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1 Introduction

In this paper we report on some classical and more recent results about repre-
sentation formulas for generalized solutions of the evolution partial differential
equation

ut + H(x, Du) = 0 , (x, t) ∈ IRN × (0, +∞) (1.1)

We consider here only the case where H = H(x, p) is a convex function with
respect to the p variable. In this setting, representation formulas can be obtained
by exploiting the well - known connection existing via convex duality between the
Hamilton - Jacobi equation (1.1) with Calculus of Variations or, more generally,
Optimal Control problems.

In Section 1 we briefly review some known existence results and represen-
tation formulas for viscosity solutions of problem (1.1). In Section 2, the Hopf
formula of Section 1.1 is revisited from quite a different point of view, pointing
out some links with the classical vanishing viscosity method and with the closely
related large deviation problem for the underlying stochastic processes. In par-
ticular, we sketch a non standard proof, based on Varadhan’s Large Deviations
Principle, of the fact that the inf-convolution of the initial datum g, namely

u(x, t) = inf
y∈IRN

[
g(y) +

|x− y|2

2t

]
is the Hopf solution of

ut +
1

2
|Du|2 = 0 , (x, t) ∈ IRN × (0, +∞) , u(x, 0) = g(x) , x ∈ IRN



Some indications to the connection with the Maslov’s idempotent analysis ap-
proach to Hamilton - Jacobi equations are also given.

The final part of the paper comprises a description of a recent generalization,
due to H. Ishii and the author, of the Hopf representation formula, covering
some cases of state dependent equations, including possible degeneracies in the x
dependence.

2 The Cauchy problem in the viscosity sense

We consider first order nonlinear evolution equations of the Hamilton - Jacobi
type

ut + H(x, Du) = 0 , (x, t) ∈ IRN × (0, +∞) (2.1)

equipped with the initial condition

u(x, 0) = g(x) , x ∈ IRN (2.2)

Here, H is a given continuous scalar function of the variables (x, p) ∈ IR2N which
we will always assume to be convex in the p variable and the initial datum g is
given on IRN . The notations ut and Du stand, respectively, for the time derivative
and the spatial gradient of the real - valued unknown function u = u(x, t).

It is well - known that problem (2.1), (2.2) does not have, in general, global
classical solutions, even for smooth data. The notion of viscosity solutions has
proved to be appropriate for the analysis of the well - posedness of such nonlinear
problems in a nondifferentiable framework, see [10], [14], [4], [3].
Let us recall for the convenience of the reader the Barron - Jensen [5] definition of
lower semicontinuous viscosity solution (or bilateral supersolution in the termi-
nology of [3]) of problem (2.1), (2.2). The definition below extends the classical
Crandall - Lions definition to the lower semicontinuous case and coincides with
it for continuous solutions, provided the Hamiltonian H is convex with respect
to p. A lower semicontinuous function u is a viscosity solution of (2.1), (2.2) if

λ + H(x, η) = 0 ∀(η, λ) ∈ D−u(x, t) , (2.3)

where D−u(x, t) is the subdifferential of u at (x, t), that is the closed, convex,
possibly empty set whose elements are the vectors (η, λ) ∈ IRN × IR such that

lim inf
(y,s)→(x,t)

u(y, s)− u(x, t)− η · (y − x)− λ(s− t)

|y − x|+ |s− t|
≥ 0



We refer to [5], [4], [3] for a through discussion of this notion of solution and for
existence, comparison and stability results.

We briefly report now on three different methods which produce existence
results together with representation formulas for the viscosity solution of problem
(2.1), (2.2).

