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Chapter 1 

Introduction 
 
 
 
 

1.1. Adaptive Immunity 
 
The adaptive immune system enables the selective elimination of specific foreign 
substances and microorganisms by means of specific antigen receptors (AgRs) 
expressed by T- and B-cells.  The adaptive immune system has a humoral 
component that is characterized by antibody (Ab) responses, and cell-mediated 
components that specifically destroys invading pathogens. Next to antigens (Ags) 
derived from microorganisms, toxins, pollens and self-altered molecules can act 
as Ags, triggering an immune response. The adaptive immune system displays 
three main characteristics: 
 
(1) Ab specificity  
(2) Ab diversity 
(3) Immunological memory  
 
B and T cells are key components of the adaptive immune system since they are 
able to specifically recognize a large variety of Ags through their AgRs. Each 
individual AgR is capable of binding with one or more Ags with a particular 
specificity. Cross-reactive AgRs bind to several related Ags while promiscuous 
AgRs bind to unrelated Ags (James and Tawfik, 2009). AgRs with high specificity 
for the Ag can precisely detect the target Ag. B-cells produce Abs, also known as 
immunoglobulin (Ig), that can either be membrane bound (B-cell receptor, BcR) 
or be secreted as soluble molecules, whereas T cells exclusively express 
membrane bound AgRs (T-cell receptor, TcR). The BcR interacts with Ag in its 
native form, whereas the TcR can only recognize processed Ag in the context of a 
major histocompatibility complex (MHC) molecule.  
 
AgR are formed by heavy and light chains, each of which has constant and 
variable regions. Heavy chain genes contain multiple copies of three different 
segments of the variable region. These are known as the variable (V), diversity 
(D) and joining (J) segments. Light chain genes contain V and J but not D 
segments. During the cell development, imprecise gene rearrangement results in 
the combination of one copy of each segment to produce a unique AgR. All 
members of a B-/T-cell progeny that have the same AgR are known as clonotypes 
(Oltz, 2001). Current theoretical, combinatorial calculations of the human 
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immune repertoire size suggest there are about 1015 possible AgRs, due to 
recombinatorial processes (Rees, 2020). While the number of heavy-chain V(D)J 
clonotypes in circulation has been estimated to be much lower, around 9 and 17 
million (Soto et al., 2019). Factually, the immune repertoire is diverse enough to 
ensure that there will be an Ab to fit almost any potential Ag, albeit with low 
affinity. After repeated stimulation by Ag, B cells can make Abs that bind their Ag 
with much higher affinity in a process called affinity maturation (Rees, 2020). 
Additional processes such as somatic recombination of V(D)J genes that encode 
the BcR and induce junctional diversity, and pairing of different BcR heavy and 
light chains induce part of the BcR diversity (Schroeder and Cavacini, 2010). 
Somatic hypermutation (SHM), taking place in the germinal center (GC; see 
below), and class-switch recombination (CSR) induce further diversity during B-
cell division. SHMs mainly affect the V(D)J genes encoding the Ag-binding 
variable regions of the Ig heavy and light chains (Jacob et al., 1991). Contrarily, 
CSR is a DNA recombination process that replaces the Ig constant region of IgM 
expressing B cells for the isotype that can best protect against the Ag (Wang et 
al., 2018). The BcR harbors three complementary determining regions (CDR1, 
CDR2, CDR3) that encompass the most variable parts of the Ab and are 
responsible for Ag binding. The four BcR framework regions (FWRs) mostly 
provide structural support for the CDRs (Lefranc et al., 2005; Hood, 2008; Sela-
Culang et al., 2013). 
 
Upon contact with Ag, B cells are activated and migrate towards secondary 
lymphoid organs, such as the spleen and lymph nodes, and into the boundary 
between T and B-cell rich areas where they interact with a specialized subset of 
Ag-specific CD4+ T cells, termed T follicular helper (Tfh) cells (Okada et al., 
2005). B cells are then directed either into follicular areas, where the GC reaction 
takes place, or to extra follicular areas, where they proliferate and differentiate 
into long or short-lived plasma cells (PCs) respectively provided they receive 
appropriate costimulatory signals from Tfh cells (Pereira et al., 2010). As a result 
of the GC reaction, B cells may also differentiate into memory B cells (MBCs) 
producing an immunological memory such that it can respond faster when the 
pathogen is encountered again in the future (Ripperger and Bhattacharya, 2021). 
 
After primary immunization, MBCs and PCs appear in blood quickly due to the 
initiation of the adaptive immune response (Blink et al., 2005). Many of the 
short-lived PCs that appear early before the initiation of the GC reaction, die 
through apoptosis in a few days (Smith et al., 1997). Long-lived PCs ultimately 
home to the bone marrow (Chan and Brink, 2012) and secrete protective high 
affinity soluble Igs or antibodies (Abs) over extended periods of time (Slifka et 
al., 1995). In contrast, MBCs preferably locate at the site of their formation, 
although they also recirculate and generate a fast and intense response upon re-
exposure (Thorbecke and Baine, 2021). Notably, GCs have been found to be IgM 
dominated (Roco et al., 2019). Memory T cells are also preserved after an 
infection, ready to mediate an enhanced and accelerated response to reinfection. 
Thus, B and T cells are responsible for a durable adaptive immunological 
response (Jarjour et al., 2021).  
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1.2. Germinal center reaction 
 
Germinal centers (GCs) are dynamic anatomical structures that appear in B-cell 
follicles of secondary lymphoid organs where the B-cell affinity maturation 
process takes place during which the B-cell receptor affinity increases over time 
(N. S. De Silva and Klein, 2015). Interactions with Tfh cells at the T and B-cell 
rich boundary drive initial B-cell proliferation. Proliferating B-cells may either 
migrate to extrafollicular areas, where they expand and differentiate into PCs 
providing an immediate source of Ag-specific Abs, or remain localized in B-cell 
follicles, where they seed GCs (Gatto and Brink, 2010). 
 
GCs comprise two functional zones: a dark zone (DZ) and a light zone (LZ) 
(Victora et al., 2010). GC B cells constantly migrate between zones (Schwickert 
et al., 2007). The motility of B cells is partially dependent on the chemokine – 
receptor pairs CXCL12-CXCR4 and CXCL13-CXCR5 (Wu et al., 2019). B-cells, at a 
centroblast (CB) state, mainly express CXCR4 and are attracted by CXCL12-
expressing reticular cells (CRC) towards the DZ (Allen et al., 2007b). CBs 
undergo rapid proliferation during which SHMs take place, which increase or 
decrease the binding affinity of the BcR for the Ag. This generates a broad range 
of BcR affinities for the Ag (Jacob et al., 1991; N. S. De Silva and Klein, 2015). 
Although it has long been thought that CSR also occurs during DZ B-cell division, 
it now appears that this process precedes the GC reaction (Roco et al., 2019). 
After proliferation, CBs that fail to express a functional BcR due to crippling 
mutations undergo cell death (Stewart et al., 2018). CBs that express functional 
BcRs may differentiate to centrocytes (CCs), express CXCR5 and are attracted by 
CXCL13-expressing follicular dendritic cells (FDC) towards the LZ (Allen et al., 
2007b). In the LZ the CCs undergo a process known as positive selection 
(Nakagawa and Calado, 2021). During this process, LZ B cells interact through 
their BcR with opsonized Ag presented by FDCs (Heesters et al., 2014). This 
interaction leads to BcR derived survival signals, which partially rescue B cells 
from programed apoptosis (Mayer et al., 2017). 
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Figure 1: Schematic overview of CC competition during the Tfh cell selection. CCs are represented in 
yellow with different BcRs (indicated with different colors). The grey BcR has a lower affinity for the 
Ag, leading to a decreased Ag internalization, BcR signal and pMHCII presentation. The red BcR has a 
higher affinity for the Ag, leading to an increased Ag internalization, BcR signal and pMHCII 
presentation. The Tfh cell (green) interacts with two CCs simultaneously but the signal polarizes 
towards the CC with highest pMHCII concentration. The Ag is represented as a red triangle. pMHCII is 
represented with a white square bound to a peptide derived from the Ag. CD40(L) are represented in 
green and brown. The T-cell receptor (TcR) is shown in blue.  The dotted line represents the Ag 
internalization process and the arrows represent signaling process. 

 
 
B cells internalize and process and present the resulting peptides as a peptide-
MHCII (pMHCII) complex on their surface enabling the interaction with TcRs of 
Tfh cells. Higher BcR affinity is directly associated with the ability to capture an 
increased amount of Ag leading to a higher pMHCII concentration (Allen et al., 
2007b). Tfh cells may interact with different B cells simultaneously but their 
signal polarizes towards the B-cell with highest pMHCII concentration (Figure 1) 
(Duchez et al., 2011). Nevertheless, this mechanism was found to be significantly 
more stringent during the GC initiation phase (Yeh et al., 2018). Sufficient Tfh 
cell-derived signals fully rescue B cells from undergoing apoptosis (Mayer et al., 
2017), promotes LZ to DZ migration (Davidzohn et al., 2019), induces rescued B 
cells into a proliferative state (Gitlin et al., 2015) and initiates MBC and PC 
differentiation (Muto et al., 2010; Shinnakasu et al., 2016). Division can be 
initiated in both zones although it takes place in the DZ (Allen et al., 2007b; 
Victora et al., 2010). Once in the DZ, B cells divide twice on average (Gitlin et al., 
2014). The number of divisions individual B cells will undergo in the DZ is 
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dependent on the Tfh cell signal intensity (Mesin et al., 2016). During division, Ag 
distributes asymmetrically in 72% of the cases among the progeny leading to 
higher amounts of pMHCII in Ag inheriting B-cells (Dustin and Meyer-Hermann, 
2012; Thaunat et al., 2012). Rescued B cells may either differentiate to MBCs and 
PCs and exit or stay in the GC for further rounds of proliferation, SHM and 
(positive) selection (Mesin et al., 2016). It has been predicted through 
computational modeling and indirectly validated through the use of multiphoton 
microscopy data that Ag-inheriting B-cells differentiate to PCs and leave the GC 
through the DZ (Victora et al., 2010; Meyer-Hermann et al., 2012). Yet, direct 
experimental evidence is still lacking. It is also unknown how and when MBCs 
leave the GC. Nevertheless, studies have shown the GC output undergoes a 
temporal switch by which most MBCs are produced before the peak of the GC 
response and most PCs are produced afterwards (Florian J Weisel et al., 2016; 
Zhang et al., 2018). Many of the GC processes including GC initiation and 
termination, B-cell positive and negative selection, and differentiation are not 
fully understood. Furthermore, the GC dynamics has been shown to be highly 
variable (Wittenbrink et al., 2011b). Finally, GC processes contribute to a variety 
of disease states including autoimmunity, allergy, and cancer (Cyster and Allen, 
2019) and are relevant for vaccine design, which underscores the importance of 
understanding them.   
 

1.3. Mechanisms of memory B-cell and 
plasma cell differentiation in the 
germinal center 
 
1.3.1. Cellular mechanisms  
 
B-cell activation mechanisms that lead to the formation of PCs and MBCs have 
been intensely studied, however, they are numerous and not all aspects are 
completely understood. In particular, the signals that control the differentiation of 
positively selected B cells towards PC versus MBC fate remain largely unknown. 
Two main cellular processes have been proposed to be involved in the 
differentiation of B cells, namely positive selection and signaling (Nakagawa and 
Calado, 2021) and asymmetric division of Ag (Dustin and Meyer-Hermann, 2012; 
Meyer-Hermann et al., 2012). Finally, other relevant cellular processes, such as 
cell division, differentiation or death, and CSR have shown to have highly variable 
durations, suggesting a role of stochastic internal B-cell processes in driving B-
cell differentiation and other B-cell outcomes (Hasbold et al., 2004; Duffy et al., 
2012; Zhou et al., 2018).  
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1.3.1.1. Positive selection and signaling 

 

 
Figure 2: Schematic overview of the main B-cell mechanisms proposed to be involved in MBC and PC 
differentiation. Three CCs bound to 1,2 or 3 Ags represent CCs with low, intermediate and high 
affinities for the Ag, leading to short, intermediate and long CC -Tfh interactions (MHCII and CD40 
mediated) in the LZ (for further information see Figure 1). Higher affinity CCs may establish longer 
and more interactions promoting PC differentiation (BCL6-, IRF4+, c-Myc+ and BLIMP1+) and exit 
from the GC. Intermediate affinity CCs may establish intermediate lasting interactions promoting re-
entry of CCs to the DZ as CBs (BCL6+, IRF4-, c-Myc+ and BLIMP1-). Low affinity CCs may establish 
weaker and shorter interactions promoting MBC differentiation  (BCL6+, IRF4-, c-Myc- and BLIMP1-) 
and exit from the GC. During CB division, Ag is distributed asymmetrically. While the effect of this 
mechanism on the fate of the cell it is unknown. Some theories suggest Ag-inheriting daughter CBs 
may differentiate to PCs and exit the GC. CBs are represented in blue. MBC and PCs are represented 
in orange.  

 
 
 
During the GC reaction high-affinity B-cells are positively selected at the expense 
of lower affinity cells that, consequently, go into apoptosis. The precise cellular 
and molecular mechanisms remain to be established but BcR and CD40 signaling 
play an important role. Several studies have shown the role of the selection 
process in the initiation and progression towards PC differentiation. BcR signals 
delivered by high affinity BcR-Ag interaction during the selection process in the 
LZ initiates PC differentiation (Chan and Brink, 2012; Kräutler et al., 2017; 
Turner et al., 2017, 2018). BLIMP1 (see molecular mechanisms) is expressed in 
high but not in low affinity LZ B cells. Nevertheless, also high affinity DZ B cells 
showed a higher expression of canonical PC genes (e.g., BLIMP1, Sdc1, Cd93, Igj, 
Xbp1) compared to low affinity DZ and LZ B cells (Kräutler et al., 2017). BcR 
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signaling, however, was not sufficient to promote differentiation into PCs but 
potentiated B-cell expansion and PC formation when limited by the amount of Tfh 
cell help (Turner et al., 2018). Signals delivered by Tfh cell have also shown to be 
required in the progression to PC fate (Kräutler et al., 2017; Turner et al., 2018). 
Acquisition of Tfh cell help was sufficient to induce B-cell division and PC 
formation, even in the absence of BcR engagement with Ag (Hasbold et al., 2004; 
Turner et al., 2018). Affinity and duration of B-cell - Tfh cell CD40-mediated 
interactions have been proposed to regulate positively selected B-cell fate. High 
affinity B cells may establish long-lasting interactions with Tfh cells that promote 
PC fate while low affinity B cells may only establish short-lasting interactions that 
lead to the MBC fate (Figure 2) (Kurosaki et al., 2015; Ise and Kurosaki, 2019). 
Interestingly, some studies showed that the CD40 signal did not affect PC 
production (Kräutler et al., 2017) while others have shown that CD40 signaling is 
a requirement for PC differentiation (Florian J Weisel et al., 2016; Ise et al., 
2018). Apart from CD40L induced signaling, chemokine signals, such as IL-21, 
and other protein molecules, such as type I IFNs and sFASL, promote PC 
differentiation in vitro (van Asten et al., 2021).  
 
1.3.1.2. Asymmetric Division 
 
Internalized Ag was analyzed in in vivo and in vitro mouse B cells showing that it 
is distributed asymmetrically prior to division in approximately 72% of the B cells 
studied (Thaunat et al., 2012). This polarization is also maintained during cell 
division resulting in an asymmetric division of Ag in both daughter cells. The 
same study showed that after asymmetric division, Ag-inheriting (pMHC-high) 
daughter B-cell are more efficient in receiving T cell help, which may affect the 
fate of the B-cell. It was also argued through computational modeling that 
asymmetric division may largely affect the production of PCs (Dustin and Meyer-
Hermann, 2012). Later, a more comprehensive computational model of the GC 
reaction proposed asymmetric division of Ag as an additional mechanism for PC 
differentiation together with the selection process (Figure 2) (Meyer-Hermann et 
al., 2012). This was based on indirect experimental evidence since the inclusion 
of this mechanism resulted in GC transzone migration rates and DZ-to-LZ ratio in 
agreement with experimental data (Victora et al., 2010). Furthermore, 
asymmetric inheritance of transcription factors (TFs), such as B-cell lymphoma 6 
(BCL6) (Barnett et al., 2012), Myelocytomatosis viral oncogene  (c-Myc)  and 
interferon regulatory factor 4 (IRF4) (Lin et al., 2015) , and signaling molecules, 
such as IL-21 (Barnett et al., 2012), during B-cell division has also been 
observed. Nevertheless, there is no direct evidence that relate asymmetric 
inheritance of the above-mentioned molecules and B-cell fate.  
 
 
1.3.1.3. Temporal switch 
 
A recent study suggested that the production of MBCs and PCs is, to some extent, 
temporally divided resulting in a first wave of MBCs followed by an increased 
production of PCs at later time points during a GC reaction. This phenomenon has 
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been coined ‘temporal switch’ (Florian J Weisel et al., 2016). In this study it was 
observed that long-lived MBCs harboring few Ig mutations, are mostly produced 
during the early phase of the GC reaction in the spleen, while highly mutated 
long-lived bone marrow PCs were mostly produced during the later phase. 
Furthermore, long-lived bone marrow PCs were found to be almost exclusively 
derived from high-affinity GC B-cells (Chan and Brink, 2012). Contrarily, long-
lived splenic MBCs were found to have less mutations and lower affinity although 
there are also MBCs with high affinity (Shinnakasu et al., 2016). A temporal 
evolution of Tfh cell population in the GC was proposed to cause the temporal 
switch (Florian J Weisel et al., 2016). To that end, a study showed that Tfh cell 
density declines significantly at the time when the GC reaction is switching its 
output (Wollenberg et al., 2011). A temporal switch is in line with the notion that 
MBCs comprise a broader range of affinities and specificities to respond to 
pathogen (Ag) variants (Akkaya et al., 2020).  
 
1.3.1.4. Stochasticity 
 
In response to activation mechanisms, such as Ag and T-dependent signals, B-
cells can be directed towards different fates, such as differentiation, CSR, 
proliferation or death. An in vitro study analyzed the duration of these 
independent, internal and stochastic B-cell processes in many pairs of siblings. 
The study showed that correlation between the duration of some of these 
processes could determine fate outcomes. Stochastic competition of the different 
timings can explain the observed number of B cells that undertake each B-cell 
fate. As an example, for asymmetric sibling B-cell fates where one of the siblings 
divides and the other one dies, a high correlation between the time to divide and 
time to die across siblings was found. This indicated that asymmetric fates could 
be expected when the time to divide and die are similar (Duffy et al., 2012). 
Consequently, the study points towards stochastic epigenetic processes as 
responsible for influencing the expression levels of molecular regulators involved 
in the different B-cell processes. Along these lines, another in vitro study 
measured the times to differentiate, divide, and die of many pairs of sibling B 
cells. CD40 signal strength was also varied to determine its influence on B-cell 
fate outcomes. They found that CD40 signal strength did not directly affect B-cell 
fate. Instead, it significantly affected the time to divide and not to die or 
differentiate (Zhou et al., 2018). Finally, the role of the B-cell division process in 
determining PC fate during the GC reaction has also been studied. A direct 
relation between the number of divisions and the number of PCs produced was 
observed (Hasbold et al., 2004). This increase in PC production could also be 
explained through an unknown division-associated mechanism. While these 
findings do not exclude the role of the above-mentioned Ag and T-dependent 
signals in determining B-cell fate but rather offers an indirect mechanism and 
explains why B cells are capable of differentiating in the complete absence of 
specific signals based on their internal state. 
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1.3.2. Molecular mechanisms regulating the GC 
reaction  
 
Numerous TFs are involved in the regulation of the GC processes that lead to B-
cell differentiation. The expression of these TFs is regulated by the magnitude of 
external signals received during the interaction with Ag and Tfh cells.  
 

 
Figure 3: Part of the B-cell gene regulatory network involved in MBC and PC differentiation. TFs are 
marked in bold. Arrows and bar-headed lines between nodes indicate activation or inhibition. 
Receptors and cellular processes are indicated in blue. 

 
 
BCL6 is a major player of the GC reaction since it is key in the GC initiation and 
maintenance, required for the affinity maturation to take place which results in 
the production of high-affinity B cells (Ye et al., 1997). It has been shown to 
modulate the expression of genes involved in B-cell activation, differentiation, cell 
cycle arrest, and apoptosis (Ye et al., 1997; Shaffer et al., 2000; Niu et al., 2003; 
Tunyaplin et al., 2004). BCL6 expression induces GC formation and is expressed 
in pre-GC B cells (Duy et al., 2010) and DZ GC B cells. Finally, BCL6 is regulated 
by several signals resulting from DNA-damage, and BcR and CD40 stimulation, 
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which result in the degradation or downregulation of BCL6 (Basso and R. Dalla-
favera, 2010) (Figure 3).  
 
Among other targets, BCL6 inhibits B-lymphocyte-induced maturation protein 1 
(BLIMP1) and the IRF4 TFs, which are crucial for PC development in the GC 
(Figure 3). BLIMP1 is expressed in PCs and is involved in their Ab secretory 
phenotype (Tunyaplin et al., 2004). IRF4 acts upstream (Sciammas et al., 2011) 
and downstream (Klein et al., 2006) of BLIMP1. Furthermore, both TFs are 
expressed in a subset of LZ B cells and are required for PC phenotype 
development in response to CD40 stimulation (Klein et al., 2006).  Consistent 
with their patterns of expression that is restricted to BCL6-negative B cells, 
BLIMP1 and IRF4 transcriptionally repress BCL6 (Shaffer et al., 2002). 
Furthermore, IRF4 binds to its own promoter, resulting in a positive feedback 
mechanism by which PCs maintain a high IRF4 expression (Shaffer et al., 2009).  
 
Paired box protein Pax-5 (PAX5) is a TF required for the establishment of the B-
cell lineage identity and the induction of CSR and SHM (Figure 3) (Schebesta et 
al., 2007). PAX5 and BLIMP1 mutually repress each other. PAX5 and BTB domain 
and CNC homolog 2 (BACH2) mutually activate each other (Muto et al., 2010). 
Thus, BACH2 orchestrates the dynamics of PAX5 and BLIMP1 by inducing a delay 
in BLIMP1 up-regulation, which is crucial for the CSR and SHM processes to take 
place prior to PC differentiation (Muto et al., 2010). BACH2 is also crucial for MBC 
development in the GC (Shinnakasu et al., 2016) but not for PC development 
since BACH2 represses BLIMP1 (Muto et al., 2010). While BACH2 is induced by 
BCL6 (Laidlaw and Cyster, 2020), down-regulation of BCL6 and up-regulation of 
BACH2 are both required for MBC fate induction (Ise et al., 2018). GC B cells that 
receive low levels of Tfh cell help also maintain elevated BACH2 expression 
(Laidlaw and Cyster, 2020). Nevertheless, it is worthwhile mentioning that BACH2 
and BCL6 expression have been found to be strongly correlated (Thomas et al., 
2019). 
 
c-Myc and forkhead box protein O 1 (FOXO1) are critical for GC B-cell selection, 
survival and division (Figure 3) (Dominguez-Sola et al., 2012). FOXO1 is a TF 
that is repressed by BcR signal while c-Myc is repressed by FOXO1 and induced 
by CD40. Both BcR signaling, which inactivates FOXO1, and CD40 signals are 
required for a high c-Myc induction (Luo et al., 2018). c-Myc is expressed 
exclusively in LZ B cells undergoing positive selection and induces DZ B-cell state. 
In response to graded doses of Ag, c-Myc expression is directly proportional to 
the amount of pMHCII. Furthermore, the level of c-Myc expression dictates the 
number of B-cell divisions in the DZ (Finkin et al., 2019). FOXO1 can then be 
induced by BcR, through AKT/p-S6 pathway, which is required to induce the Tfh 
cell-mediated transition from LZ to the DZ B-cell phenotype (Luo et al., 2018). 
Finally, FOXO1 may induce BCL6 (Tang et al., 2002) while also inducing PC 
BLIMP1 (Vogel et al., 2014). 
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Figure 4: Diagram representing B-cell pathways involved in different B-cell processes in response to 
different levels of BcR and Tfh cell help. TFs are marked in bold. Arrows and bar-headed lines between 
nodes indicate activation or inhibition. Red crosses indicate absence of activation or inhibition. 
Receptors are shown in blue. Figure adapted from (Laidlaw and Cyster, 2020). 

 
 
Low affinity LZ GC B cells generally undergo apoptosis due to failure to receive 
sufficient BcR and CD40 signals to inhibit BCL6, which promotes GC B cell 
apoptosis (Laidlaw and Cyster, 2020). GC B cells that receive sufficient BcR signal 
repress BCL6 and induce B-cell survival. If in combination with low levels of CD40 
signal, B-cells do not repress BACH2, which further inhibits apoptosis and 
predispose them to differentiate into MBCs. These cells also fail to express c-Myc, 
which is necessary to promote B-cell division, and BLIMP1, which induces PC 
development (Figure 4). Intermediate levels of CD40 signal, in combination with 
sufficient BcR signal, result in the induction of c-Myc and subsequent induction 
FOXO1, which lead to a highly proliferative DZ B-cell state. Intermediate levels of 
CD40 signal do not drive sufficient IRF4 expression preventing PC differentiation. 
High levels of CD40 signal, in combination with sufficient BcR signal, allows for 
IRF4 induction, BCL6 inhibition and BLIMP1 induction leading to PC differentiation 
(Laidlaw and Cyster, 2020).  
 
While these are the most studied mechanisms involved in the regulation of GC B-
cell processes, this is a complex process with many other TFs and signaling 
pathways involved which might be relevant.   
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1.4. The role of the GC in disease 
 
Without doubt, the GC reaction is indispensable to respond to pathogens or other 
substances but the high rate of B-cell proliferation and SHM that enables this 
reaction is not without risk for disease. Understanding the mechanisms of affinity 
maturation, and PC and MBC differentiation during the GC reaction are necessary 
for prevention or treatment of diseases. Understanding the GC reaction may help 
in the development of (improved) vaccines resulting in antibodies of higher 
affinity and specificity to increase their ability to stop chronic viral infection 
(Mesin et al., 2016).  The GC is involved in the development of most mature B-
cell lymphomas, and drives autoAb-driven autoimmune diseases. In addition, 
SHM may lead to the production of auto-Abs. If negative selection fails then this 
may result in auto-immune disease (Bönelt et al., 2019). The combination of SHM 
and high B-cell proliferation may lead to GC-derived malignancies (Bönelt et al., 
2019) but this comes at the expense of a non-negligible probability that, for 
example, during affinity maturation within GCs, off-target SHM can take place 
initiating B-cell malignancies such as B-cell lymphomas, which mostly derive from 
GC B cells (Attaf et al., 2021). Importantly, most mature B-cell lymphoma 
originates from GC B cells. For instance, diffuse large B-cell lymphoma (DLBCL), 
the most common subtype of non-Hodgkin's lymphoma, is a GC derived, 
aggressive and heterogeneous disease (Alizadeh et al., 2000). Abnormal 
expression of certain TFs, such as constitutive BCL6 expression, and consequent 
inactivation of IRF4 and BLIMP1, is key in promoting DLBCL by enforcing the 
proliferative phenotype of GC B cells, while suppressing DNA damage responses 
and by blocking PC differentiation (Basso and Dalla-Favera, 2012). Ectopic GCs 
can be generated in inflamed local tissue (e.g., lungs, skin, nasal mucosa) during 
an allergic reaction (Gatto and Brink, 2010). Allergic reactions occur due to the 
presence of Ag-boung-IgE Abs produced locally by PCs (Coker et al., 2003). The 
latter study suggested that SHMs and CSR of high affinity B-cells exiting the 
ectopic GC reaction could lead to the generation of IgE producing PCs. 

 

1.5. Repertoire sequencing experiments 
 
Naïve and GC generated AgR repertoires in blood or tissue can be profiled using 
next generation sequencing technologies (Robinson, 2015; Liu et al., 2021). 
These BcR and TcR repertoire sequencing experiments have been applied for a 
broad range of applications including vaccinology, infection, and (auto)immune 
disorders (van Schaik et al., 2014; Galson et al., 2015; Wang et al., 2015, 2019; 
Bashford-Rogers et al., 2019; Nakagawa et al., 2021). Typically, the pre-
processing of repertoire sequencing results in a set of clones and their 
abundances in the measured samples. Additional bioinformatics analyses are then 
performed to address the specific research question (Greiff et al., 2015). A 
specific (auto)immune response will skew the BcR repertoire towards Abs binding 
the Ag. Although repertoire sequencing does not provide information about 
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binding affinities, it is generally assumed that higher abundant clones (dominant 
clones) have higher affinities due to their Ag-driven expansion and selection in 
GCs. Therefore, in principle, dominant clones that have expanded in the GC 
provide good candidates to further characterize, for example, binding specificity 
and affinity, neutralization capacity, and functional properties (Marks and Deane, 
2020). Nevertheless, it would be interesting to know: (1) the relation between 
clonal abundance and affinity, (2) the variation of binding affinities within a clone 
and (3) the effect of inflated PC and/or MBC mRNA on the abundance 
measurement. Unfortunately, measuring the binding affinity for hundreds or 
thousands of clones resulting from repertoire sequencing is virtually infeasible. 
 

1.6. Computational modeling to study 
biological systems 
 
1.6.1. Complexity of biological systems 
 
The degree to which gene regulatory networks (GRNs) affect cell behaviors is 
crucial to understand the processes of life. The elucidation of these networks and 
their regulation of cellular processes is a complex task due to (1) their 
spatiotemporal dynamics; (2) the large-scale nature of GRNs; (3) the (unknown) 
interactions between the individual components to generate a collective behavior; 
(4) the non-linearity of this collective behavior due to, among other factors, the 
presence of regulatory mechanisms such as feedback or feedforward (Janson, 
2012). To fully understand biological processes a synergistic approach between 
experimenting and computational modeling is necessary. As part of this 
integrative approach, computational models have been used to study the 
dynamics of biological systems at different scales starting from the molecular 
level to cellular, tissue, organs, and even the whole organism level. Multiscale 
approaches have been developed and applied to combine different scales 
(Cappuccio et al., 2016). 
 
Systems biology is an integrative discipline that combines a wide range of 
experimental and modeling methods to understand complex biological systems 
(Ma’ayan, 2017). Systems medicine stems from systems biology, implementing 
and translating the more basic approaches to applied clinical research and 
practice to the direct benefit of patients (Kolch and Fitzmaurice, 2017). Systems 
medicine involves the implementation of such computational approaches in 
medical concepts, research and practice (Stéphanou et al., 2018).  
 
A model is an abstract representation of a system that can be turned into a 
mathematical or computational description, which can be used to understand the 
functioning of the system, as well as for suggesting new hypotheses, making 
predictions, studying emergent properties and developing new experimental 
designs. Models can be mathematical and/or computational. Multiscale models 
(MSMs) can be used to integrate mathematical and computational descriptions of 
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processes operating at different spatial, temporal and organizational levels 
(Eftimie et al., 2016). 
 
1.6.2. Model developing steps 
 
The process of building models is similar across all modeling methods. While the 
details may slightly vary from one to another, a general understanding of the 
common steps, and the underlying assumptions needed for the analysis, provides 
a useful framework in which the results can be interpreted. The basic steps are: 
(1) data preparation and understanding, (2) model assembly, (3) model 
validation and (4) model delivery (Biecek, 2019). Once the experiment is 
designed, the data is collected, carefully selected and there is a general 
understanding of the dataset, a model is constructed that is in agreement with 
the measurements. New models can emerge from the combination of old models. 
Further, parameter estimation methods are used to estimate unknown 
parameters. Then, a careful assessment of the model is done, if there is a good 
fit between experimental data and the data generated by the model some of the 
model assumptions might be validated. Otherwise, the process is repeated until 
the model appropriately fits the data. Finally, decisions that lead to the final 
model need to be documented in an understandable way using reports, graphs, 
tables, and other communication strategies (Biecek, 2019).  
 

1.6.3. Ordinary differential equation modeling 
 
Ordinary differential equation (ODE) models are mathematical models that can be 
defined, in the simplest scenario, involving a function f(x), of a dependent 
variable, such as a TF concentration (x), and its derivative with respect to an 
independent variable, such as time (t) (Eq 1) (Rodriguez-fernandez and Iii, 
2013).  
 

Eq 1: !"
!"
= f x  

 
The function f(x) generally contains one or more (unknown) parameters, such as 
kinetic parameters in the case of molecular reactions. A solution to the equation, 
a function of the independent variable, can be obtained when specifying an initial 
value for the dependent variable. This can be done numerically or in special 
cases, analytically. ODEs can then be used to simulate the dynamics of the 
dependent variable. This can be applied to the study of mechanisms of biological 
processes (Rodriguez-fernandez and Iii, 2013).  
 
ODE models can be used to represent the structure of GRNs by specifying the 
regulatory relations between genes and the signalling pathways involved. They 
have been typically used to quantitatively study the dynamics of GRNs, which 
cannot be obtained from only the topology of a network (Bruggeman et al., 
2013). Parameters, representing production, binding, decay and other molecular 
processes, can be estimated using, for example, time-resolved microarray gene 
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or protein expression data (Rodriguez-fernandez and Iii, 2013). The system can 
be formulated in terms of reaction-rate equations and kinetics, such as the law 
mass action and Michaelis-Menten kinetics. Dynamics of a GRN includes changes 
in the concentration of a TF with respect to time. When the rates of production of 
all the molecules equal the rates of decay the system is considered to be in 
steady states. Transition between steady states can only be driven by 
perturbation of the system (Bruggeman et al., 2013). 
 

 
 
Figure 5: Diagram and mathematical equations of a model representing a GRN involved in PC 
differentiation. This model can be translated to a system of ODEs that incorporate the parameters 
shown in this network. TFs are represented as follows, BCL6 (b) IRF4 (r) and BLIMP1 (p); and rates of 
the different B-cell reactions are defined as follows, basal transcription (µ), degradation (λ), maximal 
induced transcription (σ), range of BCR-induced degradation of BCL6 (bcr0) and range of CD40-
induced transcription of IRF4 (cd40). Nodes represent molecules or molecular complexes. Arrows and 
bar-headed lines between nodes indicate activation or inhibition. Signaling inputs and receptors are 
indicated in blue. 
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ODEs are complex and often unresolved. Nevertheless, a previous study of an 
ODE model describing a GRN comprising three TFs was assumed to provide 
sufficient explanation to describe terminal B-cell differentiation into PCs in the GC 
(Martínez et al., 2012). The three key TFs were BCL6, BLIMP1 and IRF4, which 
regulated each other and were affected by BcR and CD40 signaling with a total of 
six interactions (Figure 5). Steady-state analysis of the BCL6 and BLIMP1 
expression levels for different values of BcR stimulation shows a bistable regime 
characterized by the existence of three steady-states, two stable and one 
unstable. One of the stable steady-states is characterized by high BCL6 and low 
BLIMP1 levels, representing GC B-cell state, while the other one is characterized 
by low BCL6 and high BLIMP1 levels, representing PC state. Increasing BcR 
stimulation moves the system form the GC B-cell closer to the PC state. In the 
absence of CD40 signal, this is a reversible process when decreasing the total BcR 
signal strength. Thus, BcR stimulation does not explain the irreversible nature of 
PC differentiation. Further analysis of the system shows a bistable behavior 
dependent on the ratio of all IRF4 synthesis to degradation kinetic parameters. 
Upon CD40 stimulation, low ratios result in a system with only one steady state 
resulting in the return of the IRF4 level when CD40 signalling is aborted. For 
intermediate ratios, a bistable behavior is observed corresponding to GC B-cell 
and PC steady states. Finally, high ratios lead to irreversible transition towards 
the single PC state caused by the IRF4 positive feedback loop. Such finding 
indicated the critical role of CD40 signal in increasing the IRF4 concentration, 
which then drives PC development.  
 
1.6.4. Agent based modeling 
  
Agent based models (ABMs (Chaudhry, 2016)) are computational models that 
evolved from cellular automata (CA (Malleta and Pillis, 2006)) models and are 
used to study complex behaviors that emerge from the interactions of individual 
entities or agents. ABM allows a biological system to be modelled with a collection 
of agents that interact and make decisions on the basis of a set of pre-defined 
rules. Agents have different states and may also interact with their environment 
for a defined period of time. Interactions can be modeled using rates or 
probabilities introducing stochasticity in the system. In contrast to deterministic 
ODE models, ABMs remain valid in small size (discrete) populations where 
stochastic effects have an important role (Meyer-Hermann et al., 2009). Time 
and space representation are discrete although lattice-free approaches have been 
used (Glen et al., 2019). ABMs are useful when the individual behavior is 
nonlinear, discrete, heterogeneous, has memory, path-dependence and/or 
include learning and adaptation. Furthermore, they are an efficient tool to study 
spatial dynamics of a system. Nevertheless, they require a complex internal state 
and space representation, which can be a limitation for empirical validation and 
rules can be heuristic. Since ABM are stochastic multiple simulations must be 
performed to assess the model’s behavior, which can become computation 
intensive and time consuming. (Bonabeau, 2002). 
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Figure 6: ABM in which the GC is represented as a 3D spherical grid. The DZ and LZ are separated by 
an x-y plane. Cells are represented as spheres that occupy a single grid point. In the DZ, B-cells have 
a CB phenotype (blue). In the LZ, the B-cells have a CC phenotype (yellow). FDCs (brown) and Tfh 
cells (green) are restricted to the LZ. 

