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1

I N T RO D U C T I O N

Context allows us to make sense of the world. While this thesis is being edited in January,
many cities like Istanbul are in complete lock-down in Turkey. The lock-down is not due
to the pandemic, but the ongoing blizzard. There is, however, a cold, distant city named
Kars, where the snow does not come as a surprise. The readers of the novel The Snow
(2002) from Nobel Laureate author Orhan Pamuk will remember the main character
”KA”, and his struggle in reaching Kars from the nearby city Erzurum. KA turns his
struggle into an advantage, however, as the ongoing blizzard slows him down, simplifies
the city view and gives sufficient time to think about his journalistic investigation on
the women. Such realization is rendered possible with the temporal context of his small
journey, as it takes time in the winter.

Famous piano composer Fazıl Say translates Turkish poetry to the musical language.
To make sense of his piece Black Earth (2003), one needs to refer to the lingual context
of Aşık Veysel’s poem with the same title. Aşık Veysel refers to the soil with Black Earth,
as the one and the only unconditional lover, from where we emerge and eventually will
go back to. In his famous painting The Tortoise Trainer (1906), Osman Hamdi depicts
himself as the restless trainer of multiple tortoises around him. To understand this piece,
one needs to consider the visual context between the trainer and the tortoises, as Hamdi’s
head and gaze, and the relative location of the tortoises play a crucial role.

Inspired by the temporal and lingual context, this thesis focuses on the visual context.
The absence of the context challenges human in recognizing the visual objects [114, 115,
128, 143]. The visual context determines our expectations about the scene. We expect
the objects to be in a typical place, in a typical location surrounded by common objects.
Consider the human-cow pairs in Figure 1. On the left, we depict an abstract human
and cow, whereas on the right the same objects within their usual context. What are the
differences? First, the cow and the rider are in a rural scene on yellow grass, which is
comfortable for the target animal. Second, the rider is on top of the cow, which is one of
the many expected configurations between a human and the cow object. Third, more than
half of the pixels of the human rider are occluded behind the object, whereas they are
fully visible on the left. Fourth, both the human and the cow are dressed accordingly with
their immediate interaction, as is visible from the rodeo clothing of the human. Fifth,
their shadows are visible from the grass, as the interaction takes place in a typical day
time. Lastly, the human and the cow are surrounded by semantically similar objects and
stuff: The by-stander, the car in the background and the mountains in the far-away region.
All of these highlight the abundance of the visual context information we leverage on a
daily basis to perform simple tasks of recognition.

Visual context is anything secondary to the target object appearance. Given an object,
the immediate pixels around the vicinity of the object is the local context. The type of the
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I N T RO D U C T I O N

Figure 1: On the left, we depict an abstract human and cow, whereas on the right the
same objects within their usual context. What are the differences? First, the cow and the
rider are in a rural scene on yellow grass, which is comfortable for the target animal.
Second, the rider is on top of the cow, which is one of the many expected configurations
between a human and the cow object. Third, more than half of the pixels of the human
rider are occluded behind the object, whereas they are fully visible on the left. Fourth,
both the human and the cow are dressed accordingly with their immediate interaction,
as is visible from the rodeo clothing of the human. Fifth, their shadows are visible from
the grass, as the interaction takes place in a typical day time. Lastly, the human and the
cow are surrounded by semantically similar objects and stuff: The by-stander, the car in
the background and the mountains in the far-away region.

object location is the scene context. The spatial configuration between the target object
and all the other objects is the compositional context. The type of the other objects is
co-occurrence context. The clothing of the objects is attire context. The time of the day
is the atmospheric context.

Interactions, just like context, are fundamental to the universe. The planets interact with
each other via gravitational waves to keep the solar system in balance. The atmosphere
interacts with the sun and the soil to regulate the temperature. Humans interact with
each other to create societal systems, even in times of social distancing. Human cells
interact with each other to generate immunity. Words interact with one another to
make up sentences, paragraphs and consequently novels. Where we are inspired by the
interactions in astronomical, biological, social and lingual entities, in this thesis we focus
on visual interactions.

Visual interactions exhibit themselves at different scales in an image. Given an image,
two pixels can interact with each other to generate edges, blobs or color changes to define
an object region. Such narrow-range interactions give rise to prominent techniques for
fundamental techniques of image filtering, such as smoothing or denoising [66, 146].
Object parts interact with each other to generate the holistic object view. Consider the
interaction between the legs, the head and the main body of the cow in Figure 1. Cow
legs are bent, the head points to the forward, and the body connects these two to afford
the interaction oh holding and supporting. Thirdly, objects can interact with each other,
such as the rider and the cow. This thesis studies visual interaction between human
subjects and arbitrary objects.

In this thesis, we represent a Human-Object interaction as a <verb, noun> pair,
such as ride-cow or eat-donut. Human interactors could be of any role, such as a rider, a

2



I N T RO D U C T I O N

player or holder. Object interactees could be of any type, such as an elephant, a cow, or
another human in case of social interaction.

Many times, various types of interactions co-occur with one another. For example, to
ride a cow, one needs to sit on, hold and straddle the cow. To hit a ball, one needs to hold
and swing the baseball bat. In this thesis, we employ these preferences of co-occurrence
to improve understanding of visual interactions.

Many verb-noun combinations contain only few examples in a typical dataset. There-
fore, Human-Object interactions exhibit a long-tailed distribution, where the majority of
interactions dominate the tail categories [70]. Consider, we type the keyword ”riding”
in a search engine. The result would yield lots of exemplars from riding-bicycle, or
riding-horse (well-represented). However, exemplars for riding-cow, or riding-elephant
could only be very few (under-represented) if any. This challenges modern learning
algorithms, as they begin to associate the target verb (riding) with the most popular nouns
(i.e. bicycle, horse) during training, therefore limiting the accuracy [70].

Human-Object interaction research has pre-dominantly focused on video sequences [16,
37, 125, 137, 138], as interactions are generally more obvious from a video sequence.
What moves together in a video will generally be subjected to a form of interaction (i.e.
a bicycle and the rider). In this thesis, we prefer to focus on visual interaction under-
standing from a single image. Single image interactions are abundant, as the majority
of images on the Web exhibits humans manipulating objects. Single image interaction
is easily picked up by humans but in the state of the art a considerable challenge to
machines, and by the absence of co-motion, arguably much harder than video. In the
absence of the crucial temporal information within a video, we resort to a contextualized
understanding of Human-Object interactions from an image.

Human-object interactions are contextual. Consider Figure 2. On the left, we compare
a cow rider with a by-stander within the same image. Even though they are lit by the same
illumination source, captured from a similar viewpoint, they exhibit drastic appearance
changes. All body joints of the by-stander are easily visible and non-occluded. The
by-stander stands in a canonical human pose. However, nearly the half the body parts
(i.e. legs) of the cow rider is occluded behind the cow. Her body is bend, and her legs
are straddling the object of interaction. In this thesis, we call such changes in contextual
appearance with respect to the target interaction ”the locality of visual interactions”.

In the middle, we compare the spatial configuration of the cow and the rider, and the
cow and the by-stander. Observe how the interaction of riding leads to drastic changes
within the spatial relationship of the human and the object. Humans configure their full
body as well as the body-parts to afford the target interaction. In this thesis, we call such
changes in contextual appearance with respect to the interaction ”the compositionality of
the visual interactions”.

On the right, we compare the bounding box pairs of the cow rider and the three other
objects within the same image: The cow, the human, and the truck within the background.
Even before arriving at an interaction decision, the computer needs to understand the
interactivity: Who is interacting with whom? In a typical scene, there are hundreds
of potential human-object pairs to consider before arriving at an interactivity decision.
However, amongst them, only few are in an interaction (i.e. rider and cow), whereas the
rest is background (i.e. rider and car). In this thesis, we call such phenomenon observed
in human-object interactions: ”The sparsity context”.

3



I N T RO D U C T I O N

vs

“Locality” “Compositionality”

vs

“Sparsity”

Figure 2: Three different contextual information leveraged within this thesis. (Left)
The locality context concerns the transformation of human body appearance w.r.t. the
interaction. Observe how cow-riding occludes half the human body in comparison to the
by-stander within the same image. (Middle) The composionality context concerns the
transformation of the human spatial configuration. (Right) The sparsity context concerns
the interactivity between a human interactor and an object.

Observing that human-object interactions exhibit rich source of contextual information,
this thesis studies the following central research question:

RQ: Can we understand the role of context in single image human-object interactions?

To understand the role of context, we first need to determine the sources of context in
visual interactions from a single image. To determine the source of context, we propose
to identify the visual extent of human-object interactions. Previous research on visual
extent focuses on the temporal extent of video actions [59,122,123]. The authors identify
the temporal borders of a video action, by inferring the start and end frames of the target
activity. In our work, we focus on single images, therefore lacking the crucial time
information. Therefore, we propose to identify the spatial borders of a human-object
interaction in a 2D image plane. Uijlings et al. studies the spatial extent of visual object
recognition [133]. The authors conclude that the surround of visual object region carries
the most discriminative information. Our work not only discriminates between different
objects, but also between different states of the same object from a single image, which
brings us to the following research question:

RQ1: How can we identify contextual cues in visual interactions?

We propose to understand the visual extent of human-object interactions through
the lens of Convolutional Networks [83]. We take a hierarchical approach, where we
start from a full image frame and approach to the vicinity of human-object region. We
gradually limit the amount of information visible to a pre-trained interaction classifier and
record discriminative regions that yield good classification accuracy. Our first conclusion
is that the locality of the visual interactions play an important role. The surround of
human-object regions carries the highest information for classification.

Furthermore, we observe that the visual extent of interactions is ambiguous, as there is
no fixed amount of context that performs best across all categories. This motivates us to
build models that can dynamically select, from a pool of local contextual representations,
discriminative context(s) to recognize the interaction. To that end, in the next chapter,
we ask the following research question:

RQ2: How does local context help in interaction recognition?

4



I N T RO D U C T I O N

To understand the role of local context in interaction recognition, we propose a locality-
aware context which can represent the locality of the surrounding scene, the locality
of human body pose configuration as well as its deformation. Since not all contextual
features are equally important, we propose a self-selective c ontext, a neural network that
can select contextual features conditioned on the joint appearance of human-objects as
well as the context. We note that the importance of contextual information is relative
to a given human-object, as small-scale human-object regions have higher contextual
dependencies. From the output of self-selection, we conclude that indeed interactions
have strong contextual preference for interaction recognition.

Dynamic selection of local context yields a dramatic improvement in recognition.
However, it neglects an important, fundamental contextual source in visual interactions:
The composition. Humans configure their body according to the spatial affordance of
the target interaction. To ride a cow, humans need to be on top, whereas to walk a cow,
humans need to be next to the cow. Spatial arrangement not only represents itself in
the full human body, but also in the human body part configurations, as we arrange our
fingers in accordance with the object to grasp. The unique compositional arrangement
between humans and objects provides a visual, much more descriptive way to search for
visual interactions from large image databases in comparison to traditional, text-based
image search. To leverage the compositional relationship between humans and objects,
the next chapter asks the following research question:

RQ3: How does compositional context help in interaction search?

This chapter proposes a method to enable interaction search via spatial context of
human-objects. Human users draw on a 2D canvas, the location as well as the category
of the objects of their interest, which we then use to search over large image databases.
Resulting images not only should satisfy the arrangement of human-object locations,
but also their semantics. To achieve this, we propose composition-aware learning, a
technique that leverages the symmetrical changes between input (query) and output
(visual feature) spaces. We observe that imposing such a constraint not only leads to
computational efficiency, but also to sample-space efficiency.

While searching for images via compositional queries, a limiting factor in retrieving
relevant images are the distractors. In a typical, unconstrained scene, there are potentially
tens of humans and objects passing by, if not hundreds, whereas only few of them are in a
form of interaction. This is the result of object co-occurrence in natural scenes. Where a
photographer focuses on a cyclist on a road, there could potentially be many pedestrians
or cars passing by. This challenges the computer to identify the interactivity between
humans and objects, even before arriving at the interaction decision. To determine the
interactivity, we take advantage of the sparsity context, that is, given an exhaustive
list of all human and object regions within an image, only a sparse subset will exhibit
interaction patterns, in terms of composition and appearance. By forcing the learner to
focus on these sparse subsets, we can naturally learn to identify the real human-object
interactors, neglecting the rest. To leverage the sparsity of human-object interactivity, the
next chapter asks the following research question:

RQ4: How does sparsity context help in interaction detection?

5



I N T RO D U C T I O N

This chapter proposes a method to detect human-object interactors from an image. In
doing so, we only rely on weak, image-level supervision, as opposed to popular, strong
instance-level supervision. In the absence of strong supervision, we force the network to
find a sparse subset of human-object interactors that can classify the interaction within
the image. Enforcing such a sparsity constraint guides the detector to select correct
targets for supervision, while eliminating the distractor noise.

1.1 O R I G I N S

This thesis is based on the following publications:

• Chapter 2 is based on ”Where is the Context of Interaction? An Empirical Study”.
Under submission to CVPR Workshop on Visual Learning from Limited Labels,
2022, by Mert Kilickaya, Efstratios Gavves and Arnold Smeulders [73].

Contribution of authors

Mert Kilickaya: All aspects,
Efstratios Gavves: Insight,
Arnold Smeulders: Supervision and insight.

• Chapter 3 is based on ”Self-Selective Context for Interaction Recognition”. In:
International Conference on Pattern Recognition (ICPR), 2021, by Mert Kilickaya,
Noureldien Hussein, Efstratios Gavves and Arnold Smeulders [69].

Contribution of authors

Mert Kilickaya: All aspects,
Noureldien Hussein: Writing and experiments,
Efstratios Gavves: Insight,
Arnold Smeulders: Supervision and insight.

• Chapter 4 is based on ”Structured Visual Search via Composition-aware Learn-
ing”. In: IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 2021, by Mert Kilickaya and Arnold Smeulders [72].

Contribution of authors

Mert Kilickaya: All aspects,
Arnold Smeulders: Supervision and insight.

• Chapter 5 is based on ”Human-Object Interaction Detection without Alignment
Supervision”. In: British Machine Vision Conference, 2021, by Mert Kilickaya
and Arnold Smeulders [71].

Contribution of authors

Mert Kilickaya: All aspects,
Arnold Smeulders: Supervision and insight.

6



2

W H E R E I S T H E I N T E R AC T I O N C O N T E X T ? A N E M P I R I C A L
S T U DY

2.1 I N T RO D U C T I O N

In a story, many sentences relate the interaction of a subject with an object. Whether it
is talking to a friend, walking the dog or cooking potatoes, interactions of subject and
object are the basic ingredient of the story.

Also in pictures, interaction steals the focus of attention [13]. When the picture
contains a prominent subject and a salient object, the attention is drawn to their interaction.
Even the absence of interaction is noted immediately. The subject acts upon an object for
a purpose; to feed, to amuse or to achieve: eating an apple, riding a bicycle, or stuccoing
a wall. Recognition of interaction holds the key to the purpose in an image.

Interaction recognition is not limited to the subject and the corresponding object. Their
joint appearance in an image does not guarantee interaction. Contact between subject
and object usually matters but not necessarily. Also context matters in most interactions.
These elements of composition may aid in the recognition. Riding a horse is limited to
a specific contact of the subject with the horse and usually restricted to the number of
preferred surroundings, see Figure 3. Where interaction is important, its recognition does
not yet match the performance of person or object recognition since [77]. In spite of
good progress, the performance on HICO [18], the biggest benchmark of interactions,
has been limited in recent years.

Current research does not subscribe to the same definition of interaction. Especially
the definition of the localization varies significantly: some researchers focus solely on the
subject-object appearance [30, 34, 42, 94], whereas others follow a hybrid strategy where
the goal is to combine contextual information like the surround scene [95] or surround
objects [46] with subject and object information. Given this, in this paper, we ask: Where
is the interaction? We identify two main problems in answering this question. First, do
we need context for classification of interactions? Second, to what extent subject-object
regions contribute to the recognition?

