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Chapter 4

Bias of Two-Level Scalability Coeffi-

cients and their Standard Errors

Abstract

Two-level Mokken scale analysis is a generalization of Mokken scale analysis for multi-

rater data. We investigated the bias of estimated scalability coefficients for two-level

Mokken scale analysis, the bias of their estimated standard errors, and the coverage of

the confidence intervals, under various testing conditions. We found that the estimated

scalability coefficients were unbiased in all tested conditions. For estimating standard

errors, the delta method and the cluster bootstrap were compared. The cluster bootstrap

structurally underestimated the standard errors of the scalability coefficients, with low

coverage values. Except for unequal numbers of raters across subjects and small sets of

items, the delta method standard error estimates had negligible bias and good coverage.

Post-hoc simulations showed that the cluster bootstrap does not correctly reproduce

the sampling distribution of the scalability coefficients, and an adapted procedure was

suggested. In addition, the delta method standard errors can be slightly improved if

the harmonic mean is used for unequal numbers of raters per subject rather than the

arithmetic mean.

Chapter 4 is published as: Koopman, L., Zijlstra, B. J. H., De Rooij, M., & Van der Ark,

L. A. (2020). Bias of two-level scalability coefficients and their standard errors. Applied

Psychological Measurement, 44(3), 213–236. doi: 10.1177/0146621619843821

http://doi.org/10.1177/0146621619843821


Chapter 4

4.1 Introduction

In multi-rater assessments, multiple raters evaluate or score the attribute of subjects on a

standardized questionnaire. For example, several assessors may assess teachers’ teaching

skills using a set of rubrics (e.g., Maulana et al., 2015; Van der Grift, 2007), both parents

may rate their child’s behavior using a health-related quality of life questionnaire (e.g.,

Ravens-Sieberer et al., 2014), and policy holders may evaluate the quality of health-care

plans using several survey items (e.g., Reise et al., 2006). In multi-rater assessments,

raters (assessors, parents, policy holders) are nested within subjects (teachers, children,

health-care plans). From this two-level data, measuring the attribute (teaching skills,

behavior, quality) of the subjects at level 2 is of most interest. Because raters are the

respondents, they may have a large effect on the responses to the items, which can interfere

with measuring the subjects’ attribute.

For dichotomous items, proposed two-level scalability coefficients to investigate the

scalability of the items used in multi-rater assessments. These coefficients are general-

izations of Mokken’s (1971) single-level scalability coefficients (or H coefficients), which

are useful as measures to assess whether “the items have enough in common for the

data to be explained by one underlying latent trait . . . in such a way that ordering the

subject by the total score is meaningful” (Sijtsma & Molenaar, 2002, p. 60). Mokken

introduced scalability coefficients for each item-pair (Hij), each item (Hi), and the total

set of items (H). For multi-rater data, Snijders proposed extending the Hij, Hi, and

H coefficients to within-rater scalability coefficients (denoted by the superscript W ),

between-rater scalability coefficients (denoted by the superscript B), and the ratio of

the between to within coefficients (denoted by the superscript BW ).

The scalability coefficients are related to measurement models, in which subject and

rater effects are jointly modeled (Snijders, 2001a). A more detailed description of the

measurement models and the two-level coefficients is provided below. Crişan et al. (2016)

generalized the two-level scalability coefficients for dichotomous items to polytomous

items, and Koopman, Zijlstra, & Van der Ark (2020) derived standard errors for the

estimated two-level scalability coefficients using the delta method (e.g., Agresti, 2012,

pp. 577-581; Sen & Singer, 1993, pp. 131-152). Alternatively, a cluster bootstrap may

be used to estimate standard errors. The cluster bootstrap (Sherman & Le Cessie,

1997; see also Cheng et al., 2013; Deen & De Rooij, 2020; Field & Welsh, 2007; Harden,

2011) has not been applied to two-level scalability coefficients but it has been applied in

similar data structures; for example, children within county (Sherman & Le Cessie, 1997),

siblings or genetic profiles within families (Watt et al., 2000; Bull et al., 2001), repeated

measurements of homeless people their housing status (De Rooij & Worku, 2012), or of

children microbial carriage (Lewnard et al., 2015).

