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Sexual selection is a potent evolutionary force 
Sexual selection is a strong evolutionary force and comprises any selection that results from 
fitness differences associated with non-random mating success (reviewed in Shuker & Kvarnemo, 
2021). The concept of sexual selection was proposed by Darwin because the evolution of 
exaggerated sexual ornaments, like the peacocks’ tail and the long tails of male widowbirds 
(Andersson, 1982, 1994), could not be explained by natural selection alone (Darwin, 1871). Only 
a preference and thus selection for such extreme sexual signals can explain their evolution 
(Fisher, 1930; Majerus, 1986). However, it is not only selection for extremes but also the selection 
for intermediate trait values that can impact signal evolution. If the risk of hybridization between 
populations with similar sexual signals is high, the average signal of the population should be 
preferred. Stabilizing selection drives populations towards a mean trait value and increases the 
difference between populations with similar sexual signals. This results in divergence of sexual 
signals which may cause reproductive isolation between populations. Closely related species 
indeed often differ strongly in their sexual traits, suggesting that sexual selection may drive 
speciation (Price, 1998; Ritchie, 2007). Two main mechanisms underlie this potent evolutionary 
force: competition and mate choice. 
 

The two mechanisms of sexual selection  

Competition (within sexes) 
Individuals of the same sex may compete for partners. Male traits involved in competition that 
have evolved into elaborate ornaments provide some popular examples of sexual selection. 
Examples of these traits can be found in the antlers of male deer, the horns of beetles, or the 
proboscis of male elephant seals. Winners of inter-male competition obtain access to fertile 
females and thus can reproduce (Andersson, 1994). While combat between males for access to 
females (contest competition) is probably the most illustrative example, competition can also 
relate to locating prospective mates fastest (scramble competition) and/or to enduring 
prolonged reproductive activity (endurance rivalry) (Andersson, 1994; Shuker & Kvarnemo, 
2021). Selection for traits occurs whenever they confer a competitive advantage. 
 

Mate choice (between sexes) 
When potential partners vary in quality, mating investment is high, and/or there is a chance of 
attracting alternative partners, individuals can benefit from selecting mating partners (Parker, 
1983; Kokko & Johnstone, 2002). These benefits may affect immediate reproductive success 
(direct benefits), for instance by influencing access to territories, resources, or parental care 
(Andersson, 1994), or the genetic quality of offspring (indirect benefits) (Fisher, 1930; Møller & 
Jennions, 2001; Kokko et al., 2003; Andersson & Simmons, 2006). In general, mate choice is the 
“process that occurs whenever the effects of traits expressed in one sex leads to non-random 
allocation of reproductive investment with members of the opposite sex” (Edward, 2015). The 
expressed traits are sexual signals and provide information about the sender. Signals underlying 
mate choice can be behavioural, morphological, or physiological traits (or a combination thereof) 
that comprise an individual’s attractiveness to the opposite sex. Attractive signals can indicate 
good quality of the sender (sometimes referred to as honest signals (Zahavi, 1977; Grafen, 1990; 
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Johnstone, 1995)). Variation in quality, related to genetic quality and/or physiological condition, 
therefore leads to variation in sexual signals and allows receivers of the signal to differentially 
assess partners.  
 

Two signallers and two choosers 
Communication is key to the process of selection by mate choice; the chosen sex signals to the 
choosing sex, who responds to the sexual advertisement in discriminative manner. The 
conventional perspective on mate choice is that one sex signals while the other sex responds. 
However, males and females within a species can both be reciprocal signallers and responders. 
Thus, both sexes send sexual signals and both sexes choose partners. Such mutual mate choice 
can be expected when both sexes invest in mating and show similar variance in reproductive 
success (Trivers, 1972), and when both sexes vary in quality (Parker, 1983; Johnstone et al., 1996; 
Bergstrom & Real, 2000). Mate choice by both sexes has been mostly recognised in birds 
(Kraaijeveld et al., 2007) and is most often observed in mating systems with biparental care (e.g., 
Zebra finches Poephilia guttata (Burley, 1986)), but might be more common than originally 
thought (e.g., Bonduriansky, 2001; Cotton et al., 2006; Edward & Chapman, 2011; Rosenthal, 
2017). When males and females are mutual choosers, selection by both sexes can significantly 
increase the number and interactions of selective forces on sexual signals.  
 

