
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Surrogate modelling and uncertainty quantification for multiscale simulation

Ye, D.

Publication date
2022

Link to publication

Citation for published version (APA):
Ye, D. (2022). Surrogate modelling and uncertainty quantification for multiscale simulation.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://dare.uva.nl/personal/pure/en/publications/surrogate-modelling-and-uncertainty-quantification-for-multiscale-simulation(31a16823-6f56-4fef-a154-37e00f569471).html

Chapter 5

UQ patterns for multiscale
models1

5.1 Introduction

Multiscale modelling and simulation has demonstrated its significance in
computational sciences and engineering [20, 162, 163]. It allows scientists
to study and simulate complex real-world phenomena at different scales and
perspectives. A multiscale model usually consists of multiple single-scale
submodels coupled by scale bridging methods.

Frequently, multiscale models include both epistemic uncertainty and
aleatory uncertainty [164]. The former one is due to lack of the knowledge of
simulation system, e.g. uncertain input parameters, initial conditions, boundary
conditions, etc and the latter one refers to the natural stochasticity in the
system. Therefore, UQ analysis is commonly needed. There are three main
aspects of UQ: forward and inverse uncertainty propagation, and sensitivity
analysis (SA) [4]. The uncertainty propagation deals with how the uncertainties
propagate through the model and to the final output, quantifying the output
uncertainty caused by the input and model uncertainties [6, 165]. Sensitivity

1This chapter is based on: Ye, D., Veen, L., Nikishova, A., Lakhlili, J., Edeling, W.,
Luk, O.O., Krzhizhanovskaya, V.V. & Hoekstra, A.G. (2021). Uncertainty quantification
patterns for multiscale models. Philosophical Transactions of the Royal Society A, 379(2197),
20200072.

85

86 Chapter 5

analysis tackles the question of which uncertainties contribute most to the over-
all model output uncertainty, in the common situation of multiple uncertain
inputs [92, 166]. The implementation of sensitivity analysis is similar to forward
propagation problem but with a more cleverly way to plan and generate samples.
In this work, we will mainly discuss about the forward uncertainty propagation
which is applicable to both UQ analysis and corresponding sensitivity analysis.

The UQ analysis of a multiscale simulation is usually implemented using a
non-intrusive method such as a Monte Carlo method [167], polynomial chaos
expansion [168], or surrogate modelling techniques [169, 170]. By exploiting
the computational structure of multi scale simulation, the cost of a multiscale
UQ can be reduced by relying on a family of recently proposed semi-intrusive
UQ methods [26]. In this manuscript we extend the notion of exploiting generic
computational structure of multiscale simulations to further improve the com-
putational efficiency by identifying generic UQPs, and then implementing the
UQ analysis with these UQPs. In fact, we propose a series of Uncertainty
Quantification Patterns (UQPs) according to the degree of intrusion and ar-
chitecture of multiscale simulation. These UQPs provide basic building blocks
for creating tailored UQ for multiscale models. The UQPs are implemented as
generic templates, which can then be customised and aggregated to create a
dedicated UQ procedure for multiscale applications.

The chapter is arranged as follows. Multiscale Model and Simulation
Framework (MMSF), uncertainty propagation, and semi-intrusive UQ are
introduced in Section 5.2 as they provide the basis upon which the UQPs are
built. Section 5.3 characterises the UQPs and their corresponding optimisation
patterns. Section 5.4 describes the implementation of the UQPs with the
MMSF-based coupling toolkit MUSCLE 3 [171]. Applications scenarios from
the field of plasma fusion physics and reaction-diffusion models are presented
in Section 5.6.

5.2. Background 87

5.2 Background

5.2.1 Multiscale modelling and simulation framework

The Multiscale Modelling and Simulation Framework (MMSF) is a theo-
retical and practical framework to model, characterise and simulate multiscale
phenomena [172, 173]. It provides an abstract way to understand the (computa-
tional) structure of multiscale simulations. Without going into details here, we
will highlight a few notions from the MMSF that will guide the definitions and
design of UQPs. In a multiscale model, two or more processes take place on one
or more spatio-temporal domains at different scales. For each pair of processes,
the relative scale and position of their domains determine the required coupling
between the submodels representing them. An acyclic coupling is that if one
process occurs prior to another, or can be modeled as such. In this case, one
single scale model provides input to the other, and each single scale model is
executed once. A cyclic coupling occurs if the processes occur at the same time
and are time-scale separated. In this case, the slow dynamics (macro) model
calls the fast dynamics (micro) model in an iterative loop, thus executing it
many times.

Information flows through an acyclic model from the inputs and parameters,
through the submodels and the couplings between them, to the QoI produced.
This forms a directed acyclic graph, so that it is possible (although uncom-
mon) for a result to depend on the same input or parameter via two different
dependency paths. However, information will never feed back into a model
that produced an output it depends on. In a cyclic model, information flows
back and forth between two or more submodels, from the macromodel state at
timestep t through the micromodel and then back to the macromodel, where it
informs its state at timestep t + 1. The macromodel state at t + 1 typically
depends on both the state at t and on the input from the micromodel (which in
turn depends on the macromodel state at t as well), so that for cyclic models,
multiple paths to the same dependency are usually present. (They may also
occur if the micromodel saves its state in between runs.)