For the two-level scalability coefficients, the problem at hand is that neither the bias of

the point estimates nor the bias and accuracy of the standard errors have been thoroughly

investigated. For the single-level scalability coefficients, the point estimates were mostly
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Bias of Two-Level Scalability Coefficients and their Standard Errors

unbiased (Kuijpers et al., 2016) and for both the analytically derived standard errors using

the delta method (Kuijpers et al., 2016) and the bootstrap standard errors (Van Onna,

2004), the levels of bias and accuracy were satisfactory. However, these results cannot be

generalized to two-level scalability coefficients because single-level coefficients do not take

into account between-rater scalability, nor the dependency in the data due to the nesting

of raters within subjects. The goal of this chapter is to investigate the bias of the point

estimates and the standard errors of the two-level scalability coefficients. The remainder

of this chapter first discusses two-level nonparametric item response theory (IRT) models,

two-level scalability coefficients, and the two standard error estimation methods. Then,

the chapter discusses the simulation study to investigate bias and coverage, and its results.

4.1.1 Nonparametric IRT Models for Two-Level Data

In multi-rater data, an attribute of subject s (s = 1, . . . , S) is scored by Rs raters using

I items. Raters are indexed by r or p (r, p = 1, . . . , Rs; r ̸= p) and items are indexed by

i or j (i, j = 1, . . . , I; i ̸= j). Each item has m + 1 ordered response categories, indexed

by x or y (x, y = 0, 1, . . . ,m). Let Xsri denote the score of subject s by rater r on item i.

Typically, the mean item score across raters, Xs·· = (IRs)
−1
∑Rs

r=1

∑I
i=1Xsri is used as a

measurement for the attribute of subject s.

In 2001a, Snijders proposed a two-level nonparametric IRT model for two-level data,

based on the monotone homogeneity model (Mokken, 1971; Sijtsma & Molenaar, 2002).

Let θs be the value of subject s on a unidimensional latent trait θ that represents the

attribute being measured, and δsr a deviation that consists of the effect of rater r and

the interaction effect of rater r and subject s. Hence, θs + δsr is the value of subject

s on the latent trait according to rater r. It is assumed that on average, the rater

deviation for subject s equals zero (E(δsr) = 0). In Snijders’ model, the responses to

the different items and subjects are assumed stochastically independent given the latent

values θs and δsr. The probability that subject s obtains at least score x on item i when

assessed by rater r, P (Xsri ≥ x|θs, δsr), is monotone nondecreasing in θs + δsr. Because

E(δsr) = 0, the monotonicity assumption implies a non-decreasing item-step response

function P (Xsri ≥ x|θs), which is the expectation of P (Xsri ≥ x|θs, δsr) with respect to

the distribution of δsr.

An alternative generalization of the monotone homogeneity model for two-level data

is the nonparametric hierarchical rater model. The hierarchical rater model (Patz et al.,

2002; Mariano & Junker, 2007; DeCarlo et al., 2011) is a two-stage model for multi-rater

assessments in which a single performance is rated. Similar to Snijders’ model, latent

values θs and δsr are the subject’s latent trait level and the rater’s deviation, respectively.

The hierarchical rater model assumes an unobserved ideal rating of the performance of

subject s on each item i, denoted by ξsi. The ideal ratings may vary across performances

and is solely based on the subject’s latent trait value. The ideal ratings to the different

items are assumed stochastically independent given θs and the item-step response function
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P (ξsi ≥ x|θs) is non-decreasing in θs. The observed item scoreXsri is the rater’s evaluation

of ideal rating ξsi (i.e., of the performance). For raters with negative δsr, the probability

increases that Xsri is smaller than ξsi, and for raters with positive δsr, the probability

increases that Xsri is larger than ξsi. Observed ratings Xsri are stochastically independent

given ξsi and δsr and the item-step response function P (Xsri ≥ x|ξsi, δsr) is non-decreasing
in ξsi + δsr.