We study the “where” of an interaction by analyzing the spatial extent of human-object
interaction from a single image. Our work operates in three steps. We first discern six
main regions illustrated in Figure 3: the subject box, the object box, the box of the
subject-object intersection which we refer to as “contact”, the subject-object union, the
context region which is the complement of the union to the whole image, and finally the
whole image itself. Then in the first step, we study which of these six regions is best
in learning to recognize interactions. Given this, we then ask whether a latent context
region exists within the image that yields better interaction classification. Lastly, we
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Subject Object Contact Union Context Full image

Figure 3: It is easy to pinpoint the participants of the interaction: the subject (equestrian),
the object (the horse), their intersection (contact), their union, or region between the
union and the full image (context). It is hard, however, to pinpoint the interaction itself.
Where is the visual evidence for riding a horse?

analyze the impact of the small, specific details within the latent context for interaction
recognition.

The results of this paper demonstrate that i) in general context carries important
information for interaction recognition, therefore one needs the full image to learn
to recognize interactions. However, ii) full context is not needed in recognizing the
interactions, as we will show that there exists a latent context within the union region
and the full image that occupies 75% of the image, and yields a significant increase of
up to 20 mean Average Precision (mAP) points once localized by an oracle procedure.
Lastly, iii) we observe that within this latent context visual details have a major impact:
blocking small regional details within the latent context can reduce the recognition rates
by up to 30 mAP points.

We make the following contributions: i) we study the visual extent of human-object
interactions from single image and determine the best source to learn about interactions,
ii) we identify by oracle the best possible amount of context for interaction recognition
and its properties among different interaction classes, iii) we determine the importance
of visual details within this context. In conclusion, we show that localization per
image is indeed critical for interaction recognition, and leaves substantial room for
improvement. In addition, we find that localization can not be the only solution for
interaction recognition. We pay a special attention to the results of ” no interaction”,
since to perform ” no interaction” is a real test whether the interaction is recognized or
just the coincidence of a subject with an object.

2.2 R E L AT E D W O R K

Spatial extent of an object. The spatial extent of an object from a single image studies
what parts carry the information for object recognition [82, 133]. It has been studied in
the context of Bag-of-Words representations by [133], where it is determined among 20
PASCAL VOC categories [33]. The interior and the close surround of the object bounding
box are found to be most discriminating. Later, this work has been extended in [82] to
Fisher [120] and Convolutional Neural Networks (CNN) [77, 83] representations. The
context in these modern representations is found to be less important for recognition,
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thanks to the better localization capabilities. Inspired by these studies, we focus on the
visual extent of interactions.
Action recognition. Action recognition is an extensively studied problem in computer
vision, especially from videos [16,125,137], and also from single images [8,94,119,147].
This work focuses on single images. Single image action recognition mostly focuses on
identifying only verbs from an image, such as running, cooking, eating or sitting [8, 94].
Studies in [119,147] deviate from verb-only and also include phrases, like riding a bicycle.
Visual-Phrases [119] consider non-human subjects, including spatial-only relationships,
providing a limited set of interactions (32 in total). Stanford-40 [147] has 40 verb-only
and verb+noun image actions. Although 6 of the verb+noun image actions are common
with the HICO dataset [18] we consider in this study, the majority of the classes are
verb-only. We, therefore, focus on [18] which features a great range of 600 possible
interactions between 80 different object nouns and 117 different verbs.
Interaction recognition from a single image. The goal of the interaction recognition is
to describe the relationship between a subject and an object. In [18] the relationship is
defined as a set of <verb,noun> pairs, such as <ride,horse> or <eat,cake>,
between a human subject and an arbitrary object from the list of MSCOCO objects [89].
In this paper, we follow the definition as well as the dataset and annotations provided
in [17, 18]. Looking closer to interactions, we identify two important sources of infor-
mation from the references, namely the context of the interaction, and the union of the
interaction.

First, we consider the context. The importance of context for interaction recognition
has been well recognized in [46, 51, 60, 95, 97, 110]. The various forms of contextual
information fed into the interaction classifier include the pose context [51, 110], the
human-object spatial context [51], context of the surround object [46, 60], or context
of the surround scene around the subject and the object [60, 95, 97]. [95] obtained a
significant improvement over the base model of [46] by considering the surround across
the subject for interaction recognition. To this end we limit our focus to the surround
context and study whether we need context for interaction recognition.

Second, we consider the union of subject body and object body [30, 34, 42, 94]. In
their paper on Poselets [94], the authors suggest that for interaction recognition full
body is not needed, some discriminative parts would suffice. They localize small,
discriminating body parts of subject-object via discriminative clustering of gradient
histograms [28]. In an extension of this work by Phraselets in [30] the joint appearance
of distinct body parts is considered: hands holding a handlebar while legs push a pedal
to identify cycling. An important contribution in this work is the explicit consideration
of the intersection of subject and object, namely the contact region. The focus on body
parts by themselves has been extended to CNN by [42], and later by [34]. Attentional-
Pooling [42] localizes body parts via an attention mechanism for interaction recognition.
Pairwise-Attention [34] focuses on finding two-parts of the body. Body-part localization
for interaction is fundamentally difficult because it is unknown what to localize before
knowing the interaction. And, as we will demonstrate, context is too important for
interaction recognition to leave out. In this work, we quantify the relative importance
of the subject-object union for interaction recognition in comparison to context, and
determine which region(s) carry the most discriminative information for interaction
recognition.

9



W H E R E I S T H E I N T E R AC T I O N C O N T E X T ? A N E M P I R I C A L S T U DY

Localizing visual evidence via occlusion sensitivity. In this work, our base classifier
is a vanilla CNN [55] to study the visual extent of human-object interactions. Whereas
different methods exist [7], we rely on occlusion sensitivity [109, 117, 149] to find
important regions within the image that support the classifier decision. Occlusion
sensitivity is first proposed in [149] where the authors slide a square box of a certain size
over the image, zeroing-out regions one-by-one, to measure the influence of each region
on the performance of a CNN.

In our work we re-purpose occlusion sensitivity as follows. We first progressively limit
the amount of the context pixels seen by the classifier to determine the amount of context
that yields the best performance. Then, we further remove sub-region(s) within this
limited context one-by-one to determine which parts actually contribute to the accuracy.
Similar to [117, 149], we use bounding boxes [134] and superpixels [5] as the form of
occlusion.

2.3 M E T H O D

An interaction tuple <subject, interaction verb, object> has a direct
relation to two bounding boxes in the image: the subject bounding box and the object
bounding box.

Based on the locations between the two boxes, we identify the following 6 basic
regions, illustrated in Figure 3: the subject box; the object box; the contact box; the
union of the subject and the object boxes; the context, and finally full image.

In an image, one or more of the 6 regions may be void. Specifically, when there is no
physical contact between the subject and object (i.e. subject inspecting object from a
distance), the contact region will be empty. We refer to the 6 regions as the observable
visual extent. The actual interaction region is unknown, and referred to as the latent
visual context of the interaction. The goal of this work is to reveal the latent visual extent
of interactions.

This brings research question 1: Which of the six basic observable box regions can
better discriminate between the interaction classes?

The experiments on RQ1 will give a general impression on the localization of an
interaction. In the second part, we investigate whether there is a dependency between the
context and the interactions on a class basis and image basis.

In the second experiment, the question is: Per class and per image what latent region
yields the best performance?

Third, while a good latent interaction context may lead to accurate interaction classifi-
cation, can it be further improved by looking at the details? Hence, the third research
question is: In recognizing the interaction are local details particularly important? In
the next section, we concretely describe how each research question is implemented.
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2.4 E M P I R I C A L M E T H O D

2.4.1 System

Data. For training and testing we rely on the HICO [18] dataset. HICO contains a total of
50k single images of human subjects interacting with objects. The dataset is splitted into
40k training images and 10k testing images. The interaction categories are not mutually
exclusive. A subject can conduct multiple simultaneous interactions. An image may
be annotated as “sitting on a bicycle” and simultaneously as “riding a bicycle”, as long
as both are valid and contained in the set of interaction verbs. In total, there are 600
different pairs of tuple interactions of the form <subject, interaction verb,
object noun>, built from 117 verbs and 80 nouns. In HICO, the distribution of
examples is heavily imbalanced. While 167 interaction tuples in the learning set have
more than 100 examples, 155 interaction tuples in the learning set contain less than
10 examples. We consider this property of the dataset a realistic asset as the free
choice of verbs and nouns from a large pool will often contain rare combinations. And,
combinations which are rare will often hold interesting phrases. As a consequence, we
have adapted the evaluation metric from [18] that Average Precision is weighed per
image rather than per class.
Annotations. HICO [18] is recently augmented with bounding box annotations by [17].
For HICO interactions, annotators are being asked to draw a bounding box around the
subject and object for each interaction pair in the image. Apart from multiple interactions,
also group interactions, where multiple subjects interact with the same object are allowed.
For example, a group of people having dinner together at a table. We use 20k subject-
object bounding box annotations, single or multiple, from 10k test images. Similarly, we
gather 70k subject-object bounding box annotations from 40k training images.
Model for interaction classification. In all the experiments, we use a ResNet-50 [55]
model pre-trained on ImageNet [29] and fine-tuned to discriminate between the 600
<subject, interaction verb, object> tuples in HICO, see Figure 4. Fol-
lowing [95], the model is optimized via ADAM [76] with a batch size of 4 for 60k
iterations. We use a learning rate of 0.001 decaying to half after 30k iterations. The
model is implemented in Tensorflow [4].

To verify the model independence, we have repeated the experiments also with a VGG-
architecture [124]. The results were consistent with the Resnet-50 results. So in this
paper, we only provide results with Resnet-50 [55], and refer the reader to Supplementary
material for VGG-based replications of the experiments.

<ride, horse>

<hold, horse>

<sit, horse>

<wash, horse>

Figure 4: We rely on a ResNet-50 [55] CNN, pre-trained on Imagenet [29] and fine-tuned
on HICO [18] to discriminate among 600 interaction categories. Full image model is
shown.

11



W H E R E I S T H E I N T E R AC T I O N C O N T E X T ? A N E M P I R I C A L S T U DY

Evaluation measure. We evaluate the various models in our experiments by computing
mean Average Precision over images. Due to the long tail distribution of interaction
tuples, many classes in the learning phase have fewer than 10 elements. We obtain
the score by adding the score per image and then averaging over all images. We note
that the result will be rather different from evaluating per class as was done in [18],
which gives an unbalanced view of the many classes which are rarely occupied. We
find image-based average a better fit for this paper since most of the analysis focuses on
conducting experiments on a per image basis.

2.4.2 Implementation

Research Question 1. For research question 1, we train classifiers f , each trained on
one of 6 different basic observable regions according to Figure 3, where we zero-out the
rest of the image apart from the region in consideration. We compare the recognition
accuracy on the interaction classes. Note that the 6 regions tend to have different sizes.
The contact region is by definition (much) smaller than the other areas. The image
regions are not re-sized to avoid any distortions due to aspect ratio change, especially
with small regions.
Research Question 2. To answer research question 2 we need an oracle that provides
the best latent region of interaction. As the number of possible regions in an image
is practically infinite, we opt for the following approach. Given an image I of size
[H, W, 3], initial mask is given as the subject-object-union region mask, that is m0
m0 ≡ rh−o−u = bh ∪ bo, where bh is the subject box in that image and bo the object box.
At every new step t the mask is shrunk or expanded by the mathematical morphological
operations of erosion and dilation respectively, until the empty set or the complete set
is reached. In total, we obtain about 350 masks per image. The classifier then receives
as input the pixels within the current mask, f (mt ⊙ I) where ⊙ is the element-wise
multiplication. The best performing mask m∗ for the true class, as determined by the
oracle, is returned as the latent context of interaction.
Research Question 3. For the third research question we focus on local visual details.
Specifically, we examine the positive or negative impact of local visual details contained
in the latent context m∗ resulting from question 2. To answer this question we devise a
removal procedure.

Specifically, we divide the latent context into sub-regions d j, j = 1, ..., J, removing
one of them at a time. This results in masks m′ = m∗ − d j, j = 1, ..., J which we pass
through the classifier as f (m′ ⊙ I). Then, we evaluate the Average Precision obtained by
removing each sub-region. As for the choice of sub-regions, we opt for selective search
boxes [134] or superpixels [5, 36].
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2.5 E X P E R I M E N T S

2.6 E VA L UAT I O N

2.6.1 Exp 1: How do the 6 basic observable regions discriminate?

Context matters

In the first experiment, we start from the 6 basic observable regions, to determine the
best suited region for interaction recognition. We present the results in Table 1.

Subject Object Contact Union Context Full image

AP .42 .36 .27 .42 .30 .55

Table 1: Discrimination of 6 different regions for recognition.

Among these 6 basic observable regions, the full image returns the best accuracy
over all images in the dataset. This shows that the context of an interaction captured
by the surroundings is indeed relevant. The context may help discriminating between
similar interactions, with different context preference. A <ride, horse> interaction
happens in a “jockey club” context, whereas a <ride, bicycle> is unexpected.

The results on the full image demonstrate the capacity of CNN’s to perform soft detec-
tion implicitly [47, 153]. As an interaction does not have a clearly-defined, observable
visual extent, it is preferable to give the full image as input to the classifier and let the
model decide which image region is important.

The second highest accuracy - at a substantial margin - is obtained when using the
subject box or the union box. The subject box is easy to detect with the modern object
detectors [116], and per image it apparently contains sufficient context of the interaction
to arrive at a substantial classification score. For illustration in Figure 3, the dressing
suffices to understand that the subject is riding a horse. Conversely, when looking at the
object box in Figure 3, the foot also implies someone riding that horse, but on average
the subject box is preferred. In conclusion, context matters as the full image leads to the
highest accuracy followed by the subject box at a wide margin.

Half of the full image suffices

As from Table 1 it was concluded that context is important for interaction, we investigate
to what degree the rest of the image is needed for recognition. By shrinking or expanding
the subject-object union box as described in Section 2.4.2, we obtain tighter and larger
versions of the interaction regions. In Figure 5, we plot the recognition accuracy as
a function of the extent of the interaction region used in the classification. Using an
increasingly larger portion of the image, right of the black line in the Figure, eventually
yields 55%, which was expected from Table 1. The blue line for the classifier, trained on
the subject - object union box alone, shows a substantially lower performance, declining
when more context is included. The red line for the classifier, trained on the context
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Figure 5: Performance of the three different models averaged over all dataset. Half of
the image suffices in recognition for the full image model.

alone, is increasing when more of the image is included but never comes close to either
the full image or union box performances.

It is concluded that half of the image suffices for good performance when a good part
of the context is included as well.

As the full image classifier is the best and the most complete one, from now on we
analyze the results of that classifier.

2.6.2 Exp 2: Per class and per image what region yields the best discrimination?

Given the importance of context, next we examine whether it is class specific. To this
end, we shrink and expand the object and subject regions as before, and classify the
region with the full image classifier. We present the per class accuracy as a function of
the region extent in Figure 6 for selected example classes and include the same plots for
all classes in the Supplementary material. We observe three types of distributions, that
are positive, indifferent and negative to context.

1 out of 10 classes are positive to context

The top row in Figure 6 shows a gradual increase in performance when more of the
context is taken into account. In 1 out of 10 interaction classes, the interacted object
typically co-occurs with many identical objects, like picking an apple from an apple tree,
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Figure 6: Performance of full image model averaged per class. 15 interactions are shown.
We note three different trends in performance with context, namely positive to context
(top row), indifferent to context (middle row) and negative to context (bottom row). Axes
are the same as top-left. The blue dashed line indicates the average union size.

preparing hot dog in a restaurant kitchen, herding a group of sheep, or directing a group
of airplane.

8 out of 10 classes are indifferent to context

The middle row in Figure 6 shows the dominant type of distribution, for 8 out of 10
classes indifferent to context. Classes featuring this distribution are sports interactions
leading to unique subject-object deformations, such as “horse jumping” or “riding skis”.
In conclusion, the vast majority of cases, knowledge of the class does not help in
determining the proper context for interaction classification.

1 out of 10 classes are negative to context

The third row in Figure 6, however, illustrates the 1 out of 10 classes where the context
has a negative effect on the recognition of the interaction. This is especially the case
for the important class of “no interaction”. Obviously, the more context is provided to
the classifier, the higher the chances are that an arbitrary interaction will be picked up.
Therefore, the important class of ”no-interaction” profits from proper framing in the
context.

