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Abstract 

Quitting smoking remains an on-going challenging for many cigarette smokers. Numerous 

individualized characteristics have been suggested as predictors for successful smoking 

abstinence. One such factor requiring further investigation is reward responsivity, given that 

individuals with addiction show behavioral and neurobiological alterations in reward function. 

This study used previously collected data from 122 daily smokers to investigate whether 

individuals willing to abstain from smoking in exchange for money would display increased 

reward responsivity during a baseline, non-abstinent visit, relative to individuals who smoked 

immediately. Participants Probabilistic Reward Task (PRT) performance was used to measure 

reward responsivity to monetary rewards and a laboratory-based measures of abstinence called 

the Relapse Analogue Task (RAT) was used to evaluate whether individuals are willing to 

abstain from smoking in exchange for money. The PRT was analyzed using both traditional 

analyses and a more fine-grained computational model: Hierarchical Drift Diffusion Modeling 

(HDDM). Participants fell into 2 groups based on a bimodal distribution of smoking immediately 

(0-minute waiters) or abstaining the full duration of the RAT (50-minute waiters) and were 

compared on standard and HDDM PRT measures of reward responsivity. Results showed that 0-

minute and 50-minute waiters did not differ on standard nor HDDM measures of reward 

responsivity, however, 50-minute waiters showed higher values than 0-minute waiters for both 

standard and HDDM measures of perceptual processing, which were used as control variables. 

These results suggest individuals who are more likely to abstain from smoking have better 

perceptual processing abilities, which may be linked to underlying dopaminergic function.  
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Introduction 

Smoking continues to be the leading cause of preventable death in the United States (US 

Department of Health and Human Services, 2014; USDHHS). It is estimated that 480,000 U.S. 

deaths per year are caused by cigarette smoking and second-hand smoke exposure (USDHHS), 

and deaths from smoking-related diseases are proportionally highest in Europe and the Americas 

(Goodchild, Nargis, & d’Espaignet, 2018). The annual smoking-related death rate is predicted to 

increase to 8 million people by the year 2030 (World Health Organization, 2011). However, 

approximately 15.5% of adults in the United States continue to smoke despite the negative health 

consequences (CDC, 2018). In fact, more than 16 million Americans live with a smoking-related 

disease, including cancer, heart disease, chronic obstructive pulmonary disease, rheumatoid 

arthritis, and diabetes. In addition to smoking’s overall impact on health, it also has a profound 

economic cost. For instance, in 2012 the total global economic cost of smoking was $1.4 trillion 

(Goodchild, Nargis, & d’Espaignet, 2018).  

Unfortunately, even for those individuals who try to quit, the rates for successful 

abstinence remains low. It is estimated that 95% of individuals who attempt to quit without 

formal treatment relapse within 1 year (CDC, 2011), and, of those who participate in smoking-

cessation treatments, only 10-40% remain abstinent (USDHHS, 2008).  In fact, many smokers 

make several attempts to quit (Stapleton, 1998), upwards of 14 attempts before achieving long 

term abstinence (Chaiton et al., 2016). Thus, it is critical that resources be put into understanding 

and developing effective smoking-cessation treatments, especially given that health risks 

associated with smoking can be reversed (USDHH, 1990) and years of life lost from smoking 

can be reduced by 90% if cessation is achieved by the age of 40 (USDHH, 2014).   
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Factors Predicting Successful Quitting 

 When it comes to smoking cessation, there is a broad continuum of how difficult 

successfully quitting can be. For instance, some people are able to quit without intervention on 

their first attempt, while others require multiple attempts or are unable to quit all together. Thus, 

identifying individuals who will or will not find quitting an easy process is an important goal 

because it will ultimately inform what cessation strategy will be most effective and facilitate 

individualized treatment plans (Caponnetto & Palosa, 2008). While relapse prevention research 

has begun to explore some of the mechanisms and factors that contribute to the success of quit 

attempts, there is much that is not understood. One promising area of research is examining 

factors that can predict the success of abstinence. Specifically, baseline factors including 

demographic, health-related, psychological, and smoking-related factors, have all been linked to 

successful quit attempts.  

 Demographic variables, such as gender, age, marital status, and years of education, are 

some examples of specific factors linked with smoking cessation. For instance, women attempt 

to quit smoking at about the same rate as men but are less likely to succeed (Scharf et al., 2004; 

Swan et al., 1997; USDHHS, 2001). Age is also linked to successful quit attempts, such that 

higher success rates are typically reported for older subjects (Hymowitz et al., 1997; Lee et al., 

2007; Monso et al., 2001). Another such factor is marital status, with being married a strong 

predictor of success (Monso et al., 2001). More specifically, smokers are more likely to remain 

abstinent if they are married to non-smokers or ex-smokers (McBride et al., 1998). Similarly, 

other family members’ smoking status is also predictive of achieving abstinence, such that the 

absence of other smokers in the household is a strong predictor of success (Gourlay et al., 1994). 

Finally, there is some evidence suggesting that education level is predictive of smoking 
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cessation; however, this evidence is mixed. While some studies show that smoking cessation is 

more likely with higher education (Janson et al., 2006), others suggest that an education level 

below high school is predictive of successful cessation (Rafful et al., 2013).  

 In addition to demographic variables, psychological factors also contribute to maintaining 

abstinence. Individual variability in self-control resources is an important factor in quitting 

smoking. Specifically, theories of self-control assert that it is a limited resource that can be 

depleted overtime (Baumeister et al., 1998). Depletion of self-control is linked with nicotine 

craving, such that, after periods of utilizing self-control resources, smokers deprived of nicotine 

had an increased craving to smoke (Heckman et al., 2017). Similarly, impulsivity is a key 

variable when considering an individual’s likelihood for successful quitting. One study found 

that higher levels of self-reported trait-impulsivity predicted quicker relapse after a 48-hour 

period of abstinence (Doran et al., 2004), and, in another study, tobacco smokers who did not 

achieve abstinence were more impulsive at the beginning of treatment and had a tendency to 

discount monetary rewards more than those who remained abstinent (Krishnan-Sarin et al., 

2007). Other psychological factors include self-efficacy and negative emotionality. Smokers who 

remained abstinence for a 6-week period reported higher levels of self-efficacy at baseline (Smit 

et al., 2014), and individuals with higher negative emotionality were less likely to initiate 

quitting and were quicker to relapse (Leventhal et al., 2012).   

 Smoking-related variables are also key factors that are predictive of a successful quit 

attempt. Smokers’ craving intensity during the first few days of a quit attempt predicts future 

success at quitting (Ferguson et al., 2006). Individuals’ attentional bias towards smoking-related 

stimuli also predicts success; specifically, individuals showing more attentional bias to smoking-

related words on the first day of a quit attempt were more likely to relapse (Waters et al., 2003). 
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Finally, age at smoking initiation is also linked to successful quit attempts, as those who start 

smoking before 16 are more likely to relapse than those who start at a later age (Breslau & 

Peterson, 1996).  Similarly, initiation of smoking after age 20 is a significant predictor of 

smoking cessation (Hymowitz et al., 1997). 

Nicotine’s Effect on Reward Function  

Individuals’ ability to change behavior based on the past consequences of their behavior 

is fundamental to successful daily, goal-directed actions. One example is reward responsivity, 

which describes how individuals modify their behavior based on previous positive reinforcement 

(Pizzagalli, Jahn & O’Shea, 2005). This reward response can be captured through behavior 

(Pizzagalli, Jahn & O’Shea, 2005; Pizzagalli et al., 2008; Barr et al., 2008) and even 

neurobiological responses (see Wang, Smith, & Delgado, 2016, for review). The concept of 

reward responsivity is rooted in both classical and operant conditioning theories, which explain 

how conditioned stimuli acquire the ability to elicit behavioral responses through their associated 

rewarded outcomes. In the context of nicotine addiction, both classical and operant learning are 

at play; the pleasurable effects of nicotine become classically conditioned to smoking-related 

stimuli (e.g., cigarettes, ashtrays, smell of tobacco) and, through operant learning, these stimuli 

develop the ability to trigger habitual smoking behavior (see Belin et al., 2009 for review; Field 

& Cox, 2008).  

Some of the brain regions underlying classical and operant learning processes are located 

in the striatum (e.g., nucleus accumbens; Hall et al., 2001; Parkinson et al., 2002), which serves a 

significant role in processing rewards and integrating information about rewards into future 

behavior (Tricomi et al., 2004; O’Doherty et al., 2004). In order for stimuli to acquire the ability 

to trigger behaviors, they must first be encoded as resulting in rewards, which is facilitated by 
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dopamine release in reward-related brain regions (i.e., striatum; Di Chiara, 1995; Schultz, 2002; 

Smith-Roe & Kelley, 2000). One of the reasons for the difficulty of successful smoking cessation 

is nicotine’s ability to enhance the brain’s reward function by triggering increases in dopamine 

release (Barrett et al., 2004; Brody et al., 2004). These changes in dopamine levels contribute to 

short- and long-term neuroadaptations in the reward system (for review, see Adinoff, 2004). 

