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The Paradoxes Of Free Software 
 
Stephen M. McJohn * 
 
 
* Professor of Law, Suffolk University Law School. Thanks to Lorie Graham, 
Jude McJohn, Bill McJohn, and Alex Behrakis. Copyright (c) 2000 George Mason 
Law Review 
 
Introduction 
 
The open source software movement poses a profound challenge to the way 
that software is made and distributed. 1 Some of the best known pieces of 
software are open source: Linux, which runs many Internet servers and is the 
likeliest competitor to the scaled-up version of Windows; 2 Netscape Navigator, 
the browser that popularized the World Wide Web; 3 Apache, a widely used 
web server program; Sendmail, a common email server program; and the Perl 
programming language. 4 Open source software (also known, with somewhat 
different connotations, as free software 5 or open code 6) differs in two key 
respects from most proprietary software. First, the holder of a copy of some 
open source software is free to make as many copies as she pleases, to modify 
the code, and to further distribute copies. 7 Second, to enable the foregoing, 
open source software is distributed with access to the source code, 8 not just 
the executable code version. 9    This article identifies the questions that open 
source software poses for intellectual property theory and doctrine, and 
concludes that open source software may have a considerable influence on the 
law of developing technologies--perhaps a greater effect than the law will have 
on software practices. 
 
Most computer programs are written in source code, but run as executable 
code (also known as object code or machine code or binary code). 10 For 
example, here is a snippet of the source code from a program that runs on a 
gargantuan data storage device: 
 
#include <time.h> 
 
#include <limits.h> 
 
#ifndef ACOS4 
 
#include <sys.types.h> 
 
#endif 
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Source code for a computer program is written in a high-level language, such 
as C or FORTRAN. Changes to the program are made to the source code, but 
the program is not run in its source code version. Rather, the source code is 
compiled (a process somewhat akin to translation or conversion) into 
executable code (a low-level language that uses the instruction set of the 
computer). Because the source code is more abstract, a few lines of source 
code can produce many lines of executable code. By analogy, if one could write 
a line of source code that said "Walk to the store," the resulting executable 
code might say, "Lift up your left foot. Stop lifting it. Move it forward thirty 
inches. Set it down." and so on until excruciatingly explicit directions for 
walking to the store were produced. Thus, a portion of the executable code 
produced by compiling the five lines of source code above would look like this: 
 
F0F0F3F2 F0F0F0F0 F0F0F0F0 7B899583 93A48485F0F0F3F3 F0F0F0F0 
F0F0F0F0 7B899583 93A48485F0F0F3F4 F0F0F0F0 F0F0F0F0 7B898695 
84858640 
 
F0F0F3F5 F0F0F0F0 F0F0F0F0 7B899583 93A48485 
 
F0F0F3F6 F0F0F0F0 F0F0F0F0 7B859584 89864040 
 
F0F0F3F7 F0F0F0F0 F0F0F0F0 40404040 40404040    
 
F0F0F3F8 F0F0F0F0 F0F0F0F0 A3A89785 84858640 
 
F0F0F3F9 F0F0F0F0 F0F0F0F0 A3A89785 84858640 
 
F0F0F4F0 F0F0F0F0 F0F0F0F0 A3A89785 84858640 
 
F0F0F4F1 F0F0F0F0 F0F0F0F0 40404040 40404040 
 
F0F0F4F2 F0F0F0F0 F0F0F0F0 615C40E2 E8D4C1D7 
 
F0F0F4F3 F0F0F0F0 F0F0F0F0 A3A89785 84858640 
 
F0F0F4F4 F0F0F0F0 F0F0F0F0 40404040 40404040 
 
F0F0F4F5 F0F0F0F0 F0F0F0F0 7B898640 84858689 
 
F0F0F4F6 F0F0F0F0 F0F0F0F0 A3A89785 84858640 
 
F0F0F4F7 F0F0F0F0 F0F0F0F0 7B8593A2 85404040 
 
F0F0F4F8 F0F0F0F0 F0F0F0F0 A3A89785 84858640 
 
F0F0F4F9 F0F0F0F0 F0F0F0F0 7B859584 89864040 
 
F0F0F5F0 F0F0F0F0 F0F0F0F0 40404040 40404040 
 
F0F0F5F1 F0F0F0F0 F0F0F0F0 7B898640 84858689 
 
F0F0F5F2 F0F0F0F0 F0F0F0F0 A3A89785 84858640 
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F0F0F5F3 F0F0F0F0 F0F0F0F0 7B859389 86408485 
 
F0F0F5F4 F0F0F0F0 F0F0F0F0 A3A89785 84858640 
 
F0F0F5F5 F0F0F0F0 F0F0F0F0 7B859584 89864040 
 
F0F0F5F6 F0F0F0F0 F0F0F0F0 40404040 40404040 
 
F0F0F5F7 F0F0F0F0 F0F0F0F0 615C4040 40404040 
 
F0F0F5F8 F0F0F0F0 F0F0F0F0 5C5C40E2 E8D4C1D7 
 
 
 
Note that the foregoing executable code is even in a reader friendly 
hexadecimal format. As the computer would see it, it would simply be a binary 
wall of 0's and 1's four times as long. Like source code, executable code 
consists of instructions and data, but obviously in a much less user friendly 
form. Source code looks like stunted English (include this, do this, if X is true 
then add A to B), whereas executable code is an inscrutable mass. 
 
When a person gets a copy of the program to use on her computer by 
downloading it from a web site, loading it from a CD, or otherwise getting a 
copy from the software provider, she usually gets just the executable code 
version. She can then run the program, but little else. If she would like to 
change the program, integrate it with other software, or analyze it to see how 
it works, the executable code version is usually not very helpful. Although the 
painstaking process of reverse-engineering may disclose how the program 
works, modifying the executable code would be much more difficult than 
simply modifying the source code and recompiling the program. 11 For someone 
who simply wants to run the program, the source code is unnecessary. 
However, for someone who wants to do anything else, the source code is 
generally required. Engineers often compare having the source code to having 
the ability to open the hood of a car, see how    the engine works, and work on 
it. 
 
For many software producers, the fact that their customer receives only the 
executable code is important. The producer attempts to maintain control over 
the code in two ways. She can deliver only the executable code, so the licensee 
can run the program but little else. 12 She can also deliver the code subject to a 
license that restricts further copying and distribution, so the licensee does not 
turn around and sell or give copies to other potential customers. Open source 
software producers, by contrast, grant much freer access, both practically and 
legally, by delivering source code along with the executable code, and by freely 
granting permission to modify and further distribute the software. As discussed 
in the following sections, open source software both challenges the theoretical 
underpinnings of intellectual property law and promises to affect the 
development of intellectual property law. 
 
I. The Legal Structure of Open Source Software 
 
Open source software is not in the public domain. Rather, a combination of 
copyright law and trademark law serves to permit the free distribution of open 
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source software. The software is kept under copyright, but freely licensed 
under one of various open source licenses. The certification mark, "OSI 
Certified," may be affixed to a copy of the software to quickly show that it is 
open source. Anyone who takes a copy of the software can use it, change it, 
make and distribute more copies, and even sell copies without paying royalties 
to the original author. The open source license requires little; nevertheless, it 
does not abandon the copyright. 
 
For example, suppose Ariel writes an original computer program, "Translator," 
which translates text from Swedish to Finnish. She could write the program in 
a number of ways: typing code at the keyboard, using a development tool 
program 13 that would produce detailed code from her directions, or speaking 
into a dictaphone and having someone else type it in, etc. 14 One way or the 
other, she produces the source code of the pro    gram, but she might not be 
able to patent it. 15 Other programs exist that already do the same sort of 
thing, so the program (or more accurately, a process or machine embodied by 
the program) would be patentable only if it worked in a new way that was not 
obvious to people working in the field. 16 Even then, she would have to file a 
patent application, wherein she would describe the invention and claim quite 
specifically what was new about her process. 17 To date, however, open source 
developers have generally not sought patent protection for their software. 18 
 
Copyright, however, is much easier. As soon as the program is fixed in any 
form, the author has the copyright in the work. 19 The work needs only meet a 
very low standard of originality--quite literally, it only needs to be more 
original than a phone book. 20 Moreover, neither copyright registration nor any 
other formality is necessary to have the copyright, although registration is 
quite simple and helpful if she subsequently sues someone for infringement. 21 
So, as soon as Ariel writes the program down on paper, on disk, or on tape 
recorder, she has the copyright. As a copyright holder, Ariel has a set of 
exclusive rights: the right to make more copies, to distribute copies to the 
public, or to make derivative works (i.e. to recast or transform the work into 
another creative work). 22 Anyone else who does any of these things would 
infringe her copyright, unless they have a license from her or unless they 
qualify for fair use or some other protective provision of copyright law. 23 She 
also has the exclusive right to display the work publicly or to perform it 
publicly, but since public readings or exhibitions of computer code are not too 
popular at the moment, 24   we will focus on the rights to copy, distribute, and 
transform the code. 
 