88 Chapter 5

5.2.2 Uncertainty propagation

In a forward UQ problem, the information propagating through the model
consists of uncertainty. When we deal with propagation of uncertainty in
a multiscale simulation, the parameters, inputs, information passed between
models and the QoIs are random variables. Each model output depends on the
model inputs and the parameters used, and thus the output random variable is
conditional on these dependencies. If two inputs of a submodel have a shared
dependency (e.g. they were produced by two different models which share an
uncertain input or parameter), then the corresponding random variables may
be correlated. As described above, this is rare in acyclic models, but usually
the case in cyclic models. To obtain correct results, care must be taken to
preserve this correlation. For instance, this may prohibit resampling one of the
inputs independently of the other.

5.2.3 Semi-intrusive UQ

A family of semi-intrusive algorithms for multiscale simulation UQ [26] has
been proposed, which provide accurate estimates of output uncertainties at a
significantly reduced computational cost compared to non-intrusive methods.
The methods are semi-intrusive in the sense that they are intrusive only on the
level of the multiscale model, but the single scale components are viewed as
black-boxes. There are two algorithms proposed for semi-intrusive UQ.

The first algorithm is the semi-intrusive Monte Carlo (SIMC) method.
Instead of calling and running the computationally most expensive microscale
submodel repeatedly, an interpolation based on a few calculations of the original
model is used to reduce the computational cost. For instance, at timestep t, the
macro model passes a sample of size n of output {uti}ni=1 to the micro model
and asks for a corresponding response {vti}ni=1. The number of executions of
the micro model is significantly reduced if an interpolation based on {vti}n̂i=1,
where n̂≪ n, is applied to achieve the rest of response {vti}ni=n̂+1. The exact
interpolation method can be selected depending on the particular model. At
the same time, a validation using the training dataset {vti}n̂i=1 is carried out to
estimate how much the UQ estimation would be affected by the interpolation

5.3. Uncertainty quantification patterns 89

error. It is quantified by εE = |E[ut+1]− E[ût+1]| and εσ = |σ[ut+1]− σ[ût+1]|
statistically, where ût+1 is the macro output based on the interpolation at the
next time step. If they are larger than a set threshold, the training sample size
can be increased or another approximation method can be tested. The second
algorithm is semi-intrusive metamodelling, where the most computationally
intensive submodel is replaced by a surrogate model, which approximates the
model output with a relatively low computational cost.

The design of UQPs is mainly inspired by the semi-intrusive concept, where
the coupled structure of multiscale model is explored. And the semi-intrusive
algorithms mentioned above are the prototypes of some of the UQPs (i.e. from
semi-intrusive Monte Carlo to UQP3-A, from semi-intrusive metamodelling to
UQP2/3-B). However it is important to note that the implementation of UQP
is not limited a specific method. For example, although we designed UQP3-A
with semi-intrusive ’Monte Carlo’ algorithm, the interpolation-based method
mentioned above can also be applied to other UQ methods, such as polynomial
chaos expansion (non-intrusive) [168] or stochastic collocation [168] in which a
number of simulations have to be carried out for UQ analysis.

5.3 Uncertainty quantification patterns

In this section, we characterise the details of UQPs and the corresponding
optimisation methods. An overview of the UQPs is shown in Figure 5.1. We
categorise the UQPs according to the degree of intrusion and architecture of
multiscale simulation. The first category, UQP1, is a pattern which represents
the commonly used non-intrusive methods. UQP2 and UQP3 are based on semi-
intrusive methods and apply to acyclic and cyclic multiscale models respectively.
In addition, we consider two ways to optimise the computational efficiency:
efficient sampling (A) and surrogate modelling (B). Efficient sampling refers to
sampling techniques more efficient than basic methods and hence reduce the
number of samples required to perform UQ for the given set of input parameters.
Surrogate modelling refers to replacing the computationally expensive model
or submodel by a surrogate. The surrogate model approximates the behaviour
of the original model at a lower computational cost.

90 Chapter 5

Figure 5.1: The summary of uncertainty quantification patterns. UQP1 is
taken as a black-box pattern where the general non-intrusive UQ methods can
be applied. UQP2 and UQP3 are based on the semi-intrusive UQ methods
which exploit the coupling in multiscale simulations to improve the efficiency of
UQ. Each pattern can further improve the computational efficiency by applying
efficient sampling (A), or surrogate modelling techniques (B).

5.3.1 UQP1: non-intrusive pattern

Consider a prototypical multiscale model consisting of two submodels, F and
G, coupled together in the most general sense, either acyclic or cyclic, as shown
in Figure 5.2(a) by green arrows. Both submodels F and G take uncertain
inputs, e.g. initial conditions, boundary conditions, or model parameters
(shown by blue incoming arrows) and both produce QoIs with uncertainties
(the red outgoing arrows). The simplest UQP, called UQP1, does not exploit
the multiscale simulation structure, and considers the multiscale model as a
black box that has inputs and produces outputs. As shown in Figure 5.2(b),
the UQ is performed by using non-intrusive methods on the application as a
whole, and quantifying the uncertainty relative to a QoI that is part of the final
application output.