Specifically, there is evidence demonstrating that acute nicotine administration in rodents 

reduces brain reward thresholds, which results in increased reward sensitivity (i.e., a propensity 

to pursue and experience pleasure from rewards; Bornstein & Marc, 2008; Huston-Lyons & 

Kornetsky, 1992; Xue et al., 2020). In animal models, increased reward sensitivity (i.e., 

decreased reward thresholds) can last for up to 36 days after acute nicotine administration 

(Kenny & Markou, 2006), and, with chronic use, can lead to increases in reward thresholds (i.e., 

decreased reward sensitivity), especially during periods of withdrawal (Koob & Le Moal, 2001). 

As a result, it is speculated that individuals continue using nicotine as a way to lower reward 

thresholds, facilitating their experience of reward (Koob & Le Moal, 2001).  

During nicotine abstinence, animal models have been used to show the opposite effect, 

where reward thresholds are heightened and there is a decrease in reward sensitivity (Epping-

Jordan et al., 1998). In fact, even stimuli associated with nicotine-withdrawal develop the ability 

to elevate reward thresholds on their own, which has been shown in rodent models (Kenny & 

Markou, 2005). In humans, decreased reward sensitivity, particularly to non-drug rewards, has 

been demonstrated behaviorally using tasks that give monetary incentives for accurate 

performance. In these studies, abstinent smokers demonstrate worse performance on reward-

responsivity tasks as compared to when they have been administered nicotine (Al-Adawi & 

Powell, 1997; Pergadia et al., 2014; Powell et al., 2002), to satiated smokers (Powell et al., 
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2002), and to non-smokers (Al-Adawi & Powell, 1997; Lesage et al., 2017; Powell et al., 2002; 

Powell et al., 2004). This reduction in reward-related performance reflects a decreased impact of 

rewards on the modulation of behavior. Furthermore, these effects can occur as soon as 24 hours 

after nicotine withdrawal (Pergadia et al., 2014) and can be reversed with nicotine administration 

(Dawkins et al., 2006). It is reasonable to conclude that such reduced reward responsivity 

contributes to withdrawal-related symptoms and perpetuates smoking behavior (De Biasi & 

Dani, 2011).  

Theoretical models posit that, during periods of abstinence, drug-related stimuli become 

more salient and increase in motivational value (Goldstein & Volkow 2002), which increases the 

probability that individuals will engage in drug-taking behavior. This has been well supported by 

neuroimaging studies demonstrating that smokers deprived of nicotine are more responsive to 

smoking-related stimuli, such as images of cigarettes. Specifically, smokers demonstrate 

increased neural responding to smoking images relative to neutral images during acute nicotine 

deprivation (David et al., 2005; Due et al., 2002; Falcone et al., 2016; McClernon et al., 2009). 

Furthermore, these images elicit neural responses in reward-related regions known to respond to 

addictive drugs, such as nicotine (David et al., 2005; Due et al., 2002; Falcone et al., 2016), 

which indicates that the reward system is biased towards drug-related stimuli in the environment.  

Therefore, drug-related stimuli have the ability to trigger similar brain regions as the drug itself.  

 Thus, while nicotine’s initial reinforcing effects come from its ability to increase reward 

sensitivity, during deprivation there is a hyposensitivity to non-drug rewards and increased 

responsivity to drug-rewards. This paradoxical relationship is believed to contribute to relapse 

because abstinent smokers are surrounded by an environment in which typically rewarding 

stimuli lose their reward-value and drug-related stimuli increase in value (Goldstein & Volkow, 
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2002). However, it is important to note that investigations on the effects of nicotine on the 

reward system differ on multiple factors, such as species (e.g., animals vs. humans), pattern of 

use (e.g., nicotine-naive vs. chronic users), and drug state (e.g., deprived vs. sated). These factors 

contribute to the variability in findings and warrant further investigation regarding the effect of 

nicotine on reward sensitivity.  

Neural Patterns of Reward Predicting Relapse 

One pre-quit factor that requires further investigation is reward processing, given that 

reward-related deficits are well documented in individuals with substance use disorders. Limited 

research investigating behavioral manifestations of reward dysfunction as a predictor of relapse 

currently exists. However, some studies have begun to identify patterns of neural activation in 

reward-related brain regions associated with successful nicotine abstinence. These studies focus 

on reward processing prior to abstinence (i.e., while satiated) and use brain responsivity to 

smoking-related and non-smoking related stimuli to predict relapse.  

Pre-quit deficits in processing natural rewards, such as pleasant images, are linked with a 

greater likelihood of relapse during a quit attempt (Versace et al., 2011; Versace et al., 2014). 

Specifically, smokers with more blunted responsivity to images of pleasant stimuli are less likely 

to be abstinent after 10 weeks compared to those with a less blunted response (Versace et al., 

2011). Similarly, smokers showing lower brain responsivity to pleasant stimuli relative to 

cigarette-related images prior to quitting are less likely to be abstinent after 6 months (Versace et 

al., 2014). Furthermore, individual variability in the degree to which smokers process non-drug 

rewards exists and is shown to predict future smoking behavior (Wilson et al., 2014). 

Specifically, individuals with weaker neural response to non-drug rewards (e.g., money) are the 

least willing to refrain from smoking in exchange for money (Wilson et al., 2014). Taken 



 

 8 

together, these results suggest that smokers demonstrate a devaluation of natural rewards and a 

preference for drug-related rewards, and this pattern is predictive of relapse.   

Probabilistic Reward Task: Studying Reward in a Laboratory Setting 

Given the available evidence demonstrating reward processing patterns of brain activity 

prior to relapse, it is reasonable to expect behavioral characteristics of reward processing may 

also predict smoking behavior. One method for measuring behavioral differences in reward 

function is the Probabilistic Reward Task (PRT), which is a computerized task that assesses an 

individual’s reward responsiveness (Pizzagalli, Jahn, & O’Shea, 2005). In this paradigm, reward 

responsiveness is defined as an individual’s ability to modulate behavior based on prior 

reinforcements (Pizzagalli, Jahn, & O’Shea, 2005). This is based on the classical behaviorist 

view that individuals increase behaviors that are positively reinforced with rewards (e.g. Hull, 

1943). Reward responsivity on the PRT is characterized by response bias, defined as a tendency 

to report seeing the more frequently rewarded stimulus more often than the less frequently 

rewarded stimulus (Pizzagalli, Jahn, & O’Shea, 2005).  

Following the procedures used by Pizzagalli, Jahn, and O’Shea (2005), individuals taking 

the PRT are instructed to perform the task with the aim of winning as much money as possible. 

Individuals are presented with multiple trials of a mouthless cartoon face on a computer screen. 

After a brief delay, either a short or long mouth is quickly presented on the screen, and 

participants are asked to identify which mouth was presented by pushing a button. Both mouth 

types are presented equally across trials; however, only some correct answers end in monetary 

feedback (e.g., “correct! You won 5 cents”). Correct identification of one mouth is rewarded 

three times more often than correct identification of the other mouth, resulting in an 

asymmetrical reinforcement schedule.  
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Standard PRT analyses yield several performance parameters, such as response bias and 

response time. Response bias reflects an individual’s tendency to categorize the mouth as the 

type that is most rewarded during previous trials, regardless of which stimulus was actually 

presented. Therefore, response bias captures an individual’s ability to integrate reinforcement 

history into future behavior that either increases or decreases the likelihood of encountering more 

rewards (Pizzagalli et al., 2009). When interpreting response bias, higher values are thought to 

reflect greater responsivity to monetary rewards, and individuals with a stronger response bias 

are considered to have more intact reward responsivity.  

Standard PRT analyses also consider reaction time during PRT performance. Reaction 

time generally provides insight into cognitive processes, such as attention and response speed, 

that impact overall behavioral performance (Pizzagalli, Jahn, & O’Shea, 2005). However, there 

is also a reward-related component to reaction time that has been demonstrated in studies using 

the PRT (Pizzagalli, Jahn, & O’Shea, 2005; Bogdan & Pizzagalli, 2006). Specifically, stimuli 

resulting in more frequent rewards typically elicit shorter reaction times than those less 

rewarded, presumably because more rewarded stimuli have increased saliency. As such, 

traditional measures of PRT reaction time can be conceptualized as a composite that incorporate 

elements of both cognitive processing and reward function.  

The PRT was originally developed to measure reward responsivity in individuals with 

depression (Pizzagalli, Jahn, & O’Shea, 2005; Pizzagalli et al., 2009) and has since been 

validated for use in multiple, independent samples (e.g., Barr et al., 2008; Pergadia et al., 2014; 

Janes et al., 2015). For example, studies show that individuals with depressive symptoms, such 

as anhedonia, develop weaker response biases on the PRT than healthy controls and is predictive 

of anhedonia levels one month later (Pizzagalli, Jahn, & O’Shea, 2005). Furthermore, the PRT 
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demonstrates sensitivity for detecting aspects of behavioral reward responsivity. For instance, 

one study showed that, while individuals diagnosed with depression responded to individual 

rewards, they were unable to integrate this into behavioral changes and develop a reward bias 

throughout the task (Pizzagalli et al., 2009). The PRT has also been used to study nicotine-

related changes in reward responsivity. Research has shown that acute nicotine administration to 

non-smokers increased response bias towards the more frequently rewarded stimuli on the PRT 

(Barr et al., 2008). The effects of nicotine abstinence on reward responsivity in smokers are also 

demonstrated using the PRT, such that there is a reduction in response bias on the PRT after a 

24-hour period of abstinence (Pergadia et al., 2014).  