 
Figure 7: Diagram of the ABM B-cell processes in the GC, which take place in the DZ or LZ. Nodes 
represent B-cells with three different B-cell states: CCs, CBs and output cells (OCs).. OCs represent 
the collection of PCs and MBCs. Arrows between nodes indicate processes that take place. Rates of the 
different processes are defined as follows: influx (ri), proliferation (rp), differentiation (rCBàCC, rCBàOC), 
apoptosis (rapo), zone migration (rDZàLzand rLZàDZ), selection (rFDC:sel and rTfhC:sel), recycling (rr) and exit 
(re). The GC reaction is initiated with one or more founder CBs in the GC or with a pre-defined rate of 
inflow. Proliferation of recycled CBs can be asymmetric. CBs may undergo SHMs. The GC has two 
zones, namely the DZ and LZ. Spatial chemokine gradients of CXCL12 and CXCL13 are represented 
below the GC. CXCL12 is mainly present in the DZ and CXCL13 in the LZ, and are responsible for the 
directed movement of the cells. 
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As an example, an ABM model of the GC reaction, named hyphasma, has been 
developed based on experimental data and current knowledge of the GC. (Meyer-
Hermann et al., 2012). The GC is represented by a 3D-sphere of grid points 
(Figure 6). Two predefined chemokine gradients are imposed on the sphere 
representing the zonal GC structure. Agents are the cells that are present during 
the GC reaction and comprise B cells, FDCs, Tfh cells and output cells (OCs), 
which comprise MBCs and PCs but for which no distinction is made in the model. 
Different cell types are governed by different sets of rules reflecting the main 
biological processes that take place during the GC reaction. From a mechanistic 
perspective, the rules determine the cellular dynamics by defining B-cell motility, 
DZ B-cell division and SHM, transition between DZ and LZ, LZ B-cell apoptosis, LZ 
B-cell Ag acquisition through their interaction with FDCs and positive selection by 
Tfh cells during the selection process, DZ B-cell differentiation towards OCs 
(Figure 7). Rates are formulated into probabilities or internal time clocks. As 
aforementioned, the computational study showed that B cells selected by Tfh cells 
after successful Ag processing always return to the DZ for asymmetric division 
(Meyer-Hermann et al., 2012). Acquired Ag is inherited by one daughter cell only. 
Ag-retaining B cells differentiate to OCs and leave the GC through the DZ. Such 
findings resulted in an early emergence of high-affinity Abs and increased amount 
of derived PCs. 
 
1.6.5. Multiscale modeling 
 
MSMs aim to connect two or more models constructed for different time and/or 
space scales (Versypt, 2021). MSMs provide a useful framework to investigate 
immune processes because it allows integrating the molecular (e.g., GRN, 
metabolism) and cellular (e.g., proliferation, differentiation) mechanisms. This 
enables, for example, the possibility to investigate the effect of molecular 
perturbations (e.g., dysregulation of TFs) on the cellular level (Eftimie et al., 
2016). Combining an ABMs with ODEs can be a useful way to substitute heuristic 
ABM rules with GRN that determine cell behavior, and which can be based on 
experimental (omics) data. Nevertheless, the connection of different levels in 
these models has their own challenges. Firstly, we may lack knowledge how a 
molecular network affects a cellular process. For example, how do transcription 
factors like c-Myc control the number of B-cell divisions in the GC DZ or, vice 
versa, how do signals like CD40 and BcR signaling affect the levels of the TFs In 
most cases this requires further experimental studies but, alternatively, we can 
attempt to simplify the model without sacrificing its utility too much. Secondly, 
processes modeled in a MSM will generally take place at (largely) different 
temporal and spatial scales. For example, the transcription of a gene and 
translation to a protein takes place in the order of minutes to hours. The 
subsequent interaction of the proteins as part of a molecular network evolves 
over hours to days. These networks will then determine the progression of the GC 
reaction with a duration in the order of weeks to months. The basic question is 
how we can understand and predict this long-term GC reaction in terms of 
molecular events that are of much shorter duration. Finally, MSMs can become 
very computationally intensive when aiming to model long-term (GC) processes 



	   26	  

at a time scale of the fastest (molecular) processes. (Noble, 2012). Stochastic 
simulation algorithms, such as the Gillespie algorithm, can be used to model 
systems of stochastic equations efficiently and accurately while decreasing 
computational power and time. This can be done through the discretization of the 
time of the simulation. The time resolution can be made reaction-dependent such 
that at each time step, reactions that will be solved can be selected based on 
their rate constants (Thomas et al., 2019). While this selection procedure also 
has a computing cost, it allows for faster reactions to have a smaller time scale 
than slower ones. Nevertheless, it is still an open question what is the best way 
to combine different time scales.  

 

1.7. Outline of thesis 
 
We have developed a MSM of the GC reaction to investigate PC differentiation, 
asymmetric B-cell division, and the development of diffuse large B-cell lymphoma 
(DLBCL). In Chapter 2 we introduce the model in which we have integrated two 
pre-existing models. One model is the so-called LEDA ABM developed by Meyer-
Hermann and collaborators (Meyer-Hermann et al., 2012). This model comprises 
the most comprehensive model of the GC available today, and basically 
represents the cellular processes of the GC reaction. The second model is a GRN 
comprising three TFs ((BCL6, IRF4, and BLIMP1), which are assumed to represent 
the core network in PC differentiation. This model includes BcR signalling to 
account for the interaction of the BcR with the Ag, and CD40 signalling to account 
for the interaction of the B-cell with the Tfh cells.  This network is represented by 
a system of ODEs and was developed by Martínez and co-workers (Martínez et 
al., 2012). We used the ODE model to replace some of the heuristic ABM rules 
that control PC differentiation. We used the resulting MSM to investigate the role 
of asymmetric Ag division, opposed to BLIMP1 expression, in PC differentiation. 
In particular we considered the role of Tfh cell help and CD40 signaling. This work 
raised new questions with respect to the role of asymmetric division of Ag and 
TFs in PC differentiation. In Chapter 3 we investigated the extent to which 
asymmetric segregation of Ag and/or TFs (BCL6, IRF4, and BLIMP1) recapitulates 
known dynamics of the GC reaction and PC differentiation. In Chapter 4 we 
apply the MSM to investigate the effect of common genetic alterations in DLBCL 
on the cellular level. We investigated eight different scenarios comprising 
different (combinations of) alterations to demonstrate how a GC MSM can be 
used to predict how genetic defects affect cellular behavior and may result in B-
cell lymphoma. Finally, in Chapter 5 we use our model to enhance the 
interpretation of B-cell repertoire sequencing data. In particular we show how 
affinity is potentially related to clonal abundances measured in typical repertoire 
sequencing experiments, and how MBCs and/or PCs can disturb the identification 
of dominant clones.  
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2.1. Abstract 
 
Germinal Centers (GCs) play a key role in the adaptive immune system since 
they are able to produce Memory B cells (MBCs) and plasma cells (PCs) that 
produce high affinity antibodies (Abs) for an effective immune protection. The 
mechanisms underlying B-cell-fate decisions are not well understood but 
asymmetric division of antigen (Ag), B-cell receptor (BcR) affinity, interactions 
between B-cells and T follicular helper (Tfh) cells (triggering CD40 signaling), and 
regulatory interactions of transcription factors (TFs) have all been proposed to 
play a role. In addition, a temporal switch from MBC to PC differentiation during 
the GC reaction has been shown.  To investigate if Ag affinity-based Tfh cell help 
recapitulates the temporal switch we implemented a multiscale model (MSM) that 
integrates cellular interactions with a core gene regulatory network (GRN) 
comprising B-cell lymphoma 6 (BCL6), interferon regulatory factor 4 (IRF4), and 
B-lymphocyte-induced maturation protein 1 (BLIMP1). Using this model, we show 
that affinity-based CD40 signaling in combination with asymmetric division of B-
cells result in switch from MBC to PC generation during the course of the GC 
reaction. We also show that cell fate division is unlikely to be (solely) based on 
asymmetric division of Ag but that BLIMP1 is a more important factor.  
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Altogether, our model enables to test the influence of molecular modulations of 
the CD40 signaling pathway on the production of GC output cells (OCs). 1 

 
2.2. Introduction 
 
GCs are anatomical structures located inside B-cell follicles within secondary 
lymphoid organs that play an important role in the adaptive immune system 
(Meyer-Hermann et al., 2012; N. S. De Silva and Klein, 2015). Through 
subsequent rounds of cell proliferation, SHM and positive selection the BcR is 
optimized for Ag binding in a process called affinity maturation. This eventually 
results in the development of MBCs and PCs that produce high affinity Abs, which 
provide an effective immune protection. GCs comprise two functional zones. In 
the dark zone (DZ), centroblasts (CBs) rapidly proliferate and accumulate somatic 
hyper mutations (SHMs) in the genes that encode their BcR. The light zone (LZ) 
is mainly characterized by the presence of centrocytes (CCs), follicular dendritic 
cells (FDCs) that present Ag in the form of immune complexes to GC B cells 
(Allen and Cyster, 2008), and Tfh cells. CCs capture and internalize Ag through 
their BcR in an affinity-dependent manner triggering survival signals. 
Subsequently, the Ag is processed by the CCs resulting in histocompatibility 
molecules II (pMHCII) presented to the Tfh cells. Hence, B cells compete in an 
affinity-dependent way for interaction with Tfh cells, facilitating CD40 and 
cytokine signaling to become positively selected. Positively selected CCs may 
return to the CB state and recycle to the DZ to undergo further rounds of 
proliferation and SHM. Alternatively, positively selected CCs may differentiate to 
MBCs or PCs (Kräutler et al., 2017; Higgins et al., 2019; Ionescu and Urschel, 
2019; Ise and Kurosaki, 2019; Shlomchik et al., 2019). Recently, it was also 
shown that GC B-cell migration influences PC development (Reimer et al., 2020) 
The cellular and molecular mechanisms that regulate PC and MBC differentiation 
remain largely unknown, while such knowledge would crucially advance our 
understanding of GC-associated diseases such as B-cell lymphomas and 
autoimmune disorders. In this research we present a MSM integrating molecular 
and cellular mechanisms to investigate PC differentiation. 
 
In vivo studies in which Tfh-dependent positive selection of CCs was triggered in 
a BcR-independent fashion using the DEC205 surface lectin indicated that the 
interaction of CCs with Tfh cells critically determines positive selection and 
subsequent generation of PCs (Victora et al., 2010; Shulman et al., 2014). 

 

1 This chapter is based on Merino Tejero E, Lashgari D, García-Valiente R, 
Gao X, Crauste F, Robert PA, Meyer-Hermann M, Martínez MR, van Ham SM, 
Guikema JEJ, Hoefsloot H, van Kampen AHC. Multiscale Modeling of Germinal 
Center Recapitulates the Temporal Transition From Memory B Cells to Plasma 
Cells Differentiation as Regulated by Antigen Affinity-Based Tfh Cell Help. 
Frontiers in immunology (2021) 11:620716.  
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Other studies suggested that BcR signaling, but not Tfh interaction, initiates PC 
differentiation (Arpin et al., 1995; Kräutler et al., 2017; Luo et al., 2019; 
Shlomchik et al., 2019). The role of BcR signaling in PC differentiation is 
supported by the observation that long-lived PCs in bone marrow produce high-
affinity Abs that contain many SHMs (Smith et al., 1997; Phan, 2006; Chan and 
Brink, 2012; Kräutler et al., 2017). Smith and co-workers showed that the extend 
of affinity maturation of MBCs and PCs differs for NP hapten-specific B-cell 
responses typically resulting in high-affinity PCs and low-affinity MBCs (Smith et 
al., 1997). Other work suggested a temporal switch during the GC reaction 
resulting in the production of MBCs primarily during the early GC phase while 
long-lived bone-marrow (BM) PCs are generated at later stages (Florian J Weisel 
et al., 2016). In support, Shinnakasu and co-workers showed that lower affinity 
cells at earlier stages of the GC reaction are favored to enter the MBC 
compartment and also suggested that high-affinity GC B cells are preferentially 
selected to enter the cell-cycle and undergo PC differentiation (Shinnakasu et al., 
2016).  
 
Previously, an agent-based model (ABM) was developed that assumes that all 
CCs positively selected by Tfh cells subsequently recycle to the DZ for further 
proliferation, mutation and differentiation (Meyer-Hermann et al., 2012). 
Experimental evidence for this model was in part provided by demonstrating PC 
precursors in the DZ (Kräutler et al., 2017; Ise et al., 2018; Steiniger et al., 
2020). This computational model was dubbed LEDA (LEave the GC through the 
DArk zone) and distributes the captured Ag asymmetrically during cell division to 
the daughter cells. The Ag-retaining cells differentiate into PCs and leave the GC 
(Meyer-Hermann et al., 2012). Other models were investigated in this paper, 
such as LEDAX, in which the decision about differentiation is already taken during 
the interaction with Tfh cells in the LZ irrespective of asymmetric division. A 
probabilistic decision is made after symmetric division in the DZ to decide if the 
B-cell differentiates to an output cell or heads for another round of selection. 
Nevertheless, we wanted to test the effect of asymmetric division on PC 
differentiation and, therefore, we used the LEDA model as a starting point. 
However, direct experimental evidence that asymmetric division determines cell 
fate is lacking.  
 
A large body of research focuses on the molecular mechanisms underlying PC and 
MBC differentiation including epigenetics (Herviou et al., 2019; Azagra et al., 
2020; Fujii et al., 2020), the role of various TFs, and GRN (e.g., (Nutt et al., 
2011; Davidzohn et al., 2019; Roy et al., 2019; Liu et al., 2020)).  Our MSM is 
built on a core GRN comprising three TFs (BCL6, IRF4, and BLIMP1) that are 
directly involved in PC differentiation. The TF BLIMP1 is essential for PC 
differentiation and regulates a large number of target genes required for the 
function of these cells (Minnich et al., 2016). For example, BLIMP1 represses 
class II transactivator (CIITA) and activation-induced cytidine deaminase (AID), 
thereby inhibiting Ag presentation and GC associated AID-dependent Ig gene 
diversifications, respectively (Piskurich et al., 2000; Minnich et al., 2016). 
BLIMP1, however, may not initiate PC differentiation which has been suggested to 
start by down-regulation of the Paired Box 5 (PAX5) and BCL6 proteins, which 
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supports the theory that BcR signaling, resulting from BcR – Ag interaction, 
initiates this process (Kräutler et al., 2017). BcR signaling results in the 
repression of BCL6 (Basso and R. Dalla-favera, 2010), which is an important 
factor for BcR diversification and sustained cell proliferation. However, other 
studies have shown that IRF4 initiates plasmablast (PB) differentiation by 
inducing expression of BLIMP1 (Kwon et al., 2009; Muto et al., 2010). This does 
not exclude the possibility that BcR signals are involved in increasing IRF4 levels. 
CD40 signaling, resulting from CC – Tfh interaction, upregulates IRF4, which 
subsequently activates BLIMP1 and leads to PC differentiation. In PCs, IRF4 can 
also bind to its own promoter to create a positive feedback mechanism that 
maintains high IRF4 expression and, consequently, BLIMP1 expression (Shaffer et 
al., 2009). BLIMP1 is generally considered to repress gene expression but it may 
also induce gene expression of IRF4 and other genes (Minnich et al., 2016). BCL6 
is highly expressed in GC B cells and inhibits both the expression of BLIMP1 and 
IRF4. BCL6 binds to its own promoter to inhibit its own transcription thereby 
resulting in an autoregulatory negative feedback loop (Basso and Dalla-Favera, 
2015). In turn, BLIMP1 and IRF4 repress BCL6, which is down-regulated in PC 
differentiation.  
 
It is challenging to integrate the cellular and molecular mechanisms involved in 
PC differentiation since details about the effect of cellular interactions through 
signaling on the underlying molecular networks are not known in full detail. 
Conversely, the effect of GRN states on cell behavior or phenotype also remains 
to be elucidated in more detail. Moreover, these mechanisms operate at different 
time scales. One way of proceeding is to model (affinity dependent) signals 
resulting from cellular interactions that affect the underlying GRN, which in turn 
determines cell fate. We present a MSM integrating molecular and cellular 
mechanisms to investigate PC differentiation. In particular, we integrate two pre-
existing and published computational models: the cell-based LEDA model (Meyer-
Hermann et al., 2012) and a differential equation-based GRN including BCL6, 
IRF4, and BLIMP1 (Martínez et al., 2012). This GRN model considers BcR and 
CD40 signals delivered to the B cells but it assumes that only the CD40 signal 
initiates and progresses differentiation. Other (cytokine-driven) signals during 
B/T-cell interactions are neglected in our model. Our MSM integrates and 
investigates asymmetric division and (affinity-based) CD40 signaling in PC 
differentiation. 
   
Using this model, we show that affinity-based CD40 signaling in combination with 
asymmetric division result in MBC and PC generation in accordance with the 
temporal switch. In contrast, a constant strong CD40 signal does only result in 
PCs, while a constant weak signal results in MBC output throughout the GC 
reaction. We also conclude that cell fate division is unlikely to be (solely) based 
on asymmetric division of Ag since this does not result in the differentiation of all 
high-level BLIMP1 B-cells. Vice versa, PCs differentiated on the basis of high 
BLIMP1 levels are a mixture of cells with and without internalized Ag indicating 
that not only Ag retaining cells engage in differentiation. We propose experiments 
to validate our computational findings. Altogether, our model enables to test the 
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influence of molecular modulations of CD40 signaling pathway onto the 
production of MBC and PCs.  

 

2.3. Methods 
 
2.3.1. Computational model at the cellular level 
 
The MSM that we developed is an extension of the pre-existing ‘hyphasma’ model, 
which is a detailed ABM of the GC that simulates the behavior of individual GC 
cells and their interactions (Figure 8A) (Meyer-Hermann et al., 2012; Robert et 
al., 2017). Under the so-called LEDA hypothesis, it assumes that output cells exit 
the GC from the DZ after asymmetric division. Here, we summarize the relevant 
aspects of this model. The model simulates a GC reaction for 21 days (504 hours) 
at a time resolution of 0.002 hours (7.2 seconds). Parameters for the ABM in our 
simulations are provided as Supplementary Files (Simulation_Parameters.pdf). 
The GC is represented as a three-dimensional sphere of grid points with N=64 
grid points in each direction (lattice constant = 5µm). This grid hosts agents that 
represent CCs, CBs, Tfh cells, and FDCs. In addition, pre-calculated gradients of 
CXCL12 and CXCL13 chemokines are imposed on this grid. Originally, the ABM 
was initiated with a fixed number of three founder B cells (Meyer-Hermann et al., 
2012). However, in our simulations we assumed a continuous influx of, on 
average, 2 cells per hour in the first 96 hours resulting in approximately 100 
founder cells accounting for the observation that early GCs are highly polyclonal 
(Tas et al., 2016; Meyer-Hermann et al., 2018). The behavior in terms of division, 
differentiation, interaction, and cell death between these cells is defined by a set 
of rules. CBs, CCs and Tfh cells move according to persistent random-walk based 
on chemokine gradients, while FDCs have a fixed position on the grid. The affinity 
of the BcR is defined as the Manhattan distance (L1 norm) between the BcR and 
the Ag within a four dimensional ‘shape space’ (Perelson and Oster, 1979; Meyer-
Hermann et al., 2001). This distance represents the minimum number of SHMs 
required for the BcR to acquire maximum affinity for the Ag. Hence, the BcR 
sequence is not explicitly encoded but rather the shape space position of a B-cell 
determines its BcR affinity. SHM moves the BcR one step in the shape space 
thereby increasing or decreasing the distance to the Ag, which is converted to an 
affinity value between 0 and 1 using a Gaussian weight function. The discrete 
nature of the shape space translates to 25 discrete affinity values  
(Supplementary Figures 1 and 2). 
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Figure 8: (A) Overview of cellular processes in the ABM. In an established GC a DZ and a LZ are 
distinguished. CBs and CCs prefer to move in the direction of the CXCL12 and CXCL13 chemokines 
produced by the CRCs and FDCs respectively. Tfh cells prefer to move towards the LZ. FDCs carry Ag 
that can be captured by CCs. CCs may be positively selected through interaction with Tfh cells after 
which they can recycle to the dark. In the DZ the CB will (a)symmetrically divide. After cell division, 
an output cell is produced, or the cell differentiates to a CC. Cells die through apoptosis if they do not 
interact with the FDC and Tfh cells.  (B) Schematic overview of the BcR and CD40 signaling events 
during the GC reaction. Durations t indicate non-fixed time intervals (cell states). At the end of each 
interval the concentrations of BCL6, IRF4, and BLIMP1 are updated using the differential equations. A 
CB (Ag-; blue cell) differentiates to a CC (Ag-; yellow cell) within a time duration t0. The CC interacts 
with the FDC for a time duration t1 during which BcR signaling occurs. Subsequently, CD40 signaling 
is active for duration t3 during B-cell – Tfh interaction. Successful interaction will result in an Ag+ cell. 
Asymmetric division occurs with a probability p=0.72. Differentiation of CB to a CC always initializes 
the CC to Ag-.  

  
 
In the model, B cells (CBs) proliferate in the DZ while accumulating BcR 
mutations, and migrate as CCs to the LZ where they can interact with FDCs to 
capture Ag with a rate depending on the BcR affinity. This provides survival 
signals to the CCs and rescues them from apoptosis. Higher affinity CCs will 
capture more Ag and, subsequently, will outcompete lower affinity CCs for Tfh 
interaction to become positively selected.  If the Tfh interacts with many B cells 
at a time it will signal to the one with highest amount of internalized Ag. The 
positively selected CCs are recycled into CBs and migrate to the DZ for further 
rounds of division and SHM. The number of divisions of recycled CBs depends on 
the amount of captured Ag during the selection process. During cell division the 
Ag is asymmetrically distributed in 72% of the cell divisions (Thaunat et al., 
2012). Daughter cells that receive the captured Ag differentiate to output cells 
after one or more divisions and exit the GC. Daughter cells that did not receive 
Ag cycle back to the LZ as CCs. Daughter cells of CBs that divide symmetrically 
receive half of the Ag and both become CCs. 
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2.3.2. Computational model at the molecular 
level 
 
Martínez and co-workers developed a computational model representing a core 
GRN involved in PC differentiation (Figure 9A) (Martínez et al., 2012). This model 
includes three TFs, i.e., BCL6, BLIMP1 and IRF4 that are modeled by ordinary 
differential equations (ODEs). The level of these genes is controlled by the BcR 
and CD40 signals (Supplementary Information, Equations 1 to 5; Supplementary 
Table 1 lists the parameter values for the model). This GRN represents a bistable 
system with one state (BCL6 high, BLIMP1 and IRF4 low) denoting the CBs/CCs 
and a second state (BLIMP1 and IRF4 high, BCL6 low) representing PCs (Figure 
9B).  
 

 
Figure 9: (A) B-cell with GRN and signaling events. Arrows indicate activation. Bar-headed lines 
denote inhibition. BCL6 is inhibited upon binding of the Ag to the BcR. IRF4 is activated upon binding 
of CD40L to CD40 during Tfh – B-cell interaction. (B) GRN temporal dynamics upon binding of Ag and 
CD40L. Each time unit represents 4 hours. The protein levels of BCL6 (blue), IRF4 (black) and BLIMP1 
(orange) have units of 10-8M and are shown over an interval of 60 hours. The BcR signal (red) and 
CD40 signal (green) are present for a short duration (t1 and t3 in Figure 8B). BcR signaling results in 
a slight temporary change in TF concentrations. In contrast, CD40 signaling results in a switch of all 
TF levels going from a B-cell to a PC (BLIMP1+) phenotype (in approximately 40 hours in this 
example). CD40 signal intensity in the multiscale model varies between 0 and 50. BcR signal is fixed 
to 1. 

 
 
GC B cells integrate upstream signals from BcR and CD40 signaling pathways. 
When a BcR signal is induced through binding with the Ag, then BCL6 is degraded. 
However, its level is rapidly restored to the initial steady state (BCL6 high) when 
the signal is removed (unbinding of Ag). The CD40 signal induced during 
interaction with a Tfh cell increases transcription of IRF4, which in turn increases, 
the level of BLIMP1 resulting in the PC phenotype (BLIMP1+). This state is 
irreversible due to the positive autoregulatory feedback of IRF4 and the 
cooperative binding of the TFs to the DNA. 
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2.3.3. Multiscale model 
 
To enable the investigation of cellular and molecular mechanisms involved in PC 
differentiation we integrated the ABM and the GRN through the embedding of the 
GRN (set of ODEs) in each individual B-cell and output cell of the ABM (Figure 10).  
This was achieved by adding additional properties (ODEs, (initial) TF levels, and 
BcR/CD40 signal) to each agent (cell) of the ABM.  
 

 
Figure 10: MSM for PC differentiation. The cellular ABM and molecular GRN ODE models are 
integrated by embedding the GRN in each B-cell and output cell of the ABM. Signals through the BcR 
(FDC interaction) and CD40 (Tfh interaction) change the state (TF concentrations) of the GRN, which 
is updated at every time step of the ABM. A positively selected CC becomes Ag+ by definition. In 
scenario 1 simulations an Ag+ cell differentiates to an output cell after asymmetric cell division. In 
scenario 2, sufficient CD40 signaling may increase BLIMP1 levels to obtain a PC phenotype (BLIMP1+). 
For precise cell type definitions see Table 2 and Supplementary Figures 6-8 and 20. 

 
 
Founder cells and daughter cells resulting cell division are initialized with the 
same initial concentrations for BCL6, IRF4, and BLIMP1. The cell-based ABM and 
the GRN model operate at different time scales, e.g., weeks and hours 
respectively. Consequently, the relatively fast changes in the GRN affect the 
longer-term outcome on the cell level. This is accomplished by updating the TF 
concentrations at every time step (7.2 s) of the ABM while taking into account 
transcription and degradation rates, and using the levels of the TFs of the 
previous time point as initial values for the ODEs. If a CC binds to the FDC 
(Figure 8B) it receives a constant BcR signal (bcr0=1 in the ODE) for the duration 
t1 of binding.  If the CC binds to a Tfh cell it will receive a CD40 signal (see below) 
for the duration t3 of binding. BcR and CD40 signals never occur simultaneously 
because binding to the Tfh cell only occurs after detaching from the FDC. 
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It has been shown that TFs may distribute unequally in daughter CBs after 
division (Lin et al., 2015). Consequently, it has been hypothesized that 
asymmetric division may affect cell fate. Therefore, the MSM allows for 
asymmetric division of both Ag and the TFs with a probability of 0.72 (Meyer-
Hermann et al., 2012; Thaunat et al., 2012). Following asymmetric division, the 
TF concentrations become zero in one daughter cell while the other daughter cell 
assumes the concentration from the parent cell. In a symmetric division the TF 
and Ag concentrations in both daughter cells are set to half the concentrations of 
the parent cell.  
 
2.3.3.1. Tfh facilitated CD40 signaling 
 
The MSM considers a constant or an affinity-based CD40 signal by defining cd40 
(see Supplementary information Equations 1 – 5; Supplementary Table 1). The 
magnitude of the constant signal was set to 50 to ensure that after Tfh contact 
the BLIMP1 level of the B-cell sufficiently increases to eventually differentiate to a 
PC while also maintaining typical GC dynamics (e.g., CB and CC cell count 
profiles). For the affinity-based signal we assume that higher affinity B cells 
capture more Ag and present more pMHCII to Tfh cells resulting in an increased 
Tfh – B-cell interaction and, therefore, an increased CD40 signaling. The affinity-
based CD40 signal was defined by setting cd40=affinity*50. Since affinity 
assumes values between 0 and 1, the CD40 signal has a strength between 0 and 
50. This ensures that at maximum affinity the B-cell will always differentiate into 
a PC while at lower affinities MBCs will be produced (see below). Note that in 
simulations 3 and 4 (see below) higher values of the CD40 signal results in PC 
differentiation even after symmetric division (which reduces the BLIMP1 level by 
50%) because the BLIMP1 level will rapidly return to its high-level equilibrium 
value due to the positive autoregulatory feedback of IRF4 that also remains at a 
relatively high level (Supplementary Figures 3 - 5).  
 
2.3.3.2. Simulations 
 
Table 1 shows the five simulations that were performed. The parameters for each 
simulation are provided as Supplementary Files. Scenario 1 simulations 1 and 2 
represent a model in which asymmetric division of Ag determines cell fate. The 
Ag-retaining daughter cell (Ag+) differentiates to an output cell. In these 
simulations we tracked the CD40 signaling and the levels of the TFs but the GRN 
does not affect the fate of the B-cell and, therefore, does not affect the outcome 
of the simulation. However, after completion of Scenario 1 simulations we inspect 
the BLIMP1 level of the output cells to define a PC and MBC subset (see cell 
definitions below and Supplementary Figure 20). Scenario 2 simulations 3, 4 and 
5 represent the model in which we use the BLIMP1 level to decide on cell fate. In 
these simulations cells with a high BLIMP1 concentration will differentiate to PCs 
regardless of the Ag state (Ag+ or Ag-) of the cell. For both cell-fate decision 
rules we compare results obtained with a constant and affinity-based CD40 signal. 
In simulation 5 we use a constant CD40 signaling with cd40=10. All simulations 
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are terminated after 21 days. In the result section we present the outcome of 
these 5 individual simulations. However, we also repeated Simulation 3 and 4 30 
times with different random seeds, which shows that the amount of variability 
observed in the temporal dynamics (Supplementary Figures 16 – 19) is limited. 
Also, the resulting variability in the reported percentages is very low (standard 
error <0.01, most standard deviations <1%; Supplementary Tables 3 and 4). 
Scenario 1 simulations were not repeated but a similar amount of variability is 
expected.  
 
Table 1: Definition of simulations. 

 CD40 signal 

Constant Affinity-based 

Decision rule for 
differentiation 

Ag inheritance 
(Scenario 1) 

Simulation 1 
(CD40=50) 

Simulation 2 

BLIMP1 level 
(Scenario 2) 

Simulation 3 
(CD40=50) 
Simulation 5 
(CD40=10) 

Simulation 4 

 
 
2.3.3.3. Definition of (output) cells 
 
Table 2 shows the definition of cell types in Scenario 1 (Ag+ decision rule) and 
Scenario 2 (BLIMP1+ decision rule) simulations. Supplementary Figures 6-8 and 
20 provide further explanation. In Scenario 2 we do not explicitly discriminate 
between MBCs and PCs but define ‘output’ cells solely on the basis of its Ag status, 
i.e., the daughter cells that retains the Ag after asymmetric division (Ag+ cell)  
differentiates to an output cell (Meyer-Hermann et al., 2012). In a post-
simulation step we use the BLIMP1 level to classify the output cells to PCs (Ag+ 
and BLIMP1+; ≥ 8.10-8M) and MBCs (Ag+ and BLIMP1-; <8.10-8M).  We have 
defined MBCs in this way because a BLIMP1- cell does not represent a PC while in 
this model an Ag+ cell was defined as an output cell. Although this is not an ideal 
MBC definition it correctly recapitulates the MBC dynamics as observed in Weisel 
and co-workers (Florian J Weisel et al., 2016). In the MSM a recycled CB is, by 
definition, Ag+ and goes through one or multiple rounds of divisions prior to 
differentiation to an output cell. Consequently, Ag+ cells represent a mixture of 
recycled CBs, dividing cells, and output cells. In Scenario 1, dividing Ag+ cells 
that have the potential to become a PC (i.e., Ag+/BLIMP1+) are annoted as PBs 
to allow a further discrimination between cell states in the model. In Scenario 1, 
Ag- output cells are non-existent by definition and, hence, all Ag- cells are CBs or 
CCs. In Scenario 2, cells may become a PC if they are BLIMP1+ irrespective of its 
Ag status and, consequently, PCs may either be Ag+ or Ag-. BLIMP1+ cells that 
are not (yet) output cells are annotated as PB (Ag+ or Ag-). In Scenario 2, 
Ag+/BLIMP1- output cells are considered to be MBCs. 
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Table 2: Definition of cell types based on Ag status and BLIMP1. NA = Not applicable. 

  Scenario 1 Scenario 2 

  BLIMP1+ BLIMP1- BLIMP1+ BLIMP1- 

OUTPUT CELL Ag+ PC MBC PC MBC 

NOT OUTPUT CELL Ag+ PB CB PB CB 

OUTPUT CELL Ag - NA NA PC NA 

NOT OUTPUT CELL Ag- CB/CC CB/CC PB CB/CC 

 
 
2.3.3.4. Software 
 
The MSM was implemented in C++ and simulations were done on a MacOS 
Mojave 10.14.5 operation system. Run times of a single simulation take 
approximately 8 hours on a single core of an Intel Core i7 processor. Model 
repetitions were carried out on the Dutch national e-infrastructure with the 
support of SURF Cooperative (www.surfsara.nl). Output files of the simulation 
were analysed in R (Core Team, 2019) version 3.5.3 using various libraries: 
forcats (0.5.0), purr (0.3.4), tidyr (1.0.3), tibble (3.0.1), ggplot(2_3.3.0), 
tidyverse (1.3.0), viridis (0.5.1), viridisLite (0.3.0), ggnewscale (0.4.1), readr 
(1.3.1), dplyr (0.8.5). The MSM is available from GitHub 
(https://github.com/EDS-Bioinformatics-Laboratory/MSM_PCdifferentiation).  

 
2.4. Results 
 
2.4.1. Ag inheritance-based GC output with 
constant and strong CD40 signal exclusively 
produces PCs (Scenario 1) 
 
We wondered how the levels of BLIMP1 compared to internalised-Ag status (Ag+ 
or Ag-) in GC B-cell population when CD40 signal was constant and strong. This 
served as a reference for Scenario 2 simulations (Table 1). The Scenario 1 model 
is based on the hypothesis that Ag-retaining (Ag+) cells differentiate to a mixture 
of PC and MBC output cells.  This theory in which asymmetric division drives PC 
differentiation resulting in PCs from the earliest stages of the GC reaction seems 
incompatible with the experimentally observed temporal switch (Florian J Weisel 
et al., 2016). Figure 11A shows the overall dynamics of Simulation 1. The CB and 
CC counts show a typical GC response with the total cell count approximating 
about 3800 cells at 142 hours (6 days). Figure 11B shows the DZ-to-LZ ratio, 
which fluctuates around 2 in agreement with in vivo experiments (Victora et al., 
2010). Figure 12A shows the number of PCs during the GC reaction, which by 
definition emerge from the very initial stages of the GC reaction. Figure 12C 
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shows that the affinity of these PCs increases during the course of the GC 
reaction.  
 

 
Figure 11: Overall GC dynamics with constant CD40 signal (CD40=50; blue) and affinity-based CD40 
signal (red). (A) Scenario 1. Number of CBs (top curves) and CCs (bottom curves). (B) Scenario 1. 
DZ-to-LZ ratio calculated from CB and CC counts. (C) Scenario 2. Number of CBs (top curves) and 
CCs (bottom curves). (D) Scenario 2. DZ-to-LZ ratio calculated from CB and CC counts. 
 
 
 
Table 3: Percentages of cell types at day 21. 

 Scenario 1 Scenario 2 

 
Constant 
CD40=50 

Affinity-
based 

Constant 
CD40=50 

Affinity-
based 

Constant 
CD40=10 

PC 5 5 14 13 3 

PB 20 19 28 26 18 

MBC 0 0.3 0 0.3 2 

CB/CC 75 76 58 61 77 

 100.0 100.0 100.0 100.0 100.0 
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Table 3 shows the percentages of (output) cells at day 21 of the simulation. The 
full tables and cell counts are listed in the Supplementary File Table_Counts.xlsx. 
Inspection of the BLIMP1 level of the output cells facilitates post-simulation 
differentiation between PCs (Ag+/BLIMP1+) and MBCs (Ag+/BLIMP1-). During 
the GC reaction, about 5% (15,136 cells) of all CCs (290,291) differentiate to a 
PC (Ag+/BLIMP1+) while no MBCs (Ag+/BLIMP1-) are generated because the 
constant but strong CD40 signaling enforces high BLIMP1 levels for Ag+ cells. A 
fraction of PB (Ag+/BLIMP1+) cells do not develop into output cells due to 
symmetric cell division, which generates two Ag- daughter cells (Supplementary 
Figure 7). The subset of Ag- cells (CBs and CCs), which are not output cells nor 
PBs comprise a mixture of BLIMP1+ and BLIMP1- representing 12 and 62% of all 
cells respectively. Consequently, an additional maximum of 12% (36,124 cells) 
could potentially have developed into a PC if BLIMP1 level was considered as a 
criterion for differentiation. Figure 13A shows the distribution of PCs 
(Ag+/BLIMP1+), PBs (Ag+), and CCs/CBs (Ag-/BLIMP1- , Ag-/BLIMP1+). No 
MBCs are produced.  CCs and CBs are distributed over all affinity classes and 
have BLIMP1 levels below the threshold (<8.10-8M) that defines PCs. PCs (high 
BLIMP1 level) emerge from the early stages but their number and affinity 
increase with time. Finally, the figure shows an increasing number of Ag+ cells 
that increase in affinity over time but do are not output cells. About 79% of the 
subset of Ag+ cells did not develop into output cells despite their high BLIMP1 
levels. In addition, about 17% of the Ag- cells are BLIMP1+. 
 
