
Suffolk University Suffolk University

Digital Collections @ Suffolk Digital Collections @ Suffolk

Suffolk University Law School Faculty Works Suffolk University Law School

1-1-2000

The Paradoxes of Free Software The Paradoxes of Free Software

Stephen M. McJohn
Suffolk University, smcjohn@suffolk.edu

Follow this and additional works at: https://dc.suffolk.edu/suls-faculty

 Part of the Intellectual Property Law Commons

Recommended Citation Recommended Citation
9 GEO. MASON L. REV. 25 (2000)

This Article is brought to you for free and open access by the Suffolk University Law School at Digital Collections @
Suffolk. It has been accepted for inclusion in Suffolk University Law School Faculty Works by an authorized
administrator of Digital Collections @ Suffolk. For more information, please contact dct@suffolk.edu.

https://dc.suffolk.edu/
https://dc.suffolk.edu/suls-faculty
https://dc.suffolk.edu/suls
https://dc.suffolk.edu/suls-faculty?utm_source=dc.suffolk.edu%2Fsuls-faculty%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/896?utm_source=dc.suffolk.edu%2Fsuls-faculty%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dct@suffolk.edu

Electronic copy of this paper is available at: http://ssrn.com/abstract=956647

 1

9 George Mason Law Review 25 Fall, 2000

The Paradoxes Of Free Software

Stephen M. McJohn *

* Professor of Law, Suffolk University Law School. Thanks to Lorie Graham,
Jude McJohn, Bill McJohn, and Alex Behrakis. Copyright (c) 2000 George Mason
Law Review

Introduction

The open source software movement poses a profound challenge to the way
that software is made and distributed. 1 Some of the best known pieces of
software are open source: Linux, which runs many Internet servers and is the
likeliest competitor to the scaled-up version of Windows; 2 Netscape Navigator,
the browser that popularized the World Wide Web; 3 Apache, a widely used
web server program; Sendmail, a common email server program; and the Perl
programming language. 4 Open source software (also known, with somewhat
different connotations, as free software 5 or open code 6) differs in two key
respects from most proprietary software. First, the holder of a copy of some
open source software is free to make as many copies as she pleases, to modify
the code, and to further distribute copies. 7 Second, to enable the foregoing,
open source software is distributed with access to the source code, 8 not just
the executable code version. 9 This article identifies the questions that open
source software poses for intellectual property theory and doctrine, and
concludes that open source software may have a considerable influence on the
law of developing technologies--perhaps a greater effect than the law will have
on software practices.

Most computer programs are written in source code, but run as executable
code (also known as object code or machine code or binary code). 10 For
example, here is a snippet of the source code from a program that runs on a
gargantuan data storage device:

#include <time.h>

#include <limits.h>

#ifndef ACOS4

#include <sys.types.h>

#endif

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

Electronic copy of this paper is available at: http://ssrn.com/abstract=956647

 2

Source code for a computer program is written in a high-level language, such
as C or FORTRAN. Changes to the program are made to the source code, but
the program is not run in its source code version. Rather, the source code is
compiled (a process somewhat akin to translation or conversion) into
executable code (a low-level language that uses the instruction set of the
computer). Because the source code is more abstract, a few lines of source
code can produce many lines of executable code. By analogy, if one could write
a line of source code that said "Walk to the store," the resulting executable
code might say, "Lift up your left foot. Stop lifting it. Move it forward thirty
inches. Set it down." and so on until excruciatingly explicit directions for
walking to the store were produced. Thus, a portion of the executable code
produced by compiling the five lines of source code above would look like this:

F0F0F3F2 F0F0F0F0 F0F0F0F0 7B899583 93A48485F0F0F3F3 F0F0F0F0
F0F0F0F0 7B899583 93A48485F0F0F3F4 F0F0F0F0 F0F0F0F0 7B898695
84858640

F0F0F3F5 F0F0F0F0 F0F0F0F0 7B899583 93A48485

F0F0F3F6 F0F0F0F0 F0F0F0F0 7B859584 89864040

F0F0F3F7 F0F0F0F0 F0F0F0F0 40404040 40404040

F0F0F3F8 F0F0F0F0 F0F0F0F0 A3A89785 84858640

F0F0F3F9 F0F0F0F0 F0F0F0F0 A3A89785 84858640

F0F0F4F0 F0F0F0F0 F0F0F0F0 A3A89785 84858640

F0F0F4F1 F0F0F0F0 F0F0F0F0 40404040 40404040

F0F0F4F2 F0F0F0F0 F0F0F0F0 615C40E2 E8D4C1D7

F0F0F4F3 F0F0F0F0 F0F0F0F0 A3A89785 84858640

F0F0F4F4 F0F0F0F0 F0F0F0F0 40404040 40404040

F0F0F4F5 F0F0F0F0 F0F0F0F0 7B898640 84858689

F0F0F4F6 F0F0F0F0 F0F0F0F0 A3A89785 84858640

F0F0F4F7 F0F0F0F0 F0F0F0F0 7B8593A2 85404040

F0F0F4F8 F0F0F0F0 F0F0F0F0 A3A89785 84858640

F0F0F4F9 F0F0F0F0 F0F0F0F0 7B859584 89864040

F0F0F5F0 F0F0F0F0 F0F0F0F0 40404040 40404040

F0F0F5F1 F0F0F0F0 F0F0F0F0 7B898640 84858689

F0F0F5F2 F0F0F0F0 F0F0F0F0 A3A89785 84858640

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 3

F0F0F5F3 F0F0F0F0 F0F0F0F0 7B859389 86408485

F0F0F5F4 F0F0F0F0 F0F0F0F0 A3A89785 84858640

F0F0F5F5 F0F0F0F0 F0F0F0F0 7B859584 89864040

F0F0F5F6 F0F0F0F0 F0F0F0F0 40404040 40404040

F0F0F5F7 F0F0F0F0 F0F0F0F0 615C4040 40404040

F0F0F5F8 F0F0F0F0 F0F0F0F0 5C5C40E2 E8D4C1D7

Note that the foregoing executable code is even in a reader friendly
hexadecimal format. As the computer would see it, it would simply be a binary
wall of 0's and 1's four times as long. Like source code, executable code
consists of instructions and data, but obviously in a much less user friendly
form. Source code looks like stunted English (include this, do this, if X is true
then add A to B), whereas executable code is an inscrutable mass.

When a person gets a copy of the program to use on her computer by
downloading it from a web site, loading it from a CD, or otherwise getting a
copy from the software provider, she usually gets just the executable code
version. She can then run the program, but little else. If she would like to
change the program, integrate it with other software, or analyze it to see how
it works, the executable code version is usually not very helpful. Although the
painstaking process of reverse-engineering may disclose how the program
works, modifying the executable code would be much more difficult than
simply modifying the source code and recompiling the program. 11 For someone
who simply wants to run the program, the source code is unnecessary.
However, for someone who wants to do anything else, the source code is
generally required. Engineers often compare having the source code to having
the ability to open the hood of a car, see how the engine works, and work on
it.

For many software producers, the fact that their customer receives only the
executable code is important. The producer attempts to maintain control over
the code in two ways. She can deliver only the executable code, so the licensee
can run the program but little else. 12 She can also deliver the code subject to a
license that restricts further copying and distribution, so the licensee does not
turn around and sell or give copies to other potential customers. Open source
software producers, by contrast, grant much freer access, both practically and
legally, by delivering source code along with the executable code, and by freely
granting permission to modify and further distribute the software. As discussed
in the following sections, open source software both challenges the theoretical
underpinnings of intellectual property law and promises to affect the
development of intellectual property law.

I. The Legal Structure of Open Source Software

Open source software is not in the public domain. Rather, a combination of
copyright law and trademark law serves to permit the free distribution of open

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 4

source software. The software is kept under copyright, but freely licensed
under one of various open source licenses. The certification mark, "OSI
Certified," may be affixed to a copy of the software to quickly show that it is
open source. Anyone who takes a copy of the software can use it, change it,
make and distribute more copies, and even sell copies without paying royalties
to the original author. The open source license requires little; nevertheless, it
does not abandon the copyright.

For example, suppose Ariel writes an original computer program, "Translator,"
which translates text from Swedish to Finnish. She could write the program in
a number of ways: typing code at the keyboard, using a development tool
program 13 that would produce detailed code from her directions, or speaking
into a dictaphone and having someone else type it in, etc. 14 One way or the
other, she produces the source code of the pro gram, but she might not be
able to patent it. 15 Other programs exist that already do the same sort of
thing, so the program (or more accurately, a process or machine embodied by
the program) would be patentable only if it worked in a new way that was not
obvious to people working in the field. 16 Even then, she would have to file a
patent application, wherein she would describe the invention and claim quite
specifically what was new about her process. 17 To date, however, open source
developers have generally not sought patent protection for their software. 18

Copyright, however, is much easier. As soon as the program is fixed in any
form, the author has the copyright in the work. 19 The work needs only meet a
very low standard of originality--quite literally, it only needs to be more
original than a phone book. 20 Moreover, neither copyright registration nor any
other formality is necessary to have the copyright, although registration is
quite simple and helpful if she subsequently sues someone for infringement. 21
So, as soon as Ariel writes the program down on paper, on disk, or on tape
recorder, she has the copyright. As a copyright holder, Ariel has a set of
exclusive rights: the right to make more copies, to distribute copies to the
public, or to make derivative works (i.e. to recast or transform the work into
another creative work). 22 Anyone else who does any of these things would
infringe her copyright, unless they have a license from her or unless they
qualify for fair use or some other protective provision of copyright law. 23 She
also has the exclusive right to display the work publicly or to perform it
publicly, but since public readings or exhibitions of computer code are not too
popular at the moment, 24 we will focus on the rights to copy, distribute, and
transform the code.

Notably, Ariel does not need to publish her source code to receive protection
under the intellectual property laws. She can register her program for
copyright without disclosing much of the source code or executable code;
rather, Copyright Office regulations require her only to disclose a portion of the
code. 25 From that portion she may even redact any trade secrets or other
proprietary material. 26 On the other hand, in order to obtain a patent, she
must disclose the invention; however, such disclosure would only require a
description of the invention used in the software that would enable another
person working in the field to make and use the invention. 27 It would not
require her to disclose the specific code she used to implement it, or the other
code that comprised the rest of the program. 28 Thus, Ariel can receive a
copyright with essentially no disclosure, and a patent with only a narrow
disclosure. 29 Moreover, if she uses trade secret law to protect the program,

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 5

publication is counterproductive. 30

After writing the program, Ariel does not have a program that runs on a
computer, rather just the source code text. Although she can store that text in
a computer, she cannot run the program itself. To get the program into
executable form, Ariel must run it through a compiler--a program that converts
the source code into executable code. The computer can then execute the
compiled program. Ariel then has the copyright in both the source code version
of the program and the executable code version. 31 If Ariel wanted to change
the program (e.g., to fix bugs or to add capabilities), she could change the
executable code directly, which is an extremely laborious process, or she could
change the source code and compile the program again.

Now suppose Beta would like a copy of Ariel's program--to use it, distribute it,
and adapt it. Beta needs two things: a copy of the program, and Ariel's
permission to make copies (or distribute copies, or to adapt the program). If
Ariel were a typical commercial software company, Ariel would, for a sum of
money, provide a copy of the executable code to Beta and license Beta to use
the program subject to a number of conditions. The terms of the license would
typically prohibit Beta from making additional copies, from distributing any
copies (including the one that Ariel gave Beta), from reverse-engineering the
program to figure out how it works, and from adapting the program--in other
words, from doing anything other than using the program herself. Whether or
not all those provisions are enforceable is unsettled, 32 but Ariel would likely
take the position that the provisions are enforceable. Thus, Beta could face
potential litigation from Ariel if Beta sold her copy to someone else, gave
copies away to others, or made changes to the program itself. Moreover, if
Beta wanted to change the program, she would have a hard time because she
would possess only the executable code, not the source code.

Ariel could decide, instead, to distribute the code under an open source license.
There are many reasons why she might want to do this. The leading rationales
for open source are quite different. Some, most notably the Free Software
Foundation, see it as an issue of ethics and politics. 33 Under this view, software
is a form of expression. Imposing restrictions on this expression is as wrong as
restricting the flow of scientific or artistic discussion. 34 Others see open source
simply as a better way to develop software. 35 Some even call it a better
business model, reflecting a far different world view. 36 If software is closed,
then only the proprietor can change the source code. If the software is open
source, then other developers are able to find problems or suggest
improvements quite easily, leading to better software. 37

To make the software open source, Ariel would provide Beta a copy of both the
executable code and the source code. She could either give the code for
nothing or charge for a copy. Either way, she would not give Beta the code free
of restrictions; rather, Ariel would give it to Beta subject to an open source
license. An open source license serves to keep the software free of any
restrictions on use, copying, or distribution. As a pioneer of the open source
movement put it, "Think free speech, not free beer." 38 Although Ariel might
charge Beta for a copy, she would deliver that copy under a license that
permitted Beta to do almost anything she wanted with the code.

There are various versions of open source licenses that Ariel could use. 39 Some

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 6

open source licenses (such as the BSD license, the MIT license, and the Mozilla
license, under which Netscape makes the code to its browser freely available)
provide, in effect, that the licensee can do whatever she wishes with the
software. 40 Other open source licenses require that code be kept open source.
41 Thus, if Beta does change the program and distributes copies of the new
version, she must make both the executable code and source code available.
Such an open source license prevents Beta from restricting the code legally,
through licensing restrictions, and practically, by keeping revised versions of
the source code under her control. Such licenses include the GNU General
Public License (GPL) and the Artistic License.

The various licenses that grant access to source code all differ in some details.
So what is a true open source license? The Open Source Initiative (OSI) has
offered an answer in its Open Source Definition. 42 To be an open source license
under that definition, a license:

1. must provide both executable and source code;

2. must allow modification and redistribution (with or without modifications);

3. must not limit distribution to certain fields of endeavor or products, or limit
its use with other free software. 43

To read a software license and determine whether it complies with those
requirements is no easy task, particularly for a lay engineer who would rather
read code than legalese. The OSI has provided an easy way for software
developers to figure out if a license meets its definition of "open source"
through the registration of a certification mark "OSI Certified." 44 Anyone who
distributes software marked "OSI Certified" represents that the software is
being distributed under a license that has been approved as conforming to the
Open Source Definition. Therefore, through an elegant combination of
copyright and trademark law, software can be easily maintained as open
source.

An additional provision contained in most open source licenses is a complete
disclaimer of warranty and limitation of remedies. For example, the GPL
provides:

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 7

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 45

In effect, an open source licensor quite reasonably says "I am providing you
the source code. You can decide whether this software does what you need it
to do." Moreover, most open source is distributed free of charge (as well as
free of restrictions), so notions of risk-spreading by placing the cost on the
maker are inapplicable. Returning to the hypothetical, if Beta wished to get a
warranty from Ariel, presumably the two could negotiate such terms.