4.1.2 Scalability Coefficients for Two-Level Data

Scalability coefficients evaluate the ordering of observed item responses. They are a

function of the weighted item probabilities. These weights are explained briefly here (for

more details, see Kuijpers et al., 2013; Koopman et al., 2017), and illustrated in Appendix

D using a small data example. Let P (Xsri = x,Xsrj = y) denote the bivariate probability

that rater r of subject s scores x on item i and y on item j. Let P (Xsri = x,Xspj = y)

(p ̸= r) denote the bivariate probability that rater r of subject s scores x on item i and

another rater (p) of the same subject scores y on item j. Let P (Xi = x) be the probability

that a certain rater scores x on item i for a certain subject.

Let 1(·) denote an indicator function, which takes value 1 if its argument is true

and value 0 otherwise. Each item-score Xi has m item steps Zix = 1(Xi ≥ x) (i =

1, 2, . . . , I;x = 1, 2, . . . ,m). An item step is passed if Zix = 1, and an item step is

failed if Zix = 0. P (Xi ≥ x) is the popularity of item step Zix. Item steps of each

item-pair are sorted in descending order of popularity. A Guttman error is defined as

passing a less popular item step after a more popular item step has been failed. For

instance, if for item-pair Xi, Xj the order of item steps is Zi1, Zj1, Zj2, Zi2, Zi3, Zj3 (i.e.,

P (Xi ≥ 1) ≥ P (Xj ≥ 1) ≥ P (Xj ≥ 2) ≥ P (Xi ≥ 2) ≥ P (Xi ≥ 3) ≥ P (Xj ≥ 3)),

then item-score pattern (Xi = 0, Xj = 1) is a Guttman error, because this item-score

pattern requires that the second ordered item step Zj1 = 1 must be passed, whereas the

first, easier step Zi1 = 0, is failed. Patterns that are not a Guttman error are referred

to as consistent patterns. If a Guttman error is observed within the same rater (i.e.,

(Xsri = 0, Xsrj = 1)), this is referred to as a within-rater error. If a Guttman error

is observed across two different raters of the same subject (i.e., (Xsri = 0, Xspj = 1)),

this is referred to as a between-rater error. A Guttman error is considered more severe

if more ordered steps have been failed before a less popular item step has been passed

(e.g., Xi = 0, Xj = 3 is worse than Xi = 0, Xj = 1). The severity of the Guttman

error for item-score pattern (x, y) = (Xi = x,Xj = y) is indicated by weight wxy
ij , which

denotes the number of failed item steps preceding passed item steps (Molenaar, 1991).

Let zxyh ∈ {0, 1} denote the evaluation of the h-th (1 ≤ h ≤ 2m) ordered item step with

respect to item-score pattern (x, y), then weight wxy
ij is computed as

wxy
ij =

2m∑
h=2

{
zxyh ×

[
h−1∑
g=1

(1− zxyg )

]}
. (4.1)
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For consistent item-score patterns value wxy
ij equals zero.

Let FW
ij =

∑
x

∑
y w

xy
ij P (Xsri = x,Xsrj = y) be the sum of weighted within-rater

Guttman errors in item pair (i, j) and let Eij =
∑

x

∑
y w

xy
ij P (Xi = x)P (Xj = y) be

the sum of all expected weighted Guttman errors in item pair (i, j) under marginal

independence. The within-rater scalability coefficient HW
ij for item-pair (i, j) is then

defined as

HW
ij = 1−

FW
ij

Eij

. (4.2)

Let FB
ij =

∑
x

∑
y w

xy
ij P (Xsri = x,Xspj = y), (p ̸= r) be the sum of all weighted between-

rater Guttman errors in item pair (i, j). Replacing FW
ij with FB

ij in Equation 4.2 results

in the between-rater scalability coefficient

HB
ij = 1−

FB
ij

Eij

. (4.3)

Dividing the two coefficients results in ratio coefficient HBW
ij = HB

ij /H
W
ij . Note that

if FW
ij = FB

ij , then HB
ij = HW

ij , and HBW
ij = 1. As for single-level scalability coeffi-

cients, the two-level scalability coefficients for items (HW
i , HB

i ) are defined as Hi = 1 −∑
j ̸=i Fij/

∑
j ̸=i Eij and the two-level scalability coefficients for the total scale (HW , HB)

are defined asH = 1−
∑

i

∑
j>i Fij/

∑
i

∑
j>iEij (e.g., Snijders, 2001a; Crişan et al., 2016).