Per image context is important

If the context is not important per class, is it important per image? When accumulating
the average accuracy to the proper interaction class or classes per image, given an oracle
definition of subject and object regions fed into the full image classifier, we arrive at an
overall performance of 74% mAP, by using 75% of all image pixels. This is the upper
bound what can be achieved when the best latent context is perfectly known.

Next, we analyze which images and interaction categories benefit from the oracle
context in Table 2. We identify two mutually non-exclusive groups of interaction images
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Figure 7: The area of the best context per class (x-axis) against the classification accuracy
(y-axis). Colours indicate a grouping of interactions by object super-category [89]. The
Figure shows that the classification accuracy does not depend on the type or the size.

Size Population
Small Large Under-pop. Well-pop.

Dataset ratio .29 .71 .11 .89
Full image .32 .56 .34 .58

Best latent context .46 .75 .47 .78

Table 2: The statistics of the improvement. Best latent context is helpful in cases when
the union region is small or large, or when the interaction class is rare or frequent.

relevant to this question, in terms of i) population in the dataset (well-populated if
containing more than 10 training instances, under-populated otherwise), ii) or pixel
size of the union (small if occupying less than 10% of the image, large otherwise). We
compare the results with the case of the full image. We also note the ratio of each group
in the test set above.

First, we observe that the best latent context is useful not only for the well-populated
but also for the under-populated classes. That being said, well-populated classes benefit
more, as the classifier is able to generalize better. There is still a 31% gap observed be-
tween these two groupings. Moreover, it is clear that small-size and large-size interactions
benefit equally from the best latent context.

Second, even with the upper bound performance obtained by the best latent context
there is still 26% gap till reaching the 100% accuracy. We observe that many of the still
unrecognized classes either belong to “no interaction” or to the group of under-populated
classes.
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Slic [5] Felzenswalb [36] Selective Search [134]
Small Mid. Large All Small Mid. Large All Small Mid. Large All

Max. increase .78 .67 .73 .79 .78 .69 .67 .78 .78 .75 .67 .79
Max. decrease .42 .51 .40 .29 .48 .47 .04 .04 .33 .25 .04 .04

Table 3: Visual details matter. We group sub-region(s) according to their pixel size as
either small (< 5%) , mid-size (> 5% & < 10%) or large (> 10%) of the whole image.
Removing even a small region yields an increase or a decrease in the accuracy.

<ride, motorcycle>

<ride, horse>

<throw, frisbee> <hold, donut>

Figure 8: Details matter for interaction recognition. Green box is Selective search
box [134] that leads to the maximum decrease when removed from the best latent context.
See how body parts such as legs of the subject (frisbee players) or object (horse) are
used in recognition.

We provide qualitative examples of best latent context obtained by the oracle results
in Figure 9. These are example images where the preferred best latent context is rather
small, as the best accuracy is obtained around the union region. See how the best latent
context is helpful especially in cases when the union region is small (e.g., group activities
like races), and also in cases when the background includes distracting objects (e.g., for
hand-object interactions in the second row).

We confirm and conclude that the best latent context can only be discovered on a per
image basis. What is more, factors like the class frequency of the interaction as well the
size of the interaction are important for deciding the best latent context.

2.6.3 Exp 3: Are Details Important Within The Best Latent Context?

Visual details matter

In the previous experiments, we showed that there is a best latent context, with an oracle
procedure provided to us using morphological operations. We also found that the best
latent context makes sense only on a per image basis. It is unclear, however, whether
the best latent context is determined in the entirety of the region, or specific local details
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<carry, backpack> <ride, bicycle> <ride, horse>

<cut with, knife> <drink with, cup> <eat, pizza>

Figure 9: Results of the best latent context per image on some test cases. Latent context
is highlighted whereas rest of the image is semi-transparent. Even though context is
shown to be highly beneficial for recognition, these examples prefer the vicinity of the
union. When i) union region occupies a small region (<carry, backpack>, or group
activities like <ride,bicycle> or <ride,horse>) or ii) when hand is active in
interaction ( <cut with, knife>, <drink with, cup> or <eat, pizza>)
latent context focuses around the union.

influence the best latent context considerably. To test this in this part we remove selective
search [134] or superpixel sub-regions [5, 36] according to the procedure described in
Section 2.4.2. We present results in Table 3. We provide both the maximum increase or
the maximum decrease attained once a sub-region is removed. We group sub-region(s)
according to their pixel size as either small (< 5%) , mid-size (> 5% & < 10%) or large
(> 10%) of all pixels in the full image. The reference accuracy is the best latent context
performance of 0.74% mAP.

We observe that even removing a small region leads to a slight improvement of 4%
from the reference mAP of 0.74%. These visual details correspond to negative evidence
for the target interaction categories within the best latent context region: once this
negative evidence is removed, we obtain better recognition. While removing negative
evidence has a small but noticeable effect to the final recognition accuracy, the impact
of removing positive evidence local details is much larger. When focusing on the small
sub-regions only, we observe a drop in accuracy in the range of 20%− 40% depending on
the type of sub-region. We observe similar drops also for middle and large sub-regions.
This indicates that specific, local visual details serve as crucial positive evidence for
recognizing interactions. Once these are removed, the recognition is seriously impaired.
We visualize some of these sub-regions in Figure 8. See how the classifier relies on the
legs, a small portion of the torso or the hands to recognize the interaction.

We conclude that the selection of the visual details within the best latent context helps
further interaction recognition.

Visual details prefer contact region

While the previous experiment showed that small visual details have a noticeable effect
on the best latent context, it is not clear whether these visual details have a location
preference. Thus, we examine whether the visual details leading to an increase or
decrease in the recognition of interactions usually lie within one of the 6 observable
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regions defined in Figure 3. We take the average over all sub-region(s) that overlaps with
one of the 6 observable regions that we consider in this work. The results are presented
in Table 4.

Subject Object Contact Union Context Full image

Size .15 .17 .04 .28 .47 1.00
AP .31 .30 .32 .33 .11 .74

Table 4: Visual detail location preference. Contact region, despite being 4% of the image,
is highly discriminative among the observable regions.

We note that contact region, despite only occupying 4% of the image, is better among
the observable regions. This is also visible from Figure 8, where the contact region
between the subject and object during riding or holding interactions is highly discrimina-
tive. Lastly, even though the context is a necessary part of the recognition, as shown in
previous experiments, the union region carries more information about the interaction.

We conclude that visual details prefer different parts of the image, with a special focus
on the contact region.

2.7 C O N C L U S I O N

In this paper we study the visual extent of human-object interactions. We show that there
is a potential gain in considering an expanded union box up to the half of the image, as
can be seen from Figure 5. This simple finding can benefit many interaction recognition
models, especially the ones that focus mostly on body-part localization [30, 34, 42, 94].
This also shows that the full image is not needed for most of the interaction classes.

Indeed, only 10% of classes keep increasing in performance until the full image,
evident from Figure 6. These are interactions where the interacted object co-occurs
within the image like <pick, apple> <herd, sheep>. In the rest of the cases
context is either negative (10% of the classes) or indifferent (80% of the classes). The
context is negative when there is ”no-interaction” between subject-object. 80% of cases
are indifferent to context, where picking half of the image suffices. This three-way
categorization of interaction classes indicates that interactions should not be treated
equally. We show that there is a potential gain by finding the best latent context per-
image in an oracle fashion, an improvement even for hard cases like small-size or
under-populated interactions, as can be seen from Table 2. These results are motivating
for [95] which considers the full context for all images for recognition to arrive at a
higher accuracy than the base model of [46]. It shows that there is even a bigger potential
gain for this model by determining the amount of context depending on the interaction
class or more importantly depending on the image. Lastly, we show that interaction
recognition is sensitive to small details that, once they are invisible, the recognition is
altered. These regions generally lie within the contact region, where the subject-object
touches each other.

We conclude that the localization pays off well for interaction recognition, leaving a
room for substantial improvement.
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3

S E L F - S E L E C T I V E C O N T E X T F O R I N T E R AC T I O N
R E C O G N I T I O N

3.1 I N T RO D U C T I O N

The goal of this paper is to recognize Human-object interactions from a single image.
Human-object interaction recognition is an important problem with applications in areas
such as robotics [31, 81, 148], image captioning [56] or visual question answering [95].
The task is to identify the relationship between a human and an object in terms of a
<verb, noun> pair, such as <ride, bicycle>. Since the type of interaction is
highly correlated with the scene (i.e. riding bicycle on the city street), researchers tackle
this problem via integrating scene into the deep Convolutional Neural Networks.

Initially, Gkioxari et al. [45] augments human appearance with the global scene in
a late-fusion manner by combining human and scene classifiers. However, late-fusion
cannot model the correlation between the human and the scene. To that end, Mallya and
Lazebnik [95] combines human appearance with the global scene early in the network
layers, leading to a significant increase in the performance. Later, Fang et al. [34]
improves this model by further augmenting early-fused global scene appearance with the
scene objects.

We identify the following problems with this approach. First, incorporating scene
early in the network layers increases network parameters, limiting the efficiency. Second,
changes in the scene appearance (i.e. a clutter object) yields noisy filter responses,
limiting the accuracy. Third, Human-object interactions offer a multitude of contexts
beyond the global scene, see Figure 24, which is yet to be explored.

In this work, we propose Self-Selective Context (SSC) to circumvent the aforemen-
tioned problems. SSC learns to select the discriminative context(s) conditioned on the
input image. It considers the joint appearance of human-object and context to decide
which context feature(s) are discriminative. To take advantage of the multitude of con-
textual features offered by human-object interactions, we also devise contextual features
that model the locality of the interactions. Our experiments on three large-scale bench-
marks reveal that indeed the proposed contextual features are discriminative, and SSC
can further boost the performance by selecting the discriminative feature in a scalable
fashion.

Our contributions are as follows:

1. We propose novel contextual features to represent the locality of humans, objects,
scene, and human-objects.
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Figure 10: Human-object interactions come with many contexts that can help in recogni-
tion. In the example above, utilizing the body-parts, the deformation, and the surround
scene can ease the recognition of <ride, bicycle>. However, background objects
like the boats can mislead the recogniton. In this paper, we first develop novel contextual
features, as well as a context selection scheme Self-Selective Context to rely only on the
most discriminative contexts.

2. We propose Self-Selective Context to selectively utilize the discriminative context
depending on the input image.

3. On three benchmarks for interaction recognition, SSC, combined with our novel
contextual features, improves baseline models while being three times more
parameter-efficient.

3.2 R E L AT E D W O R K

3.2.1 Human-object interaction recognition

Recently there has been good progress on interaction detection [17] which requires
bounding box annotations for each interaction in the image. In our work, we instead
focus on interaction recognition, which is an image-level classification task since many
images exhibit humans manipulating objects.

Human-object interaction recognition is defined as single image multi-label classifica-
tion task in [18]. The authors collect a large-scale dataset named HICO with multiple
image-level annotations for concurrent interactions, such as <ride, bicycle> and
<hold, bicycle>. In our paper, we resort to the definition of HICO for interaction
recognition. HICO allows researchers to train deep CNNs where they combine human
and global scene context [34, 45, 95] to classify the interaction.

HICO dataset is collected by <verb, noun> queries-only, therefore the contextual
diversity is limited (i.e. most interactions occur in their canonical contexts). This
prevents seeing the models generalization abilities across different environments of

22



3.3 M E T H O D

the same interaction. To tackle this, in our paper we collect a new dataset we name
Contextualized Interactions (CINT) which exhibits interactions within diverse contexts.
In addition, we develop novel context features to leverage the locality of the human-
object interactions. The locality is more robust to changes in the visual context, as we
demonstrate through our experiments on HICO [18], V-COCO [52], and CINT.

3.2.2 Combining multiple contexts in action recognition

Multiple cues are helpful in action recognition, where the dominant approaches are
fusion [67, 107, 126]. Such approaches can handle single context, however, they fall
short in case of multiple contexts. Early fusion scales quadratically with the number of
fused contexts. Late fusion does not leverage the correlation of human-object feature
and context feature. To that end, in our work, as inspired by the Self-attention [135],
we develop Self-Selective Context. SSC scales sub-linearly with the number of fused
contexts. And it leverages the correlation of human-object and context.

a) Self-Selection module b) Gating module

Figure 11: Overview of our method. On the left, the Self-Selection module. It takes as
an input the features Xho of N human-object pairs in a certain image, and M context
features Xc corresponding to the image. Then, it modulates the context features Xc using
a novel Gating module G(·). The final image-level features are then feed-forwarded to
the classifier C(·) to predict the human-object interactions in the image. On the right, the
Gating module G(·), inspired by the Self-attention [135]. The main purpose of G(·) is
to embed the heterogeneous context features Xc into a compact representation Zc. G(·)
predicts the vectors α used for Self-Selection of the embedded context features Zc.

3.3 M E T H O D

3.3.1 Overview

The goal of this paper is to map an input image to the correct interaction class I → Y .
If the image contains one pair of human and object, we can represent this pair as
the feature xho using off-the-shelf CNN [124]. Then, using a classifier C(·), one can
predict the probability scores of interaction classes Y . However, this paper argues that
recognizing the interaction based on only the the human-object feature xho is sub-optimal.
It is preferred to complement xho with more prior representations. Several sources of
contexts are the perfect choices for such prior representations. As such, this paper
contributes to the following. 1) We define new sources of contexts, along with their
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feature representations Xc, see section 3.3.5. 2) We propose a new method, Self-Selection
Context (SSC) that learns how to complement the human-object feature xho with the
corresponding context features Xc, see section 3.3.2.

3.3.2 Self-Selection Context

Given an input image I comprising a set of N human-object pairs. Each pair possibly
describes the interaction in such an image. These N pairs are represented as features
Xho = {x j

ho}
N
j=1 using off-the-shelf human-object extractor fho(·). In addition, we are

given a set of M sources of contexts, corresponding to the input image I. These contexts
can be represented as features Xc = {xi

c}
M
i=1. Each context feature xi

c is obtained from a
different off-the-shelf context extractor f i

c(·). All of our feature extractors [ fho(·), f i
c(·)]

build upon the same CNN [124] for a fair comparison. Hereafter, the global layer is used
to refer to the last fully convolutional layer conv5 3 of the CNN.

The goal of SSC, see Figure 11b, is to complement each human-object feature x j
ho

with the corresponding context features Xc. That is why the core of the SSC is a novel
Gating module G(·), see Figure 11a. G(·) serves two purposes. First, as the context
features are heterogeneous, comes from different extractors, and have different feature
dimensions, G(·) embeds Xc into a compact features Zc with a unified feature dimension.
Second, it predicts the gating vectors ff = {α j}Nj=1, where α j ∈ RM is the gating vector
corresponding to the j-th human-object feature and all the M context features Xc. After
the Gating module, SSC complement each human-object features x j

ho with multitude of
corresponding context features Zho in an adaptive manner:

x j = cat

x j
ho ,

M∑
i=1

αi j ∗ zi
c

 , (3.1)

where cat(·) is the concatenation operation along the feature dimension. The output
interaction feature x j is feed-forwarded to a Multi-Layer Perception (MLP) C(·) for
interaction classification.