These results demonstrate that the PRT is a valid measure of reward responsiveness 

across different populations (e.g., smokers, non-smokers, depression) and contexts (e.g., on vs. 

off nicotine). Moreover, the finding that the PRT response bias parameter can predict future 

levels of anhedonia (Pizzagalli, Jahn, & O’Shea, 2005) highlight its potential utility as a 

predictive tool. The direct application of the PRT to assess nicotine-related changes in reward 

responsivity makes it a viable measure of reward sensitivity for the present study.  

Alternative Ways to Analyze PRT Data 

In addition to standard analyses, there are options available that allow for more fine-

grained analyses of the decision-making process to elucidate reward responsivity. One such 

method is a computational model referred to as the Hierarchical Drift Diffusion Model (HDDM; 

Wiecki, Sofer, & Frank, 2013), which can be applied to raw PRT data. The HDDM is an 

extension of the drift diffusion model (DDM;Ratcliff, 1978), which is a well-established model 

used to study cognitive processes underlying two-choice decisions (Ratcliff & McKoon, 2008). 

The DDM has been utilized in studies investigating the influence of drugs (Eikemo et al., 2017; 
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Pedersen et al., 2017) and psychopathology (Banca et al., 2015; Moustafa et al., 2015) on the 

decision-making process.  

The DDM model (Ratcliff & McKoon, 2008) posits that, when presented with two 

stimuli, the individual has the opportunity to respond “rich” (i.e., respond to more rewarded 

stimuli) or “lean” (i.e., respond to less rewarded stimuli), creating two decision boundaries (i.e., 

rich and lean). The separation between boundaries (i.e., two potential responses) is referred to as 

the threshold, whereby, on each successive trial, a drift process begins from a starting point 

(somewhere between rich and lean boundaries) and accumulates evidence in favor of each 

boundary as the decision process progresses. The rate at which an individual accumulates 

evidence in favor of the stimuli shown is referred to as the drift rate, and evidence accumulation 

continues until one of the response thresholds is crossed (i.e., when a decision is made). An 

individual’s starting point during each trial can be equidistant from the boundaries (i.e., two 

response options) or it can be closer towards one boundary, in which case there is a starting bias, 

or an a priori preference towards one response or another. Thus, behavioral biases towards 

rewarded stimuli can be measured using the DDM parameters of starting point and the efficiency 

of evidence accumulation is measured through drift rate.  

The primary advantage of the DDM over traditional performance analyses is that it 

breaks down the decision-making process into its component parts (see Ratcliff et al., 2016, for 

review), which allows for an investigation into the specific aspects of behavioral performance 

that may be influenced by reward function. Specifically, rather than just looking at overall 

performance, measures such as drift rate and starting point bias give information about the 

components making up the decision-making process on each trial. Thus, using a more nuanced 
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approach to investigating behavioral responsivity to reward will allow us to elucidate the specific 

component of behavioral performance that is influencing variability in reward responsivity.  

Studying Smoking Relapse in the Laboratory 

A number of laboratory models exist to investigate aspects of smoking behaviors; 

however, few focus on relapse behavior. Those that are available fall under the category of 

smoking-choice paradigms and evaluate an individual’s ability to delay smoking in exchange for 

later rewards. As such, these paradigms have the ability to measure individual variability in delay 

discounting and the reinforcing value of smoking (McKee, 2009). During these tasks, 

participants engage in periods of abstinence and are given the option to remain abstinent in 

exchange for rewards or to engage in smoking, which yields a measure of an individual’s ability 

to delay gratification in the context of nicotine addiction. These laboratory tasks share a similar 

goal of evaluating the relative value of smoking after periods of abstinence, with a particular 

focus on factors that lead to lapses after initiating quit attempts. This area is of particular interest, 

because studies show that smoking behavior early on during a quit attempt is a significant 

predictor of future smoking behavior (Westman et al., 1997).  

While these paradigms evolved from similar goals, they vary in how they are executed, 

including variables such as abstinence duration required, reward type, task duration, and reward 

reinforcement schedule. For example, participants might engage in laboratory tasks after periods 

of abstinence ranging from 3 hours (McKee et al., 2006; Dallery & Raiff, 2007) to 12 hours 

(Bold et al., 2013) or over multiple time points during lengthier abstinence periods (e.g., 1 week; 

Sweitzer et al., 2013). While longer periods of pre-task abstinence (e.g., 12 hours) may be more 

generalizable to real-life quit attempts, it is plausible that this length of time also leads to poorer 

engagement in tasks due to nicotine deprivation side effects (e.g., poor concentration).  Similarly, 
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tasks themselves vary in duration from 10 minutes (Dallery & Raiff, 2007) to 2 hours (Mueller et 

al., 2009), which also influences participant retention and effort during task engagement.  

Another factor that differs across paradigms is the increments at which abstinent behavior 

is reinforced; this varies from seconds (Dallery & Raiff, 2007), to minutes (McKee et al., 2006), 

to days (Juliano et al., 2006), which allows experimenters a more fine-grained investigation into 

the impact that reward timing has on behavior. Specifically, laboratory tasks that use 

reinforcement increments across multiple days appear to be most generalizable to real-life quit 

attempts, given that individuals are more likely to experience non-drug-related rewards on a 

daily or weekly schedule, as opposed to seconds or minutes. On the other hand, it is more 

feasible to execute laboratory tasks involving fewer study visits and less burden on nicotine-

deprived participants.   

Variability across paradigms is also noted in the schedules of reinforcement, where 

rewards are delivered incrementally (Mueller et al., 2009), constantly (McKee et al., 2006), or 

decreasingly (Juliano et al., 2006). One of the benefits to using an incremental reinforcement 

schedule (i.e., increasing rewards over time) is that it increases the likelihood of study 

participants engaging in abstinence by offering increasing incentives for remaining abstinent 

over time (Mueller et al., 2009). On the other hand, using a decreasing reinforcement schedule 

can be beneficial by allowing concurrent investigation of relapse-related factors that are not 

strictly due to the reinforcing value of money (Mueller et al., 2009), because individuals 

remaining abstinent in the context of diminishing financial rewards may be utilizing more 

intrinsic sources of motivation. In contrast, the use of a constant reinforcement schedule 

eliminates variables related to magnitude of reward, which could affect individuals’ decisions to 

remain abstinent. Specifically, keeping the reward amount constant allows the focus to be on 
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individual factors, such as reward responsiveness to non-drug rewards and how it fluctuates over 

time.  

Finally, while the majority of tasks implemented financial rewards in exchange for 

smoking abstinence, one task used smoking rewards, offering participants more cigarettes for 

longer abstinence periods (Bold et al., 2013). Unfortunately, the use of drug-specific rewards 

provides information strictly limited to delay discounting and does not yield insight into relative 

value of different reward types. As such, paradigms using financial rewards are particularly 

beneficial because they allow for the investigation of individual variability in the relative value 

of drug versus non-drug rewards, which simulates real-life quit attempts where sources of 

motivation to abstain come from non-drug rewards (e.g., health improvements, saving money).  

One such task successfully implemented in laboratory paradigms is the Relapse Analogue 

Task (RAT), which was originally developed in response to an FDA mandate requiring a 

measure for determining if smoking cessation medications work (McKee, 2009). The RAT is a 

behavioral task that directly pits smoking rewards against non-smoking rewards by creating a 

condition where abstinent individuals are given the option to engage in smoking or delay 

smoking in exchange for a small monetary reward (McKee, 2009). Thus, the choice to smoke 

prior to the end of the task is the analogue of relapse during quit attempts.  

 During this task, abstinent individuals are given a tray containing their preferred brand of 

cigarettes, a lighter, and an ashtray. Individuals are instructed that they may begin smoking at 

any point during the 50-min session but, for every 5 minutes in which they delay smoking, they 

would earn $0.20. Individual delay periods could last from 0 to 50 minutes, and they could earn 

up to $2.00. One of the outcome parameters yielded by this task is referred to as time delay, 

which reflects the amount of time an individual can resist smoking (McKee et al., 2006).  
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The ecological validity of the RAT has been demonstrated by studies investigating risk 

factors contributing to smoking relapse (Heckman et al., 2017; Kahler et al., 2014; Leventhal et 

al., 2014; McKee et al., 2006; McKee et al., 2012). Specifically, these studies show that real-

world risk factors, such as self-control capacity (Heckman et al., 2017), alcohol use (McKee et 

al., 2006), and anhedonia (Leventhal et al., 2014), increase the likelihood of choosing to smoke 

during the RAT. Given that known risk factors for relapse have predicted smoking behavior 

during the RAT, it is likely that the RAT is also effective at identifying new risk factors, such as 

behavioral responsivity to rewards.  

Behavioral Reward Responsivity as a Predictor of Smoking Behavior 

 The health risks associated with smoking and the difficulties surrounding quitting 

smoking are well documented. With the interest of improving success at quitting, research has 

attempted to identify factors that predict whether an individual will be successful at achieving 

cessation. While numerous pre-quit characteristics have been proposed, we are still unable to 

predict with certainty who will be successful at quitting. Given that reward system deficiencies 

underlie substance use disorders, it is likely that investigating reward processing prior to quit 

attempts would be useful in predicting smoking cessation success.  

