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1 Introduction

We consider scalar functions u satisfying second-order partial differential inequal-
ities of the form

F (x, u,Du,D2u) ≥ 0 , x ∈ Ω (1.1)

where Ω ⊆ IRN is an open set, F is a continuous function on Ω× IR× IRN × SN

with values in IR and SN denotes the set of N ×N symmetric matrices.
Due to the fully nonlinear character of F , the weak notion of viscosity solution
is an appropriate one for the analysis of the inequality (1.1).
We recall for the convenience of the reader that a viscosity solution of (1.1) is
any function u ∈ LSC(Ω), the set of lower semicontinuous functions u : Ω → IR,
such that

F (x0, u(x0), Dζ(x0), D
2ζ(x0)) ≥ 0

for all ζ ∈ C2(Ω) and all x0 ∈ Ω such that u− ζ has a local minimum at x0.
Viscosity solution of the inequality

F (x, u,Du,D2u) ≤ 0 , x ∈ Ω (1.2)

are similarly defined by replacing lower semicontinuity with upper semicontinuity
and local minima with local maxima.
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Finally, u is a viscosity solution of the equation

F (x, u,Du,D2u) = 0 , x ∈ Ω

if it is simultaneously a viscosity solution of (1.1) and (1.2).
We refer to [16] for the general theory of viscosity solutions and to [22], [12] and
the references therein for surveys of subsequent developments of the theory.

In the special case F (x, r, p,M) = −trM , the inequality (1.1) becomes

−∆u ≤ 0 in Ω (1.3)

and it is known, see [12] for an explicit proof, that if u is a viscosity solution of
(1.3) then for every ball B ⊂ Ω and every h such that ∆h = 0 in B, the inequality
u ≥ h on ∂B implies u ≤ h in B, and, conversely, that any u satisfying the above
property is viscosity solution of (1.3).
This means that viscosity solutions of the inequality (1.3) are in fact superhar-
monic functions in the sense of potential theory, see [24] for example.
This remark suggests that several parts of the classical theory of superharmonic
functions can be generalized to the framework of viscosity solutions. This has
been, quite naturally indeed, a fruitful direction of investigation, leading to Per-
ron type results about existence, see [25], comparison, uniqueness and stability
results for possibly degenerate elliptic F , see [23], [16], [26], and strong maxi-
mum principle, Harnack inequalities, Hölder and Sobolev estimates for uniformly
elliptic F , see [9], [10].

Our aim here is to report on a closely related aspect of this fundamental line of
research, developed in recent years with A. Cutri and F. Leoni, whom I would like
to thank for precious collaboration, aimed at establishing the validity of viscosity
solutions versions of well - known classical results of the theory of superharmonic
functions such as the Hadamard three - circles theorem, the Liouville’s theorem
and the Phragmen - Lindelöf principle.

2 Preliminaries

A continuous F : Ω × IR × IRN × SN → IR is uniformly elliptic if there exist
constants 0 < λ ≤ Λ such that

λ tr (Q) ≤ F (x, t, p,M)− F (x, t, p,M +Q) ≤ Λ tr (Q) (2.1)



for all M,Q ∈ SN with Q nonnegative definite and for every fixed t ∈ IR , p ∈ IRN

and x ∈ Ω. We denote here by tr (Q) the trace of a matrix Q.
We will consider functions F satisfying (2.1) for some fixed λ,Λ and

F (x, t, 0, 0) = 0 (2.2)

F (x, t, p, 0) ≤ σ(|x|)|p|+ h(x)tα (2.3)

where α ≥ 1 and σ and h are continuous real valued functions such that

|x|σ(|x|) ≥ −Λ(N − 1) , h(x) ≤ 0 (2.4)

for all (x, t, p) ∈ Ω× IR+ × IRN .

The Pucci maximal operator, see [29],

M+
λ,Λ(M) = sup

A∈Aλ,Λ

(−tr (AM)) , M ∈ SN

where
Aλ,Λ = {A ∈ SN : λ|ξ|2 ≤ Aξ · ξ ≤ Λ|ξ|2, ∀ ξ ∈ IRN}

is the fundamental example of operator satisfying (2.1). For λ = Λ = 1, the
operator M+

λ,Λ coincides with the Laplace operator −∆.
The following representation of M+

λ,Λ(M), see [9], holds

M+
λ,Λ(M) = −λ

∑
e+i − Λ

∑
e−i , (2.5)

where e+i , e
−
i are, respectively, the positive and negative eigenvalues of M .