3.3.3 Gating Module

The main goal of the Gating module is to select (i.e. gate) the most relevant context
sources for each human-object pair G(·). This gating helps in recognizing human
interaction by incorporating the prior knowledge in such contexts. Tthe gating mechanism
G(·) is conditioned on the human-object xi

ho and it contexts Xc, jointly.
The Gating module G(·) takes as an input the set of N human-object features Xho =
{x j

ho}
N
j=1. Also, G(·) takes the set of M context features Xc = {xi

c}
M
i=1. These features

Xc are heterogeneous, each xi
c is obtained from a different context extractor f i

c(·) with
a different space dimension. Thus, the first step is to embed each xi

c into a common
dimension using linear mapping gi

ψ(·). The outcome is the embedded context features
Zc = {zi

c}
M
i=1. Then, we need to measure the correlation between the human-object

features Xho and their corresponding context features Xc. But since both Xho and Xc
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have different space dimensions, we use two linear embeddings gθ(·) and gϕ(·) to map
Xho and Xc, respectively, into two spaces with common dimension C′,

Q = gθ(Xho) (3.2)

K = gϕ(Xc). (3.3)

The outcome is the features Q ∈ RN×C′ and K ∈ RM×C′ , respectively. Then, we measure
the pairwise correlation between the N human-object pairs Q and M contexts K using an
inner product

α = softmax (Q ⊙K⊤) , (3.4)

where α ∈ RN×M,ff = {α j}Nj=1 are the gating vectors. Each gating vector α j ∈ RM

represents how the j-th human-object pair correlated with all the M contexts. Notice that
α is activated with softmax along with the M contexts as a way of normalization. The
next step is to use the gating vector α j to pool the embedded context features Zc into the
final context feature x′c ∈ RC′ . x′c is calculated as the inner product ⊙ between α and Zc

x′c = α⊤ ⊙Zc. (3.5)

To obtain the final interaction feature x j, both the human-object feature x j
ho and its

corresponding pooled context feature x′c are concatenated along the feature dimension as
shown in Equation 3.1. This feature x j is feed-forwarded to the classifier C(·) to obtain
the probability scores Y = C(x j) of classifying the interaction represented by input
human-object pair x j

ho.

Classifying interaction. So far we have described how to combine human-object
feature x j

ho with context features Xc. An image potentially has multiple human-objects
(N = 12 in our case), and it is not known which human-object pair is conducting
the interaction (among all possible pairs). To that end, we resort to Multiple Instance
Learning (MIL) as is the common practice [46] to obtain the final image-level classifier
response. Specifically, we first obtain the classifier predictions for each human-object
pairings Y ∈ RN×S where S denotes the number of interaction categories, then we apply
max-pooling over the human-object dimension to obtain the final image-level interaction
response Y′ = pool (Y) , Y′ ∈ RS .

Worth mentioning that the classifier C(·) is a Multi-Layer Perceptron (MLP) with two
hidden layers. Each hidden layer is followed by BatchNorm and ReLU non-linearity.
The output layer uses sigmoid non-linearity, to handle multiple labels per-image. Up
till now, we have described our method, SSC. In the following, we first describe the
human-object extractor fho(·). Then, we complement with our contextual extractors
f i
c(·).

3.3.4 Human-object Features Xho

Our human-object features are obtained from CNN [124] that takes as input an image
and returns the global appearance features for N human-object pairs in the image. To
achieve this, we first detect possible human-object locations using an off-the-shelf object
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tree 0.8
boat 0.7
pot 0.9
river 0.4
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sky
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...

0.2
0.3

0.0

a) body-part context b) stuff context c) surround context d) deformation context

Figure 12: The context features proposed in this paper. a) Body-part context models
the appearance of the human joints, b) Stuff-context models the occurrence of stuff-like
regions in the image, c) Surround context models the appearance of local segments
around humans, d) Deformation context models the shape of the human-object posture.

detector [116]. We select the top-3 detected humans and the top-4 detected objects, based
on the detector confidence. The permutations of 3 humans and 4 objects yield 3× 4 = 12
distinct human-object pairs. We compute the union region for each pair, and then apply
Region-of-Interest (ROI) pooling [43] over this region to obtain the final features per
human-object. ROI pooling is applied over the global layer of the network.

3.3.5 Contextual Features Xc

For an image, we extract M different context features, Xc, see Figure 12, where M = 4
where each feature xi

c is obtained from a different extractor f i
c(·), which we detail below.

Body-part context feature. This context, see Figure 12a, models the local body-parts of
the human interactor. Local body-parts carry distinctive information about an interaction,
especially for grasping. The context is implemented as follows.

First, the context requires an initial set of human body-part regions. Hence, given each
detected human, we run an off-the-shelf human keypoint detector [35]. This yields 17
distinct body-part regions such as the knee, the hand or the head. We draw a regular
bounding box around each keypoint region. Given these bounding boxes, we apply ROI
pooling over each region for each detected human from the global layer of the CNN.

However, not all body-parts contribute equally to the interaction. To select the most
discriminative body-part, we then feedforward each ROI-pooled part feature to an atten-
tional sub-network fatt(·) that yields a scalar value per-part indicating their relevance.
Based on the obtained scores, we only select top-k regions for further processing (k = 3).
Nonetheless, this indexing operation is non-differentiable. To that end, we employ a
strategy called straight-through estimator [11] to by-pass the gradient computation for
the non-selected body-parts. In practice, the gradients of the non-selected body-parts
are set to 0. Finally, the selected body-part features are concatenated and further com-
pressed with two fully connected layers, leading to a 1k dimensional feature summarizing
distinctive human parts.
Stuff context feature. This context models the existence of local stuff-like regions, such
as trees, wall, river, see Figure 12b. The existence of such regions can give hint about the
interactions, e.g. river for boat riding.

We implement the stuff-context as the class probabilities of a stuff-classifier. Stuff-
classifier is a linear classifier on top of the global layer response of the CNN using the
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annotations from [14]. The final response is a 91−dimensional feature vector summariz-
ing the existence of local stuff-like regions in the image.
Surround context feature. This context models the local surround around human-object,
see Figure 12c. To represent the local surround, we make use of the semantic segments
like the road, the sky or the sideways, obtained from an off-the-shelf model [155] over
the input image.

Specifically, we first create binary masks from the input image of size m ∈ RH×W×K ,
where [H, W] denotes the height and width of the global layer feature map and K is the
number of distinct segments. For each image, we choose the top K segments with the
largest scales (K = 5). For each mask, the values of only the respective segment are set
to 1 and all else is set to 0. Masks are then applied to the global activations (conv5 3) of
the CNN, which is then average-pooled over the spatial dimension to obtain the features
of size RK×D. Finally, we aggregate over the semantic segment dimension K to obtain
R1×D feature response (d = 512) via max pooling.
Deformation context feature. This context models the mutual deformation of human-
objects, see Figure 12d. Our goal is to encode two important cues of interactions: 1)
Shape of the human-object deformation, 2) Spatial relation of the human-object location
simultaneously.

To that end, given an image, we first obtain object segmentation predictions [54] of
size RH×W×K where [H, W] are the heights and width of the image, and K is the number
of distinct objects (K = 80). We resize this feature map such that the longest side is
64 pixels, using bi-linear interpolation, and process it with a three-layer CNN along the
channel dimensions 80 → 128 → 256 → 512. The first layer is a 1 × 1 convolution
followed by a 3 × 3 kernel. Keeping the first convolution 1 × 1 is crucial – The input
mask is sparse (i.e. most locations are 0), which is hard to process with a dense filter of
size 3 × 3 from the start. To that end, we first generate a denser feature map using 1 × 1
filters to process with subsequent layers. Finally, we pool the response over the spatial
dimension to obtain 512-dimensional deformation context feature.
Implementation details. All the models are implemented in PyTorch [106], trained
and optimized with SGD. The CNN [124] is pre-trained on ImageNet [29]. Then it is
fine-tuned on the HICO dataset for epochs with a learning rate 0.001 that is decayed by
a factor 0.1 after 15 epochs.

3.4 E X P E R I M E N T S

3.4.1 Contextualized Interactions Dataset

Existing datasets [18, 52] are limited in their context repertoire since they are collected
with <verb, noun> queries only. This prevents observing the contribution of the
context in diverse environments. To that end, we collect a new challenging dataset we
name Contextualized Interactions (CINT).

To create CINT, we first queried Google Images [48] via triplets of <verb, noun,
context> queries, where <verb, noun> pairs are from HICO and 40 context
queries are derived from scene datasets [80,144,154]. Context queries are the time of the
day (e.g. day, night, 7/40), state of the scene (e.g. sunrise, snowy, dark, 12/40) or the
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location of the scene (e.g. railroad, beach, street, 21/40). After omitting the queries with
no results, we ended up with around 2k distinct <verb, noun, context> queries
of which we use in the annotation procedure.

We initially downloaded 250 images per-query and then removed images where the
human, the object and the context are not visible. We have 16k images from 200 distinct
interactions.

3.4.2 Other Datasets

HICO dataset [18]. For training we rely on HICO. It contains 40k training and 10k
testing images from 600 distinct <verb, noun> pairs, for 117 verbs and 80 nouns.
HICO exhibits a long-tailed distribution: 155 classes have less than 10 examples. A
special case is no-interaction, where the target object and a human is visible
whereas not interacting.
V-COCO dataset [52]. V-COCO was initially designed for interaction detection [44].
To demonstrate the generality of our approach, we re-purpose the dataset for interaction
recognition as follows. We align class namings with HICO, for example by splitting
<skateboarding> into <ride, skateboard>). We omit actions like smiling
that do not correspond to any object. Finally, we follow the best practice of [18] and
aggregate different interaction instances within the same image over the image label. As
a result, V-COCO has 4k test images with 226 distinct interactions. A big portion of the
dataset belongs to interactions with rare categories, making the inference challenging.

3.4.3 Baseline models

Interaction recognition baselines. To prove the generality of our approach with different
human-object representations, we plug in our SSC to three different human-object feature
extractors, namely: 1) VGG-16 [124] that is pre-trained on ImageNet and fine-tuned
on HICO, 2) ContextFusion [95], 3) Global stream of PairAtt [34]. All the features are
extracted from the penultimate layer of fc7 using the code from the respective authors.
Fusion baseline. We compare SSC to a fusion baseline, where we concatenate human-
object features with different context features.

3.4.4 Evaluation

For evaluation, we use the instance-based Mean Average Precision (mAP). That is,
we evaluate the prediction performance per-image, which is then averaged over the
respective dataset. This metric allows us to observe the effect of fusing or Self-Selecting
different forms of context features on a per-image basis. Additionally, it allows us to
analyze the effect of the context over the characteristics of interactions such as the size,
the population, or the existence of interaction.
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3.5 E VA L UAT I O N

3.5.1 Self-Selection of the Single Context

In the first experiment, we validate the discriminative ability of the proposed context
features on HICO. We select and combine single context features with the human-object
feature, to see their individual contributions. Results are in Table 5.

Table 5: Self-Selection of The Single Context.

Context Feature mAP(%) Improvement ∆ ↑

Human-Object (HO)-only 62.50 -

HO + Body-part context 68.55 6.05

HO + Stuff context 68.20 5.70

HO + Surround context 68.44 5.94

HO + Deformation context 68.30 5.80

Each of the 4 context features, by itself, are complementary to the human-object
feature. Each improves the performance of human-object features considerably.

Body-part context helps the most with 6.05 mAP since many interactions are localized
on the fine-grained body-parts such as the hand-object interactions like cutting, eating or
cooking. Also, the surround context helps with 5.94 mAP, indicating that the immediate
surround of the human-objects is distinctive, such as the road for transport vehicles.
Deformation context helps with 5.80 mAP since it complements the human-object
features with the mutual position and the deformation information, which is crucial in
dynamic interactions like jumping or throwing. Lastly, stuff context helps with 5.70
mAP which confirms that high-level representation of surrounding object-like regions
can help distinguish the interaction.

To conclude, we observe that context features are distinctive for recognition and
complement human-object features. Also, each different context feature specializes in
different interactions which call for an effective combination.

3.5.2 Self-Selection of the Multiple Contexts

This experiment validates the complementary power of the proposed context features
via Self-Selection. We select and combine all 4 contextual features with human-objects.
Results are in Table 6.

It is observed that both fusion and SSC improves upon human-object-only feature,
confirming the complementary power of the proposed contexts. We also see that SSC
performs better than fusion across all three datasets. The difference is more pronounced
on CINT, which highlights the need for selecting the discriminative context in diverse
environments.
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Table 6: Self-Selection of The Multiple Contexts.

Dataset

Method HICO V-COCO CINT

HO-only 62.50 52.27 45.24

HO + Fusion 69.59 54.74 49.74

HO + SSC (Ours) 70.78 55.00 54.36

SSC does so by using three times fewer parameters, as can be seen from Figure 13.
Figure 13 plots the recognition mAP as a function of the number of cumulative contexts
added at each step (from 1 to 4). We initially add stuff context and then add 1 more
context at each step. As can be seen, Self-Selective Context uses 3 times fewer parameters
than the fusion counterpart (4.9 Million vs. 13.6 Million) while yielding better results.
This is expected since many human-object interactions have limited examples in the
training set, hence making the learning difficult.

1 2 3 4
Selected Context Features

60.00

70.00

m
A

P

14M

5M

Fusion

SSC (ours)

Figure 13: Parameter efficiency of Self-Selection vs. Fusion. Amount of parameters for
each step for the respective technique is presented in log-scale using circles.

To conclude, we observe that the context features are complementary to each other,
and, Self-Selective context provides a parameter efficient and accurate combination of
contexts.
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3.5.3 Further Analysis of Self-Selection

In this Section, we present further analysis of Self-Selection, on the source of the
improvement, the ablation of the joint conditioning, and the distribution of Self-Selection.
Source of the improvement. To shed some light into where the gain comes from, we
marginalize the improvement of SSC over human-object features in Table 7.

Table 7: The Source of the Improvement.

Method
Pixel Area Population Existence

Small Large Rare Frequent No Yes

HO-only 60.09 63.98 39.31 61.68 36.96 64.26
HO + SSC 69.45 72.70 51.38 70.79 47.67 73.24

∆ ↑ 9.36 8.72 12.07 9.11 10.71 8.98

1) SSC helps slightly better for small human-object interactions. During this experi-
ment, an interaction is deemed to be small if the human-objects occupy less than 20% of
the whole image, and large otherwise. This indicates that when the visual details of the
human-objects are limited due to size, the context becomes more important.

2) SSC helps considerably better for rare human-object interactions. During this
experiment, an interaction is deemed to be rare if it has less than 10 examples in the
HICO training set, frequent otherwise. This indicates that rare human-object interactions
(i.e. <ride, giraffe>) exhibit distinctive local contextual appearance that, once
modeled with SSC, becomes easier to recognize.

3) SSC helps considerably better for the case of no-interaction. During this experiment,
we aggregate the performance over no-interaction and interaction categories separately.
This indicates that SSC encodes the distinctive signals of the interaction, which is once
used, helps the model to discriminative interaction from no-interaction.
Contribution of the joint conditioning. For an ablation, study we remove the joint
conditioning from SSC. In this way, our model learns context relevance values α by
considering the context only (as opposed to human-object and context together). Results
can be seen from Table 8.

Table 8: Contribution of Joint Conditioning.

Condition Dataset

HICO V-COCO CINT

context-only 67.77 49.58 49.26
human-object & context 70.78 55.00 54.36
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As can be seen, using context-only to select the context leads to a drop over all three
datasets, confirming the importance of Self-Selection jointly based on the human-object
and context.
Distribution of Self-Selection. In this experiment we visualize the distribution of Self-
Selection. We aggregate Self-Selection ratios over distinct nouns and verbs in HICO in
Figure 14.
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Figure 14: Distribution of Self-Selection over nouns and verbs.

Stuff context is preferred in house activities of cooking and cleaning, where the co-
occurring objects are distinctive. The surround context is preferred by transportation
interactions that use horses, cars, or motorcycles for racing or driving. Deformation
context is preferred by sport objects like skateboard or skis for jumping or standing,
where the interaction leads to unique postures in the human-object body. Lastly, hand-
object interactions like cutting, brushing, or eating prefer body-part context, where the
hand leads to distinctive occlusion patterns over the object region. We re-assure that the
contribution of the Self-Selection is based on the interaction type.
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3.5.4 Self-Selection with the State-of-the-art

So far, we experimented with our proposed human-object features. This experiment
plugs in our Self-Selective module to existing models, namely VGG-16 [124], Context-
Fusion [95], and global stream of PairAtt [34]. Results from the three datasets can be
seen from Table 9.

Table 9: Combining SSC with the State-of-the-art.

Method
Dataset

HICO V-COCO CINT

VGG-16 [124] 56.10 46.91 44.83

VGG-16 [124] + SSC 67.59 51.17 49.56

ContFus [95] 63.47 51.36 46.72

ContFus [95] + SSC 65.79 52.24 51.92

PairAtt [34] 65.10 53.62 48.99

PairAtt [34] + SSC 68.29 54.24 51.22

Human-Object 62.50 51.60 47.85

Human-Object + SSC 70.78 55.00 54.36

As can be seen in all cases, incorporating Self-Selective context improves upon the
respective model alone. This indicates that Self-Selective context carries complementary
information for State-of-the-art models, even though these features incorporate some
contexts like global surround or object co-occurrence intrinsically. An important result is
that human-object features coupled with Self-Selective context still outperforms all other
models, despite its simplicity. This indicates that modeling human-object and context
separately and adaptively is essential for recognizing human-object interactions.
Qualitative analysis. We present success and failure cases in Figure 23. We compare
the performance of PairAtt with PairAtt + SSC using images from CINT dataset.