There is some evidence suggesting reward processing is a predictor of abstinence, but the 

evidence has only been observed at the level of brain activity, not overt behavior. The PRT is a 

valid measure of behavioral reward responsivity in smokers but has yet to be used to predict 

smoking behavior. Moreover, studies looking at abstinence typically rely on individuals’ self-

report about their smoking behavior outside of the laboratory, which prevents standardized, 

objective measurements. The current study directly investigates the link between behavioral 

reward responsivity and subsequent smoking behavior in a tightly controlled experimental 
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setting, using a behavioral measure of reward responsivity (i.e., the PRT) followed by a period of 

relapse (i.e., RAT). Based on findings from previous neuroimaging studies demonstrating that 

blunted brain reactivity to non-drug rewards is predictive of relapse, it is reasonable to expect 

this decreased reward sensitivity can be observed behaviorally through PRT performance and is 

related to an individuals’ ability to remain abstinent during the RAT.  

Current Study 

 The current study will use previously collected data to assess whether measures of 

behavioral reward responsivity are related to individuals’ ability to remain abstinent during an 

objective, laboratory-based measure of relapse. The study will use reward responsivity data 

collected during participants’ baseline visits, where their behavioral response to monetary 

rewards was assessed using the PRT. We will also use the RAT data collected during an 

abstinent study visit, where participants’ ability to stay abstinent in exchange for money was 

assessed. Participants will be divided into two groups based on whether they remained abstinent 

for the full 50-min or did not wait at all (i.e., 0-minutes) during the RAT. Groups will be 

compared on HDDM and standard parameters of PRT performance completed during a baseline 

visit.  

Hypotheses 

Hypothesis 1: Individuals who smoke immediately versus remain abstinent the full time on the 

RAT will differ on reward-related HDDM measures of the PRT only. 

Hypothesis 1A: Individuals who smoke immediately during visit 2’s RAT will show less 

of a starting point bias during visit 1’s PRT than those who are abstinent during the RAT.  

Hypothesis 1B: Individuals who smoke immediately during visit 2’s RAT will not differ 

in drift rate during visit 1’s PRT from those who remain abstinent during the RAT.  
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Hypothesis 2: Individuals who smoke immediately versus remain abstinent the full time on the 

RAT will differ on reward-related standard measures of the PRT only. 

Hypothesis 2A: Individuals who smoke immediately during visit 2’s RAT will show less 

of a response bias on the PRT during visit 1’s PRT than those who are abstinent during 

the RAT.  

Hypothesis 2B: Individuals who smoke immediately during visit 2’s RAT will have 

slower response times to the more frequently rewarded stimulus on the PRT than 

individuals who remain abstinent during visit 2.  

Hypothesis 2C: Individuals who smoke immediately during visit 2’s RAT will not differ 

on discriminability on visit 1’s PRT from those who are abstinent on the RAT. 

Hypothesis 3: Given the expected increased sensitivity of the HDDM metrics, the effect size of 

the HDDM results will be larger than the effect size for the traditional metrics.  

Methods 

Participants 

The sample consisted of 122 non-treatment seeking, daily cigarette smokers who were 

recruited from the community as part of a larger study (Leventhal et al., 2014) on smoking and 

personality at the University of Southern California (USC). Participants were included if they 

were 18 years old or older, regular cigarette smokers for 2 or more years, and currently smoking 

10 or more cigarettes per day. Exclusion criteria were a current DSM-IV substance dependence 

other than nicotine, mood disorder, psychotic symptoms or use of psychiatric medications, breath 

carbon monoxide (CO) levels of <10 ppm at baseline, and recent use of noncigarette nicotine 

products. All procedures were approved by the USC Institutional Review Board.  
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Procedures 

 The following procedures were part of the larger parent study (Leventhal et al.. 2014). 

All participants attended three study visits: a baseline visit followed by two counterbalanced 

study visits; one which the participant had been abstinent for at least 16 hours and one non-

abstinent visit. The two study visits occurred within 2-14 days of each other. During the baseline 

visit, participants first completed informed consent followed by a breath alcohol analysis to 

ensure blood alcohol levels were not above 0. The Structured Clinical Interview for DSM-IV 

Non-patient Edition (SCID-NP) was administered to assess substance dependence, affective 

disorders, and psychotic symptoms. Individuals then completed a set of baseline questionnaires 

which included measures of demographics, smoking and drug/alcohol use, affective symptoms 

and psychiatric disorders, personality, and anhedonia/happiness.   

Smoking and drug/alcohol-use questionnaires included the Michigan Nicotine 

Reinforcement Questionnaire, Smoking Abstinence Questionnaire, Fagerström Test for Nicotine 

Dependence (FTND), Smoking Consequences Questionnaire, Smoking History Questionnaire, 

Alcohol Use Disorders Identification Test, and Drug Use Questionnaire. Measures of psychiatric 

disorders and affective symptoms include the Adult ADHD Self-report Scale, PTSD Checklist, 

Inventory to Diagnose Depression Lifetime Version, Restlessness and Agitation Questionnaire, 

Anxiety Sensitivity Index, Mood and Anxiety Symptom Questionnaire-Short Form, and Center 

for Epidemiological Studies Depression Scale. Measures of personality variables include the 

Aggression Questionnaire, Brief Sensation Seeking Scale, and select items from the Urgency-

Premeditation-Perseverance-Sensation Seeking-Positive Urgency (UPPS-P) impulsive behavior 

scale. Measures of anhedonia include the Apathy Evaluation Scale, Fawcett Clark Pleasure 

Scale, Pleasure and Health Behavior Inventory, Snaith-Hamilton Pleasure Scale, Subjective 
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Happiness Scale, Satisfaction with Life Scale, Temporal Experience of Pleasure Scale, Tripartite 

Pleasure Inventory, and Value of Pleasure questionnaire. 

Following questionnaires, participants completed the PRT to evaluate reward 

responsivity (described below). After the task, participants were assigned to either the abstinent 

or non-abstinent condition for the subsequent study visit and given instructions on smoking 

based on their condition assignment. For the abstinent session, individuals were told not to 

smoke after 8pm the night before the visit, and, for the non-abstinent session, individuals were 

told to smoke as they normally would. Abstinence was verified prior to study visits by assessing 

breath carbon monoxide (CO) levels; levels of < 10 ppm were considered abstinent.  

Abstinent and non-abstinent sessions were identical, except that, during the non-abstinent 

visit, participants smoked in the lab at the beginning of the study visit and filled out craving and 

affect measures pre- and post-cigarette to assess the subjective effects of nicotine. These 

measures included the Tiffany Craving Questionnaire, Positive and Negative Affect Scale, and 

Cigarette Rating Scale. Both study visits began with an alcohol breath analysis, followed by 

breath CO readings (for non-abstinence visit, CO was taken after cigarette smoking). Individuals 

then completed self-report measures on affect, nicotine withdrawal, and craving, which included 

the Brief Questionnaire on Smoking Urges, Minnesota Nicotine Withdrawal Scale, Wisconsin 

Smoking Withdrawal Scale, and Profile of Mood States. Participants completed three 

computerized tasks to asses motivational salience of rewarding, smoking-related, and aversive 

stimuli: the Modified Stroop Task, a visual probe task, and a pleasantness rating task. Finally, 

participants completed the relapse analogue task (RAT), during which they had the option to 

earn money by delaying smoking or to initiate smoking at any point during a 50-minute session 

(described below). After this task, participants were given instructions for their next study visit, 
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which would be the condition to which they were not assigned for the second visit (i.e, 

participants in the non-abstinent condition at the second visit were assigned to the abstinent 

condition for the third visit).  After the third session, participants were debriefed and paid for 

their participation.  

The procedures relevant to the present study are measures of recent nicotine use (i.e. CO 

readings), demographic and smoking-related questionnaires (i.e. FTND and Smoking History 

Questionnaire), the RAT, and the PRT.  

 

Behavioral Tasks 

Probabilistic Reward Task (PRT) 

 Participants completed the PRT during their baseline visit to assess their responsivity to 

monetary rewards. Following procedures outlined in Pizzagalli, Jahn, and O’Shea (2005), 

participants completed three blocks of 100 trials, lasting approximately 30 minutes with a 30-

second break between each block. Each trial began with the presentation of an asterisk for 500ms 

on the screen, followed by the presentation of a mouthless cartoon face. After a 500ms delay, 

either a short mouth (11.5 mm) or long mouth (13 mm) was presented on the face for 100ms and 

participants were asked to identify which type of mouth they saw by pressing a designated key 

on the keyboard. An asymmetrical reinforcement schedule was used for rewarding responses 

such that correct identifications of one of the mouths resulted in positive feedback (“Correct!! 

You win 5 cents”; i.e., rewarded more often) three times more frequently than correct 

identifications of the other mouth. During each trial, reward feedback was given after 40 correct 

trials and participants “earned” a total of $6.00 paid at the end of the session.  