Formula (2.5) implies that any uniformly elliptic F satisfies

F (x, t, p,M) ≤ F (x, t, p, 0) +M+
λ,Λ(M) (2.6)

for all x ∈ Ω, t ∈ IR, p ∈ IRN and M ∈ SN .
As a consequence of the above inequality, if F satisfies conditions (2.1), (2.2),
(2.3), (2.4), any viscosity solution of

u ≥ 0 , F (x, u,Du,D2u) ≥ 0 , x ∈ Ω

is also a viscosity solution of

M+
λ,Λ(D2u) + σ(|x|)|Du|+ h(x)uα ≥ 0 , x ∈ Ω



and, a fortiori, of

M+
λ,Λ(D2u) + σ(|x|)|Du| ≥ 0 , x ∈ Ω. (2.7)

A large class of fully nonlinear operators satisfying our set of assumptions is
that of Bellman - Isaacs operators

inf
γ∈G

sup
β∈B

[
−tr (Aβ,γ(x)D2u) + bβ,γ(x) ·Du+ cβ,γ(x)u

]
(2.8)

arising in stochastic optimal control and differential games theory, see [19].
Indeed, it is easy to check this, provided that Aβ,γ ∈ Aλ,Λ for some 0 < λ ≤ Λ,
the vectorfields bβ,γ and functions cβ,γ satisfy

|bβ,γ(x)| ≤ σ(|x|) , cβ,γ(x) ≤ h(x)

with h and σ as in (2.4) for any (β, γ) in the give parameters sets B,G.
Observe that the Pucci maximal operator can be trivially represented in the
form (2.8) and also that our assumptions (2.1), (2.2), (2.3), (2.4) are satisfied, in
particular, by linear operators in non divergence form

−tr (A(x)D2u) + b(x) ·Du+ c(x)u

under suitable conditions on the data A, b, c.

3 A nonlinear three spheres theorem

The object of this section is the following version of the Hadamard three spheres
theorem. Our result shows, roughly speaking, that the minimum on the ball of
radius r of a lower semicontinuos viscosity solution of

u ≥ 0 , F (x, u,Du,D2u) ≥ 0

is a concave function of the ”fundamental solution” of the Pucci maximal oper-
ator, thus extending to non smooth solutions of general differential inequalities
with gradient dependence the classical linear result, see [28], as well as previous
results for the Pucci operator, see [27].



Theorem 3.1 Let u ∈ LSC(Ω) be a viscosity solution of

u ≥ 0 , F (x, u,Du,D2u) ≥ 0 , x ∈ Ω (3.1)

in the annulus Ω = {x ∈ IRN : 0 < r1 < |x| < r2 }.
If F satisfies conditions (2.1), (2.2), (2.3), (2.4), then the function

m(r) = min
r1≤|x|≤r

u(x) , x ∈ [r1, r2] (3.2)

satisfies

m(r) ≥ ψ(r)

ψ(r2)
m(r2) +

(
1− ψ(r)

ψ(r2)

)
m(r1) , ∀x ∈ [r1, r2] (3.3)

where ψ is given by

ψ(r) =
∫ r

r1

s
−Λ
λ

(N−1) exp
(
−1

λ

∫ s

r1

σ(τ)dτ
)
ds . (3.4)

The proof of this result, which has established for F independent of p in
[17] and in [14] in the the present form, starts from two simple observations
and relies on two fundamental principles in viscosity solution theory, namely the
Comparison and the Strong Minimum Principle.
The first observation is, see (2.7), that in our assumptions any solution u of (3.1)
is also a solution of

u ≥ 0 , M+
λ,Λ(D2u) + σ(|x|)|Du| ≥ 0 , x ∈ Ω .

The second one is that Pucci operator M+
λ,Λ acts as a linear ordinary differential

operators on smooth, radial, convex and non increasing functions Φ.
Indeed, it is easy to check, see [17], that the eigenvalues of the Hessian matrix

D2Φ(|x|) ≡ Φ′(|x|)
|x|

IN +

[
Φ′′(|x|)
|x|2

− Φ′(|x|)
|x|3

]
x⊗ x

(here IN denotes the N × N identity matrix) are Φ′′(|x|) which is simple and
Φ′(|x|)
|x| with multiplicity N − 1. Hence, taking the representation formula (2.5)

into account and setting r = |x| we have

M+
λ,Λ(Φ′′) = −λΦ′′ − Λ(N − 1)

r
Φ′ . (3.5)



A simple computation shows that the function

Φ(r) =
ψ(r)

ψ(r2)
m(r2) +

(
1− ψ(r)

ψ(r2)

)
m(r1)

and ψ(r) and m are given respectively by (3.4), (3.2), is a smooth radial solution
of the Dirichlet problem

M+
λ,Λ(D2Φ) + σ(|x|)|DΦ| = 0 , x ∈ Ω

Φ(x) = m(r1) for |x| = r1, Φ(x) = m(r2) for |x| = r2 .