To optimise the computational efficiency of UQP1, one can apply advanced
sampling methods to reduce the total number of runs of the simulation (UQP1-
A). In addition, a low-cost surrogate model can be built based on the mapping
between uncertain inputs and the QoI to replace the model as a whole (UQP1-

5.3. Uncertainty quantification patterns 91

Figure 5.2: (a) Prototypical multiscale model. F and G are two submodels
of a multiscale simulation coupled in a general sense. Both submodels take
uncertain inputs and output QoIs with uncertainties (b) UQP1 considers the
multiscale model as a black-box that has inputs and produces outputs

B). Although this is the most common way to implement the UQ analysis for
a computational model, the method can be computationally prohibitive for
many multiscale applications that require significant computational resources.
Therefore, in the next section, we discuss how the multiscale structure of such
applications can be exploited in order to perform uncertainty propagation more
efficiently.

5.3.2 UQP2: semi-intrusive acyclic pattern

According to the coupling topology of the multiscale simulation, a main
distinction can be made between acyclic and cyclic multiscale models. In case of
acyclic structure, uncertainty propagates in one direction through the multiscale
model. Output uncertainty of one single component creates input uncertainty
of another component. UQP2 performs non-intrusive UQ on consecutive single
components in an acyclic model (see Figure 5.3).

There are two important advantages of applying UQP2: transparency and
efficiency. UQP2 makes it possible to investigate how uncertainty propagates
and amplifies within each component of the model. UQP2 can be realised
as a sequential application of UQP1 (Figure 5.3). After applying UQP1 to
submodel F, the data to be sent to submodel G has now turned into an uncertain
output, which is then converted into uncertain input for submodel G. Therefore,

92 Chapter 5

Figure 5.3: UQP2: Semi-intrusive acyclic pattern. UQP2 performs non-intrusive
UQ on submodels. After applying UQP1 to submodel F, the data to be sent to
submodel G has now turned into an uncertain output which then is converted
into uncertain input for submodel G.

UQP2 makes uncertainty propagation more transparent and provides additional
information on uncertainty as it propagates between submodel levels.

The second important advantage of UQP2 is that it introduces different ways
of improving the computational efficiency of corresponding UQ analysis. One
way to obtain better efficiency is to apply resampling: samples of the output of
one submodel can be used to approximate the probability density function of
this output. Then, this output can be considered along with other uncertain
inputs of the next submodels and, therefore, uncertainty propagation of this
submodel can be performed independently of the analysis of the previous one.
This allows applying the most efficient uncertainty propagation methods for each
of the single-scale models. This also allows for a more flexible implementation of
UQP2-A, in which sampling for each submodel can apply a different advanced
sampling method. Another way to improve the efficiency for acyclic multiscale
models is to build a metamodel of the most expensive single scale model.

5.3.3 UQP3: semi-intrusive cyclic pattern

For cyclic multiscale models, we propose UQP3 as shown in Figure 5.4.
UQP3 again performs non-intrusive UQ on individual single components. Com-
pared to the UQP2, in UQP3 we add the Coordinator module between the
submodels, to orchestrate the data flows. For UQP3, resampling cannot be
applied as it can be for acyclic UQP2 workflows, because the models alternate

5.3. Uncertainty quantification patterns 93

Figure 5.4: UQP3: Semi-intrusive cyclic pattern. UQP3 again performs non-
intrusively on consecutive single components. Compared to UQP2, UQP3 has
an additional box (Coordinator) between the submodels, to orchestrate the
subsampling, interpolation, and statistical testing of the interpolation.

to modify the model’s state, which causes their states and parameters to become
correlated as we explained in Section 5.25.2.2. The output of the first model
must be sampled conditionally on the value of the shared parameters for the tar-
get second model instance. Therefore, instead of resampling, the semi-intrusive
Monte Carlo method (explained in Section 5.25.2.3) can be applied to improve
the efficiency (UQP3-A). Using the Coordinator between the submodels, one
can deploy the corresponding interpolation and the statistical validation. For
cyclic multiscale models, the states of the submodels become correlated even if
their parameters are separated, through the repeated communication between
the submodels. UQP3-A can be applied in this situation as well. Additionally,
it is important to note that the implementation of UQP3-A is not limited to the
Monte Carlo methods. Other UQ methods, such as polynomial chaos expansion
or stochastic collocation, can be applied to reduce its computational cost and
improve the efficiency of the multiscale UQ analysis.

