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A circular jet breaks up into droplets via the Rayleigh-Plateau instability, retaining
a circular cross section throughout. If, however, the nozzle from which the jet issues
is elongated, the circular symmetry is broken, and the jet forms a chainlike structure
with neighboring links separated by 90◦. The cause of this structure is two-dimensional
capillary-inertial oscillation of jet cross sections in their own plane. We perform an experi-
mental study of chain oscillations as a function of flow rate using careful prelaminarization
and 12 elliptical nozzles with different areas and eccentricities. The oscillation frequencies
inferred from the observed chain-link structure do not agree with those predicted by
Rayleigh’s infinitesimal theory [L. Rayleigh, Proc. R. Soc. London 29A, 71 (1879)].
However, they do agree with an extended nonlinear theory of Bohr [N. Bohr, Philos. Trans.
R. Soc. A 209, 281 (1909)] that accounts for finite-amplitude effects. This agreement
shows that our fluid chains are nonlinear oscillations whose frequency decreases with
increasing amplitude. We perform direct numerical simulations of chain oscillations using
a volume-of-fluid method and find good agreement with the predictions of Bohr’s theory.
Finally, we generalize Bohr’s theory to the case of two interacting modes with quadrupolar
and octapolar azimuthal dependencies. The resulting solution explains qualitatively the
“dimpled” shape of the jet’s surface observed in the experiments.

DOI: 10.1103/PhysRevFluids.7.104001

I. INTRODUCTION

Anyone who has observed water poured from a glass has seen the surprising “liquid chain”
effect, in which a steady liquid stream exhibits a series of “links” oriented at 90◦ to one another (see
Fig. 1). The effect is also observable in a liquid jet falling from a nozzle with an elliptical or other
noncircular cross section, in which case several links are typically observed before the jet breaks
up. Because the long and short axes of the jet exchange places periodically as a function of distance
along with the jet, the phenomenon is also called “axis switching.” Despite its generic character, the
liquid chain or axis switching phenomenon remains incompletely understood.

For more than a century, axisymmetric jets with circular cross sections have been intensively
studied owing to the importance of the Rayleigh-Plateau (RP) instability [1]. This surface-tension-
driven instability leads to the breakup of a liquid jet in response to axisymmetric perturbations of
its surface. However, Rayleigh [2] also examined nonaxisymmetric perturbations of the surface of a
jet and found that these took the form of stable oscillations with frequencies that increased with the
azimuthal wavenumber n. It is these stable oscillations that underlie the liquid chain effect.
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FIG. 1. Pouring water from a bottle. (a) Chain oscillations are excited because the initial cross section is
noncircular, as highlighted by the dashed line.

The liquid chain effect seems first to have been studied experimentally by Bidone [3], who
noted that the wavelength λ of the axis switching was an increasing function of the jet speed W .
According to Rayleigh [2], the first correct explanation of axis switching was given by Buff [4],
who ascribed it to transverse vibrations of jet cross sections about a circular equilibrium shape
under the action of surface tension. Because the phase of the oscillation depends on the time elapsed
since ejection from the nozzle, the structure of the jet is steady in the laboratory frame. Rayleigh
[2] performed experiments on chain oscillations using orifices of different shapes and found that
λ ∝ W under most conditions. He speculated that departures from this linear dependence were due
to the finite amplitude of the oscillations. Bohr [5] extended Rayleigh’s linearized theory into the
finite-amplitude regime, obtaining expressions for the jet’s shape and its frequencies of oscillation
valid to second order in the amplitude.

More than 70 years later, Geer and Strikwerda [6] used a numerical method to simulate axis
switching in an inviscid jet without restriction on the amplitude of the oscillations. Bechtel [7]
used an analytical slender-jet theory to model axis switching, assuming that the section is always
elliptical. Neither Geer and Strikwerda [6] nor Bechtel [7] appear to have been aware of the
work of Bohr [5]. Kasyap et al. [8,9] performed experiments using different elliptical orifices and
characterized the chain wavelength and the oscillation amplitude systematically as functions of the
jet speed and the distance from the nozzle. Amini and Dolatabadi [10] performed a spatial linear
stability analysis of one-dimensional Cosserat-type equations for jets of elliptical cross section and
proposed that the axis-switching wavelength is

λ

Req
= 2π√

6

√
We − 2, (1)

where We = ρReq W 2/γ is the Weber number, Req is the equivalent radius of the cross section, and
γ is the coefficient of surface tension. A similar Cosserat model was investigated by Gu et al. [11],
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CHAIN-OSCILLATIONS IN LIQUID JETS

focusing on the effect of viscosity. Direct numerical simulations of axis switching were performed
by Farvardin and Dolatabadi [12] and Morad et al. [13] using volume-of-fluid methods and by Chen
and Yu [14] using a lattice Boltzmann method. Muthukumaran and Vaidyanathan [15] carried out
experiments on elliptical jets under sub- and supercritical pressure and temperature conditions and
obtained axis-switching wavelengths about 50% higher than Eq. (1). Rajesh et al. [16] performed
experiments using nozzles of different shapes and found λ ∝ Req We1/2 with an additional weak
dependence on the downstream distance. Moon et al. [17] performed experiments using ethanol and
water jets ejected from microscale (mean radius 11–15 μm) quasielliptical nozzles at a fixed exit
velocity and used two different optical techniques to reconstruct the jet’s surface shape. They found
that the amplitude of the octapolar (azimuthal dependence cos 4θ ) component of the jet’s shape
relative to the quadrupolar (cos 2θ ) component agreed closely with Bohr’s nonlinear theory. Jaberi
and Tadjfar [18,19] used laboratory experiments to compare axis switching with elliptical and square
nozzles. Ma and Zhu [20] performed experiments on axis switching in elliptical jets and proposed a
way to correct the switching frequency for the effect of gravity. Finally, this is an appropriate place
to mention the work of Bush and Hasha [21] on fluid chains formed by the collision of viscous
laminar jets.

In addition to its fundamental interest, the dynamics of jets from noncircular nozzles have
numerous practical applications. These include improving large- and small-scale mixing, enhancing
combustion efficiency, noise suppression, and thrust vector control. A valuable survey of these
applications is [22]. A further surprising application is in the field of urology [23].