Since, by construction, Φ(x) ≤ u(x) on ∂Ω, by the Comparison Principle,
see [26], one deduces that

u(x) ≥ Φ(x) in Ω. (3.6)

Observe now that the claim (3.3), which amounts in fact to

m(r) ≥ Φ(r) for all r ∈ [r1, r2] , (3.7)

is trivial if u (and consequently m) is a constant. If u is not a constant, by the
Strong Minimum Principle, see [9], [4], u must attain its minimum value on the
boundary of the compact set {x ∈ IRN : r1 ≤ |x| ≤ r } for each r ∈ (r1, r2) and
(3.7) easily follows using (3.6).

4 On the Liouville property

We discuss here the validity of Liouville type results for functions u satisfying

u ≥ 0 , F (x, u,Du,D2u) ≥ 0 , x ∈ IRN (4.1)

such as

(A) any solution of (4.1) is a constant
or

(B) the unique solution of (4.1) is u ≡ 0.

This questions have been the object of vaste attention for their own sake and for
their applications to a priori estimates and existence theory for elliptic semilinear



boundary value problems, see for example [8], [20], [21], [18], [5], [6] and the
review paper [11], and also in connection with some asymptotic problem arising
in ergodic stochastic control, see [1] and the references therein.

In a fully nonlinear setting, question (A) has been answered affirmatively in
[9] for non-negative solutions of the equation F (D2u) = 0.
Properties (A) and (B) have been proved to hold true in [17] for the a priori
much wider set of viscosity solutions of the partial differential inequality (4.1)
with F = F (x, u,D2u).

We announce in this section two Liouville type results taken from [14] which
give affirmative answers to questions (A) and (B) when function F is allowed to
depend also on first order derivatives, under the main structural condition

F (x, t, p, 0) ≤ σ(|x|)|p|+ h(x)tα .

Even under this restriction, the dependence of F onDu generates some interesting
phaenomena depending on the behavior at infinity of the function

ψ(r) =
∫ r

r1

s
−Λ
λ

(N−1) exp
(
−1

λ

∫ s

r1

σ(τ)dτ
)
ds

occurring in the statement of the Hadamard Theorem in the previous section.

Theorems 4.1 and 4.2 below cover, respectively, the two possible cases of asymp-
totic behaviour, namely ψ divergent or bounded as r → +∞. The next one is
about the case limr→+∞ ψ(r) = +∞.

Theorem 4.1 Let u ∈ LSC(Ω) be a viscosity solution of

u ≥ 0 , F (x, u,Du,D2u) ≥ 0 in IRN (4.2)

with F satisfying (2.1), (2.2), (2.3), (2.4) for all x ∈ IRN .
If limr→+∞ ψ(r) = +∞, then u is a constant. If, in addition, the function h in
(2.3) is strictly negative at some point x0 ∈ IRN , then u ≡ 0.

Before sketching the proof, let us observe that it is well - known, see [28]
for a proof in the two dimensional case, that nonnegative solutions of the linear
equation

−tr (A(x)D2u) + b(x) ·Du = 0 in IRN , N ≥ 2



with A(x) continuous and positive definite are necessarily constants, provided b
satisfies the Fuchs type condition

(1 + |x|)|b(x)| ≤ C

It is immediate to check that the assumptions of our Theorem 4.1 are trivially
satisfied in that case.

Our proof of Theorem 4.1 seems to be simpler than the one based on the
Krylov-Safonov-Harnack inequality for viscosity solutions of F (D2u) = 0 sug-
gested in [9]. Indeed, any viscosity solution of (4.2) is, a fortiori, a solution of the
same inequality in any annulus Ω. Since m(r2) ≥ 0, by Theorem 3.1

m(r) ≥ m(r1)

(
1− ψ(r)

ψ(r2)

)
, r ∈ [r1, r2]

for arbitrary 0 < r1 < r2. Keeping r fixed and letting r2 go to +∞ in the above
we obtain, since ψ is divergent,

m(r) ≥ m(r1) , r ≥ r1 .

Since, by its very definition, m(r) is nonincreasing, we conclude that

m(r) ≡ m(0) = u(0) ,

that is u attains its minimum on the closed ball |x| ≤ r at the interior point
x = 0. By the Strong Minimum Principle, see [9], [4], u is a constant and the
first claim is proved.