Open source licenses also address another trademark-related issue--protecting
the reputation of the author of the software. 46 Even the most permissive open
source licenses provide that if the licensee distributes the software, she must
include the copyright notice giving credit for authorship to the original author.
47 Most open source licenses also provide that if the licensee modifies the
software, then she must ensure that the modifications are not attributed to the
original author. 48 She can do so by listing what changes were made, who made
such changes, and when they were made. Thus, open source licenses require
licensees to respect the author's right of attribution (to get credit for her work)
and her right to avoid misattribution (not to have other people's work ascribed
to her).

These attributes of open source licensing rest primarily upon the licensing
protections of copyright and trademark. Most open source licenses do not
specifically address the issue of patents, but open source developers are
affected by patents as possible inventors or infringers. Suppose Ariel's program
did contain a new, inventive process and she proceeded to patent it. In
deciding whether to go open source or not, she could do so for any number of
reasons. She might want to make money by licensing the patent, or she might
want to patent the process in order to make sure no one else did, keeping the
process free for public use. The patent gives her the exclusive right to use her
process, or to make or sell a machine containing her invention. 49 By
distributing her software under an open source license, she would authorize
others to use the program free of her patent claim. 50

The flip side is the risk of infringing someone else's patent. Even if Ariel
devises her program independently, its use could infringe a patent she does
not even know exists. 51 If Beta gets a copy and uses it, then Beta could
likewise be liable. Beta might then consider suing Ariel for infringement of the
warranty of good title, especially if Beta had paid for her copy. 52 The blanket
disclaimer of warranty, similar to that of the GPL, may protect Ariel, as could a
number of other arguments depending on the circumstances--such as whether
Ariel charged for the copy, whether she was a software merchant, or whether
the program was consumer software. 53

The legal structure of open source, accordingly, is an elegant and robust use of
intellectual property law. The net result turns the customary use of intellectual

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 8

property on its head, by using intellectual property laws, which normally are
used to guard exclusive rights, to safeguard free access to and use of software.

II. Open Source and Intellectual Property Theory: What Do Authors Want?

Various theoretical frameworks for intellectual property law have been brought
forward in recent years. 54 At the risk of oversimplifying, one can lump them
into three categories: economic theories, Lockean natural rights theories, and
Hegelean personality theories. This part of the article first explores the
economic theories of intellectual property and then considers the Lockean and
Hegelean theories together as non-economic alternatives.

A. Law, Economics, and the Incentives to Give Away Work Product

The great difference in economic analysis of proprietary software development
and open source development is well illustrated by the topic of network
economics and industry standards. 55 For example, Mark Lemley and David
McGowan discuss why for-profit software companies might not have the
incentive to develop a potentially huge-selling product: the Windows operating
system is protected by copyright law. 56 Copyright law, however, protects only
the expressive aspect of works, not their functional aspects. 57 So another
software company could copy the unprotected functional aspects of Windows
and sell the functionally equivalent program to a big market without violating
the copyright. But, as Lemley and McGowan explain, several reasons militate
against such a strategy. 58 Although copyright does not protect functional
aspects of the program, there remains legal uncertainty about which aspects
are functional. 59 Also, other intellectual property (such as patents or trade
secrets) might protect some aspects of the program. 60 More important than
the legal uncertainties, perhaps, the market risks would be great deterrents to
a commercial competitor. Reverse-engineering the program is a time-
consuming and uncertain enterprise, and Microsoft periodically upgrades the
program, which means that a commercial competitor might have difficulty in
selling an up-to-date product. 61 Consumers might also be wary of whether the
program was truly a functional substitute. 62 Finally, and most dulling to the
incentives, Microsoft presumably has the ability to lower the price of its
program to compete with any new entrant, so the potential payoff is greatly
reduced. 63 All in all, it makes little sense 64 for a commercial competitor to
make the huge investments in development and marketing that would be
required to compete--when other avenues of investment are likely to be more
fruitful.

The economic incentives for open source developers can be quite different.
Certainly, some open source developers simply wish to sell soft ware, and
would thus be subject to the same disincentives. 65 For many open source
developers, however, the incentives are quite different: enjoyment of
programming itself, the desire to show off technical feats to others in the field,
the wish to sell software-related services, an idealistic urge to further computer
science, and even the desire to tweak the proprietary software companies. Nor
would they be scared off by the fact that an existing software product seller
could respond to a new rival by lowering prices--because the open source
developers are giving their product away anyway. Therefore, open source
developers might be willing to take on a task, such as building a Windows
emulator, where a profit-seeking enterprise would not. Indeed, just as

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 9

economic theory might predict, such an enterprise exists: the WINE project 66 is
an open-source project building a Windows emulator to run with the Linux
operating system--in short, a piece of software that copies the functionality of
Windows running on a Linux system.

So the economics of open source may be somewhat different from the
economics of more established areas of intellectual property. Intellectual
property laws, however, provide some of the incentives fueling the current
open source movement. Remember that open source software is not public
domain software: the developer does not renounce her copyright and put the
code into the public domain. Rather, the code is freely distributed, subject to
one of the open source licenses. So the question becomes, what does open
source teach about the underlying economic theory of intellectual property?
Economic theories of intellectual property law have obvious appeal, both
because of the increasing role of intellectual property in economic life and
because the United States Constitution seems to have an explicit economic
basis for intellectual property law. 67 These theories come in several flavors,
with the common theme that intellectual property laws should promote
economic efficiency. These theories include the incentive, property, and
spartan theories.

1. The Incentive Theory

The incentive theory draws its legal basis from the Constitution: "The Congress
shall have Power . . . to Promote the Progress of Science and the useful Arts,
by securing for limited Times to Authors and Inventors the exclusive Right to
their respective Writings and Discoveries." 68 Under this approach, intellectual
property law exists in order to overcome the free-rider problem with public
goods. 69 Without copyright law, the thinking runs, authors have a diminished
incentive to produce books, songs, and computer programs. To give authors an
incentive to write, copyright law gives them the exclusive rights to make copies
of their books and to sell these books. Likewise, the award of a patent grant
gives a pharmaceutical company an incentive to spend millions on research.

The flip side of the incentive approach is that intellectual property laws should
be limited to the protection necessary to promote the creation of new works
and inventions. Language of several Supreme Court cases appears generally to
follow the incentive approach, characterizing copyright as an incentive to
create works without burdening users of the work. 70 Nevertheless, the
incentive theory clearly does not comport with the existing state of intellectual
property law in the United States. Intellectual property rights have been
steadily expanding for the last several decades. Copyright law presents
perhaps the greatest disparity between theory and reality. Copyright now
applies to all creative works and is no longer limited to published works where
the author chose to reserve copyright explicitly. 71 The enforcement term has
steadily expanded, and now stands at an improbably long life plus seventy
years. 72 Special statutory protection has been given to anti-copying technology
and even to the printed terms and conditions on copyrighted works. 73 Such
measures take copyright far beyond the scope necessary for the incentive to
create works and eclipse any notion of balance. Rather, as industry has
increasingly guided the legislative agenda, the copyright statute has gone from
a rather simple framework to a labyrinthine monster, full of lengthy specialized
provisions. Other areas of intellectual property have likewise expanded.

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 10

The incentive theory, then, stands more as aspiration than a description of
intellectual property law. One recent case tested whether the courts will strictly
limit Congress' power to pass intellectual property laws on the incentive
rationale. In Eldred v. Reno, 74 plaintiffs sought to have the most recent
extension of the copyright term declared unconstitutional. The Sonny Bono
Copyright Term Extension Act 75 increased the term from life plus fifty to life
plus seventy, and increased the term for work-for-hire from seventy-five to
ninety-five years. Most importantly, the Act was retroactive, so works created
in the 1920's (such as early Mickey Mouse cartoons, in his Steamboat Willie
incarnation) that were about to enter the public domain will now remain under
copyright. The plaintiffs in Eldred challenged the retroactive extension on the
logical ground that an extension of the copyright term by Congress in 1999 is
hardly going to affect the incentives of authors working in 1920. Nevertheless,
given the Supreme Court's generally broad reading of Congress' Article I
powers (such as the extremely broad reading of Congress' power to regulate
interstate commerce, which the Court has read to permit Congress to legislate
on practically any commercial matter 76), the Eldred plaintiffs faced a steep
uphill battle. 77 The District Court for the District of Columbia ultimately decided
that the extension of the copyright term was "within the discretion of
Congress." 78 Meanwhile, the incentive theory is an attractive theoretical
rationale for intellectual property laws, but it does not comport with the
increasingly broad laws in the United States and abroad as under such treaties
as TRIPS. 79

2. The Property Approach

The property approach, by contrast, favors extending intellectual property
protection much further than the incentive approach. 80 As with the incentive
approach, the ultimate goal is efficient use of resources. However, the property
approach looks not only to providing an incentive to create works, but also to
providing an incentive to exploit those works efficiently. The strongest
economic justification for private property generally is that it internalizes costs
and benefits. Under the classic "tragedy of the commons," if property is held
communally, then perverse incentives are created. An individual might use up
resources inefficiently because she does not bear the cost or might fail to
create productive works because she does not reap the rewards. The property
approach has been roundly criticized for, among other things, failing to give
sufficient value to the public domain. 81

3. The Spartan Theory

The spartan theory is a reaction to the great recent expansion of intellectual
property law. 82 Under this approach, intellectual property rights are seen as a
necessary evil. Copyright restricts freedom of expression; patent restricts
research and the utilization of technology; trademark restricts competition. All
three types of restrictions have countervailing benefits, such as overcoming
the free-rider risks inherent in some types of information-producing endeavors.
However, due to the high costs such restrictions impose, the intellectual
property laws should be sharply tailored 83 in a way reminiscent of the First
Amendment, which only tolerates restrictions on speech that are sufficiently
narrow. For example, copyright should not attach broadly, as it does now, to
all areas of human creativity. 84 Rather, copyright should only apply to works to

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 11

the extent that copyright protection is necessary and desirable to promote the
creation of such works. 85 Likewise, trademark protection should be more
strictly limited to prevent consumer deception, in contrast to the broad
protection of brand names under existing law. 86

4. Can Open Source Fit Within an Economic Theory of Intellectual Property
Law?

Open source can be seen as inconsistent with all three economic approaches. If
an economic reward is necessary to spur creation of works, then there would
not be thousands of developers writing software only to freely give it away
under an open source license. Thus, the incentive theory of copyright seems to
be inapplicable. Likewise, success of the free distribution and alteration of open
source software seems to refute the property approach. Rather than the
creator of software (or useful additions) reaping the rewards, it is freely
distributed. Even the spartan approach looks positively generous, granting a
minimal level of copyright protection, where maybe none is necessary. Thus,
open source software might be seen as confirmation of the view that the
regime of intellectual property law has been outmoded by digital technologies;
however, closer examination shows that economic reasoning underlies much of
the open source framework, and that open source has anticipated recent
developments in economic legal theory.

The spartan approach most clearly resembles the spirit of the open source
movement. The open source movement is based on the idea that software
should be freely distributed and revised, and in the eyes of some, that
restricting access to source code is morally wrong. So if there were to be
intellectual property in software, one might think it should be as minimal as
possible. However, as discussed above, open source developers rely on
intellectual property laws to prevent certain uses of open source soft ware,
such as its incorporation into proprietary products or its distribution without
proper attribution of authorship. 87 Thus, adopting a minimalist approach to
intellectual property law could harm the open source movement, if it reduced
the ability to further the movement's goals.

For the same reasons, open source is reconcilable with the incentive theory of
intellectual property. Many open source authors are spurred to create code by
incentives other than copyright: the love of elegant problem solving (a.k.a.
hacking), status among their peers, the wish to further computer science and
make things better generally, and even animosity toward commercial software
developers. An important factor in whether a programmer is willing to share
her code is whether others might try to free-ride on her efforts to make a
profit. Such a result agrees with more recent trends in law and economics.
Richard McAdams has shown how law and economics has paid far too little
attention to the effects of status considerations on incentives. 88 People are
motivated not just by purely material considerations, but also by their desire to
achieve status in the eyes of others. 89 Accordingly, economic analysis of law
must not only consider how legal rules affect wealth in terms of possessions,
but also in terms of the estimation of one's peers. 90 Otherwise, the true
incentive effects of laws will be obscured. Open source provides a particularly
striking example. Looking only to material considerations, open source
developers might appear to be acting contrary to rational economic incentives,
by giving away software. However, when one considers the return in terms of

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 12

increased status among software developing peers (i.e., showing off technical
prowess, or receiving approval for participating in the open source movement,
or building relationships in the development process), ample incentives
become apparent. Likewise, open source licenses that require the code to
remain open source can protect against a possible disincentive--the
resentment that a developer might feel if she gave away software only to see it
incorporated into a proprietary product.

The strangest intersection of open source and legal theory, however, is how
well the open source movement can be used as an example in favor of the
property approach--the theory that intellectual property rights should be as
expansive as practicable. The underlying idea behind the property approach is
not that authors and inventors should be enriched. Instead, the property
approach takes a privatization rationale: intellectual property laws serve to
promote the more effective use of information, by giving individuals the
incentive to exploit it, rather than letting free access by all lead to waste.
Recall that the open source movement relies heavily on keeping software
under copyright and distributing it under a license, rather than putting the
software into the public domain where anyone can do with it what she will. The
open source licenses impose two key restrictions (or, more accurately,
restrictions on restrictions): (1) the licensee may not restrict distribution of the
code and (2) the licensee must make the source code available to others. In
addition, most open source licenses add other restrictions, such as the
requirement that authorship of the code be properly attributed. In a world
without copyright, such licenses would obviously be ineffective; however, even
in a world with relaxed copyrights, such provisions would likely be ineffective. 91
Only under a legal regime like the present, where copyright holders have great
control over their works, and licensing revenues are not at issue, are such
restrictive licenses likely to be enforceable.

Accordingly, the open source movement stands as a counterexample to one of
the strongest criticisms of the property approach--the transaction cost
argument. This argument runs as follows: although privatizing intellectual
property could, in theory, lead to efficient exploitation, transaction costs prove
a formidable obstacle. There are many uses of intellectual property that would
never occur, due to the inability of the rights holder and the potential user to
reach an agreement for a license. For example, if a book is under copyright, a
teacher might wish to make a copy of one chapter to hand out to her class. It
may well be that the copyright holder would not object, but the transaction
costs necessary would prevent the agreement from occurring (e.g., the teacher
must identify the rights holder, communicate with her, negotiate and execute a
license). To the extent that transaction costs prevent use of intellectual
property, while at the same time not enriching the holder because no
agreement is reached, there is a "dead-weight loss" of the kind so abhorred by
economists. Thus, one strong argument against expansion of intellectual
property rights is that exceptions are necessary to prevent waste, such as
applying the fair use doctrine in the teacher example. But the response of the
property theorists is that market mechanisms will arise to overcome such
transaction cost problems--for example, performing rights organizations like
the American Society of Composers, Authors & Publishers (ASCAP) and
Broadcast Music, Inc. (BMI) have made it possible for thousands of copyright
music holders to negotiate licenses with millions of potential users. 92 Likewise,
the open source licenses solve a similar collective action problem. By using

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 13

open source licenses to coordinate the diverse group of open source
developers, their common goals can be reached efficiently. Ironically, then, the
open source movement, with its early roots in a decidedly socialist view of
software, appears to vindicate a rather free-market view of intellectual
property--that market mechanisms are more efficient in overcoming market
failure than corrective legal measures.