In this study we extend existing work on chain oscillations in several ways. First, we perform
systematic experiments for different flow rates and different aspect ratios of the (elliptical) nozzle,
using a technique to prelaminarize the flow before it exits the nozzle. This gives rise to very smooth
jets that exhibit numerous chain links before they break up ≈1 m from the nozzle. Second, we
systematically compare our measured axis-switching frequencies with both the linear theory of
Rayleigh [2] and the nonlinear theory of Bohr [5]. To our knowledge such a comparison has only
been done previously by Moon et al. [17]. Finally, we extend Bohr’s nonlinear solution to the case of
two interacting modes n = 2 and n = 4, a situation that is relevant for both elliptical and rectangular
nozzles.

II. PHENOMENOLOGY

Chain oscillations are most readily observed when the viscosities of the jet and the ambient fluid
are low and the interface has a high surface tension. Water jets in air satisfy these criteria, and so it is
no surprise that chain oscillations occur in many everyday situations. Deformation and vibration of a
jet are capillary phenomena in which surface tension acts to reduce the jet’s surface area. If the cross
section is not circular, its highly curved portions are pulled inward and its weakly curved portions
pushed outward relative to a circular section with the same area. But due to inertia the movement
overshoots, with the result that the long and short axes of the section are interchanged. The shape
of the section therefore evolves as it moves along the axis of the jet, producing a steady liquid chain
when observed in the laboratory frame (see Fig. 2). The length llink of a link is then just λ/2 where
λ is the wavelength of the pattern. Here, we investigate these chain oscillations experimentally and
explain them theoretically by studying the normal modes of vibration of a capillary jet.

III. RAYLEIGH THEORY

The radius R(φ, z) of a perturbed cylindrical jet can be expanded in normal modes as

R(θ, t ) = a +
∞∑

n=2

bn cos nθ cos ωnt, (2)
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FIG. 2. Geometry of liquid and metal chains. The images shown are separated by rotations of 45◦ about
the vertical axis. The inset in (a) sketches a cross section of the jet at a given height z and shows the polar
coordinates.

where a is the unperturbed radius (in the limit of small perturbations), and ωn and bn are the angular
frequency and amplitude of mode n, respectively. The time

t =
∫ z

0

dz

W (z)
(3)

is just the travel time of a fluid cross section from the nozzle z = 0 to a position z, where W (z) is the
vertical velocity of the section. If the perturbations become larger and if only one mode is present,
then

R(θ, t ) = a − b2

8a
+ b cos nθ cos ωnt, (4)

where the additional term −b2/8a ensures that the area of the cross section is A = πa2 (it should be
replaced by −b2/4a if n = 0). This term can be neglected in the small-amplitude limit b � a.

The modes in Eq. (2) include the unstable axisymmetric mode n = 0 corresponding to the
Rayleigh-Plateau instability and the nonaxisymmetric modes n � 2 that are, in theory, stable. In
practice, of course, the unstable axisymmetric mode will be superimposed on the stable modes,
leading to the breakup of the jet all the same. If the axial velocity W of the jet is constant, the
motion associated with the stable modes is a purely two-dimensional (2D) oscillation within cross
sections as they move along the jet axis. If the liquid is inviscid and the oscillations have infinitesimal
amplitude,

ωn = 2π fn =
√

(n3 − n)γ

ρa3
, (5)

where ρ is the density of the liquid, γ is the coefficient of surface tension, and fn is the frequency of
a pure mode n. Formula (5) will of course require correction for additional effects such as viscosity,
the inertia of the surrounding air, gravity, small wavelengths, and large amplitudes bn/a = O(1).

The dominant wavenumber of the chain oscillations can be inferred from the elliptical shape
of the nozzle. The Fourier expansion of an ellipse R(φ, z) is dominated by the n = 2 term, with
additional smaller terms n = 4, 6, . . .. The n = 2 term corresponds to stretching along one axis and
shortening along the perpendicular axis. We therefore expect chain oscillations to be dominated by
the n = 2 term.

The remaining modes n � 3 produce polygonlike shapes with n maxima and n minima dis-
tributed around the circle (see Fig. 3). The amplitude (elongation) for which a given shape most
closely resembles a polygon is that for which the curvature at the local minimum vanishes, which
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FIG. 3. Shapes Rn(θ ) = a + b cos nθ of the normal modes of oscillation of a capillary jet. θ = 0 is along
the positive x axis.

occurs when ε := b/a = 1/(n2 − 1). At larger elongations, the curvature at the local minima is
negative, resulting in starlike shapes. For n = 2 the shape resembles a peanut. For each pure mode
the cross section will appear to rotate by an angle π/n after each half oscillation, or

Rn(θ, z) = Rn

(
θ ± π

n
, z ± λ

2

)
. (6)

For n = 2, the long axis of the cross section appears to rotate by π/2 after each half oscillation,
inspiring the description “axis switching” for this case.

Because the n = 1 mode represents the displacement of the cross section’s center of mass, the
n = 2 mode is the fundamental mode of vibration of a liquid jet. This is why it is observed so often
in nature: it is the easiest vibrational mode to excite. Even if the perturbation contains significant
energy for n � 3, as long as the n = 2 is dominant the jet will behave very similarly to a “pure”
chain oscillation. This explains, for example, why these oscillations are excited in pouring a liquid,
as illustrated in Fig. 1. The linear theory suggests that the initial amplitude of mode n = 2 can be
determined from the aspect ratio (a + b2)/(a − b2) of the orifice.

IV. EXPERIMENT: MATERIALS AND METHODS

A vertical liquid chain can easily be produced by forcing a steady laminar flow through a
horizontal elliptical orifice. Here we study chain oscillations in water using 12 different orifices
with major axes 1–4 cm and eccentricities 0.75–0.99. Their specifications can be found in Table I.
Our first task is to generate jets that are sufficiently smooth to undergo several turns or axis switches
before breaking up. It is not sufficient to have a very smooth nozzle as described by Bergthorson
et al. [24], since we need to produce a long laminar jet after the orifice: The flow needs to be
prelaminarized before exiting the orifice. We do this by passing the water through a plexiglass
cylinder 6 cm in diameter and 10 cm in length, filled with drinking straws and with porous sponges
at both the inlet and the outlet. The latter is an elliptical hole machined precisely in a thin stainless
steel sheet. Jets formed in this way are very smooth, and break up roughly 1 m from the orifice for
our experimental conditions. A schematic view of the experimental setup is shown in Fig. 4.