Finally, if C is a non-negative constant solution of (4.2), then from (2.3) it
follows that

0 ≤ F (x0, C, 0, 0) ≤ h(x0)C
α

which implies u ≡ 0, if h(x0) < 0 at some x0 .

In the last part of this section we present a Liouville type result for the other
possible case of behavior of function ψ, namely when ψ(r) has a finite limit L as
r → +∞. This situation arise, for example, when the function σ satisfies

|x|σ(|x|) ≥ λ− Λ(N − 1) + δ for some δ > 0,



a more stringent condition than the one in (2.4).
We also need to impose specific conditions on the behaviour at infinity of σ

and of the zero order term in the operator, precisely

sup
IRN

|x|σ(|x|) < +∞ (4.3)

and
h(x) ≤ −g(|x|) for |x| large (4.4)

for some function g satisfying

lim
r→+∞

r2g(r)(L− ψ(r))α−1 = +∞ . (4.5)

Note that (4.4), (4.5) imply in particular h < 0 for large r, excluding therefore
the case h ≡ 0.

We have then

Theorem 4.2 Let u ∈ LSC(Ω) be a viscosity solution of

u ≥ 0 , F (x, u,Du,D2u) ≥ 0 in IRN (4.6)

with F satisfies conditions (2.1), (2.2), (2.3), (2.4), (4.3), (4.4), (4.5).
If limr→+∞ ψ(r) = L < +∞, then u ≡ 0.

It is worth to observe and not very hard to check that the result applies in
particular to C2 solutions of the linear inequality

u ≥ 0 , −∆u− |x|γuα ≥ 0 in IRN

provided γ > −2 and 1 < α < N+γ
N−2

. We recover then a result in [5], [6], established
there by means of the integral estimate

(∫
BR\Br1

|x|γ+1Φ

(
x

|x|

)
ζ

(
|x|
R

)
dx

)1− 1
α

≤ CR (N− γ
α−1

)α−1
α
−2

where Φ is the first eigenfunction of the Laplace - Beltrami operator and ζ is a
smooth cut - off function.



Our proof of Theorem 4.2, see [14], makes use instead of estimates of the type

m(R)

L− ψ(R)
≤ C

(
Λ(N + 1) +Rσ(R)

R2g(R)(L− ψ(R))α−1

) 1
α−1

(4.7)

where, as usual, m(R) = minr1≤|x|≤R u(x).
The estimate above is obtained by viscosity solutions techniques using the

smooth radial test function

ζ(|x|) = m(r)

(
1− [(|x| − r)+]3

(R− r)3

)
,

where r, R are parameters such that R0 ≤ r ≤ R and R0 is chosen in such a way
that h(x) < 0 for |x| ≥ R0, see (4.4), (4.5).
Observe that the left-hand side in (4.7) is non-negative and that from Theorem
3.1 we have

m(r) ≥ m(r1)

(
1− ψ(r)

ψ(r2)

)
, r ∈ [r1, r2] .

Since ψ(r) → L < +∞, as r → ∞, we obtain, after letting r2 go to infinity and
keeping r fixed in the above inequality, that

r 7→ m(r)

L− ψ(r)

is non-decreasing on [r1,+∞). Since the right-hand side of (4.7) tends to 0
as R → +∞ under the assumptions made, it follows that m(R) ≡ 0 and the
conclusion follows as in Theorem 4.1 using the Strong Minimum Principle.

5 On the Phragmen - Lindelöf Principle

6 Some degenerate cases

The validity of Hadamard and Liouville type theorems for non-negative solutions
of F (x, u,Du,D2u) ≥ 0 can be established also in some degenerate elliptic or
completely degenerate cases. In this section we give some illustration of this



issue with reference to two basic examples, see [15] for more complete results in
this direction. The first example is

F (x,M) = sup
A∈Aλ,Λ

(−tr (AM)) (6.1)

defined on matrices M of the form

M = Σ(x)B Σ∗(x) , B ∈ S3

where the matrix Σ(x) is given for x = (x1, x2, x3) ∈ IR3 by(
1 0 2x1

0 1 −2x2

)

and ∗ denotes transposition. It easy to check that F satisfies the degenerate
ellipticity condition

F (x, t, p,M +Q) ≤ F (x, t, p,M)

for all M,Q ∈ S3 with Q nonnegative definite and for every fixed t, p, x.