For UQP3-B, again each submodel can be replaced by a surrogate model
that produces an approximation significantly faster than the original submodel.
In a time-scale separated coupling, the micro model will run many more time
steps than the macro model, so it is usually the target for surrogate modelling.
A distinction can be made between stateful and stateless submodels. In a
stateful case, the output of the mircomodel depends on all previous inputs.
Timescale overlapping couplings are similar to timescale separated couplings

94 Chapter 5

with a stateful micro model, but will not be discussed further here.
Besides, the Coordinator in UQP3 allows to implement UQ with an online

surrogate model. Instead of deploying a pre-trained surrogate model, one can
dynamically and adaptively train and test the surrogate model during the
UQ implementation. Such process is similar to the concept of active learning
[109, 174], but embedded in a UQ procedure. This concept of online surrogate
model can be an interesting research topic to further improve the computational
efficiency of UQ.

5.4 Implementing UQPs using MUSCLE3

In this section we describe how the UQPs can be implemented using the
Multiscale Coupling Library and Environment (MUSCLE 3)[171]. MUSCLE 3
is a coupling framework that is designed for coupling temporally and/or spatially
scale-separated multiscale models. In a MUSCLE 3 simulation, submodels run
simultaneously as separate programs and exchange information via the network,
through the libmuscle library. Each submodel has one or more ports, which
are named connectors through which it sends and receives messages. The ports
of the submodels are connected by MUSCLE according to a description in a
configuration file based on an extended version of the Multiscale Modelling
Language [172]. As a result, substituting one submodel for another or adding
in generic components that help implement the UQPs is as simple as changing
the configuration file. As a result, different configurations of the model can be
tracked simply by storing a file for each, which is much easier than having to
manage multiple parallel versions of the submodels’ source code. Here, we will
use a graphical representation of MML to depict the required couplings.

The configuration file also contains model settings (parameters and other
configuration), and MUSCLE 3 has a mechanism through which one model
component can send new settings to another component. This settings overlay
overrides global settings, and is automatically propagated to subsequent con-
nected components. Many copies of a (sub)model can be instantiated, which
combined with the settings overlay allows implementing UQ, as described below.

5.4. Implementing UQPs using MUSCLE3 95

5.4.1 UQP1: non-intrusive pattern

The UQPs are flexible with respect to which specific UQ methods are used.
In this section, we use plain Monte Carlo as an example, as it is simple and
well-known. The Monte Carlo method for performing a forward UQ comprises
three steps: 1) sampling the uncertain parameters n times, 2) running the
model once for each sampled value, and 3) calculating statistics of the resulting
set of the outputs. For a multiscale model coupled using MUSCLE 3, this
can be implemented by adding two additional components, a Sampler which
samples the uncertain parameters, and an Analysis component, which calculates
statistics, and connecting them to n instances of the original model (Figure 5.5a).
The Sampler produces n samples and sends them to its samples_out port. This
is a vector port (shown by the square brackets), which is used to connect to a set
of submodel instances, rather than to a single instance. It is connected to the
muscle_settings_in scalar port of the existing model. This port implements
the settings overlay mechanism described above, so that each instance of the
original model will run with the corresponding parameters. The output of
the model runs is then sent to the Analysis component, which receives both
the results and the parameter overlay for each instance, which gives it all the
information it needs to calculate the required statistics.

In order to implement UQP1-B, a surrogate model needs to be constructed,
and substituted for the original model. This can be done by changing the
configuration file to wire in the new component instead of the original model.

5.4.2 UQP2: semi-intrusive acyclic pattern

In UQP2, we apply UQP1 to each of two models coupled sequentially
(Figure 5.5b). The Sampler and Analysis components of UQP1 are reused
here. Alternatively, two separate Analysis modules can be used, one for each
submodel. In this case, only marginal distributions and correlations among each
submodel’s QoIs can be estimated, but not correlations between the different
submodels’ QoIs. The submodels remain unchanged, as in UQP1.

To allow the use of different ensemble sizes or UQ methods for the two
submodels (UQP2-A), a Resampler component is added in between. It receives

96 Chapter 5

Figure 5.5: Implementing UQPs using MML and MUSCLE 3: a) UQP1, b)
UQP2-A and c) UQP3-A. Boxes represent components with their number of
instances in the top-right corner, dashed boxes are placeholders for submodels,
which are substituted into the pattern. Lines denote conduits through which
data may be sent. An open diamond receives initialisation data, a closed
diamond sends the final result, a closed circle sends an intermediate output
at each time step, and an open circle receives state or boundary conditions at
each time step.

n outputs of the first submodel on its vector port in, and converts those into
m inputs for the second submodel, which it sends on its vector port out. Like
the Analysis component, the Resampler receives both the first submodel’s
output and its settings overlay. It is used to produce a new set of settings
and corresponding inputs, and sends those on to the second submodel. Using
surrogate models for individual submodels (UQP2-B) can be done just as
for UQP1 by changing the configuration to substitute a surrogate for the
component.

5.4. Implementing UQPs using MUSCLE3 97

5.4.3 UQP3: semi-intrusive cyclic pattern

Cyclic coupled models of time-scale separated processes consist of a macro
model that at each time step calls a micromodel, which runs to convergence
and sends a result back to the macro model. To implement UQP3, we can first
apply UQP1 by connecting the Sampler and Analysis components to the macro
model, and instantiating n copies of both submodels (see Figure 5.5c). Here
too parameters will be automatically propagated to the micromodel, and both
submodels remain unchanged.