B. Philosophy and Open Source

As discussed above, intellectual property law in the United States draws its
justification from economics. Other countries look more toward philosophical
underpinnings for intellectual property. 93 For example, the Universal
Declaration of Human Rights provides that an individual enjoys the "right to
the protection of the moral and material interests resulting from any scientific,
literary or artistic production of which he is the author." 94 Philosophical
underpinnings for intellectual property are conventionally divided into the
natural rights theory associated with John Locke and the personality protection
theory associated with Friedrich Hegel. 95

The Lockean analysis is somewhat difficult to square with open source practice.
As interpreted by modern scholars, Locke would consider intellectual property
protection appropriate where "the production of ideas requires a person's
labor; second, that these ideas are appropriated from a 'common' which is not
significantly devalued by the idea's removal; and third, that ideas can be made
property without breaching the non-waste condition (i.e., will not let the idea
be unutilized, like fruit that perishes for lack of use)." 96 Open source software
fits strangely into that theoretical framework. The first condition is easily met.
Writing software certainly requires a person's intellectual labor. Even in these
days of sophisticated development tools, software requires considerable work
to design, implement, debug, and revise. The third condition (non-waste)
would also seem to be met. Arguably, some open source licenses cause a kind
of waste in that they prohibit incorporating open source software into
proprietary products, and thus foreclose many uses of the software. Such
gentle restrictions, however, leave open many other uses of the software.
Moreover, because copyright law prohibits only near verbatim copying of
software, a proprietary producer is still free to copy the functional aspects of
the open source software. Thus, the first and third conditions seem to be
met.

The second condition, however, poses a conundrum. Under this central idea to
Locke's justification of property, property can only be appropriated if the net
effect does not diminish the commons. Thus, a tract of land can be put into the
private hands of a farmer because she will then have an incentive to use it
productively and sell her harvest to the public. Such use is more productive
than leaving the land to lie fallow. One could argue that open source passes
the condition by definition. The whole point of an open source license is to
leave the code open for use by others. Thus, rather than diminishing the
commons, the copyright in open source software protects the commons.

There is a distinction between the public domain and the common available to
open source users. Where the open source license is conditioned on
maintaining the open source nature of the software, the code is not in the
public domain--rather, it is usable freely by those who agree to abide by its

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 14

conditions. Those conditions, in turn, are rather generous--requiring only that
users agree not to impose conditions of their own on the fruits of the code.
Nevertheless, such conditions do decrease the stock of ideas available to all,
but only to the extent of the rather thin copyright protection afforded software.
So, attempting to fit open source into a Lockean framework eventually begs
the question, or perhaps raises the more complicated question, of whether
property is best owned individually or collectively.

Another theoretical basis for intellectual property protection is the idea that
creative works and inventions embody the personality of the artist or inventor,
and accordingly should be protected in the same way that tort laws protect
people from physical and intangible harms. 97 In this view, legal protection of
intellectual creations is necessary to permit individuals to achieve self-
actualization. As a descriptive matter, open source seems to favor the
personality approach over the natural law approach. One can view open source
as an experiment to answer the question, "What do creators most care about?"
As noted above, open source developers will produce code without the
conventional economic incentives provided by copyright protection, and will
produce code much more generously than one might predict with a Lockean
framework. They will add to the commons of open source code without taking
anything out, provided that others do the same. However, open source
developers do not give up the protection of their reputation. As noted above,
open source licenses freely give up almost all exclusive rights (e.g., allowing
free copying, distribution, modification, and so on) except rights of attribution.
98 To the contrary, they strictly require that the original author receive credit
for her work, and that any changes in the code are not misattributed to her. 99
So open source seems to show that perhaps the most important thing to many
productive authors is their reputation, because the one thing they will not give
away is their name.

Here, the legal rule chosen by open source developers reflects the European
approach to intellectual property rather than the American. The protection of
reputation--that the work be properly attributed to the author and not be
misattributed to her--is something that is at the core of copyright in many
European systems, under the rubric of "moral rights." 100 In the United States,
by contrast, moral rights are much more limited. In order to become a party to
the Berne Treaty, 101 the United States was obliged to provide some protection
for moral rights. However, Congress chose nearly the minimal extent of
protection that would pass muster; it added some protection for moral rights,
but only to a narrow category of works like paintings and sculpture. 102 The
open source movement shows, however, that creators of much more functional
works, such as computer software, are no less interested in their status as
authors and the fate of their works.

III. Patents: Reshaping the Prior Art Problem

The relationship between computers and patent law has altered radically over
the few decades of electronic computing. The sad story of the patent litigation
surrounding ENIAC, 103 the first general-purpose electronic computer, illustrates
the disregard of legal niceties that computer pioneers once allowed
themselves. John Mauchly, Presper Eckert and their crew (with assistance from
the redoubtable John Von Neumann) spent many long years and overcame
dozens of theoretical and engineering obstacles to make the ENIAC function. 104

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 15

Only belatedly did they attempt to secure patent protection on one of the
century's most influential inventions. Because they had waited so long, several
daunting legal obstacles prevented them patenting the ENIAC. 105

By contrast, one of the first concerns facing today's commercial software
developers is whether they can patent their work. 106 In part, this simply
reflects the much greater attention that scientists and engineers now pay to
intellectual property law. To illustrate, the 1999 Nobel Prize winners in
medicine and chemistry emphasized that their work decades earlier had been
driven by a desire for knowledge, not profit, to explain why they had not
patented their discoveries. 107 On the other hand, recently, researchers at MIT
reported that they had inserted a gene into a transgenic mouse, thereby
decreasing the reduction in memory with age. 108 Notable was how patents
pervaded the story--the gene used was already covered by someone else's
patent, and the researchers, long before they told the New York Times or the
rest of the world about their work, had filed for another patent on this novel
use of the gene. 109 Scientists and engineers are hardly intellectual naifs any
more.

Another reason that computer developers, both in hardware and software, pay
more attention to patents is that the law on patentability of computer-related
inventions has itself changed radically--from forbidding to welcoming. Even
when the ENIAC developers finally got around to seeking patents, they sought
only to patent the hardware, not the software. Similarly, in succeeding
decades, little attention was paid to whether there were intellectual property
rights in software. Rather, the software was simply included for free with the
hardware as part of the package. Early case law viewed attempts to patent
software skeptically.

In a series of cases, the courts have moved from denial of patentability to an
open door policy. 110 In 1972, the Supreme Court denied patentability to a
process to convert binary numbers coded in decimal form to pure binary
numbers. 111 The Court reasoned that the claimed invention was simply a way
of solving a mathematical problem, and therefore unpatentable. 112 In 1978, the
Court, for similar reasons, held unpatentable a process that used a
mathematical formula to update an alarm limit, a number calculated to monitor
operating conditions in a catalytic conversion process. 113 These cases cast
great doubt on the patentability of software, because broadly stated, computer
programs always take numbers as input and produce numbers as output. But
the tide turned in 1981, when the Court held that the use of a computer
program to monitor a rubber-curing process was a patentable invention even
though the only novel aspect of the process involved calculating numbers. 114
The Supreme Court has not addressed the issue since then.

The authoritative Federal Circuit, however, after struggling to draw a line
between nonpatentable mathematics and patentable useful processes, greatly
relaxed the scrutiny in a series of cases. 115 Under existing law, it is likely that
the processes rejected under the early Supreme Court cases would have been
held patentable today. As a result, patents on software, especially software
implementing business methods, have become increasingly important. 116 Now,
software may be patented in many ways: as a process, a component of a
machine, or as an article of manufacture. 117 Indeed, recent software patents
extend to a propagated electric signal as an article of manufacture. 118

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 16

Some think that software patents may pose the greatest threat to open
software. 119 After considerable reduction in the legal obstacles to patenting
software, many thousands of software patents have been issued in recent
years. Open software developers might write code that allegedly infringes such
patents. Richard Stallman, a leader in the free software movement, has likened
software patents to a minefield for open source developers. 120

As some have noted, an open source defendant does have one particular
disadvantage, as compared to other software developers who might be
potential patent infringers. 121 This risk arises from the very nature of open
source software. Suppose someone holds a patent on a process used in
software--a process for sorting data, or for producing a particular format of
output. If a proprietary program used the patented process, the patent holder
might not be able to find that out. The process might be used in the program,
but not in a way that was evident to a user of the program. One could tell that
the program was, at some point, sorting data, but would have to go to
considerable trouble to figure out how the program was sorting it. Indeed, that
would be impossible if one did not have access to a copy of the program. It
would be much easier, in some respects, to monitor open source programs for
infringement of the patent, for the very two reasons that make them open
source--one would be entitled to get both a copy of the program and a copy of
the source code. So in one respect, open source is peculiarly susceptible to
patent monitoring.

Another area in which open source developers could be at a disadvantage is in
cross-licensing. Because so many software patents have been issued in recent
years, and perhaps because the validity and enforceability of many of the
patents is rather unclear, patent licensing is quite different in the software area
than in other high-tech areas such as biotech. In particular, royalty-free
cross-licenses are quite common in the computer industry. The parties to such
licenses agree, in effect, not to attempt to enforce their patents against each
other. Such nonaggression pacts protect only the parties to the license. To the
extent that open source developers do not seek software patents, it may leave
them out of such protection, having nothing to offer as a quid pro quo.

Open source developers may have other advantages that more than make up
for such potential risks. Indeed, the open source software movement may well
redirect the course of software patent litigation in several ways. The greatest
issue at present in software patent law is the problem of prior art. Patent law
provides that an invention is only patentable if one concludes, after examining
the prior art, that the invention is both novel (is not already known in the prior
art) and nonobvious (would not be obvious to a skilled worker in the field, in
light of the prior art). 122 What constitutes prior art is defined rather tortuously
in the statute, 123 but one can think of the prior art as being the stuff in the
public knowledge.

Computer software, however, is a difficult field in which to locate the prior art,
for two reasons. 124 First, as discussed above, software has only gradually been
seen as patentable, so there is not a great stock of software patents to provide
a source of prior art. Second, the prior art in computer science is much less
organized than in many other fields. In other new technologies, such as
biotech, it may be relatively straightforward to check scientific journals and

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 17

other sources to see if a claimed molecule is in fact novel. 125 Computer
programming, by contrast, has had much less systematic archiving of
knowledge. Much of the knowledge in the trade is in informal form. And more
recently, much of the knowledge was intentionally kept out of the public
domain. One commentator has determined that some eighty percent of issued
software patents make no effective citations of prior art, despite the great
amount of published work in computing. 126 Recognizing the special problem of
prior art in the area of computer related inventions, the U.S. Patent &
Trademark Office (USPTO) has begun a project to more systematically organize
knowledge in the computer arts, while several private bodies offer help in
locating prior art. 127 In addition, the fact that so many software patents have
been issued in recent years will make a considerable contribution to the
amount of prior art that is available for searching.

In the meantime, a defendant in a patent infringement action may have a very
difficult time proving that a technique was already in the prior art, or was
obvious given the prior art. An open source defendant, however, may have a
card to play that is unavailable to other defendants. The recent activity around
several controversial patents illustrates how an open source defendant could
prove a veritable Hydra of a defendant. 128 Inventors had succeeded in
obtaining patent protection on several widespread technologies: fundamental
techniques of multimedia, 129 a commonly used hack ("windowing") to fix year
2000 (Y2K) problems in aging software programs, and a privacy protection
algorithm that threatened to control a common Internet standard. 130 In each
case, widespread publicity about the patent, together with considerable anger
that someone claimed to have invented something that other programmers
considered old hat, resulted in programmers sending many examples of
patent-invalidating prior art to interested parties and the USPTO. In each case,
the tide turned--the USPTO took the unusual step of initiating reexamination of
the multimedia and Y2K patents, and the privacy patent likewise looked
questionable. 131 Open source developers, such as the world-wide Linux network
of thousands of software developers, present a formidable resource for locating
prior art--and likewise have shown their willingness to spring into action in
defense of the movement.

If the prior art shows that the invention is not novel, the patent can be
invalidated. Even if the invention is novel, it is still invalid if it was obvious in
light of the prior art. This is a particularly difficult determination with new
technologies. 132 Here, open source also may benefit from its moral suasion and
from the favorable opinions of its many experts. The case of the ENIAC throws
some light on how the identities of the parties, and the likely effect on industry
could influence courts sub silentio in software patent cases. The judge in the
ENIAC case denied a patent to Eckert and Mauchly on the ground that they had
derived the idea from John Atanosoff. 133 That did not mean, however, that
Atanasoff could now patent the ENIAC, for the passage of time now acted as a
statutory bar. One way to interpret the result is that the judge may have been
attracted to a ruling that did not put the new technology within the exclusive
control of one party. Likewise, open source developers could be very
sympathetic parties, and courts may lean, given that the technology and the
law is sufficiently complicated, toward restricting patent coverage--as opposed
to cases where two parties are simply fighting about which one gets to keep
the technology out of the public domain. This is hardly a cheery view of judicial
decision making--ad hoc results-oriented rough justice in patent cases--but

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 18

may prove a realistic one, and at the least a reason to avoid opening the
Pandora's box of patent litigation. 134 Another possibility would be for open
source developers to fight fire with fire, by seeking patents of their own and
combining them. 135

In addition to proving a difficult defendant to beat, some open source
developers might be pointless to beat. Patent law remedies such as actual
damages, punitive damages, and injunctions may be worth little against some
open source defendants. Actual damages are most often based on recouping
defendant's profits from the use of the patented invention and on
compensating for plaintiff's losses. Both types of damages could be difficult to
prove. At this point, the vast majority of open software developers do not
charge for their software, so there would be no gains to recoup.