In samples, the scalability coefficients are estimated by using the sample proportions; for

computational details see Snijders (2001a; also see, Crişan et al., 2016; Koopman et al.,

2017).

Within-rater coefficient HW reflects the consistency of item-score patterns within

raters, and its interpretation is similar to the single-level scalability coefficients of Mokken

(1971). Between-rater coefficient HB reflects the consistency of item-score patterns be-

tween raters of the same subject. The maximum value of within- and between-rater

scalability coefficients equals 1, reflecting a perfect relation between the items, within and

between raters of the same subject. Under the discussed IRT models, if the distribution of

θs + δsr is equally or more dispersed than the distribution of θs, 0 ≤ HB ≤ HW (Snijders,

2001a). As the population of subject-rater combinations becomes more homogeneous

(i.e., the variance of θs + δsr becomes smaller), coefficient HW decreases. Likewise, as

the population of subjects becomes more homogeneous (i.e., the variance of θs becomes

smaller), coefficient HB decreases. Ratio coefficient HBW provides useful information on

the between- to within-rater variability: The larger the variance of δsr (i.e., the rater effect)

is compared to the variance of θs (i.e., the subject effect), the smaller the consistency of

item-score patterns between raters of the same subject is relative to the consistency of

item-score patterns within raters, and the smaller HB is compared to HW . As a result,

HBW decreases as the rater effect increases. For example, if HBW is close to 1, the

test score is hardly affected by the individual raters and only few raters per subject are

necessary to scale the subjects, whereas if HBW is close to 0, the raters almost entirely

determine the item responses and scaling subjects is not sensible.
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For a satisfactory scale, Snijders (2001a) suggested heuristic criteria HW
ij ≥ .1, HW

i

and HW ≥ .2, HB
ij ≥ 0, and HB

i and HB ≥ .1. In addition, he proposed that ratio

value HBW ≥ .3 is reasonable and HBW ≥ .6 is excellent, with similar interpretations for

HBW
ij and HBW

i . In single-level data, an often-used lower-bound is .3 (Mokken, 1971, p.

185). Due to the availability of multiple parallel measurements per subject (i.e., multiple

raters), the heuristics for two-level scalability coefficients are lower. The value of total-

scale coefficients can be increased by removing items with low item scalability from the

item set. In Mokken scale analysis for single-level data there exist an item selection

procedure based on single-level scalability coefficients, but this is not yet available for

multi-rater data. In addition to Snijders’ criteria we suggest that the confidence intervals

of the H coefficients should be used in evaluating the quality of a scale. Kuijpers et al.

(2013) advised comparing the confidence interval to the heuristic criteria: For example,

a scale can only be accepted as strong when the lower bound of the 95% confidence

interval is at least .5. A less conservative approach is to require the lower bound for all

H coefficients to exceed zero. Items that fail to meet these criteria may be adjusted or

removed from the item set.

4.1.3 Standard Error of Two-Level Scalability Coefficients

Analytical Standard Errors

The delta method approximates the variance of the transformation of a variable by using a

first-order Taylor approximation (e.g., Agresti, 2012, pp. 577-581; Sen & Singer, 1993, pp.

