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pathogenic root-knot nematode, Meloidogyne incognita
AmirKhan a, Manar FawziBaniMfarrej b, MohtaramDanish c, Mohammad Shariq a, Mohd. Farhan Khan d,
Moh Sajid Ansari a, Mohamed Hashem e,f, Saad Alamri e and Faheem Ahmad a

aDepartment of Botany, Aligarh Muslim University, Aligarh, India; bDepartment of Life and Environmental Sciences, College of Natural and
Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates; cDepartment of Chemistry, Aligarh Muslim University, Aligarh, India;
dDepartment of Science, Gagan College of Management and Technology, Aligarh, India; eDepartment of Biology, College of Science, King
Khalid University, Abha, Saudi Arabia; fBotany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt

ABSTRACT
This investigation explains the green synthesis, characterization and biocontrol potential of copper
oxide nanoparticles (CuONPs) against second-stage juveniles (J2s) of root-knot nematode,
Meloidogyne incognita infesting chickpea. Mono-disperse, spherical, pure CuONPs were
synthesized from Jatropha curcas leaf with particle sizes ranging from 5 to 15 nm in diameter.
Antagonistic activities of synthesized CuONPs were studied against Meloidogyne incognita. The
highest mortality of J2s was found in the 200 ppm concentration of CuONPs at 24 h of
exposure. The exact concentration also showed maximum inhibition of J2s hatching from egg
masses after six days of exposure. It was worth noting that 25 ppm concentration was the least
effective. The pot experiment showed that CuONPs significantly reduced the root infection
caused by M. incognita and enhanced chickpea plants’ growth and physiological attributes
(Chlorophyll and carotenoid content). The results depicted when the concentration of CuONPs
was increased, J2s mortality rate was also increased. We highlighted the antinematode influence
of green synthesized CuONPs. Thus, it will offer an excellent eco-friendly strategy to optimize
yield under pathogens attack and provide prospects of green synthesized-based nanoparticles
development for pests control. Plants mediated CuONPs will also help in resolving the current
toxicity concerns and future challenges in the agriculture.
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1. Introduction

Pulses seem to be the essential food for vegetarians in
the entire world. Pulses are continuously gaining promi-
nence as an affordable protein source and vital for sus-
tainable agriculture. After beans and peas, chickpea
(Cicer arietinum L.) ranks the world’s third among pulse
crops, and India accounts for 75% of its global output
(1). Numerous pathogens significantly reduce chickpea

production, including insects, fungi, bacteria, and nema-
todes (2). Root-knot nematodes (RKNs),Meloidogyne spp.
are the major obstacles to the successful cultivation of
chickpea. Among Meloidogyne spp., M. incognita and
M. javanica accounting for 19-40% and 24-61% econ-
omic losses of chickpea in India (3). M. incognita has
been identified as a substantial yield-reducing pest of
economically important crops, having a global
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distribution and a diverse host range that threatened
thousands of plant species worldwide (4). Treatment of
chemical nematicides is usually more effective than
other tactics, but their use is restricted because of their
toxic effect on the environment and human beings.
Therefore, chemical nematicides are losing their atten-
tion among farmers as public awareness of their
adverse consequences of growth and public views
regarding environmental pollution shift. So, there is a
need to search for cheap and eco-friendly tactics to
sustain agricultural productivity and successfully sup-
press nematode infestation. Applying nanoparticles syn-
thesized using plant extracts is the best alternative tactic
over chemical nematicides (5). Due to their specific prop-
erties like small size, large surface area, higher chemical
reactivity and electric conductivity, nanotechnology-
based strategies have recently been deployed to
control pathogens (6). Copper-based formulations as
pesticides have long been used in crop protection.
Copper in nano-dimensions renders a considerably
greater active form of copper at a substantially lower
rate, implying that copper nanoparticles and their com-
posites can potentially control various plant diseases (7).
Copper and iron are necessary components for the
growth of Capsicum annuum plants (8) because they par-
ticipate in photosynthesis and other physiological activi-
ties at the cellular level, and their absence may result in
structural damages (9). Presently, plants and their deriva-
tives have attracted great interest in nanoparticle syn-
thesis due to naturally occurring reductants viz.,
flavonoids, polyphenols, ascorbic acid, and sugars
besides carbohydrates and proteins and gums and
pectic compounds that act as stabilizing agents (10).
The field of nanoparticles as nematicidal is a new and
emergent area for researchers in agriculture. Nanoagri-
cultureuses nanomaterials in the form of nano pesticides
and nano fertilizer in crop protection, providing sustain-
able options to enhance plant growth (11,12). Jeyasubra-
manian (13) reported that iron oxide nanoparticles
enhanced the growth and productivity of spinach
grown in hydroponics. Biosynthesis of metal (Ag, Au,
Cu and Cd) nano-formulation of phytoextracts gained
significant interest due to their potential use in pest
management. Phytoextract-mediated nanoparticles syn-
thesis is always extracellular, and reaction durations are
relatively short compared to microbial synthesis. Several
plants have been reported for the green synthesis of
CuO nanoparticles (14–16). CuONPs have also been uti-
lized for developing pesticides, herbicides, fertilizers,
soil remediation, and growth modulators (17). Copper-
based nanoparticles demonstrate their efficacy and
specificity against various microorganisms (18,19).
Copper nanoparticles and their nanocomposite have