Notably, Ariel does not need to publish her source code to receive protection 
under the intellectual property laws. She can register her program for 
copyright without disclosing much of the source code or executable code; 
rather, Copyright Office regulations require her only to disclose a portion of the 
code. 25 From that portion she may even redact any trade secrets or other 
proprietary material. 26 On the other hand, in order to obtain a patent, she 
must disclose the invention; however, such disclosure would only require a 
description of the invention used in the software that would enable another 
person working in the field to make and use the invention. 27 It would not 
require her to disclose the specific code she used to implement it, or the other 
code that comprised the rest of the program. 28 Thus, Ariel can receive a 
copyright with essentially no disclosure, and a patent with only a narrow 
disclosure. 29 Moreover, if she uses trade secret law to protect the program, 
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publication is counterproductive. 30 
 
After writing the program, Ariel does not have a program that runs on a 
computer, rather just the source code text. Although she can store that text in 
a computer, she cannot run the program itself. To get the program into 
executable form, Ariel must run it through a compiler--a program that converts 
the source code into executable code. The computer can then execute the 
compiled program. Ariel then has the copyright in both the source code version 
of the program and the executable code version. 31 If Ariel    wanted to change 
the program (e.g., to fix bugs or to add capabilities), she could change the 
executable code directly, which is an extremely laborious process, or she could 
change the source code and compile the program again. 
 
Now suppose Beta would like a copy of Ariel's program--to use it, distribute it, 
and adapt it. Beta needs two things: a copy of the program, and Ariel's 
permission to make copies (or distribute copies, or to adapt the program). If 
Ariel were a typical commercial software company, Ariel would, for a sum of 
money, provide a copy of the executable code to Beta and license Beta to use 
the program subject to a number of conditions. The terms of the license would 
typically prohibit Beta from making additional copies, from distributing any 
copies (including the one that Ariel gave Beta), from reverse-engineering the 
program to figure out how it works, and from adapting the program--in other 
words, from doing anything other than using the program herself. Whether or 
not all those provisions are enforceable is unsettled, 32 but Ariel would likely 
take the position that the provisions are enforceable. Thus, Beta could face 
potential litigation from Ariel if Beta sold her copy to someone else, gave 
copies away to others, or made changes to the program itself. Moreover, if 
Beta wanted to change the program, she would have a hard time because she 
would possess only the executable code, not the source code. 
 
Ariel could decide, instead, to distribute the code under an open source license. 
There are many reasons why she might want to do this. The leading rationales 
for open source are quite different. Some, most notably the Free Software 
Foundation, see it as an issue of ethics and politics. 33 Under this view, software 
is a form of expression. Imposing restrictions on this expression is as wrong as 
restricting the flow of scientific or artistic discussion. 34 Others see open source 
simply as a better way to develop software. 35 Some even call it a better 
business model, reflecting a far different world view. 36 If software is closed, 
then only the proprietor can    change the source code. If the software is open 
source, then other developers are able to find problems or suggest 
improvements quite easily, leading to better software. 37 
 
To make the software open source, Ariel would provide Beta a copy of both the 
executable code and the source code. She could either give the code for 
nothing or charge for a copy. Either way, she would not give Beta the code free 
of restrictions; rather, Ariel would give it to Beta subject to an open source 
license. An open source license serves to keep the software free of any 
restrictions on use, copying, or distribution. As a pioneer of the open source 
movement put it, "Think free speech, not free beer." 38 Although Ariel might 
charge Beta for a copy, she would deliver that copy under a license that 
permitted Beta to do almost anything she wanted with the code. 
 
There are various versions of open source licenses that Ariel could use. 39 Some 
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open source licenses (such as the BSD license, the MIT license, and the Mozilla 
license, under which Netscape makes the code to its browser freely available) 
provide, in effect, that the licensee can do whatever she wishes with the 
software. 40 Other open source licenses require that code be kept open source. 
41 Thus, if Beta does change the program and distributes copies of the new 
version, she must make both the executable code and source code available. 
Such an open source license prevents Beta from restricting the code legally, 
through licensing restrictions, and practically, by keeping revised versions of 
the source code under her control. Such licenses include the GNU General 
Public License (GPL) and the Artistic License.    
 
The various licenses that grant access to source code all differ in some details. 
So what is a true open source license? The Open Source Initiative (OSI) has 
offered an answer in its Open Source Definition. 42 To be an open source license 
under that definition, a license: 
 
1. must provide both executable and source code; 
 
2. must allow modification and redistribution (with or without modifications); 
 
3. must not limit distribution to certain fields of endeavor or products, or limit 
its use with other free software. 43 
 
To read a software license and determine whether it complies with those 
requirements is no easy task, particularly for a lay engineer who would rather 
read code than legalese. The OSI has provided an easy way for software 
developers to figure out if a license meets its definition of "open source" 
through the registration of a certification mark "OSI Certified." 44 Anyone who 
distributes software marked "OSI Certified" represents that the software is 
being distributed under a license that has been approved as conforming to the 
Open Source Definition. Therefore, through an elegant combination of 
copyright and trademark law, software can be easily maintained as open 
source. 
 
An additional provision contained in most open source licenses is a complete 
disclaimer of warranty and limitation of remedies. For example, the GPL 
provides: 
 
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO 
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE 
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT 
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT 
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY 
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM 
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, 
REPAIR OR CORRECTION. 
 
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY 
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE 
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, 
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INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR 
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY 
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH 
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY    HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 45 
 
 
 
In effect, an open source licensor quite reasonably says "I am providing you 
the source code. You can decide whether this software does what you need it 
to do." Moreover, most open source is distributed free of charge (as well as 
free of restrictions), so notions of risk-spreading by placing the cost on the 
maker are inapplicable. Returning to the hypothetical, if Beta wished to get a 
warranty from Ariel, presumably the two could negotiate such terms. 
 
Open source licenses also address another trademark-related issue--protecting 
the reputation of the author of the software. 46 Even the most permissive open 
source licenses provide that if the licensee distributes the software, she must 
include the copyright notice giving credit for authorship to the original author. 
47 Most open source licenses also provide that if the licensee modifies the 
software, then she must ensure that the modifications are not attributed to the 
original author. 48 She can do so by listing what changes were made, who made 
such changes, and when they were made. Thus, open source licenses require 
licensees to respect the author's right of attribution (to get credit for her work) 
and her right to avoid misattribution (not to have other people's work ascribed 
to her). 
 
These attributes of open source licensing rest primarily upon the licensing 
protections of copyright and trademark. Most open source licenses do not 
specifically address the issue of patents, but open source developers are 
affected by patents as possible inventors or infringers. Suppose Ariel's program 
did contain a new, inventive process and she proceeded to patent it. In 
deciding whether to go open source or not, she could do so for any number of 
reasons. She might want to make money by licensing the patent, or she might 
want to patent the process in order to make sure no one else did, keeping the 
process free for public use. The patent gives her the exclusive right to use her 
process, or to make or sell a machine containing her invention. 49 By 
distributing her software under an open source license, she would authorize 
others to use the program free of her patent claim. 50    
 
The flip side is the risk of infringing someone else's patent. Even if Ariel 
devises her program independently, its use could infringe a patent she does 
not even know exists. 51 If Beta gets a copy and uses it, then Beta could 
likewise be liable. Beta might then consider suing Ariel for infringement of the 
warranty of good title, especially if Beta had paid for her copy. 52 The blanket 
disclaimer of warranty, similar to that of the GPL, may protect Ariel, as could a 
number of other arguments depending on the circumstances--such as whether 
Ariel charged for the copy, whether she was a software merchant, or whether 
the program was consumer software. 53 
 
The legal structure of open source, accordingly, is an elegant and robust use of 
intellectual property law. The net result turns the customary use of intellectual 
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property on its head, by using intellectual property laws, which normally are 
used to guard exclusive rights, to safeguard free access to and use of software. 
 
II. Open Source and Intellectual Property Theory: What Do Authors Want? 
 
Various theoretical frameworks for intellectual property law have been brought 
forward in recent years. 54 At the risk of oversimplifying, one can lump them 
into three categories: economic theories, Lockean natural rights theories, and 
Hegelean personality theories. This part of the article first explores the 
economic theories of intellectual property and then considers the Lockean and 
Hegelean theories together as non-economic alternatives. 
 
A. Law, Economics, and the Incentives to Give Away Work Product 
 
The great difference in economic analysis of proprietary software development 
and open source development is well illustrated by the topic of network 
economics and industry standards. 55 For example, Mark Lemley    and David 
McGowan discuss why for-profit software companies might not have the 
incentive to develop a potentially huge-selling product: the Windows operating 
system is protected by copyright law. 56 Copyright law, however, protects only 
the expressive aspect of works, not their functional aspects. 57 So another 
software company could copy the unprotected functional aspects of Windows 
and sell the functionally equivalent program to a big market without violating 
the copyright. But, as Lemley and McGowan explain, several reasons militate 
against such a strategy. 58 Although copyright does not protect functional 
aspects of the program, there remains legal uncertainty about which aspects 
are functional. 59 Also, other intellectual property (such as patents or trade 
secrets) might protect some aspects of the program. 60 More important than 
the legal uncertainties, perhaps, the market risks would be great deterrents to 
a commercial competitor. Reverse-engineering the program is a time-
consuming and uncertain enterprise, and Microsoft periodically upgrades the 
program, which means that a commercial competitor might have difficulty in 
selling an up-to-date product. 61 Consumers might also be wary of whether the 
program was truly a functional substitute. 62 Finally, and most dulling to the 
incentives, Microsoft presumably has the ability to lower the price of its 
program to compete with any new entrant, so the potential payoff is greatly 
reduced. 63 All in all, it makes little sense 64 for a commercial competitor to 
make the huge investments in development and marketing that would be 
required to compete--when other avenues of investment are likely to be more 
fruitful. 
 