2.1 The method of characteristics

The method of characteristics is the classical approach to construct local solu-
tions to nonlinear first order partial differential equations, see [11] for a recent
presentation. Consider for simplicity the Cauchy problem

ut + H(Du) = 0 , (x, t) ∈ IRN × (0, +∞) , (2.4)

u(x, 0) = g(x) , x ∈ IRN (2.5)

The associated characteristic system is

x′(t) =
∂H

∂p
(p(t)) , p′(t) = −∂H

∂x
(p(t)) ≡ 0 (2.6)

with the initial conditions

x(0) = x , p(0) = Dg(x) (2.7)

The solution of (2.6), (2.7) is of course

x(t; x) = x + t
∂H

∂p
(Dg(x)) , p(t) ≡ Dg(x)

and so the candidate solution produced by the method of characteristics is

u(x, t) = g
(
x−1(t; x)

)
+ t

(
∂H

∂p
·Dg −H(Dg)

)(
x−1(t; x)

)
(2.8)

Here, x−1 is the inverse of the map x → x(t; x), which is defined, in general, only
for small t > 0. As a consequence, function u is not globally defined by (2.8).
However, under some restrictive assumptions on H and g, the map x → x(t; x) is
globally invertible and the above formula defines u as a global solution of (2.4),
(2.5).

A model global existence result taken from [14] is as follows:



Theorem 2.1 Assume that H and g are in C2(IRN) and convex. Then the func-
tion u given by (2.8) is a classical and, a fortiori, viscosity solution of (2.4),
(2.5).

Under the assumptions of the Theorem, we have indeed

det

(
I + t

∂2H

∂p2
(Dg(x)

)
D2g(x) ≥ 1

for all x ∈ IRN and t > 0. So, u is globally defined and the fact that it is a
viscosity solution is a simple, direct verification.

2.2 The optimal control method

We assume here that the convex function p → H(x, p) can be expressed as the
envelope of a family of affine functions of p, namely

H(x, p) = sup
a∈A

[−F (x, a) · p− L(x, a)] (2.9)

where A is a closed subset of IRM , F : IRN × A → IRN and L : IRN × A → IR
are Lipschitz continuous in the first variable, uniformly in a. This the typical
situation in optimal control theory; note, however, that quite general functions
H can be represented in this way, see [13].

Let us associate to H the autonomous control system

y′(t) = F (y(t), α(t)) , y(0) = x , (2.10)

where the control α is any measurable function of t ∈ [0, +∞) valued in A and
the functional

J(x, t; α) =
∫ t

0
L(y(s), α(s))ds + g(y(t)) (2.11)

where y(s) = y(x, s; α) is the solution trajectory of (2.10).
The minimization of J with respect to all possible controls defines the value
function of the above Bolza optimal control problem as the function u given by

u(x, t) = inf
α

J(x, t; α) (2.12)

Formula (2.12) provides a representation for the solution of (2.1), (2.2). In-
deed, we have the following



Theorem 2.2 Assume H as in (2.9) with F and L as above. Assume also that
L is bounded and that g is bounded and uniformly continuous. Then, the value
function (2.12) is a viscosity solution of (2.1), (2.2). Moreover, u is the unique
bounded and continuous function on IRN × [0, +∞) solving (2.1), (2.2) in the
viscosity sense.

The proof of this existence and uniqueness result (and of some of its generaliza-
tions) can be found in [3]. Let us only mention here that the basic ingredient to
prove that u is a viscosity solution of (2.1) is the Dynamic Programming Prin-
ciple, a consequence of the nonlinear semigroup property of the control system
(2.10):
the value function of the optimal control problem at hand satisfies the identity

u(x, t) = inf
α

∫ τ

0
L(y(s), α(s))ds + u(y(τ), t− τ)

for all x ∈ RN and all 0 < τ ≤ t.

The value function solves equation (2.1) also according to other different weak
notions of solution (e.g. Subbotin’s or Dini’s solutions); we refer again to [3] for
more information on these topics.

2.3 The Hopf - Lax method

We assume again here that H does not depend on x and, moreover, that H is
superlinear at infinity, namely,

lim
|p|→+∞

H(p)

|p|
= +∞

By a classical duality result in convex analysis, then

H(p) = sup
a∈IRN

[a · p−H∗(a)]

where H∗(a) = supq∈IRN [q · a−H(q)] is the Legendre - Fenchel transform of H.
Therefore, the representation (2.9) holds in this case with

A = IRN , F (x, a) = a, L(x, a) = H∗(a) .