also produced a much higher active form of copper
and efficiently control plant diseases (20). Copper and
iron are important minerals in crops and play critical
roles in biochemical functions such as photosynthetic
electron transport, mitochondrial respiration, oxidative
stress, cell wall metabolism, and DNA synthesis (21,22).
The qualitative and quantitative analysis of hexane
leaves extract of J. curcas through GC-MS revealed the
presence of different alcohols, hydrocarbons, esters,
ketones and other compounds (23,24). These major
extracted components identified in the analysis act as
capping and stabilizing agents for the biosynthesis of
JC-Cu NPs. They may also be responsible for reducing
Cu+ to Cu0 and cause a broad absorption spectrum
(25). Moreover, the quantity and content of active com-
ponents in biological extracts determine the dimen-
sional appearance of nanoparticles (26,27). Information
from recent developments about the CuONPs synthesis
via green route, characterization and applications from
previous scientific findings against various pathogenic
microbes acclaimed advantages and considered eco-
friendly non-toxic materials. Thus, there is a need to
implement new agricultural practices that provide sus-
tainable resources and maintain healthy soil microbiota.
Current researchers are working to produce the food
systems sustainably by using green strategies in agricul-
ture to control pests and diseases. The green strategy is a
more environmentally-friendly formulation, and this
approaches also have the potential to provide effective
solutions to multiple problems of agriculture crops. In
this context, an attempt was made to synthesize
copper oxide nanoparticles (CuONPs) by greener route
using the Jatropha curcas leaves extract instead of
harmful reducing or capping agents. We also character-
ized green synthesized CuONPs and investigated their
antagonistic potential towards RKN, M. incognita.

2. Materials and methods

2.1. Materials

The RKN,Meloidogyne incognita, was selected as a target
pathogen, and chickpea (Cicer arietinum L.) was used as a
test plant. Fresh leaves of J. curcas were used for the
green synthesis of CuONPs. The chemicals used in the
synthesis procedure, such as copper (II) sulphate
(CuSO4), were bought from Sigma Aldrich.

2.2. CuONPs biosynthesis

Fresh leaves of J. curcas were collected from our Univer-
sity Campus, washed with double distilled water (DDW)
to eliminate the impurities on the surface and dried in
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the dark for approximately ten days. An electric mixer
was used to grind the leaves into fine powder. Ten
grams (10 g) of obtained fine powder were mixed with
150 mL of DDW and heated in a flask for 90 min at 70°
C. After this, the colored solution was cooled to
ambient temperature and filtered. 100 mL of the freshly
obtained colored extract was mixed with 100 mL of one
molar (1M) copper sulphate solution and stirred at 90°C
for 120 min. Within the stipulated period, the color
changed as a function of time, indicating the synthesis
of CuONPs via reduction route through the copper salts
viz. CuSO4 reduction (Figure 1). The mixture was centri-
fuged at 5000 rpm after the desiring reaction time for
20 min, and obtained nanoparticles dried at 150°C for
12 h. Figure 1 depicts the main steps of the biological
extract collection and the synthesis of CuONPs. The
nucleation process allowed the formation and release of
CuONPs at a temperature above 100°C, dissolved 10 mg
of CuONPs in 10 mL of Dimethyl sulfoxide (DMSO). This
solution named as stock solution, prepared different con-
centrations (25, 50, 100 and 200 ppm) of CuONPs by
adding the required DDW for further study.

2.3. CuONPs characterization

Fourier transforms infrared (FTIR) spectrophotometer
(Perkin Elmer Spectrum 2) was used to obtain infor-
mation about bonding in the molecular structure of pre-
pared samples using KBr powder as reference material.
An X-ray diffractometer (Shimadzu XRD, model 6100)
with Cu radiation [Cu Kα radiation, (1.540 Å)] of 15 mÅ
current and scanning rate 10o/min was used for valua-
tion of the phase structure of prepared material.

The qualitative optical properties of the J. curcas extract
and bio-synthesized CuONPs are examined by a non-
destructive technique viz. UV–vis Diffuse Reflectance
spectroscopy (DRS) using the Perkin-Elmer-Lambda 35
UV–vis DRS spectrophotometer. The electronic transitions
of the sample molecules enable the spectra of J. curcas
extract to be recorded efficiently. UV-Vis spectrometers
oftenmeasure the transmittance or absorbance of a trans-
parent substance or solution. The sample size for this
mode of measurement absorbance/transmittance is
about 1–2 mg (solid part)/ 1–2 ml (liquid other than
water). The method entailed projecting light with
known spectral energy onto an extract sample held at a
right angle to the light source andmeasuring the intensity
of the reflected light with photo detectors (28–30). The
Perkin-Elmer-Lambda 35’s variable band width provided
good results for experiments on J. curcas extract and
bio-synthesized CuONPs.