On the plaintiff's side, proving loss of revenue could be very difficult. Plaintiff,
in effect, would have to prove that if defendant's free product had not been
available, buyers in the market would have paid money to buy from plaintiff, or
from people using plaintiff's invention under a license from plaintiff.
Nevertheless, the giveaways during the browser wars have shown, and many a
doomed business on the Internet has learned to its distress, free stuff gets a
great many more users than stuff with a money price. Punitive damages would
also be unlikely to make up for lack of actual damages, because an open
source infringer would likely have acted innocently, unaware of the patent at
issue. Nor would an injunction necessarily help, given the nature of software.
In intellectual property cases, the ability to get an injunction is a huge weapon
for plaintiffs. To be able to get not only damages, but to also stop a defendant
from showing her movie, using her trademark, or employing a key hire, is
often the greatest benefit of successful litigation. However, software is a little
different. As software developers say, there is more than one way to skin a
cat. If a program cannot use a particular patented algorithm, then most likely
the developer can simply devise a different one that would have to fall outside
the terms of the patent and the doctrine of equivalents. 136

An additional reason why many open source developers are unlikely to be
defendants is that they do not have the deep pockets that attract plaintiffs.
One could see a software company bringing a case not to bring in funds, but
rather pour encourager les autres. Open source developers are quite different,
however, from defendants often sought in other areas of intellectual property
enforcement to make a point about willingness to enforce intellectual property.
A software or music publisher might go after pirates not just to seek damages,
but also to set an example as a deterrent to others, and to encourage them to
apply their skills in an area less aggressively enforced. Such actions against
software developers could have quite negative effects--a hacker innocently
reinventing an algorithm is a much more sympathetic figure than a bootlegger.
Moreover, the publicity of the enforcement could backfire another way.

As noted, one response is to rewrite the software with noninfringing code. If
the potential defendant does that, and is an open source developer, then that
substitute for plaintiff's invention will now be freely available for others to use
and advertised by the lawsuit itself. This result provides yet another reason to
tread very quietly before such unexpectedly dangerous defendants.

IV. Trademarks: a Banner

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 19

Most trademarks are created with little attention to trademark law. An
individual practicing her trade or a little business starting in a garage will likely
use a name intending to do the sort of things trademarks do: to build a name
among potential clients and partners, and to distinguish its goods or services
from competitors. However, the business is likely to ignore the niceties of
trademark law--what sort of symbols may be trademarked, what protection the
trademark laws give, and how to register a trademark. Indeed, many start-ups
are likely to confuse the various types of intellectual property protection and
talk about copyrighting or patenting the name of the business.

The open source movement comprises software developers, not lawyers.
Nevertheless, mindful of the way intellectual property laws had caused them
problems in the past, open source developers showed considerable
sophistication in their use of trademark law and, even where lack of legal
experience caused a bump, recovered in a way that compares favorably to the
legal strategies of the most sophisticated commercial actors. The typical start-
up simply uses a name and then at some point thinks, "Hey, maybe we should
register our name as a trademark," or more likely, proceeds in blissful
ignorance until they have enough success (or trouble) that they have consulted
a lawyer. Even the most sophisticated business actors can ignore trademark
issues.

The open source movement, by comparison, made sophisticated use of
trademark law. One approach would have simply been to register a trademark
for the software products and distribute it under that name. Such an approach
would have raised two big trademark law problems with the open source model
of distribution. Open source software can be freely adapted and distributed
further, by people other than the original producers. However, a trademark
must identify the source of goods. 137 If adapted and redistributed software
bore the original mark, it would be a misleading use--unless somehow
everyone producing open source banded together as a single producer. In
addition, the trademark holder must police the use of her mark. Just as a
trademark holder cannot make a naked assignment (i.e., sell the mark for
someone else to use), so she cannot simply allow others to use the mark
without verifying that their goods or services conform to her standards. Thus,
typical use of trademark would have led to problems down the road. The open
source movement, however, turned to a refined use of trademark law--the
"certification mark." Unlike most marks, the mark is used not by its owner, but
rather by others to indicate that it meets standards set by the mark owner.
Thus, the "Underwriter's Laboratories" (UL) mark is used by manufactures who
comply with the relevant standards. 138 Likewise, the Open Source Initiative
decided to register a mark that it would permit others to use if their software
complied with the Open Source Definition.

The initial mark chosen, however, reflected a common trap for the unwary in
trademark law. The first mark chosen was "Open Source," using a recently
coined term that succinctly described the movement to make source code
freely available. 139 The apt nature of the mark made it questionable as a
matter of trademark law. As many a business does, the open source
developers sought to find a name that was as descriptive as possible. They
opted to register the mark "Open Source." 140 Before too long, however, it
became clear that the USPTO would likely reject the mark on the grounds of

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 20

descriptiveness. A mark cannot be registered if it is simply descriptive. That
left several choices. One could appeal the decision of the USPTO. Certainly,
various high tech companies have resisted USPTO determinations that marks
they sought to protect were invalid as descriptive or generic. 141 One could also
seek to register the mark on the supplemental register, then get a principal
registration after it had sufficient publicity to acquire secondary meaning. 142
That may have ultimately been successful, given the great publicity given to
various open source efforts and its widespread currency in the software field.
The open source initiative, however, made what appears to be a much wiser
choice. They simply changed marks, something businesses, especially once
egos become involved, can be highly reluctant to do, and they registered the
certification mark "OSI Certified." 143

Notably, the open source initiative did not give up on their claim to the phrase
"open source." Although they abandoned their attempt to trademark it, they
have other resources to call upon. There are other ways to grant accessibility
to the source code that would not qualify as "open source" under this
definition. For example, Sun Microsystems recently published the source code
of its Solaris operating system and permitted developers to make modifications
to the code. So in a sense, the source code to Solaris is now open: it is open to
public examination and can be modified. However, Sun's license contained
restrictions that go beyond those permitted to qualify as "OSI Certified." So is
Solaris open source? The important thing is that the open source initiative can
look beyond the law for assistance in using its mark, in a way that most mark-
holders cannot. Xerox, for example, would prefer that people refer to
"photocopies" rather than "xeroxes," for the latter term leads down the road
toward common usage; however, few people will feel a moral (or grammatical)
obligation to use a trademark only in its trademark sense. Some software
developers are already sensitive to uses of the term "open source" in what
they consider to be inaccurate uses of the term. The reliance on community
norms of language, as opposed to law, has not always worked for software.
Most notably, the original meaning of "hacker"--one skilled in programming--
has lost the linguistic battle of the standards, as the now popular
understanding of "hacker" is a malevolent system breaker, or a "cracker" to
the original "hackers." 144 However, with the more technical term "open
source," the experts' opinion may more likely prevail.

V. Regulation

Whether, and how, to regulate the Internet has spawned huge amounts of
discussion in past years. 145 In Code and Other Laws of Cyberspace, 146 Lawrence
Lessig introduces two important elements to the discussion of regulation of
computer networks such as the Internet. First, he makes clear why the
commercial law governing software transactions could have momentous
effects. As Lessig explains, computer code itself is a form of regulation,
because it imposes constraints on the behavior of users. 147 Accordingly, the
ability of software distributors to control what is done with their software has
considerable effects beyond the immediate parties to a software transaction.
Thus, the content of software licensing law may be more momentous than
similar law that governs other commercial transactions. 148 Lessig also makes a
rather far-sighted point about the ability of government to control software. He
argues that open source code is more difficult to regulate than proprietary
code, because of the diffuse nature of the open source model. 149

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 21

A. Licensing Law and Open Source: Fair Use in Copyright and a Price Less Than
Zero

Software licensing is a burgeoning area of law practice. 150 Billions of dollars are
spent on software that is generally provided under a license. Strangely
enough, relatively little is known about the legal effectiveness of software
licenses, as compared to older segments of the economy. For example, Article
2 of the Uniform Commercial Code (UCC) provides a comprehensive set of laws
governing contracts for the sale of goods. 151 How to form a contract, what
terms automatically become part of the contract, whether the seller can
disclaim warranties and limit remedies, and what the measures of damages
are--all essential terms are governed by a uniform set of rules that has been
adopted by all fifty states.

The state of software law, however, is far less settled. There is no definite
authority on such basic matters as, whether a sale of software is covered by
the UCC, whether the most common form of software licenses (shrinkwrap and
clickwrap agreements) are legally binding, 152 whether warranties can be
effectively disclaimed, or whether copyright law preempts provisions in
software licenses. 153 The lack of legal clarity certainly has not prevented
software from becoming a gigantic industry; however, various efforts have
been made to make software law clearer and more uniform. The best known
project was the drafting of a proposed addition to the UCC--draft Article 2B 154--
but the path to the state legislatures has not been smooth. Not surprisingly,
meetings to discuss the draft UCC 2B were not attended by all possible parties,
especially consumers. 155 Consumers often do not bother to read contracts at
the time they enter into them. Thus, a consumer is highly unlikely to pay much
attention to a lengthy drafting process, which might produce a law, which
might govern a software contract the consumer signs years in the future. On
the other hand, a software company has a direct interest in the law governing
sales of its product. The draft 2B struck many commentators as being crafted
more with the interests of sellers rather than buyers in mind. 156 Alternatively, a
successor model statute, the Uniform Computer Information Transactions Act,
157 has been offered to the states. As commentators and lawmakers consider
what rules should govern licensing, open source licensing presents the issues
in a fresh form. This Part considers two key issues: the application of fair use
to open source software, which would obviate the need for a license, and
whether licensing law should be strengthened to bolster open source licenses.

The various open source licenses are some of the most generous intellectual
property licenses around. A typical proprietary software license provides, in
effect: "Here is the software you paid for. You can use it yourself, but you do
not have permission to make any more copies, to change it, or even to analyze
it in order to figure out how it works." By contrast, an open source license tells
the licensee, in effect: "Here is some valuable copyrighted software, free of
charge. You can make as many copies as you want, you can adapt it however
you like, and you can give away or even sell copies of the original software or
as you have revised it--and to make that easy, you can have access to the
source code as well." However, one thing open source licenses tend to insist on
is that the software may only be used pursuant to the conditions of the license.
For example, the GPL states that nothing "grants you permission to modify or
distribute the Program or its derivative works. These actions are prohibited by

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 22

law if you do not accept this License." 158 Such a statement may be rather too
categorical. Even without accepting the license, one could copy, modify or
distribute the software if the particular use qualified as fair use under section
107 of the copyright statute. 159

Application of the fair use doctrine to open source software poses a number of
puzzles. Fair use authorizes certain socially beneficial uses of copyrighted
material that would otherwise be an infringement. 160 One who tapes a
copyrighted program for future viewing, 161 or records a parody version of a
copyrighted song, 162 or copies a scientific article in the course of research 163
may qualify for fair use. Fair use, however, is a notoriously vague doctrine. In
deciding whether fair use applies, the court must consider four factors: the
purpose of the use, the nature of the work, the amount used, and the effect on
the market for licensing the work. 164

Fair use issues could naturally arise both with open source developers copying
from proprietary software and with others distributing open source software.
The former case would be relatively straightforward, al though unpredictable,
as fair use cases generally are. For example, an open source developer could
copy some elements of a proprietary program to make her program
interoperable with other software. If she took copyrighted elements (and
because software is functional, much copying is not taking protected
expression), the question of fair use would arise. The open source developer
would argue for fair use along the usual factors--that the use was productive
and noncommercial, that the copied work was functional and thus subject to a
lower level of protection, that only so much was taken as was necessary, and
that the open source project would not reduce the market for the product in
question. Of course, in some cases, those arguments would not be available.
The purpose of some open source projects is indeed to supplant commercial
products. Similarly, fair use is likely to apply if an open source developer made
a copy of a commercial product in order to reverse engineer it (i.e., to figure
out how it works). 165 Although in a novel setting, such cases would not unduly
tax the flexible structure of fair use analysis.

The more interesting question is the extent to which fair use applies to open
source software itself. Many uses of open source software, of course, would not
be challenged even if the user was not a party to an open source license. If
someone made copies of some open source software, or modified the software,
or distributed the software in a manner that was consistent with the license
even if the user had not agreed to the license, then presumably the copyright
holder would not object. This contrasts sharply, of course, with most
commercial software where the copyright holder would likely object to any use
that was not permitted pursuant to a licensing agreement. However, some
uses of open source software might be objectionable to a developer who had
set her software free. Uses that would not have been permitted under the
license would now likely be objectionable. For example, if another developer
incorporated open source code into a proprietary product where the license
would have prohibited that or if someone distributed copies that failed to
attribute authorship of the code correctly, then these uses would be considered
objectionable.

The argument against fair use is a straightforward one. Open source licenses
make software freely available and subject to very few restrictions, so there

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 23

would seem to be little justification for permitting fair use. The most common
justifications for fair use--that the copyright holder would not grant permission
because of transaction costs or other obstacles to bargaining--are inapplicable.

One can construct a plausible argument for fair use, even where such use is
inconsistent with the terms of the open source license. Take the example of a
commercial developer who simply incorporates large portions of an open
source program into some commercial software, and does not release the
resulting product under an open source license, but rather sells it subject to
typical commercial license that permits only limited uses of the executable
code and no access to the source code. The first factor to consider is the
nature of the use. This would not be research, teaching, or commentary--but
simply a commercial use that weighs against fair use. However, other aspects
of the use could turn the factor toward fair use. It could be productive use
rather than merely reproductive--like making a copy, particularly if the code
was modified. Where the user supplies independent creative input, fair use is
more likely to apply.

Strangely enough, the very fact that the user was changing it from open
source to commercial code could be used to argue for fair use. The unlikely
analogy here would be to the rap music parody of the song "Pretty Woman" in
Campbell v. Acuff-Rose Music. 166 The plaintiff in Campbell held the copyright in
the venerable Roy Orbison song, "Pretty Woman." Defendants parodied the
song in their own "Pretty Woman." 167 Defendants' parody effectively criticized
the worldview of the "white-bread original." The essence of parody is that it
must borrow from the original in order to ridicule it. The author of the original
would likely refuse the use of his own work as a means for criticism; however,
fair use plays a role here to further the deeper goals of copyright law--the
creation and distribution of creative works. Where the author would use
copyright to suppress expression (that is, to refuse permission to the making
of a parody), fair use permits the use of copyrighted works to create works
that comment upon them.

An analogy could also be made to the use of open source code in a commercial
product. As with parody, the use is one that would not occur with the
agreement of the copyright holder. The refusal to license arises out of a desire,
in a very broad sense, to limit a species of expression. Certainly, the
limitations arise out of the very best of intentions--the wish to keep the code
solely in the open source arena and out of closed commercial products--but the
same can be said of parody. The copyright holder may prefer not to hear a rap
version of "Pretty Woman," or to see the photo of a pregnant movie star
reproduced with the head of a comic actor, 168 or to have her "I Love New York"
advertising campaign parodies in an "I Love Sodom" skit, 169 but fair use can be
used to prevent such suppression of speech that is objectionable to the
copyright holder. An argument can be made that copyright should not be used
to control the expression of others. The counterargument, of course, is that the
restrictions are necessary for open source to survive. If open source software
could be readily used in commercial products, then the incentive to create
open source software could be severely reduced. Under that view, the
underlying purpose of copyright law, which is to promote creative expression,
would be furthered by rejecting the analogy to parody.