The optimal control problem in the previous section becomes then the classical
Bolza problem in the Calculus of Variations

inf
α

J(x, t; α) ≡ inf
α

∫ t

0
H∗(y(s))ds + g(y(t))

where α is any measurable functions taking values in IRN and

y(s) = x +
∫ t

0
α(s)ds

is the solution of the control system (2.10) in the case under consideration.

The representation formula (2.12) has a simplified expression in the present
setting, namely

u(x, t) = inf
y∈IRN

[
g(y) + tH∗

(
x− y

t

)]
(2.13)

The right-hand side of the above is usually called the Hopf (or Hopf - Lax)
function.

The proof of the equivalence between (2.12) and (2.13) relies on one side on
the fact that the geodesics of the variational problem are just straight lines; this
easily gives the inequality

inf
α

∫ t

0
H∗(y(s))ds + g(y(t)) ≤ inf

y∈IRN

[
g(y) + tH∗

(
x− y

t

)]
The reverse inequality follows by an application of the classical Jensen’s convexity
inequality, see [11].

As a particular case of Theorem 2.2, the Hopf function

u(x, t) = inf
y∈IRN

[
g(y) + tH∗

(
x− y

t

)]
, (2.14)

is a viscosity solution of the Cauchy problem

ut + H(Du) = 0 , (x, t) ∈ IRN × (0, +∞) (2.15)

u(x, 0) = g(x) , x ∈ IRN . (2.16)

This result has been proved in [2], extending to the viscosity setting the original
result of Hopf [12] and generalized later in several directions, see [1], [6].



The main issue to be pointed out here is that the Hopf solution given by
formula (2.14) expresses the solution u of the state - independent Cauchy problem
(2.15), (2.16) as the optimal value of the following family of unconstrained, static,
finite dimensional optimization problems parametrized by (x, t)

inf
y∈IRN

[
g(y) + tH∗

(
x− y

t

)]
= inf

y∈IRN
sup

q∈IRN

[g(y) + q · (x− y)− tH(q)] .

An alternative way, which makes no explicit reference to the associated vari-
ational problem, of deriving the Hopf function can be found in [12].
Since in Section 3 below we will exploit similar ideas in order to deal with the
state - dependent case, let us describe briefly the Hopf’s construction. This starts
from the simple observations that, for affine initial datum g(x) = q · x + c , the
smooth solution of (2.15), (2.16) is

v(x, t) = g(x)− tH(Dg(x))

and that, for general g, the affine functions

vy,q(x, t) = g(y) + q · (x− y)− tH(q)

solve (2.15) for any choice of (y, q) ∈ IRN × IRN but do not satisfy (2.16).
The procedure proposed in [12] is then to build a significant solution of the Cauchy
problem by means of the following envelope

inf
y∈IRN

sup
q∈IRN

vy,q(x, t)

of the family vy,q. It is easy to check that

sup
q∈IRN

vy,q(x, t) ≡ g(y) + tH∗
(

x− y

t

)
so that the above defined function coincides indeed with u in (2.14).

The Hopf’s original result illustrating the connection between function (2.14)
and Hamilton - Jacobi equations is next:

Theorem 2.3 Assume that H is convex and superlinear at infinity and that g is
Lipschitz continuous. Then, the function

u(x, t) = inf
y∈IRN

[
g(y) + tH∗

(
x− y

t

)]
(2.17)



is Lipschitz continuous on IRN × (0, +∞), satisfies equation (2.15) almost every-
where and

lim
t→0+

u(x, t) = g(x)

at any x ∈ IRN .