The economic incentives for open source developers can be quite different. 
Certainly, some open source developers simply wish to sell soft    ware, and 
would thus be subject to the same disincentives. 65 For many open source 
developers, however, the incentives are quite different: enjoyment of 
programming itself, the desire to show off technical feats to others in the field, 
the wish to sell software-related services, an idealistic urge to further computer 
science, and even the desire to tweak the proprietary software companies. Nor 
would they be scared off by the fact that an existing software product seller 
could respond to a new rival by lowering prices--because the open source 
developers are giving their product away anyway. Therefore, open source 
developers might be willing to take on a task, such as building a Windows 
emulator, where a profit-seeking enterprise would not. Indeed, just as 
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economic theory might predict, such an enterprise exists: the WINE project 66 is 
an open-source project building a Windows emulator to run with the Linux 
operating system--in short, a piece of software that copies the functionality of 
Windows running on a Linux system. 
 
So the economics of open source may be somewhat different from the 
economics of more established areas of intellectual property. Intellectual 
property laws, however, provide some of the incentives fueling the current 
open source movement. Remember that open source software is not public 
domain software: the developer does not renounce her copyright and put the 
code into the public domain. Rather, the code is freely distributed, subject to 
one of the open source licenses. So the question becomes, what does open 
source teach about the underlying economic theory of intellectual property? 
Economic theories of intellectual property law have obvious appeal, both 
because of the increasing role of intellectual property in economic life and 
because the United States Constitution seems to have an explicit economic 
basis for intellectual property law. 67 These theories come in several flavors, 
with the common theme that intellectual property laws should promote 
economic efficiency. These theories include the incentive, property, and 
spartan theories. 
 
1. The Incentive Theory 
 
The incentive theory draws its legal basis from the Constitution: "The Congress 
shall have Power . . . to Promote the Progress of Science and the useful Arts, 
by securing for limited Times to Authors and Inventors the    exclusive Right to 
their respective Writings and Discoveries." 68 Under this approach, intellectual 
property law exists in order to overcome the free-rider problem with public 
goods. 69 Without copyright law, the thinking runs, authors have a diminished 
incentive to produce books, songs, and computer programs. To give authors an 
incentive to write, copyright law gives them the exclusive rights to make copies 
of their books and to sell these books. Likewise, the award of a patent grant 
gives a pharmaceutical company an incentive to spend millions on research. 
 
The flip side of the incentive approach is that intellectual property laws should 
be limited to the protection necessary to promote the creation of new works 
and inventions. Language of several Supreme Court cases appears generally to 
follow the incentive approach, characterizing copyright as an incentive to 
create works without burdening users of the work. 70 Nevertheless, the 
incentive theory clearly does not comport with the existing state of intellectual 
property law in the United States. Intellectual property rights have been 
steadily expanding for the last several decades. Copyright law presents 
perhaps the greatest disparity between theory and reality. Copyright now 
applies to all creative works and is no longer limited to published works where 
the author chose to reserve copyright explicitly. 71 The enforcement term has 
steadily expanded, and now stands at an improbably long life plus seventy 
years. 72 Special statutory protection has been given to anti-copying technology 
and even to the printed terms and conditions on copyrighted works. 73 Such 
measures take copyright far beyond the scope necessary for the incentive to 
create works and eclipse any notion of balance. Rather, as industry has 
increasingly guided the legislative agenda, the copyright statute has gone from 
a rather simple framework to a labyrinthine monster, full of lengthy specialized 
provisions. Other areas of intellectual property have likewise expanded. 
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The incentive theory, then, stands more as aspiration than a description of 
intellectual property law. One recent case tested whether the courts will strictly 
limit Congress' power to pass intellectual property laws on the    incentive 
rationale. In Eldred v. Reno, 74 plaintiffs sought to have the most recent 
extension of the copyright term declared unconstitutional. The Sonny Bono 
Copyright Term Extension Act 75 increased the term from life plus fifty to life 
plus seventy, and increased the term for work-for-hire from seventy-five to 
ninety-five years. Most importantly, the Act was retroactive, so works created 
in the 1920's (such as early Mickey Mouse cartoons, in his Steamboat Willie 
incarnation) that were about to enter the public domain will now remain under 
copyright. The plaintiffs in Eldred challenged the retroactive extension on the 
logical ground that an extension of the copyright term by Congress in 1999 is 
hardly going to affect the incentives of authors working in 1920. Nevertheless, 
given the Supreme Court's generally broad reading of Congress' Article I 
powers (such as the extremely broad reading of Congress' power to regulate 
interstate commerce, which the Court has read to permit Congress to legislate 
on practically any commercial matter 76), the Eldred plaintiffs faced a steep 
uphill battle. 77 The District Court for the District of Columbia ultimately decided 
that the extension of the copyright term was "within the discretion of 
Congress." 78 Meanwhile, the incentive theory is an attractive theoretical 
rationale for intellectual property laws, but it does not comport with the 
increasingly broad laws in the United States and abroad as under such treaties 
as TRIPS. 79 
 
2. The Property Approach 
 
The property approach, by contrast, favors extending intellectual property 
protection much further than the incentive approach. 80 As with    the incentive 
approach, the ultimate goal is efficient use of resources. However, the property 
approach looks not only to providing an incentive to create works, but also to 
providing an incentive to exploit those works efficiently. The strongest 
economic justification for private property generally is that it internalizes costs 
and benefits. Under the classic "tragedy of the commons," if property is held 
communally, then perverse incentives are created. An individual might use up 
resources inefficiently because she does not bear the cost or might fail to 
create productive works because she does not reap the rewards. The property 
approach has been roundly criticized for, among other things, failing to give 
sufficient value to the public domain. 81 
 
3. The Spartan Theory 
 
The spartan theory is a reaction to the great recent expansion of intellectual 
property law. 82 Under this approach, intellectual property rights are seen as a 
necessary evil. Copyright restricts freedom of expression; patent restricts 
research and the utilization of technology; trademark restricts competition. All 
three types of restrictions have countervailing    benefits, such as overcoming 
the free-rider risks inherent in some types of information-producing endeavors. 
However, due to the high costs such restrictions impose, the intellectual 
property laws should be sharply tailored 83 in a way reminiscent of the First 
Amendment, which only tolerates restrictions on speech that are sufficiently 
narrow. For example, copyright should not attach broadly, as it does now, to 
all areas of human creativity. 84 Rather, copyright should only apply to works to 
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the extent that copyright protection is necessary and desirable to promote the 
creation of such works. 85 Likewise, trademark protection should be more 
strictly limited to prevent consumer deception, in contrast to the broad 
protection of brand names under existing law. 86 
 
4. Can Open Source Fit Within an Economic Theory of Intellectual Property 
Law? 
 
Open source can be seen as inconsistent with all three economic approaches. If 
an economic reward is necessary to spur creation of works, then there would 
not be thousands of developers writing software only to freely give it away 
under an open source license. Thus, the incentive theory of copyright seems to 
be inapplicable. Likewise, success of the free distribution and alteration of open 
source software seems to refute the property approach. Rather than the 
creator of software (or useful additions) reaping the rewards, it is freely 
distributed. Even the spartan approach looks positively generous, granting a 
minimal level of copyright protection, where maybe none is necessary. Thus, 
open source software might be seen as confirmation of the view that the 
regime of intellectual property law has been outmoded by digital technologies; 
however, closer examination shows that economic reasoning underlies much of 
the open source framework, and that open source has anticipated recent 
developments in economic legal theory. 
 
The spartan approach most clearly resembles the spirit of the open source 
movement. The open source movement is based on the idea that software 
should be freely distributed and revised, and in the eyes of some, that 
restricting access to source code is morally wrong. So if there were to be 
intellectual property in software, one might think it should be as minimal as 
possible. However, as discussed above, open source developers rely on 
intellectual property laws to prevent certain uses of open source soft    ware, 
such as its incorporation into proprietary products or its distribution without 
proper attribution of authorship. 87 Thus, adopting a minimalist approach to 
intellectual property law could harm the open source movement, if it reduced 
the ability to further the movement's goals. 
 
For the same reasons, open source is reconcilable with the incentive theory of 
intellectual property. Many open source authors are spurred to create code by 
incentives other than copyright: the love of elegant problem solving (a.k.a. 
hacking), status among their peers, the wish to further computer science and 
make things better generally, and even animosity toward commercial software 
developers. An important factor in whether a programmer is willing to share 
her code is whether others might try to free-ride on her efforts to make a 
profit. Such a result agrees with more recent trends in law and economics. 
Richard McAdams has shown how law and economics has paid far too little 
attention to the effects of status considerations on incentives. 88 People are 
motivated not just by purely material considerations, but also by their desire to 
achieve status in the eyes of others. 89 Accordingly, economic analysis of law 
must not only consider how legal rules affect wealth in terms of possessions, 
but also in terms of the estimation of one's peers. 90 Otherwise, the true 
incentive effects of laws will be obscured. Open source provides a particularly 
striking example. Looking only to material considerations, open source 
developers might appear to be acting contrary to rational economic incentives, 
by giving away software. However, when one considers the return in terms of 
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increased status among software developing peers (i.e., showing off technical 
prowess, or receiving approval for participating in the open source movement, 
or building relationships in the development process), ample incentives 
become apparent. Likewise, open source licenses that require the code to 
remain open source can protect against a possible disincentive--the 
resentment that a developer might feel if she gave away software only to see it 
incorporated into a proprietary product. 
 