The very nature of open source software also makes it more subject to fair use

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 24

for another reason. Unpublished works are less likely to be subject to fair use.
Thus, where The Nation printed excerpts from President Gerald Ford's soon-to-
be-published autobiography, 170 and where a biography of J.D. Salinger included
excerpts from his unpublished notes, 171 the courts denied fair use, despite the
favored nature of the works in reporting historical facts and literary history.
Commercial software has a peculiar status with respect to publication. The
executable code is published by being distributed to the paying public, but the
source code from which it springs is often kept unpublished. Accordingly,
someone who managed to get some of the source code and publish it might
not qualify for fair use, given the heightened protection for unpublished works.
However, the whole point of open source software is to publish both the
executable code and the source code, and as such, it would be more subject to
fair use.

The final factor in fair use analysis is "the effect of the use upon the potential
market for or the value of the copyrighted work." 172 Here again, the
paradoxical nature of open source licenses--using intellectual property law to
keep software free--leads to an inversion of the normal analysis. Suppose
some open source code was incorporated, without permission, into a
commercial program that performed a similar function (e.g., both programs
were word-processing programs). The market analysis will naturally depend on
the nature of the software, but it might be difficult for an open source
copyright holder to show cognizable market harm. The obvious market harm
would be the loss of potential licensing revenue, but if the code were freely
available without a fee, then the loss of revenue would be zero. Another
species of market harm could be the effect on the demand for the open source
version. Some potential users of the open source version might instead choose
the commercial version, which would constitute harm to the market; however,
there are other ways to characterize it.

The commercial product arguably expands the market for the work. First, to
the extent that the commercial product is successful, it could also increase
demand for the open source version. Thus, although the use was contrary to
the wishes of the copyright holder, she may not be able to show the sort of
concrete market harm that courts require. Second, even if the commercial
segment of the product market increases at the expense of the open source
segment of the market, that may not constitute the sort of market harm that
weighs against fair use. Where the issue is not loss of licensing revenue
because the copyright holder has distributed her product for free, but rather
control of a product market, the sort of loss at issue may not be protected
from fair use. For example, in Sony Corp. of America v. Universal Studios, Inc.,
the holders of copyrights in television programs objected to the practice of
home video taping of the programs. 173 Nevertheless, the Supreme Court held
fair use applicable. 174 In part, the Court relied on the rationale that denying fair
use would, in effect, grant broadcasters control over the market for
videocassette recorders.

The foregoing analysis, suggesting that open source software may sometimes
be more subject to fair use than commercial products, has a strange ring to it.
Surely, if a software copyright holder has been so generous as to release her
code subject only to the requirement that it remain open source, it would be
perverse to allow that requirement to be ignored. However, the issue
ultimately could be, what does copyright protect? If it is seen as a general form

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 25

of property, then perhaps any restriction the copyright holder requires should
be enforced. As discussed above, copyright can be seen as a balance. In order
to promote the creation of works, authors are given a specific set of exclusive
rights, but if the author effectively waives those rights and allows her code to
be freely copied and distributed, but only with respect to some people, perhaps
copyright law would not enforce her division of the market. Indeed, although
the case law is presently scant, there is some authority for the proposition that
using copyright to control a market would constitute misuse of copyright,
although such use is better characterized as a more benign attempt to control
a market than to keep it free.

This analysis would apply where the user is not a party to an open source
license. Another set of issues arises with respect to how effective the open
source license restrictions are on licensees. As noted, open source licenses are
the most generous of legal documents--offering free access to copyrighted
material. 175 However, open source licenses will typically have a couple of
restrictions. For licenses like the venerable GPL, the most important provision,
intended to ensure that the software remains open source, provides that the
licensee cannot make the code private, or incorporate it into a product that is
itself not open source. The license will also provide that if the licensee
distributes adapted versions, she will make the adapted source code available.
It may further provide that future versions will properly attribute the authors
of the software.

Of course, those provisions will not have an effect on someone who is not a
party to the license. So the open source licenses also have provisions
addressing how one becomes a party to the license--and indeed, they are quite
broad in some licenses. For example, the GPL states: "By modifying or
distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it." 176 Such
provisions would make agreement to a contract occur rather easily, going
beyond even conventional clickwrap and shrinkwrap provisions. 177

Other provisions in some open source licenses, if effective, would override any
fair use rights that the licensee might have. Whether state licensing law should
have such effect with respect to federal copyright privileges is, at best,
unsettled. 178 Another provision common to open source licenses is a blanket
exclusion of warranties and limitation of remedies, which is not a surprising
allocation of risks, especially where such licenses are so frequently given
without any charge. The license might also authorize the licensor to disable the
software if there was a default in payment. 179

So questions could arise as to the effectiveness of such license provisions
under the foregoing analysis. 180 This concern has resulted in the drafting of a
uniform law on licensing. 181 Because software companies were so active in the
drafting process, this uniform law on licensing has been severely criticized as
favoring licensors too heavily and giving little shrift to licensees. 182

Without wading into the details of the proposed UCITA, 183 one can phrase the
question generally: should such provisions as the ones cited above be made
enforceable in order to strengthen the open source movement? Notably, this
creates a strange alignment between the open source movement and its usual

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 26

targets, proprietary software companies, because both would arguably benefit
from a licensing law that gave broad powers to licensors. However, that
alignment itself indicates the answer to the question. Many models of software
distribution are likely to arise in the near future, from pure open source to the
most closed proprietary system. To tilt licensing law in favor of licensors
generally, or even to draft special provisions supporting some definition of an
open source license, would likely cause more harm than good.

B. Direct Regulation of Software: of Dispersal, Monitoring, and Norms

Governments care quite a bit about what can be done with software. Some
nations have made rather blunt attempts to control the information coming in
and out of their respective countries via the Internet. 184 All governments want
to regulate some aspects of computer networks--and want to regulate some
potential uses very strictly. 185 Lessig makes the incisive point that open source
software may be more difficult to regulate than proprietary software because
the government would have to regulate not only the producer of the software,
but also every other person who had a copy of the source code because each
could modify the code. 186 This section looks to some other aspects of the
interplay between open source licensing and government's ability to regulate
code.

In some ways, the very openness of open source renders it more subject to
government regulation. For example, suppose a government, for some reason,
wished to prohibit the use of a particular algorithm. With respect to
commercial, closed software, it might be difficult to determine whether the
software used the algorithm. Examining the executable code and observing
how the program behaved might not disclose whether the prohibited algorithm
was used. This would depend on the nature of the algorithm, of course.
Sometimes it would be quite obvious whether the program used the algorithm
in question. But, other times, examination of the source code would be
necessary. If the software company did not voluntarily turn the source code
over for inspection, it might be necessary to obtain a warrant--which would
require meeting the necessary standards of probable cause.

Open source, on the other hand, is freely accessible. The source code is freely
distributed along with the executable code, so obtaining the source code would
be quite easy. Thus, a governmental agency might have much greater ability
to monitor and regulate open source software. Indeed, some open source
licenses require that source code be made available to anyone who requests a
copy, so an agency could simply request a copy, as opposed to entering an
adversary proceeding to seek a warrant.

These legal distinctions might not make much difference in the real world. The
terms of open source licenses might require that source code be readily
available, but a licensee might not feel bound by the strict terms of the license.
Even if refusing a request for the source code were a theoretical violation of
the license, it would only matter if an action to enforce the license were
brought. The government, as a nonparty, would presumably lack standing to
enforce the license. The party who could enforce the license, the original open
source licensor, might of course be quite unlikely to step in on behalf of the
government to enforce a disclosure requirement against a fellow software
developer. Even if that unlikely coalition were to arise, the remedy for the

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 27

failure to disclose might not be an injunction requiring disclosure, but rather
termination of the license.

Beyond enforcement, another aspect of regulability is politics. One might
expect that open source would be more subject to regulation than strictly
commercial interests. Public choice theory holds that broad, diffuse groups, like
open source developers, are likely to be less effective in achieving political
goals than narrow interest groups, such as the software industry. Indeed,
congressional legislation in the intellectual property area has of late been
driven largely by industry interests. However, outside the legislative sphere,
open source may have more influence.

Open source might prove harder to regulate for purely political reasons, as the
recent shift in United States policy on encryption illustrates. 187 For years, the
United States has restricted export of encryption software. 188 In particular,
even where the United States permitted export of certain encryption products,
it permitted only export of the executable code, not the more useful source
code. In other words, companies could export the functional executable code
so that people could use some types of encryption, but not the transparent
source code, which disclosed how it worked and could also be modified.
Because other countries allowed export of more powerful encryption than the
United States and because the efficacy of such restrictions is rather
questionable, there was considerable industry pressure to relax the
regulations. 189 The United States initially announced that more powerful
encryption would be exportable, but again only in executable code form. Such
rules would work heavily against open source developers, who depend on
being able to deliver both executable and source code versions, and to share
code across borders during development. The United States accordingly
modified the proposed regulations to permit the export of source code as well.
190 In short, the moral suasion of open source developers achieved what
insistent industry advocates had not. Thus, norms of software development
may have influenced the regulation of software. 191

Conclusion

Should intellectual property laws be amended or interpreted in order to foster
open source? 192 Although openness is certainly a great virtue, 193 the
experience until now counsels that legal theorists may be more limited than we
realize in predicting the effects of changes in the law. The open source
software offers many puzzles and lessons for intellectual property theory and
doctrine. Perhaps the single lesson might be that engineers are smarter than
lawyers. 194 Considerable legal scholarship in recent years has lamented the
increases in intellectual property protection that have steadily diminished the
public domain, but the open source movement has turned that process on its
head. The open source movement has used strong protection of intellectual
property to quite different ends. In particular, various open source licenses rest
on strong copyright protection and restrictive licensing provisions. However,
the open source licenses use such restrictive law to keep open source code
free. Exactly because intellectual property laws place so much control in the
hands of copyright owners, various flavors of open source licenses are able to
finely tune the way in which code is kept available for others to study, modify,
and redistribute. But, that does not mean that open source should provide a
justification for strong intellectual property protection. The boom in software

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 28

patents, for example, is a considerable threat to open source. 195

Trying to interpret or enact intellectual property laws to foster open source
may well be beyond the planning powers of lawyers, even if one were to
assume that somehow such legislation would proceed free of the special
interests that have guided so much legislation in the intellectual property area.
Open source, in its most recent form, has built upon laws that seem to favor
the opposite--restrictive intellectual property and licensing laws congenial to
closed, proprietary models. Moreover, its very success will lead to many
variations of open source. 196 Software companies are likely to make more of
their source code accessible to the public, for various reasons: it can attract
more developers to work with the product, it can increase the amount and
quality of feedback from users, and it may establish the software as an
industry standard. 197 A particularly interesting example could arise if Microsoft
opens up some or all of its source code as part of a resolution of the antitrust
case brought by the United States. 198 But such opening up of code will not
always be so free as to qualify for the term "open source," as it is used now. In
particular, companies may make source code accessible on more restrictive
terms by limiting copying and modification, or by automatically transferring
rights in modification to the original copyright holder. It is highly unlikely that
lawmakers now envision all the permutations of open source that may arise,
much less craft laws tailored to each one.

Another reason for concern springs from the government requiring disclosure
of source code. Making software open source has undeniable social benefits,
but the choice to make it open should lie with the author. Thus, there could be
dangers in laws intended to encourage open source, because by definition,
they would make legal benefits contingent on disclosing the source code. By
contrast, the open source licensing model relies on voluntary participation, a
much more congenial model.

FOOTNOTES:

n1 See, e.g., Open Sources: Voices From the Open Source Revolution (Chris
DiBona et al., eds., 1999) (collection of essays on the history, theory and
practice of open source software); on software law generally, see Mark Lemley
et al., Software and Internet Law (Aspen Law & Business 2000). See also Mark
A. Haynes, Black Holes of Innovation In the Software Arts, 14 Berkeley Tech.
L.J. 567 (1999). The copyright listserve cni-copyright@cni.org, run by the
Coalition for Networked Information, often has good discussion of both legal
and social issues concerning open source software.

n2 Good places to start for information on Linux are
http://www.linuxdoc.org/ (last modified Nov. 17, 2000) (the Linux
Documentation Project) or http://www.linuxjournal.com/ (last modified Nov.
27, 2000) (Linux Journal).

n3 See http://mozilla.org/ (last visited Sept. 16, 2000) (Netscape's open
source browser).

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 29

n4 See, e.g., Amy Harmon, A Surge in Popularity of Software that Unlocks
the Code, N.Y. Times, Jan. 4, 1999, at C18.

n5 See http://www.gnu.org/ (last visited Sept. 16, 2000), or
http://www.fsf.org/ (last visited Sept. 16, 2000) (home of the Free Software
Foundation and the GNU project, source of some of the best-known pieces of
free software and containing links to discussions of the philosophy behind free
software). "Free software" is a better term than "open source" in some
respects. This article uses "open source" simply for descriptive reasons, to
focus on the legal implications of permitting access to the source code.

n6 See http://www.opencode.org/ (last visited Sept. 16, 2000) (consortium
devoted to supporting the open code development model, associated with the
Berkman Center for Internet & Society at Harvard Law School). The Berkman
Center has also taken the open source approach in the litigation context with
its Open Law project for pro bono litigation, in which it seeks to "develop
arguments, draft pleadings, and edit briefs in public, online." See
http://www.berkmancenter.org/ (last visited Sept. 16, 2000).

n7 See discussion infra Part II.

n8 Source code is "the form in which a computer program is written by the
programmer. Source code is written in some formal programming language
which can be compiled automatically into object code or executed by an
interpreter." The Good Free Online Dictionary Of Computing at
http://foldoc.doc.ic.ac.uk/foldoc/index.html (last visited Sept. 17, 2000).

n9 See id.

n10 There can be many variations on the source code/executable code
distinction. Some computer languages, such as BASIC, are interpreted
instruction by instruction. Java falls somewhere in between because it is not
compiled into machinelevel executable code (which would limit it to running on
one operating system), but rather into Java byte code, which in turn can be
executed by a program called a Java virtual machine, running on any operating
system.

n11 For a thorough discussion of the process of working with executable
code, see Andrew Johnson-Laird, Software Reverse Engineering in the Real
World, 19 U. Dayton L. Rev. 843 (1994).

n12 Where the licensee is dependent on the software, she may be concerned
that the licensor will go out of business or, for some other reason, be unwilling
or unable to modify the source code for future needs. In such settings, the
parties often agree to put the source code in escrow, pending specified
conditions. Such a transaction allows the licensor to maintain control over the
source code while reassuring the licensee. See H. Ward Classen, Fundamentals
of Software Licensing, 37 Idea 1 (1996); Nycum et al., Debugging Software
Escrow: Will It Work When You Need It?, 4 Computer/L.J. 441 (1984); Viktoria
L. Gres, Rejection of Computer Software Licensing Agreements in Bankruptcy,
8 Cardozo L. Rev. 361 (1986).