A JEOL JSM-6510LV-SEM with a 50 kV voltage (from
JEOL Co. Ltd. Japan) was utilized to examine the

surface morphology of the sample. The particle structure
of the samples was analysed using a JEOL-JEM-2100
transmission electron microscope (TEM) at 200 Kv (also
from JEOL Co. Ltd. Japan). The specimens for the TEM
investigations are made by depositing a drop of pulp
colloidal solution on an approx. 400 mesh grid coated
with an amorphous C-sheet and evaporated the liquid
part at room temperature followed to determine the
exact form and size of the CuONPs.

2.4. Multiplication and collection of J2s

The pure culture of RKN, M. incognita, was well-main-
tained on brinjal in the glasshouse. The nematode
infected brinjal roots were used to pick egg masses
using sterilized forceps. The obtained egg masses were
washed with DDW and poured into 25 μm pore size
mesh sieves with a cross-layer of tissue paper put in
Petri plates containing DDW. These Petri-plates were
kept in a BOD incubator to hatch second-stage infective
juveniles (J2s) ofM. incognita. The mesh retained the egg
masses while the hatched J2s moved through the sieve
and sank to the Petri plate’s bottom. According to our
previously described procedure (31), fresh hatched J2s
were obtained from Petri plates and stored for further
study. J2s were used for further experiments within
five days from the storage date.

2.5. SEM analysis for Meloidogyne species
identification

Scanning Electron Microscopy was used for the identifi-
cation of M.incognita species. A mature female of
M. incognita separated from the infected root of egg-
plant, and the perineal pattern was prepared using the
method given by Abrantes and Santos (32). The perineal
pattern was coated with 14 nm of gold, and SEM images
were taken using SEM (JSM 6510 LV Jeol-Japan) analysis.
The morphology of the perineal pattern of M. incognita
was studied to characterize the Meloidogyne species
(Figure 2). The key features of the perineal pattern
include an angularly oval structure with a high dorsal
arch in a typical pyriform. Striae were in distinct waves
which bent towards lateral lines and were not inter-
rupted. Striae were straighter with an oval appearance
in ventral regions.

2.6. Mortality bioassay

In the mortality test, the hatched J2s were treated with
different concentrations of CuONPs viz., 25, 50, 100,
and 200 ppm. Each treatment had five replicates. To
determine mortality, 1 ml of DDW containing 90
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freshly hatched J2s was poured into Petri dishes contain-
ing 9 ml of the different concentrations of CuONPs sep-
arately. These Petri plates were incubated at 28°C for 8,
16, and 24 h of exposure. After the exposure time, the

counting was started using a stereoscopic microscope
to determine the living and dead J2s. Those J2s
showed any mobility or looked as winding shape were
considered alive, and if J2s did not display any motion

Figure 1. Flowchart represents the various stages employed in the bio-synthesis of CuONPs using J. curcas leaves to assess antine-
matode properties.

Figure 2. Scanning electron microscopy showing the perineal pattern of M. incognita. The high squared dorsal arch, wavy striae are
key features of M. incognita.
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and their body shape viewed straight, then found them
as dead (33) and calculate the per cent mortality using
the following formula:

Percent Mortality = C0 − Ta
C0

× 100

where, C0 = Number of live J2s in control; Tα = Number
of live J2s after 8, 16, and 24 h of exposurein different
CuONPs concentrations

2.7. Hatching bioassay

For the hatching test, six healthy egg masses of
M. incognita were handpicked from the infected root of
brinjal and transferred into Petri dishes containing 10 mL
of different concentrations of bio-synthesized CuONPs.
Petri dishes were incubated for six days at 28°C to allow
egg hatching. In the control set-up, six egg masses pour
in DDW. Each treatment had five replicates. After six days
of exposure, the hatched J2s were counted in each treat-
ment with the help of a stereomicroscope (Zeiss, Carl
Zeiss Microscopy GmbH, Germany) and calculated the
per cent inhibition in egg hatching using the formula (34).

Percent inhibition = C − T
C

× 100

where, C=Number of hatched J2s in control set-up; T=
Number of hatched J2s in different concentrations of
CuONPs

2.8. Infectivity bioassay and experimental design
(Pot study)

The pots designed study was conducted in a glasshouse
to determine the nematode-toxic efficacy of bio-syn-
thesized CuONPs againstM. incognita. Seeds of chickpea
cv. ‘Avarodhi’ was purchased from the market. Chickpea
seeds were sterilized using 0.02% mercuric chloride by
shaking for 5 min and instantly washed with running
tap water 2–3 times. Clay Pots (15 cm in diameter)
filled with 1 kg autoclaved mixed soil of loam and farm-
yard manure in proportion 3:1. Five sterilized seeds of
chickpea cv. ‘Avarodhi’were sown in pots. After germina-
tion, we gently pulled out the unwanted seedlings,
leaving the one healthiest in each pot. We placed the
2–3 holes around the seedling’s root and inoculated
with 2500 J2s. After two days of J2s inoculation, 10 ml
of different concentrations (25, 50, 100, and 200 ppm)
of CuONPs were added around the seedling’s root
using a pipette. Plants were watered satisfactorily and
irrigated sufficiently throughout the experiment and
carefully followed the study to eliminate errors during
the examination. The treatments include (a) Control