Because we use a fixed liquid (water) and a rigid orifice, maintaining stable jetting conditions
requires a fixed flow rate Q, our control parameter. The liquid is supplied from a tank pressurized
with nitrogen to a constant but adjustable level, typically around 5 bars. This liquid is then
routed through a hand-operated valve that controls the flow rate, and an electromagnetic flowmeter
(Krohne) measures the flow rate. After setting Q to the desired value, we found that the fluid chain
became stationary after a brief (≈1 s) transient period needed for the pressure distribution in the
setup to equilibrate. Typical values of the Reynolds number Re = Q/Req ν in our experiments are
103 � Re � 20 × 103, where Req ≡ √

DxDy/2 and ν is the kinematic viscosity of water. Note that
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TABLE I. Geometrical properties of the orifices used to generate chain oscillations.

Orifice Major axis, Dx Minor axis, Dy Orifice area, A
No. (cm) (cm) Eccentricity (cm2) �3/105 �4

1 1 0.44 0.9 0.34 2.31 71
2 1 0.31 0.95 0.25 1.95 60
3 2 0.62 0.95 0.98 3.91 120
4 2 0.28 0.99 0.44 2.63 80
5 4 1.74 0.9 5.48 9.24 283
6 4 1.25 0.95 3.92 7.82 239
7 4 0.56 0.99 1.77 5.26 161
8 1.5 1 0.75 1.18 4.29 131
9 2 1.5 0.66 3.14 6.06 185
10 3 1 0.94 2.36 6.06 185
11 3 1.5 0.87 3.53 7.42 227
12 3 1.9 0.77 4.48 8.36 255

Re is equal to π times the usual Reynolds number W0Req/ν where W0 is the exit velocity at the
orifice.

Figure 5(b) shows the morphology of the chain for orifice number 11 and ten values of Q. The
wavelength of the chain oscillations increases with increasing flow rate. Note also that the surface
of the liquid chain becomes increasingly irregular as Q increases.

Here we focus on measuring the frequency of chain oscillations as a function of flow rate and
comparing it to theoretical predictions. At steady state, conservation of volume flux implies that

Q = W (z)A(z), (7)

where A(z) is the cross-section area of the jet. The time �t required to travel a distance equal to one
wavelength starting from a point z = z0 is

�t =
∫ z0+λ

z0

dz

W (z)
≡ 1

fλ
, (8)

FIG. 4. Laboratory setup for chain oscillations. (a) Laminar flow nozzle used to generate a smooth jet. The
flow rate Q is controlled using a pressurized tank and a flowmeter. The right image illustrates the major and
minor axes Dx and Dy of the elliptical orifice. (b) Schematic of the experimental setup.
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FIG. 5. Dependence of steady chain oscillations on the flow rate. (a) Schematic diagram indicating the jet
velocity vz, the local radius R(φ, z), and the wavelength λ. (b) Observed morphology of the chain oscillations
as a function of flow rate Q for an elliptical orifice with major axis 3 cm and minor axis 1.5 cm. The wavelength
λ of the chain is indicated on each image.

where we denote by fλ the chain oscillation frequency calculated from the measured wavelength.
Using Eq. (7) to eliminate W (z) from Eq. (8), we obtain

fλ = Q

[∫ z0+λ

z0

A(z) dz

]−1

≡ Q

Vλ

, (9)

where Vλ is the volume of fluid contained in one wavelength of the jet.
The next step is to determine whether fλ agrees with theoretical predictions. Assuming that chain

oscillations correspond to the mode n = 2, we see from Eqs. (4) and (5) that Rayleigh’s linear theory
predicts

R(θ, t )Rayleigh = a − b2

8a
+ b cos 2θ cos ωt, (10a)

fRayleigh = 1

2π

√
6γ

ρa3
. (10b)

More sophisticated theoretical predictions can be obtained by correcting Eqs. (10) to account for
the additional effects mentioned previously. However, we found that in our case the only significant
correction is due to large dimensionless amplitudes ε = b/a (see Discussion). An elegant analytical
solution valid to O(ε2) was obtained by Bohr [5], and is

R(θ, t )Bohr = R(θ, z)Rayleigh + b2

a

(
1

6
cos 4θ cos 2ωt + 1

4
cos 4θ − 1

8
cos 2ωt

)
, (11a)

fBohr = fRayleigh

√
1 − 37

24

b2

a2
. (11b)

Bohr’s solution predicts that the frequency depends on the amplitude b of the oscillation, which
is a generic feature of nonlinear oscillations.

Figure 6 shows the shape of the cross section of the jet predicted by Bohr’s theory for n = 2
and several values of the dimensionless amplitude b/a. The case b/a = 0 corresponds to the linear
theory of Rayleigh. For b/a > 0.3595, the shape profile becomes reentrant and x(y) is multivalued
(see the Appendix for the derivation).
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FIG. 6. Shape of the jet cross section for ωt = 2mπ (m is an integer) and a single mode n = 2 predicted by
the nonlinear theory of Bohr [5], for several values of the dimensionless amplitude b/a. The curves are given
by Eq. (A38). The horizontal scale is exaggerated by a factor of 2 relative to the vertical scale. The curve x(y)
is multivalued when b/a > 0.3595.

Equation (9) showed that the frequency fλ is inversely proportional to the volume Vλ of fluid
contained within one wavelength of the chain. In order to estimate Vλ for each of our experiments,
we make use of the theoretical expressions (10a) and (11a). Substituting either of these expressions
into the definition (9) of Vλ gives Vλ = πa2λ to within a small relative error of at most order (b/a)2.
Equation (9) then becomes

fλ = Q

πa2λ
. (12)

To estimate a for our experiments, we measure the minimum and maximum radii Rmin and Rmax

over one wavelength of the chain, using photographs taken parallel to the major axis of the orifice.
The amplitudes a and b are then determined by solving two simultaneous linear equations with
slightly different forms depending on whether we use Rayleigh’s or Bohr’s expression for R(φ, t ).
The equations for these two cases are

Rayleigh:

{ 1
2 (Rmax − Rmin) = b
1
2 (Rmax + Rmin) = a

(
1 − 1

8
b2

a2

)
,

Bohr:

{ 1
2 (Rmax − Rmin) = b
1
2 (Rmax + Rmin) = a

(
1 + 1

6
b2

a2

)
.

(13)

We find that the inferred values of a, b, and b/a all increase with increasing flow rate.