Relapse Analogue Task  
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Participants completed the RAT to assess the relative reward value of smoking during 

their abstinent study visit. Upon beginning the task, participants were given a tray containing 8 

cigarettes, a lighter, and an ashtray. Participants were told that they may begin smoking at any 

point over the next 50 minutes but for every 5 minutes they remained abstinent they would 

receive $0.20. Thus, participants were eligible to receive a maximum of $2 for remaining 

abstinent throughout the entire 50-min period. The delay period was operationalized as the 

number of minutes (0-50 min) the individual remained abstinent. Once participants chose to 

smoke or 50-minutes was reached, a self-administration period began where they were told they 

could smoke as much as they wished over the next 60 minutes. Participants were unaware of this 

self-administration phase until the end of the delay period. This period was meant to capture 

amount of smoking after a period of abstinence (or no abstinence for those who choose not to 

wait). During the self-administration period, they were given a box of 8 cigarettes and a $4.00 

credit and told that each cigarette they smoke would cost them $0.50, which again provided 

participants with a reinforcer for not smoking (McKee et al., 2006). Following this period, they 

were given a rest period where they were allowed to read magazines, but not allowed to smoke. 

The rest period was included to prevent the influence of the impending opportunity to smoke if 

they were to end the delay and self-administration period sooner. Participants were informed 

prior to the RAT that the study visit would end for everyone at 4:00pm, which helped prevent the 

possibility that individuals might smoke during the RAT to end the visit sooner.  

Analyses 

Power Analysis 

A priori power analyses showed that, when assuming a moderate effect size, the power 

for the current study is 0.7, which is slightly below the generally accepted target of 0.8. 
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However, previously published data on standard PRT and HDDM metrics show medium to large 

effect sizes (Moustafa et al., 2015; Pechtel et al., 2013; Pizzagalli et al., 2008; Pizzagalli et al., 

2009; Pizzagalli, Jahn, and O’Shea, 2005; White et al., 2010). Therefore, a moderate effect size 

was used in an effort to take a relatively conservative approach. Furthermore, to improve power, 

participants were grouped based on the bimodal distribution of the RAT, which helped eliminate 

potential noise from those individuals falling in the middle of the distribution. In the absence of a 

significant result, it is remains possible that there is an effect that may simply be hindered by a 

small sample size. Furthermore, this modest power level limits the number of covariates that can 

be used in analyses because any additional covariates lead to a reduction in power. Thus, only 

exploratory analyses for covariates will be conducted.  

PRT Calculations and Quality Assessment  

The main variables of interest used from the standard PRT analyses are response bias 

(RB), which captures preferential responding to the more rewarded stimuli (Pizzagalli, Jahn, & 

O’Shea, 2005), discriminability (i.e., ability to differentiate between stimuli; Pizzagalli, Jahn, & 

O’Shea, 2005), and response time (RT; ms; i.e., the average amount of time it takes to make a 

response. Six a priori criteria, based on Pizzagalli, Jahn, and O’Shea, (2005) and Lawlor et al. 

(2019), were used to identify invalid data excluded for further analysis. Trials were classified as 

outliers if they had RT’s less than 150ms or greater than 2500ms, or if the (log transformed) RT 

exceeded the participant’s mean (log transformed) RT by ±3 standard deviations (SD). 

Participant datasets were excluded if any of the 3 blocks contained: 20+ outliers, fewer than 24 

rich or 7 lean rewards, a reward ratio lower than 2.5, and/or lower than 40% correct for rich or 

lean trials.  
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Previously published (Macmillan & Creelman, 1991) signal detection analysis were used 

to calculate the standard PRT metrics. Specifically, response bias and discriminability were 

calculated as:  

Response Bias: log	𝑏 = !
"
log	 '#$%&'())*'+∗-./012'())*'+

#$%&12'())*'+∗-./0'())*'+
( 

Discriminability: log	𝑑 = !
"
log ' #$%&'())*'+∗-./0'())*'+

#$%&12'())*'+∗-./012'())*'+
( 

In line with previously published studies that have found main effects of Block (Pizzagalli, Jahn, 

& O’Shea; Bogdan & Pizzagalli, 2006; Pizzagalli et al., 2008) and Group x Block interactions 

(Pechtel et al., 2013) for RB and discriminability, both parameters were evaluated using 

individual blocks (1,2,3) in a 2-way ANOVA.  

 For RT, previous studies have found significant main effects of Block (Pizzagalli, Jahn, 

O’Shea, 2005), with shorter RTs in blocks 2 and 3, and Stimulus-type (Pizzagalli, Jahn, O’Shea, 

2005; Pechtel et al., 2003), with rich stimuli resulting in quicker RTs. Therefore, we used a 3-

way ANOVA to evaluate average RT across all three blocks, as well as individual block 

averages for rich and lean stimuli, respectively, to investigate main effects and interaction effects 

between Group, Block, and Stimulus-type.  

Hierarchical Drift Diffusion Modeling (HDDM)  

Following the HDDM software and documentation available at 

http://ski.clps.brown.edu/hddm_docs/index.html, the HDDM was fit to participants raw RT and 

accuracy data. Analyses were computed in Jupyter Notebooks (Kluyver et al., 2016), which 

yielded the primary parameters of interest: drift rate (v) and starting point (z). Additional HDDM 

parameters incorporated into the model include non-decision time (t; time needed for stimulus 

perception and response execution) and threshold (a; decision boundary between two choices). 

All HDDM parameters were allowed to vary as a function of group when setting up the model. 
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Consistent with previously published studies using HDDM analyses (e.g., Lawlor et al., 2019), 

statistical significance will be determined be inspecting each parameters posterior distribution 

and identifying areas with < 5% overlap in the group distributions.  

Group Differences in Standard PRT and HDDM Parameters (Hypotheses 1 and 2)  

Groups were determined using the bimodal distribution of the RAT’s time delay 

parameter (i.e., 0-minute waiters vs. 50-minute waiters). To investigate the between-group 

differences on HDDM measures on the PRT (Hypothesis 1), we compared the degree of overlap 

in the posterior distributions of each HDDM parameter for the two groups. Statistical 

significance was indicated by < 5% overlap between the 0-minute waiters and 50-minute 

waiters’ distributions. The posterior distributions of starting point and drift rate means were 

examined, respectively, to determine if individuals who smoke immediately during the RAT (0-

minute waiters) demonstrate a reduced starting point bias (Hypothesis 1A) and slower drift rates 

(Hypothesis 1B) on the PRT than those who are abstinent during the RAT (50-minute waiters).  

Statistical Package for the Social Sciences (SPSS) was used to perform 3-way analysis of 

variance (ANOVA) to evaluate the main effects of Group (0-min waiters vs. 50-min waiters, 

Block (1, 2, 3), and Stimulus-type (rich vs. lean) as well as Block x Group, Stimulus x Group, and 

Block x Group x Stimulus interactions on standard PRT metrics (Hypothesis 2). Specifically, 

three separate 3-way ANOVAs were conducted using response bias (Hypothesis 2A), response 

time (Hypothesis 2B), and discriminability (Hypothesis 2C) as dependent variables.  

Relationship Between Standard PRT and HDDM Parameters (Hypothesis 3) 

To investigate whether HDDM results show larger effect sizes than traditional metrics 

(Hypothesis 3), effect sizes were measured using Cohen’s d and compared between parameters. 

A larger effect size will be considered to demonstrate more sensitivity to detecting group 
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differences on the PRT in decision making. To determine whether differences in effect sizes are 

statistically significant, Cohen’s d scores were transformed to z-scores and values greater than 

1.65 (equivalent to p = 0.05, one-tailed) were considered to demonstrate a significant difference.  

Results 

Group Characteristics 

After inspecting the distribution of the overall sample’s (n=122) RAT time delay data, 

two groups became apparent based on the presence of a bimodal distribution. Specifically, the 

distribution of scores revealed that 36 individuals waited 0-minutes to smoke during the RAT 

and 44 individuals abstained the full 50-minutes from smoking.  

Statistical analyses on demographic and smoking-related characteristics did not reveal 

any significant differences between groups (Table 1). Specifically, 0-minute (M = 43.69, SD = 

10.59) and 50-minute (M = 40.64, SD = 10.88) waiters did not differ on age (t(78)= 1.27, p = 

0.209), sex (Fisher’s exact = 0.228), or education (x2 = 4.11, p = 0.250). There were no 

significant differences between 0-minute (M = 5.83, SD = 1.94) and 50-minute (M = 4.93, SD = 

2.33) waiters on FTND (t(78)= 1.86, p = 0.067), average number of cigarettes per day (0-minute: 

M = 17.79, SD = 5.44; 50-minute: M = 16.5, SD = 7.52); t(77) = 0.85, p = 0.398), or number of 

cigarettes smoked prior to baseline study visit (0-minute: M = 5.28, SD = 4.12; 50-minute: M = 

4.32, SD = 3.08; t(78) = 1.19, p = 0.237). Given that groups did not significantly differ on select 

demographic or smoking-related variables, no further exploratory analyses using covariates were 

performed. 

Normality of Dependent Variables  

Prior to conducting multivariate analyses on the standard PRT variables, we tested for 

normality of the data using visual inspection of the distribution. Specifically, we examined Q-Q 
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plots, which revealed that all 3 blocks’ response bias, reaction time, and discriminability were 

normally distributed. 