(No CuONPs and J2s); (b) Untreated inoculated control
(Nematode only); (c) Ten milliliter of 25 ppm of
CuONPs + 2500 freshly hatched J2s; (d) Ten milliliter of
50 ppm of CuONPs+ 2500 freshly hatched J2s; (e) Ten
milliliter of 100 ppm of CuONPs+ 2500 freshly hatched
J2s; (f) Ten milliliter of 200 ppm of CuONPs + 2500
freshly hatched J2s.

2.9. Estimation of growth, yield, and
physiological attributes

At maturity, plants were harvested and washed with
running tap water to eliminate sticky soil particles, and
assessments were made to analyse the growth, yield
and physiological attributes. In terms of growth par-
ameters (plant length, fresh plant weight, pods
number), photosynthetic pigments chlorophyl and caro-
tenoid content (mg/g) determined following the
methods described by Mackinney (35) and MacLachlan
and Zalik (36), respectively.

2.10. Determination of pathological parameters
(Root galls and nematode population)

The root galls were visually counted. At harvesting time,
the estimation of the final population of J2s in 200 g of
soil was determined by Cobb’s sieving and decanting
technique (37), followed by modified Baermann’s
funnel technique (38).

2.11. Statistical analysis

A completely randomized design was used for the pots
study. All data are expressed as mean ± Standard error
mean (SEM). Statistical analysis was conducted using R
software (version 2.14.1), one-way analysis of variance
(ANOVA) with Duncan Multiple Range Test (DMRT) to
find significant differences (P < 0.05). The Principal Com-
ponent Analysis (PCA) was done using Origin software
[version 2019b (9.65)].

3. Results and discussion

3.1. Biosynthesis of CuONPs via the green route

Leaves extract of J. curcas contains biomolecules such as
tannins, saponins, coumarin, phenols, and alkaloids that
play a significant role in capping and stabilizing agents
during the bio-synthesis of CuONPs. Several biomole-
cules including p-Dioxane-2,3-diol, Benzene, 2-benzy-
loxy-1-methoxy-4 (2nitroethenyl), Octadecenoic acid,
Methyl stearate, Benzenamine, Acetophenone, Octade-
cenoic acid, alpha-Benzamido-2-hydroxycinnamic acid,
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(2E,4E)-N-Isobutyltetradeca-2,4-dienamide, Hexadeca-
noic acid methyl ester, were identified from the plant
extract of J. curcus through GC-MS analysis (39,40).
These phytochemicals have been used as the antagonist
for pathogenic microbes, including plant pathogens
(41,42). Aside from the antagonistic properties, one of
the past reports revealed that these biomolecules also
influence the size of nanoparticles (43) and can also
form strong bonds with metallic ions. Therefore, these
are promising agents which could play a significant
role in nanomaterial synthesis via the green route. The
flowchart for the bio-biosynthesis of CuONPs is given
in Figure 1. The Color change indicates the synthesis of
CuONPs via the reduction route through copper salts,
namely CuSO4 reduction. The UV peaks successfully
demonstrated that J. curcas macromolecules act as
capping and stabilizing agents in the biosynthesis of
CuONPs by reducing Cu2+ ions to Cu0.

Cu2+ions −�Tannins/ Saponins/ Coumarin/ Phenols/

Stabilizers / Capping Agents
Cu0 (a)

Cu0 formed could be oxidized to Cu2O and CuO (44).
When the Cu0 react with the dissolved oxygenmolecules
in the aqueous solution, this oxidation reaction occurs
quickly as:

Cu0 + O2 � Cu2O (b)

Cu0 + O2 � CuO (c)

Cu2O, on the other hand, is slightly more stable than
CuO in the solid-state, as evidenced by their standard
formation enthalpies, i.e. ΔfH

θ(CuO) > ΔfH
θ(Cu2O).

That’s why excess Cu0 may cause copper (II) oxide to
be reduced to copper (I) oxide nanoparticle (45)

CuO+ Cu � Cu2O (d)

Furthermore, oxidation of copper (I) oxide is possible
if the working pH is significantly larger than alkaline and
the average temperature remains unchanged (46)

Cu2O+ O2 � CuO (e)

To repeat, J. curcas leaves extract contains biomole-
cules such as tannins, saponins, coumarin, phenols,
and alkaloids, which are important capping and stabiliz-
ing agents during the biosynthesis of CuONPs.