For UQP3-A, the semi-intrusive Monte Carlo method explained in Sec-
tion 5.25.2.3 is applied. The algorithm is generic, but the specific interpolation
function used is model-specific. We therefore refine the scheme from Section 5.3
slightly, adding the generic Coordinator component, which implements the
generic algorithm, but attaching to it a model-specific Interpolator, which
interpolates the micromodel output in a model-specific manner (Figure 5.5c).

The Coordinator component, being wired in in between the two sets of
submodel instances, intercepts messages from each ensemble member, including
the parameters for that ensemble member. Messages from the initial m macro
model instances are sent on to their corresponding micromodel instances, and
the replies are then passed back. Thus, these ensemble members run normally.
However, the micromodel outputs and their corresponding parameter settings
are also sent to the Interpolator, which stores them. The remaining n −m

messages and parameters are not forwarded to the micromodel, but instead the
parameters are sent by the Coordinator to the Interpolator, which interpolates
the previously stored messages to produce estimates of the micromodel output
for the remaining n−m parameters. It sends these back to the Coordinator,
which forwards them on to the corresponding macro model instances. Thus,
the remaining n −m ensemble members use interpolated values, saving this
many runs of the micromodel. Once micromodel results have been sent for all
ensemble members, the macro model proceeds to its next time step. A more
advanced version of the algorithm adds a validation step and dynamically adds
more actual micromodel runs until the Interpolator returns results of sufficient
quality.

98 Chapter 5

For UQP3-B, a (pre-trained) surrogate can be substituted for the micromodel
by changing the configuration. Training a surrogate while running can be
done in a similar manner, substituting a surrogate model for the Interpolator.
This requires the Coordinator to work slightly differently, sending micromodel
input/output pairs, rather than parameters/output pairs. If the micromodel is
stateful, then its output at time t depends on all messages sent to it at previous
simulation time steps. In this case, the messages must be accumulated either
by the Coordinator or by the surrogate model to produce a good prediction.

5.5 Speed-up of UQPs

The motivation to perform UQ with one of the proposed UQPs is the speed-
up that can be obtained by exploiting the multiscale structure of multiscale
models. Hence, here we estimate possible gains in the computational time from
the proposed algorithms.

Practical multiscale models often exhibit a dramatic difference between the
computational cost of the single-scale models. Here, for the sake of simplicity,
we consider a case of a multiscale model with two submodels: a computationally
cheap macro model M and an expensive micro model µ. In this case, the
computational cost of UQ will come mostly from the uncertainty propagation
through the computationally expensive micro model. Therefore, below we
discuss how the cost of UQ at the micro level is decreased when the proposed
UQPs are applied.

5.5.1 Acyclic coupled models

UQP1

Let us consider an uncertainty estimation method, where the number of
samples grows exponentially with the number of uncertain inputs. An example
of such a method may be a quadrature rule. Let us denote by n the number of
samples for each uncertain input parameter, and by dM and dµ, the number
of uncertain inputs for the macro and micro models, respectively. Then, the

5.5. Speed-up of UQPs 99

computational cost of UQ stemming from the micro model in UQP1 is given by

CUQP1µ = ndM+dµCµ, (5.1)

where Cµ is the computational cost of one execution of the micro model.

UQP2-A

First, let us consider an example, where the micro model is run first in an
acyclic multiscale model. When UQP2 is applied to this example, the UQ cost
for the micro model is

CUQP2-Aµ
= ndµCµ (5.2)

and the speed-up of the semi-intrusive approach UQP2 over the non-intrusive
UQP1 is

CUQP1µ

CUQP2-Aµ

=
ndM+dµCµ

ndµCµ
= ndM . (5.3)

Alternatively, when the micro model is run after the macro model, the UQ
cost on the micro scale is

CUQP2-Aµ
= ndµ+dyCµ, (5.4)

where dy is the dimensionality of the macro model output. In this case, the
speed-up is

CUQP1µ

CUQP2-Aµ

=
ndM+dµCµ

ndµ+dyCµ
= ndM−dy . (5.5)

Therefore, a speed-up is obtained if dM > dy.

UQP2-B

In the semi-intrusive acyclic UQP2-B algorithm, the expensive micro model
is replaced by a surrogate and then a standard method, like the Monte Carlo,
can be applied for UQ. Therefore, here we assume that N is the total number
of multiscale model runs (which may or may not depend on the number of
uncertain inputs), and Ñ is the total number of expensive micro model runs

100 Chapter 5

such that Ñ ≪ N . The rest of the samples (N − Ñ) are obtained using a
surrogate that produces an approximation of the micro model results, but in a
significantly shorter computational time:

CUQP2-Bµ
= ÑCµ + (N − Ñ)C∗

µ, (5.6)

where C∗
µ is the computational cost of receiving one prediction from the surro-

gate. Then, the speed-up is

CUQP1µ

CUQP2-Bµ

=
NCµ

ÑCµ + (N − Ñ)C∗
µ

, (5.7)

where a speed-up is achieved when C∗
µ < Cµ.