V. EXPERIMENT VERSUS THEORY

Figure 7(a) compares our inferred frequencies fλ (circles) with the frequencies fRayleigh (black
line) and fBohr (light grey line). The decrease of all three frequencies with increasing flow rate
is evident. This is due to the increase of a and b/a ∈ [0.08, 1.67] with Q (see tables in the
Supplemental Material [25]), which reduces the frequency according to Eqs. (9), (10b), and (11b).
Second, we see that Bohr’s corrected formula (11b) agrees much better with the observations than
does Rayleigh’s infinitesimal-amplitude formula (10b). Bohr’s formula matches the observations
within the experimental uncertainties, even though it is only valid up to second order in amplitude.
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FIG. 7. Comparison of the theoretical estimates of Rayleigh and Bohr. (a) Frequency f of chain oscillations
as a function of the flow rate and for orifice 7 with Dx = 4 cm and Dy = 1.74 cm. Continuous lines are the
prediction from Rayleigh [Eq. (10b)] and Bohr [Eq. (11b)]. (b) Root mean square deviation (RMSD) comparing
the accuracy of Eqs. (10b) and (11b) for all 12 orifices. The RMSD is plotted as a function of the (unique) orifice
area.

The close agreement between our observations and Bohr’s finite-amplitude theory holds good
for all the orifices we used. Figure 7(b) shows a measure of the error of the theoretical frequency
(either Rayleigh’s or Bohr’s) for the different orifices, each distinguished by its unique area. The
error is expressed as a normalized root mean square deviation (RMSD) defined as

RMSD :=
√√√√ 1

N

N∑
i=1

(
f (i)
λ

f (i)
Bohr/Rayleigh

− 1

)2

, (14)

where the sum is over all flow rates Qi used for a given orifice. That sum is then normalized
by the number N of flow rates and the square of the measured value of the frequency, so that
the summed discrepancies between theory and experiment are dimensionless and comparable for
different orifices. The RMSD values of Fig. 7(b) show that Bohr’s formula fits observations much
better than Rayleigh’s, and about equally so for different orifices. In summary, Fig. 7 implies that
fluid chains are indeed nonlinear oscillations for which the frequency of oscillation depends on the
amplitude. Due to the nonlinearity of the boundary condition representing surface tension, chain
oscillations are only isochronous for very small amplitudes.

VI. DIRECT NUMERICAL SIMULATION

We performed direct numerical simulations of chain oscillations using the volume-of-fluid code
Gerris Flow Solver (GFS [26]). To illustrate, we use the parameters of the experiments with
flow rates Q = 1.41 and 2.82 l min−1 with orifice number 11. Figure 8(a) shows the shape of
the experimental jet with Q = 1.41 l min−1, and Fig. 8(b) shows the shape and thickness of the
corresponding numerically simulated jet. The shapes of the experimental and simulated jets agree
very well, although the amplitude of the chain links is somewhat greater in the simulation than in
the experiment. For comparison, Fig. 8(c) shows the shape and thickness of the jet predicted by
Bohr’s theory, with an amplitude b = 0.66a chosen to match the observed wavelength of the chain
oscillations. The resulting shape agrees well with that of the numerical simulation in Fig. 8(b).
However, it is worth noting that the dimensionless amplitude b/a = 0.66 is much larger than the
corresponding Fourier coefficient of the nozzle shape. For the experiment in question, the shape of
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FIG. 8. Shape and thickness of a jet with flow rate Q = 1.41 l min−1 falling from an elliptical nozzle with
semiminor axis 0.75 cm and semimajor axis 1.5 cm. The major axis is perpendicular to the plane of the page.
(a) Shape of the jet observed in the experiment. (b) Shape and thickness h of the numerically simulated jet. The
white portion near the top corresponds to thicknesses 2.0 < h < 3.0 cm. The white horizontal bar indicates
the location of the cross section that is examined in more detail in Fig. 9. (c) Shape and thickness of the jet
predicted by Bohr’s theory with b/a = 0.66. The time t in Bohr’s theory is related to the downstream distance
z by the free-fall expression t = (−W0 + √

W 2
0 + 2gz)/g, where W0 is the vertical velocity at the orifice.

the nozzle has the Fourier expansion

Rnozzle = Req (0.9708 + 0.3284 cos 2θ + 0.0825 cos 4θ + · · · ), (15)

where Req = 1.061 cm is the nozzle’s equivalent radius. Comparing Eq. (15) with Eq. (4) with
n = 2, we see that Eq. (15) implies (b/a)nozzle = 0.333, which is half the value b/a = 0.66 that best
fits the observed axis switching wavelength.

Figure 9 shows the in-plane velocity components u(x, y) and v(x, y) in the section of the
simulated jet indicated by the white line in Fig. 8(b). The velocity is outward along the x axis and
inward along the y axis. This indicates that the section is undergoing elongation in the x direction
and shortening in the y direction, which is compatible with an in-plane oscillation.

Figure 10 is the same as Fig. 8 except that the flow rate is now Q = 2.82 l min−1. The chain
wavelength predicted by the numerical simulation [Fig. 10(b)] agrees reasonably well with the
observed wavelength. However, a significant phase shift is evident: the simulated chain links are
displaced downward relative to the observed ones. On the other hand, the prediction of Bohr’s
theory with b/a = 0.70 [Fig. 10(c)] looks remarkably similar to the numerical simulation, the only
significant difference being an underestimation of the minimum width relative to the simulation.
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FIG. 9. In-plane velocity components (a) u(x, y) and (b) v(x, y) in the horizontal cross section shown by
the horizontal white bar in Fig. 8(b). The black lines indicate the water/air interface. The jaggedness of those
lines reflects the finite numerical resolution of the interface. Arrows show the directions of the velocity.

VII. CROSS-SECTION SHAPE OF THE CHAIN VERSUS ORIFICE SHAPE

In the previous section, we saw that the amplitude b/a in Bohr’s theory that best fits finite-volume
simulations can be very different from the value of b/a that corresponds to the quadrupole (n = 2)
Fourier coefficient of the orifice shape. Accordingly, in this section we quantify in more detail
the relation between the experimentally determined value of b/a and the shape of the orifice. We
proceed by dimensional analysis. The normalized amplitude b/a of the chain oscillations observed
in our experiments can depend on Q, g, ν, γ , ρ, Dx, and Dy. We seek to determine the unknown
function f1 defined by

b

a
= f1(Q, g, ν, γ /ρ, Dx, Dy). (16)

Because γ and ρ are the only parameters involving units of mass, they can appear only as the
quotient γ /ρ. Now of the six arguments of f1, two have independent dimensions. According to
Buckingham’s � theorem, four independent dimensionless groups can be formed from the six
arguments. We choose these to be