131-152). Recently, Koopman, Zijlstra, & Van der Ark (2020) applied the delta method

to derive standard errors for two-level scalability coefficients. Let n be a vector of order

(m+1)I containing the frequencies of all possible item-score patterns, each pattern taking

the form nx1x2...xI
1 2 ... I . The patterns are ordered lexicographically with the last digit changing

fastest, such that n = [n00...0
12...I n00...1

12...I . . . nmm...m
12...I ]

T
. Vector n is assumed to be sampled

from a multinomial distribution with varying multinomial parameters per subject (Vágó

et al., 2011). Vector ps contains the probabilities of obtaining the item-score patterns in

vector n for subject s, with expectation E(p) for a randomly selected subject. Suppose

that for each subject R1 = R2 = . . . = RS = R. In addition, let E(x) denote the

expectation of vector x, and Diag(x) a diagonal matrix with x on the diagonal. Then the

variance-covariance matrix of n equals

Vn = SR[Diag(E(p))− E(p)E(p)T ] + SR(R− 1)[E(ppT )− E(p)E(p)T ] (4.4)

(Koopman, Zijlstra, & Van der Ark, 2020; Vágó et al., 2011).

Let g(n) be the transformation of vector n to a vector containing the scalability

coefficients g(n) =
[
HB HW HBW

]T
. Let G ≡ G(n) be the matrix of first partial

derivatives of g(n). According to the delta method, the variance of g(n), V(g(n)), is
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approximated by

Vg(n) ≈ G Vn GT (4.5)

The covariance matrix of the scalability coefficients can be estimated as V̂g(n) by using the

sample estimates for G and Vn. For two-level scalability coefficients, Koopman, Zijlstra,

& Van der Ark (2020) derived matrix G in Equation 4.5. Because the derivations are

rather cumbersome and lengthy, they are omitted here. The interested reader is referred

to Koopman, Zijlstra, & Van der Ark (2020). The estimated delta-method standard errors

SEd(H) are obtained by taking the diagonal of (V̂g(n))
1/2.

Bootstrap Standard Errors

The nonparametric bootstrap is a commonly used and easy to implement method to

estimate standard errors (see, e.g., Efron & Tibshirani, 1993; Van Onna, 2004). This

method resamples the observed data with replacement to gain insight in the variability

of the estimated coefficient. The bootstrap requires that all resampled observations are

independent and identically distributed. Because in the two-level data structure the

observations within subjects are expected to correlate, a standard bootstrap will not work.

The cluster bootstrap accommodates for this dependency by resampling the subjects,

thereby retaining all raters of that subject (see, e.g., Sherman & Le Cessie, 1997; Cheng

et al., 2013; Deen & De Rooij, 2020; Field & Welsh, 2007; Harden, 2011).

A bootstrap procedure is balanced if each observation occurs an equal number of times

across the B bootstrap samples. Balancing the bootstrap can reduce the variance of the

estimation, resulting in a more efficient estimator (Efron & Tibshirani, 1993, pp. 348-349;

Chernick, 2008, p. 131). The following algorithm is used to estimate a standard error

with a balanced cluster bootstrap.

1. For a bootstrap of size B, replicate the S subjects from data X B times and

randomly distribute these replications in a B × S matrix S.

2. Create B cluster-bootstrap data sets X∗
1, . . . ,X

∗
B. To obtain X∗

b , take the bth row

of the S-matrix; X∗
b consists of the observed ratings of all raters from the bootstrap

subjects.

3. Compute the scalability coefficients HW
b , HB

b , and HBW
b for each bootstrap data set

X∗
b .

4. Estimate the bootstrap standard errors SEb(H) by computing the standard devia-

tion of the Hb coefficient across the bootstrap samples.

Resampling at subject-level ensures that the bootstrap samples reflect a similar data

structure as the original data set. The cluster bootstrap allows observations within

subjects to correlate, but observations between subjects should be independent. The

correlation structure may differ per subject, and need not be known.
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4.2 Method

Simulated data were used to investigate the bias of the two-level scalability coefficient

estimates, bias of the standard error estimates, and coverage of the Wald-based confidence

intervals. To keep the simulation study manageable (and readable), a completely crossed

design was avoided. Instead, bias and coverage were first investigated in a small study

that included the most important independent variable, the rater effect σδ, and the two

standard error estimation methods (the main design). Because the rater effect determines

the scalability of subjects for a given test, it is considered the most important independent

variable. Second, in a series of small studies with specialized designs the effects of

other independent variables were investigated using the most promising standard error

estimation method. Finally, remarkable results were further investigated in post-hoc

simulations.