5.5.2 Cyclic coupled models

UQP1

In the cyclic case, the cost of UQ from the micro model is the number of
samples N required to obtain a reliable estimation of uncertainty, multiplied
by the total number of times the micro model is called per simulation N∆tM :

CUQP1µ = N∆tMNCµ, (5.8)

UQP3-A

The idea of UQP3-A is to run the expensive micro model a significantly
lower number of times, i.e. Nµ ≪ N . The rest of the samples of the micro
model response are obtained applying the interpolation with these Nµ samples
used as training set. Therefore, the total computational cost of UQ on the
micro level is

CUQP3-Aµ
= N∆tM

(
NµCµ + (N −Nµ)C

∗
µ

)
, (5.9)

5.6. Case studies 101

where C∗
µ is the cost to obtain one sample using the interpolation. The speed-up

is then

CUQP1µ

CUQP3-Aµ

=
N∆tMNCµ

N∆tM
(
NµCµ + (N −Nµ)C∗

µ

) =
1(

Nµ

N + (1− Nµ

N)
C∗

µ

Cµ

) . (5.10)

Hence, if Nµ ≪ N and the obtained interpolation produces the micro model
approximation much faster than the original micro model, i.e. C∗

µ ≪ Cµ, then
a significant speed-up is obtained.

UQP3-B

In UQP3-B, instead of the expensive micro model, a pretrained surrogate is
used that requires C∗

µ to execute. Therefore,

CUQP3-Bµ
= N∆tMNC

∗
µ + Ck, (5.11)

where Ck is the cost of constructing the surrogate, for instance, sampling and
training. This would provide the speed-up

CUQP1µ

CUQP3-Bµ

=
N∆tMNCµ

N∆tMNC
∗
µ + Ck

=
Cµ

C∗
µ + 1

N∆tMNCk

. (5.12)

Hence, as it is for the previous UQP, the cost of the surrogate C∗
µ together with

the one to obtain it will define the magnitude of the speed-up.

5.6 Case studies

In this section, we present two case studies, acyclic and cyclic, that illustrate
the efficiency gained when UQ is performed according to the UQPs.

5.6.1 Case study one: acyclic multiscale application

To demonstrate the acyclic multiscale case, we present a plasma fusion
physics model comprising two single-scale deterministic models: (1) a Transport
solver, which evolves temperature profiles of the plasma at the macro time scale,

102 Chapter 5

and (2) a 2D Equilibrium model, which updates the plasma geometry [175].
These two submodels are performed using serial codes that take respectively
10 ms and 1-5 s per run. Thus the equilibrium model is much more expensive
to run computationally. In the previous work, we have carried out the UQ
with non-intrusive methods (UQP1) like the quasi Monte Carlo method and
polynomial chaos expansion (PCE) [176, 177]. With a small number of uncertain
parameters we can run each code with a low number of samples. To further
improve the computational efficiency of the UQ, here we use UQP2 by applying
UQP1 to each submodel with PCE and exploit the resampling in between
submodels to achieve extra speedup.

We consider six uncertain parameters coming from external heating sources
and boundary conditions (4096 samples using PCE with a cubic polynomial
[176]). The first UQP1 box (1D transport model) calculates the distribution of
electron temperatures Te as an output. The second UQP1 box (2D equilibrium
model) takes Te as input and calculates the plasma pressure P . In this case,
the quantity Te is a smooth profile evaluated across the radial grid coordinates
ρtor. Thus, the output of the first UQP1 box is a very high-dimensional,
strongly (serially) correlated distribution. In order to reduce both correlation
and dimensionality, we approximate each Te sample with a cubic BSpline [178]:

Te(ρtor) =
4∑

i=1

CiPi(ρtor), (5.13)

Figure 5.6: Descriptive statistics and complete range of the pressure P .

5.6. Case studies 103

where, Pi is a piece-wise polynomial of degree 3 and Ci are the spline
coefficients. We then resample Ci, allowing us to perform UQ for the equilibrium
with less cost and sufficient accuracy.

The descriptive statistics as well as the complete range of the output pressure
P with respect to the radial coordinate ρtor are shown in Figure 5.6, and they
correspond to the expected values [176, 179]. The results between UQP1 and
UQP2 are qualitatively the same: the differences between output means of each
UQPs are at the order of O(10−5). The main advantage in this case study is
the flexibility given by the usage of UQP2, where we can easily perform a size
reduction for an expensive code without affecting the other submodels. In this
case, this improved performance by almost a factor of 2 compared to the UQP1
with PCE, which is a fairly good result since the the most expensive model (the
equilibrium) needs 3 uncertain parameters C1, C3 and C4 (C2 = C1 to force
the derivative to be zero on ρtor = 0) instead of the initial 6 parameters.