The strangest intersection of open source and legal theory, however, is how 
well the open source movement can be used as an example in favor of the 
property approach--the theory that intellectual property rights should be as 
expansive as practicable. The underlying idea behind the property approach is 
not that authors and inventors should be enriched. Instead, the property 
approach takes a privatization rationale: intellectual property laws serve to 
promote the more effective use of information, by giving individuals the 
incentive to exploit it, rather than letting free access by all lead to waste. 
Recall that the open source movement relies heavily    on keeping software 
under copyright and distributing it under a license, rather than putting the 
software into the public domain where anyone can do with it what she will. The 
open source licenses impose two key restrictions (or, more accurately, 
restrictions on restrictions): (1) the licensee may not restrict distribution of the 
code and (2) the licensee must make the source code available to others. In 
addition, most open source licenses add other restrictions, such as the 
requirement that authorship of the code be properly attributed. In a world 
without copyright, such licenses would obviously be ineffective; however, even 
in a world with relaxed copyrights, such provisions would likely be ineffective. 91 
Only under a legal regime like the present, where copyright holders have great 
control over their works, and licensing revenues are not at issue, are such 
restrictive licenses likely to be enforceable. 
 
Accordingly, the open source movement stands as a counterexample to one of 
the strongest criticisms of the property approach--the transaction cost 
argument. This argument runs as follows: although privatizing intellectual 
property could, in theory, lead to efficient exploitation, transaction costs prove 
a formidable obstacle. There are many uses of intellectual property that would 
never occur, due to the inability of the rights holder and the potential user to 
reach an agreement for a license. For example, if a book is under copyright, a 
teacher might wish to make a copy of one chapter to hand out to her class. It 
may well be that the copyright holder would not object, but the transaction 
costs necessary would prevent the agreement from occurring (e.g., the teacher 
must identify the rights holder, communicate with her, negotiate and execute a 
license). To the extent that transaction costs prevent use of intellectual 
property, while at the same time not enriching the holder because no 
agreement is reached, there is a "dead-weight loss" of the kind so abhorred by 
economists. Thus, one strong argument against expansion of intellectual 
property rights is that exceptions are necessary to prevent waste, such as 
applying the fair use doctrine in the teacher example. But the response of the 
property theorists is that market mechanisms will arise to overcome such 
transaction cost problems--for example, performing rights organizations like 
the American Society of Composers, Authors & Publishers (ASCAP) and 
Broadcast Music, Inc. (BMI) have made it possible for thousands of copyright 
music holders to negotiate licenses with millions of potential users. 92 Likewise, 
the open source licenses solve a similar collective action problem. By using 
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open source licenses to coordinate the diverse group of open source 
developers, their common goals can be reached efficiently. Ironically, then, the 
open source movement, with its early roots in a decidedly socialist view of 
software, appears to vindicate a rather free-market view of intellectual 
property--that market mechanisms are more efficient in overcoming market 
failure than corrective legal measures. 
 
B. Philosophy and Open Source 
 
As discussed above, intellectual property law in the United States draws its 
justification from economics. Other countries look more toward philosophical 
underpinnings for intellectual property. 93 For example, the Universal 
Declaration of Human Rights provides that an individual enjoys the "right to 
the protection of the moral and material interests resulting from any scientific, 
literary or artistic production of which he is the author." 94 Philosophical 
underpinnings for intellectual property are conventionally divided into the 
natural rights theory associated with John Locke and the personality protection 
theory associated with Friedrich Hegel. 95 
 
The Lockean analysis is somewhat difficult to square with open source practice. 
As interpreted by modern scholars, Locke would consider intellectual property 
protection appropriate where "the production of ideas requires a person's 
labor; second, that these ideas are appropriated from a 'common' which is not 
significantly devalued by the idea's removal; and third, that ideas can be made 
property without breaching the non-waste condition (i.e., will not let the idea 
be unutilized, like fruit that perishes for lack of use)." 96 Open source software 
fits strangely into that theoretical framework. The first condition is easily met. 
Writing software certainly requires a person's intellectual labor. Even in these 
days of sophisticated development tools, software requires considerable work 
to design, implement, debug, and revise. The third condition (non-waste) 
would also seem to be met. Arguably, some open source licenses cause a kind 
of waste in that they prohibit incorporating open source software into 
proprietary products, and thus foreclose many uses of the software. Such 
gentle restrictions, however, leave open many other uses of the software. 
Moreover, because copyright law prohibits only near verbatim copying of 
software, a proprietary producer is still free to copy the functional aspects of 
the open    source software. Thus, the first and third conditions seem to be 
met. 
 
The second condition, however, poses a conundrum. Under this central idea to 
Locke's justification of property, property can only be appropriated if the net 
effect does not diminish the commons. Thus, a tract of land can be put into the 
private hands of a farmer because she will then have an incentive to use it 
productively and sell her harvest to the public. Such use is more productive 
than leaving the land to lie fallow. One could argue that open source passes 
the condition by definition. The whole point of an open source license is to 
leave the code open for use by others. Thus, rather than diminishing the 
commons, the copyright in open source software protects the commons. 
 
There is a distinction between the public domain and the common available to 
open source users. Where the open source license is conditioned on 
maintaining the open source nature of the software, the code is not in the 
public domain--rather, it is usable freely by those who agree to abide by its 
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conditions. Those conditions, in turn, are rather generous--requiring only that 
users agree not to impose conditions of their own on the fruits of the code. 
Nevertheless, such conditions do decrease the stock of ideas available to all, 
but only to the extent of the rather thin copyright protection afforded software. 
So, attempting to fit open source into a Lockean framework eventually begs 
the question, or perhaps raises the more complicated question, of whether 
property is best owned individually or collectively. 
 
Another theoretical basis for intellectual property protection is the idea that 
creative works and inventions embody the personality of the artist or inventor, 
and accordingly should be protected in the same way that tort laws protect 
people from physical and intangible harms. 97 In this view, legal protection of 
intellectual creations is necessary to permit individuals to achieve self-
actualization. As a descriptive matter, open source seems to favor the 
personality approach over the natural law approach. One can view open source 
as an experiment to answer the question, "What do creators most care about?" 
As noted above, open source developers will produce code without the 
conventional economic incentives provided by copyright protection, and will 
produce code much more generously than one might predict with a Lockean 
framework. They will add to the commons of open source code without taking 
anything out, provided that others do the same. However, open source 
developers do not give up the protection of their reputation. As noted above, 
open source licenses freely give up almost all exclusive rights (e.g., allowing 
free copying, distribution, modification, and so on) except rights of attribution. 
98 To the    contrary, they strictly require that the original author receive credit 
for her work, and that any changes in the code are not misattributed to her. 99 
So open source seems to show that perhaps the most important thing to many 
productive authors is their reputation, because the one thing they will not give 
away is their name. 
 
Here, the legal rule chosen by open source developers reflects the European 
approach to intellectual property rather than the American. The protection of 
reputation--that the work be properly attributed to the author and not be 
misattributed to her--is something that is at the core of copyright in many 
European systems, under the rubric of "moral rights." 100 In the United States, 
by contrast, moral rights are much more limited. In order to become a party to 
the Berne Treaty, 101 the United States was obliged to provide some protection 
for moral rights. However, Congress chose nearly the minimal extent of 
protection that would pass muster; it added some protection for moral rights, 
but only to a narrow category of works like paintings and sculpture. 102 The 
open source movement shows, however, that creators of much more functional 
works, such as computer software, are no less interested in their status as 
authors and the fate of their works. 
 
III. Patents: Reshaping the Prior Art Problem 
 
The relationship between computers and patent law has altered radically over 
the few decades of electronic computing. The sad story of the patent litigation 
surrounding ENIAC, 103 the first general-purpose electronic computer, illustrates 
the disregard of legal niceties that computer pioneers once allowed 
themselves. John Mauchly, Presper Eckert and their crew (with assistance from 
the redoubtable John Von Neumann) spent many long years and overcame 
dozens of theoretical and engineering obstacles to make the ENIAC function. 104 

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647



 15

Only belatedly did they attempt to secure patent protection on one of the 
century's most influential inventions. Because they had waited so long, several 
daunting legal obstacles    prevented them patenting the ENIAC. 105 
 
By contrast, one of the first concerns facing today's commercial software 
developers is whether they can patent their work. 106 In part, this simply 
reflects the much greater attention that scientists and engineers now pay to 
intellectual property law. To illustrate, the 1999 Nobel Prize winners in 
medicine and chemistry emphasized that their work decades earlier had been 
driven by a desire for knowledge, not profit, to explain why they had not 
patented their discoveries. 107 On the other hand, recently, researchers at MIT 
reported that they had inserted a gene into a transgenic mouse, thereby 
decreasing the reduction in memory with age. 108 Notable was how patents 
pervaded the story--the gene used was already covered by someone else's 
patent, and the researchers, long before they told the New York Times or the 
rest of the world about their work, had filed for another patent on this novel 
use of the gene. 109 Scientists and engineers are hardly intellectual naifs any 
more. 
 
Another reason that computer developers, both in hardware and software, pay 
more attention to patents is that the law on patentability of computer-related 
inventions has itself changed radically--from forbidding to welcoming. Even 
when the ENIAC developers finally got around to seeking patents, they sought 
only to patent the hardware, not the software. Similarly, in succeeding 
decades, little attention was paid to whether there were intellectual property 
rights in software. Rather, the software was simply included for free with the 
hardware as part of the package. Early case law viewed attempts to patent 
software skeptically. 
 
In a series of cases, the courts have moved from denial of patentability to an 
open door policy. 110 In 1972, the Supreme Court denied patentability to a 
process to convert binary numbers coded in decimal form to pure binary 
numbers. 111 The Court reasoned that the claimed invention was simply a way 
of solving a mathematical problem, and therefore unpatentable. 112 In 1978, the 
Court, for similar reasons, held unpatentable a process that used a 
mathematical formula to update an alarm limit, a number calculated to monitor 
operating conditions in a catalytic conversion    process. 113 These cases cast 
great doubt on the patentability of software, because broadly stated, computer 
programs always take numbers as input and produce numbers as output. But 
the tide turned in 1981, when the Court held that the use of a computer 
program to monitor a rubber-curing process was a patentable invention even 
though the only novel aspect of the process involved calculating numbers. 114 
The Supreme Court has not addressed the issue since then. 
 