n13 If the developer relied completely on development tools, then perhaps

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 30

she would not qualify as an "author" for copyright protection. See Joseph G.
Arsenault, Software Without Source Code: Can Software Produced By A
Computer Aided Software Engineering Tool Be Protected?, 5 Alb. L.J. Sci. &
Tech. 131, 134 (1993).

n14 For a more detailed description of the process of producing software, see
Lemley et al, supra note 1; see also Computer Assocs. Int'l, Inc. v. Altai, Inc.,
982 F.2d 693 (2d Cir. 1992).

n15 See Dennis S. Karjala, The Relative Roles of Patent and Copyright in the
Protection of Computer Programs, 17 J. Marshall J. Computer & Info. L. 41
(1998); Mark A. Lemley, Convergence in the Law of Software Copyright?, 10
High Tech L.J. 1 (1995); Mark A. Lemley & David W. O'Brien, Encouraging
Software Reuse, 49 Stan. L. Rev. 255 (1997); David L. Hayes, What the
General Intellectual Property Practitioner Should Know about Patenting
Business Methods, 16 The Computer Law. 3 (Oct. 1999).

n16 See 17 U.S.C. § 103 (2000); 35 U.S.C. § 100 (2000).

n17 Jim Salter, A Practical Approach to Claiming Software, 14 Computer &
High Tech. L.J. 435 (1998).

n18 Cf. Haynes, supra note 1, at 573 (noting that open source developers
forgo the protections and incentives of patents).

n19 See 17 U.S.C. § 102 (2000).

n20 See Feist Publ'ns v. Rural Tel. Serv., 499 U.S. 340 (1991).

n21 See 17 U.S.C. § 411 (2000) (providing that a copyright must be
registered for a domestic author to institute an infringement action and that
statutory damages and attorney's fees are available only for infringement of a
registered copyright).

n22 See 17 U.S.C. § 106 (2000). The application of those exclusive rights to
digital technologies is not fully settled. See, e.g., I. Trotter Hardy, Computer
"RAM" Copies: Hit or Myth?: Historical Perspectives on Caching as a Microcosm
of Current Copyright Concerns, 22 U. Dayton L. Rev. 423, 427 (1997).

n23 See, e.g., 17 U.S.C. § 107 (2000).

n24 But see Rachel Chalmers, Code Critic, Salon Technology at
http://www.salon.com/ /tech/feature/1999/11/30/lions/index.html (last visited
Oct. 1, 2000) ("John Lions wrote the first, and perhaps only, literary criticism
of UNIX, sparking one of open source's first legal battles.").

n25 See 37 C.F.R. § 202.20(c)(2)(vii)(A) (1999).

n26 See 37 C.F.R. § 202.20(c)(2)(vii)(A)(2) (1999).

n27 See id; see also 35 U.S.C. § 112 (1999).

n28 "As a general rule, where software constitutes part of a best mode of

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 31

carrying out an invention, description of such a best mode is satisfied by a
disclosure of the functions of the software. . . . Thus, flow charts or source
code listings are not a requirement for adequately disclosing the functions of
software." Fonar Corp. v. Gen. Elec. Co., 107 F.3d 1543, 1549 (Fed. Cir.
1997).

n29 Some have proposed that intellectual property laws be amended to
require publication of source code. See Pamela Samuelson et al., A Manifesto
Concerning the Legal Protection of Computer Programs, 94 Colum. L. Rev.
2308, 2427-29 (1994); see also Anthony J. Mahajan, Intellectual Property,
Contracts, And Reverse Engineering After ProCD: A Proposed Compromise For
Computer Software, 67 Fordham L. Rev. 329 (1999) (proposing that software
producers be required to disclose their source code after a pre-determined
passage of time as a condition to maintaining federal copyright and patent
protection).

n30 See Alois Valerian Gross, Annotation, What is Computer "Trade Secret"
Under State Law, 53 A.L.R. 4th 1046, 1055 (1987). Trade secret status is
legally determined only through litigation, as distinguished from copyright or
patent status. States have generally embraced the definition in either the
Uniform Trade Secret Act § 1(4), 14 ULA 542 (1979) or Restatement of Torts §
757 (1939). Courts generally require that owners of trade secrets take security
measures to safeguard trade secrets.

n31 Starting with Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d
1240, 1248-51 (3d Cir. 1983), courts have consistently held software
protected by copyright irrespective of whether it was in source code,
executable code, or some other form. Nevertheless, there are good policy
reasons to question whether copyright should apply to code in all its forms.
See Pamela Samuelson, CONTU Revisited: The Case Against Copyright
Protection for Computer Programs in MachineReadable Form, 1984 Duke L.J.
663, 705-49; Peter S. Menell, Tailoring Legal Protection for Computer
Software, 39 Stan. L. Rev. 1329, 1371 (1987); A. Samuel Oddi, An Uneasier
Case for Copyright than for Patent Protection of Computer Programs, 72 Neb.
L. Rev. 351 (1993); Anthony L. Clapes, Confessions of an Amicus Curiae:
Technophobia, Law, and Creativity in the Digital Arts, 19 U. Dayton L. Rev. 903
(1994) (arguing for higher level of copyright protection for software).

n32 Compare Vault Corp. v. Quaid Software Ltd., 655 F. Supp. 750 (E.D. La.
1987) and Green Book Int'l Corp. v. Inunity Corp., 2 F. Supp. 2d 112 (D. Mass.
1998) with S.O.S. Inc. v. Pauplay, Inc., 886 F.2d 1081 (9th Cir. 1989).

n33 Richard Stallman, Why Software Should Not Have Owners, at
http://www.gnu.ai.mit/ .edu/philosophy/why-free.html (last visited Sept. 29,
2000).

n34 See id.

n35 For "a techie/hacker's case" for open source software, see The Case for
Open Source: Hackers' Version, at http://www.opensource.org/for-
hackers.html (last visited Sept. 29, 2000); for "a businessperson's case," see
The Business Case for Open Source, at http://www.opensource.org/for-
suits.html (last visited Sept. 29, 2000); for "a customer's case," see The

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 32

Customer Case for Open Source, at http://www.opensource.org/for-
buyers.html (last visited Sept. 29, 2000).

n36 The Business Case for Open Source, at http://www.opensource.org/for-
suits.html (last visited Sept. 29, 2000).

n37 See The Case for Open Source: Hackers' Version, at
http://www.opensource.org/for-hackers.html (last visited Sept. 29, 2000).

n38 Think Free Speech, Not Free Beer, at
http://www.opensource.walkerart.org/themarketf.html (last visited Sept. 29,
2000).

n39 For a list of open source licenses, see The Approved Licenses, at
http://www.opensource.org/licenses/ (last visited Sept. 29, 2000) (listing The
GNU General Public License (known as the GPL), the GNU Library or 'Lesser'
Public License (LGPL), the BSD License; the MIT License; the Artistic License;
the Mozilla Public License v. 1.0 (MPL); the Qt Public License (QPL). the IBM
Public License; the MITRE Collaborative Virtual Workspace License (CVW
License); the Ricoh Source Code Public License. the Python License; the
zlib/libpng License; the Apache Software License, the Vovida Software License
v. 1.0, the Sun Internet Standards Source License (SISSL), the Intel Open
Source License, the Mozilla Public License 1.1 (MPL 1.1), and the Jabber Open
Source License). The GPL, the "granddaddy" of open source licenses and still
the most eloquent and thoughtful, covers among other things, the Linux
operating system.

For a more general discussion of ways to share software, including open
source, shareware, or public domain approaches, see Categories of Free and
Non-Free Software, at http://www.gnu.ai.mit.edu/philosophy/categories.html
(last visited Sept. 29, 2000).

n40 For an acute comparison of the legal effects of various open source
licenses, see Frank Hecker, Setting Up Shop: The Business of Open-Source
Software Revision 0.8, at http://www.hecker.org/writings/setting-up-shop.html
(last visited Sept. 29, 2000).

n41 See id.; see also The Approved Licenses, at
http://www.opensource.org/licenses/ (last visited Sept. 29, 2000).

n42 Bruce Perens, The Open Source Definition (Version 1.7), at
http://www.opensource.org/

osd.html (last visited Nov. 25, 2000).

n43 See id.

n44 See id.

n45 See The Approved Licenses, at http://www.opensource.org/licenses (last
visited Sept. 29, 2000).

n46 See Python 1.6, CNRI Open Source License Agreement, at

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 33

http://www.handle.net/pythonlicenses/python1.69-5-00.html (visited Nov. 25,
2000).

n47 See Python 1.6, Beta 1 CNRI Open Source License Agreement, at
http://www.handle.net/pythonlicenses/python1.6beta8-52000.html (last
visited Sept. 29, 2000).

n48 See, e.g., Mozilla Public License Version 1.0, at
http://www.mozilla.org/MPL/MPL-1.0.html (last visited Sept. 29, 2000).

n49 Or more precisely, the right to recover for patent infringement from
anyone else that does. 35 U.S.C. § 271 (1994 & Supp. IV 1998).

n50 See, e.g., MIT License, at http://www.opensource.org/licenses/mit-
licenses.html (last visited Oct. 12, 2000) ("Permission is hereby granted, free
of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software.").

n51 See 35 U.S.C. § 271 (1994 & Supp. IV 1998) (containing no mens rea
requirement for infringement).

n52 A merchant who sells goods warrants that they are free of third party
infringement claims. See U.C.C., Warranty of Title and Against Infringement, §
2-312(3) (2000) (A merchant seller "warrants that the goods shall be delivered
free of the rightful claim of any third person by way of infringement."). Article
2, which covers sales of tangible goods, may not apply directly to software
transactions, but is likely to be applied by analogy. See Andrew Beckerman-
Rodau, Computer Software: Does Article 2 of the Uniform Commercial Code
Apply?, 35 Emory L.J. 853 (1986).

n53 See U.C.C. § 2-312, 316 (2000) (providing that only merchants make
automatic warranty of title and that warranties may be limited by
circumstances, usage of trade).

n54 See, e.g., Wendy J. Gordon, An Inquiry into the Merits of Copyright: The
Challenges of Consistency, Consent, and Encouragement Theory, 41 Stan. L.
Rev. 1343 (1989) (comparing various theoretical bases for intellectual property
law).

n55 On the application of economic analysis by legal scholars to specific
copyright law doctrines, see Wendy J. Gordon, Fair Use As Market Failure: A
Structural and Economic Analysis of the Betamax Case and Its Predecessors,
82 Colum. L. Rev. 1600 (1982). See also William M. Landes & Richard A.
Posner, An Economic Analysis of Copyright Law, 18 J. Legal Stud. 325 (1989).

n56 See Mark A. Lemley & David McGowan, Legal Implications of Network
Economic Effects, 86 Cal. L. Rev. 479, 528-30 (1998). See also Mark A. Lemley
& David McGowan, Could Java Change Everything? The Competitive Propriety
of a Proprietary Standard, 43 Antitrust Bull. 715, 716 (1998).

n57 See Lotus Dev. Corp. v. Borland Int'l, Inc., 49 F.3d 807, 814-15 (1st Cir.

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 34

1995) (holding menu command structure of spreadsheet program not
protected by copyright), aff'd per curiam, 516 U.S. 233 (1996); see generally
I. Trotter Hardy, Copyright And "New-Use" Technologies, 23 Nova L. Rev. 659
(1999); Niva Elkin-Koren, Copyrights In Cyberspace--Rights Without Laws?, 73
Chi.-Kent L. Rev. 1155 (1998); see also Grace H. Lee, The Copyrightability Of
Computer Software, 6 U. Balt. Intell. Prop. L.J. 117 (1998).

n58 See Lemley & McGowan, Legal Implications of Network Economic Effects,
supra note 56, at 527-30.

n59 See id.

n60 See id.

n61 See id.

n62 See id.

n63 See id.

n64 See id. (Some operating systems in the past have included the capacity
to run Microsoft-compatible software.).

n65 A somewhat different issue of economic incentives arises in the case of
nonprofit educational institutions and intellectual property rights in software.
See generally J. H. Reichman, Computer Programs As Applied Scientific Know-
How: Implications of Copyright Protection for Commercialized University
Research, 42 Vand. L. Rev. 639 (1989).

n66 See http://www.winehq.com/ (site for the windows emulator project);
Eben Moglen, Bill Gates' Best Bet is to Set Software Free, San Jose Mercury
News, Dec. 26, 1999.

n67 U.S. Const. art. I, § 8, cl. 8.

n68 Id. On economics and intellectual property generally, see Kenneth W.
Dam, Some Economic Considerations in the Intellectual Property Protection of
Software, 24 J. Legal Stud. 321 (1995). For a discussion of economic analysis
of computer technology law, see Seth A. Cohen, To Innovate or Not to
Innovate, That is the Question: The Functions, Failures, and Foibles of the
Reward Function Theory of Patent Law in Relation to Computer Software
Platforms, 5 Mich. Telecomm. & Tech. L. Rev. 1 (1998).

n69 Mark A. Lemley, The Economics of Improvement in Intellectual Property
Law, 75 Tex. L. Rev. 989 (1997).

n70 See, e.g., Sony Corp. of Am. v. Universal City Studios, Inc., 464 U.S.
417, 429 (1984); Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 480 (1974).

n71 See 17 U.S.C. § 102 (1994) (extending copyright to all original works of
authorship fixed in tangible form).

n72 See 17 U.S.C. § 302 (1994).