3 Hopf’s formula and convolutions

Let us recall that the inf - convolution gt (sometimes also called Yosida - Moreau
transform) of a function g : IRN → IR is defined for t > 0 by

gt(x) = inf
y∈IRN

[
g(y) +

|x− y|2

2t

]
(3.1)

This is a well - known regularization procedure in convex and in nonsmooth
analysis. Indeed, if g is continuous then gt is Lipschitz continuous and also
semiconcave, that is

gt(x + h)− 2gt(x) + gt(x− h) ≤
(
C +

1

t

)
|h|2 (3.2)

holds for some constant C = C(t) > 0 and any (x, h) ∈ IR2N and t > 0.
Moreover, functions gt converge to g locally uniformly as t → 0+. We refer to [3]
for additional information on this topic.
In the special case when H(p) = 1

2
|p|2 = H∗(p), the Hopf’s function (2.14)

becomes

u(x, t) = inf
y∈IRN

[
g(y) +

|x− y|2

2t

]
(3.3)

which is precisely the inf - convolution of the initial datum g.

An interesting but not evident relationship exists between the inf - convo-
lution and another standard regularization method, namely the classical integral
convolution procedure. Let us illustrate this with reference to the Cauchy prob-
lem

ut +
1

2
|Du|2 = 0 , (x, t) ∈ IRN × (0, +∞) (3.4)

u(x, 0) = g(x) , x ∈ IRN (3.5)



whose solution is given by (3.3) by the results reported in Section 2. Assume
that g is continuous and bounded and consider the parabolic regularization of
the Cauchy problem (3.4), (3.5), that is

uε
t − ε∆uε +

1

2
|Duε|2 = 0 , uε(x, 0) = g(x) (3.6)

where ε is a positive parameter. A direct computation shows that if uε is a smooth
solution of the above, then its Hopf - Cole transform

wε = e−
uε

2ε

satisfies the linear heat problem

wε
t − ε∆wε = 0 , wε(x, 0) = gε(x) = e−

g(x)
2ε (3.7)

By classical linear theory, see [11] for example, its solution wε can be expressed
as the convolution wε = Γ ? gε where Γ is the fundamental solution of the heat
equation, that is

wε(x, t) = (4πεt)−
N
2

∫
IRN

e−
|x−y|2

4εt e−
g(x)
2ε dy

Hence, by inverting the Hopf - Cole transform,

uε(x, t) = −2ε log
(
(4πεt)−

N
2

∫
IRN

e−
|x−y|2

4εt e−
g(x)
2ε dy

)
(3.8)

turns out to be a solution of the quasilinear problem (3.6).

It is natural to expect that the solutions uε of (3.6) should converge, as
ε → 0+, to the solution of

ut +
1

2
|Du|2 = 0 , u(x, 0) = g(x)

that is, to the Hopf’s function (3.3).
We have indeed the following result which shows, in particular, how the inf

- convolution can be regarded, roughly speaking, as a singular limit of integral
convolutions:



Theorem 3.1 Assume that g is bounded. Then,

lim
ε→0+

−2ε log
(
(4πεt)−

N
2

∫
IRN

e−
|x−y|2

4εt e−
g(x)
2ε dy

)
= inf

y∈IRN

[
g(y) +

|x− y|2

2t

]
(3.9)

The proof can be obtained by a direct application of a general large deviations
result by S.N. Varadhan. Consider at this purpose the family of probability
measures P ε

x,t defined on Borel subsets of IRN by

P ε
x,t(B) = (4πεt)−

N
2

∫
B

e−
|x−y|2

4εt dy

and the function

Ix,t(y) =
|x− y|2

4t
.

It is not hard to check that, for all fixed x and t, the family P ε
x,t satisfies the

large deviation principle, see Definition 2.1 in [19], with rate function Ix,t .
By Theorem 2.2 in [19], then

lim
ε→0+

ε log
(∫

IRN
e

F (y)
ε dP ε

x,t(y)
)

= sup
y∈IRN

[F (y)− I(y)]

for any bounded continuous function F . The choice F = −g
2

in the above shows
then the validity of the limit relation (3.9).