Mutual mate choice can be on the same type or on different types of signals  
If males and females are reciprocal signallers, their signals can be the same type or different types 
of signals. The same types of signals have the same sensory modality and share an underlying 
biosynthetic pathway. Mutual mate choice on the same type of signal has been found in birds 
(Kraaijeveld et al., 2007), where both sexes may select partners based on plumage colouration 
(Amundsen et al., 1997), crests (Jones & Hunter, 1993, 1999), or sexually monomorphic songs 
(Langmore, 1998). Some insects also produce monomorphic acoustic signals to attract partners 
(Henry et al., 2002, 2013).  

Different types of sexual signals operate via different sensory modalities, do not share an 
underlying biosynthetic pathway and/or are produced by different tissues. For instance, female 
mantids attract males from a distance using sex pheromones (Hurd et al., 2004; Holwell et al., 
2007; Maxwell et al., 2010; Mahmudunnabi & Barry, 2019), while males rely on visual cues for 
mate choice (Roeder, 1935; Edmunds, 1975; Maxwell, 1999; Barry et al., 2015). Evidence is also 
accumulating to show that birds may use different signal types for mate choice. For example, 
male ducks impress with their colourful plumage while several lines of evidence show that 
females emit chemical signals, although their function as sexual signals is controversial (Wyatt, 
2003; Caro & Balthazart, 2010). Signals that are derived through different biosynthetic pathways 
have been found in chemical signals. For example, in arctiid moths, females synthesise a sex 
pheromone in a pheromone gland or in specialised cells (oenocytes) (Conner et al., 1980; Bendib 
& Minet, 1998), while males produce a different sex pheromone consisting of derivatives of 
ingested secondary plant metabolites (Nishida, 2002; Henneken et al., 2017). 
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Evolutionary consequences of mutual mate choice depend on whether the choice is based on 
the same or different signals 
When mutual mate choice is based on the same signal, then selection pressure operates from (at 
least) two sides. Sexual selection theory predicts stabilizing selection for traits used in species 
recognition, whereas directional selection can be expected for traits that are used to assess mate 
quality (Fisher, 1930; Johansson & Jones, 2007). Mutual mate choice may thus lead to both 
directional and stabilizing selection when acting on the same type of sexual signal produced by 
both sexes and interaction effects may occur. However, mutual mate choice may also target 
different traits in which case the evolution of each signal needs to be considered separately. 
Female and male sexual signals and preferences may evolve independently depending on 
whether the traits are correlated, either biosynthetically and/or genetically (Kirkpatrick & Hall, 
2004; Sæther et al., 2007). To identify the direction and strength of sexual selection on sexual 
signals, it is necessary to determine a) whether there is mutual mate choice, and b) whether the 
same or different types of signals are used by each sex for mate choice.  
 

Sexual signals can be under sexual and natural selection  
Sexual and natural selection are not mutually exclusive. While sexually selected traits create a 
mating advantage, they can have a survival disadvantage. Hence, natural selection will affect the 
elaboration of these traits, as elaboration is associated with costs. Costs can be related to higher 
resource investment for developing the trait (e.g., bigger size (e.g, Chown & Gaston, 2010) or 
more intense colouration (e.g., Hill, 1996; Kodric-Brown, 1998)) but also increased mortality. 
Predation risk may increase because predators use the signal to locate the prey and parasitoids 
may follow the hosts’ sexual signal (e.g., Zuk & Kolluru, 1998; Rosenthal et al., 2001; Woods et 
al., 2007; Johnson & Candolin, 2017). In the example of male widowbirds, the long tails come at 
a cost, as they require resources to develop and make it harder for males to fly (Andersson, 1994). 
However, such costly ornaments can indicate quality and are therefore sexually selected (Zahavi, 
1975). These signals evolve under opposing selection pressures of natural and sexual selection. 