The authoritative Federal Circuit, however, after struggling to draw a line 
between nonpatentable mathematics and patentable useful processes, greatly 
relaxed the scrutiny in a series of cases. 115 Under existing law, it is likely that 
the processes rejected under the early Supreme Court cases would have been 
held patentable today. As a result, patents on software, especially software 
implementing business methods, have become increasingly important. 116 Now, 
software may be patented in many ways: as a process, a component of a 
machine, or as an article of manufacture. 117    Indeed, recent software patents 
extend to a propagated electric signal as an article of manufacture. 118 

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647



 16

 
Some think that software patents may pose the greatest threat to open 
software. 119 After considerable reduction in the legal obstacles to patenting 
software, many thousands of software patents have been issued in recent 
years. Open software developers might write code that allegedly infringes such 
patents. Richard Stallman, a leader in the free software movement, has likened 
software patents to a minefield for open source developers. 120 
 
As some have noted, an open source defendant does have one particular 
disadvantage, as compared to other software developers who might be 
potential patent infringers. 121 This risk arises from the very nature of open 
source software. Suppose someone holds a patent on a process used in 
software--a process for sorting data, or for producing a particular format of 
output. If a proprietary program used the patented process, the patent holder 
might not be able to find that out. The process might be used in the program, 
but not in a way that was evident to a user of the program. One could tell that 
the program was, at some point, sorting data, but would have to go to 
considerable trouble to figure out how the program was sorting it. Indeed, that 
would be impossible if one did not have access to a copy of the program. It 
would be much easier, in some respects, to monitor open source programs for 
infringement of the patent, for the very two reasons that make them open 
source--one would be entitled to get both a copy of the program and a copy of 
the source code. So in one respect, open source is peculiarly susceptible to 
patent monitoring. 
 
Another area in which open source developers could be at a disadvantage is in 
cross-licensing. Because so many software patents have been issued in recent 
years, and perhaps because the validity and enforceability of many of the 
patents is rather unclear, patent licensing is quite different in the software area 
than in other high-tech areas such as biotech. In    particular, royalty-free 
cross-licenses are quite common in the computer industry. The parties to such 
licenses agree, in effect, not to attempt to enforce their patents against each 
other. Such nonaggression pacts protect only the parties to the license. To the 
extent that open source developers do not seek software patents, it may leave 
them out of such protection, having nothing to offer as a quid pro quo. 
 
Open source developers may have other advantages that more than make up 
for such potential risks. Indeed, the open source software movement may well 
redirect the course of software patent litigation in several ways. The greatest 
issue at present in software patent law is the problem of prior art. Patent law 
provides that an invention is only patentable if one concludes, after examining 
the prior art, that the invention is both novel (is not already known in the prior 
art) and nonobvious (would not be obvious to a skilled worker in the field, in 
light of the prior art). 122 What constitutes prior art is defined rather tortuously 
in the statute, 123 but one can think of the prior art as being the stuff in the 
public knowledge. 
 
Computer software, however, is a difficult field in which to locate the prior art, 
for two reasons. 124 First, as discussed above, software has only gradually been 
seen as patentable, so there is not a great stock of software patents to provide 
a source of prior art. Second, the prior art in computer science is much less 
organized than in many other fields. In other new technologies, such as 
biotech, it may be relatively straightforward to check scientific journals and 
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other sources to see if a claimed molecule is in fact novel. 125 Computer 
programming, by contrast, has had much less systematic archiving of 
knowledge. Much of the knowledge in the trade is in informal form. And more 
recently, much of the knowledge was intentionally kept out of the public 
domain. One commentator has determined that some eighty percent of issued 
software patents make no effective citations of prior art, despite the great 
amount of published work in computing. 126 Recognizing the special problem of 
prior art in the area of computer related    inventions, the U.S. Patent & 
Trademark Office (USPTO) has begun a project to more systematically organize 
knowledge in the computer arts, while several private bodies offer help in 
locating prior art. 127 In addition, the fact that so many software patents have 
been issued in recent years will make a considerable contribution to the 
amount of prior art that is available for searching. 
 
In the meantime, a defendant in a patent infringement action may have a very 
difficult time proving that a technique was already in the prior art, or was 
obvious given the prior art. An open source defendant, however, may have a 
card to play that is unavailable to other defendants. The recent activity around 
several controversial patents illustrates how an open source defendant could 
prove a veritable Hydra of a defendant. 128 Inventors had succeeded in 
obtaining patent protection on several widespread technologies: fundamental 
techniques of multimedia, 129 a commonly used hack ("windowing") to fix year 
2000 (Y2K) problems in aging software programs, and a privacy protection 
algorithm that threatened to control a common Internet standard. 130 In each 
case, widespread publicity about the patent, together with considerable anger 
that someone claimed to have invented something that other programmers 
considered old hat, resulted in programmers sending many examples of 
patent-invalidating prior art to interested parties and the USPTO. In each case, 
the tide turned--the USPTO took the unusual step of initiating reexamination of 
the multimedia and Y2K patents, and the privacy patent likewise looked 
questionable. 131 Open source developers, such as the world-wide Linux network 
of thousands of software developers, present a formidable resource for locating 
prior art--and likewise have shown their willingness to spring into action in 
defense of the movement. 
 
If the prior art shows that the invention is not novel, the patent can be 
invalidated. Even if the invention is novel, it is still invalid if it was obvious in 
light of the prior art. This is a particularly difficult determination with new 
technologies. 132 Here, open source also may benefit from its moral suasion and 
from the favorable opinions of its many experts. The case of the ENIAC throws 
some light on how the identities of the parties, and the likely effect on industry 
could influence courts sub silentio in    software patent cases. The judge in the 
ENIAC case denied a patent to Eckert and Mauchly on the ground that they had 
derived the idea from John Atanosoff. 133 That did not mean, however, that 
Atanasoff could now patent the ENIAC, for the passage of time now acted as a 
statutory bar. One way to interpret the result is that the judge may have been 
attracted to a ruling that did not put the new technology within the exclusive 
control of one party. Likewise, open source developers could be very 
sympathetic parties, and courts may lean, given that the technology and the 
law is sufficiently complicated, toward restricting patent coverage--as opposed 
to cases where two parties are simply fighting about which one gets to keep 
the technology out of the public domain. This is hardly a cheery view of judicial 
decision making--ad hoc results-oriented rough justice in patent cases--but 
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may prove a realistic one, and at the least a reason to avoid opening the 
Pandora's box of patent litigation. 134 Another possibility would be for open 
source developers to fight fire with fire, by seeking patents of their own and 
combining them. 135 
 
In addition to proving a difficult defendant to beat, some open source 
developers might be pointless to beat. Patent law remedies such as actual 
damages, punitive damages, and injunctions may be worth little against some 
open source defendants. Actual damages are most often based on recouping 
defendant's profits from the use of the patented invention and on 
compensating for plaintiff's losses. Both types of damages could be difficult to 
prove. At this point, the vast majority of open software developers do not 
charge for their software, so there would be no gains to recoup. 
 
On the plaintiff's side, proving loss of revenue could be very difficult. Plaintiff, 
in effect, would have to prove that if defendant's free product had not been 
available, buyers in the market would have paid money to buy from plaintiff, or 
from people using plaintiff's invention under a license from plaintiff. 
Nevertheless, the giveaways during the browser wars have shown, and many a 
doomed business on the Internet has learned to its distress, free stuff gets a 
great many more users than stuff with a money price. Punitive damages would 
also be unlikely to make up for lack of actual damages, because an open 
source infringer would likely have acted innocently, unaware of the patent at 
issue. Nor would an injunction necessarily help, given the nature of software. 
In intellectual property cases, the ability to get an injunction is a huge weapon 
for plaintiffs. To be able to get not only damages, but to also stop a defendant 
from showing her movie, using    her trademark, or employing a key hire, is 
often the greatest benefit of successful litigation. However, software is a little 
different. As software developers say, there is more than one way to skin a 
cat. If a program cannot use a particular patented algorithm, then most likely 
the developer can simply devise a different one that would have to fall outside 
the terms of the patent and the doctrine of equivalents. 136 
 
An additional reason why many open source developers are unlikely to be 
defendants is that they do not have the deep pockets that attract plaintiffs. 
One could see a software company bringing a case not to bring in funds, but 
rather pour encourager les autres. Open source developers are quite different, 
however, from defendants often sought in other areas of intellectual property 
enforcement to make a point about willingness to enforce intellectual property. 
A software or music publisher might go after pirates not just to seek damages, 
but also to set an example as a deterrent to others, and to encourage them to 
apply their skills in an area less aggressively enforced. Such actions against 
software developers could have quite negative effects--a hacker innocently 
reinventing an algorithm is a much more sympathetic figure than a bootlegger. 
Moreover, the publicity of the enforcement could backfire another way. 
 
As noted, one response is to rewrite the software with noninfringing code. If 
the potential defendant does that, and is an open source developer, then that 
substitute for plaintiff's invention will now be freely available for others to use 
and advertised by the lawsuit itself. This result provides yet another reason to 
tread very quietly before such unexpectedly dangerous defendants. 
 
IV. Trademarks: a Banner 
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Most trademarks are created with little attention to trademark law. An 
individual practicing her trade or a little business starting in a garage will likely 
use a name intending to do the sort of things trademarks do: to build a name 
among potential clients and partners, and to distinguish its goods or services 
from competitors. However, the business is likely to ignore the niceties of 
trademark law--what sort of symbols may be trademarked, what protection the 
trademark laws give, and how to register a trademark. Indeed, many start-ups 
are likely to confuse the various types of intellectual property protection and 
talk about copyrighting or patenting the name of the business. 
 