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 35

n73 See Digital Millennium Copyright Act of 1998, 17 U.S.C. § 1201 (1998).

n74 74 F. Supp 2d. 1 (D.D.C. 1999). Appropriately enough, the plaintiff in

Eldred is being represented pro bono by the Openlaw project at Harvard Law
School. See http://eon.law.harvard.edu/opencode (last visited Nov. 28, 2000).

n75 Pub. L. No. 105-298, 112 Stat. 2827 (codified at 17 U.S.C. § 304(b)
(2000)).

n76 See, e.g., Grant S. Nelson & Robert J. Pushaw, Jr., Rethinking the
Commerce Clause: Applying First Principles to Uphold Federal Commercial
Regulations but Preserve State Control Over Social Issues, 85 Iowa L. Rev. 1,
79-81 (1999) (describing Supreme Court jurisprudence broadening Congress'
Commerce Clause powers).

n77 The trial court ruled against plaintiff and the case is currently on appeal.
See Eldred, 74 F. Supp. 2d at 4.

n78 Id. at 3.

n79 See Ruth Gana Okediji, Copyright and Public Welfare in Global
Perspective, 7 Ind. J. Global Leg. Stud. 117 (1999) (criticizing economic
arguments behind international movement toward expansion of intellectual
property rights); Lakshmi Sarma, Comment, Biopiracy: Twentieth Century
Imperialism In The Form Of International Agreements, 13 Temp. Int'l & Comp.
L.J. 107 (1999).

n80 See, e.g., Paul Goldstein, Copyright's Highway: The Law and Lore of
Copyright From Gutenberg to the Celestial Jukebox (1994); Tom W. Bell, Fair
Use v. Fared Use: The Impact of Automated Rights Management on Copyright's
Fair Use Doctrine, 76 N.C. L. Rev. 557 (1998); I. Trotter Hardy, Property (and
Copyright) in Cyberspace, 1996 U. Chi. Legal F. 217; Robert P. Merges,
Contracting into Liability Rules: Intellectual Property Rights and Collective
Rights Organizations, 84 Cal. L. Rev. 1293 (1996). See also Information
Infrastructure Task Force, Intellectual Property and the National Information
Infrastructure: The Report of the Working Group on Intellectual Property
(1995) (federal report proposing changes to copyright laws reflecting the
expansive propertization approach); Ann Okerson, Who Owns Digital Works?,
Sci. Am. (July 1, 1996). On the more general tendency of property rights to
expand along with a global trend toward privatization, see Carol M. Rose, The
Several Futures of Property: Of Cyberspace and Folk Tales, Emission Trades
and Ecosystems, 83 Minn. L. Rev. 129 (1998). On the diminishment of the
public domain by propertization of ideas, see David Lange, Recognizing the
Public Domain, 44 Law & Contemp. Probs. 147 (1981).

n81 See James Boyle, Shamans, Software, and Spleens: Law and the
Construction of the Information Society (1996); Julie E. Cohen, Lochner in
Cyberspace: The New Economic Orthodoxy of "Rights Management", 97 Mich.
L. Rev. 462 (1998) (refuting a number of theoretical bases for maximal
copyright protection); Yochai Benkler, Free As The Air To Common Use: First
Amendment Constraints on Enclosure of the Public Domain, 74 N.Y.U. L. Rev.
354 (1999); Lydia Pallas Loren, Redefining The Market Failure Approach to Fair

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 36

Use in an Era of Copyright Permission Systems, 5 J. Intell. Prop. L. 1; Maureen
A. O'Rourke, Fencing Cyberspace: Drawing Borders in a Virtual World, 82 Minn.
L. Rev. 609 (1998). See also Margaret Jane Radin & R. Polk Wagner, On the
Internet and Legal Theory: The Myth of Private Ordering: Rediscovering Legal
Realism in Cyberspace, 73 Chi.-Kent. L. Rev. 1295 (1998); Margaret Jane
Radin, Property Evolving in Cyberspace, 15 J.L. & Com. 509 (1996) (discussing
how alleged benefits of privatizing information may be outweighed by
unintended consequences); Pamela Samuelson, The Copyright Grab, Wired,
Jan. 1996, at 134; Michael J. Meurer, Price Discrimination, Personal Use and
Piracy: Copyright Protection of Digital Works, 45 Buff. L. Rev. 845 (1997). For
a general discussion of the importance of maintaining a robust public domain,
see Jessica Litman, The Public Domain, 39 Emory L.J. 965 (1990); see also
Rosemary J. Coombe, Objects of Property and Subjects of Politics: Intellectual
Property Laws and Democratic Dialogue, 69 Tex. L. Rev. 1853 (1991)
(discussing adverse effects of commodification of cultural information).

n82 There are many calls for minimal or zero intellectual property protection.
The most comprehensive economic analysis of law supporting what the text
above calls the spartan approach is Glynn S. Lunney, Jr., Trademark
Monopolies, 48 Emory L.J. 367 (1999); see also Glynn S. Lunney, Jr.,
Reexamining Copyright's Incentives-Access Paradigm 1996, 49 Vand. L. Rev.
483 (1996).

n83 See Lunney, Reexamining Copyright's Incentives-Access Paradigm, supra
note 82, at 556-61.

n84 See id. at 491.

n85 See also Richard Stallman, Reevaluating Copyright: The Public Must
Prevail, 75 Or. L. Rev. 291 (1996).

n86 See Lunney, Trademark Monopolies, supra note 82, at 371-72. For a
general criticism of the recent expansion of trademark protection and its
propertization rationale, see Mark A. Lemley, The Modern Lanham Act and the
Death of Common Sense, 108 Yale L.J. 1687 (1999).

n87 See Lunney, Trademark Monopolies, supra note 82.

n88 See Richard H. McAdams, Relative Preferences, 102 Yale L.J. 1 (1992).

n89 See id. at 25.

n90 See id.

n91 See infra Part IV.

n92 See Robert Merges, Contracting into Liability Rules, 84 Cal. L. Rev. 1293,
1334-35 (1996).

n93 See Neil Netanel, Copyright Alienability Restrictions and the
Enhancement of Author Autonomy: A Normative Evaluation, 24 Rutgers L.J.
347, 365 (1993) (distinguishing United States and continental European
approaches); see also Roberta Kwall, Copyright and the Moral Right: Is an

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 37

American Marriage Possible?, 38 Vand. L. Rev. 1 (1985) (discussing the
interplay between American Copyright and the traditional European/Third
World moral right doctrine).

n94 Universal Declaration of Human Rights, Art. 27, at http://www.un.org/
/rights/50/decla.htm.

n95 See Justin Hughes, The Philosophy of Intellectual Property, 77 Geo. L.J.
287, 299 (1988); cf. Wendy J. Gordon, A Property Right in Self-Expression:
Equality and Individualism in the Natural Law of Intellectual Property, 102 Yale
L.J. 1533, 1560-72 (1993) (discussing Locke's theory of property).

n96 Hughes, supra note 95, at 300; see also Gordon, supra note 95; Adam
D. Moore, A Lockean Theory Of Intellectual Property, 21 Hamline L. Rev. 65
(1997).

n97 See generally Margaret Radin, Property and Personhood, 34 Stan. L.
Rev. 957 (1982) (discussing the relationship between property and
personhood).

n98 See Lunney, Trademark Monopolies, supra note 82.

n99 See id.

n100 Julie C. Smith, The NII Copyright Act of 1995: A Roadblock Along the
Information Superhighway, 8 Seton Hall Const. L.J. 891, 939 (1998); Alan S.
Gutterman, The NorthSouth Debate Regarding the Protection of Intellectual
Property Rights, 28 Wake Forest L. Rev. 89, 109 (1993).

n101 See Alexander Gigante, Ice Patch on the Information Superhighway:
Foreign Liability For Domestically Created Content, 14 Cardozo Arts & Ent. L.J.
523, 532 (1996); Craig A. Wagner, Motion Picture Colorization, Authenticity,
and the Elusive Moral Right, 64 N.Y.U. L. Rev. 628, 707 (1989).

n102 See Visual Artists Rights Act, Pub. L. 101-650, Title VI, Dec.1, 1990,
104 Stat. 5128 (codified at 17 U.S.C. § 106 (1994))

n103 Electronic Numerical Integrator and Computer.

n104 See Scott Mccartney, ENIAC: The Triumphs and Tragedies of the
World's First Computer (Walker & Co. 1999).

n105 Id.

n106 Cf. John A. Gibby, Software Patents: A Programmer's Perspective, 23
Rutgers Computer & Tech L.J. 293 (1997).

n107 See High-Wire Act for Science, L.A. Times, Jan. 9, 2000, at M4.

n108 See Nicholas Wade, Scientist at Work: Joe Z. Tsien; Of Smart Mice and
an Even Smarter Man, N.Y. Times, Sept. 7, 1999, at F1.

n109 See id.

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 38

n110 See Diamond v. Diehr, 450 U.S. 175 (1981); Michael L. Kiklis, The

Demise of the Mathematical Algorithm Rejection and the Emergence of the
Utility-Based Section 101 Inquiry, 16 The Computer Law. 26 (Aug. 1999).

n111 See Gottschalk v. Benson, 409 U.S. 63 (1972); see also John Fellas,
The Patentability of Software-related Inventions in the United States, 21 Eur.
Intell. Prop. Rev. 330 (1999).

n112 See Gottschalk, 409 U.S. at 71-72.

n113 See Parker v. Flook, 437 U.S. 584 (1978).

n114 See Diamond v. Diehr, 450 U.S. 175 (1981).

n115 See AT&T Corp. v. Excel Communications Inc., 175 F.3d 1352 (Fed. Cir.
1999) (holding patent protection broadly available for software as process as
well as machine); State Street Bank & Trust Co. v. Signature Fin. Group, 149
F.3d 1368, (Fed. Cir. 1998), cert. denied, 525 U.S. 1093 (1999) (upholding
patentability for software implementing business method, which implemented
mutual fund plan); In re Alappat, 33 F.3d 1526 (Fed. Cir. 1994); In re Lowry,
32 F.3d 1579 (Fed. Cir. 1994). See also In re Freeman, 573 F.2d 1237
(C.C.P.A. 1978); In re Walter, 618 F.2d 758 (C.C.P.A. 1980); and In re Abele,
684 F.2d 982 (C.C.P.A. 1982) (early trilogy of Court of Customs and Patent
Appeals cases attempting to formulate rules for patentability of software). The
United States cases have had a certain amount of persuasive weight in other
countries. See, e.g., Natalie Stoianoff, Patenting Computer Software: An
Australian Perspective, 21 Eur. Intell. Prop. Rev. 500 (1999) (discussing use of
U.S. precedent in Australia); Richard H. Stern, Scope-of-Protection Problems
with Patents and Copyrights on Methods of Doing Business, 10 Fordham Intell.
Prop. Media & Ent. L.J. 105 (1999); Christopher S Cantzler, Comment, Leading
the Way to Consistency for Patentability of Computer Software, 71 U. Colo. L.
Rev. 423 (2000); Robert A. Kreiss, Patent Protection for Computer Programs
and Mathematical Algorithms: the Constitutional Limitations on Patentable
Subject Matter, 29 N.M. L. Rev. 31(1999). The free issuance of software
patents may even lead practitioners to forgo means to draft patents that will
stand up in litigation. See Michael L. Kiklis, A Patent Saved is a Patent Earned,
17 The Computer Law. 3 (Jan. 2000); Examination Guidelines for Computer-
Related Inventions, 61 Fed. Reg. 7478 (1996); Wesley L. Austin; Software
Patents, 14 The Computer Law. 14 (June 1997); Keith Stephens, Software
Patent Developments: The PTO's Examination Guidelines for Computer-Related
Inventions, 17 J. Marshall J. Computer & Info. L. 277 (1998). On the
continuing struggle to define the subject matter of patents in new
technologies, see R. Carl Moy, Statutory Subject Matter And Hybrid Claiming,
17 J. Marshall J. Computer & Info. L. 277 (1998).

n116 Michael D. McCoy, Patents.Com: Exclusivity for ECommerce, 16 The
Computer Law. 10 (Dec. 1999) (discussing a number of notable business
method patents).

n117 "There are three general ways software can be used in an invention to
satisfy the patentable subject matter requirement. First, software is deemed a
'machine' when a computer is included in the claims of the invention. Second,

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 39

software is a 'process' when it is claimed as a series of operational steps to be
performed on or with the aid of a computer. The computer is not part of the
invention as it is with the 'machine' classification. And finally, a computer
readable memory (e.g., floppy disks, CDROM, system memory) that can be
used to direct a computer to function in a particular manner when used by the
computer is considered an 'article of manufacture.' Consequently, software in
various forms constitutes a machine, process, or an article of manufacture,
depending on how it is claimed." Nora M. Tocups & Robert J. O'Connell, Patent
Protection for Computer Software, 14 The Computer Law. 18 (November 1997)
(quoting In re Beauregard, 53 F.3d 1583, 1584 (Fed. Cir. 1995)). See Michael
J. Mehrman, Strategic Concerns when Pursuing Foreign Patents in the
Computer Arts, 15 The Computer Law. 17 (March 1998) (discussing differing
levels of patent protection in United States and Europe); J.H. Reichman, Legal
Hybrids Between the Patent and Copyright Paradigms, 94 Colum. L. Rev.
2432(1994); Michael J. Klein, Software Patenting: A New Approach, 6 U. Balt.
Intell. Prop. L.J. 135 (1998); see also Vincent Chiappetta, Patentability of
Computer Software Instruction as an "Article of Manufacture:" Software as
Such as the Right Stuff, 17 J. Marshall J. Computer & Info. L. 89 (1998).

n118 See Jeffrey R. Kuester et al., A New Frontier in Patents: Patent Claims
to Propagated Signals, 17 J. Marshall J. Computer & Info. L. 75 (1998).

n119 See, e.g., Richard Stallman, The GNU Operating System and the Free
Software Movement, in Open Sources: Voices From the Open Source
Revolution 67 (Chris DiBona et al, eds., 1999) ("The worst threat we face
comes from software patents, which can put algorithms and features off-limits
to free software for up to twenty years.").

n120 Simon Garfinkel, Patently Absurd, Wired 2.07.

n121 This point is made in discussions of open source and patents on
slashdot.com and the cni-copyright discussion list.

n122 On the special problems of applying nonobviousness analysis in new
technological areas, see John Kaskan, Obviousness and New Technologies, 10
Fordham Intell. Prop. Media & Ent. L.J. 159 (1999); see also Qing Lin, A
Proposed Test for Applying the Doctrine of Equivalents to Biotechnology
Inventions: The Nonobviousness Test, 74 Wash. L. Rev. 885 (1999); A.
Samuel Oddi, Beyond Obviousness: Invention Protection in the Twenty-First
Century, 38 Am. U. L. Rev. 1097 (1998). On nonobviousness generally, see
Nonobviousness: The Ultimate Condition of Patentability (John F. Witherspoon,
ed. 1980).

n123 See 35 U.S.C. § § 103(c) 102(e-g) (1999).

n124 See, e.g., Tocups & O'Connell, supra note 117, at n.2021; see also Seth
Shulman, Software Patents Tangle the Web, Tech. Rev. (Mar./Apr. 2000), at
http://www.techreview/. com/articles/ma00/shulman.htm.

n125 See, e.g., Philippe G. Ducor, Patenting the Recombinant Products of
Biotechnology and Other Molecules 15 (Kluwer Law Int. 1998) (stating that
novelty analysis in biotech "is generally not difficult to evaluate").