Group Differences in HDDM Parameters of PRT  

The HDDM analysis revealed significantly faster drift rates for 50-minute waiters (Figure 

2a.; M = 1.21, SD = 0.08) relative to 0-minute waiters (M = 0.79, SD = 0.09; proportion of 

overlap of posterior distribution: q < 0.0001). No significant difference in the starting bias 

parameter emerged between groups (Figure 2b.; q = 0.373).  

Group Differences in Standard PRT Measures 

A 2-way ANOVA with Block (1,2,3), and Group (0-min waiters vs. 50-min waiters) did 

not reveal a significant Block x Group interaction (p = 0.622) on RB (Table 2.). A main effect of 

Block (F(2,77) = 6.73, p = 0.002) emerged, where Block 3 (M = 0.23, SD = 0.20) elicited 

significantly higher RBs than Block 1 (M = 0.14, SD = 0.16; t(79) = -3.74, p < .001) and Block 2 

(M = 0.17, SD = 0.21; t(79) = -2.69, p = .009). The 2-way ANOVA was repeated while 

controlling for overall discriminability and showed that the Block x Group interaction on RB 

remained non-significant (F(2,76) = 0.35, p = 0.709) .  

 A 3-way ANOVA with Block (1,2,3), Group (0-min waiters vs. 50-min waiters), and 

Stimulus (rich vs. lean) revealed a Block x Stimulus interaction for RT (F(2,77) = 5.04, p = 

0.009). Specifically, the difference in RT for rich and lean stimuli significantly varied across 

blocks, such that the difference within Block 1 was smaller (MΔ = -37.91; t(79)= -4.38, p < .001) 

than in Block 2 (MΔ = -69.81; t(79)= -6.87, p < .001) and in Block 3 (MΔ = -71.51; t(79)= -7.12, 

p < .001).  Main effects of Block (F(2,77) = 14.79, p < 0.001) and Stimulus (F(2,77) = 58.96, p = 

0.000) were also observed. Specifically, significantly slower reaction times emerged during 

Block 1 (M = 688.49, SD = 248.77) relative to Block 2 (M = 620.07, SD = 204.08; t(79) = 5.51, 
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p < .001) and Block 3 (M = 610.60, SD = 200.47; t(79) = 4.51, p < .001). Finally, rich stimuli (M 

= 580.05, SD = 186.56) elicited significantly faster RTs relative to lean stimuli (M = 650.76, SD 

= 214.88; t(79) = -7.66, p < .001). There were no interaction or main effects of Group on RT.  

 A 2-way ANOVA with Block (1,2,3) and Group (0-min waiters vs. 50-min waiters) did 

not reveal a significant Block x Group interaction on discriminability (p = 0.878). A main effect 

of Block emerged (F(2,77) = 7.69, p = 0.001), where block 1 (M = 0.52, SD = 0.28) elicited 

significantly lower discriminability values than block 2 (M = 0.60, SD = 0.30; t(79) = -3.34, p = 

0.001) and block 3 (M = 0.62, SD = 0.32; t(79) = -3.70, p < 0.000). A significant between-group 

differences was observed on the overall average discriminability (p = 0.002). A follow-up 

independent samples t-test revealed that 0-min waiters and 50-min waiters significantly differed 

on all three blocks, such that 50-min waiters had greater discriminability than 0-min waiters on 

block 1 (t(78) = -2.84, p = 0.006), block 2 (t(78) = -2.79, p = 0.007, and block 3 (t(78) = -2.92, p 

= 0.005).  

HDDM Versus Standard PRT Parameters  

Cohen’s D calculations revealed larger effect sizes for HDDM relative to standard PRT 

parameters (Table 3). Specifically, perceptual processes captured by HDDM’s drift rate 

parameter showed larger effect sizes (d = 5.07) than the standard PRT discriminability parameter 

(d = 0.44 – 0.66, Mean d = 0.58).  The difference between the z-scores was 4.5, which indicates 

a significant difference in effect size between the standard and HDDM measures of perceptual 

processes. Reward responsivity captured by HDDM’s starting bias parameter showed a larger 

effect size (d = 0.77) than the standard PRT response bias parameter (d = 0.02 – 0.23, Mean d = 

0.11), however, the difference between the two effect sizes was 0.66, which did not suggest a 

significant difference.   
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Discussion 

Quitting smoking continues to be a challenge for many individuals, especially in the 

absence of formal treatment. There is significant variability across individuals for how difficult 

quitting smoking can be. Research has begun to identify factors that predict the degree of 

difficulty for individuals prior to quit attempts; however, correctly estimating who is likely to be 

successful during quit attempts remains difficult.  

One potential pre-quit factor that could be fruitful for informing future quit attempts is an 

individual’s reward function; specifically, an individual’s degree of responding to non-drug 

related rewards (i.e., reward responsivity). The notion that reward responsivity to non-drug 

rewards could predict successful quit attempts stems from neuroimaging literature demonstrating 

that blunted responsivity of reward-related brain regions to non-drug rewards predicts future 

abstinence (Versace et al., 2011; Versace et al., 2014). Thus, it is plausible that behavioral 

manifestations of blunted reward responsivity evident prior to initiating abstinence could predict 

individuals’ ability to refrain from smoking, which could ultimately help inform who may need 

more clinical support during quit attempts.   

The current study sought to explore whether individuals who smoke exhibit deficits in 

behavioral responsivity to monetary rewards prior to a period of abstinence. Our primary 

hypothesis was that, on an abstinence-required study visit, smokers who were able to refrain 

from smoking during the RAT would show more responsivity to financial rewards during a 

baseline non-abstinent study visit. To investigate our hypothesis, we analyzed previously 

collected data from participants who were grouped based on whether they waited 0 or 50 minutes 

to smoke during the RAT. Using two different statistical approaches, we compared these groups’ 

reward responsivity on a computerized PRT during another study visit, during which participants 
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were non-abstinent, by examining differences in response bias, as well as their perceptual 

processing abilities (i.e., discriminability) and reaction time.   

Group Differences in Perceptual Processing 

In contrast to our hypothesis predicting no group differences on perceptual processing, 

we did find between-group differences in HDDM and standard PRT measures of perceptual 

processing during the non-abstinent baseline visit. Specifically, individuals who waited the full 

50-minutes on the RAT before smoking demonstrated better perceptual processing abilities (i.e., 

drift rate and discriminability) to PRT stimuli. These findings can be understood through existing 

literature linking dopamine with perceptual decision making (i.e., using sensory information to 

guide actions; Beste et al., 2018). Specifically, when making decisions based on incoming 

sensory information, the dopaminergic system has been implicated to some extent in the 

evidence accumulation process (Beste et al., 2018) and in facilitating behaviors aimed at 

attaining rewards (Goto & Grace, 2005; Pessiglione et al., 2006). The role of dopamine in 

perceptual processing, specifically sensory evidence accumulation, has been investigated through 

the study of individuals with various psychiatric disorders (e.g., Schizophrenia, Obsessive-

compulsive Disorder, ADHD, Depression) typically associated with dysfunction along different 

dopaminergic pathways (Huang et al., 2015; Moustafa et al., 2015; Fosco et al., 2017; Lawlor et 

al., 2019). These studies show that, relative to healthy controls, individuals with schizophrenia 

(Moustafa et al., 2015), depression (Lawlor et al., 2019), attention-deficit hyperactivity disorder 

(Fosco et al., 2017), and obsessive-compulsive disorder (Banca et al., 2015) all show slowed 

drift rates, suggesting that dopamine likely plays some role in facilitating efficient visual 

evidence accumulation.  
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Similar to these psychiatric disorders, dopaminergic function is also implicated in 

nicotine-dependence via nicotine’s ability to trigger dopamine release in areas of the striatum 

(Volkow & Morales, 2015). Paradoxically, chronic nicotine use can decrease baseline 

dopaminergic function (Perez et al., 2012). Given that participants in this study met criteria for 

nicotine-dependence and regularly smoked for an average for 22 years (SD = 11.32), it is 

possible that decreased baseline dopaminergic function related to chronic nicotine-use may be 

impacting perceptual processing abilities on the PRT in some individuals more than others. 

Furthermore, a recent meta-analysis found a negative relationship between dopaminergic 

function and reward discounting in individuals with addiction but not in other clinical 

populations (Castrellon et al., 2019), which provides a possible explanation for behavioral 

differences observed on the RAT. Specifically, their findings might suggest that individuals who 

waited 50-minutes to smoke during the RAT may have increased dopaminergic function and are 

less likely to discount delayed rewards. Likewise, given that optimal dopaminergic function is 

also linked to more efficient visual evidence accumulation (Beste et al., 2018), it makes sense 

that individuals who waited 50-minutes to smoke on the RAT also had higher drift rates on the 

PRT. However, these interpretations remain speculative since the current study did not directly 

measure dopamine and further investigation into its role in PRT and RAT performance is 

required.   