Note that MUSCLE3 was not applied in this example since the work was
done to prove the concept of UQP2 before the development of MUSCLE3.
A fairly large amount of effort has been spent on wiring up submodels and
resetting inputs/outputs. This also implies the importance and convenience
of applying MUSCLE3 in UQP2 or UQP3 case in which the structure (resam-
pling/coordination in between the submodels) or the component (replacing
the original submodel with a surrogate model) of a multiscale model might be
changed.

The example demonstrated above is the first step toward our final goal: the
uncertainty quantification for the complete fusion model, in which two more
submodels are involved: a full 3D gyrofluid model that determines the fluxes,
and a module that converts these fluxes to transport coefficients (required
inputs to Transport model). Contrary to the example above, the complete
fusion model is a cyclic model. In the future, we plan to apply UQP3 to the
complete cyclic plasma fusion model with the support of MUSCLE3.

104 Chapter 5

5.6.2 Case study two: towards a cyclic multiscale application

In this section we will give a demonstration towards UQP3-B, i.e. a cyclic
multiscale model with surrogate optimization. Specifically, we will focus on
the two-dimensional Gray-Scott reaction-diffusion model[180], in which two
chemical species U and V react according to U + 2V → 3V and V → P .
The system is modelled by a set of partial differential equations for the local
concentrations of U and V , denoted by u(x, y, t) ∈ [0, 1] and v(x, y, t) ∈ [0, 1].
The quantities of u and v are non-dimensional, and the values of 0 and 1
represent the minimum and maximum local concentrations respectively. We
introduce the decomposition u = ū+u′ and v = v̄+ v′, where ū and v̄ represent
the macroscopic concentrations, defined as the part of u and v which we are able
to resolve on a spatial grid of 128× 128 nodes. Conversely, u′ and v′ represent
the unresolved microscale spatial components. The macroscopic governing
equations are as follows:

∂ū

∂t
= Du∇2ū− ūv̄2 + f (1− ū) +Gu(u, v), (5.14)

∂v̄

∂t
= Dv∇2v̄ + ūv̄2 − (f + k) v̄ +Gv(u, v). (5.15)

Chemical U is added to the system at a feed rate given by the model constant
f , and V is removed at a ‘kill’ rate f + k, where k is another model constant.
We specify diffusion coefficients Du = 2 · 10−5 and Dv = 10−5, and use a
2.5 × 2.5 spatial domain with periodic boundary conditions. The nonlinear
reaction term R(u, v) := uv2 does not commute with the projection operator,
i.e. R(u, v) ̸= R(ū, v̄), which gives rise to two additional unclosed subgrid-scale
terms Gu and Gv. Hence, the microscopic scales arise due to the part of the
nonlinear reaction term that cannot be resolved on our macroscopic grid, i.e.
uv2 − ūv̄2.

Our aim here is to close the system by replacing Gu and Gv with data-
driven surrogate models. We generate a database of training data by solving
the Gray-Scott equations for u and v at a high spatial resolution of 512× 512

nodes. Instead of creating a surrogate for the spatially dependent subgrid-scale

5.6. Case studies 105

terms, we create the so-called reduced surrogates [181]. These are specifically
geared towards predicting global (i.e. spatially integrated) QoIs of the form

Qi(t) =
1

A

∫ ∫
qi(ū, v̄;x, y, t) dxdy. (5.16)

Here, qi is some function of the primitive variables and A is the area of the
spatial domain. For instance, let us define our QoIs by the following set of
integrands: {q1 = ū, q2 = ū2, q3 = v̄, q4 = v̄2}, i.e. we are interested in the
average concentration of U and V , as well as the average squared concentrations.
The task of the reduced subgrid-scale surrogates is to ‘track’ the reference QoIs,
i.e. to keep Qref

i (t)−Qi(t) small for all times during training, where Qref
i is

the reference QoI computed from the high-resolution training data. We skip
details for the sake of brevity, and refer to [181] for more technical information,
or to EasySurrogate2 for the code and a practical tutorial.

The results for the training phase of the reduced surrogate are shown in
Figure 5.7. This shows the probability density functions (PDFs) of the 4 QoIs,
for both the high spatial resolution simulation (with no subgrid-scale terms),
and the low-resolution model (5.15) with reduced surrogates. As this is the
training phase, these reduced surrogates are informed directly from the training
data [181]. Note that the two PDFs for each Qi are practically indistinguishable
from each other, confirming the accuracy of the reduced surrogate during the
training phase.

The high-resolution simulation had a wall-clock time of roughly 223 minutes
(for 50k time steps), whereas the reduced model completed in 24 minutes, which
is more than 9 times faster. Using a 1024 × 1024 spatial resolution for the
reference model yielded a wall-clock time of roughly 19 hours. The reduced
model, still at 24 minutes, is therefore 48 times faster. For problems in three
spatial dimensions, the speedup will increase further.

That said, it is important to point out that these speedups, denoted by
S, compare the cost of running the expensive (reference) model Cµ with the
cost of the (reduced) surrogate C∗

µ, i.e. S := Cµ/C
∗
µ. The cost of sampling the

reference model in the first place to create C∗
µ, denoted by Ck in (5.11), is not

2https://github.com/wedeling/EasySurrogate

106 Chapter 5

Figure 5.7: Probability density functions (PDFs) of Q1 to Q4 for both the
high-resolution reference model and the low-resolution model with reduced
subgrid-scale term. The PDFs are computed using data from 50000 time steps.

