). Available online: https:
//nodexlgraphgallery.org/Pages/Graph.aspx?graphID=275885 (accessed on 10 May 2022).

45. Hayawi, K.; Mathew, S.; Venugopal, N.; Masud, M.M.; Ho, P.-H. DeeProBot: A hybrid deep neural network model for social bot
detection based on user profile data. Soc. Netw. Anal. Min. 2022, 12, 43. [CrossRef] [PubMed]

46. Mendoza, M.; Tesconi, M.; Cresci, S. Bots in Social and Interaction Networks. ACM Trans. Inf. Syst. 2021, 39, 1–32. [CrossRef]
47. Yang, K.-C.; Varol, O.; Hui, P.-M.; Menczer, F. Scalable and Generalizable Social Bot Detection through Data Selection. Proc. AAAI

Conf. Artif. Intell. 2020, 34, 1096–1103. [CrossRef]
48. Yang, K.-C.; Ferrara, E.; Menczer, F. Botometer 101: Social bot practicum for computational social scientists. arXiv 2022,

arXiv:220101608.
49. Martini, F.; Samula, P.; Keller, T.R.; Klinger, U. Bot, or not? Comparing three methods for detecting social bots in five political

discourses. Big Data Soc. 2021, 8, 20539517211033570. [CrossRef]
50. Aldayel, A.; Magdy, W. Characterizing the role of bots’ in polarized stance on social media. Soc. Netw. Anal. Min. 2022, 12, 1–24.

[CrossRef] [PubMed]
51. Huang, Q.; Yu, J.; Wu, J.; Wang, B. Heterogeneous Graph Attention Networks for Early Detection of Rumors on Twitter. In

Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 28 September 2020; pp. 1–8.
52. Ran, H.; Jia, C.; Zhang, P.; Li, X. MGAT-ESM: Multi-channel graph attention neural network with event-sharing module for rumor

detection. Inf. Sci. 2022, 592, 402–416. [CrossRef]
53. Tardelli, S.; Avvenuti, M.; Tesconi, M.; Cresci, S. Characterizing social bots spreading financial disinformation. In International

Conference on Human–Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2020; pp. 376–392.
54. Hamilton, W.L.; Ying, R.; Leskovec, J. Representation Learning on Graphs: Methods and Applications. arXiv 2017,

arXiv:1709.05584.
55. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035.
56. Yang, C.; Harkreader, R.; Gu, G. Empirical evaluation and new design for fighting evolving twitter spammers. IEEE Trans. Inf.

Forensics Secur. 2013, 8, 1280–1293. [CrossRef]

http://doi.org/10.1007/978-3-030-01424-7_27
https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=274361
https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=274361
https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=275885
https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=275885
http://doi.org/10.1007/s13278-022-00869-w
http://www.ncbi.nlm.nih.gov/pubmed/35309873
http://doi.org/10.1145/3419369
http://doi.org/10.1609/aaai.v34i01.5460
http://doi.org/10.1177/20539517211033566
http://doi.org/10.1007/s13278-022-00858-z
http://www.ncbi.nlm.nih.gov/pubmed/35136453
http://doi.org/10.1016/j.ins.2022.01.036
http://doi.org/10.1109/TIFS.2013.2267732

	Bot-Mgat: A Transfer Learning Model Based On A Multi-View Graph Attention Network To Detect Social Bots
	Recommended Citation

	Introduction
	Related Work
	Graph Neural Networks
	Bot Detection

	Background
	Problem Definition
	Graph Attention Network
	Multi-View Graph Attention Networks
	Transfer Learning (TL)

	Methodology
	Data and Preprocessing
	Selected Features
	Environmental Setup
	Proposed Framework

	Results
	Bot-MGAT without TL
	Bot-MGAT with TL
	Comparison with Baselines

	Conclusions
	References