The open source movement comprises software developers, not lawyers. 
Nevertheless, mindful of the way intellectual property laws had    caused them 
problems in the past, open source developers showed considerable 
sophistication in their use of trademark law and, even where lack of legal 
experience caused a bump, recovered in a way that compares favorably to the 
legal strategies of the most sophisticated commercial actors. The typical start-
up simply uses a name and then at some point thinks, "Hey, maybe we should 
register our name as a trademark," or more likely, proceeds in blissful 
ignorance until they have enough success (or trouble) that they have consulted 
a lawyer. Even the most sophisticated business actors can ignore trademark 
issues. 
 
The open source movement, by comparison, made sophisticated use of 
trademark law. One approach would have simply been to register a trademark 
for the software products and distribute it under that name. Such an approach 
would have raised two big trademark law problems with the open source model 
of distribution. Open source software can be freely adapted and distributed 
further, by people other than the original producers. However, a trademark 
must identify the source of goods. 137 If adapted and redistributed software 
bore the original mark, it would be a misleading use--unless somehow 
everyone producing open source banded together as a single producer. In 
addition, the trademark holder must police the use of her mark. Just as a 
trademark holder cannot make a naked assignment (i.e., sell the mark for 
someone else to use), so she cannot simply allow others to use the mark 
without verifying that their goods or services conform to her standards. Thus, 
typical use of trademark would have led to problems down the road. The open 
source movement, however, turned to a refined use of trademark law--the 
"certification mark." Unlike most marks, the mark is used not by its owner, but 
rather by others to indicate that it meets standards set by the mark owner. 
Thus, the "Underwriter's Laboratories" (UL) mark is used by manufactures who 
comply with the relevant standards. 138 Likewise, the Open Source Initiative 
decided to register a mark that it would permit others to use if their software 
complied with the Open Source Definition. 
 
The initial mark chosen, however, reflected a common trap for the unwary in 
trademark law. The first mark chosen was "Open Source," using a recently 
coined term that succinctly described the movement to make source code 
freely available. 139 The apt nature of the mark made it questionable as a 
matter of trademark law. As many a business does, the open source 
developers sought to find a name that was as descriptive as possible. They 
opted to register the mark "Open Source." 140 Before too long, however, it 
became clear that the USPTO would likely reject the mark on the grounds of 
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descriptiveness. A mark cannot be registered if it is simply descriptive. That 
left several choices. One could appeal the decision of the USPTO. Certainly, 
various high tech companies have resisted USPTO determinations that marks 
they sought to protect were invalid as descriptive or generic. 141 One could also 
seek to register the mark on the supplemental register, then get a principal 
registration after it had sufficient publicity to acquire secondary meaning. 142 
That may have ultimately been successful, given the great publicity given to 
various open source efforts and its widespread currency in the software field. 
The open source initiative, however, made what appears to be a much wiser 
choice. They simply changed marks, something businesses, especially once 
egos become involved, can be highly reluctant to do, and they registered the 
certification mark "OSI Certified." 143 
 
Notably, the open source initiative did not give up on their claim to the phrase 
"open source." Although they abandoned their attempt to trademark it, they 
have other resources to call upon. There are other ways to grant accessibility 
to the source code that would not qualify as "open source" under this 
definition. For example, Sun Microsystems recently published the source code 
of its Solaris operating system and permitted developers to make modifications 
to the code. So in a sense, the source code to Solaris is now open: it is open to 
public examination and can be modified. However, Sun's license contained 
restrictions that go beyond those permitted to qualify as "OSI Certified." So is 
Solaris open source? The important thing is that the open source initiative can 
look beyond the law for assistance in using its mark, in a way that most mark-
holders cannot. Xerox, for example, would prefer that people refer to 
"photocopies" rather than "xeroxes," for the latter term leads down the road 
toward common usage; however, few people will feel a moral (or grammatical) 
obligation to use a trademark only in its trademark sense. Some software 
developers are already sensitive to uses of the term "open source" in what 
they consider to be inaccurate uses of the term. The reliance on community 
norms of language, as opposed to law, has not always worked for software.    
Most notably, the original meaning of "hacker"--one skilled in programming--
has lost the linguistic battle of the standards, as the now popular 
understanding of "hacker" is a malevolent system breaker, or a "cracker" to 
the original "hackers." 144 However, with the more technical term "open 
source," the experts' opinion may more likely prevail. 
 
V. Regulation 
 
Whether, and how, to regulate the Internet has spawned huge amounts of 
discussion in past years. 145 In Code and Other Laws of Cyberspace, 146 Lawrence 
Lessig introduces two important elements to the discussion of regulation of 
computer networks such as the Internet. First, he makes clear why the 
commercial law governing software transactions could have momentous 
effects. As Lessig explains, computer code itself is a form of regulation, 
because it imposes constraints on the behavior of users. 147 Accordingly, the 
ability of software distributors to control what is done with their software has 
considerable effects beyond the immediate parties to a software transaction. 
Thus, the content of software licensing law may be more momentous than 
similar law that governs other commercial transactions. 148 Lessig also makes a 
rather far-sighted point about the ability of government to control software. He 
argues that open source code is more difficult to regulate than proprietary 
code, because of the diffuse nature of the open source model. 149 
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A. Licensing Law and Open Source: Fair Use in Copyright and a Price Less Than 
Zero 
 
Software licensing is a burgeoning area of law practice. 150 Billions of dollars are 
spent on software that is generally provided under a license.    Strangely 
enough, relatively little is known about the legal effectiveness of software 
licenses, as compared to older segments of the economy. For example, Article 
2 of the Uniform Commercial Code (UCC) provides a comprehensive set of laws 
governing contracts for the sale of goods. 151 How to form a contract, what 
terms automatically become part of the contract, whether the seller can 
disclaim warranties and limit remedies, and what the measures of damages 
are--all essential terms are governed by a uniform set of rules that has been 
adopted by all fifty states. 
 
The state of software law, however, is far less settled. There is no definite 
authority on such basic matters as, whether a sale of software is covered by 
the UCC, whether the most common form of software licenses (shrinkwrap and 
clickwrap agreements) are legally binding, 152 whether warranties can be 
effectively disclaimed, or whether copyright law preempts provisions in 
software licenses. 153 The lack of legal clarity certainly has not prevented 
software from becoming a gigantic industry; however, various efforts have 
been made to make software law clearer and more uniform. The best known 
project was the drafting of a proposed addition to the UCC--draft Article 2B 154--
but the path to the state legislatures has not been smooth. Not surprisingly, 
meetings to discuss the draft UCC 2B were not attended by all possible parties, 
especially consumers. 155 Consumers often do not bother to read contracts at 
the time they enter into them. Thus, a consumer is highly unlikely to pay much 
attention to a lengthy drafting process, which might produce a law, which 
might govern a software contract the consumer signs years in the future. On 
the other hand, a software company has a direct interest in the law governing 
sales of its product. The draft 2B struck many commentators as being crafted 
more with the interests of sellers rather than buyers in mind. 156 Alternatively, a 
successor model statute, the Uniform Computer Information Transactions Act, 
157 has been offered to the states. As commentators and lawmakers consider 
what    rules should govern licensing, open source licensing presents the issues 
in a fresh form. This Part considers two key issues: the application of fair use 
to open source software, which would obviate the need for a license, and 
whether licensing law should be strengthened to bolster open source licenses. 
 
The various open source licenses are some of the most generous intellectual 
property licenses around. A typical proprietary software license provides, in 
effect: "Here is the software you paid for. You can use it yourself, but you do 
not have permission to make any more copies, to change it, or even to analyze 
it in order to figure out how it works." By contrast, an open source license tells 
the licensee, in effect: "Here is some valuable copyrighted software, free of 
charge. You can make as many copies as you want, you can adapt it however 
you like, and you can give away or even sell copies of the original software or 
as you have revised it--and to make that easy, you can have access to the 
source code as well." However, one thing open source licenses tend to insist on 
is that the software may only be used pursuant to the conditions of the license. 
For example, the GPL states that nothing "grants you permission to modify or 
distribute the Program or its derivative works. These actions are prohibited by 
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law if you do not accept this License." 158 Such a statement may be rather too 
categorical. Even without accepting the license, one could copy, modify or 
distribute the software if the particular use qualified as fair use under section 
107 of the copyright statute. 159 
 
Application of the fair use doctrine to open source software poses a number of 
puzzles. Fair use authorizes certain socially beneficial uses of copyrighted 
material that would otherwise be an infringement. 160 One who tapes a 
copyrighted program for future viewing, 161 or records a parody version of a 
copyrighted song, 162 or copies a scientific article in the course of research 163 
may qualify for fair use. Fair use, however, is a notoriously vague doctrine. In 
deciding whether fair use applies, the court must consider four factors: the 
purpose of the use, the nature of the work, the amount used, and the effect on 
the market for licensing the work. 164 
 
Fair use issues could naturally arise both with open source developers copying 
from proprietary software and with others distributing open source software. 
The former case would be relatively straightforward, al    though unpredictable, 
as fair use cases generally are. For example, an open source developer could 
copy some elements of a proprietary program to make her program 
interoperable with other software. If she took copyrighted elements (and 
because software is functional, much copying is not taking protected 
expression), the question of fair use would arise. The open source developer 
would argue for fair use along the usual factors--that the use was productive 
and noncommercial, that the copied work was functional and thus subject to a 
lower level of protection, that only so much was taken as was necessary, and 
that the open source project would not reduce the market for the product in 
question. Of course, in some cases, those arguments would not be available. 
The purpose of some open source projects is indeed to supplant commercial 
products. Similarly, fair use is likely to apply if an open source developer made 
a copy of a commercial product in order to reverse engineer it (i.e., to figure 
out how it works). 165 Although in a novel setting, such cases would not unduly 
tax the flexible structure of fair use analysis. 
 