�1 = Q

Reqν
, �2 =

[
1 −

(Dy

Dx

)2]1/2

, �3 = γ Req

ρν2
, �4 = Req

( g

ν2

)1/3
, (17)

where Req = √
DxDy/2. Note that we have chosen the definitions of the groups such that �2, �3,

and �4 are all constant for a series of experiments with a given orifice and a variable flow rate. �1

is proportional to the Reynolds number. �2 is the eccentricity of the orifice, and is given in column
4 of Table I. The values of �3 and �4 for each of our series of experiments are given in columns 6
and 7 of Table I. Equation (16) is now equivalent to

b

a
= f2(�1,�2,�3,�4), (18)

where f2 is an unknown function.
Figure 11 shows b/a vs �1 for five sets of experiments with different nozzles. Two pairs of these

experiments have the same or nearly the same values of the orifice eccentricity �2. For each of
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FIG. 10. Same as Fig. 8, but for a flow rate Q = 2.82 l min−1. (c) b/a = 0.70.

FIG. 11. (a) Normalized amplitude b/a observed experimentally as a function of the flow rate Q for five
different orifices with different eccentricities. (b) Normalized amplitude as a function of Re ≡ Q/νReq.
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FIG. 12. Presence of higher-order modes. (a) Illustration of the ellipse as a sum of different normal
modes. Modes n = 2 and n = 4 are displayed at large amplitudes, to demonstrate that an elliptical orifice
excites higher-order modes of oscillation. (b) Photograph of chain oscillations at large amplitude displaying a
component of mode n = 4. This is observed for jet with flow rate Q = 1.30 l min−1 falling from an elliptical
nozzle with semiaxes 0.31 and 1 cm. (c) Zoom of (b). The four bumps over a link correspond to a component
of mode n = 4 superimposed on a chain oscillation with n = 2.

the three eccentricities the collapse of the data is reasonably good given the scatter, suggesting that
Eq. (18) can be reduced to

b

a
= f3(�1,�2). (19)

Equation (19) implies that b/a depends on both the flow rate and the eccentricity of the orifice.

VIII. HIGHER-ORDER MODES

As Eq. (15) shows, the Fourier expansion of the shape of an elliptical nozzle contains not only
the dominant harmonic cos 2θ , but also the higher even harmonics cos 4θ , cos 6θ , etc. The presence
of these harmonics should excite chain oscillations with azimuthal wavenumbers n = 4, 6, etc. in
addition to the dominant oscillation with n = 2. In fact, the presence of the mode n = 4 in our
experiments can be observed with the naked eye. Figure 12 shows a close-up photograph of a chain
link in a jet with a flow rate Q = 1.30 l min−1 exiting a nozzle with semimajor axis 1 cm and
semiminor axis 0.31 cm. Three symmetrically disposed bumps are visible on the surface of the
chain over a link length.

To understand the origin of the bumps, we extend the nonlinear analysis of Bohr [5] to the case of
two interacting modes n = 2 and n = 4. This is done in the Appendix using a regular perturbation
expansion together with solvability conditions. Denoting the amplitudes of the two base modes by
b2 and b4 and their frequencies by ω2 and ω4, we find that the jet’s shape is

R(θ, t ) = a + b2 cos 2θ cos ω2t + b4 cos 4θ cos ω4t + b2
2

24a
[6 cos 4θ − 3 + (4 cos 4θ − 3) cos 2ω2t]

+ b2
4

616a
[11(22 cos 8θ − 7) − 7(4 cos 8θ + 11) cos 2ω4t]

+ b2b4

1608a
cos 2θ [

√
10(378 cos 4θ − 55) sin ω2t sin ω4t

+ 2(1752 cos 4θ − 1747) cos ω2t cos ω4t], (20)
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FIG. 13. Coordinates x(y, z) of the surface of the jet defined by Eqs. (20)–(22), for b2/a = 0.66 and b4/a =
(a) 0.0 and (b) 0.1. Labels 1–4 indicate maxima of x(y, z).

where

ω2 =
√

6γ

ρa3

(
1 − 37

48

b2
2

a2
− 19325

6432

b2
4

a2

)
, (21)

ω4 = 2

√
15γ

ρa3

(
1 − 4575

1232

b2
4

a2
− 3865

6432

b2
2

a2

)
. (22)

The term ∝ b2b4 in Eq. (20) accounts for the nonlinear interaction of the two modes. Another sign
of the interaction is that each frequency ω2 and ω4 depends on both amplitudes b2 and b4.

To recast Eqs. (20)–(22) in dimensionless form, we first transform time to distance z = W t ,
where the jet speed W is assumed constant for simplicity. Next, we define dimensionless frequencies
ω̂n =

√
ρa3/γωn and a dimensionless distance ẑ = W −1

√
γ /ρa3z. The dimensionless jet radius

R/a ≡ R̂ then depends only on ẑ, θ , and the two dimensionless amplitudes b2/a and b4/a.
Figure 13 shows the dimensionless normal coordinate x̂ = R̂ sin θ of the jet’s surface as a function

of ẑ and the dimensionless lateral coordinate ŷ = R̂ cos θ for b2/a = 0.66 and b4/a = 0 [Fig. 13(a)]
and b4/a = 0.1 [Fig. 13(b)]. For b4 = 0, each link exhibits maxima in the form of continuous bands
(light blue). For b4 = 0.1a, however, the bands are replaced by two isolated maxima (light blue,
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labeled 1 and 2). These maxima are generated by the term b4 cos 4θ cos ω4t in Eq. (20). The other
two maxima (labeled 3 and 4) centered on y = 0 are, however, not isolated but blend continuously
into the neighboring links. In summary, our generalization of Bohr’s solution predicts qualitatively
the distribution of bumps on the jet surface associated with the mode n = 4, without, however,
reproducing the nearly perfect symmetry of the experimental observations (Fig. 12).

IX. DISCUSSION

Our chain-oscillation experiments were performed under laminar flow conditions, enforced by
a “straws and sponges” device at the flow inlet. Moreover, in most of our experiments, the typical
wavelength of axis switching was large compared to the effective radius Req of the jet. Finally,
because the aspect ratio of our elliptical nozzles was typically two or more, the amplitude of the
observed chain oscillations was not small relative to Req. The three conditions just mentioned are
precisely those envisioned by Bohr’s nonlinear theory of chain oscillations [5], which led us to
compare our observations to Bohr’s theoretical predictions in some detail. We found that the mea-
sured frequency of axis switching agreed with Bohr’s prediction within experimental uncertainty for
all the nozzles we used. By contrast, we found that Rayleigh’s linear theory [2] disagreed with our
observations, even allowing for the experimental uncertainty. We conclude that the axis switching in
our experiments is due to the nonlinear oscillation of 2D cross sections of the jet, with a frequency
that depends on the amplitude of the oscillation. The agreement between experiment and theory
further shows that the chain oscillations we observed are dominated by the azimuthal mode n = 2.