The same convergence result can be proved also by purely PDE methods.
Uniform estimates for the solutions of (3.6) and compactness arguments show
the existence of a limit function u solving (3.4), (3.5) in the viscosity sense.
Uniqueness results for viscosity solutions allow then to identify the limit u as the
Hopf’s function, see [14], [3].

The way of deriving the Hopf function via the Hopf - Cole transform and
the large deviations principle is closely related to the Maslov’s approach [16], [17]
to Hamilton - Jacobi equations based on idempotent analysis. In that approach,
the base field IR of ordinary calculus is replaced by the semiring IR∗ = IR ∪ {∞}
with operations a⊕ b = min{a, b}, a� b = a + b .
A more detailed description of this relationship is beyond the scope of this paper;
let us only observe in this respect that the nonsmooth operation a ⊕ b has the
smooth approximation

a⊕ b = lim
ε→0+

−ε log
(
e−

a
ε + e−

b
ε

)
.



A final remark is that the Hopf - Cole transform can be also used to deal
with the parabolic regularization of more general Hamilton - Jacobi equations
such as

ut +
1

2
|σ(x)Du|2 = 0

where σ is a given M×N matrix, provided the regularizing second order operator
is chosen appropriately. Indeed, if one looks at the regularized problem

uε
t − ε div (σ∗(x)σ(x)Duε) +

1

2
|σ(x)Duε|2 = 0 ,

then the Hopf - Cole transform wε = e−
uε

2ε solves the linear equation

wε
t − ε div (σ∗(x)σ(x)Dwε) = 0

This observation will be developed in the forthcoming work [8].

4 An Hopf formula for state dependent Hamiltonians

As described in Section 1.2 and 1.3, the value function representation and the
Hopf function actually coincide when the Hamiltonian does not depend on the
variable x. In this section we present a new Hopf type formula, obtained in col-
laboration with H. Ishii, see [9], for the viscosity solution of the state - dependent
Cauchy problem

ut + H(x, Du) = 0 , (x, t) ∈ IRN × (0, +∞) , (4.1)

u(x, 0) = g(x) , x ∈ IRN (4.2)

It is not hard to realize that the Hopf envelope method of Section 2 does not work

if H depends on x. Nonetheless, an Hopf type formula can be proved even in this
more general case under the basic structural assumption that the Hamiltonian
H : IR2N 7→ IR is of the form

H(x, p) = Φ (Ho(x, p)) (4.3)

where Ho is a continuous function on IR2N satisfying the following conditions

p 7→ Ho(x, p) is convex , Ho(x, λp) = λHo(x, p) (4.4)



Ho(x, p) ≥ 0, |Ho(x, p)−Ho(y, p)| ≤ ω(|x− y|(1 + |p|)) (4.5)

for all x, y, p, for all λ > 0 and for some modulus ω such that lims→0+ω(s) = 0 .
Concerning function Φ we assume

Φ : [0, +∞) → [0, +∞) , is convex, non decreasing , Φ(0) = 0 . (4.6)

The next result shows that the validity of an Hopf type formula for the
solution of problem (4.1), (4.2) is guaranteed if the associated stationary eikonal
problem

Ho(x, Dd) = 1 , x ∈ IRN \ {y} , d(y) = 0 (4.7)

has a solution d(x) = d(x; y) for any value of the parameter y ∈ IRN .
We shall describe below a setting in which this condition can be enforced.