A scenario where natural and sexual selection act in concert is when pre-existing 
sensory systems become attuned to sexual signals (sensory bias). For example, if a female 
preference initially developed in the context of food preference, while the male traits that 
developed later are attuned to the same stimulus (reviewed in Andersson & Simmons, 2006). In 
this case, natural selection precedes sexual selection. Depending on the context, natural and 
sexual selection pressures may act in the same or opposite direction and ultimately shape sexual 
communication. 
 

Sexual communication in moths is relevant for species recognition  
Moths are famous for their chemical sexual communication and are among the most diverse 
group of animals with about 120.000 species identified (Bazinet et al., 2013). Every species has 
its own sexual communication channel. Sexual communication of moths has been well studied 
but mostly in terms of species-specific long-range female sex pheromone blends to attract males 
(Vickers & Baker, 1997; Baker & Vickers, 1997; Wyatt, 2003; Cardé & Haynes, 2004; El-Sayed, 
2011). Females emit a sex pheromone from an everted ovipositor in a behaviour termed ‘calling’ 
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(Gaston & Shorey, 1964; Gentry et al., 1964; Tumlinson et al., 1975; McNeil, 1991; Wedell, 2005). 
Males navigate to conspecific females in a characteristic zig-zag flight (Baker, 1986; Vickers & 
Baker, 1997; Vickers, 2002). Mate choice for species recognition is a crucial and well-studied 
aspect in species where mate signals overlap between closely related species (Löfstedt, 1993; 
Price, 1998; Cardé & Haynes, 2004; Symonds & Elgar, 2008). Since hybrids are sterile (Harrison & 
Doncaster, 1914; Pair et al., 1977; Laster, 1972; Laster & Hardee, 1995; Wang & Dong, 2001), 
errors in species-recognition are selected against. The mean signal is preferred to minimize 
interspecific attraction, which leads to stabilizing selection (Paterson, 1985; Löfstedt, 1993; Linn 
et al., 1997; Zhu et al., 1997; Droney et al., 2012). However, stabilizing selection cannot explain 
the high diversity of sexual signals in moths (Greenfield, 1981; Löfstedt, 1993; Symonds & Elgar, 
2008).  
 

Moth sexual communication includes long-range females signals and short-range male signals 
A central paradox in evolutionary biology is how within-species variation in sexual signals is 
maintained when strong stabilizing selection should deplete variation in these traits. Different 
selection pressures than those which are generally assumed must be the reason that intraspecific 
variation in these traits is maintained (De Pasqual et al., 2021). So far, our understanding of sexual 
selection pressures on moth sexual signals has been predominantly based on the male 
preference for the female sex pheromone. Despite the fact that males of many moths possess 
elaborate scent structures (androconia or hairpencils) and emit volatiles at close range (Grant, 
1970; Teal & Tumlinson, 1989; Birch et al., 1990), female mate choice in moths has been 
neglected (but see Iyengar & Eisner, 1999). If both sexes execute mate choice, selection pressures 
may be fundamentally different than when only one sex chooses. Male and female behaviours 
combined might explain how variation is maintained, because mutual mate choice is likely to 
result in selection pressures that can maintain variation (Jennions & Petrie, 1997; Pryke & Griffith, 
2007). Establishing the existence of female mate choice and deciphering the effect of selection 
by female mate choice, and eventually mutual mate choice, is thus the first step to a better 
understanding of sexual signal evolution. We can hypothesize that by shifting the focus to female 
mate choice and male sexual signals (i.e., the male hairpencil pheromone), we can unravel how 
intraspecific variation in sexual signals can be maintained.  
 