The more interesting question is the extent to which fair use applies to open 
source software itself. Many uses of open source software, of course, would not 
be challenged even if the user was not a party to an open source license. If 
someone made copies of some open source software, or modified the software, 
or distributed the software in a manner that was consistent with the license 
even if the user had not agreed to the license, then presumably the copyright 
holder would not object. This contrasts sharply, of course, with most 
commercial software where the copyright holder would likely object to any use 
that was not permitted pursuant to a licensing agreement. However, some 
uses of open source software might be objectionable to a developer who had 
set her software free. Uses that would not have been permitted under the 
license would now likely be objectionable. For example, if another developer 
incorporated open source code into a proprietary product where the license 
would have prohibited that or if someone distributed copies that failed to 
attribute authorship of the code correctly, then these uses would be considered 
objectionable. 
 
The argument against fair use is a straightforward one. Open source licenses 
make software freely available and subject to very few restrictions, so there 
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would seem to be little justification for permitting fair use. The most common 
justifications for fair use--that the copyright holder would not grant permission 
because of transaction costs or other obstacles to bargaining--are inapplicable. 
 
One can construct a plausible argument for fair use, even where such use is 
inconsistent with the terms of the open source license. Take the example of a 
commercial developer who simply incorporates large portions   of an open 
source program into some commercial software, and does not release the 
resulting product under an open source license, but rather sells it subject to 
typical commercial license that permits only limited uses of the executable 
code and no access to the source code. The first factor to consider is the 
nature of the use. This would not be research, teaching, or commentary--but 
simply a commercial use that weighs against fair use. However, other aspects 
of the use could turn the factor toward fair use. It could be productive use 
rather than merely reproductive--like making a copy, particularly if the code 
was modified. Where the user supplies independent creative input, fair use is 
more likely to apply. 
 
Strangely enough, the very fact that the user was changing it from open 
source to commercial code could be used to argue for fair use. The unlikely 
analogy here would be to the rap music parody of the song "Pretty Woman" in 
Campbell v. Acuff-Rose Music. 166 The plaintiff in Campbell held the copyright in 
the venerable Roy Orbison song, "Pretty Woman." Defendants parodied the 
song in their own "Pretty Woman." 167 Defendants' parody effectively criticized 
the worldview of the "white-bread original." The essence of parody is that it 
must borrow from the original in order to ridicule it. The author of the original 
would likely refuse the use of his own work as a means for criticism; however, 
fair use plays a role here to further the deeper goals of copyright law--the 
creation and distribution of creative works. Where the author would use 
copyright to suppress expression (that is, to refuse permission to the making 
of a parody), fair use permits the use of copyrighted works to create works 
that comment upon them. 
 
An analogy could also be made to the use of open source code in a commercial 
product. As with parody, the use is one that would not occur with the 
agreement of the copyright holder. The refusal to license arises out of a desire, 
in a very broad sense, to limit a species of expression. Certainly, the 
limitations arise out of the very best of intentions--the wish to keep the code 
solely in the open source arena and out of closed commercial products--but the 
same can be said of parody. The copyright holder may prefer not to hear a rap 
version of "Pretty Woman," or to see the photo of a pregnant movie star 
reproduced with the head of a comic actor, 168 or to have her "I Love New York" 
advertising campaign parodies in an "I Love Sodom" skit, 169 but fair use can be 
used to prevent such suppression of speech that is objectionable to the 
copyright holder. An argument can be made that copyright should not be used 
to control the expression of others. The counterargument, of course, is that the 
restrictions are necessary for open source to survive. If open source software 
could be readily used in commercial products, then the incentive to create 
open source software could be severely reduced. Under that view, the 
underlying purpose of copyright law, which is to promote creative expression, 
would be furthered by rejecting the analogy to parody. 
 
The very nature of open source software also makes it more subject to fair use 
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for another reason. Unpublished works are less likely to be subject to fair use. 
Thus, where The Nation printed excerpts from President Gerald Ford's soon-to-
be-published autobiography, 170 and where a biography of J.D. Salinger included 
excerpts from his unpublished notes, 171 the courts denied fair use, despite the 
favored nature of the works in reporting historical facts and literary history. 
Commercial software has a peculiar status with respect to publication. The 
executable code is published by being distributed to the paying public, but the 
source code from which it springs is often kept unpublished. Accordingly, 
someone who managed to get some of the source code and publish it might 
not qualify for fair use, given the heightened protection for unpublished works. 
However, the whole point of open source software is to publish both the 
executable code and the source code, and as such, it would be more subject to 
fair use. 
 
The final factor in fair use analysis is "the effect of the use upon the potential 
market for or the value of the copyrighted work." 172 Here again, the 
paradoxical nature of open source licenses--using intellectual property law to 
keep software free--leads to an inversion of the normal analysis. Suppose 
some open source code was incorporated, without permission, into a 
commercial program that performed a similar function (e.g., both programs 
were word-processing programs). The market analysis will naturally depend on 
the nature of the software, but it might be difficult for an open source 
copyright holder to show cognizable market harm. The obvious market harm 
would be the loss of potential licensing revenue, but if the code were freely 
available without a fee, then the loss of revenue would be zero. Another 
species of market harm could be the effect on the demand for the open source 
version. Some potential users of the open source version might instead choose 
the commercial version, which would constitute harm to the market; however, 
there are other ways to characterize it. 
 
The commercial product arguably expands the market for the work. First, to 
the extent that the commercial product is successful, it could also increase 
demand for the open source version. Thus, although the use was contrary to 
the wishes of the copyright holder, she may not be able to show  the sort of 
concrete market harm that courts require. Second, even if the commercial 
segment of the product market increases at the expense of the open source 
segment of the market, that may not constitute the sort of market harm that 
weighs against fair use. Where the issue is not loss of licensing revenue 
because the copyright holder has distributed her product for free, but rather 
control of a product market, the sort of loss at issue may not be protected 
from fair use. For example, in Sony Corp. of America v. Universal Studios, Inc., 
the holders of copyrights in television programs objected to the practice of 
home video taping of the programs. 173 Nevertheless, the Supreme Court held 
fair use applicable. 174 In part, the Court relied on the rationale that denying fair 
use would, in effect, grant broadcasters control over the market for 
videocassette recorders. 
 
The foregoing analysis, suggesting that open source software may sometimes 
be more subject to fair use than commercial products, has a strange ring to it. 
Surely, if a software copyright holder has been so generous as to release her 
code subject only to the requirement that it remain open source, it would be 
perverse to allow that requirement to be ignored. However, the issue 
ultimately could be, what does copyright protect? If it is seen as a general form 
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of property, then perhaps any restriction the copyright holder requires should 
be enforced. As discussed above, copyright can be seen as a balance. In order 
to promote the creation of works, authors are given a specific set of exclusive 
rights, but if the author effectively waives those rights and allows her code to 
be freely copied and distributed, but only with respect to some people, perhaps 
copyright law would not enforce her division of the market. Indeed, although 
the case law is presently scant, there is some authority for the proposition that 
using copyright to control a market would constitute misuse of copyright, 
although such use is better characterized as a more benign attempt to control 
a market than to keep it free. 
 
This analysis would apply where the user is not a party to an open source 
license. Another set of issues arises with respect to how effective the open 
source license restrictions are on licensees. As noted, open source licenses are 
the most generous of legal documents--offering free access to copyrighted 
material. 175 However, open source licenses will typically have a couple of 
restrictions. For licenses like the venerable GPL, the most important provision, 
intended to ensure that the software remains open source, provides that the 
licensee cannot make the code private, or incorporate it into a product that is 
itself not open source. The license will also provide that if the licensee 
distributes adapted versions, she will make the adapted source code available. 
It may further provide that future versions  will properly attribute the authors 
of the software. 
 
Of course, those provisions will not have an effect on someone who is not a 
party to the license. So the open source licenses also have provisions 
addressing how one becomes a party to the license--and indeed, they are quite 
broad in some licenses. For example, the GPL states: "By modifying or 
distributing the Program (or any work based on the Program), you indicate 
your acceptance of this License to do so, and all its terms and conditions for 
copying, distributing or modifying the Program or works based on it." 176 Such 
provisions would make agreement to a contract occur rather easily, going 
beyond even conventional clickwrap and shrinkwrap provisions. 177 
 
Other provisions in some open source licenses, if effective, would override any 
fair use rights that the licensee might have. Whether state licensing law should 
have such effect with respect to federal copyright privileges is, at best, 
unsettled. 178 Another provision common to open source licenses is a blanket 
exclusion of warranties and limitation of remedies, which is not a surprising 
allocation of risks, especially where such licenses are so frequently given 
without any charge. The license might also authorize the licensor to disable the 
software if there was a default in payment. 179 
 
So questions could arise as to the effectiveness of such license provisions 
under the foregoing analysis. 180 This concern has resulted in the drafting of a 
uniform law on licensing. 181 Because software companies were so active in the 
drafting process, this uniform law on licensing has been severely criticized as 
favoring licensors too heavily and giving little shrift to licensees. 182 
 
Without wading into the details of the proposed UCITA, 183 one can phrase the 
question generally: should such provisions as the ones cited above be made 
enforceable in order to strengthen the open source movement? Notably, this 
creates a strange alignment between the open source movement and its usual 
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targets, proprietary software companies, because both would arguably benefit 
from a licensing law that gave broad powers to licensors. However, that 
alignment itself indicates the answer to the question. Many models of software 
distribution are likely to arise in the near future, from pure open source to the 
most closed proprietary system. To tilt licensing law in favor of licensors 
generally, or even to draft special provisions supporting some definition of an 
open source license, would likely cause more harm than good. 
 