In the top, we provide three examples where SSC improves upon PairAtt. We can
see that SSC helps when the scene is not strongly correlated with the target interaction,
such as <sit on, chair> on city street, or <ride, ski> in the night. In such
particular cases, SSC can suppress the contribution of the irrelevant context feature,
therefore leading to accurate classification performance.

In the bottom, we provide three examples SSC decreases the performance. We can see
that when the amount of visual context is limited, as in <carry, backpack> on left
bottom example, or when the context is too noisy, such as the background humans in the
middle bottom, SSC is challenged in identifying the discriminative context. This leaves
for improvement for such cases.
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Figure 15: Qualitative examples from CINT dataset for PairAtt [34] and
PairAtt+SSC(ours). We provide mAP % on top for both. SSC helps when the con-
text is unexpected (top), however may decrease the result if the context is not visible or
too noisy (bottom).

To conclude, Self-Selective context carries information for the State-of-the-art models,
as shown in Table 9. The difference is considerable for all three models, on HICO,
V-COCO, and CINT. Also, Self-Selective context helps the most when the context is
radically different as shown in Figure 23.

3.6 C O N C L U S I O N

In this work, we addressed the task of recognizing human-object interactions from a
single image. We treated human-object interaction recognition as a task of context
selection. We first devised context features to model the locality of the human, the object,
the surround scene, and the human-objects. Then, we proposed a new model, namely
scalable Self-Selective Context (SSC), along with a novel gating module. The gating
mechanism considers the correlation between the human-objects and the corresponding
contexts. And the gating module succeeds in selecting the context(s) that are most relevant
to the interactions in each image. Our experiments reveal that, indeed, the proposed
context features are discriminative and they complement the appearance features of
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human-objects. In addition, our method, SSC, improves State-of-the-art in interaction
recognition on three challenging benchmarks: HICO, V-COCO and CINT.
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S T RU C T U R E D V I S UA L S E A R C H V I A C O M P O S I T I O N - AWA R E
L E A R N I N G

4.1 I N T RO D U C T I O N

Visual image search is a core problem in computer vision, with many applications, such
as organizing photo albums [118], online shopping [65], or even in robotics [12, 105].
Two popular means of searching for images are either text-to-image [20, 85] or image-to-
image [111, 152]. While simple, text-based search could be limited in representing the
intent of the users, especially for the spatial interactions of objects. Image-based search
can represent the spatial interactions, however, an exemplar query may not be available
at hand. Due to these limitations, in our work, we focus on a structured visual search
problem of compositional visual search.

The composition is one of the key elements in photography [108]. It is the spatial
arrangement of the objects within the image plane. Therefore, composition offers a
natural way to interact with large image databases. For example, a big stock image com-
pany already offers tools for its users to find images from their databases by composing
a query [2]. The users compose an abstract, 2D image query where they arrange the
location and the category of the objects of interest, see Figure 24.

Compositional visual search is initially tackled as a learning problem [145], recently
using deep Convolutional Neural Networks (CNN) [93]. Mai et al. treats the problem
as a visual feature synthesis task where they learn to map a given 2D query canvas to
a 3 dimensional feature representation using binary metric learning which is then used
for querying the database [93]. We identify the following limitations with this approach:
i) The method requires a large-dimensional feature (7 × 7 × 2048 ≈ 100k) to account
for the positional and categorical information of the input objects, limiting the memory
efficiency especially while searching across large databases. ii) The method requires
a large-scale dataset (≈ 70k images) for training, limiting the sample efficiency. iii)
The method only considers binary relations between images, limiting the compositional-
awareness. To overcome these limitations, in our work, we introduce composition-aware
learning.

Compositional queries exhibit continuous-valued similarities between each other.
Objects within the queries transform in two major ways: 1) Their positions change
(translational transformation), 2) Their categories change (semantic transformation),
see Figure 24. Our composition-aware learning approach takes advantage of such
transformations using the principle of equivariance, see Figure 17. Our formulation
imposes the transformations within the input (query) space to have a symmetrical effect
within the output (feature) space. To that end, we develop novel representations of the
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Query Retrieval

Figure 16: The compositional visual search takes a 2D canvas (left) as a query and
then returns the relevant images that satisfy the object category and location constraints.
Retrieval set (right) is in descending order by their mean Intersection-over-Union with
the query canvas. Observe how small changes in the composition of the horse and the
person lead to drastic transformations within the images. In this work, our goal is to
learn these transformations for efficient compositional search.

input and the output transformations, as well as a novel loss function to learn these
transformations within a continuous range.

Our contributions are three-fold:

I. We introduce the concept of composition-aware learning for structured image
search.

II. We illustrate that our approach is efficient both in feature-space and data-space.

III. We benchmark our approach on two large-scale datasets of MS-COCO [89] and
HICO-DET [17] against competitive techniques, showing considerable improve-
ment.

4.2 R E L AT E D W O R K

Compositional Visual Search. Visual search mostly focused on text-to-image [19,
20, 85, 98, 121, 139] or image-to-image [9, 49, 50, 64, 84, 86, 111–113, 131, 152] search.
Text-to-image is limited in representing the user intent, and a visual query may not be
available for image-to-image search. Recent variants also combine the compositional
query either with text [38] or image [91]. In this paper, we focus on compositional visual
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Figure 17: At the core of our technique is the principle of equivariance, which enforces a
symmetrical change within the input and output spaces. We achieve this via mapping
a query Q and its transformed version Q′ = Ti(Q) to a feature space where the
transformation holds g(Q′) = To(g(Q)).

search [93, 102, 145]. A user composes an abstract, 2D query representing the objects,
their categories, and relative locations which is then used to search over a potentially
large database. A successful example is VisSynt [93] where the authors treat the task
as a visual feature synthesis problem using a triplet loss function. Such formulation is
limited in the following ways: 1) VisSynt is high dimensional in feature-space (100k
dimensional), limiting memory efficiency, 2) VisSynt requires a large training set (70k
examples), limiting data efficiency, 3) VisSynt does not consider the compositional
transformation between queries due to binary nature of the triplet loss [57], limiting
the generalization capability of the method. In our work, inspired by the equivariance
principle, we propose composition-aware learning to overcome these limitations and test
our efficiency and accuracy on two well-established benchmarks of MS-COCO [89] and
HICO-DET [17].
Learning Equivariant Transformations. Equivariance is the principle of the symmetry:
Any change within the input space leads to a symmetrical change within the output space.
Such formulation is highly beneficial, especially for model and data efficiency [32].
In computer vision, equivariance is used to represent transformations such as object
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rotation [26, 140, 141], object translation [68, 96, 142, 151] or discrete motions [62, 63].
Our composition-aware learning approach is inspired by these works, as we align the
continuous transformation between the input (query) and output (feature) spaces, see
Figure 17.
Continuous Metric Learning. Continuous metric learning takes into account the contin-
uous transformations between the image instances [75, 79, 100], since such relationships
can not be modeled with conventional metric learning techniques [25,57]. Recently, Kim
et al. [75] proposed LogRatio, a loss function that matches the relative ratio of the input
similarities with the output feature similarities. It yields significant gain over competing
methods for pose and image caption search. Since compositional visual search is a
continuous-valued problem, we bring LogRatio as a strong baseline to this problem.
LogRatio intrinsically assumes a dense set of relevant images given an anchor point
for an accurate estimation. However, compositional visual search follows Zipf distri-
bution [101], where, given a query, only a few images are relevant, limiting LogRatio
performance.

4.3 M E T H O D

Our method consists of three building blocks:
1. Composition-aware transformation that computes the transformations in the input

and output space,
2. Composition-aware loss function that updates the network parameters according

to the divergence of input-output transformations,
3. Composition-equivariant CNN, used as the backbone to learn the transformation.

Method Overview. An overview of our method is provided in Figure 18. Our method
takes as an input a 2D compositional query q ∈ RH×W , where H, W are the height
and width of the query canvas. This query contains a set of objects, along with their
categories and positions (in the form of bounding boxes). The goal of our method is,
given a target dataset of images, we want to retrieve the top-k images that are most
relevant to the query q – i.e. relevant to both the objects and their positions. Each image
I can initially be represented as feature x ∈ RH′×W′×C′ using the last convolutional layer
of an off-the-shelf, ImageNet pre-trained deep CNN, e.g. ResNet-50 [55]. Such feature
x preserves the spatial information as well as the object category information within
the image I. Furthermore, we assume access to a tuple (c, x, I), where c ∈ RH×W×C

is a compositional map constructed using the object categories and bounding boxes of
the query q. In addition, let q′ = T (q) be the transformed version of the query q, and
(c′, x′, I′) are the corresponding composition map, CNN feature and the image. The
transformation T can correspond to a translation of object location(s), or a change in
object categories in q. Our method trains a 3-layer CNN gΘ(·) with the parameters Θ,
by minimizing the following objective function:

min
Θ

(Lcomp(Ti(c, c′), To(gΘ(x), gΘ(x′)))), (4.1)

where Ti measures the input transformation between compositional maps c and c′,
and To measures the transformation between output feature maps g(x) and g(x′), and
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Figure 18: Our composition-aware learning approach. Our approach is trained with
pairs of queries (Q, Q′) with identical backbones. 1) Given a pair of queries, we sample
the corresponding images and feed them through a frozen ResNet-50 up to layer-4 of size
7 × 7 × 2048. 2) Then, we process these activations with our light-weight 3-layer CNN
g(·) to map the channel dimension to a smaller size (i.e. 2048→ 256) while preserving
the spatial dimension of 7. 3) In the mean-while, we compute the input (Ti) and the
output (To) transformations, which are then forced to have similar values using the loss
function.

Lcomp is the composition-aware loss function measuring the discrepancy between these
transformations. In the following, we first describe the compositional map c, and the
input and the output transformations Ti and To. Then, we describe composition-aware
loss function Lcomp. Finally, we describe our CNN architecture gΘ(·) that learns the
mapping. We drop Θ from now for the sake of clarity.

4.3.1 Composition-aware Transformation

The goal of the composition-aware transformation is to quantify the amount of trans-
formation between the input compositions (c, c′) and output feature maps (g(x), g(x′))
in the range [0, 1]. For this, first, we construct compositional maps from the input user
queries, then we measure the input transformation using these maps, and finally we
describe the output transformation.
Constructing compositional map c. First, given a user query q that reflects the category
and the position of the objects, we create a one-hot binary feature map c of size RH,W,C

where [H, W] are the spatial dimension of the composition map (H = W = 32), and
C is the number of object categories (i.e. 80 for MS-COCO [89]). In this map, only
the corresponding object locations and the categories are set to 1s and otherwise 0s.
This simple map encodes both the positional and categorical information of the input
composition, which we will then use to measure the transformation within the input
space. We apply the same procedure to the transformed query q′ which yields c′. Now
given the pair of compositional maps (c, c′), we can quantify the input transformation.
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Input transformation Ti. Then, our goal is to measure the similarity between these two
compositions as:

Ti(c, c′) =

∑
xyz(cxyz · c′xyz)∑

xyz 1(cxyz + c′xyz)
, (4.2)

where 1 is an indicator function that is 1 for only non-zero pixels. This simple expression
captures the proportion of the intersection of the same-category object locations in the
numerator and the union of the same-category object locations in the denominator. Ti
output is in the range [0, 1], and will return 1 if the two compositions c and c′ are identical
in terms of object location and the categories, and 0 if no objects share the same location.
Ti will smoothly change with the translation of the input objects in the compositions.
Given the input transformation, we now need to compute the output transformation which
will then be correlated with the changes within the input space.
Output transformation To. Output transformation is computed as the dot product
between the output features as follows:

To(g(x), g(x′)) = g(x) × (g(x′))⊤, (4.3)

where (g(x′))⊤ is the transpose of the output feature g(x′). We choose the dot product
due to its simplicity and convenience in a visual search setting. To can take arbitrary
values in the range [−∞,∞]. In the following, we describe how to bound these values
and measure the discepancy between the input-output transformations Ti and To.

4.3.2 Composition-aware Loss

Given the input-output transformations, we can now compute their discrepancy to update
the parameters Θ of the network g(·). A naive way to implement this would be to
minimize the Euclidean distance between the input-output transformations as:

min
Θ
∥Ti −œ(To)∥, (4.4)

where σ(·) is the exponential non-linearity 1
1+exp (·) to bound To in range [0, 1]. However,

such a function generates unbounded gradients therefore leading to instabilities during
training [87], and reducing the performance, as we show through our experiments.
Instead, cross entropy is a stable and widely used function that is used to update the
network weights. However, cross entropy can only consider binary labels as (0, 1)
whereas in our case the transformation values vary within [0, 1]. To that end, we derive a
new loss function inspired by the cross entropy that can still consider in-between values.

Consider that our goal is to maximize the correlation between input-output transfor-
mations as:
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max
Θ

(Ti ·σ(T⊤o )). (4.5)

We can also equivalently minimize the negative of this expression due to convenience:

min
Θ

(−Ti ·σ(T⊤o )). (4.6)

The divergence of To and Ti at the beginning of the training leads to instabilities during
the training. To overcome this, we include additional regularization via the following
two terms as:

min
Θ

(To − Ti · T⊤o + log(1 + exp(−To))), (4.7)

where the two terms To and log(1 + exp(−To)) penalize for larger values of To in the
beginning of the training, leading to lesser divergence from Ti. To further avoid over-flow,
the final form of the regularizer terms are:

min
Θ

(max(To, 0.) − Ti · T⊤o + log(1 + exp(−∥To∥))). (4.8)

This is the final expression for Lcomp which we use throughout the training of our
network g(·).

4.3.3 Composition-Equivariant Backbone

Our model g(·) is a lightweight 3-layers CNN that maps the bottleneck representation x
obtained from the pre-trained network ResNet-50 of dimension R7×7×2048 to a smaller
channel dimension of the same spatial size, i.e. Rh×w×C , such as 7 × 7 × 256 unless
otherwise stated. Our intermediate convolutions are 2048→ 1024→ 512→ 256. The
first two convolutions use 3× 3 kernels whereas the last layer uses 1× 1. We use stride= 1
and apply zero-padding to preserve the spatial dimensions which are crucial for our
task. We use LeakyReLU with slope parameter s = 0.2, batch-norm and dropout with
p = 0.5 in between layers. We do not apply any batch-norm, dropout, or LeakyReLU at
the output layer as this leads to inferior results.

Since our goal is to preserve positional and categorical information, a network with
standard layers may not be a proper fit. Convolution and pooling operations in standard
networks are shown to be lacking translation (shift) equivariance, contrary to wide
belief [151]. To that end, we use the anti-aliasing trick suggested by [151] to preserve shift
equivariance throughout our network. Specifically, before computing each convolution,
we apply a Gaussian blur on top of the feature map. This simple operation helps to keep
translation information within the network layers.
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4.4 E X P E R I M E N T S

4.4.1 Datasets

Constructing Queries. To evaluate our method objectively, without relying on user
queries and studies, we rely on large-scale benchmarks with bounding box annotations.
We evaluate our method on MS-COCO [89] and HICO-Det [17]. The training is only
conducted on MS-COCO. Given an image, we select at most 6 objects based on their
area as is the best practice in [93].
MS-COCO. MS-COCO is a large-scale object detection benchmark. It exhibits 80
object categories such as animals (i.e. dog, cat, zebra, horse) or house-hold objects. The
dataset contains 120k training and 5k validation images. We split the training set to two
mutually exclusive random sets of 50k training and 70k gallery images. The number of
objects in each image differs in the range [1, 6].
HICO-DET. HICO-DET is a large-scale Human-object interaction detection bench-
mark [17, 69]. HICO-DET builds upon 80 MS-COCO object categories, and collects
interactions for 117 different verbs, such as ride, hold, eat or jump, for 600 unique
<verb, noun> combinations. Interactions exhibit fine-grained spatial configurations
which makes it a challenging test for the compositional search. The dataset includes
37k training and 10k testing images. The training images are used as the gallery set
and the testing set is used as the query set. A unique property of the dataset is that 150
interactions have less than 10 examples in the training set, which means a query can
only match very few images within the gallery set, leading to a challenging visual search
setup [70]. HICO-DET is only used for evaluation.