In summary, the Scenario 1 model with constant CD40 signaling simulation 
produces PCs of low to high affinities but no MBCs due to the strong CD40 signal. 
Approximately 75% of the PCs are generated after the peak response of the 
output cells (Figure 12A; Supplementary Figure 9) and are of relatively high 
affinity due to ongoing affinity maturation (Figure 12C). A large fraction of the 
Ag+ cells are BLIMP1+ while most Ag- cells are BLIMP1-. Considering BLIMP1 
levels of the Ag- cells, a larger number of PCs should potentially have been 
generated.  
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Figure 12: OCs for Scenario 1 simulations with a constant CD40 signal (CD40=50; blue) or affinity-
based CD40 signal (red). (A) Number of PCs, (B) number of MBCs, (C) PC affinity, and (D) MBC 
affinity during GC reaction. Post-simulation inspection of BLIMP1 levels of the output cells (Ag+) 
allows to discriminate between PCs (Ag+/BLIMP1+) and MBCs (Ag+/BLIMP1-). No MBCs are produced 
with a constant CD40 signal.  
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Figure 13: Distribution of PCs, MBCs, and Ag+ (but not PC/MBC) cells with respect to their affinity, 
BLIMP1 level, and time of generation for Scenario 1 simulations. (A) Constant CD40 signaling (no 
MBCs). (B) Affinity-based CD40 signaling (early MBCs). Each dot represents a cell. Black dots 
represent cells other than PCs, MBCs, Ag+. Color gradient represents time from 1 to 504 hours. 
Affinity assumes discrete values. Dotted line represents the BLIMP1 threshold (8*10-8M) for PC 
differentiation. Intermediate BLIMP1 levels arise mainly due to symmetric division of cells with high 
BLIMP1 level. Since values are recorded only in case of an event (e.g., cell division, Tfh interaction, 
differentiation) and because of steep curve of the BLIMP1 profile after Tfh-cell contact, BLIMP1 levels 
seem restricted to particular values but are not. Low and high BLIMP1 levels represent steady-states. 
Jittering of affinity values has been applied to prevent too many overlapping data points but causes 
some overlap of the lower affinity classes.  

 
 
2.4.2. Ag inheritance-based GC output with a 
strong affinity-based CD40 signal enables the 
production of both PCs and MBCs (Scenario 1) 
 
Since no MBCs (Ag+/BLIMP1-) were generated in Simulation 1, we wanted to 
investigate the effect on output cell subsets (post-simulation) when applying an 
affinity-based CD40 signal to control the levels of BLIMP1. In this simulation 
(Simulation 2), the generation of output cells is still fully determined by Ag 
inheritance after asymmetric division and, consequently, CD40 signaling nor 
BLIMP1 level affects the cell fate or GC reaction. Consequently, the overall 
dynamics of this simulation is approximately the same as for the first simulation 
(Figure 11). Difference in overall dynamics result from stochasticity in the model.  
Figure 12A and 12C shows the number of PCs and corresponding affinity during 
the GC reaction. Figure 12B and 12D show the number of MBCs (Ag+/BLIMP1-) 
and affinity respectively. In contrast to Simulation 1, low affinity MBCs are 
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generated during the earlier phase of the GC response and generation of PCs 
seems slightly delayed although stochasticity in the model prevents a firm 
conclusion. The number of PCs at the end of the GC reaction is similar to 
Simulation 1 (5% of all cells corresponding to 14,303 cells; Table 3). In addition, 
833 (0.3%) MBCs were generated. The number of PBs, CCs, and CBs is similar to 
Simulation 1. Also, in this simulation an additional 35,159 Ag- cells (12% of all 
cells) could potentially have developed into a PC if the BLIMP1 level was used as 
a decision rule for PC differentiation during the simulation. Figure 13B shows that 
MBCs are of low affinity, have BLIMP1 levels below the PC threshold (<8.10-8M) 
and are generated during the early phase of the GC response. Increased affinity 
abolished MBCs as a result of increasing BLIMP1 level resulting in a transition to 
PCs with BLIMP1 levels above the threshold. We also observe that at 
affinity=0.25 a larger number of Ag+ cells with intermediate BLIMP1 levels occur, 
which is a consequence of affinity-based signaling in which cells that have weaker 
CD40 signaling more slowly increase their BLIMP1 levels. About 75% of the 
subset of Ag+ cells did not develop into output cells despite high BLIMP1 levels. 
In addition, about 16% of the Ag- cells are BLIMP1+.  

 
In summary, affinity-based CD40 signaling simulation produces a mixture of early 
lower affinity MBCs followed by later higher affinity PCs. Approximately 76% of 
the PCs are generated after the peak response of the output cells (Figure 11A) 
while 85% of the MBCs are produced prior to the peak response (Figure 11B; 
Supplementary Figure 11). This temporal shift is in agreement with recent 
findings (Florian J Weisel et al., 2016). Overall, we see that a large fraction of 
Ag+ non-output cells are BLIMP1+ and, therefore, a larger number of PCs should 
potentially have been generated. 
 
2.4.3. BLIMP1 and Ag-defined fate decisions do 
not lead to MBC generation under strong 
constant CD40 signal (Scenario 2) 
 
We then wondered whether we could determine cell fate based on the coupling of 
BLIMP1 level and Ag status under a strong constant CD40 signal. In this 
simulation (Simulation 3), the generation of PCs is fully based on BLIMP1 levels 
and does not take Ag status into account, i.e., subsequent to a series of cell 
divisions the CBs with high BLIMP1 levels (≥8M) differentiate to PCs 
(Ag+BLIMP1+ or Ag-BLIMP1+). In addition, Ag-retaining cells with low BLIMP1 
levels (<8M) differentiate to MBCs (Ag+BLIMP1-). Figure 11C shows the overall 
GC dynamics, which is similar to Scenario 1 simulations but the DZ-to-LZ ratio 
slightly increased (Figure 11D). The effect of stochasticity on the overall GC 
dynamics and the DZ-to-LZ ratio is limited as shown from repeated simulations in 
Supplementary Figures 16 and 17.  Figure 14A and C shows the number of PCs 
and corresponding affinity. No MBCs are produced in this simulation due to strong 
CD40 signaling that enforces high BLIMP1 levels and, consequently, only PCs are 
generated. This was not surprising considering Simulation 1. However, the 
number of PCs at the end of the GC reaction is about a factor 3 larger compared 
to Simulation 1 (14% of all cells corresponding to 38,684 cells; Table 3). The 
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number of PBs is slightly larger compared to the Simulation 1 while the number 
of CBs and CCs are slightly reduced. Approximately 33% of all BLIMP1+ cells 
(115,310) differentiate to PCs and about two-third of these cells are Ag-. The 
distribution of PCs, and Ag+ cells (Figure 15A) is similar compared to Simulation 
1 (Figure 12A) but PCs now assume BLIMP1 levels ranging from 8 to about 9 
while in Simulation 1 all Ag+ output cells assumed the highest possible BLIMP1 
level (i.e., ~9). The bimodal distribution is observed since some CBs will 
differentiate immediately when the BLIMP1 level passes the threshold while other 
cells may engage in one or more cell divisions giving BLIMP1 additional time to 
reach its maximum value.  
 
In summary, the MSM allows to couple the decision for differentiation based on 
both BLIMP1 level and Ag status. With a constant strong CD40 signaling the 
Scenario 2 simulation produces only PCs of low to high affinities but no MBCs. 
Substantially more PCs are generated in comparison to Simulation 1 and 72% of 
these PCs are generated after the peak response of the output cells (Figure 14A; 
Supplementary Figure 10), which are of relatively high affinity (Figure 14C). The 
slight increase in DZ-to-LZ ratio implies that the transzone migration rates in 
Scenario 2 are no longer in full agreement with the patterns observed in (Victora 
et al., 2010).  
 

 
Figure 14: OCs for Scenario 2 simulations with a constant CD40 signal (CD40=50; blue) or affinity-
based CD40 signal (red). (A) Number of PCs (Ag+BLIMP1+, Ag-BLIMP1+), (B) number of MBCs 
(Ag+BLIMP1-), (C) PC affinity, and (D) MBC affinity during GC reaction. No MBCs are produced with a 
constant CD40 signal.  
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Figure 15: Distribution of PCs, MBCs, and Ag+ (but not PC nor MBC) cells with respect to their 
affinity, BLIMP1 level, and time of generation for Scenario 2 simulations. (A) Constant CD40 signaling 
(CD40=50; no MBCs). (B) Affinity-based CD40 signaling (early MBCs). For a further description see 
Figure 13.  

 
 
2.4.4. BLIMP1- and Ag-defined fate decisions 
under a strong affinity-based CD40 signal 
produce MBCs and show a temporal switch 
(Scenario 2) 
 
Considering no MBCs were generated under strong constant CD40 signal we 
wondered whether the decision for differentiation based on BLIMP1 level and Ag 
status under an affinity-based CD40 signal produces both PCs and MBCs. The 
overall GC dynamics of this simulation (Simulation 4) is shown in Figure 11C 
which are clearly different from Simulation 3 in which a constant CD40 signal was 
used. The number of CCs is similar, but the number of CBs largely increased 
resulting in an increased DZ-to-LZ ratio to approximately 3 to 4 (Figure 11D). 
The effect of stochasticity in the model on GC dynamics and DZ-to-LZ ratio is 
shown in Supplementary Figures 18 and 19 for 30 repetitions. Figure 14A shows 
that the number of PCs in Simulation 3 (38,684 cells) and Simulation 4 (35,670) 
is similar but, overall, the PCs have a higher affinity (Figure 14C). Affinity-based 
signaling results in the generation of MBCs of low affinity mostly during the early 
phase of the GC response (Figure 14B, C). The number of PCs at the end of the 
GC reaction is approximately a factor 2.5 larger compared to Simulation 2 that 
also involved affinity-based signaling (13% of all cells; Table 3). The percentage 
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of MBCs (0.3%; 781 cells) is comparable to Simulation 2. This corresponds to 0.5% 
of all BLIMP1- cells. Similar to simulation 3, approximately 33% of all BLIMP1+ 
cells (107,943) differentiate to a PC and about two-third of these cells are Ag-. 
The distribution of PCs, MBCs, and Ag+ cells is shown in Figure 15B. 
 
In summary, in Scenario 2 the affinity-based CD40 signaling simulation produces 
PCs and a small fraction of MBCs. However, substantially more PCs are generated 
in comparison to Scenario 1. 75% of these PCs are generated after the peak 
response of the output cells while 89% of the MBCs are produced prior to this 
peak and are of lower affinity. (Figure 14; Supplementary Figure 12). Although 
we now observed a temporal shift there is a significant increase in the DZ-to-LZ 
ratio indicating transzone migration rates that are not in agreement with (Victora 
et al., 2010). We also observed that a substantial fraction of the PCs are Ag- 
indicating that the decision for PC differentiation should not (fully) be based on 
Ag status.  
 
2.4.5. BLIMP- and Ag-defined fate decisions 
under weak constant CD40 signal produce MBCs 
but fail to show a temporal switch (Scenario 2) 
 
In Simulation 3 we used a strong and constant CD40 signal (cd40=50) that 
prevented the generation of MBCs because Tfh cell help will always sufficiently 
increase the BLIMP1 level to exclusively result in PC differentiation. In contrast in 
Simulation4 we allowed the CD40 signal to vary with affinity resulting in a 
temporal switch from MBCs to PCs. Since a constant high-level is not realistic (i.e., 
no MBCs are produced) we questioned if we could generate both MBCs and PCs 
by using a constant but lower CD40 signal (cd40=10; Simulation 5). In this 
simulation the overall GC dynamics is similar to the other simulations 
(Supplementary Figure 14A). The DZ-to-LZ ratio fluctuates around a value of 2 
(Supplementary Figure 14B). The total number of cells during the course of the 
GC reaction is comparable to the other simulations. Compared with Simulation 3, 
a constant and weak CD40 signaling indeed results in the generation of MBCs and 
even increased five-fold (2%; 5,048 cells) at the expense of a lower number of 
PCs (3%; 10,204 cells; Supplementary file Table_Counts.xlsx). However, since 
the CD40 signal strength does not change over time this simulation does not 
result in a temporal switch but a steady but low production of MBCs throughout 
the GC reaction (Supplementary Figure 13). We also observe that only 
Ag+BLIMP1+ and no Ag-BLIMP1+ PCs are generated reflecting that cells that 
divided symmetrically result in daughter cells with BLIMP1 and IRF4 
concentrations that are never high enough to return to the BLIMP1+ state. Figure 
16 shows the distribution of the PCs, MBCs and Ag+ cells. About 73% of the PCs 
are produced after the peak of the output cell production and also the majority of 
the MBCs (74%) are produced after the peak (Supplementary Figure 15). In 
Figure 17 we show an example of the temporal dynamics of B-cell lineage during 
the GC reaction starting with a founder cell that eventually results in PC 
differentiation. It shows how BLIMP1 level, Ag status, and affinity evolves as a 
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result of the synergistic interaction between the molecular and cellular level at 
different events in the MSM.  
 
In summary, a constant and weak CD40 signaling strengths is able to produce 
MBCs throughout the GC reaction at the expense of PCs and, consequently, no 
temporal switch is observed.  
 

 
Figure 16: Distribution of PCs, MBCs, and Ag+ (but not PC nor MBC) cells with respect to their 
affinity, BLIMP1 level, and time of generation for Scenario 2 simulations. Constant CD40 signaling 
(CD40=10). For a further description see Figure 13.  
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Figure 17:  Temporal dynamics of B-cell lineage for Scenario 2, affinity-based CD40 signalling 
(Simulation 4). The dotted lines traces the lineage of a single founder B-cell entering at the initial 
phase of the GC reaction up to a PC differentiation event at about 200 hours. At each event 
(d=division, b=born,  F=FDC contact, T=Tfh interaction, r=recycle to DZ, P=PC differentiation) the 
BLIMP1 level, Ag status (Ag+/Ag-), and affinity (low, medium high) is shown. The horizontal dotted 
line represents the BLIMP1 threshold for PC differentiation. CBs go through one or more cell divisions 
(d, b) before differentiating to CCs to have interaction with the FDC and Tfh cells. The affinity of the 
B-cells in this lineage shows an overall increase although SHM may also decrease affinity (red to blue 
color). Ag- cells are created from asymmetric division. BLIMP1 level varies in time as a result of 
transcriptional activity and (a)symmetric division. After interaction with a Tfh cell, the BLIMP1 level 
increases due to CD40 signaling. Asymmetric division may leave the BLIMP1 level unchanged or 
reduce it to 0. Symmetric division reduces the concentration with 50% . In this particular lineage we 
observe that a Ag+BLIMP1+ cell (indicated by the arrow) asymmetrically divides resulting in a Ag-
BLIMP1- cell, which subsequently increases its BLIMP1 level again in subsequent divisions, and final 
differentiates to a PC (Ag-BLIMP1+). 

 
 

2.5. Discussion 
 
We presented a MSM integrating cellular and molecular mechanisms, operating at 
different time scales, to investigate output cell differentiation based on Ag status 
and/or BLIMP1 level. In this paper we compared these mechanisms for cell-fate 
determination under various instances of CD40 signaling. 
 
An important insight from our model (Simulations 2 and 4) is the observation that 
regulation of the BLIMP1 level through affinity-dependent but not constant CD40 
signaling, results in the occurrence of a temporal transition from MBC to PC 
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output during the GC reaction (Florian J Weisel et al., 2016),(Pélissier et al., 
2020). In addition, Simulation 2 showed that the LEDA theory (i.e., a mechanism 
in which the decision for output cell differentiation is solely based on asymmetric 
division but not on BLIMP1 level) does not exclude a temporal transition. However, 
scenario 1 simulations produce BLIMP1+ cells of which approximately 33% are 
Ag- showing that a decision for differentiation solely based on Ag status is not 
adequate since this will exclude a large number of BLIMP1+ cells from PC 
differentiation. Inspection of the PCs (BLIMP1+ cells) of the Scenario 2 
simulations shows that these are a mixture of Ag+ (~11%) and Ag- (~22%) cells. 
This also argues against asymmetric inheritance as sole mechanism for PC 
differentiation. It is known that high affinity GC B cells present more pMHCII 
molecules to Tfh cells resulting in increased expression of CD40L and hence 
stronger CD40 signaling which determines cell phenotype (Jaiswaf and Crof, 1997; 
Schwickert et al., 2007, 2011; Ise et al., 2018; Koike et al., 2019) and results in 
faster and more cell divisions in the DZ (Phan, 2006; Gitlin et al., 2014, 2015; 
Ise et al., 2018).   
 
The lack of experimental data to support our findings is clearly a weakness of our 
work and complementary experiments are required to validate the results from 
our simulations. In particular, we propose experiments to generate data about 
the (1) average number of PCs and MBCs that leave a single GC during its life 
time; (2) extend and/or role of (a)symmetric division of Ag and TFs in relation to 
cell fate; (3) quantitative relationship between BcR affinity, CD40 signaling 
strength and BLIMP1 level. 
 
One other apparent weakness of the MSM concerns the definition of MBCs as 
Ag+BLIMP1- cells. Although mechanisms of MBC differentiation are even less 
understood than for PC differentiation, we needed a route to generate both MBCs 
and PCs to make the model more realistic. Noticeably, lack of MBCs would have 
had a (small) effect on the overall GC dynamics. In favour of our approach is the 
observation that MBCs have indeed low BLIMP1 levels (Kräutler et al., 2017) and 
the observation of a temporal switch with low affinity MBCs and higher affinity 
PCs.  The current definition, however, implies that Ag status (Ag+) is one of the 
determinants in MBC differentiation and that also MBCs leave the GC through the 
DZ. However, there is no experimental evidence to support this assumption at 
this stage.  The generation of MBCs could be improved by modeling of BACH2 
(Muto et al., 2010; Shinnakasu et al., 2016) and the contribution of the CD40 
pathway to MBC differentiation. Inclusion of the BACH2 in the GRN is, however, 
not sufficient as was recently shown in another model (Thomas et al., 2019). One 
way forward is to model different cell fate (apoptosis, MBC or PC differentiation, 
and DZ recycling) for different levels of Tfh cell help, and to include MYC, FOXO1, 
IL-4, and IL-21 (Luo et al., 2018; Laidlaw and Cyster, 2020). However, the work 
of Krautler and co-workers seems to support the conclusion that Tfh-cell acts via 
signals other than CD40. Moreover, the stochastic selection of low-affinity B cells 
has been proposed as yet another mechanism to produced MBCs (Smith et al., 
1997; Zhou et al., 2018; Pélissier et al., 2020) or PCs (Hasbold et al., 2004; 
Dustin and Meyer-Hermann, 2012; Zhou et al., 2018).  
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One assumption in the MSM concerns the asymmetric division of TFs. It has been 
shown that BCL6 and IRF4 may distribute unequally in daughter CBs after 
division (Barnett et al., 2012; Lin et al., 2015), and it has been hypothesized that 
this may affect cell fate. To the best of our knowledge, neither symmetric nor 
asymmetric distribution of BLIMP1 during division has been reported.   

 
Results from our simulations show that approximately 15,000 – 35,000 PCs and 
800 MBCs are produced in a single GC reaction corresponding to about 5 – 14% 
and 0.3% respectively of all GC cells. Although data is available regarding 
numbers of PCs and MBCs generated spleen and bone marrow during an immune 
response (e.g., Sugimoto-Ishige and co. (Sugimoto-Ishige et al., 2020) , Yusuke 
and co. (Kishi et al., 2010), J. Imm., 185, 211, Weisel and co. (Florian J Weisel et 
al., 2016)), these numbers always represent percentages of observed PCs/MBCs 
from total number of splenic or bone marrow cells, which are impossible to 
translate to number of output cells from a single GC and, therefore, not directly 
comparable with our results. 

 
In a recent study it was shown that both BcR signaling and help from Tfh cells are 
required for positive selection of CCs, as signaling pathways that emanate from 
the BcR and CD40 ligation are rewired in GC B cells. In contrast to naïve B cells, 
GC B cells require both signals to induce the c-Myc TF, which is a critical mediator 
of GC B-cell survival, cell-cycle reentry, and a marker of positive selection (Luo et 
al., 2018). These results indicate that CCs compete for Tfh-cell help in a BcR 
affinity-dependent fashion. It also has been proposed that c-Myc+Bcl6loIRF4+ cells 
are most likely PC precursors while Myc+Bcl6hiIRF4- will recycle to the DZ (Ise and 
Kurosaki, 2019).  However, cells with low BCL6 and higher IRF4 or BLIMP1 
expression have also been found in the DZ, which supports the recycling model 
our MSM (Kräutler et al., 2017; Ise et al., 2018). In support for our model, it has 
been shown that DZ B cells displayed a more prominent PC gene signature than 
LZ B cells (Arpin et al., 1995; Kräutler et al., 2017). Similarly, high-affinity LZ B 
cells showed a strong PC signature including a high expression of IRF4 in high-
affinity CCs. Their experiments indicated that PC differentiation is initiated by 
signals delivered to high-affinity B cells in the LZ with subsequent transition to a 
late PC phenotype occurring after migration to the DZ. 
   
These and other, sometimes contradicting studies, on MBC and PC differentiation 
clearly show the need for additional research to unravel mechanisms underlying 
cell-fate decisions in the GC. Further extensions of our MSM are expected to 
contribute to this.   
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2.8. Supplementary Information 
 

2.8.1. Computational model of gene regulatory 
network 
 
The GRN involved in PC differentiation and which we used in the MSM comprises a 
pre-existing model (Martínez et al., 2012). This model, comprising ordinary 
differential equations (ODE; Eq 2 - 4), describe the dynamics of three TFs, i.e., 
BCL6 (b), BLIMP1 (p) and IRF4 (r) in terms of their dissociation constant (k), 
transcription (µ) and degradation rates (λ). ‘Squares’ in the equations represent 
Hill coefficients that enter due to the assumption of cooperative binding. The 
effect of the upstream BcR and CD40 signals is integrated through two separate 
equations (Eq 5 - 6). We embedded this model without any changes in our MSM. 
Parameter values, units and description are given in Supplementary Table 1 and 
were derived from literature or from fitting the model to gene expression data 
obtained from human GC B cells and PCs (see (Martínez et al., 2012)). ODEs 
were solved using an adaptive Euler method. Several parameters are normalized 
by a unit of time (t0=4 hrs) representing the mean lifetime of BCL6, IRF4, and 
BLIMP1. In this unit the degradation rates are 1. The unit of concentration was 
taken as C0 =10-8M representing the average dissociation constants of IRF4 and 
BLIMP1 binding to its binding sites. In this unit all dissociation constants are 1. 
Parameter bcr0 represent the maximum BcR signal strength and is set to 1 in all 
simulations. The value of cd40 represents the constant (cd40=50, cd40=10) or 
affinity-based (affinity*50) CD40 signal (see main text). For further information 
about this model we refer to Martínez and colleagues (Martínez et al., 2012). The 
initial values for the concentrations of BCL6, IRF4 and BLIMP1 at the start of the 
simulation are 11.26, 0.1, and 0.1 *10-8M respectively.  
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Supplementary Table 1: Parameters for the computational ODE model of the GRN. Parameters are 
normalized by a unit of time (t0) and concentration (C0).  

Parameter Value Units Description 

µp 10-6 C0
/ t0 
 

Basal transcription rate 

µb 2 

µr 0.1 

σp 9 C0
/ t0 
 

Maximum induced transcription rate 

σb 100 

σr 2.6 

κp 1 C0 
 

Dissociation constant: ligand concentration 
that produces half of the maximum induced 

transcription rate κb 1 

κr 1 

λp 1 1/ t0 
 

Degradation rate 

λb 1 

λr 1 

bcr0 1 1/t0 Range of BCR-induced degradation of BCL6 

cd40 0-50 C0
/ t0 Range of CD40-induced transcription of 

IRF4. (Constant: cd40=50, cd40=10, 
Affinity-based: cd40=affinity*50) 

C0 10-8 M Concentration unit 

t0 4 h Time unit 
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2.8.2. Agent-based model 
 
2.8.2.1. Software and parameter values 
 
The agent-based model (ABM) is described in more detail in Meyer-Hermann 
(2012) (Meyer-Hermann et al., 2012) and Robert (2017) (Robert et al., 2017) 
and references therein. The C++ software that we used for the simulations is 
available on request. Parameter values for the simulations listed in 
Supplementary files Parameters_1 to Parameters_5 for simulation 1 to 5 
respectively. For a further explanation of the parameters see Robert (2017) 
(Robert et al., 2017). 
2.8.2.2. Affinity classes 
 
The discrete 4-dimensional shape space that represents affinity translates to 25 
affinity classes shown in Supplementary Figure 1 (Perelson and Oster, 1979; 
Meyer-Hermann et al., 2001). Since affinity for founder cells is initialized at a 
Manhattan distance (1-norm) of 4-8 the B-cells mostly assume the upper ~10 
affinity classes from 10-5 to 1 as is shown in Supplementary Figure 2 for PCs 
produced in the Scenario 1, affinity-based CD40 signaling simulation (simulation 
2).  
 

 
Supplementary Figure 1: 28 affinity classes. Affinity is represented on a logarithmic scale 
corresponding to affinity values of 1 to less than 10-40. 
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Supplementary Figure 2: Affinity distribution of PCs generated in Scenario 1, constant CD40=50 
simulation. Only the upper affinity classes are utilized as a result of the initialization of founder cells.  
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2.8.3. Single cell lineages 
 

 
 
Supplementary Figure 3: Scenario 2, Constant CD40 signal. The PC (ID=239924) was selected and 
the full lineage was traced back to the initial founder cell. Note that at every cell division we obtain 
two daughter cells but since we trace back from the end to the beginning only one daughter cell after 
each division is shown. The bottom and top x-axis show the time in hours and days. The y-axis 
denotes the sequence of events each cell goes through unless it dies.  The numbers inside the figure 
denote the number of attempts to bind the FDC. Size of the dots denote affinity. We observe that 
founder cells have a low affinity, while the final PC has a high affinity. Colors show the BLIMP1 level. 
In this particular lineage we observe that, as expected, the BLIMP1 level quickly goes up after Tfh 
interaction. At this stage the B-cell has been positively selected and will recycle to the DZ to engage in 
one or more cell divisions. In this particular lineage each sequence of cell divisions ends with an 
asymmetric division, which results in one of the daughter cells to have no BLIMP1 preventing it from 
differentiating to a PC. Only after the last division at around 21 days the cell differentiates to a PC. 
This is shown more clearly for a smaller time interval in Supplementary Figure 4. 
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Supplementary Figure 4: Scenario 2, Constant CD40 signal. This shows the last part of the lineage 
from Supplementary Figure 3. We selected the cell (PC; ID=239924) and traced back the lineage until 
t=475 hours. Here, a cell with a high BLIMP1 level engages in a first asymmetric division (blue arrow; 
t=487) where the resulting daughter cells receives all BLIMP1. Subsequently, a second asymmetric 
division follows (blue arrow; t=493) where the daughter cell does not receive any BLIMP1 and 
prevents the cell from differentiating to a PC. Only in the final symmetric division (t=502) the BLIMP1 
level of the daughter cells stays high enough to enable PC differentiation.  
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Supplementary Figure 5: Scenario 2, Constant CD40 signal. This shows part of the lineage 
Supplementary Figure 3. Here the lineage is shown from t=290 to t=325 hours. We observe that a 
cell with a high BLIMP1 level symmetrically divides (t=301) resulting in a daughter cell with an 
intermediate BLIMP1 level (blue arrow). However, within the time of the next division the BLIMP1 
levels returns to its high equilibrium value (BLIMIP1+; yellow arrow), after which an asymmetric 
division at t=307) results in a daughter cells without any BLIMP.  

 
2.8.4. Cell type definitions 
 
Supplementary Table 2: Definition of cell types. NA=not applicble. In Scenario 1 simulations Ag+ 
cells (after asymmetric division) become and output cell, which are divided in PCs and MBCs based on 
post-simulation inspection of BLIMP1 level. In Scenario 2 simulations the BLIMP1 level is used to 
decide if a cell differentiates to an output cell. See main text (method section) for further details.  

  Scenario 1 Scenario 2 

  BLIMP1+ BLIMP1- BLIMP1+ BLIMP1- 

OUTPUT CELL Ag+ PC MBC PC MBC 

NOT OUTPUT 
CELL 

Ag+ PB CB PB CB 

OUTPUT CELL Ag - NA NA PC NA 

NOT OUTPUT 
CELL 

Ag- CB/CC CB/CC PB CB/CC 

The following figures (Supplementary Figure 6,7 and 8) give three examples of 
how different cell types are annotated.  
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Supplementary Figure 6: Scenario 1, Ag decision rule. This figure shows 3 cell divisions that are all 
asymmetric. The parent cell is Ag+ (by definition) and BLIMP1+. As a result of asymmetric division, 
the Ag and BLIMP1 is inherited by only one of the daughter cells (Ag+/BLIMP1+) while the other 
daughter cell becomes Ag-/BLIMP1-. After 3 divisions we are left with 8 cells in only two different 
states. In this scenario only the Ag+ cells become output cells (a single cell in this example), which is 
annotated as a PC. This is in agreement (green circle) with the PC definition based on the BLIMP1 
level, i.e., BLIMP1+. The 7 other cells are CBs. The three ancestors of the PC are annotated as a PB.  

 
 
Supplementary Figure 7: Scenario 1, Ag decision rule. This figure shows 3 cell divisions that are all 
symmetric. The parent cell is Ag+ (by definition) and BLIMP1+ and annotated as a PB since it is 
Ag+/BLIMP1+ although it eventually does not become an output cell. Due to symmetric division both 
daughter cells receive 50% of the Ag and BLIMP1 and, therefore, become Ag-/BLIMP1- cells. However, 
since BLIMP1 (and IRF4) are still at a relatively high they will quickly return to a high BLIMP1 level 
(see Supplementary Figure 3 for an example) due to the bistable nature of the GRN. Consequently, in 
Scenario 1 no output cells result (all cells are Ag-) while considering the BLIMP1 level, all these cells  
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Supplementary Figure 8: Scenario 1, Ag decision rule. This figure shows 3 cell divisions that are all 
asymmetric. The parent cell is Ag+ (by definition) and BLIMP1- and annotated as a PB since it leads 
to an PC (Ag+ output cell). In Scenario 2 simulations we would have denoted the output cell (PC) as 
an MBC because it has a low BLIMP1 level and therefor it is not in agreement with the definition used 
in LEDA.  
 

2.8.5. Cell counts 
 
Supplementary File Counts_and_Percentages.xlsx comprises cell counts and 
calculated percentages from the simulations. 
https://www.frontiersin.org/articles/10.3389/fimmu.2020.620716/full#suppleme
ntary-material.	  
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2.8.6. Results 
 
 

 
 
Supplementary Figure 9: Scenario 1, Constant cd40 (cd40=50). (Cumulative) number of output 
cells.  Histogram represents the number of output cells per day. Red and green line represents the 
cumulative number of PCs and MBCs respectively. No MBCs are produced in this simulation and, 
therefore, the red and black lines coincide. About 76% of the PCs are produced after the peak of 
output cells at day 7.  Note: percentages of PCs and MBCs are calculated relative to the total number 
of PCs and MBCs respectively (not relative to the total number of output cells). 
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Supplementary Figure 10: Scenario 2, Constant cd40 (cd50=50). (Cumulative) number of output 
cells.  Histogram represents the number of output cells per day. Red and green line represents the 
cumulative number of PCs and MBCs respectively. No MBCs are produced in this simulation and, 
therefore, the red and black line coincide. About 72% of the PCs are produced after the peak at day 7. 
Note: percentages of PCs and MBCs are calculated relative to the total number of PCs and MBCs 
respectively (not relative to the total number of output cells). 
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Supplementary Figure 11: Scenario 1, Affinity-based cd40. (Cumulative) number of output cells.  
Histogram represents the number of output cells per day. Red and green line represents the 
cumulative number of PCs and MBCs respectively. About 76% of the PCs are produced after the peak 
at day 7. 85% of the MBCs are produced prior to day 7.  Note: percentages of PCs and MBCs are 
calculated relative to the total number of PCs and MBCs respectively (not relative to the total number 
of output cells). 
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Supplementary Figure 12: Scenario 2, Affinity-based cd40. (Cumulative) number of output cells.  
Histogram represents the number of output cells per day. Red and green line represents the 
cumulative number of PCs and MBCs respectively. About 75% of the PCs are produced after the peak 
at day 8.  89% of the MBCs are produced prior to day 8.  Note: percentages of PCs and MBCs are 
calculated relative to the total number of PCs and MBCs respectively (not relative to the total number 
of output cells). 
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Supplementary Figure 13: Scenario 2, Constant cd40 (cd40=10). (Cumulative) number of output 
cells.  Histogram represents the number of output cells per day. Red and green line represent the 
cumulative number of PCs and MBCs respectively. About 73% of the PCs are produced after the peak 
at day 8. Only 26% of MBCs are produced prior to the peak at day 8. Note: percentages of PCs and 
MBCs are calculated relative to the total number of PCs and MBCs respectively (not relative to the 
total number of output cells). 
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Supplementary Figure 14: Scenario 2, Constant cd40 (cd40=10). Overall GC dynamics. (A) CB and 
CC counts. (B) DZ-2-LZ ratio. 
 
 

 
 
Supplementary Figure 15: Scenario 2, Constant cd40 (cd40=10). Number of PCs and MBCs 
generated during the GC reaction.  
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2.8.7. Variation in cell dynamics in repeated 
simulations 
 

 
 
Supplementary Figure 16: Scenario 2, Constant (cd40=50). Overall GC dynamics. (A) CB and CC 
counts. (B) DZ-to-LZ ratio. Mean and standard deviation of 30 different random seeds are shown. 
 
 

 
 
Supplementary Figure 17: Scenario 2, Constant (cd40=50). (A) Number of PCs and (B) Affinity of 
PCs generated during the GC reaction. No MBCs were generated. Mean and standard deviation of 30 
different random seeds are shown. 
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Supplementary Figure 18: Scenario 2, affinity-dependent (cd40=50*affinity). Overall GC dynamics. 
(A) CB and CC counts. (B) DZ-to-LZ ratio. Mean and standard deviation of 30 different random seeds 
are shown. 
 
 

 
Supplementary Figure 19: Scenario 2, affinity-dependent (cd40=5*affinity). (A) Number of PCs, (B) 
Number of MBCs, (C) Affinity of PCs and (D) Affinity of MBCs generated during the GC reaction. Mean 
and standard deviation of 30 different seeds are shown. 
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Supplementary Table 3: Variability in calculated percentages based on 30 repetitions of Simulation 
3 (Scenario 2, constant CD40 signal). Avg=average, sd=standard deviation, se=standard error, 
min=minimum, max=maximum, Paper=value refered to in the main text.  

Scenario 2 
Constant CD40 

signal 
 

CD40=50 
   

  
BLIMP1+ 

     
  

avg (%) sd se min max Paper 
OUTPUT CELL Ag+ 4.3 0.2 0.0 4.0 4.7 4.7 
NOT OUTPUT 

CELL Ag+ 17.6 0.4 0.0 16.5 18.3 18.3 
OUTPUT CELL Ag- 9.2 0.1 0.0 8.9 9.4 9.2 
NOT OUTPUT 

CELL Ag- 9.8 0.2 0.0 9.2 10.1 9.3 

  
BLIMP1- 

     
  

avg (%) sd se min max Paper 
OUTPUT CELL Ag+ 0.0 0.0 0.0 0.0 0.0 0.00 
NOT OUTPUT 

CELL Ag+ 0.0 0.0 0.0 0.0 0.1 0.05 
OUTPUT CELL Ag- 0.0 0.0 0.0 0.0 0.0 0.00 
NOT OUTPUT 

CELL Ag- 59.1 0.5 0.0 58.1 60.7 58.31 
 
 
Supplementary Table 4: Variability in calculated percentages based on 30 repetitions of Simulation 
4 (Scenario 2, affinity-based CD40 signal). Avg=average, sd=standard deviation, se=standard error, 
min=minimum, max=maximum, Paper=value refered to in the main text. Note that variability is small 
for all percentages except for BLIMP1-/Ag+/No output cell. However, this Ag+/BLIIMP1- cell is not of 
particular interest in our analyses. Similarly, the Ag-/BLIMP1- has a somewhat larger standard 
deviation (1.7%) but also this cell type we do not explicitly consider. 