Figure 5.8: Probability boxes, with Qi on the horizontal axis, and probability
on the vertical. Thin lines show individual ECDFs computed from Qi time
series data for a fixed value of f and k. Thick lines represent the probability
box formed by taking the envelope of all ECDFs.

yet included. Let us assume that each sample n = 1, · · ·N of the inputs (f and
k in our case, see below) will require the construction of its own surrogate. As
noted, a data-driven surrogate model will require sampling from Cµ, which,
generally speaking, we can do for N∆tM /T time steps, where T ≥ 1. The cost
of sampling the reference model is therefore given by Ck = N∆tMNCµ/T . We
can now write (5.11) as

CUQP1µ

CUQP3-Bµ

=
N∆tMNCµ

N∆tMNC
∗
µ + Ck

=
N∆tMNCµ

N∆tMNCµ/S +N∆tMNCµ/T
=

ST

S + T
.

(5.17)
Thus the final speedup is given by ST/(S+T), where S is the speedup obtained
by replacing Cµ with C∗

µ, and T ≥ 1 reflects how much we had to sample Cµ

in order to construct C∗
µ. A higher value of T means less Cµ training data is

required to construct C∗
µ. Note that limS→∞ ST/(S + T) = T , which gives

5.6. Case studies 107

the maximum speedup which can be obtained for UQP3-B with a data-driven
surrogate. If for instance Cµ must be executed for 50% of the N∆tM time step
in order to get an accurate C∗

µ, (5.17) is limited to ≤ 2. If only 1% is sufficient,
the speedup is bounded by 100. Finally, we mention that S controls how fast
(5.17) approaches the limit with increasing T .

Figure 5.9: The MUSCLE3 diagram for this particular implementation of
UQP3-B. The micro model has been replaced by a reduced surrogate, which
receives the macroscopic state, and returns the Gu and Gv subgrid-scale (sgs)
terms. The EasyVVUQ sampler provides the randomly-drawn values of f and
k to the macro model, and the MUSCLE3 manager creates 28 different copies
of the coupled system. Finally, this process is repeated on 4 different nodes
of the Eagle supercomputer, leading to 112 output samples from which we
compute the probability boxes.

We have demonstrated the capability of creating surrogates with S ≫ 1,
and have provided theoretical bounds on the final speedup. Extrapolating
the reduced surrogate beyond the training phase (T > 1) is the subject of
ongoing research. In the remainder we therefore set T = 1, such that the final
UQ results (Figure 5.8) are virtually exact, although we cannot report a final
speedup yet. Note that in earlier work on the Gray-Scott model, which focused
on time-scale separation, we were able to accelerate UQ using surrogates [26].

The Gray-Scott system is very sensitive to f and k, see [180]. We prescribe
f ∼ U [0.02, 0.025] and k ∼ U [0.05, 0.055], designed to explore a region that
generates time-dependent spiral or spotted structures, depending on the value of
f and k. We coupled the macroscopic Gray-Scott equations (5.15) to a reduced
surrogate (stored in a separate Python script), using MUSCLE3, see Figure

108 Chapter 5

5.9. The sampler we used to draw the samples from the f and k distributions
was EasyVVUQ [177], and we computed the ensemble in parallel on the Eagle
supercomputer at the Poznan Supercomputing and Networking Center. The
MUSCLE3 manager runs on a single node, and was configured to spawn 28
copies of the coupled system with different f and k values, as one node contains
28 cores on Eagle. As we submitted to 4 nodes simultaneously, our ensemble
therefore consists of 4× 28 = 112 samples. Our output statistics of interest are
the probability boxes of Q1 to Q4. These are defined as the envelope formed
by the 100 empirical cumulative distribution functions (ECDFs), computed
from the Qi time series, see Figure 5.8. The spread of the different ECDFs is
significant, showing (as expected), substantial uncertainty due to imperfectly
known values of f and k.

More examples of UQP3-A and UQP3-B can be found in [26–28] where the
UQP3-A and UQP3-B were applied to a different reaction-diffusion model and
a 2D multiscale in-stent restenosis model, and achieved a significant speedup of
UQ. We invite the readers to these papers for further details.

5.7 Conclusion

In this chapter, we described a number of patterns for efficient UQ of
multiscale models, and categorised them by the level of intrusiveness and op-
timisation method. These UQPs provide the basic building blocks to create
tailored UQ for multiscale models. We showed how these methods can be im-
plemented in multiscale models using the formalism of the Multiscale Modelling
and Simulation Framework and the MUSCLE 3 coupling toolkit. Two case
studies were presented to show the application of the patterns.

We have discussed UQP implementation for forward UQ and sensitivity
analysis. The implementation of UQPs for inverse UQ analysis will be explored
in the future. The implementation will require generating samples based on
the previous results, e.g. using the Markov-chain Monte Carlo method.