3.2. Characterization of bio-synthesized CuONPs

3.2.1. Fourier transform infrared spectroscopy
(FTIR) analysis
The role of J. curcas phytochemicals functional groups in
the capping and synthesis of CuONPs via reduction
route was investigated using FTIR spectroscopy. This

analysis was carried out within 400-4000 cm−1better to
understand chemical structure and bonding interaction
in bio-synthesized CuONPs. Peaks were found at 3500,
1620, 1145, 1143, 996 and narrow band between 778
and 450 cm−1, as shown in Figure 3(a). The absorbance
band at 3500 cm−1is associatedwith phenolic substances’
O-H intermolecular stretching bond. The peak at
1620 cm−1 is attributed to the C = C bond of the conju-
gated alkene. FTIR absorbance spectra for bio-synthesized
CuONPs was also exhibited band at 1145 and 1143 cm−1,

respectively, for characteristics of the C–O stretch. The
band of some functional groups shifted to a higher
value, suggesting that leaves extract interacted with the
copper sulphate ions. The peak intensities of the phyto-
chemical-capped bio-synthesized CuONPs decreased;
hence, those groups’ apparent involvement in the biore-
duction route and stabilization of CuONPs. The presence
of phytochemicals in J. curcas leaves extract binds with
the metals through various functional groups and forms
a coating layer around the metal nanoparticles, prevent-
ing agglomeration and stabilizing themetal nanoparticles
(47,48). Several studies reported similar findings (49–51).

3.2.2. X-ray diffraction (XRD) analysis
XRD confirmed the phase structure, crystalline nature,
and purity of CuONPs. XRD pattern of green synthesized
CuONPs was recorded using XRD instrument and oper-
ated at 30 kV voltage and 15 mA current with graphite
monochromatic radiation [Cu Kα radiation (1.540 Å)], at
10o/min output speed in range 20-70o at the value of
2θ. The XRD data are displayed in Figure 4(a). The peaks
corresponding to 2θ values of 26.98, 30.73, 31.75, 31.85,
46.87, 56.49, and 65.94o which could be ascribed to the
(021), (110), (002), (111), (−202), (020) and (−311) lattice
planes, respectively, suggesting that material is polycrys-
talline and well consistent with JCPDS card no. 89-5895,
indicating a monoclinic structure of CuONPs (52–54). No
other phases corresponding to impurities were observed,
suggesting that high purity of CuONPs were successfully
synthesized. The XRD pattern of pure copper sulphate is
shown in the inset graph (Figure 4b), which better
agrees with previous results (55). The average particle
size of CuONPs has also been calculated with the help
of XRD data using the Scherrer formula (Eq. 1) (56,57). D
= Kλ/β Cosθ; Where λ =wavelength of X-ray radiation
(0.15418); β = FWHM (full-width half-maxima); D and K
= crystallites size and Scherrer constant (0.94), respect-
ively. Sharp XRD patterns showed that CuONPs have a
crystallite size of 84 ± 2 nm.

3.2.3. UV-Vis DRS analysis
The UV-vis DRS spectroscopy has been used to
examine optical properties of bio-synthesized CuONPs
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by using Perkin-Elmer-Lambda 35 UV–vis spectropho-
tometer. The DRS spectra of J. curcas leaves extract
and bio-synthesized CuONPs have been examined in
the 200–700 nm range, and outcomes are displayed
in Figure 5. The DRS spectra of J. curcas leaves
extract was observed in the region of 250-300 nm,
whereas bio-synthesized CuONPs appeared in a
region of 300–400 nm, reveals that a bathochromic
shift (or the red-shift) compared to J. curcas leaves
extract, which might be due to extracts interacted
with copper sulphate ions. The distortion peaks were
also observed, which might be caused by proteins
involved in nanoparticle reduction routes and
capping (58,59). The UV peaks successfully revealed
that J. curcas macromolecules serve as capping and
stabilizing agents in the bio-synthesis of CuONPs by
reducing Cu2+ ions to Cu0.

3.2.4. Scanning electron microscopy (SEM)
analyses
SEM study was conducted to analyse the morphology
and structure of CuO nanoparticles (CuONPs). The
results are shown in Figure 6 (a-d). The SEM micrograph
of various magnifications viz. (a) 10 µm, (b) 5 µm, (c)
1 µm and (d) 0.5 µm, revealed the rough but continuous
geometries of plant extracts surfaces of J.curcas leaves
holding CuONPs. It is noticeable that J. curcas extracts
leaf extracts appear to reduce agglomeration of the
nanoparticles to a lesser extent (59). The TEM results
demonstrated that CuONPs supplied higher homogen-
eity across the entire sample. Obtained results were ana-
lysed according to the magnified microphotographs
from the several randomly chosen locations.