 

Scenario 2 
Affinity-based CD40 

signal 
    

  
BLIMP1+ 

     
  

avg (%) sd se min max Paper 
OUTPUT CELL Ag+ 3.8 0.3 0.0 3.2 4.4 4.1 

NOT OUTPUT CELL Ag+ 15.6 0.9 0.0 14.0 17.3 16.6 
OUTPUT CELL Ag- 8.3 0.3 0.0 7.6 8.8 8.6 

NOT OUTPUT CELL Ag- 9.1 0.2 0.0 8.6 9.4 9.1 

  
BLIMP1- 

     
  

avg (%) sd se min max Paper 
OUTPUT CELL Ag+ 0.2 0.0 0.0 0.2 0.3 0.28 

NOT OUTPUT CELL Ag+ 6.7 3.3 0.0 2.5 14.2 3.53 
OUTPUT CELL Ag- 0.0 0.0 0.0 0.0 0.0 0.00 

NOT OUTPUT CELL Ag- 56.2 1.7 0.0 52.0 58.6 57.78 

 



	   68	  

 
Supplementary Figure 20:  Cell-fate decision and phenotype definition of output cells (OC) in 
Scenario 1 and Scenario 2 simulations. (A) In Scenario 1 the decision for OC differentiation is made at 
the ABM level (cell level) based on Ag status (Ag-retaining cells after asymmetric division will 
differentiate to an OC) but BLIMP1 level determines final phenotype (PC or MBC) after production of 
the OCs. (B) In Scenario 2 both the Ag status and BLIMP1 level are used to decide for OC 
differentiation and phenotype. Note, only in Simulations 1 and 3 no MBCs are produced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  

	   69	  

 

Chapter 3 
 

Coupled antigen and BLIMP1 
asymmetric division with a large 

segregation between daughter cells 
recapitulates the temporal transition 

from memory B cells to plasma cells and 
a DZ-to-LZ ratio in the germinal center 

 
 

Elena Merino Tejero#, Danial Lashgari#, Rodrigo García-Valiente, Jiaojiao He, 
Philippe A. Robert, Michael Meyer-Hermann, Jeroen E.J. Guikema, Huub Hoefsloot, 
Antoine H.C. van Kampen 
 
#Equally contributed 

 
 

3.1. Abstract 
 
Memory B cells (MBCs) and antibody (Ab)-secreting plasma cells (PCs) are 
generated within germinal centers (GCs) during affinity maturation in which B-cell 
proliferation, selection, differentiation, and self-renewal play important roles. The 
mechanisms behind MBC and PC differentiation in GCs are not well understood. 
However, it has been suggested that cell fate is (partially) determined by 
asymmetric cell division, which involves the unequal distribution of cellular 
components to both daughter cells. To investigate what level and/or probability of 
asymmetric segregation of several fate determinant molecules, such as the Ag 
and transcription factors (TFs) (B-cell lymphoma 6 (BCL6), interferon regulatory 
factor 4 (IRF4), and B-lymphocyte-induced maturation protein 1 (BLIMP1) 
recapitulates the temporal switch and dark zone (DZ)-to-light zone (LZ) ratio in 
the GC, we implemented a multiscale model (MSM) that combines a core gene 
regulatory network (GRN) for PC differentiation with a model describing the 
cellular interactions and dynamics in the GC. Our simulations show that BLIMP1 
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driven PC differentiation together with coupled asymmetric division of antigen 
(Ag) and BLIMP1 with a large segregation between the daughter cells results in a 
GC DZ-to-LZ ratio and a temporal switch from MBCs to PCs that have been 
observed in experiments. 1 

 

3.2. Introduction 
 
MBCs and antibody-secreting PCs are generated within GCs during affinity 
maturation in which B-cell proliferation, selection, differentiation, and self-
renewal play important roles in the GC reaction (N. S. De Silva and Klein, 2015). 
Positive selection of B cells is facilitated by collecting Ag presented by follicular 
dendritic cells (FDCs) and subsequent engagement in T follicular helper (Tfh) cells 
contacts. B cells with higher-affinity B-cell receptors (BcRs) are thought to 
receive more help from Tfh cells due to increased presentation of 
histocompatibility molecule II (pMHCII) on their surface. Selected B cells recycle 
to the DZ to further divide and differentiate as output cells (OCs), or to enter a 
next cycle of selection (recycling).  

The mechanisms behind MBC and PC differentiation into OCs from GCs are not 
well understood. However, in other systems, such as Drosophila, it has been 
suggested that cell fate is (partially) determined by asymmetric cell division, 
which involves the unequal distribution of cellular components to both daughter 
cells (Neumüller and Knoblich, 2009). Another study exclusively analyzed the 
distribution of Ag in in vivo and in vitro mouse B cells showing that accumulated 
Ag is maintained in a polarized distribution prior to the division in approximately 
72% of the B cells, and that this polarization is maintained during cell division 
resulting in an asymmetric division of Ag over both daughter cells (Thaunat et al., 
2012). The daughter cell that receives more Ag as a result of asymmetric division 
was postulated to be more efficient in receiving T cell help, both at the B-T cell 
border and in the GC, which may affect cell fate (Thaunat et al., 2012). In the 
same issue it was argued and shown by computational modeling that asymmetric 
division may largely affect the production of PCs (Dustin and Meyer-Hermann, 
2012). Later, a more comprehensive computational model of the GC reaction 
predicted that asymmetric division of Ag might co-determine B-cell fate since 
inclusion of this mechanism resulted in GC transzone migration rates and DZ-to-
LZ ratio in agreement with experimental data (Victora et al., 2010; Meyer-
Hermann et al., 2012).  

 
1 This chapter is based on Merino Tejero E, Lashgari D, García-Valiente R, 

Jiaojiao H, Robert PA, Meyer-Hermann M, Guikema JEJ, Hoefsloot H, van Kampen 
AHC. Coupled Antigen and BLIMP1 Asymmetric Division With a Large Segregation 
Between Daughter Cells Recapitulates the Temporal Transition From Memory B 
Cells to Plasma Cells and a DZ-to-LZ Ratio in the Germinal Center. Frontiers in 
immunology (2021) 12:716240.  
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In addition to asymmetric Ag division, in vitro studies have shown that other B-
cell fate-altering molecules, such as transcriptional regulator BCL6 and the 
receptor for interleukin-21 (IL-21R), segregate asymmetrically in approximately 
44% of mitotic GC B cells (Barnett et al., 2012). In contrast, IRF4 was mostly 
symmetrically distributed (11% asymmetry comparable to tubulin). The same 
study suggested that CD40 signaling facilitates TF asymmetry by providing 
polarity cues to B cells. However, other polarity cues (e.g., cell-cell contacts (Lin 
et al., 2015)), TFs (e.g., BLIMP1 transcription (Radtke and Bannard, 2019)) and 
signaling pathways (e.g., nuclear factor kappa-light-chain-enhancer of activated 
B cells (Nf-kB)) may drive asymmetric division and/or B-cell fate. 

Regardless of the mechanism, asymmetric division has been shown to result in 
daughter cells with unequal amounts of Ag and/or TF. The amount of segregation 
seems to vary for different TFs and this might be dependent on polarity cues, 
signaling pathways and strength, and/or stochastic events. We hypothesized that 
(the level of) Ag and TF (BCL6, IRF4, BLIMP1) segregation affects GC dynamics 
and B-cell fate in different ways or to different extents. To test this hypothesis we 
implemented a MSM that combines a core GRN for B-cell of PC differentiation with 
a model describing the cellular interactions and dynamics in the GC. 

Our simulations show that BLIMP1 driven PC differentiation coupled to 
asymmetric division of Ag and BLIMP1 with a large segregation between the 
daughter cells results in a GC transzone migration and a temporal switch from 
MBCs to PCs that are both observed in experiments (Victora et al., 2010; Florian 
J Weisel et al., 2016). Consequently, these computational results prompt for 
more direct experiments aimed to verify of falsify this mechanism for PC 
differentiation. 

 

3.3. Methods 
 
3.3.1. Multiscale model  
 
To enable the investigation of cellular and molecular mechanisms involved in PC 
differentiation we recently developed a MSM (Merino Tejero et al., 2020) that 
integrates an agent based model (ABM) of the GC reaction (Meyer-Hermann et 
al., 2012) with a GRN involved in PC differentiation (Martínez et al., 2012). We 
slightly modified this model to investigate the effect of asymmetric Ag and TF 
division. In brief, the ABM contains the main processes that take place in the GC 
reaction, which lasts for 21 days (504 hours). B cells at the centroblast (CB) state 
divide in the DZ while accumulating SHMs in their BcR. They then differentiate to 
centrocytes (CCs) and migrate to the LZ where they may encounter FDCs and Tfh 
cells. FDCs carry Ag in their membrane, which is internalized by CCs when in 
contact with an affinity dependent rate. This provides CCs with survival signals 
that temporarily rescue them from apoptosis and allow them to undergo further 
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encounter(s) with Tfh cells. CCs with higher internalized Ag, thus higher affinity 
for the Ag will outcompete other CCs with less internalized Ag. CCs are then fully 
rescued from apoptosis and recycle back to the DZ as CBs. Recycled CBs further 
divide asymmetrically in 72% of the cases where all of the internalized Ag goes to 
one of the daughter cells. The GRN of PC differentiation comprises three TFs 
(BLIMP1, BCL6 and IRF4) that regulate each other and are affected by upstream 
BcR and CD40 signals. BCL6 is involved in maintaining GC B-cell phenotype while 
IRF4 and BLIMP1 promote PC differentiation and exit from the GC. Initial TF 
concentration in founder CBs were based on microarray data (Martínez et al., 
2012) and defined as follows (BLIMP1=0, BCL6=5, and IRF4=0) to achieve the 
high BCL6 and low BLIMP1 and IRF4 steady state. CCs receive signals through 
BcR and CD40 respectively when in contact with FDCs or Tfh cells. While BcR 
signal strength is constant, CD40 signal strength depends on affinity, which can 
ranges in the model between 0 and 1, and determines the cell fate. The GRN is a 
bistable system with one state (BCL6 high, BLIMP1 and IRF4 low) being the 
intracellular state of CBs, CCs and MBCs and a second state (BLIMP1 and IRF4 
high, BCL6 low) representing the intracellular state of PCs. After dividing, 
recycled CBs that inherited all of the internalized Ag, and/or are in BLIMP1 high 
state, differentiate to OCs, either MBCs or PCs, while the remaining CBs 
differentiate to CCs and stay in the GC. Ag in the CCs is removed giving no 
advantage in further rounds of selection.  
 
3.3.1.1. Definition of output cells and Memory versus PC 
differentiation fate 
 
Table 4 shows the cell type definition based on Ag status and BLIMP1 level. 
Recycled CBs that finish dividing may differentiate to PCs at any time of the GC 
reaction (Figure 18) when BLIMP1 reaches the differentiation threshold (≥ 8.10-

8M) and become BLIMP1+ irrespective of its Ag status and, consequently,  PCs 
may either be Ag+ or Ag-. BLIMP1+ cells that are not (yet) OCs are annotated as 
PB (Ag+ or Ag-). Ag+/BLIMP1- OCs are considered to be MBCs. This definition 
correctly recapitulates the MBC dynamics as described in Weisel and co-workers 
(Florian J Weisel et al., 2016). Finally, Ag-/BLIMP1- CBs stay in the GC and 
recycle back to the LZ as CCs. 
 
Table 4. Definition of OCs (PCs and MBCs) in terms of Ag status and BLIMP1 level.  

PC Ag+  /  BLIMP1+ Ag- / BLIMP1+ 
MBC Ag+ / BLIMP1-  
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Figure 18: Four GC B-cells representing the PC differentiation process: CC (yellow), CB (blue) , PC 
(orange) and MBC (orange). CBs are mainly present in the DZ and CCs in the LZ while PCs and MBCs 
are mainly generated in the DZ and then exit the GC. Transition between CBs and CCs is reversible 
while transition between CBs and PCs or MBCs is irreversible. The DZ-toLZ ratio is the ratio of CBs to 
non-apoptotic CCs present in both zones and fluctuates around 2. An intracellular GRN comprising 
three TFs is embedded in each B-cell: BCL6 (green), IRF4 (black) and BLIMP1 (orange). The size of 
each TF represents the expression levels in the cell state. The CC BcR may bind to Ag (red) or the 
CD40L (blue) when receiving Tfh-cell help, resulting in BcR and CD40 signaling respectively, which 
changes the state of the network. . Arrows between cells represent transition. Arrows between TFs, 
BcR and/or CD40 indicate activation. Bar-headed lines denote inhibition.  

 
 
3.3.1.2. Modelling of asymmetric division 
 
In the current model we do not distinguish between different mechanisms that 
lead to asymmetry but only assume that Ag and TFs (BCL6, IRF4, BLIMP1) can be 
unequally distributed between the two daughter cells. Asymmetric division is 
parameterized by a probability (P) of asymmetric division and a polarity level (L) 
representing the extent of asymmetry. Following experimental observations from 
Thaunat and coworkers, we set the probability for asymmetric division of Ag to 
either PAg=0.0 or PAg=0.72 (Thaunat et al., 2012). The same study showed that 
Ag division can happened both symmetrically and asymmetrically, which is why 
we did not further investigate asymmetric Ag probabilities of 100%. 
Consequently, in 0% or 72% of the cell divisions, the Ag is distributed 
asymmetrically over the daughter cells. The probability of asymmetric division for 
TFs is unknown and, therefore, we used three different probabilities:  PTF=0.0, 
PTF=0.72 or PTF=1.0. Consequently, in 0%, 72% or 100% of the cell divisions the 
TFs are distributed asymmetrically over the daughter cells. In the current model, 
when the Ag and TFs are asymmetrically distributed in the same division, high Ag 
and TF polarity levels are directed towards the same daughter cell. Nevertheless, 



	   74	  

in this study we are interested in simulating the effect of simultaneous 
asymmetric division of Ag and TFs. 
 
The polarity level (LAg and LTF) of asymmetry represents the concentration of Ag 
and TFs in one daughter cell expressed as the fraction of Ag and TFs in the parent 
cell; the second daughter cell, by definition, assumes a concentration of 1-
polarity. Consequently, a polarity level of L=0.5 represents symmetric division 
(the concentration of Ag and TFs in each daughter cell is 50% of the parent cell). 
An asymmetric division probability P=0.0, by definition, corresponds to a polarity 
level (L=0.5). A polarity level of L=1.0 results in one daughter cell that has taken 
all Ag and/or TFs from the parent cell, while the other daughter cell will receive 
none.  In the simulations the TFs may segregate with a different polarity levels 
(LBLIMP1, LBCL6, LIRF4). 
 
3.3.1.3. Simulations of multiscale model 
 
We performed two sets of GC simulations. In the first set of 9 simulations (Table 
5) the TFs co-segregate with equal polarity levels while in the second set of 27 
simulations (Table 6) the TFs may co-segregate with different polarity levels. 
Simulation 3 from the first set (Table 5) is considered the reference simulation in 
which there is asymmetric division of Ag (PAg) but always symmetric division of 
TFs. We consider this simulation as the reference since in the original LEDA model 
no TFs were modeled while asymmetric Ag division showed to result in a correct 
DZ-to-LZ ratio. The DZ-to-LZ ratio was calculated as the ratio of CBs to non-
apoptotic CCs present in both zones (Figure 18). Since Simulations 1 – 3 from the 
second set of 27 simulations (Table 6) were the only cases to show differences in 
the MBC and PC dynamics, we repeated these simulations 15 times with different 
random seeds. Supplementary Figures 21 - 23 show the results from these 
repetitions and demonstrate there is a limited variability in the temporal 
dynamics. Therefore, we did not repeat the other simulations since these are 
expected to give a similar amount of variation.  
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Table 5. Simulated asymmetry of TF concentrations (polarity level LTF) in daughter cells after division. 
When mode of Ag division is asymmetric the probability and polarity level are PAg=0.72; LAg=1.0 
otherwise these are set to (PAg=0.0; LAg=0.5) for symmetric Ag division. In these 9 simulations BCL6, 
IRF4 and BLIMP1 are co-segregated. 

 Mode Ag division 

Asymmetric  Symmetric 

Simulation Description TF Polarity level (LTF) 

1 
(i) Symmetric Ag and TF   
     division (PAg=PTF=0) 

N.A. 0.5 

2 
(ii) Symmetric Ag division and  
      asymmetric TF division                 
      (PAg=0,  PTF=0.72) 

N.A. 1.0 

3 
(iii) Symmetric TF division      
       and asymmetric Ag division 
      (reference; PAg=0.72, PTF=0) 

0.5 0.5 

4 (iv) Asymmetric TF division only        
       if mode of Ag division is    
       asymmetric (coupled    
       asymmetric division;  
       PAg=PTF=0.72) 

1.0 0.5 

5 0.9 0.5 

6 0.75 0.5 

7 (v) Always asymmetric TF  
      division  regardless of mode  
      of Ag division (uncoupled       
      asymmetric division;  
      PAg=0.72, PTF=1.0)) 

1.0 1.0 

8 0.9 0.9 

9 0.75 0.75 
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Figure 19: Scheme of internalized Ag and TF division patterns modeled in a selection of simulations 
(Table 2 and 3) (A) Simulation 2, symmetric Ag and asymmetric TF distribution (LTF=1.0), (B) 
Simulation 4, coupled asymmetric division (LTF=1.0), (C) Simulation 7, uncoupled asymmetric division 
(LTF=1.0), and (D) Simulation 3, partial asymmetric co-segregation of TFs and Ag (PTF=PAg=0.72; 
LAg=1.0) while varying the level of BLIMP1 (LBLIMP1=1.0). Internalized Ag (red) and TF (orange, green, 
black) are shown in the parent and two daughter cells. The probability and polarity levels are shown in 
the grey box.  

 
 
In the first set of simulations we studied different combinations of Ag and TF 
(a)symmetric division (Table 5). In these simulations the TF are co-segregated 
over the daughter cells according to the polarity levels (LTF) shown in the Table 5. 
The polarity level for the asymmetric Ag division is always LAg=1.0. These nine 
simulations represent five scenarios: (i) TFs and Ag divide symmetrically 
(PTF=PAg=0.0) (ii) TFs divide asymmetrically with probability PTF= 0.72 while Ag 
always divides symmetrically (PAg= 0.0; Figure 19A). (iii) TFs divide 
symmetrically (PTF=0.0) while Ag can divide asymmetrically (PAg=0.72; 
reference). (iv) TFs divide asymmetrically (PTF= 0.72) only when Ag divides 
asymmetric (PAg=1.0; Figure 19B), (iv) TFs always divide asymmetrically 
(PTF=1.0) while Ag divides asymmetrically with probability PAg=0.72 (Figure 19C). 
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Table 6. Simulated asymmetry of TFs concentrations (PTF=0.72; polarity levels LBLIMP1, LIRF4 and LBCL6) 
in daughter cells after asymmetric division. TFs divide asymmetrically if Ag divides asymmetrically 
(PAg= PTF =0.72; LAg=1.0). In these 27 simulations BCL6, IRF4 and BLIMP1 do not always co-
segregate with same polarity levels. 
 

 Mode Ag division 
Asymmetric Symmetric 

Polarity level (LTF) 
Simulations BLIMP1 

(LBLIMP1) 
IRF4 
(LIRF4) 

BCL6 
(LBCL6) 

BLIMP1, IRF4, BCL6 
(LBLIMP1=LIRF4-LBCL6) 

1 - 3 

1.0 
 

 0.75 
 

 0.9 

1.0 1.0 0.5 

4 - 6 0.9 1.0 0.5 

7 - 9 0.75 1.0 0.5 

10 - 12 1.0 0.9 0.5 

13 - 15 0.9 0.9 0.5 

16 - 18 0.75 0.9 0.5 

19 - 21 1.0 0.75 0.5 

22 - 24 0.9 0.75 0.5 

25 - 27 0.75 0.75 0.5 

 
In the second set of 27 simulations the Ag is distributed asymmetrically in 72% of 
the recycled B-cell divisions (PAg=0.72, LAg=1.0; Table 6) since it was previously 
shown that this results in transzone migration rates in better agreement with 
experimental data (Meyer-Hermann et al., 2012). In these simulations the TFs 
co-segregate with the Ag since they only divide asymmetrically when the Ag 
divides asymmetrically (PAg=PTF=0.72). Moreover, TFs segregate with different 
polarity levels (LBLIMP1, LBCL6, LIRF4) as shown in Figure 19D.  
 
3.3.1.4. Simulation of gene regulatory network 
 
To facilitate the interpretation of the MSM we additionally performed a set of GRN 
simulations, to model TF dynamics. For these simulations initial TF concentration 
of the mother cell was conceptually chosen to simulate an extreme condition of 
our MSM in which a mother PB, at the low BCL6 and high BLIMP1 and IRF4 steady 
state, underwent the last division before becoming a PC and exiting the GC. 
Subsequently, asymmetric division of the parent PB was simulated with the 
different combinations of LTFs for the first set of simulations (Table 5). For the 
second set of simulations, we investigated representative LBLIMP1, LBCL6 and LIRF4 

combinations (i.e., simulations 1-4, 7, 10, 19; Table 6). At the start of the 
simulation, we define the concentrations of BLIMP1, BCL6, and IRF4 according to 
the polarity levels and, subsequently, simulate until a steady-state is reached. 
This allowed us to determine if despite the concentration reduction, BLIMP1 
concentration returned to its high level steady-state (PC phenotype). Since we 



	   78	  

were simulating TF dynamics of CBs that don’t interact with Ag presented by 
FDCs nor with Tfh cells, we set the CD40 and BcR signals to 0.  

 
3.4. Results 
 
3.4.1. Symmetric TF and Ag division  
 
We first aimed to gain insight in the contribution of asymmetric division on GC 
dynamics and OCs. Therefore, we simulated the GC reaction without asymmetric 
Ag and TFs division (PTF=PAg=0.0, LTF=LAg=0.5; Simulation 1, Table 5).   

 
Figure 20: Results from first set of simulations (Table 2). (A) DZ-to-LZ ratio and (B) accumulated 
OCs during the GC reaction. The probability of asymmetric division (P) is indicated above the grey box 
and simulation number and polarity levels (L) are shown in the grey box. Red dots indicate DZ-to-LZ 
ratio values of infinity. First row of plots corresponds to (Left column) symmetric division of Ag and 
TFs, (Middle column) symmetric division of Ag and asymmetric division of TFs, (Right column) 
symmetric division of TFs and asymmetric division of Ag. Second row of plots corresponds to 
asymmetric TF division only if mode of Ag division is asymmetric. Red boxes indicate parameters that 
are closer to biological results. Third row of plots corresponds to always asymmetric TF division 
regardless of mode of Ag division.  
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Figure 21: Results from first set of simulations (Table 2). (A) Relative  MBC  and (B) PC count during 
the GC. The probability of asymmetric division (P) is indicated above the grey box and simulation 
number and polarity levels (L) are shown in the grey box. First row of plots corresponds to (Left 
column) symmetric division of Ag and TFs, (Middle column) symmetric division of Ag and asymmetric 
division of TFs, (Right column) symmetric division of TFs and asymmetric division of Ag. Second row 
of plots corresponds to asymmetric TF division only if mode of Ag division is asymmetric. Red boxes 
indicate parameters that are closer to biological results. Third row of plots corresponds to always 
asymmetric TF division regardless of mode of Ag division.  

 
 
We found a DZ-to-LZ ratio that initially fluctuated between 5 and 15 and then 
increased to values up to 800 or the ratio became infinite due to low or zero CC 
counts respectively (Figure 20A) strongly contradicting experimentally observed 
DZ-to-LZ ratio of 2. This is explained by a lack of recycled CBs without retained 
Ag, which lead to no differentiation to CC state and a premature termination of 
the GC reaction. Thus, the number of accumulated OCs reached 1417 cells at the 
end of the GC reaction (Table 7; Figure 20B). No MBCs were produced (Figure 
21A) and all OCs were PCs (Figure 21B) due to the lack of Ag+ cells. 
Furthermore, 87% of PCs were generated within the first 6 days of the GC 
reaction, which contradicts a temporal switch from MBCs to PCs.  (Supplementary 
Figure 23).  
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Table 7. Number of OCs at day 21 originating from the first set of simulations (Table 5).  

 

PAg 0.0 0.72 

PTF 0.0 
0.7
2 

0.0 0.72 1.0 

LTF 0.5 1.0 0.5 1.0 0.9 0.75 1.0 0.9 0.75 

 
Simula

tion 
1 2 

3 
(ref) 

4 5 6 7 8 9 

OCs 
 

PCs 1,41
7 

759 
25,24

6 
35,35

9 
35,79

1 
25,79

2 
19,78

4 
22,75

5 
24,8
21 

MBCs 0 0 
12,88

6 
1,094 1106 

12,70
4 

824 948 
12,7
87 

Total 1417 759 
38,13

2 
36,45

3 
36,89

8 
38,49

6 
20,60

8 
23,70

3 
37,6
08 

 

 
3.4.2. Asymmetric TF division and symmetric Ag 
division  
 
Next, we aimed to establish the effect of asymmetric TF division while keeping 
symmetric Ag division (Simulation 2, Table 5.  PAg =0.0, PTF =0.72, LAg=0.5, 
LTF=1.0). Again, we find that the DZ-to-LZ ratio initially fluctuated between 5 and 
15 and then increased until 400 or were infinite since no CCs were produced 
(Figure 20A) strongly contradicting experimentally observed DZ-to-LZ ratio of 2. 
Also, the number of accumulated OCs reached 759 cells at the end of the GC 
reaction, none of them being MBCs (Table 4, Figure 20B, Figure 21) Furthermore, 
92% of PCs were generated within the first 6 days of the GC reaction 
(Supplementary Figure 23) again contradicting a temporal switch. Finally, 
asymmetric TF division lead to approximately a 2-fold decrease in PC production 
compared to symmetric TF division (Simulation 1) as shown in Table 7. This could 
be explained by analysing the TF dynamics in isolation (Figure 22). Extreme TF 
polarity levels promoted the production of a daughter B cell in the low BLIMP1 
state and another one in the high BLIMP1 state yet symmetric TF polarities 
promoted the production of both daughter B cells in the high BLIMP1 state. We 
conclude that asymmetric division of TF only does not result in expected GC 
dynamics while also the number of OCs remains 50-fold lower than in the 
reference simulation.   
 
3.4.3. Symmetric TFs division and asymmetric 
Ag division (reference) 
 
We questioned weather or not symmetric co-segregation of TFs with asymmetric 
Ag division, had an effect on GC B-cell dynamics (PTF =0.0, LTF=0.5, PAg=0.72, 
LAg=1.0; Simulation 3, Table 5). We found the DZ-to-LZ ratio fluctuating between 
2 and 4 (Figure 20A). This was a maximum of 2-fold increase in DZ-to-LZ ratio 
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compared to previous observations of 2 (Victora et al., 2010) and similar to the 
affinity-based CD40 signaling simulation (Scenario 2) discussed in (Merino Tejero 
et al., 2020). The number of accumulated OCs reached 38,132 cells at the end of 
the GC reaction (Table 7; Figure 20B) of which 12,886 MBCs (Figure 21A) and 
25,246 PCs (Figure 21B). Furthermore, MBCs were generated throughout the GC 
reaction and 90% of PCs were generated after the peak (day 6) of the GC 
reaction (Supplementary Figure 23). We conclude that asymmetric Ag division is 
largely responsible for obtaining a DZ-to-LZ ratio close to experimental 
observations. Asymmetric TF division is not required. Asymmetric Ag division also 
re-establishes a larger number of OCs but no temporal switch is observed.     
 
3.4.4. Asymmetric TF division only if mode of Ag 
division is asymmetric (coupled asymmetric 
division) 
 
Next, we investigated a scenario (Simulations 4 - 6, Table 5; PAg=PTF =0.72) that 
assumes that asymmetric TF and Ag division always happen simultaneously. 
Since we are mostly interested in the effect of the TFs, we assumed that in the 
case of asymmetric division all Ag goes to a single daughter cell (LAg=1.0) while 
we used different polarization levels for the TF (LTF=1.0, 0.9 and 0.75).  All three 
simulations had similar DZ-to-LZ ratios and total number of OCs, which were also 
similar to the reference simulation (Table 7, Figure 20A-B). Nevertheless, low TF 
polarity levels showed approximately a 12-fold increase in MBCs, at the expense 
of PC output, compared to extreme TF polarity levels. Furthermore, low TF 
polarity levels showed similar MBC counts compared to the reference simulation 
(Figure 21). Interestingly, extreme TF polarity levels (LTF=1.0, 0.9) resulted in a 
temporal switch from MBCs to PCs, which was not the case for simulations with 
low TF polarity levels (LTF=0.75 nor LTF=0.5 in the reference simulation). 
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Figure 22: Solution curves based on the GRN (ODE model) for BLIMP1 (orange), BCL6 (green) and 
IRF4 (black) in two daughter cells. The initial TF concentrations were based on the concentration of 
the parent cell (BLIMP1=8, BCL6=2, IRF4=2) and the different polarity levels (LTF=1.0, LTF=0.9, 
LTF=0.75 and LTF=0.5; Table 2).  

 
 
When analysing the TF dynamics in the GRN, we found, as expected, that 
extreme TF polarity levels generated a high BLIMP1 state in one of the TF 
inheriting daughters (0 hours, Figure 22) while leaving the other daughter B-cell 
in a low BLIMP1 state. Contrarily, low TF polarity levels promoted a slower 
progression to the high BLIMP1 state (4-8 hours), which explains the increased 
number of MBCs (Ag+/BLIMP1-) in Simulations 3 and 6. We conclude that 
simultaneous asymmetric division of Ag and TF results in DZ-to-LZ ratios similar 
to the reference simulation but only extreme TF polarity levels resulted in a 
temporal switch. 
 
3.4.5. Always asymmetric TF division regardless 
of mode of Ag division (uncoupled asymmetric 
division)  
 
Since there is no a priori reason to believe that asymmetric Ag and TF division are 
coupled (Simulations 4 – 6), we performed three additional simulations in which 
TF always divide asymmetrically (PTF=1.0, LTF=1.0, LTF=0.9 and LTF=0.75) 
regardless of the model of Ag division (PAg=0.72, LAg=1.0; Simulations 7 - 9, 
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Table 5). We found that for extreme TF polarity levels (LTF=1.0, 0.9) the DZ-to-
LZ ratio progressively increased up to a value of 80, which meant a 40-fold 
increase compared to the reference simulation (Figure 20A). Contraryly, low TF 
polarity levels (LTF=0.75) showed a DZ-to-LZ ratio that fluctuated between 2 and 
4 similarly to the reference simulation (Figure 20A). Extreme TF polarity levels 
showed a 2-fold decrease in OC counts and a 12-fold increase in MBC counts 
compared to low TF polarity levels and the reference simulation (Table 7; Figure 
21B). In extreme TF polarity levels, there was a 1.2-fold decrease in PC counts 
compared to low TF polarity levels and a 1.7-fold decrease in PC counts compared 
to simulations with coupled asymmetric Ag and TFs division. (Table 7, Figure 21). 
While approximately 90% of PCs were generated after the peak (day 6) of the GC 
reaction for all TF polarity levels, low TF polarity levels produced MBCs during the 
entire GC reaction (Supplementary Figure 24). Thus, while low polarity levels 
resulted in similar DZ-to-LZ ratio and OC production as the reference simulation, 
it did not result in a temporal switch from MBCs to PCs. 
 
The TF dynamics in the GRN, as described in the previous section (see above, 
Figure 21), explained the decreased OC count observed in Simulations 7 and 8 
compared to Simulations 4-6 and 9. Also, it could explain the similarity in OC 
count observed when comparing Simulations 6 and 9. 
 
We concluded that uncoupled Ag and TFs asymmetric division lead to a 40-fold 
increase in DZ-to-LZ ratios and a reduction in OC production for the extreme TF 
polarity levels. However, for these extreme polarities a temporal switch is 
observed. 
 
Collectively, the first set of simulations show that assuming that the decision for 
PC differentiation is fully based on BLIMP1 levels and that all TFs co-segregate 
during asymmetric division, then the simulated DZ-to-LZ ratio is close to those 
observed experimentally. Furthermore, a temporal switch from MBCs to PCs was 
only present in simulations with coupled Ag and TFs asymmetric division and 
extreme TF polarities LTF.  

 
3.4.6. Coupled Ag and TFs asymmetric division 
with different polarity levels for individual TFs  
 
From the first set of simulations (Simulation 1 – 9, Table 5) we showed that 
coupled Ag and TFs asymmetric division with extreme TF polarity levels resulted 
in a DZ-to-LZ ratio that was similar to the reference simulation and a temporal 
switch. However, in these simulations we assumed that BCL6, IRF4 and BLIMP1 
always distributed in equal amounts (LTF) over the daughter cells. Based on 
previous research this is unlikely (Barnett et al., 2012; Lin et al., 2015) 
Therefore, we performed 27 additional simulations (Table 6; PTF=PAg=0.72 and 
LAg=1.0) in which TFs can be distributed in different amounts (LBLIMP1, LIRF4 and 

LBCL6)  to the daughter cells. In these simulations TFs are only asymmetrically 
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distributed in case of asymmetric Ag division. For each simulation we investigated 
the GC dynamics and OC production.  

 

 
Figure 23: Results from the second set of simulations (Table 3). (A) Accumulated OCs, (B) relative 
MBC and (C) PC count during the GC reaction. At the top of each panel column, the IFR4 polarity level 
is indicated. To the right of each panel row, the BCL6 polarity level is indicated. The colors indicate the 
different BLIMP1 polarity levels.  

 
 
All simulations showed a DZ-to-LZ ratio that was similar to the reference 
simulation (data not shown). Furthermore, the number of OCs at the end of the 
GC reaction is similar for all 27 simulations (Figure 23A). Figure 23B and C shows 
the number of MBCs and PCs produced for the 27 combinations of TF polarity 
levels. We observed that neither the polarity level of IRF4 nor BCL6 have a big 
influence on the number of OCs, MBCs or PCs. However, there is a clear 
difference when comparing the extreme (LBLIMP1=1.0 and LBLIMP1=0.9; 
LIRF4=LBCL6=1.0) and low (LBLIMP1=0.75; LIRF4=LBCL6=1.0) BLIMP1 polarity levels. 
Low polarity levels resulted in a 12-fold increase in MBC counts and a 1.2-fold 
decrease in PC counts (Supplementary Figures 25-27).  
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Figure 24:  BLIMP1 (orange), BCL6 (green) and IRF4 (black) dynamics in two theoretical daughter B 
cells. Their initial TF concentrations were set to simulate the asymmetric division of a parent cell 
(BLIMP1=8, BCL6=2, IRF4=2) with all different combinations of IRF4 levels (LIRF4=1.0, LIRF4=0.9 and 
LIRF4=0.75, as shown in Table 2). Levels of BCL6 and BLIMP1 were fixed (LBCL6=LBLIMP1=1.0). 

 
 
When analysing the TF dynamics in the GRN we found that extreme IRF4 polarity 
levels (LIRF4=1.0, LIRF4=0.9; LBLIMP1=LBCL6=1.0) immediately generated a high 
BLIMP1 state in one of the TF inheriting daughters while leaving the other 
daughter B-cell in a low BLIMP1 state (Figure 24). Low IRF4 polarity levels 
(LIRF4=0.75; LBLIMP1=LIRF4=1.0) generated a both daughter B cells in the high 
BLIMP1 steady state. Nevertheless, in this situation, the daughter B-cell that 
inherited 25% (1- LIRF4) of IRF4, along with 0% of BLIMP1 and BCL6 
concentration, slowly progressed to the high BLIMP1 state within 20 hours until 
BLIMP1 levels reached the PC differentiation threshold. Considering that after the 
last division PBs are defined as PCs and exit the GC, this could explain why no 
difference in OC dynamics was observed when varying IRF4 polarity levels. 
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Figure 25:  BLIMP1 (orange), BCL6 (green) and IRF4 (black) dynamics in two theoretical daughter B 
cells. Their initial TF concentrations were set to simulate the asymmetric division of a parent cell 
(BLIMP1=8, BCL6=2, IRF4=2) with all different combinations of BCL6 levels (LBCL6=1.0, LBCL6=0.9 and 
LBCL6=0.75, as shown in Table 2). Levels of IRF4 and BLIMP1 were fixed (LIRF4 =LBLIMP1 =1.0). 