4.2.1 Data Simulation Strategy

Computation of the scalability coefficients and their standard errors by means of the delta

method only assumes that the item scores follow a multinomial distribution with varying

multinomial parameters across subjects (Koopman, Zijlstra, & Van der Ark, 2020). The

cluster bootstrap assumes that data between subjects are independent. Both assumptions

hold under the discussed two-level IRT models, given that each subject has a unique set

of raters. We used a parametric hierarchical rater model to generate data, parameterized

as follows:
θs ∼ i.i.d. N(0, σ2

θ), s = 1, .., S

ξsi ∼ Graded response model, i = 1, ..., J, for each s

δsr ∼ i.i.d. N(0, σ2
δ ), r = 1, ..., Rs, for each s

Xsri ∼ Signal detection model, for each s, r, i

(4.6)

Latent trait values θs were sampled from a normal distribution with mean 0 and

variance σ2
θ . Ideal ratings ξsi were obtained using a graded response model (Samejima,

1969). This model was used because it is the parametric version of the monotone

homogeneity model that underlies Mokken scale analysis (Hemker et al., 1996). For latent

trait value θs, item discrimination parameter αi, and item-step location parameter βix,

the probability of ideal rating ξsi ≥ x (x = 1, 2, . . . ,m) according to the graded response

model is

P (ξsi ≥ x|θs) =
exp [αi(θs − βix)]

1 + exp [αi(θs − βix)]
. (4.7)

Note that P (ξsi ≥ 0|θs) = 1 and P (ξsi ≥ m+1|θs) = 0 by definition. Ideal ratings ξsi were

sampled from a multinomial distribution using the probabilities P (ξsi = x|θs) = P (ξsi ≥
x|θs)− P (ξsi ≥ x+ 1|θs) for each subject s and item i.

Rater deviations δsr were sampled from a normal distribution with mean 0 and variance

σ2
δ . For deviation δsr and ideal rating ξsi, the probability of observed score Xsri = x,
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P (Xsri = x|ξsi, δsr), was obtained from a discrete signal detection model. In this model,

the probabilities are proportional to a normal distribution in x with mean ξsi + δsr and

rating variance τ 2r ; that is,

P (Xsri = x|ξsi, δsr) ∝ exp

{
− [x− (ξsi + δsr)]

2

2τ 2r

}
(4.8)

(also, see Patz et al., 2002). The computed probabilities P (Xsri = x|ξsi, δsr) for the m+1

answer categories were normalized to sum to 1. Finally, observations Xsri were sampled

from a multinomial distribution with parameter P (Xsri = x|ξsi, δsr).

4.2.2 Main design

Independent Variables

Rater effect σδ had four levels, each reflecting a different degree of rater effect: σδ = 0.25

(very small), σδ = 0.50 (small), σδ = 0.75 (medium), and σδ = 1 (large). Because the

rater effect determines the scalability of subjects for a given test, it is considered the

most important independent variable. As noted earlier, both the subject effect σθ and the

rater effect σδ affect the magnitude of the scalability coefficients. By setting σθ + σδ = 2,

the magnitude of HW was similar across the four levels of rater effect, which facilitated

comparison. HB and HBW decreased as σδ increased.

Standard-error estimation method had two levels: the delta method and the

bootstrap method. These methods were applied to each level of rater effect.

Other variables in the main design were fixed: The number of subjects was S = 100,

and each subject was rated rated by the an independent group of raters of size Rs = 5.

The number of items was I = 10, and each item had m + 1 = 5 answer categories. Item

discrimination was equal for each item at αi = 1 (Equation 4.7), the item-step location

parameter βix (Equation 4.7) had equidistant values between values -3 and 3, and rating

variance τ 2r = 0.52 (Equation 4.8).

Dependent Variables

The scalability coefficients H and standard errors of the estimates SE were computed

for the three classes of the two-level total-scale scalability coefficients (HW , HB, and

HBW ). Item-pair and item scalability coefficients were not computed because the total-

scale coefficient can be written as a normalized weighted sum of the Hij or Hi coefficients

(Mokken, 1971, pp. 150-152). Therefore, it is expected that potential bias of Hij or Hi is

reflected in H. In the specialized design we investigated conditions with 2 items; in that

case, Hij = Hi = H.