Theorem 4.1 Assume (refA4), (4.4), (4.5), (4.6) and

g lower semicontinuous , g(x) ≥ −C(1 + |x|) for some C > 0 . (4.8)

Assume also that problem (4.7) has a unique continuous viscosity solution
d(x) = d(x; y) for each y ∈ IRN . Then, the function

u(x, t) = inf
y∈IRN

[
g(y) + tΦ∗

(
d(x; y)

t

)]
(4.9)

is the unique lower semicontinuous viscosity solution of (4.1) which is bounded
below by a function of linear growth and such that

lim inf
(y,t)→(x,0+)

u(y, t) = g(x)

In order to understand why the Hopf function (4.9) solves (4.1), let us proceed
heuristically by assuming that (4.7) has a smooth solution d(x) and look for
special solutions of (4.1) of the form

vy(x, t) = g(y) + tΨ

(
d(x; y)

t

)

where y ∈ IRN plays the role of a parameter and Ψ is a smooth function to be
appropriately selected. Set now τ = d(x;y)

t
> 0 and compute

vy
t = Ψ(τ) + tΨ′(τ)

−d2

t2
= Ψ(τ)− τΨ′(τ) ; Dvy = tΨ′(τ)

Dxd

t
= Ψ′(τ)Dxd



Imposing that vy solves (4.1) gives

Ψ(τ)− τΨ′(τ) + Φ(Ho(x, Ψ′(τ)Dxd)) = 0

Therefore, if Ψ is strictly increasing, the positive homogeneity of Ho and the fact
that d solves the eikonal equation yield

Ψ(τ)− τΨ′(τ) + Φ(Ψ′(τ)) = 0 .

Since the solution of this Clairaut’s differential equation is Ψ = Φ∗, the above
heuristics leads then to formula (4.9). This formal arguments can be made rigor-
ous by some duality arguments in convex analysis and by using the apparatus of
comparison and stability methods of the theory of viscosity solutions. We refer
to [9] for details.

The assumption that the eikonal equation has a unique continuous viscosity
solution made in Theorem 4.1 is trivially satisfied with d(x; y) = |x − y| for the
simplest case Ho(x, p) = |p| and, more generally, when the Hamiltonian Ho is of
the form

Ho(x, p) = |A(x)p|
where A(x) is a symmetric positive definite N ×N matrix.
The associated eikonal equations are solved in this case by Riemannian metrics,
see [14], [18] at this purpose.

In the examples above, the coercivity condition

lim
|p|→+∞

Ho(x, p) = +∞ (4.10)

obviously holds true. Let us briefly discuss now the issue of finding sufficient
conditions for the validity of the eikonal assumption in Theorem 4.1 even for
degenerate situations when (4.10) may fail.
Consider for example the homogeneous Hamiltonian

Ho(x, p) = |σ(x)p|

where σ(x) is an M×N (with M ≤ N) matrix such that x → σ(x) is C∞(RN) and
satisfies the Chow - Hormander rank condition of order k, see [3], [7]. Consider
then the differential inclusion

Ẋ(t) ∈ ∂Ho(X(t), 0) (4.11)



and, for x, y ∈ IRN , the set Fx,y of all trajectories X(·) of (4.11) such that

X(0) = x, X(T ) = y

for some T = T (X(·)) > 0 .
By the well - known Chow’s Connectivity Theorem, see [7], the set Fx,y is non
empty and, consequently, the function

d(x; y) = inf
X(·)∈Fx,y

T (X(·)) (4.12)

is finite for all x, y. Moreover, d is a sub - Riemannian metric of Carnot -
Carathéodory type which compares locally with the euclidean distance |x − y|
on IRN as

C1|x− y| ≤ d(x; y) ≤ C2|x− y|
1
k

We refer to [9] for a detailed proof.
Let us observe that in the present non coercive setting the function d is not,

in general, differentiable almost everywhere; the notion of viscosity solution seems
therefore to be essential to interpret d as a solution of (4.7).
An interesting particular case (here N = 3 to simplify notations) is

Ho(x, p) =

√
(p1 −

x2

2
p3)2 + (p2 +

x1

2
p3)2

arising in connection with Carnot - Carathéodory on the Heisenberg group H1.
Our Hopf formula (4.9) coincides in this special case with the one recently found
for this example by Manfredi - Stroffolini [15].
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