 
 
In the case of BCL6, we found all polarity levels (LBCL6=1.0, LBCL6=0.9, LBCL6= 
0.75; LBLIMP1=LIRF4=1.0) immediately generated a high BLIMP1 state in one of the 
TF inheriting daughters, leaving the other daughter B-cell in a low BLIMP1 state 
(Figure 25). This is why no difference in OC dynamics was observed when varying 
BCL6 polarity levels. Such results were not surprising since changes in the BCL6 
level as a result of BcR signaling are not sustained in time nor become large 
enough to switch the BLIMP1 from a high to low level.   
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Figure 26:  BLIMP1 (orange), BCL6 (green) and IRF4 (black) dynamics in two theoretical daughter B 
cells. Their initial TF concentrations were set to simulate the asymmetric division of a parent cell 
(BLIMP1=8, BCL6=2, IRF4=2) with all different combinations of BLIMP1 levels (LBLIMP1=1.0, LBLIMP1=0.9 
and LBLIMP1=0.75, as shown in Table 2). Levels of IRF4 and BCL6 were fixed (LIRF4=LBCL6=1.0). 

 
 
Finally, we found extreme BLIMP1 polarity levels (LBLIMP1=1, LBLIMP1=0.9; 
LIRF4=LBCL6=1.0) immediately generated a high BLIMP1 steady state in one of the 
TF inheriting daughters, leaving the other daughter B-cell in a low BLIMP1 steady 
state (Figure 26). Low BLIMP1 polarity levels (LBLIMP1=0.75; LBCL6=LIRF4=1.0) 
introduced a delay (4 hours) in the progression of the high BLIMP1 inheriting 
daughter B-cell to the high BLIMP1 state. This could explain the differences 
observed in OC dynamics when varying BLIMP1 polarity levels.  
 
We conclude that the combined results from these 27 simulations and the first set 
of 9 simulations show that BLIMP1 driven PC differentiation together with coupled 
asymmetric division of Ag and BLIMP1 with a large segregation between the 
daughter cells results in a GC DZ-to-LZ ratio and a temporal switch from MBCs to 
PCs that are both observed in experiments (Victora et al., 2010; Florian J Weisel 
et al., 2016) However, future experimental validation of our findings remain 
necessary.  
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3.5. Discussion 
 
It has been shown experimentally that Ag and TFs can asymmetrically divide and 
that this may co-determine GC B-cell fate (Barnett et al., 2012; Meyer-Hermann 
et al., 2012; Thaunat et al., 2012; Lin et al., 2015). However, so far this has not 
been proven experimentally.  Based on a computational model of the GC, Meyer-
Hermann and colleagues hypothesized that asymmetric division of Ag might play 
a role in PC differentiation as this resulted in a DZ-to-LZ ratio in agreement with 
experimental data (Meyer-Hermann et al., 2012). However, using our MSM we 
recently showed that asymmetric Ag division alone cannot explain PC 
differentiation since it is not fully consistent with experimental observations that 
B-cells with increased BLIMP1 levels differentiate to PCs but we only considered 
one specific mode of coupled asymmetric division (i.e., PAg=PTF=0.72, 
LBLIMP1=LIRF4=LBCL6=1.0) (Merino Tejero et al., 2020).. Therefore, in the current 
work we investigated the putative effect of asymmetric division of Ag and TFs in 
more detail and hypothesized that this affects GC dynamics and B-cell dynamics 
and fate. From our simulations we conclude that BLIMP1 driven PC differentiation 
together with coupled asymmetric division of Ag and BLIMP1 with extreme TF 
polarity levels for BLIMP1 segregation results in GC DZ-to-LZ ratio and a temporal 
switch from MBCs to PCs that are also observed in experiments (Victora et al., 
2010; Florian J Weisel et al., 2016). This confirmed our previous finding that 
asymmetric Ag division alone is not sufficient to drive PC differentiation but also 
asymmetric division of at least BLIMP1 is required.  

An important insight from our model is the observation that outcomes of 
simulations with (uncoupled) symmetric division of Ag and/or TF do not agree 
with experimental observations (migrations rates, temporal switch). It is, 
however, important to emphasize that this result does not definitely exclude this 
scenario to be true. Although our GC model is the most sophisticated model 
currently available and based on a large range of experimental observations, we 
cannot exclude the possibility that other choices, assumptions, or parameter 
settings would change our conclusion. Nevertheless, we think that our simulations 
provide at least some evidence that asymmetric division is involved in PC 
differentiation. Furthermore, prior studies have shown that unequal stimulation of 
signaling pathways, e.g.: CD40 and PI3K, induced when B cells present Ag to and 
receive help from TFH cells during the selection process in the GC reaction, can 
provide polarity cues that drive asymmetry division (Barnett et al., 2012; Lin et 
al., 2015). It was proposed that unequal inheritance of Ag transmembrane 
receptor, co-stimulation, and/or cytokine signaling could result in unequal 
activation of signaling pathways. Although this hypothesis was not experimentally 
tested, it is in line with our finding. 
 
The observation that IRF4 asymmetric division had no effect of PC production was 
both interesting and surprising. On one hand, in vitro data suggest that IRF4, 
and/or different levels of T help through Cd40/ Nf-kB induction of IFR4, regulates 
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MBC and PC differentiation in a concentration-dependent manner (Sciammas et 
al., 2011; Laidlaw and Cyster, 2020). Furthermore, quantitative modeling of the 
terminal B-cell differentiation showed through parameter sensitivity analysis for 
bistability that kinetic parameters associated to IRF4 dynamics and CD40 
induction of IRF4, were critical in promoting B-cell transition towards PC 
differentiation (Martínez et al., 2012). Nevertheless, the same study showed that 
above a critical IRF4 concentration threshold (> 1.10-8M) CCs irreversibly 
differentiated to PCs. In our model, asymmetric division takes place at a late 
stage of B-cell development (PB) in which IRF4 concentration is close to the high 
IRF4 steady state (2.10-8M). Thus, we found that even with low IRF4 polarity 
levels, when daughter B-cells inherited 75% of IRF4 (LIRF4=0.75), this did not 
decrease IRF4 concentration below the above-mentioned critical IRF4 threshold. 
This explained why we found no effect of IRF4 asymmetric division on PC 
differentiation. In addition, in vitro studies in conjoined sibling B cells showed that 
unequal IRF4 expression could drive branching of B-cell state prior to the loss of 
PAX5, a MBC promoter, hence at early stages of B-cell transition to PC. 
Furthermore, the levels of BLIMP1 in sibling B cells were not measured. Leaving 
the open question of whether asymmetric BLIMP1 division could be the driver of 
PC differentiation and supporting the need to further investigate BLIMP1 
asymmetric division at later stages of PC differentiation in the GCs. 

 
Apart from model assumptions our study has several limitations. First, our 
findings and conclusions remain to be validated or falsified in future experiments. 
We propose experiments to generate data about the (1) BLIMP1 probability of 
asymmetric division and polarity level in single PBs; (2) extend and/or role of the 
co-segregation of BLIMP1, BCL6 and IRF4; (3) extend and/or role of 
(a)symmetric division of CD40 signaling in relation to B-cell fate. Second, the 
probability (PAg=0.72) for asymmetric Ag division was based on experimental 
data (Barnett et al., 2012). For asymmetric TF division we used this same value 
in several simulations. However, probabilities of PBCL6=0.44 and PIRF4=0.11 have 
been reported (Barnett et al., 2012) while for BLIMP1 such probability is 
unknown. Nevertheless, we here show that asymmetric division of IRF4 and BCL6 
did not have an effect on the fate of the B-cell and thus we believe this would not 
change our main conclusion. Third, no data is available about the number of 
MBCs and PCs produced during a single GC reaction. Thus, we cannot 
substantiate which simulations are more realistic in terms of OC production. 
Fourth, as we have discussed previously (Merino Tejero et al., 2020), the current 
definition of MBCs as Ag+BLIMP1- cells should be improved  since it definition 
merely classifies OCs, which are not PCs to be MBCs. Nevertheless, we here 
showed that symmetric TF division did not agree with the observation of a 
temporal switch in the GC reaction. This could indicate that asymmetric TF 
division plays a role in MBC differentiation. Interestingly, PAX5 has been shown to 
asymmetrically segregate and always oppose asymmetric IRF4 distribution (Lin et 
al., 2015). Further experiments need to be carried out to validate this hypothesis 
since the effect of asymmetric PAX5 division on MBC formation was not 
addressed. 
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3.7. Supplementary Information 
 

 
 
Supplementary Figure 21: Overall GC dynamics for three BLIMP1 polarity levels for Simulations 1-3 
(Table 5). (Top) CB and CC counts. (Bottom) DZ-to-LZ ratio. Mean and standard deviation from of 15 
different repetitions (random seeds) are shown. 
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Supplementary Figure 22: Overall MBC and PC dynamics for three BLIMP1 polarity levels for 
Simulations 1-3 (Table 5). (Top) MBC counts. (Bottom) PC counts. Mean and standard deviation of 15 
different repetitions (random seeds) are shown. 

 
 

 
 
Supplementary Figure 23: Overall MBC and PC affinity dynamics for three BLIMP1 polarity levels for 
Simulations 1-3 (Table 5). (Top) MBC mean affinity. (Bottom) PC mean affinity. Mean and standard 
deviation of 15 different repetitions (random seeds) are shown. 
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Supplementary Figure 24: (Cumulative) number of OCs.  Histogram represents the number of OCs 
per day for Simulations 1-9 (Table 5). Black, red and green lines represent the cumulative percentage 
of output, PCs and MBCs respectively.  

 

 
Supplementary Figure 25: (Cumulative) number of OCs.  Histogram represents the number of OCs 
per day for Simulations 1-9 (Table 6). Black, red and green lines represent the cumulative percentage 
of output, PCs and MBCs respectively.  
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Supplementary Figure 26: (Cumulative) number of OCs.  Histogram represents the number of OCs 
per day for Simulations 10-18 (Table 6). Black, red and green lines represent the cumulative 
percentage of output, PCs and MBCs respectively.  

 

 
Supplementary Figure 27: (Cumulative) number of OCs.  Histogram represents the number of OCs 
per day for Simulations 19-27 (Table 6). Black, red and green lines represent the cumulative 
percentage of output, PCs and MBCs respectively.  
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4.1. Abstract 
 
Diffuse large B-cell lymphoma is the most common subtype of non-Hodgkin's 
lymphoma. It is a germinal center (GC)-derived, aggressive and heterogeneous 
disease. Several transcription factors and signaling pathways that play a central 
role in the progression of the GC reaction and B-cell differentiation have been 
shown to play an oncogenic role in diffuse large B-cell lymphoma. B-cell 
lymphoma 6 (BCL6) is a transcriptional repressor that induces GC B-cell 
phenotype and blocks plasma cell (PC) differentiation. While interferon regulatory 
factor 4 (IRF4) and B lymphocyte induced maturation protein 1 (BLIMP1), a 
transcriptional promoter, both mediate PC differentiation and exit from the GC 
(Mlynarczyk et al., 2019). Computational models are useful alternatives to trial-
and-error experimental investigation. Ordinary differential equation (ODE) models 
have been used to study different known mechanisms of lymphomagenesis and 
suggest candidate tumorigenic alterations (Martínez et al., 2012). Furthermore, 
multiscale models (MSMs) have been used to study the role of cellular and 
molecular mechanisms involved in tumor growth (3–6). In this study, we use an 
existing MSM of PC differentiation in the GC to simulate eight different models 
with several candidate genetic alterations of the BCL6-IRF4-BLIMP1 regulatory 
network that lead to transcription factor deregulation and could explain the onset 
of diffuse large B-cell lymphoma and recapitulate the GC dynamics observed in 
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such conditions. We find that models with loss of BLIMP1 function (BLIMPloss and 
BLIMPlossIRFinc) result in an accumulation of B cells in the GC and a block of PC 
differentiation and thus correctly recapitulate the observed GC and transcription 
factor dynamics. Models with constitutive activation of the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) pathway alone and in 
codominance or co-expression with enforced BCL6 expression (IRFinc and 
BCLincIRFinc) result in a decrease of GC B cells and unaltered PC production at 
early stages of the GC reaction as observed experimentally. Interestingly, we also 
find that in IRFinc and BCLincIRFinc models, an increase in PC production could 
happen at later stages of the GC reaction. Nevertheless, models with enforced 
BCL6 expression (BCLauto and BCLinc ) result in an expansion of GC B cell 
population and a block in the PC production that was not observed 
experimentally. Finally, models with loss of IRF4- and BLIMP1- mediated silencing 
of BCL6 (IRFsil and BLIMPsil) did not affect GC and transcription factor dynamics. 1 

4.2. Introduction 
 
During affinity maturation in the GC, B cells undergo rounds of proliferation, 
somatic hypermutations and selection to produce memory B cells (MBCs) and 
antibody-secreting PCs (Nilushi S. De Silva and Klein, 2015). The GC can be 
categorized into two main zones. A dark zone (DZ) in which B cells at a 
centroblast (CBs) state rapidly proliferate and accumulate somatic 
hypermutations in the genes that encode their B-cell receptor (BcR). The light 
zone (LZ) is characterized by the presence of B cells at a centrocyte (CCs) state, 
follicular dendritic cells (FDCs) that present antigen (Ag) in the form of immune 
complexes in their membrane (Allen et al., 2007a), and T follicular helper cells. In 
the DZ, suppression of the DNA damage response and B-cell proliferation 
checkpoints increase the risk of malignant transformations that can lead to B-cell 
lymphomas (Mlynarczyk et al., 2019). Diffuse large B-cell lymphoma, the most 
common subtype of non-Hodgkin's lymphoma, is a GC derived, aggressive and 
heterogeneous disease. Genes related to different stages of GC B-cell 
differentiation and activation are differentially expressed among diffuse large B-
cell lymphomas (Alizadeh et al., 2000). Based on gene expression profiling, two 
subtypes have been defined: GC B-cell and active B-cell (Hu et al., 2013). Active 
B-cell subtype patients have a poorer prognosis and survival rate than those with 
GC B-cell subtype (Miyazaki, 2016).  Nevertheless, it is still unclear which genes 
that distinguish both subtypes are the most important determinants of 
chemotherapy responsiveness (Alizadeh et al., 2000). 
 

 

1 This chapter is based on Merino Tejero E, Mao Q, Lashgari D, García-Valiente R, 
Robert PA, Meyer-Hermann M, Martínez MR, Guikema JEJ, Hoefsloot H, van 
Kampen AHC. Multi-scale modeling recapitulates the effect of genetic alterations 
associated with diffuse large B-cell lymphoma in the germinal center dynamics. 
Frontiers in systems biology (2022). 
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Several transcription factors play a central role in the progression of the GC 
reaction. BCL6 is a transcriptional repressor that induces GC B-cell phenotype and 
is involved in B-cell survival, proliferation, DNA damage and blocking PC 
differentiation. High expression levels of IRF4 and BLIMP1 induce PC 
differentiation and promote exit from the GC (Mlynarczyk et al., 2019). These are 
regulated by upstream signals emanating from the B-cell receptor (BcR) and 
cluster of differentiation 40 (CD40). In particular, the NF-kB pathway, induced by 
CD40, is involved in the induction of MBC and PC differentiation in the GC light 
zone (LZ). 
 
The above mentioned transcription factors have also been shown to play an 
oncogenic role in diffuse large B-cell lymphoma (Mlynarczyk et al., 2019). BCL6 
chromosomal translocations have been found more frequently in the active B-cell 
subtype, leading to a constitutive BCL6 overexpression (Zhang et al., 2015). 
Furthermore, a vast majority of active B-cell subtypes fail to express a competent 
BLIMP1 despite normal IRF4 expression (Pasqualucci et al., 2006). The loss of 
IRF4 and BLIMP1 mediated transcriptional silencing of BCL6 have been found in a 
subset of diffuse large B-cell lymphoma s (Saito et al., 2007). Nevertheless, the 
effect on the GC B-cell dynamics and PC production was not studied. 
Furthermore, to the best of our knowledge, the effect of diffuse large B-cell 
lymphoma genetic alterations on MBC production during the GC reaction has not 
been studied. Signaling pathways have also been linked to diffuse large B-cell 
lymphoma development, such as constitutive activation of the NF-kB pathway, 
which is the essential hallmark to active B-cell subtype (Pasqualucci et al., 2011). 
Finally, combination of genetic alterations such as mutations in NF-kB pathway 
and BCL6 chromosomal translocations or BLIMP1 deletion worsen diffuse large B-
cell lymphoma prognosis (Calado et al., 2010; Zhang et al., 2015).  
 
Computational models are useful alternatives to trial-and-error experimental 
studies. Martínez and colleagues presented an ODE model of a gene regulatory 
network (GRN) that integrated signals from BcR and CD40 (Martínez et al., 
2012). They induced perturbations in the model to study different known 
mechanisms of lymphomagenesis and suggested candidate tumorigenic 
alterations. Nevertheless, only the molecular level, not the cellular dynamics, was 
included in this model. Furthermore, MSMs have been used to study the role of 
cellular and molecular mechanisms involved in tumor growth (Yeh et al., 2017; 
Roy et al., 2019; Versypt, 2021). A recent study used MSM to predict 
effectiveness of various therapies for diffuse large B-cell lymphoma (Du et al., 
2017). In the latter study, a detailed kinetic model of BcR signaling network was 
used. Nevertheless, only its effect on in vitro tumor growth was analyzed.  
 
In this study, we use an existing MSM of PC differentiation in the GC to simulate 
eight different models with candidate genetic alterations of the BCL6-IRF4-
BLIMP1 regulatory network that could explain the onset of diffuse large B-cell 
lymphoma, in order to recapitulate the GC dynamics observed in such conditions 
(Merino Tejero et al., 2020). While most of the above-mentioned genetic 
alterations are based on previous work done by Martínez and colleagues 
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(Martínez et al., 2012),, our model provides additional insight by studying the 
effect of these alterations at the cellular and GC level. The main cellular processes 
that take place in our MSM are simulated through agent based modeling based on 
a large body of in vitro and in vivo experiments (Meyer-Hermann et al., 2012). 
Nevertheless, only the differentiation towards PC is determined by the GRN, 
which integrates signals from BcR and CD40. We find that models with loss of 
BLIMP1 function (BLIMPloss and BLIMPlossIRFinc) result in an accumulation of B cells 
in the GC and a block of PC differentiation and thus correctly recapitulate the 
observed GC and transcription factor dynamics. Models with constitutive 
activation of NF-kB pathway alone and in codominance with enforced BCL6 
expression (IRFinc and BCLincIRFinc) result in a decrease of GC B cells and 
unaltered PC production at early stages of the GC reaction as observed 
experimentally. Interestingly, we also find that in IRFinc and BCLincIRFinc models, 
an increase in PC production could happen at later stages of the GC reaction. 
Nevertheless, models with enforced BCL6 expression (BCLauto and BCLinc ) result 
in an overgrowth of GC B cells and a block in the PC production that was not 
observed experimentally. While no data has been found to validate models with 
loss of IRF4 and BLIMP1 mediated silencing of BCL6 (IRFsil and BLIMPsil), our 
findings suggest that such alterations do not affect GC and transcription factor 
dynamics.  
 
Transcription factors with restricted patterns of expression are attractive targets 
for therapy. BCL6 inhibitors have been used to bock BCL6 activity and inhibited 
the growth of certain diffuse large B-cell lymphomas (Polo et al., 2007). NF-kB 
inhibitors have also demonstrated to selectively target active B-cell-like diffuse 
large B-cell lymphomas. Finally, small-molecule inhibitors of BcR downstream 
pathways are the most promising agents in treating diffuse large B-cell 
lymphomas and other malignancies (Roschewski et al., 2012). Further 
identification and study of the molecular mechanisms involved in the 
pathogenesis of diffuse large B-cell lymphoma tumors is crucial for the 
development of treatments. However, for cancer it is important to determine how 
genetic alterations and, hence, changes in the state of molecular pathways 
affects the cellular events such as proliferation, apoptosis, and differentiation. 
MSMs as presented in this work can help to determine the molecular and cellular 
relationships.   
 

4.3. Methods 
 
4.3.1. Multi-scale model  
 
To study the molecular mechanisms behind the development of diffuse large B-
cell lymphoma we used an already existing MSM of PC differentiation during the 
GC reaction (Merino Tejero et al., 2020). At the cellular level we used an agent 
based model of the GC reaction based on an existing model (Meyer-Hermann et 
al., 2012). 
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Figure 27: (A) Overview of cellular processes in the ABM. In an established GC a dark zone (DZ) and 
a light zone (LZ) are distinguished. CBs and CCs prefer to move in the direction of the CXCL12 and 
CXCL13 chemokines produced by stromal cells and FDCs respectively. T follicular helper cells prefer to 
move towards the LZ. FDCs carry Ag that can be captured by CCs. CCs may be positively selected 
through interaction with T follicular helper cells after which they can recycle to the DZ. In the DZ the 
CB will (a)symmetrically divide. After CB division, an output cell is produced, or the cell differentiates 
to a CC. CCs die through apoptosis if they do not interact with the FDC and T follicular helper cells.  (B) 
Schematic overview of the BcR and CD40 signaling events during the GC reaction. Durations t indicate 
non-fixed time intervals (cell states). At the end of each interval the concentrations of BCL6, IRF4, 
and BLIMP1 are updated using the differential equations. A CB (Ag-; blue cell) differentiates to a CC 
(Ag-; yellow cell) within a time duration t0. The CC interacts with the FDC for a time duration t1 
during which BcR signaling occurs. Subsequently, CD40 signaling is active for duration t3 during B-cell 
and T follicular helper cell interaction. Successful interaction will result in an Ag+ B-cell. Asymmetric 
division occurs with a probability of 0.72. Differentiation of CB to a CC always initializes the CC to Ag-
.  
 
The agent based model runs for 21 days (504 hours) at a time resolution of 
0.002 hours (7.2 seconds) (Supplementary Table 5). Each cell is represented in a 
three-dimensional space representing the GC and undergoes different processes 
depending on their state. B cells at a CB state divide, undergo somatic 
hypermutations, and differentiate in the DZ while at a CC state they undergo 
selection in the LZ Figure 27. In the LZ, CCs interact and collect Ag from follicular 
dendritic cells (FDCs). CCs may further interact and compete for T follicular 
helper cell signals. Both processes are dependent on affinity of the BcR for the Ag. 
Selected CCs recycle back to the DZ as CBs that carry internalized Ag. Recycled 
CBs divide in an asymmetric manner in 72% of the cases where all of the Ag and 
transcription factors segregate towards one of the daughter CBs. In the 
remaining 28% of divisions, Ag and transcription factors are divided 
symmetrically (Barnett et al., 2012; Thaunat et al., 2012). This was based on a 
recent study that showed coupled Ag and transcription factor asymmetric division 
with a large segregation between daughter B cells recapitulates the GC output 
transition (temporal switch) from MBCs to PCs and a DZ-to-LZ ratio, which is the 
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ratio of CBs to non-apoptotic CCs present in the GC. After division, CBs may exit 
the GC as an output cell or remain in the GC for further rounds of selection.  
 
At the molecular level we used an ODE model of a GRN involved in PC 
differentiation based on an existing model (Martínez et al., 2012). The GRN 
consists of three transcription factors, i.e., BCL6 (b), BLIMP1 (p) and IRF4 (r). 
These transcription factors regulate each other and the concentration levels 
depend on their dissociation constant (k), transcription (µ) and degradation rates 
(λ) as shown in (Eq 7-9). Parameter values are shown in Supplementary Table 6. 
Bcr0 and cd40 parameters were calibrated using Moonfit graphical user interface 
(Robert, Jönsson, et al., 2018). ‘Squares’ in the equations represent Hill 
coefficients representing cooperative binding of transcription factors. The GRN 
behaves as a bistable system, with one state being the CB- and CC-like state 
(BCL6 high, BLIMP1 and IRF4 low) and a second state being PC-like state 
(BLIMP1 and IRF4 high, BCL6 low). Upstream signals may instruct the system 
towards one or the other state. Their effect is integrated through BcR and CD40 
parameters as described in (Eq 10 and 11). During CC-FDC interaction in the LZ, 
CCs receive BcR mediated signals. The maximum strength of the signal is 
represented by bcr0 parameter (Eq 10). Transition from CC towards PC state is 
reversible when the BcR signal cessates, bringing the B-cell to its previous CC 
state. During CC-T follicular helper cell interaction in the LZ, CCs receive signals 
through CD40. The strength of the signal is represented by the cd40 parameter 
(Eq 11). Transition from CC to PC state is irreversibly determined by CD40 signal 
strength, which is dependent on the affinity of the BcR for the Ag  (see 
Supplementary Table 6).  
 
 

𝑬𝒒  𝟕 ∶   
𝒅𝒑
𝒅𝒕

=   𝝁𝒑 +   𝝈𝒑
𝒌𝒃𝟐

𝒌𝒃𝟐 +   𝒃𝟐
+   𝝈𝒑

𝒓𝟐

𝒌𝒓𝟐 +   𝒓𝟐
−   𝝀𝒑𝒑 

 

𝑬𝒒  𝟖 ∶   
𝒅𝒃
𝒅𝒕

=   𝝁𝒃 +   𝝈𝒃   
𝒌𝒑𝟐

𝒌𝒑𝟐 +   𝒑𝟐
  

𝒌𝒃𝟐

𝒌𝒃𝟐 +   𝒃𝟐
𝒌𝒓𝟐

𝒌𝒓𝟐 +   𝒓𝟐
−   (𝝀𝒃 +   𝑩𝑪𝑹)𝒃 

 

𝑬𝒒  𝟗:  
𝒅𝒓
𝒅𝒕

=   𝝁𝒓 +   𝝈𝒓   
𝒓𝟐

𝒌𝒓𝟐 +   𝒓𝟐
+   𝑪𝑫𝟒𝟎 −   𝝀𝒓𝒓   

𝑬𝒒  𝟏𝟎:𝑩𝑪𝑹 = 𝒃𝒄𝒓𝟎  
𝒌𝒃𝟐

𝒌𝒃𝟐 +   𝒃𝟐
 

 

𝑬𝒒  𝟏𝟏:𝑪𝑫𝟒𝟎 = 𝒄𝒅𝟒𝟎  
𝒌𝒃𝟐

𝒌𝒃𝟐 +   𝒃𝟐
 

 
 
The ODE model was adapted as described in simulations section in order to 
investigate the effect of different genetic alterations in the GC dynamics. 
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4.3.1.1. Definition of output cells  
 

 
Figure 28: Transcription factor dynamics of the reference model upon binding of Ag and CD40L. Each 
time unit represents 4 hours. The protein concentration levels (unit = 10-8M) of BCL6 (green), IRF4 
(black) and BLIMP1 (orange) are shown on the left axes. Transcription factor levels are followed for 52 
hours after CD40 signal. The BcR signal (red) results in a slight temporary change in transcription 
factor concentrations. In contrast, CD40 signal (blue) results in a switch of all transcription factor 
levels going from a B-cell to a PC (BLIMP1+) phenotype (in approximately 31 hours in this example). 
CD40 signal intensity in the MSM varies between 0 and 50 while BcR signal is fixed to 1 (right axes). 
BLIMP1 concentration threshold for PC differentiation is shown at 8*10-8M (Dashed orange). 

 
 
The definition of output cells, either MBCs or PCs, is based on the Ag status and 
levels of BLIMP1 (Merino Tejero et al., 2020). Recycled CBs carrying Ag are 
considered Ag positive (Ag+). During asymmetric division, Ag inheriting CB is 
Ag+ while the sibling is Ag negative (Ag-). During symmetric division, Ag is 
distributed symmetrically and both siblings are Ag-. This was based on a study 
that recapitulated the predominant features of Ag segregation in vitro by building 
a mixed model of B-cell mitosis where 25% of the divisions were fully symmetric 
and the remaining were asymmetric (Thaunat et al., 2012). Recycled CBs that 
finished dividing differentiate to PCs when BLIMP1 levels reach the differentiation 
threshold (≥ 8.10-8M; Figure 28) regardless of their Ag status. Ag+ output cells 
with BLIMP1 levels below the threshold are considered to be MBCs. Finally, Ag- 
CBs with BLIMP1 levels below the threshold stay in the GC and recycle back to 
the LZ as CCs. This definition leads to a transzone migration rate or DZ-to-LZ 
ratio close to experimental observations as described in Victora and co-workers 
(Victora and Nussenzweig, 2010) as well as a temporal switch in output cell 
production the MBC and PC dynamics as described in Weisel and co-workers (F J 
Weisel et al., 2016).  
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4.3.1.2. Simulations 

 
 
Figure 29: Scheme of the GRN involved in PC terminal differentiation. BCL6 (green) is inhibited upon 
binding of the Ag to the BcR (red). IRF4 (black) is activated upon binding of CD40L to CD40 (blue) 
during T follicular helper and B-cell interaction. Modifications in the GRN done to simulate the different 
diffuse large B-cell lymphoma models BCLauto, BCLinc, IRFsil, BLIMPsil, BLIMPloss and IRFinc  are indicated 
in grey. Grey arrows indicate over-induction and grey crosses indicate removal of the relation. Black, 
blue and red arrows and bar-headed lines indicate activation and inhibition respectively.  

 
 
We investigated the effect of eight different diffuse large B-cell lymphoma models 
on both the molecular and cellular level. This was done to show how MSM can be 
used to recapitulate the GC dynamics observed in mouse diffuse large B-cell 
lymphoma models (Calado et al., 2010; Zhang et al., 2015) in terms of B-cell and 
PC numbers and transcription factor expression levels at day 7 of the GC reaction 
(day 10 post immunization (PI); Table 9). Most diffuse large B-cell lymphomas 
result in alterations, either an increase or decrease, in GC B cell numbers and/or 
PCs produced (see results section). Each diffuse large B-cell lymphoma model 
simulates one or more genetic alteration(s) (Figure 29). Models were simulated 
by modifying different ODEs and/or parameters model as described in Table 8. 
Six of the models simulated single genetic alterations based on a previous study 
from Martínez and colleagues (Martínez et al., 2012). That is BCL6 autoregulatory 
inactivation (BCLauto), BCL6 constitutive expression (BCLinc), loss of IRF4-
mediated BCL6 silencing (IRFsil), loss of BLIMP1-mediated BCL6 silencing 
(BLIMPsil), BLIMP1 inactivation (BLIMPloss), and constitutive activation of NF-kB 
pathway (IRFinc). The steady state levels of BLIMP1, BCL6 and IRF4 after CD40 
signal were very close or identical as those derived by Martínez and co-workers 
(Martínez et al., 2012) (Supplementary Table 7). One exception was BCLinc model 
that showed a clear difference in the IRF4 and BLIMP1 levels. This is caused by 
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the fact that in our MSM selected CC differentiation into a PC process was around 
11 times faster than in the model presented by Martínez and co-workers. The in 
silico GC B-cell dynamics were compared to data from experimental models done 
by Zhang (Zhang et al., 2015) and Calado (Calado et al., 2010) and colleagues. 
In our IRFinc model, the perturbation applied to IRF4 was only a 2-fold increase in 
IRF4 transcription rates as opposed to the 10-fold increase applied by Martínez 
and colleagues (Martínez et al., 2012). This was done to obtain transcription 
factor levels (data not shown) that resembled both experimental models (Calado 
et al., 2010; Zhang et al., 2015). Both experimental models showed a similar 
increase in the levels of BLIMP1 at day 7 of the GC reaction compared to an 
experimental reference. Nevertheless, the GC B-cell dynamics was different 
(Table 9). These differences observed between both experiments were due to the 
NF-kB pathway that was activated. In Zhang and colleagues (Zhang et al., 2015) 
constitutive induction of NF-kB-inducing kinase restrained activation of the 
alternative NF-kB pathway. In Calado and colleagues (Calado et al., 2010) 
constitutive induction of the NF-kB-inhibiting kinase restrained activation of the 
canonical NF-kB pathway. While our IRFinc model did not explicitly include a 
distinction between alternative and canonical pathways, it was able to reproduce 
PC dynamics observed by Calado and colleagues (Calado et al., 2010) (See 
below). Two additional models were created to simulate experimental findings by 
combining two of the single models, namely BCL6 constitutive expression in 
codominance with constitutive activation of the alternative NF-kB pathway 
(BCLincIRFinc), based on experiments done by Zhang and colleagues (Zhang et al., 
2015), and BLIMP1 inactivation in codominance with constitutive activation of the 
canonical NF-kB pathway (BLIMPlossIRFinc), based on experiments done by Calado 
and colleagues (Calado et al., 2010). We repeated all simulations 10 times with 
different random seeds, which showed that the amount of variability was low. 
Thus, this was sufficient to observe significant differences between the reference 
and most of the diffuse large B-cell lymphoma models when looking at the DZ-to-
LZ ratio and output cell production (data not showed).  
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Table 8. Eight simulated diffuse large B-cell lymphoma models. For models BCLauto, 
IRFsil and BLIMPsil the ODE equation (Eq 8) was modified as shown below. For 
models BLIMPloss and BLIMPlossIRFinc equation (Eq 7) was modified as shown 
below. Finally, for models BCLinc, IRFinc, BCLincIRFinc and BLIMPlossIRFinc the 
indicated ODE parameters were modified as shown below. The rest of the 
equations and parameters are kept as described in Supplementary Table 6 and Eq 
7-11. 
 

Model Description  Modifications 

BCLauto Loss of BCL6 autoinhibition 𝑑𝑏
𝑑𝑡

= 𝜇! + 𝜎!
𝑘!!

𝑘!! + 𝑝!
𝑘!!

𝑘!! + 𝑟!
− (𝜆! + 𝐵𝐶𝑅)𝑏 

BCLinc 
10-fold increase of BCL6 

basal transcription rate 

𝜇! x 10 

IRFsil 
Loss of IRF4 mediated 

silencing of BCL6 

𝑑𝑏
𝑑𝑡

= 𝜇! + 𝜎!
𝑘!!

𝑘!! + 𝑝!
𝑘!!

𝑘!! + 𝑏!
− (𝜆! + 𝐵𝐶𝑅)𝑏 

BLIMPsil 
Loss of BLIMP1 mediated 

silencing of BCL6 

𝑑𝑏
𝑑𝑡

= 𝜇! + 𝜎!
𝑘!!

𝑘!! + 𝑏!
𝑘!!

𝑘!! + 𝑟!
− (𝜆! + 𝐵𝐶𝑅)𝑏 

BLIMPloss 
Loss of BLIMP1 function 

(change in time) 

𝑑𝑝
𝑑𝑡

= 0 

IRFinc 

2-fold increase of IRF4 

basal and maximum 

transcription rates 

𝜇!  x 2 

𝜎! x 2 

 

BCLincIRFinc  

Combination of BCLinc and 

IRFinc 

𝜇! x 10 

𝜇!  x 2 

𝜎! x 2 

BLIMPlossIR

Finc 

Combination of BLIMPloss 

and IRFinc  

𝑑𝑝
𝑑𝑡

= 0 

𝜇!  x 2 

𝜎! x 2 

 
Each model was repeated 10 times with different random seeds. Data was 
analyzed using an unpaired two-tailed Student’s t test. P values ≤ 0.05 were 
considered to be significant. 
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4.4. Results 
 
4.4.1. The GC dynamics (reference) 

 
Figure 30: Overall GC dynamics of the reference model with affinity dependent cd40 signal. (A) Mean 
DZ-to-LZ ratio (dark grey) calculated from CB and CC counts. Standard deviation of 10 different 
random seeds is represented in light grey. (B) Cumulative number of MBCs (blue) and PCs (red) 
produced during the GC reaction represented with two lines. Histogram represents the number of 
MBCs (blue) and PCs (red) produced per day. Histogram scale is represented in the left axes. Line 
scale (not shown) ranges between 0 and 100. Numbers show the cumulated number of MBCs (blue) 
and PCs (red) at the end of the GC reaction. Representative of 10 simulations. 