Absence of Group Difference in Reward Responsivity 

Contrary to our primary hypothesis, group differences in reward responsivity during the 

baseline non-abstinent visit were not observed for neither HDDM parameters nor standard PRT 

variables. These findings can be interpreted through existing literature demonstrating nicotine’s 

ability to heighten reward sensitivity, which may have occurred in our sample as a result of 
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recent smoking. Specifically, studies using the PRT show that smokers who recently smoked (~4 

hours) and non-smokers do not differ in reward responsivity (Peechatka et al., 2015; Janes et al., 

2015). Evidence for nicotine’s ability to increase reward responsivity in smokers also comes 

from studies comparing reward responsivity during abstinent versus non-abstinent states (e.g., 

Dawkins et al., 2006), where nicotine intake leads to higher responsivity to monetary reward in 

comparison to an abstinent state (Dawkins et al., 2006). Moreover, enhanced reward responsivity 

after nicotine administration has even been demonstrated in non-smokers, who show increased 

response bias on the PRT after nicotine-use (Barr et al., 2008), further demonstrating nicotine’s 

ability to enhance reward responsivity acutely in individuals without chronic use. Taken 

together, these study results demonstrate nicotine’s ability to bolster reward responsivity in 

routine smokers and non-smokers and remediate abstinence-induced blunting of reward 

responsivity. In light of these findings, it remains a possibility that our two groups did not show 

significant differences in reward responsivity, because any differences that might have existed 

were attenuated by recent smoking. Statistical tests comparing the two groups on number of 

cigarettes smoked prior to the PRT study visit did not reveal significant group differences in the 

amount smoked, supporting the possibility that similar nicotine-use may have equated groups on 

reward responsivity. However, this interpretation is purely speculative and future studies should 

investigate whether nicotine-use contributed to a lack of group difference in reward responsivity 

by collecting data on time of last cigarette, measuring nicotine biomarkers (e.g., cotinine), and 

assessing change in reward responsivity on the PRT during an abstinent visit.  

An alternative explanation for the lack of group difference is that these individuals did 

not, in fact, have inherent differences in reward responsivity, regardless of recent smoking status. 

In other words, it may be that not all individuals who smoke, by default, have deficits in reward 
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responsivity. There are various other individual factors that could mediate whether reward 

responsivity deficits manifest in individuals who smoke, such as depression history (Janes et al., 

2015; Pergadia et al., 2014). For example, there is evidence showing that abstinence-induced 

deficits in reward responsiveness on the PRT are more profound in smokers with versus without 

a history of depression (Pergadia et al., 2014). These results suggest that reward deficits could be 

more likely to exist in smokers with a history of depression and that nicotine may be more likely 

to increase reward responsivity in those with pre-existing reward-system deficits (i.e., 

depression). As such, it may be that individual factors that mediate smoking-induced reward 

enhancement, such as depression, may not have been present in our sample. Specifically, a 

current mood disorder was an exclusion criterion for participants, which means that individuals 

at extreme ends of reward responsivity (e.g., anhedonia) were not represented in this data set and 

as a result, group differences were not observed.  

Along the same lines, it is possible that group differences in reward responsivity were not 

evident because reward responsivity on the PRT is unrelated to RAT performance. Specifically, 

individuals’ responsivity to rewards on the PRT may not be associated with their decision to 

smoke immediately or wait the full 50-minutes. One plausible explanation for a lack of 

relationship is the different rewards types utilized by the tasks. While the PRT offers non-drug, 

financial rewards, the RAT pits a smoking-reward against a financial reward, which does not 

allow us to conclude if individuals are choosing to wait 50-minutes on the RAT because of the 

type of reward (i.e., non-drug versus drug) versus the timing of the reward (i.e., immediate versus 

delayed). To examine this possibility, future studies should adapt the PRT to involve smoking 

rewards and modify the RAT protocol to offer the choice of a smaller immediate versus larger 

delayed smoking reward.  
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Finally, another potential explanation for the lack of a group difference in reward 

responsivity is that groups differed in their ability to discriminate between stimuli, which could 

have interfered with participants’ ability to form a bias. Our finding of significant group 

differences in measures of discriminability demonstrates that 0- and 50-minute waiters did, in 

fact, show differences in their ability to complete the task (i.e., task difficulty). Studies using 

standard PRT analyses typically use discriminability as a control measure to ensure that 

significant findings related to primary variables of interest (e.g., response bias) are not due to 

general perceptual impairments or task difficulty (Pizzagalli, Jahn, & O’Shea, 2005). Our finding 

that groups were significantly different on the HDDM parameter of drift rate also supports the 

possibility that a difference in stimulus discrimination might contribute the lack of reward 

responsivity finding, as drift rate represents the process of accumulating visual evidence about 

stimuli that is required to discriminate between stimuli effectively. However, it is important to 

note that if discriminability were to interfere with response bias, it would be most apt to increase 

response bias because participants are more likely to rely on their bias for dictating their decision 

on how to respond to indistinguishable stimuli.  Follow-up analyses looking at a Group x Block 

interaction on RB, while statistically controlling for discriminability still did not yield a 

significant finding, further suggesting that this was not the case. On the other hand, due to 

methodological limitations, we could not control for HDDM drift rate while testing group 

differences for starting bias, and thus we cannot be entirely certain that task difficulty did not 

hinder group differences in bias formation.  

Absence of Group Differences on Response Time 

Contrary to our prediction, we did not find significant group differences in response time 

for responding to more frequently rewarded stimuli (i.e., rich stimuli). However, we did find 
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significantly quicker response times for rich stimuli across all participants, which is consistent 

with previous studies (Pechtel et al., 2013; Pizzagalli, Jahn, & O’Shea, 2005; Pizzagalli et al., 

2009) and confirms that the PRT effectively elicited preferential responding towards the more 

rewarded stimuli.  Our lack of finding for group differences in response time to rich stimuli is 

consistent with some previous work using samples with purported reward-responsivity deficits, 

which also did not find group differences in response time based on stimulus-type (Pechtel et al., 

2013; Pizzagalli, Jahn, & O’Shea, 2005; Pizzagalli et al., 2009). Our finding that both groups 

showed similar response times for rich stimuli is conceivable in light of finding that both groups 

developed similar response biases on the PRT. Specifically, it suggests that the rich stimuli was 

not particularly more enticing for one group, which we would expect to yield quicker responses.  

Furthermore, similarities in response times to rich stimuli provide evidence that there was not 

group differences in psychomotor function, which was further verified by examining the 

posterior probability plots of HDDM’s non-decision time parameter (i.e., time needed to perceive 

the stimulus and execute a response; Lawlor et al., 2019). Thus, our null findings for group 

differences in response times for rich stimuli appear to fit with the null findings for group 

differences on response bias. Finally, through inspecting the HDDM non-decision time 

distributions, we can also verify that our significant drift rate findings are mainly reflecting 

differences in evidence accumulation and not simply psychomotor processes.   

HDDM Effect Sizes are Larger than Standard PRT Parameters 

Consistent with our hypothesis, HDDM parameters (i.e., drift rate) showed significantly 

larger effect sizes than standard PRT parameters (i.e., discriminability) for perceptual processing 

abilities. While HDDM measures of perceptual processing on the PRT were superior to standard 

metrics, we did not find a significant difference in effect sizes for reward sensitivity. The lack of 
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finding for reward responsivity suggests that either there was truly an absence of group 

differences for reward responsivity undetectable by any analyses or that HDDM is not 

necessarily better at detecting reward sensitivity.  However, it is more likely that there were not 

group differences in reward responsivity given the RB findings from the standard PRT analysis.  

The larger effect size observed for HDDM measures of perceptual processing further 

corroborates one of HDDM’s noted strengths, which is its capability of detecting more nuanced 

features of behaviors during decision-making tasks.  

Conclusions 

Quitting smoking continues to be an ongoing challenge for many individuals. Identifying 

individuals with the most difficulty quitting remains an important research target because it 

might inform who would benefit most from specific interventions (e.g., behavioral versus 

pharmacological). While some potential predictive factors have been identified, it remains 

unclear who will have the most difficulty remaining abstinent during quit attempts. 

One potential factor that could be used to predict whether individuals can abstain from 

smoking is behavioral reward responsivity to non-drug rewards. It is plausible that reward 

responsivity could hold predictive validity because neuroimaging data looking at brain 

responsivity to non-drug rewards have found that blunted responsivity to non-drug rewards is 

predictive of smoking relapse, suggesting that behavioral correlates of reward responsivity may 

also hold some value in predicting who can remain abstinent.  

Contrary to our hypothesis, the current study’s findings did not suggest that behavioral 

responsivity to financial rewards predicts abstinence behavior during a laboratory abstinence 

task. Instead, our results show that individuals’ ability to remain abstinent during the RAT task is 

predicted by their ability to accumulate visual evidence to discriminate between stimuli on the 
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PRT. Specifically, individuals with better perceptual discrimination, measured by both standard 

and HDDM PRT parameters, were more likely to wait the full 50-minutes before smoking during 

the RAT. We hypothesize that our null results related to reward responsivity reflect nicotine’s 

ability to correct reward deficits given that the current study sample smoked comparably prior to 

completing the PRT.  The finding that individuals who waited 50-minutes were better at 

discriminating between stimuli suggests that there could be between group differences in 

perceptual processing abilities that should be the focus of future addiction research.  