For λ = Λ = 1, the operator defined by (6.1) reduces to

−
(
∂2u

∂x2
1

+
∂2u

∂x2
2

+ 4(x2
1 + x2

2)
∂2u

∂x2
3

+ 4

(
x2

∂2u

∂x1∂x3

− x1
∂2u

∂x1∂x3

))

The linear degenerate elliptic operator defined by the above formula is known
as the Kohn Laplacian −∆H1 on the Heisenberg group H1, see for example [30].
The nonlinear operator defined by (6.1) can therefore be seen as a degenerate
analogue of the Pucci maximal operator considered in the previous sections.

The second example that we will exhamine here is the Hamilton-Jacobi-
Bellman first order operator

F (x, t, p) = h(x)t+ inf
γ∈G

bγ(x) · p (6.2)

a completely degenerate special case of the Bellman-Isaacs operator in Section 2.
Liouville type theorems for linear and semilinear partial differential inequal-

ities involving the Kohn Laplacian have been established in [7], see also [13] for
more general sublaplacians.



We report next on a three spheres theorem for non-negative supersolutions of
(6.1).
The underlying Lie group structure suggest to consider annuli defined by the
homogeneous norm

ρ(x) =
(
(x2

1 + x2
2)

2 + x3
3

) 1
4 .

Similar computations as those in Section 3 show that the operator F in (6.1) acts
on functions Φ = Φ(ρ) as

F (x,Σ(x)D2Φ(ρ) Σ∗(x)) =

[
λΦ′′ +

3Λ

ρ
Φ′
]
x2

1 + x2
2

ρ2
.

Observe that in the corresponding formula (3.5) for the uniformly elliptic case
with N = 3 the coefficient of Λ is 2 instead of 3. Actually, it is well-known, [30],
that in the analysis of the Kohn Laplacian the linear dimension N must replaced
by the homogeneous dimension Q, Q = 4 in the case of ∆H1 . Note also in this
respect the definition of function ψ in the next result.

By the same method employed in the proof of Theorem 3.1 we obtain

Theorem 6.1 Let u ∈ LSC(Ω) be a viscosity solution of

u ≥ 0 , sup
A∈Aλ,Λ

(−tr (AΣ(x)D2uΣ∗(x))) ≥ 0 , x ∈ Ω

in the annulus Ω = {x ∈ IR3 : 0 < r1 < ρ(x) < r2 }. Then the function

m(r) = min
r1≤ρ(x)≤r

u(x) , x ∈ [r1, r2]

satisfies

m(r) ≥ ψ(r)

ψ(r2)
m(r2) +

(
1− ψ(r)

ψ(r2)

)
m(r1) , ∀x ∈ [r1, r2]

where ψ is given by

ψ(r) =
∫ r

r1

s
−3Λ

λ exp
(
−1

λ

∫ s

r1

σ(τ)dτ
)
ds .



We conclude the current section with a Liouville theorem in the spirit of
Theorem 4.2 for the Hamilton-Jacobi-Bellman problem

u ≥ 0 , h0u+ inf
γ∈G

bγ(x) ·Du ≥ 0 , x ∈ IRN . (6.3)

Let us assume that G is a compact set in IRM and that bγ is continuous and
bounded on IRN × G; we assume also that

|bγ(x)− bγ(y)| ≤ L|x− y| , (bγ(x)− bγ(y)) · (x− y) ≤ L|x− y|2

for some constant L and all x, y ∈ IRN , γ ∈ G. We assume also that h0 < 0.

Let us associate to (6.3) the characteristic system

ẏ(s) = bγ(s)(y(s)) , y(0) = x

where γ(s) is any measurable function of s ∈ [0,+∞) valued in G and denote its
solution by y(s;x, γ).

It is known from optimal control theory, see [3], that if u is any viscosity
solution of (6.3) then the function

ψ(s;x, γ) = e−h0s u(y(s;x, γ))

is a non decreasing function of s for any choice of x ∈ IRN and of the control γ(·).
Under the assumptions made we have

Theorem 6.2 Let u ∈ LSC(IRN) be a viscosity solution of (6.3).
If for each x ∈ IRN there exists a control function γx such that

lim
s→+∞

ψ(s;x, γx) = 0 ,

then u ≡ 0.

The proof is very simple: since ψ(s;x0, γx0) is non decreasing, if u(x0) > 0 at
some x0, then

0 = lim
s→+∞

ψ(s;x0, γx0) ≥ ψ(0; x0, γx0) = u(x0) > 0

showing that u ≡ 0.

Since h0 < 0, the assumption made on the asymptotic behavior of ψ is clearly
satisfied if for any initial point x there exist a control γ = γ(s) and a constant
Mx such that |y(s;x, γ)| ≤Mx for all s ≥ 0.
Several variants of the above result are of course possible by replacing the re-
quirement on ψ by conditions on the growth of u at infinity, see [15].
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