4.4.2 Evaluation Metrics

We evaluate the performance of the proposed model with three metrics. Standard
mean Average Precision metric as is used in VisSynt [93]. Also, we borrow continuous
Normalized Discounted Cumulative Gain (cNDCG) and mean Relevance (mREL) metrics
used in continuous metric learning literature [75, 79, 100] All metric values are based on
the mean Intersection-over-Union (mIOU) scores between a query and all gallery images
described below. For all three metrics, higher indicates better performance.

Mean Intersection-over-Union

To measure the relevance between a query and a retrieved image, we resort to mean
Intersection-over-Union as is the best practice [93]. Concretely, to measure the relevance
between a Query q and a retrieved image r

mIOU(q, r) =
1
Bq

∑
bi∈BQ

max
b j∈BI

1(k(bi) = k(b j))
bi ∩ b j

bi ∪ b j
, (4.9)

where BQ and BI represents all the available objects in the query Q and retrieved image I
respectively, 1 is an indicator function that checks whether objects i and j are from the
same class k, which is then multiplied with the intersection-over-union between these
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two regions. This way, the metric measures both the spatial and semantic localization of
the query object.

Metrics

mAP. Based on the relevance score, we use mean Average Precision to measure the re-
trieval performance. We first use a heuristic relevance threshold ≥ 0.30 as recommended
in [93], to convert continuous relevance values to discrete labels. Then, we measure the
mAP values @{1, 10, 50}.

mAP metric does not respect the continuous nature of the compositional visual search
since it binarizes continuous relevance values with a heuristic threshold. To that end, we
resort to two additional metrics, continuous adaptation of NDCG and mean Relevance
values which are used to evaluate continuous-valued metric learning techniques in [75,
79, 100].
cNDCG. We make use of the continuous adaptation of the Normalized Discounted
Cumulative Gain as follows:

cNDCG(q) =
1
Zk

K∑
i=1

2ri

log2(i + 1)
, (4.10)

that takes into account both the rank and the scores of the retrieved images and the ground
truth relevance scores. In our experiments we report cNDCG@{1, 50, 100}.
mREL. mREL measures the mean of the relevance scores of the retrieved images
per query, which is then averaged over all queries. In our experiments, we report
mREL@{1, 5, 20}. We also note the oracle performance where we assume access to the
ground truth mIOU values to illustrate the upper bound in the performance.

4.4.3 Performance Comparison

ResNet-50 [55]. We use the activations from layer-4 of ResNet-50 to retrieve images.
In this work, we build upon this feature since it captures the object semantics and
positions within the feature map of size R7×7×2048. We also experimented with the earlier
layers, however we found that layer-4 performs the best. The network is pre-trained on
ImageNet [29].
Textual. We assume access to the ground truth object labels for a query and retrieve
images that contain the same set of objects. This acts as a textual query baseline and is
blind to the spatial information.
VisSynt [93]. This baseline uses a triplet loss formulation coupled with a classification
loss to perform a compositional visual search. We use the same backbone architecture
g(·) and the same target feature ResNet-50 to train this baseline for a fair comparison.
LogRatio [75]. This method is the state-of-the-art technique in continuous metric
learning, originally evaluated on human pose and image caption retrieval. In this work,
we bring this technique as a strong baseline since the visual composition space also
exhibits continuous relationships. We use the authors code 1 and the recommended setup.

1 https://github.com/tjddus9597/Beyond-Binary-Supervision-CVPR19
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Figure 19: Feature efficiency. Our model performs better even when the feature-space is
compact.
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Figure 20: Data efficiency. Our model outperforms VisSynt and LogRatio within small
data regime.

We convert mIOU scores to distance values as 1 −mIOU since the method minimizes
the distances.
Implementation details. We use PyTorch [106] to implement our method. We use the
same backbone (g(·)) and the input feature (ResNet-50) for all the baselines. All the
models are trained for 20 epochs using SGD with momentum (= 0.9). We use an initial
learning rate of 10−2 which is decayed exponentially with 0.004 at every epoch. We use
weight decay (wd = 0.005) for regularization. In practice, we compute input-output
transformations between all examples within the batch to get the best out of each batch.
We set the batch size to 36, and given each query in the batch, we sample 1 highly
relevant and 1 less relevant examples for each query, which leads to an effective batch
size of 36 × 3 = 108.

4.5 E VA L UAT I O N

In this Section, we present our experiments. For Experiments 1 − 2, we use all three
metrics @k = 1. For the third experiment of the State-of-the-Art comparison, we provide
performance at different k values.

4.5.1 Ablation of Composition-aware Learning

Euclidean vs. Composition-aware loss. In our first ablation study, we compare the
Euclidean loss described in Equation 4.4 with our composition-aware loss. The results
are presented in Table 10.
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mAP cNDCG mREL

Euclidean 66.87 39.73 28.49
CAL (ours) 81.17 51.18 35.96

Table 10: Euclidean vs. Composition-aware loss.

It is observed that Composition-aware loss outperforms Euclidean alternative by a
large-margin, confirming the effectiveness of the proposed loss function.

mAP cNDCG mREL

Lingual 65.14 27.77 19.56
Visual (ours) 81.17 51.18 35.96

Table 11: Lingual vs. Visual input transformation.

Lingual vs. Visual transformation. In our second ablation study, we test the domain of
the input transformation (Eq 4.2). In our work, we proposed a visual-based input transfor-
mation whereas VisSynt [93] utilizes a lingual-based input transformation using semantic
Word2vec embeddings [99]. As can be seen from Table 11, vision-based transformation
outperforms the lingual counterpart, since it can better encode the relationships within
the visual world.

4.5.2 Feature and Data Efficiency

In this experiment, we test the efficiency. Specifically, we first test the feature-space
efficiency to see how the performance changes with varying sizes of the query embedding.
Second, we test the data-space efficiency by sub-sampling the training data.
Feature-space efficiency. We change the feature embedding size by varying the number
of channels as 64, 128, 256 by keeping the spatial dimension of 7 × 7. We compare our
approach to VisSynt [93] and LogRatio [75]. The results can be seen from Figure 19.

As can be seen, our approach performs the best for all metrics and across all feature
sizes. This indicates that composition-aware learning is effective even when the feature
size is compact (i.e. 7 × 7 × 64). Another observation is that the performance of CAL
increases with the increased feature size, whereas the performance of the two other
techniques is lower. This indicates that CAL can leverage bigger feature sizes while other
objectives tend to over-fit.

It is concluded that CAL is a feature-efficient approach for compositional visual search.
Data-space Efficiency. In this experiment we vary the number of training data as
1k, 10k, 50k. The results can be seen from Figure 20.

Our method performs the best regardless of the training size. The gap in the perfor-
mance is even more significant when the training set size is highly limited (i.e. 1k only),
confirming the data efficiency of the proposed approach.
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Figure 21: Benchmarking on MS-COCO [89]. Our method outperforms existing tech-
niques for all three metrics.
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Figure 22: Benchmarking on HICO-DET [17]. Our method transfers better to HICO-
DET dataset for object-interaction search.

It is concluded that CAL can learn more from fewer examples by leveraging the
continuous-valued transformations and the regularized loss function.

4.5.3 Comparison with the State-of-the-Art

In the last experiment, we compare our approach to competing techniques on MS-COCO
in Figure 21 and HICO-DET in Figure 22 datasets.

As can be seen, our method outperforms the compared baselines in both datasets, and
in 3 metrics. This confirms the effectiveness of composition-aware learning for object
(MS-COCO) and object-interaction (HICO-DET) search. The results in HICO-DET are
much lower compared to MS-COCO since 1) HICO-DET has a higher number of query
images (10k vs. 5k), 2) Many queries have only a few relevant images within the gallery
set (as can be seen from the oracle performance of only 0.19 mREL in Figure 22), 3)
No training is conducted on HICO-DET, revealing the transfer-learning abilities of the
evaluated techniques.
Qualitative analysis. Lastly, we showcase a few qualitative examples in Figure 23.
First, as a sanity check, we illustrate single object queries (stop signs). As can be
seen, our method successfully retrieves images relevant to the query category and the
position. Then, we illustrate some object-interaction examples, such as human-on-bench,
or human-with-tennis racket, or human-on-skateboard. Our model can still generalize
to such examples, meaning that compositional learning benefits the case of the object
interaction. We illustrate a failure case in the last row, where our model retrieves a mix
of snowboard-skateboard objects given the query of a skateboard. This indicates that our
model performance can be improved by incorporating scene context, which we leave as
future work.
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stop sign
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 person

 t. racket

skateboard

 person

 bench
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Query Retrieval

Figure 23: Qualitative examples. First two rows show a single-object query, and last
three rows show multi-object queries. As can be seen, our approach considers the object
category, location and interaction into account while retrieving examples.

4.6 C O N C L U S I O N

In this work, we tackled a structured visual search problem called compositional vi-
sual search. Our approach is based on the observation that the visual compositions are
continuous-valued transformations of each other, carrying rich information. Such trans-
formations mainly consists of the positional and categorical changes within the queries.
To leverage this information, we proposed composition-aware learning, which consists
of the representation of the input-output transformations as well as a new loss function to
learn these transformations. Our experiments reveal that defining the transformations
within the visual domain is more useful than the lingual counterpart. Also, a regularized
loss function is necessary to learn such transformations. Leveraging transformations with
this loss function leads to an increase in the feature and data efficiency, and outperforms
existing techniques on MS-COCO and HICO-DET. We hope that our work will inspire
further research to incorporate structure for the structured visual search problems.
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5

H U M A N - O B J E C T I N T E R AC T I O N D E T E C T I O N W I T H O U T
A L I G N M E N T S U P E RV I S I O N

5.1 I N T RO D U C T I O N

This paper strives for Human-object Interaction (HO-I) detection from an image. HO-I
detection receives an astounding attention from the community recently [17, 21, 39, 40,
44,53,58,69,72,74,88,90,129], thanks to the large-scale benchmark of HICO-DET [17].
The goal is to identify the tuples of <human, object, verb, noun> from the
input, where human-object is an interacting bounding box pair, and verb-noun is the
interaction type, such as ride-horse.

To tackle this problem, researchers leverage strong HO-I alignment supervision, see
Figure 24-(a). Annotators first draw a bounding box around all humans and objects, then
align humans with the object-of-interaction (e.g., rider and horse). Finally, they align the
interaction category with each human-object pairs.

However, collecting such annotation is costly 1. Annotation costs time, since in
a typical image there are tens of potential human-object interactors, if not hundreds.
One can instead rely on image-level HO-I annotations, see Figure 24-(b). Image-level
annotations enumerate existing HO-I within the image, without specifying where they
occur. Image-level annotations are much faster and cheaper to collect.

There are few attempts to perform HO-I detection via image-level supervision weakly-
hoi1,weaklyhoi2. Initially, Zhang et al. weaklyhoi1 proposes a two-stream architecture
based on Region-FCN rfcn, focusing on the regional appearance of subject-objects and
spatial relations. Later, Kumaraswamy et al. weaklyhoi2 adapted this technique for HO-I
detection, and improve it via an additional stream of human pose. These techniques
yield remarkable results on HICO-DET benchmark hicodet in the absence of alignment
supervision. However, they are limited in three major ways: i) These methods isolate
human-objects from their context via Region-of-Interest (RoI) pooling fastrcnn,faster-
rcnn, however, contextual information is crucial in understanding the interaction, ii)
The authors propose multiple streams of context to circumvent the missing contextual
information, which increases model complexity. Increased model complexity results in
low performance on especially rarely represented HO-I (i.e. <ride, cow>) as we will
show. iii) Hand-crafted context (i.e. body-pose configuration using key-points) may not
be sufficient to account for the complexity of HO-I detection problem.

To that end, in this paper, we propose Align-Former, a visual-transformer-based
architecture based on detr. Align-Former is a single-stream HO-I detector that is trained

1 Try-it-yourself! HICO-DET-Annotator
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W/ Alignment Supervision

Human-object Human-object & Interaction

<ride, horse> <ride, horse>
<wash, horse>

(a) (b)

W/O Alignment Supervision

Figure 24: Alignment (left) vs. Image-level HO-I supervision (right). a) Alignment
supervision annotates each human-objects, aligns humans to their interacting objects,
then aligns human-objects to their type of interaction. b) Image-level supervision only
lists existing interactions without pointing where they happen. Our goal is to detect HO-I
without costly alignment supervision, by only using image-level labels.

end-to-end using image-level supervision only. Align-Former is equipped with a novel
HO-I Align layer that learns to align a few candidate target HO-I with predictions,
allowing detector supervision. The decision of alignment is based on geometric and
visual priors that are crucial in HO-I detection.

This paper makes the following contributions:

I. We propose Align-Former, an end-to-end HO-I detector that is supervised via
image-level annotation.

II. We equip Align-Former with a novel HO-I align layer, that learns to match few
HO-I predictions with HO-I target(s), therefore allowing detector supervision.

III. We evaluate Align-Former on HICO-DET [17] and V-COCO [52], and show that
Align-Former outperforms competing baselines with the same level of supervision
(by 4.71 mAP) on the large-scale benchmark of HICO-DET [17], especially within
the low-data regime of rare categories (by 6.17 mAP).

5.2 R E L AT E D W O R K

Alignment-Supervised HO-I Detection. In HO-I detection, the goal is to find quadru-
plets of <human,object,verb, noun> where human-object are bounding boxes
and verb-noun are interaction pairs like <ride, horse>. Initially, HICO-DET au-
thors collect more than 150k instance annotations to match humans to their interacted
object, as well as to their interaction categories. Then, there has been a surge in detecting
HO-I, initially via two-stage techniques [17, 40, 44, 53, 58, 90], and later by one-stage
architectures [21, 39, 74, 88, 129] leveraging costly strong alignment supervision, see
Figure 24-(a).

In this work, our goal is to train HO-I detectors without alignment supervision, by
only relying on image-level HO-I annotations.
HO-I Detection via Image-level Supervision. Few works attempt to train HO-I detectors
by only image-level supervision [78, 150]. Initially, Zhang et al. [150] proposes a
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Figure 25: To perform HO-I detection via image-level supervision: i) Align-Former maps
the input image I to HO-I predictions P . ii) We also prepare a set of HO-I targets
by exhaustively matching human-object detections and list of interactions. iii) Finally,
we find the least costly prediction-target pair(s) (i.e. (T2, P3)) which will be used for
detector supervision.

two-stream architecture based on Region-FCN [27] to model the subject-object region
appearance and spatial relations. Later, Kumaraswamy et al. [78] extends this approach
via additional pose-stream. These methods operate on the isolated appearance of human-
objects, neglecting the crucial context. Consequently, they supplement Region-FCN with
additional streams, increasing the model size, decreasing the performance.

To circumvent this, in this work, we propose a single-stream HO-I detector based
on visual-transformer [15]. Our network naturally encodes the surrounding context of
human-objects thanks to self-attention [135] and learns to align few candidate HO-I
targets with HO-I predictions to perform detector supervision, see Figure 25.
Discrete Variable Sampling in Computer Vision. In this work, we treat HO-I target
alignment as a hard-valued, discrete variable sampling: Amongst all possible target-
prediction pair(s), which subset(s) should be selected for detector supervision? Such
decision is non-differentiable therefore ill-suited in convolutional network training. To
that end, we resort to a continuous relaxation procedure named Gumbel-Softmax trick,
which allows end-to-end training via discrete variables [61, 92]. Gumbel-Softmax has
successfully been used to sample convolutional layers [136], filters [22] or channels [10].

In this work, we adapt Gumbel-Softmax to select the target HO-I for detector supervi-
sion.