Additionally, our results suggest that, if one were to use the PRT as a way to predict 

successful abstinence, careful consideration of methodology for analyzing PRT performance is 

necessary. Specifically, using HDDM measures of PRT performance may be more effective than 

standard PRT measures at elucidating nuanced individual differences in perceptual processing 

abilities. This knowledge is important for future studies that may look into the clinical utility of 

the PRT, given that selecting a sensitive measure of behavior is pivotal to clarifying the PRT’s 

value in predicting abstinence.  

Clinical Implications 

 The results from the current study demonstrate that individuals who were willing to 

abstain from smoking in exchange for financial compensation have better perceptual processing 

abilities than those who were not. These results suggest that there are factors other than reward-

related processes contributing to an individual’s ability to remain abstinent from smoking in 

exchange for non-drug rewards.  

Moreover, because perceptual processing was measured after recent nicotine intake, we 

are able to conclude that this characteristic is not entirely remediated by nicotine, making it 

particularly useful clinically. In fact, it is reasonable to consider that administering the PRT prior 
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to a quit attempt will identify individuals that will have more difficulty remaining abstinent, 

ultimately informing the approach taken for treatment. For instance, individuals with better 

perceptual processing may be more appropriate for treatment interventions involving behavioral 

contingencies, while those with deficits may benefit more from pharmacotherapy targeting 

dopaminergic function or using nicotine replacement therapy. While further investigation into 

the clinical utility of the PRT for predicting quit attempts is needed, these findings are an 

important first step.  

Given that we did not measure reward sensitivity or perceptual processing during 

abstinence nor did we measure blood-nicotine levels, we cannot determine whether the 

significant between-group differences in perceptual processing abilities was a result of nicotine’s 

pharmacological effects or a pre-existing trait. While either possibility could be true, it is likely 

that both interacted to contribute to our findings. Specifically, evidence exists demonstrating that 

pharmacological modulation of dopamine increases efficiency of the sensory accumulation 

process (i.e., drift rate), but this effect follows an inverted u-shaped curve, where too much 

dopamine results in impairment (Beste et al., 2018). Thus, it is plausible that individuals had 

different baseline levels of dopaminergic function and, as a result, were differentially impacted 

(i.e., some shifted beyond optimal levels) by nicotine intake on the day the PRT was 

administered. Importantly, these individual differences in perceptual processing were detectable 

with nicotine in the system, which makes this particularly useful when considering hypothetical 

clinical applications. Specifically, this will better allow for identifying individuals who will have 

difficulty remaining abstinent even before making a quit attempt, which is important for 

predicting the number of quit attempts necessary before long-term abstinence is achieved. 

Importantly, before any clinical conclusions can be drawn, these results require numerous 
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replications across different demographic populations and using various reward responsivity 

tasks, to verify that there is in fact a relationship between drift rate and abstinence behavior.  

Limitations 

 While the current study provides compelling evidence for perceptual processing 

differences between two groups of smokers, it is not without limitations. First, the PRT was not 

administered on the same day as the RAT, which increases the opportunity for extraneous 

variables between study visits, such as menstrual cycle and life stressors, to potentially influence 

the results. However, this experimental design also has the most ecological validity for how the 

PRT may be utilized clinically, where it could be administered under satiety days or weeks in 

advance of a quit attempt and still hold some predictive ability. Similarly, the PRT was given to 

participants after recent smoking, which does not allow us to draw conclusions about abstinence-

induced deficits in perceptual processing. Given that reward-related deficits often emerge during 

periods of nicotine-abstinence, recent smoking may have equalized any differences in reward 

responsivity on the PRT that would have been evident during abstinence. Moreover, measuring 

PRT performance during periods of abstinence would also improves translation between PRT 

and RAT behavior, since the RAT was conducted during an abstinent study visit.  Finally, 

individuals included in our sample were not required to be treatment seeking, and, as a result, 

individuals likely differed in their baseline levels of motivation to quit smoking. For instance, 

individuals contemplating making a quit attempt may have experienced waiting to smoke during 

the RAT easier than individuals less interested in quitting. Another important consideration for 

our study is that we were not able to assess the degree to which people made decisions based on 

reward preference (i.e., drug versus non-drug) or as a result of delayed discounting tendencies, 

both of which have been implicated in addiction. Specifically, the 0-minute waiters may have 
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found the nicotine-reward to be more enticing than a financial reward (i.e., greater valuation of 

drug reward). Alternatively, it is possible that the delayed nature of the financial reward may 

have diminished its value, and the option for the immediate reward (i.e., cigarette) may have 

been more enticing.  

Future Directions   

Future research replicating the current study should further evaluate the clinical utility of 

the PRT by increasing the amount of time between PRT and RAT to determine how far in 

advance PRT performance can predict behavior during the RAT. Likewise, future studies should 

investigate the impact that biological changes, such as hormones, occurring between visits have 

on PRT performance and PRT’s ability to predict of abstinence behavior.  Additionally, this 

study should certainly be replicated using different payment amounts during the RAT to 

investigate whether the bi-modal distribution reflects individuals who differ in their preference of 

drug vs. non-drug reward. To link these behavioral findings with their neurobiological 

underpinnings, future studies using neuroimaging techniques are necessary for elucidating if 

reward-related brain regions and metabolic processes related to dopamine are triggered during 

these tasks. Finally, replication of the current study in a treatment-seeking sample should involve 

administering the PRT prior to quitting and follow individuals longitudinally during in vivo quit 

attempts. This replication is necessary for increasing our understanding on the clinical utility of 

PRT measures for informing individual differences in quitting smoking. Moreover, studying the 

ability of PRT performance to predict real-world quit attempts would improve ecological validity 

of our findings.  
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Appendix A: Tables 

Table 1. Demographic and smoking characteristics 

Variable M (SD), [n] Statistics 

 0-minute 50-minute  

Age 43.69 (10.59) 40.64 (10.88) t = 1.27, p = 0.209 

Gender    
Female [14] [11] 

Fisher’s exact = 0.228 Male [22] [33] 

Education*   

X2 = 4.11, p = 0.250 

Less than high school [5] [4] 
High school or GED [13] [9] 

Some college [10] [19] 
College or higher [6] [11] 

FTND 5.83 (1.94) 4.93 (2.33) t = 1.86, p = 0.067 

Cigs per day** 17.79 (5.44) 16.50 (7.52) t = 0.85, p = 0.398 

Years of smoking 24.03 (11.52) 20.91 (11.09) t = 1.23, p = 0.222 

# of cigs before PRT visit 5.28 (4.12) 4.32 (3.08) t = 1.19, p = 0.237 
*N = 3 missing data 
**N = 1 missing data 
FTND: Fagerstrom Test for Nicotine Dependence 
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Table 2. 2-way ANOVA group*block interaction and 3-way ANOVA group*block*stimulus 
results for standard PRT variables 

 
 0-Minute 50-Minute    

PRT Variable M SD M SD F P-Value Partial 
eta2 

Block 1 Response Bias 0.14 0.16 0.14 0.17 

0.56 0.574 0.007 Block 2 Response Bias 0.16 0.21 0.18 0.20 

Block 3 Response Bias 0.21 0.16 0.25 0.23 

        

Block 1 Discriminability 0.42 0.21 0.59 0.31 

0.15 0.859 0.002 Block 2 Discriminability 0.50 0.29 0.68 0.29 

Block 3 Discriminability 0.51 0.29 0.71 0.32 

        

Block 1 Reaction Time (Rich) 683.36 211.35 658.23 268.85 

0.28 0.755 0.007 

Block 2 Reaction Time (Rich) 599.30 158.79 573.57 220.61 

Block 3 Reaction Time (Rich) 602.47 192.94 552.41 189.52 

Block 1 Reaction Time (Lean) 723.58 224.39 694.24 287.80 

Block 2 Reaction Time (Lean) 664.67 198.78 647.01 242.42 

Block 3 Reaction Time (Lean) 675.74 230.59 622.49 207.69 
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Table 3. Cohen’s D calculations for standard and HDDM PRT Variables 
 0-Minute 50-Minute   

PRT Variable M SD M SD SDpooled Cohen’s D 

Standard Parameters       

Block 1 Response Bias 0.14 0.16 0.14 0.17 0.16 0.02 

Block 2 Response Bias 0.16 0.21 0.18 0.20 0.21 0.08 

Block 3 Response Bias 0.21 0.16 0.25 0.23 0.20 0.23 

       

Block 1 Discriminability 0.42 0.21 0.59 0.31 0.39 0.44 

Block 2 Discriminability 0.50 0.29 0.68 0.29 0.29 0.63 

Block 3 Discriminability 0.51 0.29 0.71 0.32 0.30 0.66 
       
HDDM Parameters       

Drift rate 0.79 0.09 1.21 0.08 0.08 5.07 

Starting bias 0.56 0.01 0.56 0.01 0.01 0.77 
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Appendix B: Figures 

Figure 1. Diagram of PRT stimuli (Pizzagalli, Jahn, and O’Shea, 2005) 
 

 
 

 

 

Figure 2a. Posterior distribution of group means for drift-rate during the PRT 
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Figure 2b. Posterior distribution of group means for starting bias during the PRT 
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