Our results are consistent with those of Moon et al. [17], who found that direct observations of
the shape of oscillating jets agreed closely with Bohr’s theoretical predictions. Moon et al. used two
independent methods—optical forward diffraction and cavity resonance spectroscopy—to estimate
the ratio of the octapolar component (∝ cos 4θ ) to the quadrupolar component (∝ cos 2θ ) of the
surface shape. By evaluating Eq. (11a) at t = 0, one sees that Bohr’s theory predicts this ratio to be
Bb/a where B = 5/12 ≈ 0.417. Moon et al.’s two sets of measurements yielded B = 0.42 ± 0.08
and B = 0.414 ± 0.011.

Despite the excellent agreement between experiment and Bohr’s nonlinear theory found by Moon
et al. [17] and ourselves, the theory has limitations that need to be kept in mind. The first is that
it does not take into account the viscosity of the jet. However, Bohr [5] used a linearized model to
estimate the length scale zvisc of exponential decay along the jet axis of oscillations with azimuthal
wavenumber n. For n = 2, Eq. (40) on page 289 of [5] gives

zvisc = R2
eqW

4ν
= Q

4πν
, (23)

where ν is the kinematic viscosity of the jet fluid. For our experiments ν = 1 cS and Q = 1–4
l min−1, wherefore zvisc ≈ 1–5 m. These lengths are many times greater than the observed wave-
lengths of the chain oscillations, which implies that the effect of viscosity is negligible. However,
theoretical models including viscosity have been developed for fluid chain formation following
collision of laminar viscous jets [21], and it would be interesting to compare that theory with an
extended version of Bohr’s theory that includes viscosity.

Another limitation of Bohr’s nonlinear theory is that it does not account for the inertia of the
air surrounding the jet. However, Bohr [5] uses a linearized model to show that this effect is of
magnitude ρair/ρjet relative to the inertia of the jet itself. For a jet of water, ρair/ρjet = 0.00123,
implying that the inertia of the air is negligible.

A further limitation of Bohr’s theory is that it includes only the first correction to Rayleigh’s
linear theory, i.e., terms of second order in the dimensionless amplitude bn/a. Bohr’s theory is
therefore valid only if (bn/a)2 is small. However, Figs. 8 and 10 show that values (b2/a)2 ≈ 0.44–
0.49 are necessary for Bohr’s theory to match the results of direct numerical simulations. These
values of (b2/a)2 are rather large, and imply that Bohr’s theory may be only roughly applicable. We
anticipate that the situation would be even worse for nozzles having aspect ratios (ARs) larger than
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the one used for Figs. 8 and 10, which was AR = 2. The situation could be improved by extending
Bohr’s approach to order (b2/a)4, following the method of our Appendix. However, this lengthy
calculation is beyond our scope here.

A final limitation of Bohr’s theory is that it assumes purely 2D flow in the plane of the cross
section of the jet or (equivalently) that the wavelength of axis switching is large compared to the
jet’s typical equivalent radius Req. This assumption is likely to be invalid in the near-nozzle region,
where cross sections evolve rapidly with downstream distance. One manifestation of this is that the
water in our experiments exits the nozzle not at 90◦, but rather at a smaller angle θexit that depends on
the flow rate. This, together with the gravity-induced stretching of the jet, means that Req(z) rapidly
decreases with downstream distance over a lengthscale that is not large compared to a typical value
of Req. This may explain the observation of Bohr [5] that the wavelength of the first chain link is
always a bit shorter than what he calculated it should be. This fact was attributed by Bohr [5] to the
“formation of the jet” and by Kasyap et al. [9] to the “presence of the orifice.”

To conclude, we note that all the nozzle shapes commonly used in studies of chain oscillations—
elliptical, square, rectangular, and triangular—have Fourier expansions containing a dominant mode
(n = 2, 3, or 4) plus higher harmonics. The presence of the higher harmonics means that the nozzle
generates “impure” oscillations in which two or more azimuthal modes interact. In future, it would
be desirable to study “pure” chain oscillations by performing experiments with nozzles specially
designed to contain only a single Fourier mode n � 2 in addition to the constant term n = 0.
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APPENDIX: TWO-MODE ANALYTICAL SOLUTION

Bohr [5] examined the problem of the finite-amplitude oscillation of a two-dimensional inviscid
fluid disk with surface tension acting on its circumference. Using a method of successive approxi-
mations due to Stokes, Bohr determined the time-dependent shape of the disk to O((b/a)2), where
b is the amplitude of the solution to the linearized problem. He also found an expression for the
frequency ωn(b) of the oscillation to the same order of approximation. In the following sections we
generalize Bohr’s problem to the case of two interacting modes, using a more modern approach
involving a systematic perturbation expansion together with solvability conditions.

1. Governing equations

First we introduce Cartesian coordinates (x, y, z) such that z is the vertical coordinate and x and
y are along the major and minor axes of the elliptical nozzle, respectively. We also introduce polar
coordinates (r, θ ) in the x-y plane such that θ = 0 is along the x axis.

Let u be the radial velocity and v be the azimuthal velocity in a horizontal cross section of the
jet. Define a velocity potential φ such that

u = −∂rφ, v = −1

r
∂θφ. (A1)

The continuity equation reduces to

∇2φ = 0 (A2)
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and the pressure is

p = ρ

{
∂tφ − 1

2

[
(∂rφ)2 + 1

r2
(∂θφ)2

]}
+ F (t ). (A3)

The function F (t ) will be chosen later to eliminate solutions in which φ is a function of t alone.
Let the surface of the cross section be

r = a + ζ (θ, t ), (A4)

where a is defined such that the area of the cross section is πa2. The curvature of the surface is

κ = (a + ζ )2 + 2(∂θζ )2 − (a + ζ )∂2
θθ ζ

[(a + ζ )2 + (∂θζ )2]3/2 . (A5)

The kinematic condition at the surface of the cross section is(
∂tζ − 1

r2
∂θφ ∂θζ + ∂rφ

)
r=a+ζ

= 0. (A6)

The pressure at the surface of the cross section satisfies

p|r=a+ζ − γ κ = 0, (A7)

where γ is the coefficient of surface tension.