 
 
Diffuse large B-cell lymphomas are characterized by spleen and/or lymph node 
hyperplasia (Calado et al., 2010; Zhang et al., 2015). Furthermore, the same 
studies showed that most diffuse large B-cell lymphomas genetic mutations result 
in altered GC dynamics, either through an increase or decrease, in GC B-cell 
numbers and/or PCs produced. Thus, we wondered what was the effect of 
modelling eight diffuse large B-cell lymphoma models on the GC B-cell dynamics. 
We performed an example simulation at the scale of one B-cell, in which ODEs 
and parameters were defined as described in Eq 7-11 and Supplementary Table 
6. The initial state at BCL6 high, BLIMP1 and IRF4 low switched to BLIMP1 and 
IRF4 high, BCL6 low, mainly as a consequence of CD40 signal induction (Figure 
28). At the scale of a full GC simulation, we found that the DZ-to-LZ ratio was 
similar to the affinity-based CD40 signaling simulation (Scenario 2) of one of our 
previous studies (Merino Tejero et al., 2020) (Figure 30A, Supplementary Table 
8). Nevertheless, it was slightly higher than previous experimental observations 
of transzone migration rates (Victora and Nussenzweig, 2010). Finally, a temporal 
transition From MBC to PC production was observed in the GC output (Figure 
30B). 
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Thus, in the reference simulation, the DZ-to-LZ ratio was higher than previously 
observed transzone migration rates of around 2 (Victora and Nussenzweig, 2010) 
and similar to the affinity-based CD40 signaling simulation (Scenario 2) (Merino 
Tejero et al., 2020). A latter large-scale study from Wittenbrink and colleagues 
showed the GC dynamics is highly variable (Wittenbrink et al., 2011b). They 
performed a volume-to-volume comparison of both GC zones and showed that 
dividing B cells are present in both zones constantly over time. Thus, the study 
did not reflect the dividing vs non-dividing B-cell DZ-to-LZ ratio and their 
measurements are not directly comparable to Victoria and colleagues (Victora and 
Nussenzweig, 2010). Further experiments would be required to determine the 
variability in DZ-to-LZ ratios in GC responses to establish whether or not our 
model produces deviating values. There was a temporal switch of the GC output 
from mainly MBC production prior to the peak, to mainly PC production after the 
peak. Finally, there was a 42-fold higher PC than MCB production. Studies have 
shown the number of PCs and MBCs generated spleen and bone marrow during 
an immune response (Kishi et al., 2010; F J Weisel et al., 2016; Sugimoto-Ishige 
et al., 2020). Nevertheless, these numbers represent percentages of observed 
PCs and MBCs from total number of splenic or bone marrow cells, which are not 
translatable to number of output cells from a single GC and, therefore, are not 
directly comparable with our results. 
 
Table 9: Qualitative comparison between observed and simulated GC phenotype in eight different 
diffuse large B-cell lymphoma models. B-cell and PC counts observed are based on previous studies 
done by Zhang (Zhang et al., 2015) and Calado (Calado et al., 2010) and colleagues at days 10 and 
21 post immunization. Considering GCs take 3 days to develop after immunization (F J Weisel et al., 
2016), in our simulations B-cells and PCs were counted at days 7 and 18 of the GC reaction. Words 
‘similar’, ‘increased’ and ‘reduced’ indicate no significant difference, significant increase and significant 
decrease when comparing each model cell count to an observed or simulated reference. 

Model 

Observations 
Simulations Zhang and co. (Zhang et al., 

2015) 
Calado and co. (Calado et al., 

2010) 
B-cell 
count 
(Day1

0) 

B-cell 
count 
(Day2

1) 

PC 
Count 

(Day10) 

B-cell 
count 

(Day10) 

B-cell 
count 
(Day2

1) 

PC 
count 
(Day1

0) 

B-cell 
count 

(Day7) 

B-cell 
count 

(Day18) 

MBC 
count 

(Day7) 

PC 
count 

(Day7) 

BCLauto 
similar - 

increased reduced 

BCLinc 

BLIMP
loss 

- 

increased 

reduced BLIMP
lossIRFi

nc 
increased similar 

IRFinc  
(can.)  

reduced similar 

similar 

reduced 
 similar 

IRFinc  
(alt.) 

similar reduced increased 

- 

IRFinc - 

BCLincI
RFinc 

similar reduced similar 

IRFsil 
- similar 

similar 

BLIMP
sil increased reduced 
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4.4.2. Insufficient BLIMP1 expression blocks PC 
differentiation (BCLauto, BCLinc, BLIMPloss, 
BLIMPlossIRFinc) 
 
 

 
Figure 31: Transcription factor dynamics of (A) BCLauto, (B) BCLinc, (C) BLIMPloss and (D) 
BLIMPlossIRFinc diffuse large B-cell lymphoma models upon binding of Ag and CD40L. Each time unit 
represents 4 hours. The protein concentration levels (unit = 10-8M) of BCL6 (green), IRF4 (black) and 
BLIMP1 (orange) are shown on the left axes. Transcription factor levels are followed for 52 hours after 
CD40 signal. In BCLauto and BCLinc models, CD40 signal (blue) does not affect transcription factor 
levels. In BLIMPloss and BLIMPlossIRFinc models CD40 signal affects BCL6 and IRF4 but not BLIMP1 
levels. Thus in all models CD40 signal does not result in a switch of the B-cell to a PC (BLIMP1+) 
phenotype (in approximately 51 hours in this example).  

 
 
We now compared the effect of several genetic (models defined in Table 9, see 
methods) alterations onto the GC dynamics in order to recapitulate the observed 
GC phenotype in diffuse large B-cell lymphoma. We first aimed to gain insight in 
the effect of BLIMP1 suppression (BCLauto and BCLinc) or loss of function (BLIMPloss 
and BLIMPlossIRFinc) on the GC B-cell dynamics. While previous studies showed 
that the GC phenotype in diffuse large B-cell lymphomas that are characterized 
by BCLauto and BCLinc alterations had unaltered numbers of B cells and PCs 
produced, they did lead to spleen and lymph node hyperplasia (Zhang et al., 
2015). Another study showed that the GC phenotype BLIMPloss and BLIMPlossIRFinc 
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alterations are characterized by an accumulation of B cells, a block of PC 
differentiation and spleen hyperplasia (Calado et al., 2010).  
 
We analyzed the transcription factor dynamics as well as the B-cell dynamics in 
the aforementioned models (Table 9). The transcription factor dynamics 
simulated in single cells showed for BCLauto and BCLinc models the system evolved 
to the BCL6 high, BLIMP1 and IRF4 low steady state which was unaffected by 
CD40 signal (Figure 31A-B). The steady state level of BCL6 in BCLauto model was 
around 4 times higher than in BCLinc model as shown by Martínez and co-workers 
(Martínez et al., 2012) while steady state levels of IRF4 and BLIMP1 were similar 
in both models which was not observed by Martínez and co-workers (Martínez et 
al., 2012) (see Methods section). Thus, we found that within the timing of PC 
differentiation during the GC reaction both BCLauto and BCLinc models had a robust 
BCL6 overexpression that inhibited IRF4 and BLIMP1 expression and blocked PC 
differentiation. BLIMPloss and BLIMPlossIRFinc models switched to the BCL6 low and 
IRF4 high steady state as a result of CD40 signal. Nevertheless, they both failed 
to express BLIMP1 (Figure 31C-D).  
 

 

 
Figure 32: Overall GC dynamics with affinity dependent CD40 signal. (A) Mean DZ-to-LZ ratio 
calculated from CB and CC counts during the GC reaction for the reference (red), BCLauto (yellow), 
BCLinc (green), BLIMPloss (blue) and BLIMPlossIRFinc (purple) diffuse large B-cell lymphoma models. 
Standard deviation of 10 different random seeds is represented in dark grey.  (B) Cumulative number 
of MBCs produced during the GC reaction for BCLauto, BCLinc, BLIMPloss and BLIMPlossIRFinc models 
represented with a blue line. Histogram represents the number of MBCs (blue) produced per day. 
Histogram scale is represented in the left axes. Line scale (not shown) ranges between 0 and 100. 
Number shows the cumulated number of MBCs (blue) at the end of the GC reaction. No PCs are 
produced. Representative of 10 simulations.  
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Figure 33: Statistical analysis of (A) MBC and (B) PC counts at day 21 of the GC reaction and (C) 
MBC affinity dynamics during the GC reaction for the reference (red), BCLauto (yellow), BCLinc (green), 
BLIMPloss (blue) and BLIMPlossIRFinc (purple) diffuse large B-cell lymphoma models. A significant 
difference in the number of MBCs and PCs produced is observed between the reference and the four 
diffuse large B-cell lymphoma models. In the diffuse large B-cell lymphoma models, MBCs increase 
their affinity over time while in the reference model MBCs are of low affinity. Standard deviation of 10 
different random seeds is represented in dark grey. An unpaired two-tailed Student’s t test was used. 
Three asterisks (***) represent p-values ≤ 0.001, “NS.” represents not statistically significant.  

 
 
We observed BCLauto, BCLinc, BLIMPloss and BLIMPlossIRFinc models had a 
significantly increased DZ-to-LZ ratio throughout the GC reaction, which reached 
up to a 25-fold increase at day 21 (Supplementary Table 8), compared to the 
reference model (Figure 32A) resulting on an increased abundance of GC B cells. 
All output cells were MBCs (Supplementary Table 8) and no PCs were produced 
(Figure 32B). Statistical analysis of MBC (Figure 33A) and PC (Figure 33B) counts 
showed a 13,000-fold increase and 35,000-fold decrease compared to the 
reference. Since BLIMP1 levels were virtually 0 in all cases, no significant 
difference in the number of MBCs and PCs was observed between the four 
models. MBC affinity increased up to its maximum as the GC reaction progressed 
in all models while it remained low in the reference model (Figure 33C).  
 
To summarize, all models lead to an accumulation of CBs in the DZ. No PCs were 
generated due to the inability of recycled CBs to express BLIMP1. There was a 
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significant increase in the number and affinity of MBCs.  The expansion of GC B 
cells and significant reduction of PCs in BCLauto and BCLinc models was in 
disagreement with observations showing BLIMP1 suppression lead to unaltered 
GC B-cell numbers at day 10 and 21 post immunization and PC numbers day 10 
post immunization  (see Table 9) (Zhang et al., 2015). This could be due to a 
decreased but present BLIMP1 expression in the experimental setup, which was 
not the case in our model. Finally, BLIMPloss and BLIMPlossIRFinc models were 
consistent with observations showing BLIMP1 inactivation lead to GC B-cell 
expansion (see Table 9) and a lack of PC production at days 10 and 21 post 
immunization (Calado et al., 2010). Nevertheless, when in codominance with 
constitutive NF-KB pathway activation (BLIMPlossIRFinc), at day 21 post 
immunization, experimental data showed unaltered GC B-cell numbers as 
opposed to the expansion of B cells observed in our model (see Table 9).   
 
4.4.3. Constitutive activation of the NF-kB 
pathway alone and in codominance with 
enforced BCL6 expression increases PC 
differentiation at latter stages of the GC reaction 
(IRFinc, BCLincIRFinc) 
 

 
Figure 34: Transcription factor dynamics of (A) IRFinc, (B) BCLincIRFinc diffuse large B-cell lymphoma 
models upon binding of Ag and CD40L. Each time unit represents 4 hours. The protein concentration 
levels (unit = 10-8M) of BCL6 (green), IRF4 (black) and BLIMP1 (orange) are shown on the left axes. 
Transcription factor levels are followed for 52 hours after CD40 signal. In IRFinc and BCLincIRFinc 
models, CD40 signal (blue) affects transcription factor levels resulting in a switch of the B-cell to a PC 
(BLIMP1+) phenotype (in approximately 8 and 12 hours respectively in this example).  
 
 
Next, we assessed the effect of constitutive activation of NF-kB pathway alone 
(IRFinc ) and in codominance with BCL6 overexpression (BCLincIRFinc) on the 
overall GC dynamics (Table 1). Previous studies showed that the GC phenotype in 
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diffuse large B-cell lymphomas that are driven by IRFinc and BCLincIRFinc 
alterations are characterized by unaltered B-cell numbers (Zhang et al., 2015) or 
slightly decreased B-cell numbers (Calado et al., 2010), in the case of the IRFinc 
alteration, at day 10 post immunization and spleen and/or lymph node 
hyperplasia (Calado et al., 2010; Zhang et al., 2015). While alterations that lead 
to IRFinc model resulted in an increased PC production at day 10 post 
immunization according to Zhang and collegues (Zhang et al., 2015) unaltered PC 
numbers at day 10 post immunization were observed by Calado and colleagues 
(Calado et al., 2010). Furthermore, alterations that lead to BCLincIRFinc model 
resulted in unaltered PC production at day 10 post immunization (Zhang et al., 
2015).  
 

The transcription factor dynamics simulated in single cells showed in both IRFinc and 
BCLincIRFinc models there was a switch to the BLIMP1 and IRF4 high steady state 
prior to the CD40 signal (Figure 34A). Nevertheless, only BCLincIRFinc model had 
consistently high BCL6 levels due to the effect of BCL6 overexpression (Figure 34B). 

 
Figure 35: Overall GC dynamics with affinity dependent CD40 signal. (A) Mean DZ-to-LZ ratio 
calculated from CB and CC counts during the GC reaction for the reference (red), BCLincIRFinc (green) 
and IRFinc (blue) diffuse large B-cell lymphoma models. Standard deviation of 10 different random 
seeds is represented in light grey. There is a 2-fold increase in the DZ-to-LZ ratio of the reference 
model compared to the diffuse large B-cell lymphoma models. (B) Cumulative number of PCs 
produced during the GC reaction for IRFinc and BCLincIRFinc models represented with a red line. 
Histogram represents the number of PCs (red) produced per day. Histogram scale is represented in 
the left axes. Line scale (not shown) ranges between 0 and 100. Number shows the cumulated 
number of PCs (red) at the end of the GC reaction. No MBCs are produced. Representative of 10 
simulations.  
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Figure 36: Statistical analysis of PC counts (A) at day 7 of the GC reaction, and (B) at the end of the 
GC reaction for the reference (red), BCLincIRFinc (green), IRFinc (blue) and BLIMPlossIRFinc (purple) 
diffuse large B-cell lymphoma models. No statistical significant difference in the number of PCs 
produced at day 7 is observed between the reference and the two diffuse large B-cell lymphoma 
models. At day 10 there is a statistical significant difference in the number of PCs produced between 
the reference and the two diffuse large B-cell lymphoma models. An unpaired two-tailed Student’s t 
test was used. Three asterisks (***) represent p-values ≤ 0.001, “NS.” represents not statistically 
significant. 
 
 

We observed both diffuse large B-cell lymphoma models had a 2-to-3-fold 
decrease in the DZ-to-LZ ratio at day 21 of the GC reaction (Supplementary Table 
8, Figure 35A) as well as a slight decrease of GC B cells (data not shown) and 
increase in output cells produced at day 21 of the GC reaction (Supplementary 
Table 8) compared to the reference model. All output cells were PCs and no MBCs 
were produced (Figure 35B-C). Statistical analysis of PC count at day 7 of the GC 
reaction (Figure 36A) showed no significant difference compared to the reference 
model. Interestingly, at day 21 of the GC reaction (Figure 36B) a 1.14-fold 
increase in PC count compared to the reference model was observed.  
Furthermore, no significant difference in PC count between IRFinc and BCLincIRFinc 
models was observed. 
 
To summarize, IRFinc and BCLincIRFinc models resulted in a decreased the DZ-to-LZ 
ratio and increased the production of PCs at day 21 of the GC reaction. No MBCs 
were produced due to the fast increase of BLIMP1 independent of CD40 signaling 
and B-cell affinity. At day 7 of the GC reaction, similar PC counts were observed 
compared to the reference model. Our IRFinc model was in agreement with 
observations showing a unaltered number of PCs at day 10 post immunization 
and spleen hyperplasia (Calado et al., 2010). Nevertheless, the model also 
showed unaltered and reduced GC B-cell numbers at days 7 and 18 of the GC 
reaction while the previous study showed the opposite trend. (see Table 9) 
(Calado et al., 2010). Despite reproducing the transcription factor and GC B-cell 
dynamics, our PC results were in disagreement with observations showing an 
increased number of PCs at day 10 post immunization (see Table 9) (Zhang et 
al., 2015). This discrepancy suggested that our model was able to recapitulate 
the effect of constitutive activation of the canonical but not the alternative NF-kB 
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pathway on PC production. Finally, BCLincIRFinc model was in agreement with 
observations shown by Zhang and colleagues (see Table 9) (Zhang et al., 2015). 
Thus, our results suggested that IRFinc and BCLincIRFinc alterations lead to 
unaltered PC production at day 7 of the GC reaction but could result in increased 
PC differentiation at latter stages of the GC reaction. 
 
4.4.4. Loss of IRF4 and BLIMP1 mediated 
silencing of BCL6 does not affect PC 
differentiation (IRFsil and BLIMPsil) 
 
 

 
Figure 37: Transcription factor dynamics of (A) IRFsil, (B) BLIMPsil diffuse large B-cell lymphoma 
models upon binding of Ag and CD40L. Each time unit represents 4 hours. The protein concentration 
levels (unit = 10-8M) of BCL6 (green), IRF4 (black) and BLIMP1 (orange) are shown on the left axes. 
Transcription factor levels are followed for 52 hours after CD40 signal. In IRFsil and BLIMPsil models, 
CD40 signal (blue) affects transcription factor levels resulting in a switch of the B-cell to a PC 
(BLIMP1+) phenotype (in approximately 20 and 24 hours respectively in this example). 

  
 
Finally, we assessed the effect of loss of IRF4- and BLIMP1-mediated silencing of 
BCL6 (IRFsil and BLIMPsil) on the overall GC dynamics (Figure 37). For IRFsil and 
BLIMPsil alterations, we did not find observations on the GC phenotype in terms of 
B-cell numbers and PCs produced. Nevertheless, the transcription factor 
dynamics simulated in single cells showed in both models the system evolved to a 
BCL6 low, BLIMP1 and IRF4 high steady state as a result of the CD40 signal 
transduction. Similar results were observed by Martínez and colleagues (Martínez 
et al., 2012) indicating that redundancy in the GRN makes the system robust 
against loss of BCL6 repression by either BLIMP1 or IRF4, but not by both. Steady 
state levels of all transcription factors in IRFsil model reached similar 
concentration levels as in the reference.  
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Figure 38: Overall GC dynamics with affinity dependent CD40 signal. (A) Mean DZ-to-LZ ratio 
calculated from CB and CC counts during the GC reaction for the reference (red), IRFsil (green) and 
BLIMPsil (blue) diffuse large B-cell lymphoma models. Standard deviation of 10 different random seeds 
is represented in light grey. There is a similar the DZ-to-LZ ratio in the reference and the diffuse large 
B-cell lymphoma models. (B) Cumulative number of PCs and MBCs, represented with red and blue 
lines respectively, produced during the GC reaction for IRFsil and BLIMPsil models. Histogram 
represents the number of PCs (red) and MBCs (blue) produced per day. Histogram scale is 
represented in the left axes. Line scale (not shown) ranges between 0 and 100. Number shows the 
cumulated number of PCs (red) and MBCs (blue) at the end of the GC reaction. Representative of 10 
simulations. 
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Figure 39: Statistical analysis of (A) MBC count, (B) PC count, at day 21 of the GC reaction for the 
reference (red), IRFsil (green), BLIMPsil (blue) diffuse large B-cell lymphoma models. No statistical 
significant difference in the number of PCs produced is observed between the reference and the two 
diffuse large B-cell lymphoma models. There is a statistical significant difference in the number of 
MBCs produced between BLIMPsil model and the reference. There is a no statistical significant 
difference in the number of MBCs produced between IRFsil model and the reference. An unpaired two-
tailed Student’s t test was used. Three asterisks (***) represent p-values ≤ 0.001, “NS.” represents 
not statistically significant. 

 
 
We observed IRFsil model had a similar DZ-to-LZ ratio, GC B cell numbers (data 
not shown) and output cells produced at day 21 of the GC reaction 
(Supplementary Table 8) compared to the reference model (Figure 38A). In 
BLIMPsil model there was a slight increase in the DZ-to-LZ ratio and GC B cell 
numbers (data not shown) as well as a slight decrease in output cells produced at 
day 21 of the GC reaction (Supplementary Table 8) compared to the reference 
model (Figure 38B-C). Statistical analysis of MBC count at day 21 of the GC 
reaction (Figure 39A) showed no significant difference between the reference and 
IRFsil. There was a significant 1.7-fold increase in BLIMPsil model compared to 
IRFsil and the reference. This could be due to the faster increase of BLIMP1 in 
BLIMPsil indicating there is a greater repression effect of BLIMP1 over BCL6 than 
the effect of IRF4 over BCL6. Statistical analysis of PC count at day 21 of the GC 
reaction (Figure 39B) showed no significant difference between the reference, 
IRFsil and BLIMPsil models. 

 

4.5. Discussion 
 
MSM can be an effective tool to complement experimental investigation and has 
been used to predict most effective therapies for in vitro diffuse large B-cell 
lymphoma cell lines (Du et al., 2017). Targeted therapies against chronically 
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active BcR signaling pathway have shown to most effectively decreased cell 
viability thus inhibiting tumor growth. It is increasingly acknowledged that 
aberrant expression of key transcription factors, namely BCL6, IRF4 and BLIMP1, 
and signaling pathways, namely BcR and CD40, during the GC reaction play a 
central role in the development of many diffuse large B-cell lymphomas (Martínez 
et al., 2012). To study the effect of eight different genetic alterations on the B-
cell dynamics in the GC we use an existing MSM of PC differentiation (Merino 
Tejero et al., 2020). We also compare six of the eight diffuse large B-cell 
lymphoma models with in vivo experiments that analyzed transcription factor 
expression and GC B-cell numbers at different stages of the GC reaction.  
 
Four of the diffuse large B-cell lymphoma models correctly recapitulate the 
observed PC and transcription factor dynamics. BLIMPloss and BLIMPlossIRFinc 
models are consistent with observations showing BLIMP1 deletion lead to a GC B-
cell expansion and a block in the PC production at day 7 of the GC reaction 
(Calado et al., 2010). Thus, constitutive activation of NF-kB pathway could not 
override the effect of BLIMP1 deletion. Furthermore, BLIMPloss model was 
consistent with observations showing GC B-cell expansion also at day 21 post 
immunization. Nevertheless, BLIMPlossIRFinc model also showed a GC B-cell 
expansion at day 21 of the GC reaction, which was not observed experimentally. 
This could be due to the fact that our MSM does not account for the anti-
proliferative and anti-apoptotic effect of BLIMP1. IRFinc and BCLincIRFinc models are 
also consistent with observations showing that constitutive activation of the NF-
kB pathway alone (Calado et al., 2010) and in codominance with enforced BCL6 
expression (Zhang et al., 2015) lead to unaltered PC production at day 7 of the 
GC reaction. Nevertheless, there is a discrepancy in the number of PCs produced 
at day 10 post immunization when comparing constitutive activation of the NF-kB 
pathway in both experimental studies. While studies done by Zhang (Zhang et 
al., 2015) and colleagues showed an increase in PC production, studies done by 
Calado (Calado et al., 2010) and colleagues showed unaltered PC numbers at day 
10 post immunization . This is likely due to the difference in NF-kB pathways that 
were activated, namely alternative or canonical pathways studied. Despite the 
fact that our IRFinc model resembles BLIMP1 levels shown by both studies, the 
number of PCs produced in our model indicates that it represents the effect of 
constitutive activation of the canonical NF-kB pathway on PC production. It also 
shows that the increase of PC production at day 7 of the GC reaction during 
constitutive alternative NF-kB pathway is not due to the observed increased pro-
differentiation effect of BLIMP1 levels. To this end, in vitro experiments showed 
that such increase in PCs could be linked to an increased proliferative state 
and/or a decreased apoptotic state. To better represent this in our MSM, a 
distinction between alternative and canonical pathways should be introduced by 
including the different NF-kB subunits regulation of IRF4 and BLIMP1 and have an 
antagonistic function promoting and inhibiting PC differentiation (Roy et al., 
2019). Furthermore, c-MYC could be included as part of our GRN, which is a 
critical mediator of B-cell proliferation (Dominguez-Sola et al., 2012; Shlomchik 
et al., 2019). Finally, our IRFinc and BCLincIRFinc models suggest that an increase 
in PC production could happen at later stages of the GC reaction. Measurement of 
PC numbers produced at day 21 of the GC reaction could be used to validate this 
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finding. This finding could explain the pathogenesis of constitutive activation of 
NF-kB pathway through the induction of the pro-differentiation effect of BLIMP1 
and suggests this pathway is a possible candidate for targeted therapy. 
 
Two of the diffuse large B-cell lymphoma models do not correctly recapitulate the 
observed GC and transcription factor dynamics. BCLauto and BCLinc models result 
in an expansion of GC B cells and a block in the PC production that was not 
observed experimentally (Zhang et al., 2015). This could be due to the fact that 
in our MSM the anti-proliferative and anti-apoptotic effect of BLIMP1 was not 
included. The connection of other processes such as cell division, or apoptosis 
with the underlying GRN could potentially result in a better representation of the 
in vivo experiments. To this end, previous studies have shown that BCL6 may 
have a role as a promoter or inhibitor of apoptosis depending on the cellular 
context and the experimental approach (Bai et al., 2003). In the same study, it 
was hypothesized that increased BCL6 expression could induce apoptosis in 
diffuse large B-cell lymphoma cell lines due to downregulation of B-cell lymphoma 
2. To include this mechanism in our model, further studies are required to 
elucidate the relation between BCL6, B-cell lymphoma 2 and apoptosis in diffuse 
large B-cell lymphoma. 
 
No data has been found to validate IRFsil and BLIMPsil models. Our findings 
suggest that loss of IRF4 or BLIMP1 mediated silencing of BCL6 does not affect 
PC differentiation. This robustness in the GRN could be necessary to compensate 
for the high incidence of mutations targeting the regulatory elements in the BCL6 
promoter (Saito et al., 2007; Martínez et al., 2012).  
 
MBC dynamics is affected in six of the eight diffuse large B-cell lymphoma 
models. Models with insufficient BLIMP1 expression (BCLauto, BCLinc, BLIMPloss, 
BLIMPlossIRFinc) induce MBC production. Models with constitutive activation of NF-
kB pathway alone and in codominance with BCL6 overexpression (IRFinc, 
BCLincIRFinc) block MBC production. This observation remains to be experimentally 
validated. Furthermore, while our MBC definition correctly recapitulates the 
observation of a temporal switch from low affinity and BLIMP1 MBCs to higher 
affinity and BLIMP1 PC production, it also implies that Ag status (Ag+) is one of 
the determinants in MBC differentiation and MBCs leave the GC through the DZ. 
This definition remains to be validated. Nevertheless, a recent study showed that 
post-GC extranodal mutations targeting a regulator of the molecular switch BCL6 
to broad complex-tramtrack-bric a brac and cap'n'collar homology 2 (BACH2) 
transcription factor lead to an expansion of MBC population and diminished GC B-
cell and PC production by hindering BCL6 function and inducing BACH2 
(Venturutti et al., 2020). This observation may indicate that certain active-B-cell-
subtype-like mutations can skew GC output towards MBC production as well as 
the role of BACH2 in promoting MBC differentiation by opposing BCL6. Hence, the 
inclusion of BACH2 in the GRN could able a better understanding of MBC 
dynamics in the GC and its deregulation in diffuse large B-cell lymphoma. 
 
Overall, our model provides a tool to study the effect of genetic alterations on the 
cellular level by targeting a GRN with five critical players in the development of 



Chapter	  4	  

	   117	  

diffuse large B-cell lymphoma and can open the way for new therapeutic 
strategies. In particular, it suggested BLIMP1 regulatory elements could be better 
candidates for targeted therapy than those regulating BCL6. Furthermore, the 
extension of our core GRN with other elements, such as PAX5 (Balasenthil et al., 
2007), BACH2 (Ichikawa et al., 2014), T follicular helper secreted cytokines such 
as IL2, IL4 and IL21 (Bhatt et al., 2017) and metabolic pathways (Calvo-Vidal et 
al., 2021) could allow for a better approximation of the mechanisms underlying 
diffuse large B-cell lymphomas and other cancers, which may result in new 
diagnostic markers or therapeutic targets. However, this requires that we have 
sufficient mechanistic information or hypotheses about these mechanisms to 
include them in the model for further testing. Although current literature provides 
many pointers to make such extension, this will also introduce (many) new 
parameters in the model for which values need to be estimated from 
experimental (time series) data. Unfortunately, such data is not generally 
available.  We attempted to extend the GRN model with FOXO1 and c-Myc 
following new insights about the synergistic induction of c-Myc by BcR and CD40 
signalling (Luo et al., 2018) to but due to lack of experimental data we 
terminated this effort at this time. 
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4.7. Supplementary Information 
 
4.7.1. List of Abbreviations 
 
GC = Germinal center 
BCL6= B-cell lymphoma 6 
IRF4= Interferon regulatory factor 4 
BLIMP1= B lymphocyte induced maturation protein 1 
BACH2= Broad complex-tramtrack-bric a brac and cap'n'collar homology 2  
ODE= Ordinary differential equation 
MSM=  Multiscale model 
PC= Plasma cell 
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MBC= Memory cell 
NF-kB= Nuclear factor kappa-light-chain-enhancer of activated B cells  
DZ= Dark zone 
LZ= Light zone 
CB= Centroblast 
CC= Centrocyte 
BcR= B-cell receptor 
FDC= Follicular dendritic cell 
Ag= Antigen 
CD40= Cluster of differentiation 40 
GRN= Gene regulatory network 

 
4.7.2. Agent based model  
 
Supplementary Table 5: ABM model parameter values, units and description.  
Parameter name Value Unit Description 

dt 0.002 h Time resolution of GC simulation 
tmax 504 h Duration of GC reaction 
dx 5 µm Lattice resolution of space grid 

radius 160 µm Radious of GC 
length 64 Grid points/ 

Dimension 
Number of grid points (2*radious/dx) in a 3 

dimensional sphere 
Stromal cells 300 cells Total number of stromal cells 

FDCs 200 cells Total number of FDCs 
Dendrite Length 40 

8 
µm 

Grid points 
Length FDC dendrites 

(Length FDC dendrites/ dx) 
Ag 3000 threshold Presented Ag amount per FDC 

Ag saturation 20 threshold Ag saturation per FDC grid point 
T cells 250 cells Total number of T cells 
B cells 100 cells Total number of initial B cells 

Affinity gamma 2.8  Width of Gaussian affinity weight function 
Affinity eta 2  Exponent of the hamming distance 

CXCL13 production 1*10-8 

0.75*dt 
mol/h/FDC 

molecules/dt
/grid point 

Rate of CXCL13 production 
(Rate*dt*dx3 *N.avogadro) 

CXCL12 production 4*10-7 

 
30*dt 

mol/h/strom
al cell 

molecules/dt
/grid point 

Rate of CXCL13 production 
(Rate*dt*dx3 *N.avogadro) 

CXCL13 diffusion 1000 µm2/h Diffusion constant of CXCL13 chemotaxis signal 

CXCL12 diffusion 1000 µm2/h Diffusion constant of CXCL12 chemotaxis signal 

CXCL13crit 0.8*10-10 mol Critical CXCL13 concentration for desensitization 

CXCL13recrit 0.6*10-10 mol Critical CXCL13 concentration for resensitization 
CXCL12crit 60*10-10 mol Critical CXCL12 concentration for desensitization 

CXCL12recrit 40*10-10 mol Critical CXCL12 concentration for resensitization 
chemoMax 10  Maximum weight of chemokine to random polarity 

chemoSteep 1*1010 1/mol Steepness of weight reduction with chemokine 
gradient 

chemoHalf 2*10-11 mol Chemokine gradient of half weight 
TC weight 0.1  Tendency of T-cells to stay in the LZ [0,1] 
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Persistent length 
time (CC, CB) 

1.5 min Persistence of CB and CC polarity 

Persistent length 
time (TC) 

1.7 min Persistence of T-cell polarity 

Persistent length 
time (PC,MBC) 

0.75 min Persistence of MBC and PC polarity 

Speed (CB,CC) 7.5 µm/min Mean CB and CC velocity 
Speed (TC) 10 µm/min Mean T-cell velocity 

Speed (MBC,PC) 3 µm/min Mean MBC and PC velocity 
CB division 6 h Rate of CB division 

Start differentiation 72 h Start of differentiation period 
CB àCC 
CC àCB 

0.1*dt h Probability of differentiation from CB to CC and 
from CC to CB 

Delay CC àCB 6 h Delay of selected CC differentiation to CB 
Output onset 12 h Width of smooth onset of differentiation to output 

Start mutation 24 h Start of mutation period 
pMut 0.5 Prob./BcR/ 

division 
Mutation probability in CBs after start of mutation 

period and before undergoing T-cell selection. 
pMut 0 Prob./BcR/ 

division 
Mutation probability in CBs before start of mutation 

period and after undergoing T-cell selection. 
pAsymmetric 

division 
0.72 Prob. / 

division 
Probability of asymmetric division of retained Ag in 

recycled CBs 
Ag polarity level 1 

 
0.5 

 Concentration of Ag in one daughter cell expressed 
as a fraction of Ag retained in the parent cell in 

asymmetric and symmetric division. 
FDC collection 0.7 h Duration of CC collection of Ag by serial FDC 

encounters 
testDelay 0.02 h Time gap between affinity tests 
Selection 0.05*dt h Rate of CC selection by FDCs 

TC interaction 0.6 h Duration of CC interaction with T cells 
TC rescue time 0.5 h Minimum duration of TC polarization towards CCs 

for rescue 
pMHCdepHill 1  pMHC-dependent division number hill coefficient 
pMHCdepMin 1  pMHC-dependent division number hill minimum 
pMHCdepMax 6  pMHC-dependent division number hill maximum 
pMHCdepHalf 6  pMHC-dependent division number hill half 

 
 
 
 
 
 
 
 
 
 
 
 



	   120	  

4.7.3. Gene regulatory network 
 
 
Supplementary Table 6: ODE model parameter values, units and description. Parameters are 
normalized by a unit of time (t0) and concentration (C0).  

Parameter Value Unit Description 
µp 10-6 M/h Basal transcription rate 
µb 2 M/h  
µr 0.1 M/h  
σp 9 M/h Maximum induced transcription rate 
σb 100 M/h  
σr 2.6 M/h  
κp 1 M Dissociation constant: ligand concentration 

that produces half of the maximum induced 
transcription rate 

κb 1 M  
κr 1 M  
λp 1 h-1 Degradation rate 
λb 1 h-1  
λr 1 h-1  

bcr0 1 h-1 Range of BCR-induced degradation of BCL6 
CD40 affinity*50 M/h CD40 signal (affinity = [0,1]) 

t0 4 h Time unit 
C0 10-8 M Concentration unit 

 
 
Supplementary Table 7: Comparison between transcription factor concentration levels in the eight 
diffuse large B-cell lymphoma MSM and those obtained by the ODE model of Martínez and co-workers 
(Martínez et al., 2012). BCL6, IRF4 and BLIMP1 concentration levels are measured 52 and 600 hours 
after initiation of the CD40 signal. Highlighted boxes indicate difference between the results obtained 
by both models. Results produced by the GRN are very close or identical in both models except for 
BCLinc that shows a clear difference in the BLIMP1 level. This is caused by the fact that in our MSM 
selected CC differentiation into a PC process was around 11 times faster than in the model presented 
by Martínez and co-workers.  Thus, we found that within the timing of PC differentiation during the GC 
reaction BCLinc model has a robust BCL6 overexpression that blocks PC differentiation. 

Model MSM Martínez and co. (Martínez et al., 2012) 

Transcripti
on factors 

BCL6 
(10-8 M) 

BLIMP1 
(10-8 M) 

IRF4 
(10-8 M) 

BCL6 
(10-8 M) 

BLIMP1 
(10-8 M) 

IRF4 
(10-8 M) 

Reference 2 9.3 2.3 2 9.3 2.3 
BCLauto 92.1 0.3 0.2 88 0.3 0.2 
BCLinc 20.2 0.3 0.2 20 7,6 2.3 
IRFsil 2 9.3 2.3 2.2 9.1 2.3 

BLIMPsil 3.3 8.2 2.3 3.3 8.3 2.3 
BLIMPloss 3.3 0 2.3 3.3 0 2.3 
BLIMPlossI

RFinc 
2.5 0 5.2 

Not part of this study 

IRFinc 2 10.5 5.2 2 10.5 5.2 
BCLincIRFin

c 
20 8.7 5.2 

Not part of this study 
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4.7.4. Diffuse large GC B-cell lymphoma 
dynamics 
 
Supplementary Table 8: Comparison between B-cell numbers in the eight diffuse large B-cell 
lymphoma MSMs at day 21 of the GC reaction. 