3.2.5. Transmission electron microscopy (TEM)
analyses
The TEM micrograph (Figure 7) further shows that the
CuONPs biosynthesis resulted in a consistent distri-
bution of nanoparticles throughout the surfaces of
J. curcas extracts. Inset in Figure 7 represented the
CuONBs more intricately owing to their crystalline
nature. The micrograph depicts regular geometries of
J. curcas extracts carrying a considerable amount of
CuONPs in the semi-hardened pulp. However, the
exact form and size of CuONPs are determined using
TEM. The average diameter of the prepared CuONPs
was found between 5 and 15 nm in enlarged micro-
photographs in different arbitrarily chosen sites.
CuONPs nanosized and a considerable distance
between the CuONPs prompted them to show their
efficacy against J2s infection in chickpea plants. The
bio-synthesized CuONPs have enough surface area
and more space to reduce J2s activities around the
roots.

3.2.6. High resolution-transmission electron
microscopy (HR-TEM) analyses
The morphology and microstructure of biosynthesised
CuONPs were further examined by high-resolution trans-
mission electron microscopy (HR-TEM, JEOL JEM-2100F).
The two HR-TEM images at low and high magnifications
[(a)20 and (b)5 nm]were analysed (Figure 8). The HR-TEM
images demonstrate the formation of bio-synthesized
CuONPs, and the morphologies are consistent with
TEM analyses. Moreover, we were also observed that
synthesized nanoparticles have a regular shape and
homogeneous size distribution in a large domain.

Figure 3. (a) FTIR spectra of pure copper sulphate and CuONPs (b) corresponding magnified FTIR spectra.
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3.3. Assessment of the nematicidal effect of
different concentrations of biosynthesised
CuONPs

The influence of different concentrations of bio-syn-
thesized CuONPs was assessed against J2s mortality. The
findings showed a noticeable impact of the different con-
centrations of 25, 50, 100, and 200 ppmonmortality of J2s
at different exposure times viz., 8, 16, and 24 h. The signifi-
cant results were obtained at P < 0.05 and are shown in
Table 1. We compared the results with control because
no mortality of J2s of M. incognita has been reported in

the control set-up. However, the result revealed that J2s
mortality was increased as we extended the exposure
period, and sixty per cent of J2s mortality was reported
at 24 h of exposure when treated with 200 ppm CuONPs.
We noticed that J2s mortality was proportionally related
to the CuONPs concentrations and exposure period.
However, lower concentrations of CuONPs viz., 25 and
50 ppm were, also showed significant J2s mortality com-
pared to control (Table 1).

J2s hatching inhibition bioassay was also conducted
at different concentrations of bio-synthesized CuONPs

Figure 4. (a) XRD spectra of CuONPs (b) inset of copper sulphate XRD spectra

Figure 5. UV-Vis DRS spectra of the J. curcas leaves extract and synthesized CuONPs.
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viz., 25, 50, 100, and 200 ppm. We were analysed using a
direct contact method for six days and noticed a signifi-
cant difference in J2s hatching inhibition among tested
treatments (Table 2). In this bioassay, 200 ppm treat-
ment showed the highest per cent inhibition of J2s
hatching from egg masses of M. incognita. However,
other concentrations viz., 25, 50 and 100 ppm also
exhibited significant hatching inhibition than control.
Inhibition in the J2s hatching from egg masses increased
when concentrations increased from 25 to 200 ppm. The
individual inhibitory effect of all applied treatments of
CuONPs in J2s hatching is presented in Table 2.

We found that CuONPs caused J2s mortality and
induced inhibition in J2s hatching, and based on the
obtained impact of CuONPs against J2s, predicts the
nematicidal potential of green synthesized CuONPs.
Mohamed et al. (60) reported that different concen-
trations of copper nanoparticles caused J2s mortality
of M. incognita. Akhter et al. (61) findings regarding the
impact of Cu NPs against J2s and egg hatching of
M. incognita resemble our reports of this study. A
similar finding by Eloh et al. (62) have also been reported
on the nematicidal potential of copper salts with malei-
mide derivatives against M. incognita. The nematode-
toxic action of CuONPs on M. incognita can be due to
multiple mechanisms like disrupting several cellular
mechanisms and permeability of the membrane, syn-
thesis of ATP, and oxidative stress response (63–65). Vali-
dation supposed regarding J2s mortality can disrupt the
cellular organization of nematodes induced by applied
nanoparticles. Ma et al. (66) observed that heavy
metals negatively impacted Caenorhabditis elegans by

breaking down cell membrane integrity and shifting
the cations associated with proteins. Copper ion and
other metals affect the neuron’s function due to con-
densed cellular energy by fluctuating mitochondrial
activity, improving stress by ROS production, and acti-
vating cell death paths like apoptosis, and necrosis
(67). The outcome of our study suggests that bio-syn-
thesized CuONPs could be directly or indirectly used
against root-knot nematodes that cause crop yield loss.