5.3 M E T H O D

Method Overview. An overview of our technique is presented in Figure 25-26. The
goal of our network gθ(·) is to produce HO-I prediction tuples given an image I as

I
gθ(·)
−−−−→ t′. Here, HO-I prediction is of size P and represented via t′ = (h′, o′, v′, n′),

where (h′ ∈ RP×4, o′ ∈ RP×4) are human-object bounding box predictions, and (v′ ∈
RP×V , n′ ∈ RP×N) are verb-noun class predictions for V verbs and N nouns.
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Figure 26: Align-Former consists of four main layers. Feature Extraction Layer is an
Encoder-Decoder-based visual-transformer that extracts a set of human-object features
xi using the positional queries qi. Then, Classifier Layer generates HO-I predictions P
in the form of human-object bounding boxes and verb-noun classes. HO-I Align Layer
compares HO-I predictions P with potential HO-I targets T to find few-matching pair(s)
that are used for HO-I detector supervision using Loss Layer.

Then, assume we have access to a set of HO-I targets of size T with the same structure
t = (h ∈ RT×4, o ∈ RT×4, v ∈ RT×V , n ∈ RT×N). To supervise Align-Former, we
propose to minimize the following objective:

min
θ
(A × t, t′) (5.1)

where we omit θ from now on for clarity. A is a binary matrix of size P × T where
only few entries are non-zero. A is applied separately on all tuple members, as A × t =
(A × h, A × o, A × v, A × n). Here, A(i, j) = 1 means prediction i matches (i.e. aligns)
with target j to use in supervision. Similarly, A(i, j) = 0 indicates target i should not be
used in detector supervision. To identify which target-prediction pairs should be used in
detector supervision, we rely on geometric and visual priors detailed later.

Finally, replacing t′ with g(I) = C(Dec(Enc(CNN(I)), Q)) yields:

min(A × t, C(Dec(Enc(CNN(I)), Q))) (5.2)

which is detailed in four Sections:

• HO-I Align Layer (section 5.3.1) generates the alignment matrix A that pairs few
HO-I prediction(s) with HO-I target(s),

• Classification Layer (section 5.3.2) generates human-object bounding boxes and
verb-noun classification via C(x) using human-object features x,

• Feature Extraction Layer (section 5.3.3) generates features via x = Dec(Enc(CNN(I)), Q)
via positional queries Q using Encoder-Decoder architecture,

• HO-I Loss Layer (section 5.3.4) computes the human-object box and verb-noun
classification losses to supervise the detector with the generated HO-I targets t.
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5.3 M E T H O D

5.3.1 HO-I Align Layer

HO-I align layer consists of two sub-layers, i) Prior layer that judges the compatibility
between all HO-I targets and predictions, ii) Discretization layer that binarizes the
likelihood values to obtain the final hard-alignment.

Discretization Layer

Assume we are given a scoring function S ∈ RP×T where S (i, j) encodes how compatible
HO-I prediction t′i and HO-I target t j matches. Our goal is to discretize this matrix to
obtain the final hard-valued alignment decision.

To perform this, we discretize S such that only few members will be non-zeros.
Specifically, given raw values of S , we apply the following operation:

A = σ(S +G) ≥ δ (5.3)

where δ = 0.5 is the hard-threshold value, G is the Gumbel noise [61, 92] added to the
matrix S for regularization, and σ(·) is the sigmoid activation to bound S between [0, 1].
Note that Gumbel-noise is crucial to avoid any degenerate solutions like all 1s.

This operation yields the binary alignment matrix A ∈ {0, 1} where only a few entries
are non-zero.

Prior Layer

To compute the compatibility between HO-I targets & predictions, we resort to a convex
combination of geometric and visual priors as S = αg ∗GP + αv ∗ VP. Our intuition
is that for an HO-I target to be a good candidate for detector supervision, it needs to be
compatible both in terms of human-object bounding boxes (geometric) and verb-noun
classes (visual).
Geometric Prior GP(·) computes the bounding box compatibility of human-objects via
L1 distance as:

GP = exp(−
∑

i j∥h′i − h j∥+ ∥o′i − o j∥

τ
) (5.4)

where the exponential function exp(·) converts the distance values to similarity where
τ = 1.
Visual Prior VP(·) computes how well a given target-prediction pair matches in terms
of HO-I classes. Remember that our HO-I targets enumerate existing HO-I from the
image in terms of verb-noun pairs. Therefore, VP(·) is calculated as:

VP = v′ ∗ vT + n′ ∗ nT (5.5)
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where verb-predictions are of size v′ ∈ RP×V and verb-targets are of size v ∈ RT×V for
V distinct verbs. Similarly, noun-predictions are of size n′ ∈ RP×N and noun-targets
n′ ∈ RT×N for N distinct nouns.

5.3.2 HO-I Classification Layer

Classifier layer is responsible for generating HO-I predictions t′ consisting of human-
object bounding box predictions (h′, o′) as well as verb-noun category predictions
(v′, n′).
Human-Object Bounding Box Classifiers are two multi-layer perceptrons gh(·) and
go(·) that maps human-object features x to coordinates as (h′, o′) = (σ(gh(x)),σ(go(x))).
Verb-Noun Classifiers are also two multi-layer perceptrons as gv(·) and gn(·) that
learns to map human-object features x to corresponding verb-nouns as (v′, n′) =
(σ(gv(x)), (gn(x))).

5.3.3 HO-I Feature Extraction Layer

Our backbone needs to encode: i) Object-object relations, ii) Relative object positions
that are critical to perform HO-I alignment and detection. To that end, we implement
the feature extractor as a visual-transformer based on DETR [15]. The feature extractor
yields human-object features x ∈ RP×D, and consists of three sub-layers: Backbone,
Encoder and Decoder, which are detailed below.
Backbone (x = CNN(I)). Backbone is a deep CNN [55] that extracts global feature
maps from the input image I of size x ∈ RH×W×C where [H, W] are the height-width of
the feature map, and C is the number of channels.
Encoder (x = Enc(x)). Encoder further processes the global feature map from the
backbone to increase positional and contextual information. We first reduce the number
of channels from the backbone to a much smaller size via 1 × 1 convolutions of C × D.
Then, the resulting feature map RH×W×D is collapsed in the spatial dimension as RD×HW

where each pixel becomes a ”token” represented by D dimensional features. Finally,
this feature undergoes a few self-attention operations via few multi-layer perceptrons,
residual operations, and dropout. At each step, pixel positions are added to the feature
map to retain position information.
Decoder (x = Dec(x, Q)). The Decoder is a combination of self-attention and cross-
attention layers, which yields the final human-object features. The Decoder takes as
input the Encoder output x ∈ RD×HW as well as fixed positional query embeddings
Q ∈ RP×D. Decoder alternates between the cross-attention between the feature map x
and Q, as well as self-attention across queries. Cross-attention extracts features from the
global feature maps, whereas self-attention represents object-object relations necessary
for HO-I detection. Decoder is implemented as multi-layer perceptrons. Final output
is x ∈ RP×D that encodes positional and appearance-based representations of potential
human-object pairs within the image.
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5.3.4 HO-I Loss Layer

Our loss function ensures that the predicted human-object bounding boxes as well as the
verb-noun predictions are in line with the aligned HO-I targets.

The loss function L is a composite of bounding box, classification, and sparsity
losses as L = Lbox +Lclass +Lsparse. Here, Lbox computes the L1 distances between
human-object predictions and (aligned) targets as Lbox = Lhuman + Lob ject. And,
Lclass = Lverb +Lnoun are implemented via classical cross-entropy. As there can be
multiple verbs for each instance, we use sigmoid activation before computing the verb
loss.
Sparsity Loss. Finally, sparsity loss minimizes Lsparse =

1
P×T
∑

i j Ai j where 1
P×T is a

constant normalizing factor to bound the loss. This ensures the sum over all entries within
the alignment matrix A is minimized, leading to only few pairs of HO-I predictions and
targets to be aligned for further supervision.
Implementation. We set the number of predictions as |P| = 100. Our network is
implemented using PyTorch [106]. Feature size D from the last layer of the Decoder
is set to D = 256. Both human-object bounding box classifiers and verb and noun
predictors are 2-layer perceptrons with ReLU activation in between.Initial learning rate
is set to 10−6 for the ResNet backbone and 10−5 for the rest of the parameters. We use
weight-decay to regularize the network with 10−4. We train the network for 150 epochs
with an effective batch size of 16 over 8 GPU Titan cards. We decay the learning rate
linearly with 10−1 after epoch 100.

5.4 E X P E R I M E N T S

Datasets. We experiment on two large-scale standard datasets, namely HICO-DET [17]
and V-COCO [52]. i) HICO-DET contains 38k images for training and 9.6k images for
testing. Images contain 117 distinct verbs and 80 distinct nouns together, making 600
<verb, noun> pairs. For each noun, there exists a case of ”no-interaction”, where at
least a single human and the target object is visible, even though not interacting. We only
use HO-I alignment annotations for testing, and not training, since our goal is to evaluate
HO-I detection via image-level supervision. ii) V-COCO builds upon MS-COCO [89]
where the authors annotate subset of images with human-object alignments and their
(inter-)action. The type of interactions is riding, reading and smiling. The dataset exhibits
2.5k images for training, 2.8k images for validation, and 4.9k images for testing.
Metric. We use the mean Average Precision (mAP) metric for evaluation as is the
standard [17, 52]. A human-object interaction is true positive only if both humans and
objects have an Intersection-over-Union with a ground-truth HO-I pair above > 0.50 and
they are assigned to the correct interaction categories.
Evaluation. i) HICO-DET: We use the evaluation code presented in the server [3].
We compute the mean over all three splits of full, rare, and non-rare in HICO-DET.
We provide comparison on three standard splits. Full: All 600 categories, Rare: 138
categories with less than or equal to 10 training instances, Non-Rare: 462 categories
with more than 10 training instances. ii) V-COCO: We use the evaluation code presented
in authors’ code [1]. We evaluate using three different standard scenarios. Agent: We
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report the human interactor detection performance, Scenario-1: We report the detection
of humans and objects together, Scenario-2: We report the detection of humans and
objects where the object predictions for object-less interactions (i.e. smiling) is ignored.
Baselines. We compare Align-Former to i) Weakly-supervised HO-I detectors: PPR-
FCN [150] and MX-HOI [78] that performs HO-I detection without alignment supervi-
sion. ii) Strongly-supervised variants: To measure the upper bound performance as a
reference, we also report MX-HOI and Align-Former performance via strong alignment
supervision.

5.5 E VA L UAT I O N

5.5.1 Comparison to The State-of-The-Art

Method Backbone Alignment-Supervised? Full Rare Non-Rare

PPR-FCN [150] ResNet-101 ✗ 15.14 10.65 16.48
MX-HOI [78] ResNet-101 ✗ 16.14 12.06 17.50
Align-Former (ours) ResNet-50 ✗ 19.26 14.00 20.83
Align-Former (ours) ResNet-101 ✗ 20.85 18.23 21.64
MX-HOI [78] ResNet-101 ✓ 17.82 12.91 19.17
Align-Former (ours) ResNet-50 ✓ 25.10 17.34 27.42
Align-Former (ours) ResNet-101 ✓ 27.22 20.15 29.57

Table 12: Human-Object Interaction Detection mAP on HICO-DET [17]. Our method
outperforms existing techniques over all splits of full, rare, and non-rare.

HICO-DET Results are presented at Table 12. Overall, Align-Former outperforms the
other two techniques by 3.12 mAP via ResNet-50 and 4.71 mAP via ResNet-101 on all
categories. This confirms that HO-I detection benefits from the end-to-end alignment of
the targets and the predictions. Our improvement is even more pronounced on the rare
split via 6.17 mAP using ResNet-101, exhibiting the sample efficiency of our technique.

Method Backbone HICO-DET Pre-Trained? Alignment-Supervised? Agent Scenario 1 Scenario 2

Align-Former ResNet-50 ✗ ✗ 24.63 13.90 14.15
Align-Former ResNet-50 ✓ ✗ 27.95 15.52 16.06
Align-Former ResNet-101 ✗ ✗ 20.00 10.44 10.79
Align-Former ResNet-101 ✓ ✗ 30.02 15.82 16.34
Align-Former ResNet-50 ✗ ✓ 66.78 50.20 56.42
Align-Former ResNet-101 ✗ ✓ 68.00 55.40 62.15

Table 13: Human-Object Interaction Detection mAP on V-COCO [52]. Even though the
performance is limited when trained from scratch on V-COCO, HICO-DET pre-training
yields a considerable improvement on V-COCO.
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Figure 27: Verb-level Performance on
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Figure 28: HO-I detector confidence w.r.t.
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HICO-DET [17].

V-COCO Results are presented at Table 13. We only compare to our own baselines 2. We
evaluate two different settings. i) Training on V-COCO from scratch: Since the number
of training images are quite limited (only 2k examples), training on V-COCO without
alignment supervision yields limited accuracy on all three settings. ii) Transfer learning
from HICO-Det: where we fine-tune a HICO-DET pre-trained model on V-COCO. In
all cases, pre-training on HICO-DET helps significantly. As one of the major goal of
annotation-free training is the ability to pre-train on large-scale benchmarks, we see this
as a promising direction in HO-I detection with cheap image-level supervision.

We confirm that our model yields competitive performance on HICO-DET against
competing benchmarks on all full, rare and non-rare splits, and showcases promising
first results without alignment supervision on V-COCO, especially via transfer learning.

5.5.2 Further Analysis

In this section, we provide analysis to better understand the contribution of Align-Former.
Verb-level Performance Comparison. We visualize verb-level performance difference
between weakly supervised Align-Former and MX-HOI in Figure 27. We observe that
Align-Former outperforms for pose and part-driven interactions like adjust, swing or
kiss, while underperforming for scene-driven interactions like pay or turn. This indicates
end-to-end learning of pose-based representations is more valuable than hand-crafted
pose representations as in MX-HOI. For more results, refer to our Supp. material.
W/ vs. W/O Alignment Supervision. To better understand the gap between strongly
vs. weakly supervised HO-I detection, we provide results of MX-HOI with strong
supervision on HICO-DET in Table 12 as well as strongly supervised Align-Former in
both datasets (Table 12- 13). Our method is flexible as it can be easily trained with strong
and weak supervision with no change in architecture, whereas MX-HOI ensembles two
CNNs (a weak [150] and strong [53] CNN) to do so.

We have three main findings. i) Weakly-supervised Align-Former outperforms strongly
supervised MX-HOI on HICO-DET (Table 12), which indicates our method compensates

2 Neither of the existing baselines (PPR-FCN and MX-HOI) evaluates on V-COCO. Additionally, strongly
supervised stream of MX-HOI (No-Frills HO-I [53].) also is not evaluated on V-COCO
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for the lack of supervision with its representational power. ii) Strongly supervised Align-
Former outperforms weakly supervised Align-Former on both datasets (Table 12- 13).
This shows Align-Former better leverages the supervision when is used, and there is a
room for improvement in weakly-supervised techniques. iii) In Figure 28, we plot the
confidence of strongly vs. weakly supervised Align-Former as a function of number of
HO-I tuples in an image on HICO-DET. As can be seen, strongly-supervised variant
retains its performance whereas weakly-supervised degrades in confidence, which may
help explain the performance gap between the two variants of Align-Former.
ResNet-101 vs. ResNet-50. We implement Align-Former with ResNet-50 and 101. Even
though we do not observe significant difference at the verb- or object- level, the difference
is at the interaction-level. Our findings are: i) ResNet-101 outperforms ResNet − 50
on both datasets across all settings, ii) Surprisingly, ResNet-101 outperforms especially
on the rare split of HICO-DET, and exhibits better transferability to V-COCO, despite
higher number of parameters.
Qualitative Inspection. i) Attention Analysis: To understand where Align-Former is
looking at to perform HO-I alignment and detection, we present the attention matrix for a
set of queries from the last layer of the Decoder in Figure 29-(a). We observe that Align-
Former attends on body-parts when the visual information is sufficient, and full-body
when the human-object has small scale. ii) Qualitative Results: Finally, we visualize
high-confident detection examples in Figure 29-(b). We observe that Align-Former can
detect both dynamic interactions like <kick, sports ball> or static interactions
like <eat, sandwich>. However, our method fails when humans can not be paired
with their object of interaction, as is visualized in the bottom row.