 
DZ-to-LZ ratio Output cell 

number 
PC number MBC number 

Reference 5 35,434 34,617 817 
BCLauto 125 31,215 0 31,215 
BCLinc 125 31,215 0 31,215 
IRFsil 5 35,480 34,618 862 

BLIMPsil 5.5 34,169 32,773 1,396 
BLIMPloss 125 31,215 0 31,215 

IRFinc 2 40,160 40,160 0 
BLIMPlossIRFinc 125 31,215 0 31,215 

BCLincIRFinc 2 39,701 39,701 0 
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5.1. Abstract 
 
The adaptive immune response provides an important line of defense against 
antigens (Ags) present in our body. It involves B cells, memory B-cells (MBCs), 
and plasma cells (PCs) and is responsible for immunological memory and the 
antibody (Ab) response. The germinal center (GC) plays an important role in the 
adaptive immune response. Sequencing of B-cell and T-cell immune receptor 
repertoires helps us to understand the adaptive response. However, repertoire 
sequencing only provides information about the clonotypes and their frequencies. 
This is useful to identify dominant clones of high frequency but generally further 
experiments are required to further characterize to a greater extent the identified 
(dominant) clones by measuring, for example, their affinity. Computational 
models may, however, help to get a better understanding of immune receptor 
repertoires. Therefore, we present a multiscale model (MSM) of the GC to 
establish (i) the relationship between clonal abundance and affinity, (ii) the 
extent that MBCs and/or PCs with high B-cell receptor (BcR) mRNA content 
disturb the identification of dominant clones, and (iii) the extent towards whether 
a single GC reaction represents immune repertoires obtained from blood. Our 
simulations show that there is a limited correlation between clonal abundance and 
affinity and, in addition, there is large affinity variability within a clone. 
Furthermore, we show that the presence of MBCs and PCs with high BcR mRNA 
content does not significantly affect conclusions on the number of dominant 
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clones. Finally, as expected, the immune repertoire simulated from outsingle GC 
model, largely deviates in several aspects from experimental repertoires obtained 
from blood. Therefore, to further test and improve our model, we are currently 
working on the comparison of repertoires measured from single GCs. 1 

 

5.2. Introduction 
 
The immune system is a complex biological system comprising many components 
that make up a network to protect an organism from disease (Nicholson, 2016; 
Murphy, 2017). It is activated when it encounters substances (Ags) foreign to the 
organism such as pathogens and cancer cells. The human immune system 
comprises the innate and the adaptive subsystems that act in concert (Chaplin, 
2010; Spiering, 2015).  The innate system is the first line of defense, which acts 
very quickly but is nonspecific. The adaptive response is slower but is able to 
more specifically respond to the Ag. Moreover, it produces an immunological 
memory such that it can respond faster when a (similar) antigen is encountered 
again in the future. The adaptive immune response is carried out by white blood 
cells. In particular, the B cells, T cells, PCs, MBCs and memory T cells. The 
adaptive response involves a cell-mediated response in which activated T cells 
react directly against a foreign Ag presented by an Ag-presenting cell. In 
addition, it triggers an antibody (Ab; immunoglobulin) response in which B cells 
are activated to differentiate to PCs that secrete Abs. These Abs are the soluble 
form of the membrane-bound BcRs and circulate in the body to specifically bind 
to the Ag such that it is neutralized and can be removed from the body.  
 
The GC plays a crucial role in the adaptive immune response (Victora and 
Nussenzweig, 2012; Victora, 2014; N. S. De Silva and Klein, 2015). GCs are 
microanatomical structures found in secondary lymphoid organs, and are formed 
when an adaptive response is initiated. These structures are responsible for a 
process called affinity maturation during which the affinity and specificity of the 
BcR for the Ag is improved over the course of several weeks. The GC reaction 
begins with the activation of a limited number of Ag-specific B cells that starts to 
proliferate (clonal expansion) to form the so-called GC dark zone (DZ), as defined 
by histology staining. During proliferation of these B cells, now called centroblasts 
(CBs), their BcR is changed due to somatic hypermutations (SHMs), which 
increase or decrease the binding affinity of the BcR for the Ag. CBs differentiate 
to centrocytes (CCs) and migrate to the GC light zone (LZ) where they collect Ag 
presented by follicular dendritic cells (FDCs) and, subsequently, interact with t 
follicular helper (Tfh) cells to become positively selected to return to the DZ to 
undergo further rounds of proliferation and SHM. 

 

1 This chapter is based on García-Valiente R, Merino Tejero E, Stratigopoulou M, 
Balashova D, Meyer-Hermann M, Guikema JEJ, Hoefsloot H, van Kampen AHC. 
Generation of repertoire sequencing data from a computational model of the 
germinal center. Manuscript in Preparation.  
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MBCs and PCs are important output cells from the GC. In general, MBCs are of 
lower affinity than PCs, and are produced at later stages (Florian J Weisel et al., 
2016) although this might be related to the nature of the Ag (Mathew et al., 
2021). 
 
Mammals have an immense immune repertoire comprising B cells and T cells with 
unique BcRs and T-cell receptors (TcRs) to combat the large variety of Ags. The 
B-cell repertoire has been estimated to include about 1015 members for the naïve 
repertoire although a much smaller fraction (109) of mature B cells is maintained 
in our body (Rees, 2020). The diversity of BcR results from several processes that 
include their development in the bone marrow through somatic recombination of 
V(D)J genes that encode the receptor and induce junctional diversity, and pairing 
of different BcR heavy and light chains (Schroeder and Cavacini, 2010). Finally, 
additional diversity is created by SHMs in the GC. The BcR harbors three 
complementary determining regions (CDR1, CDR2, CDR3) that encompass the 
most variable parts of the Ab and are responsible for Ag binding. The four BcR 
framework regions (FWRs) mostly provide structural support for the CDRs (Wu 
and Kabat, 1970; Lefranc et al., 2003; Sela-Culang et al., 2013).  
 
Immune receptor repertoires in blood or tissue can be profiled using next 
generation sequencing technologies (Robinson, 2015; Friedensohn et al., 2017; 
Brown et al., 2019; Liu et al., 2021). These BcR and TcR repertoire sequencing 
experiments have been applied for a broad range of applications including 
vaccinology, infection, and (auto)immune disorders (Doorenspleet et al., 2014; 
van Schaik et al., 2014; Galson et al., 2015; Hoehn et al., 2015; Wang et al., 
2015, 2019; Bashford-Rogers et al., 2019). Typically, the pre-processing of 
repertoire sequencing results in a set of clones and their abundances in the 
measured samples. Additional bioinformatics analyses are then performed to 
address specific research question (Greiff et al., 2015). A specific (auto)immune 
response will skew the BcR repertoire towards Abs binding the Ag. Although 
repertoire sequencing does not provide information about binding affinities, it is 
generally assumed that higher abundant clones (dominant clones) have higher 
affinities due to their Ag-driven expansion and selection in GCs. Therefore, in 
principle, dominant clones provide good candidates to further characterize, for 
example, binding specificity and affinity, neutralization capacity, and functional 
properties (Marks and Deane, 2020).  In addition, these high abundant Abs might 
lead to new mAb therapeutics such as TNF inhibitors (Monaco et al., 2015), or 
can be used to monitor an immune response during disease or after vaccination 
(Brown et al., 2019). The selection of candidate B cell clones is likely to be the 
most successful when focusing on functional B cell populations (tissue-infiltrating 
B cells, PBs, PCs, and MBCs).  

 
Although dominant clones provide a reasonable starting point to follow-up 
repertoire sequencing experiments, it would be interesting to know the relation 
between clonal abundance and affinity. Unfortunately, measuring the binding 
affinity for hundreds to thousands of clones resulting from repertoire sequencing 
is virtually infeasible. Moreover, a clone represents a (large) lineage of B cells 
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(subclones) stemming from the same unmutated common ancestor (a naïve B 
cell initiating a GC reaction) with unique BcRs created by SHMs. Since, in 
practice, one typically selects a specific sequence from such lineage as a starting 
point to create a recombinant Ab, one has little information about the variation of 
binding affinities (or other properties) within a clone. Another point of 
consideration is the fact that, in case of RNA repertoire sequencing, the 
abundance of the clones might be inflated by high immunoglobulin RNA content in 
PCs and/or MBCs. It has been reported that differentiation of B-cells into PCs is 
accompanied with an up to 100-fold increase in immunoglobulin production rate, 
facilitating to production of secreted Abs (Andersson et al., 1978; Perry and 
Kelley, 1979; Kelley and Perry, 1986; Cox and Emtage, 1989; Genovese and 
Milcarek, 1990; McKean et al., 2008; Tellier and Nutt, 2019).Whether the 
immunoglobulin mRNA abundance in MBCs is also increased compared to B cells 
is unknown by the best of our knowledge.  

 
Previously we developed a simple model of the GC based on ordinary differential 
equations (ODEs) that suggested that there is only a limited correlation between 
clonal abundance and affinity (Reshetova et al., 2017). However, in this model 
we could not analyze the clones but instead focused on the individual subclones 
(i.e., B-cells with a unique BcR). Moreover, ODEs provide a continuous 
approximation to large (cell) populations and, therefore, low frequent subclones 
were not adequately represented. In addition, PCs and MBCs were modelled 
without a specific underlying mechanism.  

 
In this paper, we use a much more sophisticated and comprehensive model of the 
GC to facilitate the interpretation of B-cell repertoire data. We use and extend a 
MSM of the GC that we recently developed (Merino Tejero et al., 2021). This 
model integrates an ABM to describe the cellular dynamics, and a system of ODEs 
representing a core GRN involved in PC differentiation. We aim to use this model 
to again establish the relationship between clonal abundance and affinity to 
validate our previous results. In addition, we aimed to determine to what extend 
the selection of dominant clones is affected by the high mRNA content of PCs 
(and MBCs) in a sample. Finally, we aimed to determine the extent to which the 
GC output reflects experimental immune repertoires obtained from blood. We 
show that there is a limited correlation between clonal abundance and affinity 
and, in addition, there is large affinity variability within a clone. Our simulations 
suggest that PCs (and MBCs) do not have a large effect on the number of 
dominant clones inferred in GC RNA-Seq repertoires. These results are helpful in 
the selection of B cell clones for follow-up characterization. Finally, as expected, 
the immune repertoire generated from a single GC in our model, (largely) 
deviates in several aspects from experimental repertoires obtained from blood. 
However, emerging single cell and single GC experiments are likely to be in more 
in agreement with our simulations. 
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5.3. Methods 
 
We recently developed a MSM of the GC reaction (Merino Tejero et al., 2021) 
(Figure 40). This model integrates a pre-existing ODE model representing a core 
GRN that drives PC differentiation (Martínez et al., 2012), and an ABM of GC 
representing the cellular mechanisms (Meyer-Hermann et al., 2012; Robert et al., 
2017). In short, the GC is represented as a 3D sphere of equidistant grid points 
that also defines the DZ and LZ. CXCL12 and CXCL13 chemokines gradients, 
resulting from stromal cells in the DZ and FDCs in the LZ respectively, are 
imposed on the grid and allow the CBs, CCs, and Tfh cells to preferentially 
migrate to their respective zones. The CBs proliferate and mutate in the DZ, while 
the CC interact with the FDCs and Tfh cells in the LZ to receive survival signals to 
become positively selected. Lack of sufficient survival signals causes the CC to go 
into apoptosis. The duration of a single GC simulation is of 504 hours (21 days) at 
a time resolution of 0.002 hours.  
 

Figure 40:  General scheme of our GC MSM. Founder B cells enter the GC and go through a process 
of division and SHM in the DZ and selection in the LZ, based on the affinity of their BcRs. Our MSM 
includes a GRN that drives PC differentiation. The affinity of the BcRs is based on the distance 
between the BcR sequence and the optimal BcR in a continuous shape-space.  
 
 

5.3.1. Influx of founder cells 
 
Following experimental observations (Tas et al., 2016) we initiate the GC with 
approximately 200 founder B cells that enter during the initial phase of the GC 
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reaction (Robert et al., 2017). Accordingly, founder B cells enter the GC with a 
probability p(influx) (Eq 12). 
 

Eq 12: 𝑝(influx) = !∙!!

!!!
!!!
!

 

 
With Δt=0.002 corresponding to the time resolution of the ABM, α=96 hours 
representing the time point at which influx stops, β=6 hours and represents the 
rate smoothness, and µ=2 cells/hour represents the inflow rate. Integration of 
this equation shows that this leads to approximately 200 founder B cells 
(Supplementary Figure 28).  
 
 5.3.2. Definition of output cells (OCs) 
 
PC differentiation was mechanistically representing by embedding the core GRN in 
every B cell, MBC and PC represented by the ABM. This network comprises three 
differential equations (Eq 13 - 15) with p, b, and r representing BLIMP1, BCL6, 
and IRF4 respectively. BCR and CD40 (Eq 16 - 17) represent the signaling 
strength upon interaction of the B-cell with the FDC-presented Ag and the Tfh cell 
respectively. Affinity assumes a value between zero and one (see below). The 
values for the parameters (transcription and decay rates, dissociation constants) 
are given in Supplementary Table 9. CCs that are positively selected by Tfh cells 
return to the DZ where they further proliferate and, subsequently, differentiate to 
a PC if the BLIMP1 level is high enough ([BLIMP1] ≥ 8.10-8M). The PCs leave the 
GC through the DZ.  
 

𝐄𝐪  𝟏𝟑 ∶   
dp
dt

=   µμ! +   σ!
k!!

k!! +   b!
+   σ!

r!

k!! +   r!
−   λ!p 

 

𝐄𝐪  𝟏𝟒 ∶   
db
dt
=   µμ! +   σ!   

k!!

k!! +   p!
  

k!!

k!! +   b!
k!!

k!! +   r!
−   (λ! +   BCR)b 

 

𝐄𝐪  𝟏𝟓:  
dr
dt
=   µμ! +   σ!   

r!

k!! +   r!
+   CD40 −   λ!r 

 

𝐄𝐪  𝟏𝟔:BCR = bcr0  
k!!

k!! +   b!
 

 

𝐄𝐪  𝟏𝟕: CD40 = affinity  . cd0  
k!!

k!! +   b!
 

  
For the differentiation of MBCs, we followed a different approach based on 
asymmetric division of Ag, due to a lack of a clear molecular mechanism 
underlying this cellular event. It has been shown that Ag internalized by B cells is 
asymmetrically distributed to the daughter cells during B-cell division (Thaunat et 
al., 2012). However, a possible effect on B-cell fate was not investigated. 
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Consequently, it was hypothesized that asymmetric division might affect B-cell 
fate (Dustin and Meyer-Hermann, 2012), and this hypothesis formed the basis of 
the ABM that we use. The original model assumes that CCs positively selected by 
Tfh cells recycle to the DZ for further proliferation and SHM and that during B cell 
division the captured Ag is distributed asymmetrically to both daughter B cells. 
Subsequently, the Ag-retaining CBs differentiate into OCs, which were not further 
specified as PC or MBCs. Although there was no direct experimental evidence that 
asymmetric division determines B cell fate, the implementation of this mechanism 
made the computational model in better agreement with B-cell migration patterns 
observed in experiments of photoactivated B-cells (Victora et al., 2010). In our 
model we maintained mechanism of asymmetric division for producing OCs but 
we distinguish between PCs and MBCs. The MBCs were defined as OCs resulting 
from asymmetric B cell division but don’t have a high BLIMP1 level. This approach 
towards PC and MBC differentiation ensured agreement with an experimentally 
observed temporal switch in which lower affinity MBCs are mainly produced at the 
initial phase of the GC, while higher affinity PCs are produced after the peak 
response (Florian J Weisel et al., 2016). 
 
5.3.3. Affinity and shape space 
 
In the original ABM the, BcR affinity is based on a the so-called ‘shape space’, 
which is a 4-dimensional grid in which the Ag and BcR are assigned to a grid 
point (Perelson and Oster, 1979; Meyer-Hermann et al., 2001; Robert et al., 
2017). This shape space has a dimension of 10x10x10x10 (10000) discrete 
points. Within this shape space the Ag has the same fixed position for all B-cells, 
while the BcR moves through this space upon the acquisition of SHMs (Figure 
40). The distance (L1-norm) between the Ag and BcR represents the number of 
mutations required to acquire the maximum affinity, and is converted to an 
affinity value between zero and one using a Gaussian weight function. Due to the 
discrete nature of the grid only a limited number of different affinity values and a 
fixed step size were possible. Therefore, we changed the shape space to a 
continuous space with a length of ten (arbitrary units) for each of the four 
dimensions. This allows a continuous representation of affinity values required to 
represent the large number of possible mutated BcR nucleotide sequences in the 
GC. The L2-norm (Euclidian distance) between the Ag and Ab is converted to an 
affinity value using the Gaussian weight function.  SHMs that change affinity 
move the BcR within this continuous space with a variable step size (s) sampled 
from a normal distribution with a mean of one and a standard deviation of 0.1 
(𝑠 ∼ 𝑁 𝜇 = 1,𝜎 = 0.1 ).  
 
Consequently, the amount of affinity change is not only determined by the 
direction of change in the shape space, but also by the variable step sizes. Each 
move in shape space may increase or decrease the distance from the Ag and, 
consequently, decrease or increase the affinity respectively.  
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5.3.4. BcR sequence representation 
 
In the original ABM the BcRs were not represented as nucleotide sequences and 
the shape space was the sole approach to obtain an affinity measure. To more 
accurately represent the effect of SHMs on affinity we here associate a BcR 
sequence to each B-cell in the ABM. We constructed a set of partially 
reconstructed germline heavy chain V(D)J sequences from an in-house generated 
BcR repertoire from a single GC (unpublished data) using IMGT High-VQuest 
(Lefranc, 2014; Lefranc et al., 2015) (Figure 41). We selected 230, a number 
enough so every founder cell could have its own unique BcR sequence, of the 
most different germlines to prevent the convergence of their sequences. Due to 
the high variability of the CDR3 (average length of approximately 48 nucleotides 
(Shi et al., 2014)), it is difficult to correctly identify the short D-gene (average 
length of nearly 24 nucleotides), or to precisely determine the junctional diversity 
(Calis and Rosenberg, 2014). Consequently, we identified the V and J sequences, 
which include part of the CDR3 region. The remaining CDR3 part will remain 
identical to the experimental sequence. Due to the placement of primers in the 
FWR1 and FWR4, part of these regions is missing. We fully reconstruct these 
regions in the reconstructed sequence, keeping track of the position of the 
missing parts. For the resulting sequence we annotated the four framework 
regions (FWR) and the three complementary determining regions (CDRs). Each 
founder B-cell is associated with a nucleotide sequence that is randomly selected 
(without replacement) from our set of unique V-CDR3-J sequences. We selected 
the most different germlines to prevent their convergence. During the GC 
reaction this sequence is mutated (see below) and inherited by the (founder) B 
cell progeny.  
 

 

 
Figure 41: BcR sequence reconstruction and representation.  From a IgH Fab repertoire sequence, 
whose FWR1 and FWR4 regions are partially missing, we infer the corresponding partially 
reconstructing germline using IMGT High-VQuest. Red vertical bars represent mutations. The three 
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different colors on each sequence represent the V, D and J gene, respectively, The CDRs appear are 
marked with black borders. Due to the highly variable nature of the D gene and the junctional 
diversity, only part of the CDR3 could be assigned to its corresponding germline sequence (i.e., small 
part of the V and J germline sequence). The remaining part is taken from the repertoire sequence. 

 
5.3.5. Fate of somatic hypermutations 

 
Twenty-four hours after the initiation of the GC reaction, SHM is switched on with 
a rate of 10−3 mutations per base pair per B-cell division (Kleinstein et al., 2003; 
McKean et al., 2008). Although both the BcR heavy and light chain are important 
in Ag binding, we simplified our model by only considering mutations in the heavy 
chain, in agreement with our BcR sequence representation. Since the average 
length of a BcR heavy chain is approximately 400 nucleotides resulting in 0.4 
heavy chain mutations per cell division, we modelled the number of mutation (m) 
as , 𝑚 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 λ = 0.4 . This results in one or more mutations in approximately 
33% of the cell divisions (Supplementary Figure 29). Each mutation affects a 
specific FWR or CDR region, which is selected probabilistically using a SHM fate 
tree (Figure 42).  This decision tree also determines if a mutation changes 
affinity, is silent, is lethal, or is neutral. Once a region is selected then within this 
region, we randomly replace a nucleotide and check from the corresponding 
amino acid sequence if the type of mutation (replacement, lethal, neutral, or 
silent) agrees with the selected mutation type from the tree. If not, a new 
nucleotide is randomly selected from the region. We do not account for mutation 
hot/cold spots (Cui et al., 2016). Our decision tree is an extension of the fate tree 
previously constructed from experimental data but which does not distinguish 
between the individual FRW and CDR regions (Shlomchik et al., 1998). We 
extended this tree to represent all seven FRW/CDR regions. The probabilities in 
the tree were obtained from sequence data from non-expressed (non-functional) 
κ light chain transgenic mice immunized with nitrophenyl (NP) (Cui et al., 2016) 
resulting in mutation patterns in the absence of Ag-driven selection pressure. 
Preferably, these probabilities should be estimated from (human) heavy chain 
non-functional sequences but to the best of our knowledge, such data are 
currently not available. Therefore, we assumed that these probabilities are 
representative for the human heavy chain. We also assumed that only CDR 
replacement mutations affect affinity. The fate tree does not account for key or 
blocking mutations (Kleinstein and Singh, 2003). The probabilities for lethal 
mutations are taken from the original fate tree (Shlomchik et al., 1998). A lethal 
mutation will set the affinity of the CB to zero to go into apoptosis in the DZ. 
Compared to the original ABM, the use of the fate tree changes the probability 
that the affinity of a cells is changed when SHM takes place. In the original model 
the SHM probability was set to 0.5 resulting in one mutation, on average, during 
each B cell division. In contrast, in our model the probability to change affinity, as 
determined from the fate tree, is of as 
0.33*[(0.1*0.79)+(0.03*0.76)+(0.19*0.75)] = 0.08 for each mutation in a 
daughter cell.  
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Figure 42: SHM fate tree. After each B-cell division m mutations are made to each daughter cell. This 
tree shows the probabilities of affecting the different FWR and CDR regions, and the probabilities for 
making a specific type of mutation (replacement, silent, neutral, lethal, and change of affinity).   

 
5.3.6. (Dominant) clones and subclones, and 
D50 index 
 
Within the simulation we track the clones and subclones. Clones comprise all GC 
B-cells, MBCs and PCs that share a common ancestor (Figure 43). Each clone 
comprises one or more subclones; each subclone represents cells with an 
identical BcR at the nucleotide level.  The subclone frequency equals the number 
of cells with the same unique BcR. The clone frequency is the sum of all cells 
relative to the total number of B cells (BcRs) from all subclones. The number of 
dominant clones is determined by counting all clones with a frequency f larger 
than the 75th percentile, or larger than a frequency of 0.5%. This definition of 
dominance is based on prior experimental datasets (Klarenbeek et al., 2012). The 
D50 index represents the fraction of clones that account for 50% of the BcR 
sequences. 
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Figure 43: Definition of (sub)clones and the calculation of their frequencies. The founder clone is 
shown for completeness and is represented by a single cell that enters the GC. Each circle represents 
a subclone with a unique (mutated) BcR. The five subclones have a common unmutated ancestor and 
together define the clone. Each subclone is a mixture of B-cells, MBCs and PCs although a subclone 
may also consist of a single cell type. The frequency of a subclone is determined by counting the 
number of cells for each subclone. This frequency is obtained with DNA-based repertoire sequencing. 
Alternatively, frequencies can be determined from RNA-based sequencing but this may artificially 
increase the subclone frequency if the RNA content of PCs (and MBCs) is much higher compered to 
CBs/CCs.  The frequency of a clone is the sum of the RNA-based or DNA-based frequencies of the 
subclones.    

 
5.3.7. Comparison to single GC, single cell, bulk 
RNAseq repertoires  
 
We analyze three selected samples from four different repertoire sequencing 
studies to determine the number of clones and the number of dominant clones, 
and compare these to our simulations. The datasets comprise (i) a single cell 
RNAseq-based repertoire obtained from three human cell subsets (peripheral 
blood IgG+ B cells (n=2), peripheral plasmablasts after tetanus toxoid 
immunization (n=1), and MBCs isolated after influenza vaccination (n=1) 
(DeKosky et al., 2013)). We use the IgG+ samples and one MBC sample; (ii) a 
bulk RNAseq repertoire dataset representing HIV infected patients and (iii) HIV-
uninfected controls (Roskin et al., 2020). We use three samples of patients with 
broadly neutralizing Abs and three samples from the uninfected controls; (iv) a 
bulk RNAseq repertoire dataset comprising healthy controls and different 
immune-mediated disorders (Bashford-Rogers et al., 2019). We use three 
Crohn’s disease peripheral blood mononuclear cell (PBMC) samples from which 
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CD19+ B cells were sorted. For all the selected sample the BcR sequences were 
aligned against a database of human V, D, and J genes using IgBlast (Ye et al., 
2013). The D-genes are neglected since their short length and the variability of 
the CDR3 region do not allow an accurate assignment. The CDR3 region is also 
obtained from the IgBlast output. Finally, Change-o is used to assign clonal 
groups to the BcR sequences (Gupta et al., 2015; Nouri and Kleinstein, 2018). 

 
5.3.8. Simulations 
 
We performed nine simulations to generate a DNA and RNA-based repertoires. 
The initial affinities of the founder clones are set to a low value of approximately 
0.01 corresponding to a Euclidean distance of approximately 3.1 between the BcR 
and Ag. From each simulation a DNA-based BcR repertoire was generated at 21 
days of a single GC reaction. In a DNA-based repertoire the number of BcR 
sequences reflect the relative abundances of the GC B-cells, MBCs, and PCs. In 
our simulation each BcR represents a single B cell. From the DNA-based 
repertoire we generated a RNA-based repertoire by assuming that the BcR RNA 
content of PCs and MBCs is 100-fold higher compared to CBs and CCs. Although 
the RNA content of MBCs is more likely to resemble that of CBs and CCs, this 
assumptions allows us to test a worst case scenario for determining if high 
frequent clones (dominant clones) are due to clonal expansion or due to high RNA 
content of PCs/MBCs. Consequently, we impose a 100-fold increase for PC and 
MBC counts (Figure 43). In this RNA-based repertoire, the resulting BcR 
frequencies do no longer reflect the number of B cells that make-up a subclone 
and, therefore, this may affect the determination of the number of dominant 
clones. To determine the relation between (sub)clone abundance and affinity we 
performed a locally weighted scatterplot smoothing (Lowess) (Cleveland, 1979). 
We repeated our simulations nine times with a different random seed to account 
for the stochasticity of the ABM. 
 

5.4. Results 
 
We performed nine simulations with the MSM to generate DNA and RNA-based 
repertoires. The overall GC dynamics, in terms of B-cell number, DZ-to-LZ ratio 
and affinity level, for one simulation are shown in Supplementary Figure 30 and is 
in agreement with experimental observations from others (Liu et al., 1991; 
Hollowood and Macarthey, 1992; Victora et al., 2010; Wittenbrink et al., 2011a; 
Florian J Weisel et al., 2016) and with our original MSM (Merino Tejero et al., 
2020). 
 
5.4.1. Progression of clonal size 
 
Figure 44 shows the number of cells or size of the clones and dominant clones 
(Table 10) during the GC reaction. Their sizes increase due to proliferation while 
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at the same time the number of clones is reduced as result of their competition 
(see below).     
 

 
Figure 44: Results from nine simulations showing the change in the mean of all surviving clones 
(purple) and the dominant clones (green) during a 21-day GC reaction. The dominant clones were 
determined using a threshold of 75th percentile. The shaded area represents the minimum and 
maximum values obtained from the simulations.  
 
Table 10: Results at day 21 from nine repeated simulations. 

Simulation Clones 

Dominant clones 

D50 DNA-based RNA-based 
75th 

percentile 
0.50% 

75th 
percentile 

0.50% 

1 18 5 13 5 13 0.111 
2 14 4 13 4 11 0.071 
3 15 4 8 4 9 0.133 
4 17 4 15 4 13 0.235 
5 11 3 8 3 9 0.091 
6 4 1 2 1 2 0.25 
7 11 3 9 3 9 0.182 
8 11 3 10 3 9 0.091 
9 9 2 7 2 8 0.222 

Average 12 3 9 3 9 0.154 
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5.4.2. The number of (sub)clones remain at a 
steady level after the clonal expansion phase but 
show a large variability in their affinities 
 
We determined the number of clones and subclones during the GC reaction. The 
GC was seeded with approximately 200 founder clones but not all these clones 
survive the 21-days GC reaction due to clonal competition (Figure 45A). Founder 
clones that enter the GC at an early stage generally have more chance to survive 
because they have more time to increase their affinity and, consequently, 
outcompete founder clones that enter later with an initially lower affinity. 
Nevertheless, few late founder clones were able to survive the full duration of the 
GC reaction resulting in an average of 12 clones at the end of the simulations 
(Table 10). The number clones and subclones increase during the initial clonal 
expansion phase of the GC reaction after which they slowly decrease (Figure 44B; 
Supplementary Figure 31). The steady number of subclones is in agreement with 
our previous but simpler model (Reshetova et al., 2017), and is the result of the 
balance between B cell proliferation that produces an additional subclone, and 
SHM that, by definition, removes a single B-cell from a subclone and creates a 
new subclone (unique BcR). Consequently, subclones also stay of relatively low 
abundance (Supplementary Figure 32). Inspection of the clones at day 21 shows 
that these are very heterogeneous with respect to the affinity of their subclones. 
These ‘high-affinity’ clones even harbor B-cells of extremely low affinity (Figure 
46).  

 
Figure 45: Founder clones and GC diversity from one representative simulation. (A) Approximately 
200 individual lineages each representing founder clones that enter between t=0 and 115hr. See 
Supplementary Figure 33 for an individual B-cell lineage. The x-axis shows the time points at which 
the founder clones enter the GC. The y-axis shows the evolution of the clones during 21 days (504 
hrs). Colors denote affinity of each individual subclone from low (yellow) to high (red) affinity. Each 
lineage comprises a mixture of GC B-cells, MBCs, and PCs. Eighteen clones survived at day 21 while 
the other clones have been outcompeted and disappeared from the GC reaction. (B) Number of 
clones and subclones. The number of clones increases during the initial GC phase but remains about 
constant after the GC peak response. The number of subclones evolves to a relatively steady high 
level. 
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Figure 46: Large variation in subclone affinity for 18 clones at day 21 of a representative simulation. 
The clones are sorted ascendingly according to their abundance. Clones with a higher abundance 
include subclones of very low affinity, while clones of low abundancy may have subclones of high 
affinity. Horizontal line: median. Boxes: 25th and 75th percentiles. Whiskers: 1.5 times the 
interquartile range. Dots: outliers.  
 

5.4.3. There is a (weak) trend between 
(sub)clone abundance and affinity 
 
Next, we aimed to determine the relation between (sub)clone abundance and 
affinity at day 21 of the GC reaction. The median affinity was calculated from all B 
cells represented by a clone. The median affinity increases with clonal 
abundances that are in the range from one to approximately 100 but stabilizes 
for higher abundances. The maximum affinity (1.0) is not reached (Figure 47A). 
Using threshold defined by the 75th percentile or 0.5% for the abundance, and 
the 75th percentile of the median affinity we observe several low abundant clones 
of high median affinity (upper left quadrant Figure 47A) but also several high 
abundant clones of lower median affinity (lower right quadrant). Inspection of the 
subclone abundance and median affinity also shows a trend of increasing affinity 
with abundance but again demonstrates the large variability affinity, i.e., many 
subclones of very low abundance have high affinity (Figure 47B). This variability 
decreases for the higher abundant subclones, which are generally of higher 
affinities.   
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Figure 47: Relation between clone (A) and subclone (B) abundance and median affinity at day 21 of 
the GC reaction for a representative simulation. Each dot represents a (sub)clone. Horizontal green 
line denotes the 75th percentile threshold. Vertical red line denotes the 75th percentile threshold. 
Vertical purple line denotes the 0.5% threshold. Black dotted line denotes a Lowess fit. A 2D density 
map has been plotted on (B) to show the concentration of the populations. 

 
5.4.4. The presence of MBCs and PCs does not 
affect the number of dominant clones 
 
We aimed to investigate if a 100-fold higher immunoglobulin RNA abundance in 
PCs and MBCs affects the number of dominant clones detected in a repertoire at 
day 21 of the GC reaction. DNA-seq repertoires are not biased by high BcR RNA 
abundance in MBCs/PCs since for each B cell a single copy of the immunoglobulin 
is sequenced (Figure 43). Consequently, in our simulations we count the number 
of B cells for each clone to represent the DNA-seq repertoire.  For the nine 
simulations this results in an average of 3 dominant clones at day 21 of the GC 
reaction (range 1 – 5) using the 75th percentile as a threshold, or an average of 9 
(range 2 - 15) using the 0.5% threshold (Table 10). Figure 48 shows a 
representative simulation and the determination of dominant clones for a DNA-
based and RNA-based repertoire. Results were similar in 9 simulations as shown 
in supplementary figure 33. Most of the clones are a mixture of B cells types. 
Consequently, the RNA-based repertoire increases the frequencies of most clones 
and, therefore, does not largely affect the number of dominant clones (Table 10) 
since it also shifts the threshold accordingly. If we assume that only GC B cells 
were sequenced (no MBCs nor PCs present) then the number of dominant clones 
is identical to the DNA-based repertoire (data not shown), from which it is 
concluded that the low fraction of OCs does not have a large effect on the 
dominant clones. Figure 48 also shows that the median affinity of the dominant 
clones is not always above the 75th percentile, which is caused by the large 
affinity variability of the subclones. 
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Figure 48: (A) DNA-seq and (B) RNA repertoires at day 21 of the GC reaction generated by a 
representative simulation. Each dot represents a clone some of which are a mixture of B-cells, MBCs 
and/or PCs. In both cases we find 5 and 13 dominant clones using the 75th percentile and 0.5% 
thresholds respectively. Dot colors indicate the fraction of MBCs + PCs BcR sequences within each 
clone which are about a factor 10 larger for the RNA-based repertoire. The size of the symbol 
represents affinity (small symbol: affinity below the 75th percentile). The horizontal lines denote the 
75th percentile (red) and 0.5% (purple) thresholds that define dominant clones.  
 
 

5.4.5. Comparison to single cell and bulk RNAseq 
immune repertoires 
 
The number of clones at the end of our nine repeated simulations varies between 
4 and 18 at the end (day 21) of the simulation (Table 10). The maximum number 
of clones that is reached during the GC reaction is approximately 200 and equals 
the number of founder clones (Figure 45). The number of clones found in 
experimental datasets is orders or magnitude larger compared to the clones 
produced in our simulations representing a single GC (Figure 49A). The number 
of dominant clones from the simulations is more comparable to the experimental 
data but still is on the lower side compared to the experiments (Figure 49B). 
Finally, the D50 values resulting from the simulation are larger compared to the 
values obtained from the experimental data (Figure 49C) indicating that in the 
experiments fewer, and thus larger clones, account for 50% of the sequences. 
The discrepancy between the number of clones found in the single GC simulations 
and in the experimental data was expected since the number of clones found in 
blood is an accumulation of the naïve repertoire and multiple (past) immune 
responses involving many GCs.  
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Figure 49: Number of clones (A) dominant clones (B), and D50 (C) for four repertoire sequencing 
datasets obtained from three bulk RNA sequencing and one single cell (SC) RNA sequencing 
experiment. The dashed red line shows the number of (dominant) clones at day 21 of the simulation. 
Dominant clones were defined the clones accounting for at least 0.5% of the repertoire.  

 

5.5. Discussion 
 
BcR repertoire sequencing provides information about clones and their 
frequencies in a measured sample. In this work we extended a MSM of the GC 
that we previously developed (Merino Tejero et al., 2021) to facilitate 
interpretation of repertoire sequencing data. In particular, we aimed to establish 
(i) the relationship between clonal abundance and affinity, (ii) the extend that 
MBCs and/or PCs may disturb the identification of dominant clones, and (iii) the 
extend that a single GC reaction represents immune repertoires obtained from 
blood.  
 
In the model, each founder clone is represented by a nucleotide sequence derived 
from a measured repertoire.  This, coupled with the existence of a continuous 
range of affinity values, resulted in more realistic simulations compared to the 
previous version of our model. We used it to track the clonal and subclonal 
variety and to implement a coherent behavior (cells with an identical combination 
of CDRs 1 to 3 at the amino acid level have identical affinity if there are no lethal 
mutations). In future applications we can also link the number of (different types 
of) mutations in a sequence with its affinity. 
 
Our results mostly represent the output at day 21 of the GC reaction, assuming 
that this is the most representative time point for comparison to repertoires 
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obtained from peripheral blood or tissue. Our model converges from 
approximately 200 founder clones to a small number of clones that survive the 
full duration of the GC reaction. However, the number of unique subclones 
remains relatively stable at low frequencies after the clonal expansion phase due 
to the balance of proliferation and SHM that creates new subclones. Comparison 
of our simulation results to experimental repertoires shows a large difference in 
the number of clones, the number of dominant clones, and the D50 values. It is 
likely that these differences mostly result from the fact that blood represent 
immune repertoires from the naïve repertoire and multiple (past) immune 
responses and a multitude of GC reactions. 
  