3.4. Stability of bio-synthesized CuONPs on
M. incognita

The stability of bio-synthesized CuONPs is a significant
parameter for practical application. Therefore, we have
assessed the nematicidal potential of the bio-syn-
thesized CuONPs for multiple cycles. As presented in
Figures 9(a and b), the nematicidal potential of bio-syn-
thesized CuONPs showed excellent stability up to the
fourth consecutive cycle, and no significant loss
occurred. It was observed that a minute decrease in
the number of dead J2s at 200 ppm (Figure 9a) and a
slight increase in the number of J2s hatched at
200 ppm (Figure 9b) was seen, which might be due to
the loss of NPs amount in the course of recovery and
partial deactivation after several runs. Ninety living J2s
and six egg masses were used at 200 ppm concentration
under each experimental run. NPs were separated by
centrifugation, followed by water and ethanol washing.
The above results made it clear that bio-synthesized
CuONPs could be considered a stable catalyst for poten-
tial nematicidal ability.

Figure 6. SEM images of green synthesized CuONPs using J. curcas leaves. Images displayed at different magnifications level (a)
10 µm, (b) 5 µm, (c) 1 µm and (d) 0.5 µm.

GREEN CHEMISTRY LETTERS AND REVIEWS 499



3.5. Role of green synthesized CuONPs on
improving growth, yield and physiological
attributes of chickpea and in reduction of
pathological parameters

All tested concentrations of bio-synthesized CuONPs
viz., 25, 50, 100, and 200 ppm significantly improved
the growth attributes of chickpea like plant length,
plant fresh weight, and the number of pods/plant.

Treatment of 200 ppm CuONPs showed maximum
enhancement in the above growth attributes among
all applied treatments. Other used treatments 25, 50
and 100 ppm also showed improvement in all growth
attributes compared to that pot inoculated with only
J2s. The chickpea plants displayed a diverse response
to applying different concentrations of CuONPs
(Figure 10). Similarly, significant chlorophyl and

Figure 7. TEM images of green synthesized CuONPs using J. curcas leaves.

Figure 8. HR-TEM images of green synthesized CuONPs using J. curcas leaves. The image captured at (a) low (20 nm) and (b) high
magnification (5 nm).
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carotenoid content enhancement were observed at
200 ppm treatment (Figure 11). Other treatments like
25, 50 and 100 ppm also showed an increase in chlor-
ophyl and carotenoid content compared to that pot
inoculated with only J2s. Plants inoculated with J2s
only exhibited the highest chlorophyl and carotenoid
content reduction.

In the case of pathological parameters (root galls
and J2s population), bio-synthesized CuONPs were
applied, significantly scaling down root galls and J2s
population in soil compared to that pot inoculated
with only J2s (Figure 12). The maximum reduction of
root galls was found at 200 ppm followed by

100 ppm, 5 0 ppm, whereas the least was at 25 ppm.
Similarly, 200 ppm treatment was most prominent in
decreasing J2s population followed by 100, 50 and
25 ppm. Those pots inoculated with 2500 J2s only
showed the highest root galls and J2s population.
The outcome of the principal component analysis
showed that the RKNs population in soil and root
galls per plant was strongly correlated with other par-
ameters of chickpea. Scatter biplot showed that
different concentrations of CuONPs were found highly
effective, reduced the root infestation caused by
M. incognita considerably, and improved chickpea’s
growth attributes (Figure 13).

The outcome of the present study established the
antagonistic activity of bio-synthesized CuONPs. Thus,
it could be used to manage root-knot infection.
Earlier reports proved that the developed biological
materials are responsible for the non-presence of
root exudates, causing minor attraction of J2s
towards roots (68). Furthermore, copper is essential
for plant growth, regulating photosynthetic responses,
enzyme and transcription activation. It was reported
that copper applied in a lesser amount boosts plant
growth and act as a micronutrient (69). The application
of copper improved morphological traits in maise (70).

Table 1. Antagonistic effect of different concentrations of bio-synthesized CuONPs towards J2s mortality of M. incognita. The J2s
mortality was measured at 8, 16 and 24 h exposure periods.

Treatment Incubation (Hours)

Number of J2s dead in different concentrations (ppm)

200 ppm 100 ppm 50 ppm 25 ppm DDW (Control)

CuONPs 08 36a±2.64 (40.0%) 24b±2.30 (26.7%) 17c±2.64 (18.9%) 11d±1.73 (12.2%) 0 ± 0 (0%)
A. 16 51a±2.88 (56.7%) 39b±2.08 (43.3%) 30c±2.30 (33.3%) 21d±2.08 (23.3%) 0 ± 0 (%)

24 76a±2.64 (84.4%) 56b±3.00 (62.2%) 43c±1.73 (47.8%) 34d±2.64 (37.8%) 0 ± 0 (%)

Each value is an average of five replicates; SE-Standard error; DW-Distilled water (control); ppm-Parts per million; Values are given in parentheses represent per
cent J2s mortality over control.; Values are given without parentheses representing the number of the dead J2s.

Table 2. Inhibitory effect of different concentrations of CuONPs
on J2s hatching from egg masses of M. incognita after six days of
incubation.