B. Direct Regulation of Software: of Dispersal, Monitoring, and Norms 
 
Governments care quite a bit about what can be done with software. Some 
nations have made rather blunt attempts to control the information coming in 
and out of their respective countries via the Internet. 184 All governments want 
to regulate some aspects of computer networks--and want to regulate some 
potential uses very strictly. 185 Lessig makes the incisive point that open source 
software may be more difficult to regulate than proprietary software because 
the government would have to regulate not only the producer of the software, 
but also every other person who had a copy of the source code because each 
could modify the code. 186 This section looks to some other aspects of the 
interplay between open source licensing and government's ability to regulate 
code. 
 
In some ways, the very openness of open source renders it more subject to 
government regulation. For example, suppose a government, for some reason, 
wished to prohibit the use of a particular algorithm. With  respect to 
commercial, closed software, it might be difficult to determine whether the 
software used the algorithm. Examining the executable code and observing 
how the program behaved might not disclose whether the prohibited algorithm 
was used. This would depend on the nature of the algorithm, of course. 
Sometimes it would be quite obvious whether the program used the algorithm 
in question. But, other times, examination of the source code would be 
necessary. If the software company did not voluntarily turn the source code 
over for inspection, it might be necessary to obtain a warrant--which would 
require meeting the necessary standards of probable cause. 
 
Open source, on the other hand, is freely accessible. The source code is freely 
distributed along with the executable code, so obtaining the source code would 
be quite easy. Thus, a governmental agency might have much greater ability 
to monitor and regulate open source software. Indeed, some open source 
licenses require that source code be made available to anyone who requests a 
copy, so an agency could simply request a copy, as opposed to entering an 
adversary proceeding to seek a warrant. 
 
These legal distinctions might not make much difference in the real world. The 
terms of open source licenses might require that source code be readily 
available, but a licensee might not feel bound by the strict terms of the license. 
Even if refusing a request for the source code were a theoretical violation of 
the license, it would only matter if an action to enforce the license were 
brought. The government, as a nonparty, would presumably lack standing to 
enforce the license. The party who could enforce the license, the original open 
source licensor, might of course be quite unlikely to step in on behalf of the 
government to enforce a disclosure requirement against a fellow software 
developer. Even if that unlikely coalition were to arise, the remedy for the 
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failure to disclose might not be an injunction requiring disclosure, but rather 
termination of the license. 
 
Beyond enforcement, another aspect of regulability is politics. One might 
expect that open source would be more subject to regulation than strictly 
commercial interests. Public choice theory holds that broad, diffuse groups, like 
open source developers, are likely to be less effective in achieving political 
goals than narrow interest groups, such as the software industry. Indeed, 
congressional legislation in the intellectual property area has of late been 
driven largely by industry interests. However, outside the legislative sphere, 
open source may have more influence. 
 
Open source might prove harder to regulate for purely political reasons, as the 
recent shift in United States policy on encryption illustrates. 187 For years, the 
United States has restricted export of encryption software. 188  In particular, 
even where the United States permitted export of certain encryption products, 
it permitted only export of the executable code, not the more useful source 
code. In other words, companies could export the functional executable code 
so that people could use some types of encryption, but not the transparent 
source code, which disclosed how it worked and could also be modified. 
Because other countries allowed export of more powerful encryption than the 
United States and because the efficacy of such restrictions is rather 
questionable, there was considerable industry pressure to relax the 
regulations. 189 The United States initially announced that more powerful 
encryption would be exportable, but again only in executable code form. Such 
rules would work heavily against open source developers, who depend on 
being able to deliver both executable and source code versions, and to share 
code across borders during development. The United States accordingly 
modified the proposed regulations to permit the export of source code as well. 
190 In short, the moral suasion of open source developers achieved what 
insistent industry advocates had not. Thus, norms of software development 
may have influenced the regulation of software. 191 
 
Conclusion 
 
Should intellectual property laws be amended or interpreted in order to foster 
open source? 192 Although openness is certainly a great virtue, 193   the 
experience until now counsels that legal theorists may be more limited than we 
realize in predicting the effects of changes in the law. The open source 
software offers many puzzles and lessons for intellectual property theory and 
doctrine. Perhaps the single lesson might be that engineers are smarter than 
lawyers. 194 Considerable legal scholarship in recent years has lamented the 
increases in intellectual property protection that have steadily diminished the 
public domain, but the open source movement has turned that process on its 
head. The open source movement has used strong protection of intellectual 
property to quite different ends. In particular, various open source licenses rest 
on strong copyright protection and restrictive licensing provisions. However, 
the open source licenses use such restrictive law to keep open source code 
free. Exactly because intellectual property laws place so much control in the 
hands of copyright owners, various flavors of open source licenses are able to 
finely tune the way in which code is kept available for others to study, modify, 
and redistribute. But, that does not mean that open source should provide a 
justification for strong intellectual property protection. The boom in software 
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patents, for example, is a considerable threat to open source. 195 
 
Trying to interpret or enact intellectual property laws to foster open source 
may well be beyond the planning powers of lawyers, even if one were to 
assume that somehow such legislation would proceed free of the special 
interests that have guided so much legislation in the intellectual property area. 
Open source, in its most recent form, has built upon laws that seem to favor 
the opposite--restrictive intellectual property and licensing laws congenial to 
closed, proprietary models. Moreover, its very success will lead to many 
variations of open source. 196 Software companies are likely to make more of 
their source code accessible to the public, for various reasons: it can attract 
more developers to work with the product, it can increase the amount and 
quality of feedback from users, and it may establish the software as an 
industry standard. 197 A particularly interesting example could arise if Microsoft 
opens up some or all of its source code as part of a resolution of the antitrust 
case brought by the United  States. 198 But such opening up of code will not 
always be so free as to qualify for the term "open source," as it is used now. In 
particular, companies may make source code accessible on more restrictive 
terms by limiting copying and modification, or by automatically transferring 
rights in modification to the original copyright holder. It is highly unlikely that 
lawmakers now envision all the permutations of open source that may arise, 
much less craft laws tailored to each one. 
 
Another reason for concern springs from the government requiring disclosure 
of source code. Making software open source has undeniable social benefits, 
but the choice to make it open should lie with the author. Thus, there could be 
dangers in laws intended to encourage open source, because by definition, 
they would make legal benefits contingent on disclosing the source code. By 
contrast, the open source licensing model relies on voluntary participation, a 
much more congenial model. 
 
 
 
FOOTNOTES: 
 
 

n1 See, e.g., Open Sources: Voices From the Open Source Revolution (Chris 
DiBona et al., eds., 1999) (collection of essays on the history, theory and 
practice of open source software); on software law generally, see Mark Lemley 
et al., Software and Internet Law (Aspen Law & Business 2000). See also Mark 
A. Haynes, Black Holes of Innovation In the Software Arts, 14 Berkeley Tech. 
L.J. 567 (1999). The copyright listserve cni-copyright@cni.org, run by the 
Coalition for Networked Information, often has good discussion of both legal 
and social issues concerning open source software.  
 

n2 Good places to start for information on Linux are 
http://www.linuxdoc.org/ (last modified Nov. 17, 2000) (the Linux 
Documentation Project) or http://www.linuxjournal.com/ (last modified Nov. 
27, 2000) (Linux Journal).  
 

n3 See http://mozilla.org/ (last visited Sept. 16, 2000) (Netscape's open 
source browser).  
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n4 See, e.g., Amy Harmon, A Surge in Popularity of Software that Unlocks 
the Code, N.Y. Times, Jan. 4, 1999, at C18.  
 

n5 See http://www.gnu.org/ (last visited Sept. 16, 2000), or 
http://www.fsf.org/ (last visited Sept. 16, 2000) (home of the Free Software 
Foundation and the GNU project, source of some of the best-known pieces of 
free software and containing links to discussions of the philosophy behind free 
software). "Free software" is a better term than "open source" in some 
respects. This article uses "open source" simply for descriptive reasons, to 
focus on the legal implications of permitting access to the source code.  
 

n6 See http://www.opencode.org/ (last visited Sept. 16, 2000) (consortium 
devoted to supporting the open code development model, associated with the 
Berkman Center for Internet & Society at Harvard Law School). The Berkman 
Center has also taken the open source approach in the litigation context with 
its Open Law project for pro bono litigation, in which it seeks to "develop 
arguments, draft pleadings, and edit briefs in public, online." See 
http://www.berkmancenter.org/ (last visited Sept. 16, 2000).  
 

n7 See discussion infra Part II.  
 

n8 Source code is "the form in which a computer program is written by the 
programmer. Source code is written in some formal programming language 
which can be compiled automatically into object code or executed by an 
interpreter." The Good Free Online Dictionary Of Computing at 
http://foldoc.doc.ic.ac.uk/foldoc/index.html (last visited Sept. 17, 2000).  
 

n9 See id.  
 

n10 There can be many variations on the source code/executable code 
distinction. Some computer languages, such as BASIC, are interpreted 
instruction by instruction. Java falls somewhere in between because it is not 
compiled into machinelevel executable code (which would limit it to running on 
one operating system), but rather into Java byte code, which in turn can be 
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