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 40

n126 See Gref Ahorian, Internet Patent New Service (Feb. 10, 2000) at
http://bustpatents.com/archive.htm.

n127 In addition to the USPTO, the Software Patent Institute is attempting to
build resources for searching prior art in the software area.

n128 See Privacy Software Patent may be Challenged by Web Protocol
Developers, 58 BNA Patent, Trademark & Copyright J. 284.

n129 See Patent Barred For Compton's, The New York Times, Oct. 31, 1994,
at D7.

n130 See Privacy Software Patent may be Challenged by Web Protocol
Developers, supra note 128; at 284; Frederick H. Colen & Robert D. Kucler,
Re-exam of Y2K Patent: Much at Stake, Nat'l L. J., Mar. 13, 2000, at B10.

n131 See id.

n132 See Arti K. Rai, Intellectual Property Rights in Biotechnology:
Addressing New Technology, 34 Wake Forest L. Rev. 827 (1999).

n133 See Mccartney, supra note 104.

n134 On some of the tangled issues in patent litigation law, see John R.
Thomas, On Preparatory Texts And Proprietary Technologies: The Place Of
Prosecution Histories in Patent Claim Interpretation, 47 UCLA L. Rev. 183
(1999); Rafael X. Zahralddin, Note, The Effect Of Broad Patent Scope on the
Competitiveness of United States Industry, 17 Del. J. Corp. L. 949 (1992).

n135 See Steven C. Carlson, Note, Patent Pools and The Antitrust Dilemma,
16 Yale J. on Reg. 359 (1999).

n136 On the changing jurisprudence of the doctrine of equivalents, see Scott
R. Boalick, Note, The Dedication Rule and the Doctrine of Equivalents: A
Proposal for Reconciliation, 87 Geo. L.J. 2363 (1999).

n137 See David J. Franklyn, The Apparent Manufacturer Doctrine, Trademark
Licensors and the Third Restatement of Torts, 49 Case W. Res. L. Rev. 671,
692-96 (1999).

n138 See Underwriter's Labs., Inc. v. Smith, 246 N.Y.S.2d 436 (N.Y. Sup. Ct.
1964); see also John V. Tait, Trademark Regulations and the Commercial
Speech Doctrine: Focusing on the Regulatory Objective to Classify Speech for
First Amendment Analysis, 67 Fordham L. Rev. 897, 900-01 (1998).

n139 See Perens, supra note 42.

n140 I note that the term "open source" is apparently already in use in the
vernacular of intelligence-gathering to mean publicly available information.
See, e.g., Leslie A. Benton & Glenn T. Ware, Haiti: A Case Study of the
International Response and the Efficacy of Nongovernmental Organizations in
the Crisis, 12 Emory Int'l L. Rev. 851 (1998) ("to collect and process
opensource and J2-provided intelligence related to civil-military and civic action

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 41

operations.").

n141 Cf. Jitka Smith, Comment, Budweiser or Budweiser?, 32 J. Marshall L.
Rev. 1251 (1999).

n142 A descriptive mark may be registrable if it acquires "secondary
meaning." See, e.g., Volkswagenwerk Aktiengesellschaft v. Rickard, 492 F.2d
474, 477 (5th Cir. 1974).

n143 See Eric S. Raymond, Issued by and for the Board of Directors of OSI,
16 June 1999 Announcement of "OSI Certified" open source mark, at
http://www.opensource.org/

pressreleases/certified-open-source.html (last visited Nov. 25, 2000).

n144 For discussions of the original meaning of "hacker," and for many
examples of the contributions of such hackers to the plasticity of English, see
The New Hacker's Dictionary (Eric Raymond, compiler, 3d ed. 1996).

n145 See David G. Post, Governing Cyberspace, 43 Wayne L. Rev. 155
(1996); David R. Johnson & David Post, Law and Borders -The Rise of Law in
Cyberspace, 48 Stan. L. Rev. 1367 (1996); Greg Y. Sato, Should Congress
Regulate Cyberspace?, 20 Hastings Comm. & Ent. L.J. 699 (1998); Sean Selin,
Governing Cyberspace: The Need for an International Solution, 32 Gonz. L.
Rev. 365 (1997); Robert Norman Sobol, Intelligent Agents and Futures Shock:
Regulatory Challenges of the Internet, 25 Iowa J. Corp. L. 103 (1999) (book
review).

n146 Lawrence Lessig, Code and Other Laws of Cyberspace (1999).

n147 Id.

n148 See I. Trotter Hardy, The Proper Legal Regime for "Cyberspace", 55 U.
Pitt. L. Rev. 993 (1994).

n149 See Lessig, supra note 146.

n150 See Michael J. Madison, Legal-Ware: Contract And Copyright In The
Digital Age, 67 Fordham L. Rev. 1025 (1998). On the international
ramifications of licensing law, see Kalama Lui-Kwan & Kurt Opsahl, The Legal
and Policy Framework for Global Electronic Commerce: A Progress Report, 14
Berkeley Tech. L.J. 503 (1999).

n151 U.C.C. § 2.

n152 See Mark Lemley, Intellectual Property and Shrinkwrap Licenses, 68 S.
Cal. L. Rev. 1239 (1995); see also Charles R. McManis, The Privatization (or
"Shrink-Wrapping") of American Copyright Law, 87 Cal. L. Rev. 173 (1999).

n153 See Maureen A. O'Rourke, Drawing the Boundary Between Copyright
and Contract: Copyright Preemption of Software License Terms, 45 Duke L.J.
479 (1995); ProCD, Inc. v. Zeidenberg, 86 F.3d 1447 (7th Cir. 1996).

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 42

n154 See Holly K. Towle, The Politics Of Licensing Law, 36 Hous. L. Rev. 121
(1999).

n155 See id.

n156 See, e.g., Pamela Samuelson & Kurt Opsahl, Licensing Information in
the Global Information Market: Freedom of Contract Meets Public Policy, 21
Eur. Intell. Prop. Rev. 386 (1999) (discussing how draft 2B could upset the
delicate balance of intellectual property law and antitrust law); A. Michael
Froomkin, Article 2B as Legal Software for Electronic Contracting -Operating
System or Trojan Horse?, 13 Berkeley Tech. L.J. 1023 (1998).

n157 The proposed UCITA is available at http://www.ucita.org/ (last visited
Nov. 27, 2000). See also Pratik A. Shah, The Uniform Computer Information
Transactions Act, 15 Berkeley Tech. L.J. 85 (2000).

n158 See GNU General Purpose License, at http://www.gnu.org/ (last visited
Nov. 28, 2000).

n159 See William W. Fisher III, Reconstructing the Fair Use Doctrine, 101
Harv. L. Rev. 1659 (1988).

n160 See 17 U.S.C. § 107 (1994).

n161 See Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417 (1984)

n162 See Margaret E. Watson, Unauthorized Digital Sampling in Musical
Parody: a Haven in the Fair Use Doctrine?, 21 W. New Eng. L. Rev. 469
(1999).

n163 But perhaps not if done on a systematic basis. See Am. Geophysical
Union v. Texaco, 60 F.3d 913 (2d Cir. 1995).

n164 See 17 U.S.C. § 107 (1994).

n165 See Sony Computer Entm't, Inc. v. Connectix Corp., No. 99-15852 (9th
Cir. Feb. 10, 2000).

n166 See Campbell v. Acuff-Rose Music, 510 U.S. 569 (1994).

n167 See id.

n168 See Leibovitz v. Paramount Pictures, 137 F.3d 109 (2d Cir. 1998).

n169 See Campbell v. Acuff-Rose Music, 510 U.S. 569 (1994) (citing Elsmere
Music, Inc. v. Nat'l Broad. Co., 623 F.2d 252 (2d Cir. 1980)).

n170 See Harper & Row, Publishers, Inc. v. Nation Enters., 471 U.S. 539
(1985).

n171 See Salinger v. Random House, Inc., 811 F.2d 90 (2d Cir. 1987).

n172 Sony Corp. of Am. v. Universal City Studios, Inc., 464 U.S. 417, 451

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 43

(1983).

n173 See Sony Corp. of Am. v. Universal City Studios, Inc., 464 U.S. 417
(1983).

n174 See id.

n175 See supra Part I.

n176 http://www.gnu.org/copyleft/gpl.html (last visited Nov. 28, 2000).

n177 Garry L. Founds, Note, Shrinkwrap and Clickwrap Agreements: 2B or
not 2B?, 52 Fed. Comm. L.J. 99 (1999).

n178 See Vault Corp. v. Quaid Software Ltd., 847 F.2d 255 (5th Cir. 1988);
Julie E. Cohen, Reverse Engineering and the Rise of Electronic Vigilantism:
Intellectual Property Implication of "Lock-Out" Programs, 68 S. Cal. L. Rev.
1091 (1995); David A. Rice, Public Goods, Private Contract and Public Policy:
Federal Preemption of Software License Prohibitions Against Reverse
Engineering, 53 U. Pitt. L. Rev. 543 (1992); Apik Minassian, Comment, The
Death of Copyright: Enforceability of Shrinkwrap Licensing Agreements, 45
UCLA L. Rev. 569 (1997).

n179 See Kenneth W. Dam, Self-Help In The Digital Jungle, 28 J. Legal Stud.
393 (1999).

n180 See Mark A. Lemley, Beyond Preemption: The Law and Policy of
Intellectual Property Licensing, 87 Cal. L. Rev. 111 (1999); Robert W.
Gomulkiewicz, The License Is The Product: Comments on the Promise of Article
2B for Software and Information Licensing, 13 Berkeley Tech. L.J. 891 (1998);
William W. Fisher III, Property And Contract On The Internet, 73 Chi.-Kent L.
Rev. 1203 (1998); Wendy J. Gordon, Intellectual Property as Price
Discrimination: Implications for Contract, 73 Chi.-Kent L. Rev. 1367 (1998).

n181 See David A. Rice, Digital Information as Property & Product: U.C.C.
Article 2B, 22 U. Dayton L. Rev. 621 (1997); Julie E. Cohen, Copyright and the
Jurisprudence of Self-Help, 13 Berkeley Tech. L.J. 1089 (1998); Raymond T.
Nimmer, Breaking Barriers: The Relation Between Contract and Intellectual
Property Law, 13 Berkeley Tech L.J. 827 (1998); David McGowan, Free
Contracting, Fair Competition, and Draft Article 2B: Some Reflections on
Federal Competition Policy, Information Transactions, and "Aggressive
Neutrality", 13 Berkeley Tech L.J. 1173 (1998).

n182 See, e.g., Rochelle Cooper Dreyfuss, Do You Want to Know a Trade
Secret? How Article 2B Will Make Licensing Trade Secrets Easier (But
Innovation More Difficult), 87 Cal. L. Rev. 191 (1999); see also Niva Elkin-
Koren, Copyright Policy and the Limits of Freedom of Contract, 12 Berkeley
Tech L.J. 93 (1997).

n183 The proposed UCITA is available at http://www.ucita.org/ (last visited
November 27, 2000).

n184 See, e.g., Germany v. Somm, 1 ILR (P&F) 832 (Munich Local Court July

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 44

15, 1998).

n185 See A. Michael Froomkin, Of Governments And Governance, 14
Berkeley Tech L.J. 617 (1999) (discussing topdown governance, such as that
imposed by governments, versus bottom-up governance, such as that
represented by voluntary participation in the open source movement); see also
David Goldstone & Betty-Ellen Shave, International Dimensions Of Crimes In
Cyberspace, 22 Fordham Int'l L.J. 1924 (1999); Marc A. Moyer, Section 301 of
the Omnibus Trade and Competitiveness Act of 1988: A Formidable Weapon in
the War Against Economic Espionage, 15 J. Int'l L. Bus. 178 (1994).

n186 See Lawrence Lessig, The Limits in Open Code: Regulatory Standards
and the Future of the Net, 14 Berkeley Tech. L.J. 759 (1999); see also
Lawrence Lessig, Open Code and Open Societies: Values of Internet
Governance, 74 Chi.-Kent. L. Rev. 1405 (1999).

n187 Cf. Porter Goss, An Introduction to the Impact of Information
Technology on National Security, 9 Duke J. Comp. & Int'l L. 391 (1999).

n188 See 50 U.S.C.S. App. § 2403 (2000); see also Export Administration
Regulations, at http://w3.access.gpo.gov/bxa/.

n189 See Maureen S. Dorney, The Grip on Encryption: Export limits on
cyphering technology are strangling U.S. software companies, but relief may
be on the way, at http://www.ipmag.com/dorney.html (visited Nov. 25, 2000).

n190 The case also has constitutional dimensions; source code is more likely
than executable code to be accorded First Amendment protection as speech.
See Universal City Studios v. Reimerdes, No. 00 Civ. 0277(LAK) (S.D.N.Y. Feb.
2, 2000) (holding that executable code at issue did "little to further traditional
First Amendment interests" because its expressive content was minimal
compared to its functional component). Whether source code is protected
speech is at present unsettled. See Lawrence Lessig, The Law of the Horse:
What Cyberlaw Might Teach, 113 Harv. L. Rev. (1999) (discussing cases
differing on whether source code for encryption software is protected speech);
Encryption/First Amendment, Ninth Circuit Holds That Export Administration
Regulations Violate First Amendment, 16 The Computer Law.; The SoftSpeech
Discussion List's Web Pages, at http://samsara.law.cwru.edu/sftspch/
(collecting resources on the issue of whether source code is protected speech).

n191 See Mark A. Lemley, The Law And Economics Of Internet Norms, 73
Chi.-Kent L. Rev. 125 (1998).

n192 See Neil Weinstock Netanel, Copyright and a Democratic Civil Society,
106 Yale L.J. 283 (1996); Niva ElkinKoren, Cyberlaw and Social Change: A
Democratic Approach to Copyright Law in Cyberspace, 14 Cardozo Arts & Ent.
L.J. 215 (1996); for a summary of recent work on information law and its
social effects, See Keith Aoki, Innovation and the Information Environment:
Interrogating the Entrepreneur, 75 Or. L. Rev. 1 (1996). On the role of
intellectual property law in the coming networked world, see Intellectual
Property in the Age of Universal Access (Pamela Samuelson & Peter G.
Neumann eds., 1999).

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

 45

n193 See Lessig, supra note 146, (providing a far-sighted analysis of the
social benefits of open code). See also Open Sources, supra note 1.

n194 A different issue is the idea of fostering development of the software
industry itself. See, e.g., Helene Miale, Note, The National Competitiveness
Act: Gauging The Federal Government's Role in Promoting Technology Policy
To Enhance U.S. Economic Growth, 18 Seton Hall Legis. J. 779 (1994).

n195 See supra notes 118-119, and accompanying text. See also Bryan
Pfaffenberger, The Coming Software Patent Crisis: Can Linux Survive?, Linux
Journal (1999).

n196 For instance, Sun Microsystems has opened up the source code to its
Solaris operating system software, but retained restrictions in the license that
would make it fail to qualify for the "OSI Certified: certification mark. See
Hiawatha Bray, Linux Leaders are Cool to Sun Source-Code Plan, The Boston
Globe Oct. 2, 1999, at F1. See also Steve Hamm, The Wild And Woolly World
Of Linux, Bus. Week, Nov. 15, 1999, Information Technology section
(describing various combinations of proprietary and open source software).

n197 See Benkler, supra note 81, at 404.

n198 See United States v. Microsoft Corp., 97 F. Supp. 2d 59 (D.D.C. 2000).

Electronic copy available at: https://ssrn.com/abstract=956647Electronic copy available at: https://ssrn.com/abstract=956647

	The Paradoxes of Free Software
	Recommended Citation

	Microsoft Word - The Paradoxes of Free Software.doc