The median affinity of the clones in our simulation show a weak relationship with 
clonal abundance, and several high affinity clones comprise subclones that span a 
wide range of affinities. This is in agreement with our previous, but more simple, 
computational model (Reshetova et al., 2017). There are few experimental 
studies that, on a small scale, related clonal abundance to affinity. For example, 
Tan and co-workers investigated the immune response following influenza 
vaccination (Tan et al., 2014). They selected a limited number of plasmablasts to 
create recombinant Abs and, subsequently, determined their binding affinity and 
neutralization capacity for the influenza virus. They found that clones with larger 
abundances have 10-1000-fold higher affinities compared to singleton Abs. These 
higher abundant Abs bound and neutralized the influenza virus. This is not in 
agreement with our findings demonstrating a weak relation between abundance 
and affinity, and also a high variability in subclone affinities (Figures 46-47). 
However, a recent single cell study from Mathew and co-workers (Mathew et al., 
2021) identified a high abundant dominant clone with low avidity for the 
hemagglutinin (HA) protein of the influenza A virus. In addition, they also 
identified a clone in which two subclones showed a difference of almost a million-
fold in affinity. This shows that, potentially, observations from a single GC 
simulation can be used for the interpretation of (single cell) repertoire data but 
that agreement might depend on the Ag.  
 
Recently, Nowosad and coworkers investigated B-cell selection and affinity 
maturation in single gut-associated GCs (Nowosad et al., 2020) for which they 
sequenced the B cells from 20 individual GC. They found a median of 33 clones 
per GC, which is (much) closer to the values we find in our simulations, and a 
D50 value of 0.2, which is even in the range we find in our simulations (Figure 
49C).   
 
Our simulations and experimental data suggest that the selection of a single 
specific subclone (from a dominant clone) for further characterization (e.g., 
affinity measurement, neutralization potency) might, potentially, not give a 
representative picture and may lead to incomplete or erroneous conclusions. Our 
simulations suggest that low abundant (sub)clones might also be of interest since 
they may have high affinity for the Ag (which may have one or more different 
mutations). In practice it may prove difficult to select a low abundant but high 
affinity clone without trial and error.  
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For the effect of a larger RNA content in MBCs and PCs, our simulations show that 
a 100-fold increase in BcR RNA content in MBCs and PCs or removing the 
MBCs/PCs from the repertoire, does not have a large effect on the number of 
dominant clones despite that this is sometimes forwarded as a word of caution. 
This was unexpected but is mainly due to the fact that also the low abundant 
clones represent a mixture of GC B-cells, MBCs and/or PCs and, therefore, 
accounting for RNA content does change the abundancy of all clones and, 
therefore, the threshold. This results in the same or a similar number of dominant 
clones. However, our model represents a single GC, and the proportions of MBCs, 
PCs and B-cells that constitute a clone in a blood or tissue sample may be 
different and, consequently, could have an effect on the number of dominant 
clones. In addition, it is unknown how many MBCs and PCs are produced by a 
single GC and, consequently, whether or not the proportions that result from our 
simulation are correct. It is difficult to predict whether these results translate to 
experimental immune repertoires. This would require phenotyping of a range of 
subclones for different clones.  
 
Although BcR and TcR repertoires are typically generated with bulk RNA or DNA 
sequencing of blood or tissue samples, there is progression towards the 
generation of immune repertoires from lymph node, GC B cells, and single GCs. 
The aforementioned study of Nowosad and coworkers generated repertoires for B 
cells of individual gut-associated GCs (Nowosad et al., 2020), which is more 
comparable to our simulations. However, they did not determine MBCs and PC. 
Others also have investigated clonality at the single GC level (Tas et al., 2016; 
Firl et al., 2018) without, however, measuring full repertoires. Single-cell 
sequencing strategies have also enabled the combined transcriptome and 
immune receptor determination of GC B cells, which may help to improve 
molecular mechanisms relevant for our model (Milpied et al., 2018; Viant et al., 
2020; Attaf et al., 2021; King et al., 2021; Mathew et al., 2021). One advantage 
of single-cell strategies is that both the heavy and light chain, or alpha and beta 
chain of the BcR and TcR respectively can be determined. For example, FB5P-seq 
has been developed and used to determine the transcriptome and receptors 
(including isotype) of MBCs, PCs, plasmablasts (PB), and GC B cells from human 
tonsils ((Attaf et al., 2020)). Such datasets are expected to increasingly appear in 
the near future and will help to further validate and improve our model.  
 
We consider our model as a first step towards the simulation of repertoires 
through the simulation of a GC reaction. Insights from these simulations facilitate 
the development of strategies to select (sub)clones for further characterization. 
However, to simulate repertoires that are more representative for experimental 
immune repertoires, additional steps have to be taken. First of all, our model is 
Ag agnostic and representation of BcR affinity is based on an artificial continuous 
‘shape space’ that simplifies the true relationship between the BcR sequence, 
SHMs, and affinity. Nevertheless, the shape space serves its purpose to simulate 
affinity maturation process without having a specific Ag (Perelson and Oster, 
1979; Meyer-Hermann et al., 2001; Robert et al., 2017). Consequently, by 
definition, our model cannot generate repertoires for different Ags to investigate 
how repertoire characteristics could be different. More realistic and sophisticated 
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representations might overcome this in the future (Robert, Marschall, et al., 
2018; Robert et al., 2021). Secondly, the mechanism for PC differentiation 
remains to be fully elucidated. Consequently, our implementation of PC 
differentiation using a small GRN might need to be improved to, for example, 
account for other transcription factors and cytokines (Unger et al., 2021; van 
Asten et al., 2021). In addition, we did not implement an explicit mechanism for 
MBC differentiation but rather defined these MBCs as OCs not being classified as 
PCs (Merino Tejero et al., 2021). Obviously, our approach towards the generation 
of MBCs and PCs directly affects the number of OCs being generated. This, in 
turn, may affect the extent to which they affect the identification of dominant 
clones. Unfortunately, by the best of our knowledge, it is unknown how many 
MBCs and PCs are produced by single GCs during its entire lifetime, making it 
difficult to validate the number of OCs produced by our model. However, the 
aforementioned publication from Mathew et al. allows to make a rough estimate 
of GC B cells, MBCs, and PCs in mediastinal lymph nodes after infection with the 
influenza A virus (Mathew et al., 2021). From Figure 40 in his paper the fraction 
of MBCs and PCs compared to GC B-cells and OCs is about 2.1% and 0.9% 
respectively, which is comparable to the number of OCs we observe at day 21 in 
our simulations (2.1 – 2.7%). The implementation of alternative scenarios for 
MBC and PC differentiation may further improve the model (Zhou et al., 2018; 
Laidlaw and Cyster, 2020), which might then further improve the utility of the 
model to facilitate the interpretation of experimental repertoires. 
 
The number of GC founder clones has been estimated to range from 2 to 
hundreds with highly diverse early GCs (Jacob et al., 1993; Kuppers et al., 1993; 
Faro and Or-Guil, 2013; Tas et al., 2016). The number of founder clones (~200) 
used in our simulations is within this range but on the high end. Reducing the 
number of founder clones will lead to a delayed GC growth and a lesser number 
of clones present in the GC at day 21 The diversity of the GC at later stages have 
been estimated in several studies and range from 4 to approximately 120 clones 
(Jacob et al., 1993; Tas et al., 2016; Mesin et al., 2020; Nowosad et al., 2020). 
Tas and co-workers observed GCs that were predominantly monoclonal but that 
these are relatively rare (Tas et al., 2016). The number of clones at the end of 
our simulations was between 4 and 18, which is at the lower end of the spectrum. 
The current model provides little control over the selection pressure to 
significantly change the number of clones at the end of the GC reaction without 
disturbing the overall GC dynamics. For example, a simulation with 1500 founder 
clones still resulted in less than 35 clones (data not shown). Therefore, it is 
worthwhile to extend the model with a mechanism that allows controlling the 
clonality of the GC to generate a larger variety of repertoires.  
 

5.6. Acknowledgements 

 
We thank Davide Angeletti (University of Gothenburg) for sharing information 
about his recent experiments.  This work is supported by COSMIC (www.cosmic-



Chapter	  5	  

	   143	  

h2020.eu) which has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Marie Skłodowska-Curie grant 
agreement No 765158. 
 

5.7. Supplementary Information 
 
5.7.1 Maintaining consistency among mutations 
 
To ensure consistency of affinity values across the mutated sequences during the 
GC reaction, we stored each combination of affinity and BcR sequence in a 
database. If a sequence is mutated, we determined its fate and, subsequently, 
updated its affinity according to the following rules: 
 

•  For a lethal mutation (replacement) in a FWR regions we randomly 
selected a nucleotide position in a way that also changed the aminoacidic 
sequence. Subsequently, we checked our database to ensure that this mutation 
was not already associated with a different type of mutation (e.g., silent, neutral, 
replacement) from an earlier time point. If not, the mutation was accepted and 
we set the affinity of the B-cell to zero, and we updated the database. Otherwise, 
we selected a different replacement nucleotide or we selected a different position 
if none was viable until the process is successful. Finally, the database was 
updated.       
 

• For a silent mutation in a region, we randomly selected a nucleotide 
position arbitrarily changed said nucleotide and checked that the corresponding 
amino acid was not changed. Otherwise, a different nucleotide position was 
selected. 
 

• For an affinity changing mutation (replacement) in a CDR we randomly 
selected a nucleotide position and changed it to a different nucleotide such that 
this gave a change in the aminoacid sequence. If in the database a combination 
of identical CDR1, CDR2, and CDR3 amino acid sequences was present then the 
affinity of the new daughter B-cell was set to the affinity assigned to this 
combination in the database, otherwise a new affinity was determined from the 
shape space, based on the position of its mother cell or, in the case of back 
mutations, of its founder cell. Subclones with different combinations of CDRs can 
have descendant subclones that share the same combination of CDRs between 
them (converge). This convergence lead to a greater change in affinity than what 
could be expected from the normal distribution used in the shape space because 
the affinity of said combination of CDRs was based on the affinity of the first 
mother cell whose descendant mutates into that combination, which can be very 
different from the affinity another mother cell whose daughter B cell mutates into 
the same combination. Finally, the database was updated. 
 



	   144	  

For a neutral mutation (replacement) in a FWR a nucleotide position was 
randomly selected, said nucleotide was changed into a different nucleotide that 
changes the corresponding amino acid. The database was checked to confirm that 
the selected mutation was not associated with a lethal mutation at a previous 
time point. If not, then the mutation was accepted; otherwise a new nucleotide 
was selected until the process was successful. Finally, the database was updated. 
 
5.7.2. Gene regulatory network  
  
Supplementary Table 9: Parameters of the ODE model (Eq 13-17) of the GRN (Martínez et al., 
2012). p=BLIMP1, b=BCL6, r=IRF4. Parameters are normalized by a unit of time (t0) and 
concentration (C0).  

Parameter Value Unit Description 
µp 10-6 C0

/ t0 Basal transcription rate 
µb 2 C0

/ t0 Basal transcription rate 
µr 0.1 C0

/ t0 Basal transcription rate 
σp 9 C0

/ t0 Maximum induced transcription rate 
σb 100 C0

/ t0 Maximum induced transcription rate 
σr 2.6 C0

/ t0 Maximum induced transcription rate 
κp 1 C0 Dissociation constant 
κb 1 C0 Dissociation constant 
κr 1 C0 Dissociation constant 
λp 1 1/ t0 Degradation rate 
λb 1 1/ t0 Degradation rate 
λr 1 1/ t0 Degradation rate 
bcr0 1 1/t0 Maximum BCR signal 
cd0 50  C0

/ t0 Maximum CD40 signal 
C0 10-8 M Concentration unit 
t0 4 h Time unit 
 
 
5.7.3. Founder B cells 
 
Probabilistic influx of founder B cells. Founder B cells enter the GC with a 
probability p(influx) (Supplementary Figure 28).  

𝑝(influx) =
𝜇  Δ𝑡

1 + 𝑒
!!!
!

 

 
Here Δt=0.002hr corresponding to the time resolution of the ABM, α=96hr 
representing the time point at which influx stops, β=6 hours and represents the 
rate smoothness, and µ=2 B cells/hour represents the inflow rate. Integration of 
this equation shows that this leads to approximately 200 founder B cells. At time 
t=0 this gives a probability of p=0.004. In the first hour this leads to an influx of 
approximately 0.004*(1/Δt)=2 cells. In the model, a cell enters the GC if a 
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random number R drawn from a uniform distribution is smaller than the influx 
probability (i.e., R<p(influx)).  

 
Supplementary Figure 28. Top panel: probability for a founder B cell to enter the GC reaction. 
Bottom panel: cumulative number of founder B cells. After approximately 96 hours no new founder B 
cells enter the GC reaction.  
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5.7.4. Number of somatic hypermutations during 
each B-cell division 
 

 
 

 
Supplementary Figure 29: Probability mass function (PMF, green bars) and cumulative distribution 
function (CDF, blue line). Top panel: Number of BcR heavy chain somatic hypermutations assuming a 
heavy chain length of 400 nucleotides and a mutation rate of 1 mutation per 1000bp per B cell 
division. Number of SHM in heavy chain is m ~ Poisson (λ=0.4) mutations per B cell division. In 33% 
of the B cell divisions, the BcR is mutated. Bottom panel: assuming a heavy chain and light chain with 
an approximate total length of 600 nucleotides, the BcR is mutated is 45% of the B cell divisions. 
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5.7.5. Overall GC dynamics 
 
 

 
Supplementary Figure 30: Dynamics of the GC reaction observed from a single representative 
simulation of the MSM (Merino Tejero et al., 2020). (A) Number of CCs and CBs with a peak response 
after about 7.5 days (Liu et al., 1991; Hollowood and Macarthey, 1992; Wittenbrink et al., 2011a). 
(B) DZ-to-LZ ratio reflecting the transzone migration rates. This ratio has shown to be approximately 
2 (Victora et al., 2010). (C) Affinity maturation of the GC B cells, MBCs and PCs. The interrupted lines 
show the time points at which no B-cells of that type are present in the GC. (D) Number of MBCs and 
PCs. Most MBCs are of low affinity and produces at an early stage during the GC reaction, in contrast 
to PCs that are mostly of higher affinities and produced mostly after the GC peak response in 
agreement with experimental data from Weisel and colleagues (Florian J Weisel et al., 2016). 
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5.7.6. Number of (sub)clones during GC reaction 
 

 

 
Supplementary Figure 31:  Progression of the number of (sub)clones and their ratio during the GC 
reaction for nine repeated simulations. The number of clones initially increases as a result of the entry 
of founder B cells. Subsequently, the number of clones decreases due to clonal competition.  Lines 
represent the average value while the shadowed area represents the interval of minimum and 
maximum values of the nine simulations at that time point. 
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5.7.7. Subclone dynamics 

 
Supplementary Figure 32: Abundance and affinity of subclones, defined as B-cells that share the 
same Fab NT sequence, during a 21-day GC reaction (representative simulation). Only subclones with 
a frequency larger than 3 counts at any timepoint are included in this plot. Each colored line 
represents a subclone with a unique BcR. When a subclone is created by SHM it will start as a single B 
cell that will, subsequently, proliferate. The abundance of each subclone at any timepoint does not 
exceed 100 copies. This is due to the fact that a mutation of one subclone B cell will, by definition, 
create a new subclone. Consequently, a SHM reduces the subclone count with one. This balance 
between proliferation and SHM prevents large subclone frequencies. It also accounts for the relatively 
constant of about 2000 subclones with a frequency larger than 3 counts at any time point during the 
GC reaction (black line). 
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5.7.8. Single B-cell lineage tree 
 

 
Supplementary Figure 33: Example of the division of a single unmuted founder B-cell during a 21-
day GC reaction. During each division two daughter B cells are generated. SHM may change the 
affinity of each B-cell. The color of a cell denotes its affinity value; from 0 (yellow: low affinity), to 1 
(red: high affinity) or its functionality (black: lethal mutation and non functional BcR). The division 
trees for all founder B cells are shown in the main text (Figure 44). 
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5.7.9. Dominant clones in nine repeated 
simulations 

 
Supplementary Figure 34:  (A) DNA-seq and (B) RNA-Seq repertoires at day 21 of the GC reaction 
generated by nine repeated simulations. Each dot represents a clone some of which are a mixture of B 
cells, MBCs and/or PCs. Colors indicate the percentage of MBCs and PCs within each clone. The size of 
the symbol represents the median affinity of that clone (small: affinity < 75th percentile).  The 
horizontal lines denote the 75th percentile (red) and 0.5% (purple) thresholds that define dominant 
clones.  
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Chapter 6 

Discussion  

 

 
The common theme in the presented research is the use of multiscale models 
(MSMs) to study the cellular and molecular mechanisms underlying the 
differentiation of B-cells to memory B-cells (MBCs) and plasma cells (PCs) within 
the germinal center (GC). The MSM that was developed integrates a pre-existing 
agent-based model (ABM; Hyphasma) representing the cellular mechanisms of 
the GC reaction with a system of ordinary differential equations (ODEs) describing 
a core gene regulatory network (GRN) underlying PC differentiation. One specific 
theory about PC differentiation was previously implemented as part of Hyphasma 
and referred to as the LEDA (LEave the GC through the DArk zone) model. One of 
its main assumptions regarding output cell (OC) differentiation in the LEDA model 
is that recycled centroblasts (CBs) distribute the captured antigen (Ag) 
asymmetrically during B-cell division to the daughter cells. The Ag-retaining cells 
differentiate into PCs and leave the GC through the dark zone (DZ) (Meyer-
Hermann et al., 2012). The core GRN included three transcription factors (TFs) 
(interferon regulatory factor 4 (IRF4), and B-lymphocyte-induced maturation 
protein 1 (BLIMP1)) and the B-cell receptor (BcR) and CD40 signaling pathways. 
Using this model, we also investigated the effect of different genetic alterations 
associated with diffuse large B-cell lymphoma (DLBCL) on the cellular dynamics 
of the GC. 
 
We showed that a MSM is a useful approach to study a complex dynamical 
multiscale biological system, i.e., the GC. Nevertheless, the lack of biological 
knowledge that defines the interaction between different scales is one of the 
challenges to overcome by allowing, for example, certain assumptions to simplify 
the description of the biological system by the model while still allowing to draw 
useful conclusions. In our model we, therefore, used a small GRN that is only 
perturbed through BcR and CD40 signaling. Future extensions of this GRN are 
possible through the inclusion of additional TFs that control PC differentiation or 
other GC processes such as MBC differentiation (e.g., BACH), SHM (e.g., AID), 
and proliferation (e.g., c-Myc). Similarly, additional signaling pathways can be 
included (Shlomchik et al., 2019). For example, IL-21 and Il-4 signalling are both 
important for developing and sustaining the GC reaction However, extending the 
molecular network will require further (single cell) experiments to estimate the 
parameters of the ODEs. A second challenge in MSMs is the integration of 
different spatiotemporal scales. In our model, the temporal dynamics of the 
molecular network has a duration in the order of hours while the duration of the 
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GC reaction at the cellular level was three weeks. The ABM was updated every 
7.2 seconds. At each time point of the ABM we solved the ODEs to calculate the 
TF concentration of the future time step using the current TF concentration levels 
as initial conditions. Thus, the ODE was also solved every 7.2 seconds. Although 
this drastically increased running times from approximately 1 hour (wall-clock 
time on a laptop) for the ABM alone to about 8 hours for the MSM, this allowed 
solving the two individual models at their own time resolution. Future extension 
of the molecular network might require different approaches to solve both scales.  
Finally, in our model, the molecular network has a size in the order of 
nanometers while B cells have a size of 5 micrometers in a GC with a diameter of 
320 micrometers. Nevertheless, we did not model the spatial dynamics of the 
molecular network. Instead, we assumed the concentration of each TF to be 
constant within a B-cell. This allowed simplifying the calculation of the 
concentration of each TF. Future more in-depth studies of the intracellular 
dynamics of each TF will require a different approach. 
 

6.1. Output cell differentiation based on 
Ag status versus BLIMP1 level 
 
In chapter 2 we presented our MSM to investigate OC differentiation based on Ag 
status and/or BLIMP1 level. We compared these two OC-fate determining 
mechanisms under various strengths of CD40 signaling. 
 
An important insight from our model is the observation that regulation of the 
BLIMP1 level through affinity-dependent but not constant CD40 signaling, results 
in the occurrence of a temporal transition from MBC to PC output during the GC 
reaction that was also observed in an experimental study from Weisel and 
colleagues (Florian J Weisel et al., 2016). One main assumption of the ABM (LEDA) 
model, as explained above, is that asymmetric Ag division determines PC 
differentiation. There is no direct evidence for this mechanism. However, 
implementation of this mechanism resulted in transzone migration rates in 
agreement with experimental data (Victora et al., 2010; Meyer-Hermann et al., 
2012). In contrast, there is a large body of experimental evidence that high 
BLIMP1 levels, resulting from Tfh cell help, result in differentiation to PCs. Our 
MSM showed that differentiation based on asymmetric division of Ag alone is not 
consistent with BLIMP1 levels and, therefore, is unlikely to be the main 
mechanism underlying PC differentiation. However, we could not exclude the 
possibility that asymmetric division of Ag (or TFs) play a (secondary) role. 
 
Our simulation results remain to be experimentally validated but also suggest the 
direction of further experimental research. The most important question to 
answer is whether increased BcR affinity results in stronger CD40 signaling. 
Assuming that increased affinity results in a higher density of surface pMHCII 
complexes and, hence, increased CD40 signaling, one may design an experiment 
in which the amount of CD40L is titrated to subsequently measure the effect on 
selected genes (e.g., IRF4). Experiments to determine the role of asymmetric Ag 
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and/or TF division (in vivo) will be harder to design but probably not impossible 
as shown by (Lin et al., 2015). Finally, it is important to establish the 
approximate numbers of PCs and MBCs that leave a single GC but also measuring 
the affinity for a large fraction of them, this will help to better parameterize the 
MSM and the validate our results.    

 
6.2. Memory B-cell differentiation 
 
There is a lack of an explicit mechanism for MBC differentiation in our MSM since 
the current GRN with BCL6, IRF4, and BLIMP1 is assumed to control PC 
differentiation. However, since GCs produce both MBCs and PCs and our model 
produces OCs based on asymmetric Ag division at the cellular level, we defined 
MBCs as OCs that are not PCs. Although this might approximate the in vivo 
situation, to further investigate MBC production during the GC reaction, a 
molecular mechanism for MBC differentiation should be defined. 
 
Unfortunately, mechanisms of MBC differentiation are even less understood than 
for PC differentiation. In favor of our approach is the observation that MBCs have 
indeed low BLIMP1 levels and our model results in a temporal switch from low 
affinity MBCs to higher affinity PCs.  The current definition, however, implies that 
a lack of Ag inheritance during asymmetric division of recycled CBs is one of the 
determinants in MBC differentiation and that also MBCs leave the GC through the 
DZ. However, there is no experimental evidence to support any of both 
assumptions at this stage.  
 
Stochastic selection of low-affinity B cells has been proposed as yet another 
mechanism to produced MBCs which could be included in the model (Smith et al., 
1997; Zhou et al., 2018; Pélissier et al., 2020). Others have found that LZ GC 
cells with low affinity BcRs are directed towards MBC differentiation. Weak CC-Tfh 
interactions leading to high BACH2 expression levels in LZ GC B cells has been 
proposed as a possible mechanism. BACH2 is thought to have an anti-
proliferative function by antagonizing c-Myc and/or a pro-survival function by 
suppressing apoptotic factors such as Bim (Shinnakasu et al., 2016). Thus, in the 
future we aim to extend our GRN with BACH2 along with other TFs involved in 
MBC differentiation. However, this requires sufficient (literature) knowledge about 
the wiring of such components or to reconstruct these networks from 
experimental data, which would require time series data. 
  

6.3. Asymmetric division of Ag and TFs 
   
It has been shown experimentally that Ag and TFs can divide asymmetrically. 
Subsequently, it has been hypothesized that this may co-determine GC B-cell fate 
(Barnett et al., 2012; Meyer-Hermann et al., 2012; Thaunat et al., 2012; Lin et 
al., 2015). However, there is no experimental evidence to supports this 
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assumption. As discussed above, our MSM showed that asymmetric Ag division 
alone cannot explain PC differentiation since it is not fully consistent with PC 
BLIMP1 levels. However, we only considered one specific mode of coupled 
asymmetric division with the same asymmetric Ag and TF division probabilities 
(PAg=PTF=0.72) and TF polarity levels (LBLIMP1=LIRF4=LBCL6=1.0) (Merino Tejero et 
al., 2020). Therefore, in chapter 3 we investigated the putative effect of 
asymmetric division of Ag and TFs in more detail and hypothesized that this 
affects GC dynamics and B-cell dynamics and fate. From our simulations we 
concluded that BLIMP1-driven PC differentiation together with coupled 
asymmetric division of Ag and BLIMP1 with extreme TF polarity levels (L=1.0, 0.9) 
for BLIMP1 segregation results in GC DZ-to-LZ ratio and a temporal switch from 
MBCs to PCs that both are in agreement with experimental data (Victora et al., 
2010; Florian J Weisel et al., 2016). This confirmed our previous finding that 
asymmetric Ag division alone is not sufficient to drive PC differentiation but it also 
suggests that a role for asymmetric division for B-cell fate cannot be excluded 
based on our model.  
 
An important insight from our model is the observation that not all choices for the 
probability and polarity of asymmetric division resulted in GC dynamics in 
agreement with transzone migration rates between the GC zones nor with the 
temporal switch. It is, however, important to emphasize that this does not 
definitely exclude such alternative scenarios. Although our GC model is the most 
sophisticated model currently available and based on a large range of 
experimental observations, we cannot exclude the possibility that other choices, 
assumptions, or parameter settings would change simulation results and 
conclusion about asymmetric division. Nevertheless, we think that our simulations 
provide some evidence that asymmetric division might be involved in PC 
differentiation.  
 
As previously mentioned, it is difficult but crucial to investigate the role of 
asymmetric Ag and/or TF division. In contrast to BCL6 and IRF4, the BLIMP1 
probability for asymmetric division and its polarity level in vivo has not been 
reported.  Furthermore, it is unknown to what extent co-segregation of BLIMP1, 
BCL6 and IRF4 takes place. Finally, a major question raised by studies done by 
Lin and colleagues (Lin et al., 2015) is whether asymmetric TF division is driven 
by asymmetric partitioning of upstream signaling molecules. Thus, we find 
important to investigate whether there is a role of (a)symmetric division of CD40 
signaling in driving asymmetric TF inheritance and thus MBC and PC fate.  

 
6.4. Genetic alterations that lead to 
DLBCL 
 
In chapter 4 we used our MSM to simulate eight DLBCL models. These are models 
with different candidate genetic alterations of the BCL6-IRF4-BLIMP1 GRN that 
lead to TF deregulation. We also compared six of the eight DLBCL models with in 
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vivo experiments that analyzed TF expression and GC B-cell numbers at different 
stages of the GC reaction. Four of the DLBCL models correctly recapitulated the 
observed PC and TF dynamics.  
 
Models with loss of BLIMP1 function are consistent with observations showing 
BLIMP1 inactivation lead to a block in the PC production and development of 
lymphoma (Calado et al., 2010). Nevertheless, the models showed a GC B-cell 
expansion at the end of the GC reaction that was not observed experimentally. 
This could be due to the fact that our MSM does not account for the effect of 
alterations in TF dynamics on other B-cell processes such as proliferation or 
apoptosis. Thus, we proposed to include the molecular mechanisms involved in 
the aforementioned cellular processes. To this end, the inclusion of TFs such as c-
Myc and Bim could serve not only as part of a mechanism to determine MBC fate 
(as mentioned earlier in this discussion) but also as a way to better approximate 
the effect of genetic alterations that lead to loss of BLIMP1. 
  
Models with constitutive activation of NF-kB pathway alone and in codominance 
with enforced BCL6 expression are consistent with experimental data showing 
that constitutive activation of the NF-kB pathway alone (Calado et al., 2010; 
Zhang et al., 2015) and in codominance with enforced BCL6 expression (Zhang et 
al., 2015) lead to unaltered PC production at day 7 of the GC reaction. Despite 
this observation, both alterations lead to the development of lymphoma. Our 
models suggest that an increase in PC production could happen at later stages of 
the GC reaction. Measurement of PC numbers produced at day 21 of the GC 
reaction are necessary to validate this finding. Furthermore, model with 
constitutive activation of the NF-kB pathway alone was consistent with 
observations of studies that induced the canonical NF-kB pathway showing 
unaltered PC production. Similar studies done inducing the alternative NF-kB 
pathway showed an increase in PC production. Thus, our model could recapitulate 
the canonical but not the alternative NF-kB pathway.  
 
Two of the DLBCL models do not correctly recapitulate the observed GC and TF 
dynamics. Models with enforced BCL6 expression result in an expansion of GC B 
cells and a block in the PC production that was not observed experimentally 
(Zhang et al., 2015). As for the GC B-cell dynamics in models with loss of BLIMP1 
function, this could be due to the fact that in our model only the differentiation 
towards PC, at the cellular level, is determined by the levels of BLIMP1. The 
connection of other processes such as cell division, or apoptosis with the 
underlying GRN could potentially result in a closer representation of the in vivo 
experiments.  
 
No data was found to validate models with loss of IRF4- and BLIMP1-mediated 
silencing of BCL6. Our findings suggest that loss of IRF4- or BLIMP1-mediated 
silencing of BCL6 does not affect PC differentiation.  
 
MBC dynamics is affected in six of the eight DLBCL models. Models with 
insufficient BLIMP1 expression induce MBC production while models with 
constitutive activation of NF-kB pathway alone or in codominance with BCL6 
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overexpression block MBC production. This observation remains to be 
experimentally validated. 
 

6.5. Generation of repertoire sequencing 
data  
 

In chapter 5 we used our MSM to interpret repertoire sequencing data by 
establishing the extent that a single GC reaction represents immune repertoires 
obtained from blood. Comparison of our simulation results to experimental bulk-
RNAseq repertoires obtained from peripheral blood shows a large difference in the 
number of (dominant) clones and the D50 values. These differences may result 
from the fact that blood represent the repertoire from naïve B cells and from 
multiple (past) immune responses and GC reactions. We then studied the 
relationship between clonal abundance and affinity and observed a weak 
relationship between them. Furthermore, some high affinity clones included a 
wide range of subclone affinities as observed with our previous computational 
model (Reshetova et al., 2017) and an influenza single-cell study (Mathew et al., 
2021). Nevertheless, our finding was not observed in a previous influenza study 
(Tan et al., 2014). This showed that the selection of a specific subclone (from a 
dominant clone) for further characterization (e.g., affinity measurement, 
neutralization potency) might not give a representative picture and may lead to 
erroneous conclusions. Our model suggested that low abundant (sub)clones 
might also be of interest since they may have high affinity for the Ag, but in 
practice it will be difficult to select a low abundance, high affinity clone without 
trial and error.  
 
Finally, we examined the extent to which MBCs and/or PCs may disturb the 
identification of dominant clones. We observed that removing the MBC and PC 
RNA content from the repertoire data, did not have a large effect on the number 
of dominant clones despite the fact that this is sometimes forwarded as a word of 
caution. This was unexpected but it happened mainly due to the low abundant 
clones representing a mixture of GC B-cells, MBCs and/or PCs, therefore, 
accounting for RNA content did change the abundance of all clones. However, our 
model represents a single GC, and the proportions of MBCs, PCs and B-cells that 
constitute a clone in a blood sample may be different. In addition, it is unknown 
how many MBCs and PCs are produced by a single GC and, which could affect the 
proportions that result from our simulations.  
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Summary 
 
 
 
 
Germinal centers (GCs) play a key role in the adaptive immune system since they 
result in terminally differentiated antibody (Ab) producing plasma cells (PCs) and 
memory B cells (MBCs) required for an effective immune protection. GC 
processes such as PC differentiation are, in part, controlled by a gene regulatory 
network (GRN) comprising interacting transcription factors (TFs) that eventually 
are responsible for the transcriptional program and, therefore, fate of GC cells. 
The state of these networks is affected through signaling events that may result 
from cellular interactions such as between GC B cells and t follicular helper (Tfh) 
cells. Cellular processes involved in, and GRNs underlying PC differentiation have 
been modeled separately in the past, but we have now integrated and extended 
two pre-existing models into a single multi-scale model (MSM) that connects the 
molecular and cellular levels, allowing us to investigate GC processes at these 
scales simultaneously. This MSM integrates an agent-based model describing the 
cellular dynamics and uses ordinary differential equations to represent the core 
GRN underlying PC differentiation. Using this MSM, we aimed to gain a better 
understanding of PC differentiation. Our model simulations suggest that affinity of 
the B-cell receptor for the antigen might be an important determinant for the 
modulation of intra-cellular signalling induced by T follicular helper (Tfh) cells, 
and that this is an important mechanism underlying PC differentiation. Moreover, 
it also showed that asymmetric division of Ag and/or TFs over daughter cells 
during B-cell division cannot be the single driver for PC differentiation, as was 
suggested from earlier computational simulations. We also showed how the 
model can be used to investigate the effects of several known genetic alterations 
that occur in diffuse large B-cell lymphoma (DLBCL), which leads to deregulation 
of the GRN underlying PC differentiation and consequent alteration of the GC B-
cell population. We showed that the MSM is, for large part, capable of explaining 
and recapitulating the GC dynamics observed in DLBCL mouse models. Finally, we 
used the model to facilitate the interpretation of B-cell repertoire sequence data. 
We showed that there is limited correlation between clonal abundance and 
affinity, and that the number of dominant clones is not greatly influenced by the 
higher immunoglobulin mRNA abundance in PCs and MBCs. These applications 
show that MSM open new opportunities to investigate complex biological systems. 
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Samenvatting 

 
 
 
Kiemcentra spelen een sleutelrol in het adaptieve immuunsysteem, omdat ze 
resulteren in terminaal gedifferentieerde plasmacellen die antistoffen produceren, 
en geheugen-B-cellen  die beide nodig zijn voor een effectieve afweer en 
immuunbescherming. Kiemcentrum-processen zoals plasmacel differentiatie 
worden gedeeltelijk gecontroleerd door een genregulatie netwerk, bestaande uit 
interacterende transcriptiefactoren die uiteindelijk verantwoordelijk zijn voor het 
transcriptieprogramma en dus het lot van kiemcentrum B-cellen. De toestand van 
deze netwerken wordt beïnvloed door signaleringsgebeurtenissen die het gevolg 
kunnen zijn van cellulaire interacties tussen kiemcentrum B-cellen en folliculaire 
T-helpercellen. Cellulaire processen die betrokken zijn bij plasmacel differentiatie, 
en de genregulatie netwerken die hieraan ten grondslag liggen, zijn in het 
verleden afzonderlijk gemodelleerd, maar wij hebben nu twee bestaande 
modellen geïntegreerd en uitgebreid tot een enkelvoudig multischaalmodel (MSM) 
dat het moleculaire met het cellulaire niveau verbindt. Deze MSM integreert een 
agent-gebaseerd model dat de cellulaire dynamiek beschrijft, en gebruikt gewone 
differentiaalvergelijkingen om een kern- genregulatie netwerk onderliggend aan 
plasmacel-differentiatie te beschrijven. Met behulp van dit MSM wilden we een 
beter begrip krijgen van plasmacel-differentiatie. Onze modelsimulaties 
suggereren dat affiniteit van de B-celreceptor voor het antigeen een belangrijke 
determinant zou kunnen zijn voor de modulatie van intracellulaire signalering die 
wordt geïnduceerd door T-folliculaire helper cellen, en dat dit een belangrijk 
mechanisme is dat ten grondslag ligt aan plasmacel-differentiatie. Bovendien 
toonde het ook aan dat asymmetrische verdeling van antigeen en/of 
transcriptiefactoren over dochtercellen tijdens B-celdeling niet de enige driver 
voor plasmacel-differentiatie kan zijn zoals werd gesuggereerd uit eerdere 
computationele simulaties. We hebben ook laten zien hoe het model kan worden 
gebruikt om effecten te onderzoeken van verschillende bekende genetische 
veranderingen die optreden bij het diffuus grootcellig B-cellymfoom (DLBCL), en 
die leiden tot deregulering van de genregulatie netwerk-onderliggende PC-
differentiatie, op de kiemcentrum B-celpopulatie. We toonden aan dat de MSM 
voor een groot deel in staat is om de kiemcentrum-dynamiek waargenomen in 
DLBCL te beschrijven. Ten slotte hebben we het model gebruikt om de 
interpretatie van B-cel repertoires te vergemakkelijken. We toonden aan dat er 
een beperkte correlatie is tussen de grootte van een kloon en zijn affiniteit voor 
antigen, en dat het aantal dominante klonen weinig wordt beïnvloed door de 
hogere abundantie van immunoglobuline-coderend mRNA in plasmacellen. Deze 
toepassingen laten zien dat MSM nieuwe mogelijkheden opent om complexe 
biologische systemen te onderzoeken. 
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