Bias of the estimated H coefficient. Bias reflects the average difference between

the sample estimate and population value of H. Let Hq be the estimated scalability

coefficient of the qth replication. The bias was determined across Q replications as
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Bias(H) = Q−1
∑Q

q=1(Hq − H). The population values (Table 4.1) were determined

based on a finite sample of 1,000,000 subjects and 5 raters per subject. Table 4.1 shows

that HB and HBW decreases as rater effect σδ increases. As the rater effect in Table 4.1

increases the difference between HB and HW becomes larger. Therefore, the correlation

between the sample estimates of HB and HW will be larger for small rater effects than

for large rater effects. On average, a relative Bias(H) of 10% reflects a value of 0.044.

Therefore, absolute bias values below 0.044 is considered satisfactory.

Table 4.1:

Population Values of the Two-Level Scalability Coefficients HW , HB, and HBW and the
Standard Deviation (SD) of the Sampling Distribution for the Four Conditions of σδ in
the Main Design.

σδ 0.25 0.50 0.75 1.00

H SD H SD H SD H SD

HW .437 .037 .418 .034 .435 .029 .479 .025

HB .415 .038 .316 .038 .214 .036 .126 .032

HBW .948 .010 .756 .036 .483 .057 .262 .058

Bias of the estimated standard errors. Let SEq be the standard error of the qth

replication, and SD the population standard error, then Bias(SE) = Q−1
∑Q

q=1[SEq −
SD]. The population SD-values (Table 4.1) were determined by the standard deviation

of Hq across the Q replications and is assumed to be representative of the true standard

deviation of the sampling distribution of H, under the conditions of the main design. On

average, a relative Bias(SE) of 10% reflects a value of 0.004. Therefore, absolute bias

values below 0.004 is considered satisfactory.

Coverage. Coverage of the 95% confidence intervals (CI) was computed as the

proportion of times, in Q replications, the population value H was included in the Wald-

based confidence interval CIq = Hq ± 1.96SEq. This interval is selected because the

distribution of the two-level scalability coefficients is asymptotically normal (Koopman,

Zijlstra, & Van der Ark, 2020). There were Q = 1000 replications per condition, and

B = 1000 balanced bootstrap samples per replication.

Analyses

The simulation study was programmed in R (R Core Team, 2020) and partly performed

on a high performance computing cluster. The scalability coefficients and delta method

standard errors were computed using the R-package mokken (Van der Ark, 2007, 2012;

also, see Koopman, Zijlstra, & Van der Ark, 2020). The main design had eight conditions

(two standard error estimation methods × four rater effect levels). Summary descriptives
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were computed and visualized for relevant outcome variables for all scalability coefficients.

An Agresti-Coull confidence interval (Agresti & Coull, 1998) was constructed around the

estimated coverage using R-package binom (Dorai-Raj, 2014) to test whether it deviated

from the desired value .95.

4.2.3 Specialized Designs

Each specialized design varied one of the independent variables that had been fixed in the

main design. The levels of rater effect σδ remained unchanged (σδ = 0.25, 0.50, 0.75, and

1.00), to allow for the detection of potential interaction effects.

Independent Variables

The following variables defined the specialized designs.

Number of subjects S was 50, 100 (as in main design) 250, or 500.

Number of raters per subject, Rs, had six conditions. Let U{a, b} denote a

discrete uniform distribution with minimum a and maximum b. In the six conditions

Rs (s = 1, . . . , S) were sampled from U{2, 2}, U{5, 5} (as in main design), U{30, 30},
U{4, 6}, U{3, 7}, and U{5, 30}, respectively. Hence, in the first three conditions, each

subject had the same number of raters, and in the last three conditions the number of

raters differed across subjects.

Rating variance τ 2r had four conditions. In three conditions, τr was fixed at 0.25,

0.50 (as in main design), and 0.75, respectively. In the fourth condition τr was sampled

for each rater from an exponential distribution with mean λ−1 = 0.5.