2. Nondimensionalization

Define dimensionless (hatted) variables

r = r̂a, ζ = ζ̂a, κ = κ̂/a, t = t̂

(
ρa3

γ

)1/2

, (A8a)

(u, v) = (û, v̂)

(
γ

ρa

)1/2

, φ = φ̂

(
γ a

ρ

)1/2

, p = p̂
γ

a
. (A8b)

Writing the equations of the previous section in terms of the dimensionless variables and
immediately dropping the hats, we obtain

∇2φ = 0, (A9)

p = ∂tφ − 1

2

[
(∂rφ)2 + 1

r2
(∂θφ)2

]
+ F (t ), (A10)

κ = (1 + ζ )2 + 2(∂θζ )2 − (1 + ζ )∂2
θθ ζ

[(1 + ζ )2 + (∂θζ )2]3/2 , (A11)(
∂tζ − 1

r2
∂θφ ∂θζ + ∂rφ

)
r=1+ζ

= 0, (A12)

p|r=1+ζ − κ = 0. (A13)

This is the appropriate place to note that the general solution of Eq. (A9) for which the velocity
is finite at the origin r = 0 is

φ = Anrn cos nθ, (A14)

where n is a positive integer. The factor cos nθ is appropriate for the symmetry of an elliptical nozzle
for which θ = 0 is along one of the axes (we take this to be the major axis).
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3. Regular perturbation expansion

Let ε � 1 be the order of magnitude of the amplitude of azimuthal mode n of the velocity
potential. We now posit expansions of the variables φ, p, ζ , and F of the forms

φ = εφ1 + ε2φ2 + ε3φ3 + O(ε4), (A15a)

p = 1 + εp1 + ε2 p2 + ε3 p3 + O(ε4), (A15b)

ζ = εζ1 + ε2ζ2 + ε3ζ3 + O(ε4), (A15c)

F = εF1 + ε2F2 + ε3F3 + O(ε4). (A15d)

The leading-order pressure term p0 = 1 represents the uniform capillary pressure in the cross
section in the absence of motion. Anticipating, we retain the modes n = 2 and n = 4, which are
sufficient for representing the shape of an elliptical nozzle with a moderate ellipticity e. Let q and s
be the frequencies of these two modes, respectively, replacing the notations ω2 and ω4 used in the
main text. Then

q = q0 + εq1 + ε2q2 + O(ε3), (A16a)

s = s0 + εs1 + ε2s2 + O(ε3). (A16b)

To solve our problem we substitute the expansions (A15) into the kinematic condition (A12) and
the normal stress condition (A13) and gather terms proportional to like powers of ε. The resulting
O(ε), O(ε2), and O(ε3) problems can then be solved sequentially.

4. O(ε) problem

The O(ε) problem is

∂tζ1 + ∂rφ1|r=1 = 0, (A17)

∂tφ1|r=1 + ζ1 + ∂2
θθ ζ1 + F1 = 0. (A18)

Reducing Eqs. (A17) and (A18) to a single equation for φ1, we obtain(
∂2

ttφ1 − ∂rφ1 − ∂3
rθθφ1

)
r=1 + F ′

1 = 0. (A19)

Now we must set F ′
1 (t ) = 0 in order to avoid a purely time-dependent forcing. We thus have

φ1 = A2r2 cos 2θ sin qt + A4r4 cos 4θ sin st, (A20)

where

q = q0 =
√

6, s = s0 = 2
√

15, (A21)

and A2 and A4 are dimensionless amplitudes of order unity. Equation (A17) then implies

ζ1 = 2

q
A2 cos 2θ cos qt + 4

s
A4 cos 4θ cos st . (A22)

5. O(ε2 ) problem

The O(ε2) equations are

∂tζ2 + ∂rφ2|r=1 = A2
2

(1 − 3 cos 4θ ) sin 2qt√
6

+ 4A2
4

(1 − 7 cos 8θ ) sin 2st

2
√

15

+ 4A2A4

[
(3 cos 2θ − 5 cos 6θ ) cos st sin qt

2
√

15
− (3 cos 2θ + 5 cos 6θ ) cos qt sin st√

6

]
,

(A23)

104001-18



CHAIN-OSCILLATIONS IN LIQUID JETS

∂tφ2|r=1 + ζ2 + ∂2
θθ ζ2 + F2(t ) = −2A2q1 cos 2θ cos qt − 2A4s1 cos 4θ cos st

− A2
2

5 + 15 cos 4θ + (17 + 15 cos 4θ ) cos 2qt

6

− A2
4

23 + 99 cos 8θ + (143 + 99 cos 8θ ) cos 2st

15

+ A2A4

[
8 cos 2θ sin qt sin st

− 16

3

(
2

5

)1/2

(6 cos 2θ + 7 cos 6θ ) cos qt cos st

]
. (A24)

In writing Eqs. (A23) and (A24) we have set q = q0 and s = s0 everywhere except in the arguments
of the trigonometric functions. This introduces an O(ε4) error that is negligible for our purposes.
Reducing (A23) and (A24) to a single equation for φ2, we obtain(

∂2
ttφ2 − ∂rφ2 − ∂3

rθθφ2
)∣∣

r=1 + F ′
2 (t ) = 2

√
6A2q1 cos 2θ sin qt + 4

√
15A4s1 cos 4θ sin st

+ A2
2

√
3

2
(11 − 5 cos 4θ ) sin 2qt

+ 2A2
4

√
3

5
(95 − 81 cos 8θ ) sin 2st

+ A2A4

[
6

√
3

5
(25 cos 2θ − 7 cos 6θ ) cos st sin qt

+ 14
√

6(5 cos 2θ − 3 cos 6θ ) cos qt sin st

]
. (A25)

To avoid a forcing term that depends only on time we must set F ′
2 (t ) = 11(3/2)1/2A2

2 sin 2qt +
190(3/5)1/2A2

4 sin 2st , whereupon Eq. (A25) becomes(
∂2

ttφ2 − ∂rφ2 − ∂3
rθθφ2

)∣∣
r=1 = 2

√
6A2q1 cos 2θ sin qt + 4

√
15A4s cos 4θ sin s0t

− 5A2
2

√
3

2
cos 4θ sin 2qt − 162A2

4

√
3

5
cos 8θ sin 2st

+ A2A4

[
6

√
3

5
(25 cos 2θ − 7 cos 6θ ) cos st sin qt

+ 14
√

6(5 cos 2θ − 3 cos 6θ ) cos qt sin st

]
. (A26)