5.6 C O N C L U S I O N

This paper addressed HO-I detection from images. We proposed Align-Former, a visual-
transformer based CNN that can learn to detect HO-I without alignment supervision,
via image-level supervision. We equip Align-Former with HO-I align, a novel layer
that learns to select correct detection targets based on geometric and visual priors. We
show that Align-Former outperforms existing techniques for HO-I detection on HICO-
DET especially on rare HO-I, and yields promising results on V-COCO, confirming
the efficacy of our method. We hope our work inspires future research on reducing
supervision in HO-I detection.
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Figure 29: a) Attention analysis of Align-Former reveals the focus on body-part and
full-body. b) Qualitative analysis of Align-Former reveals it can detect both dynamic and
static interactions.
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S U M M A RY A N D D I S C U S S I O N

6.1 S U M M A RY

This thesis proposes a contextual understanding of human-object interactions. We
alleviate the challenge of human-object interaction understanding by incorporating
multiple sources of context into deep learners. We first investigate the sources of
contextual information in interactions, by studying the visual extent of human-object
interactions in Chapter 2. We observe that the locality and compositionality of the
human-object interactions play a significant role in interaction understanding. Then, we
develop multiple sources of local contextual information in Chapter 3, which we show
to help drastically in interaction recognition. Then, we incorporate the compositional
context between the human interactor and the object interactee to perform interaction
search within large image databases in Chapter 4. With the observation that given an
image, only few human-object pairs are in an interaction, we incorporate sparsity context
to perform interaction detection in Chapter 5.

Chapter 2: Where is the Interaction Context? An Empirical Study

Chapter 2 studies the visual extent of human-object interactions. Visual human-object
interactions are hard to pinpoint in an image. Where objects and subjects have clear
boundaries, their interaction does not. In this work, we try to pinpoint the human-object
interactions from a single image by studying their visual extent. Where is the visual
evidence for the interactions in an image? We start from observable regions like the
subject and the object to determine which region is effective in learning to recognize
interactions. Then, we devise an oracle strategy to determine the region that yields the
best recognition performance. This provides an upper bound for interaction recognition
in our setting. Finally, we explore the importance of visual details within this limited
region. Our findings show that: i) interactions can benefit from even simple inclusion
of the context into the recognition, ii) finding the best context per image helps even
greater and, iii) small details around the intersection of subject-object is important in
recognition.

Chapter 3: Self-Selective Context for Interaction Recognition

This chapter studies the local context of human-object interactions. Human-object
interaction recognition aims for identifying the relationship between a human subject
and an object. Researchers incorporate global scene context into the early layers of deep
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Convolutional Neural Networks as a solution. They report a significant increase in the
performance since generally interactions are correlated with the scene (i.e. riding bicycle
on the city street). However, this approach leads to the following problems. It increases
the network size in the early layers, therefore not efficient. It leads to noisy filter responses
when the scene is irrelevant, therefore not accurate. It only leverages scene context
whereas human-object interactions offer a multitude of contexts, therefore incomplete.
To circumvent these issues, in this work, we propose Self-Selective Context (SSC).
SSC operates on the joint appearance of human-objects and context to bring the most
discriminative context(s) into play for recognition. We devise novel contextual features
that model the locality of human-object interactions and show that SSC can seamlessly
integrate with the State-of-the-art interaction recognition models. Our experiments show
that SSC leads to an important increase in interaction recognition performance, while
using much fewer parameters.

Chapter 4: Structured Visual Search via Composition-Aware Learning

This chapter studies visual search using structured queries. The structure is in the
form of a 2D composition that encodes the position and the category of the objects. The
transformation of the position and the category of the objects leads to a continuous-valued
relationship between visual compositions, which carries highly beneficial information,
although not leveraged by previous techniques. To that end, in this work, our goal is
to leverage these continuous relationships by using the notion of symmetry in equiv-
ariance. Our model output is trained to change symmetrically with respect to the input
transformations, leading to a sensitive feature space. Doing so leads to a highly efficient
search technique, as our approach learns from fewer data using a smaller feature space.
Experiments on two large-scale benchmarks of MS-COCO [89] and HICO-DET [17]
demonstrates that our approach leads to a considerable gain in the performance against
competing techniques.

Chapter 5: Human-Object Interaction Detection without Alignment Supervision

The goal of this chapter is Human-object Interaction (HO-I) detection. HO-I detection
aims to find interacting human-objects regions and classify their interaction from an
image. Researchers obtain significant improvement in recent years by relying on strong
HO-I alignment supervision from [17]. HO-I alignment supervision pairs humans with
their interacted objects, and then aligns human-object pair(s) with their interaction
categories. Since collecting such annotation is expensive, in this paper, we propose to
detect HO-I without alignment supervision. We instead rely on image-level supervision
that only enumerates existing interactions within the image without pointing where they
happen. Our paper makes three contributions: i) We propose Align-Former, a visual-
transformer based CNN that can detect HO-I with only image-level supervision. ii) Align-
Former is equipped with HO-I align layer, that can learn to select appropriate targets
to allow detector supervision. iii) We evaluate Align-Former on HICO-DET [17] and
V-COCO [52], and show that Align-Former outperforms existing image-level supervised
HO-I detectors by a large margin (4.71% mAP improvement from 16.14%→ 20.85%
on HICO-DET [17]).
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6.2 D I S C U S S I O N

In this thesis, we asked ourselves: Can we understand the role of context in single image
human-object interactions? We identified that the context determines the appearance of
an interaction, as illustrated by Figure 1, as without context there is no interaction. To
that end, firstly, we establish that the role of context is to determine the existence of an
interaction. Identifying if there is an interaction is a critical first step, as there could be
multiple humans and objects within an image although not interacting. Secondly, the
role of context is to identify the where of an interaction. Given an input image where we
establish that exhibits an interaction, not all regions are equally viable. Also, amongst
many human and object candidates, only few are in an interaction. Lastly, the role of
context is to identify the what of an interaction. Within the image, after locating the
interaction regions, the final step is to determine the type of the interaction. With the help
of the context, the computer can distinguish amongst a multitude of interactions within
the visual world. Here, one critical set of category is rare interactions, with only few
exemplars within the training data. In this thesis, we establish that the context provides a
stable signal to be able to distinguish rare interactions from the others, for recognizing,
searching and detecting visual interactions.

6.2.1 Future Work

While we tackled visual interaction understanding from different angles of recognition,
search, detection, and generalization, in this part, we discuss the potential ways to further
improve our understanding of visual interactions.

We humans interact with the visual world to understand the properties of objects, such
as material properties or affordances [41]. With interactions, we are able to manipulate
novel objects to meet our daily human needs. In this work, we consider an important
part of that scenario: a passive, static dataset of well curated single images that have
been observed multiple times during training. While useful from Vision-for-Web point
of view, we realize such approach has limitations for Vision-for-Action in real life.

In real life, humans are presented with sequential, multiple views of an object, collected
through movements and tactile sensors. To that end, we see active vision [6, 104] for
interaction as a plausible new direction of exploration. We believe that to fully leverage
the signals present in visual interactions, the computers need to actively acquire visual
data via exploration [23]. As potential interaction is anywhere around us, and when there
are N significant objects in the scene, this active interaction vision is of N**2 complexity,
the new task is quite formidable from the start. We believe, all aspects of human-object
interaction in this thesis may contribute to active interaction vision. To make further
progress, we identify three possible directions for future research.
Generalization from Single to Multiple Modalities. This thesis has focused on the
single modality of visual images. However, interactions can be recorded via multiple
modalities. One modality is tactile, which can be used to represent grasping interac-
tions [127]. Another modality is lingual, which can be represented either via textual
information surrounding the input, or as audio [103]. In instances where the visual modal-
ity does not suffice, one can learn to rely on or one may seek to combine the information
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from multiple modalities. To contribute to this, the self-selective context presented in
Chapter 2 may be re-purposed to determine the relative importance of modalities.
Generalization from Images to Video. This thesis has focused on single images to
understand interactions. To benefit from active exploration and to learn from interactions,
the agents need to be able to process temporal information within a video. A trivial
technique to adapt the presented models for videos would be to run them on each
video frame. This can be implemented in a straight-forward and robust manner, as
our models make no assumption in the processing of single images. While having
the advantage of being simple, this ignores the crucial temporal information which is
helpful in distinguishing between interactions. Adapting models from image to video is
challenging due to domain discrepancies, such as image quality, or translation bias [130]
including the habitual difference of framing between photographs and single video
frames. And finally, for temporal signals like swinging, opening, closing, the additional
task of finding the beginning and the end of the interaction looms. Such interactions may
lead to confusion when treated as a set of separate frames. To alleviate this, one simple
solution is to replace 2D convolutions in our models with 3D counterparts [132].
Generalization from Within-Context to Out-of-Context. This thesis has mostly
focused on within-context examples, where we assume the interactions take place in
their usual context. Riding a bicycle takes place on the street, whereas eating a donut
takes place in a donut shop. Such an assumption is unrealistic in real-life active learning,
since humans can perform similar interactions in a variety of places. To circumvent
this, for achieving context-free detection and recognition, a potential remedy is to
train the models to be invariant against the scene information while optimizing for
interaction understanding performance [24]. This way, the models are forced to choose
representations that are stable across scenes.

But even then, even when properly detecting and categorizing out-of-context common
interactions like shaking hands or eating, the context brings an important interpretation
of the action. To shake hands on top of a mountain is in its meaning quite different
from shaking hands at the doorstep. To eat in a fast food restaurant has a different
meaning than to eat while riding a bicycle. So even when there is an interaction which is
quickly classified as free of context, the context plays an important role in determining
the interpretation.

To conclude, we believe there is still quite some topics to delve deeper in human-object
interaction understanding.
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S A M E N VAT T I N G

Dit proefschrift stelt een contextueel begrip van mens-object interacties voor. Wij verlichten
de uitdaging van het begrijpen van mens-object interacties door meerdere bronnen van context
op te nemen in deep learners. We onderzoeken eerst de bronnen van contextuele informatie in
interacties, door de visuele omvang van mens-object interacties in hoofdstuk 2 te bestuderen.
We stellen vast dat de lokaliteit en de compositionaliteit van de mens-object interacties een
belangrijke rol spelen bij het begrijpen van interacties. Vervolgens ontwikkelen we meerdere
bronnen van lokale contextuele informatie in hoofdstuk 3, waarvan we laten zien dat ze drastisch
helpen bij interactieherkenning. Vervolgens integreren we de compositorische context tussen de
menselijke interactor en de object interactee om interactie te zoeken in grote beelddatabases in
hoofdstuk 4. Met de observatie dat, gegeven een beeld, slechts enkele mens-object paren in een
interactie zijn, integreren we sparsity context om interactie detectie uit te voeren in Hoofdstuk 5.

Hoofdstuk 2: Waar is de interactiecontext? Een empirische studie

Hoofdstuk 2 bestudeert de visuele omvang van interacties tussen mensen en objecten. Visuele
interacties tussen mens en object zijn moeilijk aan te wijzen in een beeld. Waar objecten en
subjecten duidelijke grenzen hebben, is hun interactie dat niet. In dit werk proberen we de
interacties tussen mens en voorwerp in een enkel beeld vast te stellen door hun visuele omvang
te bestuderen. Waar is het visuele bewijs voor de interacties in een beeld? Wij gaan uit van
waarneembare gebieden zoals het onderwerp en het voorwerp om te bepalen welk gebied effectief
is bij het leren herkennen van interacties. Vervolgens bedenken we een orakelstrategie om de
regio te bepalen die de beste herkenningsprestatie oplevert. Dit levert een bovengrens op voor
interactieherkenning in onze setting. Tenslotte onderzoeken we het belang van visuele details
binnen dit beperkte gebied. Onze bevindingen tonen aan dat: i) interacties kunnen profiteren van
zelfs eenvoudige opname van de context in de herkenning, ii) het vinden van de beste context per
beeld nog meer helpt en, iii) kleine details rond het snijpunt van subject-object belangrijk zijn in
de herkenning.

Hoofdstuk 3: Zelf-selectieve context voor interactieherkenning

Dit hoofdstuk bestudeert de lokale context van mens-object interacties. Mens-object interactie
herkenning is gericht op het identificeren van de relatie tussen een menselijk subject en een
object. Onderzoekers nemen als oplossing globale scènecontext op in de eerste lagen van diepe
Convolutionele Neurale Netwerken. Zij melden een aanzienlijke verbetering van de prestaties
omdat interacties in het algemeen gecorreleerd zijn met de scène (een fietsende man in een
stadsstraat). Deze aanpak leidt echter tot de volgende problemen. Het verhoogt de netwerkgrootte
in de eerste lagen, en is daarom niet efficiënt. Het leidt tot lawaaierige filterresponsen wanneer de
scène niet relevant is, dus niet accuraat. Het maakt alleen gebruik van de context van de scène,
terwijl interacties tussen mens en object een veelheid aan contexten bieden en dus onvolledig zijn.
Om deze problemen te omzeilen, stellen wij in dit werk Self-Selective Context (SSC) voor. SSC
werkt op de gezamenlijke verschijning van mens-object en context om de meest discriminerende
context(en) in te zetten voor herkenning. Wij bedenken nieuwe contextuele kenmerken die de
lokaliteit van mens-object interacties modelleren en tonen aan dat SSC naadloos kan integreren
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met de state-of-the-art interactie herkenningsmodellen. Onze experimenten tonen aan dat SSC
leidt tot een belangrijke verbetering van de interactieherkenning, terwijl er veel minder parameters
nodig zijn.

Hoofdstuk 4: Gestructureerd visueel zoeken via compositiebewust leren

Dit hoofdstuk bestudeert visueel zoeken met behulp van gestructureerde zoekopdrachten. De
structuur heeft de vorm van een 2D samenstelling die de positie en de categorie van de objecten
codeert. De transformatie van de positie en de categorie van de objecten leidt tot een doorlopende
relatie tussen visuele composities, die zeer nuttige informatie bevat, hoewel die door eerdere
technieken niet werd benut. Daarom is ons doel in dit werk deze continue relaties te benutten
door gebruik te maken van het begrip symmetrie in equivariantie. Onze modeluitvoer wordt
getraind om symmetrisch te veranderen ten opzichte van de invoertransformaties, wat leidt tot
een gevoelige kenmerkruimte. Dit leidt tot een zeer efficiënte zoektechniek, aangezien onze
aanpak leert van minder gegevens en een kleinere kenmerkruimte gebruikt. Experimenten op
twee grootschalige benchmarks van MS-COCO [89] en HICO-DET [17] tonen aan dat onze
aanpak leidt tot een aanzienlijke prestatiewinst ten opzichte van concurrerende technieken.

Hoofdstuk 5: Mens-voorwerp interactie detectie zonder uitlijningstoezicht

Het doel van dit hoofdstuk is de detectie van mens-object interactie (HO-I). HO-I-detectie
heeft tot doel interacterende mens-objectgebieden te vinden en hun interactie uit een beeld te
classificeren. Onderzoekers hebben de laatste jaren aanzienlijke verbeteringen bereikt door te
vertrouwen op een sterke HO-I alignment supervision van [17]. HO-I alignment supervision
koppelt mensen aan de objecten waarmee ze interageren, en stemt vervolgens mens-objectparen
af op hun interactiecategorieën. Omdat het verzamelen van dergelijke annotatie duur is, stellen
we in dit artikel voor om HO-I te detecteren zonder alignment supervision. In plaats daarvan
vertrouwen we op toezicht op beeldniveau dat alleen bestaande interacties binnen het beeld
opsomt zonder aan te geven waar ze plaatsvinden. Ons artikel levert drie bijdragen: i) We stellen
Align-Former voor, een op visuele transformatie gebaseerde CNN die HO-I kan detecteren met
alleen toezicht op beeldniveau. ii) Align-Former is uitgerust met een HO-I align laag, die kan
leren om geschikte doelen te selecteren om detector supervisie mogelijk te maken. We evalueren
Align-Former op HICO-DET [17] en V-COCO [52], en laten zien dat Align-Former het veel beter
doet dan bestaande HO-I-detectoren met beeldtoezicht (4, 71% mAP-verbetering ten opzichte
van 16, 14% mAP-verbetering op HICO-DET [17]).
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