Are both sexes of the tobacco budworm Chloridea (Heliothis) virescens (Fabricius, 1777) 
signallers and responders? 
Chemical sexual communication of the tobacco budworm Chloridea (Heliothis) virescens 
(Lepidoptera: Noctuidae) has been extensively studied, with a focus on the female sex 
pheromone. Females emit a species-specific pheromone blend to attract males (Löfstedt, 1993; 
Cardé & Haynes, 2004) (Fig. 1). Both males and females mate only once a night, but several times 
over multiple nights (Flint & Kressin, 1968; Raulston et al., 1975; Pair et al., 1977; Gao et al., 
2020). This polygamous mating pattern benefits both sexes as offspring number increases with 
multiple matings (Gao et al., 2020). During mating, which generally lasts 2-3 hours (Pair et al., 
1977; Blanco et al., 2009; Hosseini et al., 2016), the male ejaculate transforms into a 
spermatophore (LaMunyon, 2000; Blanco et al., 2009). A spermatophore can weigh up to 5% of 
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the male’s body weight (LaMunyon, 2000; Blanco et al., 2009). When females mate with different 
males, sperm from various males fertilizes eggs (LaMunyon & Eisner, 1993; LaMunyon, 2000; 
Blanco et al., 2008).  

Fig. 1. Sexual communication in the tobacco budworm C. virescens depicted as a) female sex pheromone as 
a long-range attractant and b) male short-range signals during courtship. (Foto credits: Jan van Arkel, Naomi 
L. Zweerus) 

 
Attracted males extrude their hairpencils upon arrival and emit a pheromone that is 
biosynthetically related to the female sex pheromone (Hendricks & Shaver, 1975; Teal et al., 
1981; Teal & Tumlinson, 1989) (Fig. 1). Males perfume females with pheromone during 
copulation, which has anti-aphrodisiac effects on other males (Hosseini et al., 2016). Like males, 
females use the male hairpencil pheromone for species recognition (Hillier & Vickers, 2004). 
Whether these chemicals are also involved in female mate choice is unknown (Teal et al., 1981; 
Birch & Hefetz, 1987; Hillier & Vickers, 2004), and empirical support is, as yet, lacking. The main 
aim of this thesis was thus to determine if C. virescens females choose males and if so, to 
investigate the male signal underlying female mate choice. 
 

Outline of the thesis 
In chapter 2, I investigated whether female mate choice in C. virescens exists, and to what extent 
the male hairpencil pheromone affects female mating decisions. The study is to our knowledge 
the first comprehensive study on female mate choice in noctuid moths, and provides empirical 
evidence that also ‘the other sex’ (i.e., females) assess and discriminate among courters.  
 
In chapter 3, I tested the extent to which female mating status affects female sexual behaviour 
and mate choice, in a species in which females are not only choosers but also signallers. By 
signalling, females can adjust the arrival rate of males and thus signalling increase the female’s 
chance of mating. Theory predicts that non-signalling virgin females should not be choosy 
because the risk of remaining unmated is high, signalling virgins may be choosy since they can 
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actively attract males. I evaluated these predictions from theory on non-signalling females in 
signalling females.  
 
In chapter 4, I deciphered if two newly described, nutrition-derived compounds of the C. virescens 
male hairpencil pheromone could underlie female mate choice. Males sequester these secondary 
metabolites after ingestion in the larval and adult stage. Since the amount of methyl salicylate 
(MeSA) and d-decalactone (decalactone) both correlated positively with male pupal mass, I 
tested the hypothesis that female preference for larger males would result in more choices for 
males with higher amount of MeSA and/or decalactone.  
 
In chapter 5, I looked at the chemical compounds on male and female legs of three closely-related 
moth species, and sought to identify the biological role of pheromone on moth legs. Since I 
determined tactile interactions during courtship (see chapter 2), I recognized a potential for 
alternative chemical communication. Furthermore, I explored whether the pheromone 
compounds on legs act as oviposition-deterring signals, which does not seem to be the case. I 
then tested these chemicals for antimicrobial properties as an alternative function of pheromone 
compounds. 
 
In chapter 6, I discuss the findings in relation to the main aim of the thesis and in a broader 
scientific context. 
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