We now substitute into Eq. (A26) the general form

φ2 = r2 cos 2θG2(t ) + r4 cos 4θG4(t ) + r6 cos 6θG6(t ) + r8 cos 8θG8(t ) (A27)

and solve the resulting equations for G2–G8. The results are

G2 = −A2A4

√
5 cos st sin qt + 20

√
2 cos qt sin st

6
√

3
− A2q1

(
t cos qt − sin qt

2
√

6

)
, (A28)
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G4 = −5A2
2 sin 2qt

12
√

6
− A4s1

(
t cos st − sin st

4
√

15

)
, (A29)

G6 = −7
√

3A2A4
22

√
5 cos st sin qt + 65

√
2 cos qt sin st

1340
, (A30)

G8 = −27

44

√
3

5
A2

4 sin 2st . (A31)

Note that G2 and G4 contain secular terms ∝ t . These represent unbounded resonant solutions
generated by forcing terms ∝ cos 2θ sin qt and ∝ cos 4θ sin st that are solutions of the homogeneous
equations. To avoid this unphysical behavior, we must set q1 = s1 = 0.

The final step is to determine the shape function ζ2 by substituting Eq. (A27) into Eqs. (A23) and
(A24). We also require the (dimensionless) area of the cross section to be π , viz.,

∫ 2π

0
dθ

∫ 1+ζ

0
r dr =

∫ 2π

0

1

2
(1 + ζ )2 dθ = π. (A32)

The result is

ζ2 = A2
2

36
[3(2 cos 4θ − 1) + (4 cos 4θ − 3) cos 2qt]

+ A2
4

2310
[11(22 cos 8θ − 7) − 7(4 cos 8θ + 11) cos 2st]

+ A2A4

6030
cos 2θ [5(378 cos 4θ − 55) sin qt sin st

+
√

10(1752 cos 4θ − 1747) cos qt cos st]. (A33)

6. O(ε3) problem

The O(ε3) problem serves to determine the O(ε2) frequency coefficients q2 and s2. In the interest
of brevity, we proceed directly to the equation satisfied by φ3(r, θ, t ), which is(

∂2
ttφ3 − ∂rφ3 − ∂3

rθθφ3
)∣∣

r=1

= cos 2θ

[(
11

12
A3

2 + 411877

7035
A2A2

4 + 2
√

6A2q2 + 21

4
A3

2 cos 4θ

−229493

2345
A2A2

4 cos 4θ + 49104

335
A2A2

4 cos 8θ

)
sin qt

+ 5

3
A3

2 sin 3qt −A2A2
4

402

(
4361

√
5/2 cos qt sin 2st + 77689 sin qt cos 2st

)]

+ cos 4θ

[(
19325

402
A2

2A4 −45159

385
A3

4 + 4
√

15A4s2 + 25974

55
A3

4 cos 8θ

)
sin st

− 1140

11
A3

4 sin 3st − 2682

67
A2

2A4 cos 2qt sin st

−6053

134

√
5/2A2

2A4 sin 2qt cos st

]
+ (· · · ) cos 6θ

+ (· · · ) cos 8θ + (· · · ) cos 10θ + (· · · ) cos 12θ, (A34)
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where ellipses indicate terms we do not care about. The solution of Eq. (A34) has the general form

φ3 =
6∑

m=1

r2m cos 2mθH2m(t ). (A35)

Now substitute Eq. (A35) into Eq. (A34), multiply by cos 2θ , and apply
∫ 2π

0 dθ to the result to
obtain a second-order differential equation for H2(t ). Multiplying by cos 4θ and integrating gives a
similar equation for H4(t ). The solutions are

H2(t ) = −
(

37

12
√

6
A3

2 + 3865

804
√

6
A2A2

4 + A2q2

)
t cos qt + periodic terms, (A36a)

H4(t ) = −
(

3865
√

15

4824
A2

2A4 + 305
√

15

154
A3

4 + A4s2

)
t cos st + periodic terms, (A36b)

where the periodic terms involve multiples, sums, and differences of the wavenumbers q and s. Both
H2(t ) and H4(t ) contain unbounded resonant terms proportional to t . These unphysical terms must
vanish, which implies

q2 = − 37

12
√

6
A2

2 − 3865

804
√

6
A2

4 → q =
√

6

[
1 − ε2

(
37

72
A2

2 + 3865

4824
A2

4

)]
, (A37a)

s2 = −305
√

15

154
A2

4 − 3865
√

15

4824
A2

2 → s = 2
√

15

[
1 − ε2

(
305

308
A2

4 + 3865

9648
A2

2

)]
. (A37b)

The final step is to rewrite the foregoing expressions in terms of the (dimensional) amplitudes
b2 = 2εaA2/

√
6 and b4 = 2εaA4/

√
15. The resulting expressions for the jet radius R and the

frequencies q ≡ ω2 and s ≡ ω4 are then Eqs. (20)–(22) in the main text. Those expressions agree
with the results of Bohr [5] in the single-mode limits b2 = 0 and b4 = 0.

7. Critical amplitude b2crit

Figure 6 shows that the shape of a cross section of the jet becomes reentrant when the amplitude
b2 exceeds a critical value b2crit . If only the n = 2 mode is present (b4 = 0), then expression (20) for
the jet’s radius reduces to Eq. (11a). The critical value b2crit is a minimum for t = 0, at which point
the jet’s radius is

R(θ, 0) = a + b2 cos 2θ + b2
2

12a
(5 cos 4θ − 3) ≡ f (θ ). (A38)

The critical azimuth of reentry occurs at a value of θ such that dy/dθ ≡ d (R sin θ )/dθ = 0, or
f cos θ + f ′ sin θ = 0. This implies

12 + b̂2(−24 + 17b̂2) + 4(9 − 10b̂2)b̂2 cos 2θ + 25b̂2
2 cos 4θ = 0, (A39)

where b̂2 = b2/a. Equation (A39) has the solution

cos 2θ =
−9b̂2 + 10b̂2

2 ± b̂2

√
200b̂2

2 + 120b̂2 − 69

25b̂2
2

. (A40)

The critical value of b̂2 corresponds to the vanishing of the discriminant in Eq. (A40). Of the two
solutions, the relevant one is

b2crit =
√

174 − 6

20
a ≈ 0.3595a. (A41)
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