Treatment

Number of J2s(mean ± SE) hatched in different concentrations
(ppm)

200 ppm 100 ppm 50 ppm 25 ppm
DDW

(Control)

CuONPs 76e±4.93
(80.0%)

98d±6.08
(74.2%)

122c±5.29
(67.9%)

148b±8.08
(61.1%)

380a±7.57
(0.0%)

Each value is an average of five replicates; SE-Standard error; DW-Distilled
water (control); ppm-Parts per million; Values are given in parentheses
represent per cent inhibition in J2s hatching over control; Values are
given without parentheses representing the hatched J2s.

Figure 9. Figure showing the recyclability results of bio-synthesized CuONPs against J2s of M. incognita (a) Dead J2s at 200 ppm,(b)
hatched J2s at 200 ppm.
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Copper applied at 0.1% concentration with other nutri-
ents showed a significant increase in shoot attributes
of wheat (71). In their study, Yeon et al. (72) found
that combined maleic acid and copper sulphate com-
bined application suppressed RKNs disease on toma-
toes by 51.72% and subsequently decreased gall
development on melon and population of nematode
in soil. Gkanatsiou et al. (73) reported that copper/
iron-based nanoparticles act as bioactive agents

against Meloidogyne spp. as well showed plant
improvement assets on nematode-infested tomato.
Tauseef et al. (74) reported in their study that treat-
ment with CuO nanoparticles improves the growth
and physiological parameters of cowpea and reduced
galls, egg masses and J2s population of M. incognita.
Synthesized copper oxide nanoparticles of Elodea
densa improved photosynthesis ratio when applied at
minor applications, while a higher amount showed a

Figure 10. Nematicidal effect of different concentrations of green synthesized CuO NPs on the growth attributes of J2s inoculated
chickpea plants.

Figure 11. Nematicidal effect of different concentrations of CuONPs on the physiological attributes of J2s inoculated chickpea plants.
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negative impact on photosynthesis proportion (75).
The underlying mechanism of CuONPs action on
M. incognita is not entirely understood. Many research-
ers have spent nearly a decade studying complex
mechanisms by which metal nanoparticles cause
toxicity in bacteria and other microorganisms. The
degradation in the cellular structure of nematodes
caused by nanoparticles treatment is assumed to be
the validation for their massive mortality. Metal oxide

nanoparticles may have significant antimicrobial
effects by inducing cellular oxidative stress and
quickly penetrating the cell wall or membrane, endo-
cytosis, accumulating in the cytoplasm, and eventually
causing cell lysis and death (76). The toxic effects of
nanomaterials are generally associated with the pro-
duction of lipid-based peroxides and DNA damage
related to oxidative stress caused by reactive oxygen
species (ROS) (77). The mode of action of nanoparticles

Figure 12. Nematicidal effect of different concentrations of CuONPs on the pathological attributes of J2s inoculated chickpea plants.

Figure 13. The biplots of principal component analysis, comparing the effects of different concentrations of CuONPs on various
studied parameters of J2s inoculated chickpea plants (PFW = Plant fresh weight; PL = Plant length; NOP = Number of pods; CHL =
Chlorophyll content; NOG = Number of galls/plant; CRT = Carotenoid content; NP/200g = Nematode population in 200 g soil).
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has been likened to cellular mechanisms malfunction-
ing, allowing cell wall pierces of nematode eggs (78).
Physical stress-induced cell structure deformation and
cell plasma membrane damage linked to nanoparticle
cell interactions have also been identified as key
sources of toxic effects (79). Thus, results revealed
that bio-synthesized CuONPs at the appropriate con-
centration efficiently killed the J2s and reduced the
development of root galls in chickpea plants.

4. Conclusions

This study employed a green approach to bio-synthesize
CuONPs from the leaf of the J. curcas plant. This novel
approach is simple, inexpensive and eco-friendly. The J2s
of RKN, M. incognita, were reactive to green synthesized
CuONPs. We noticed that CuONPs significantly killed J2s
and inhibited the hatching from egg masses. The root
galls of chickpea were also markedly reduced in the pot
studywhentreatedwithahigher concentrationofbio-syn-
thesized CuONPs. However, the higher concentrations of
green synthesized CuONPs were more effective under in
vitro and pot studies. The FTIR results confirmed stabilized
CuONPs, and the appearance of some functional groups
shifted to a higher value revealed the successful formation
of CuONPs. As demonstrated by SEM images, CuONPs
were spherical. XRDpatterns suggested that thepeaks cor-
responding to 2θ are polycrystalline in nature and have a
monoclinic structure of CuONPs. Our findings demon-
strate that the bio-synthesis of highly efficient CuONPs
via simple, effective, and easy pathwayswould be environ-
mentally friendly and helpful to sustainably manage
nematode infection in agriculture cropsdue to their nema-
ticidal activity. Further study regarding bio-synthesized
CuONPs and application at the field level must be carried
out to get extensive data about potential nematicidal
activity against nematodes and mode of action. So that
green synthesized could be used as a possible substitute
for chemicals nematicides. However, this study suggests
an alternate green tactic to control the RKNs.
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