Number of items I was 2, 3, 4, 6, 10 (as in main design), or 20.

Number of answer categories m + 1 had four levels: 2 (dichotomous items),

3, 5 (as in main design), and 7. The parameters of the signal detection model were

adjusted according to the number of answer categories, to ensure that the magnitude of

the scalability coefficients remained similar to those in the main design (Table 4.2).

Item discrimination parameter αi had four levels. In three conditions αi was kept

constant for each item at 0.5, 1.0 (as in main design), or 1.5. In the last condition, the

item discrimination varied across items at equidistant values between 0.5 and 1.5.

Distance between item-step location parameters βix had four levels. In the first

three conditions, value βix ranged between -4.5 and 4.5, between -3 and 3 (as in main

design), or between -1.5 and 1.5. In the last condition the item-step locations were equal

for the same item-steps across items, and ranged between -3 and 3 within items (i.e.,

βi1 = −3, βi2 = −1.5, βi3 = 1.5, βi4 = 3 for all i).

Dependent Variables and Analyses

The dependent variables and statistical analyses were the same for the specialized designs

and the main design. The specialized design’s item discrimination, item-step location,
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Table 4.2:

Rater Effect (σδ) and Rating Variance (τ 2r ) Values for the Number of Answer Categories
(m+ 1) Specialized Design. Note that m+ 1 = 5 is the Level from the Main Design.

Rater effect σδ

m+ 1 τr 0.25 0.50 0.75 1.00

2 .3 0.18 0.27 0.35 0.45

3 .4 0.20 0.33 0.48 0.65

5 .5 0.25 0.50 0.75 1.00

6 .5 0.30 0.70 1.00 1.20

and rating variance had an effect on the magnitude of (some of) the population H values,

see Table 4.3. Population SDs were similar as in the main design, but increased for fewer

items and smaller sets of subjects or raters.

Table 4.3:

Population Values for HW , HB, and HBW for the Specialized Designs’ Item Discrimina-
tion αi, Item-Step Location βix and Rating Variance τ 2r , for Rater Effect σδ = .5.

αi βix τr

0.5 1 1.5 V 1.5 3 4.5 E 0.25 0.50 0.75 V

HW .185 .418 .569 .381 .377 .418 .439 .400 .464 .418 .357 .384

HB .125 .316 .439 .284 .327 .316 .270 .252 .343 .316 .269 .270

HBW .675 .756 .772 .747 .866 .756 .616 .630 .738 .756 .752 .704

Note. V = Varied, E = Equal.

4.2.4 Post-Hoc Simulations

Some exploratory simulations were performed to investigate aberrant results from the

main and specialized designs.

4.3 Results

4.3.1 Main Design

Bias of all two-level scalability coefficients was close to zero across the different levels of

rater effect σδ (Table 4.4, left panel).

50



Bias of Two-Level Scalability Coefficients and their Standard Errors

Table 4.4:

Bias of Estimated Coefficients (H) and of the Estimated Standard Errors (SE).

Bias(H) Bias(SE) delta Bias(SE) bootstrap

σδ HW HB HBW HW HB HBW HW HB HBW

0.25 -.000 -.001 -.002 .002 .002 .006 -.007 -.007 -.002

0.50 -.001 -.002 -.007 .002 .001 .004 -.008 -.009 -.010

0.75 .001 -.002 -.009 .003 .002 .004 -.007 -.009 -.016

1.00 .001 -.003 -.008 .003 .003 .006 -.007 -.009 -.016

Note. Bias that exceeds the boundary of .044 and .004 for H and SE, respectively, is printed in
boldface.

Bias of the delta method standard error estimates was generally close to zero, but the

bootstrap standard error estimates were negatively biased (Table 4.4, last two panels). As

a result, coverage of the 95% confidence intervals was too low for the cluster bootstrap,

with values ranging between .82 and .88 across the different conditions and coefficients

(Figure 4.1). The delta method coverage is excellent for the between-rater coefficient, but

is conservative for the within-rater coefficient HW if rater effect σδ is large (Figure 4.1).

In addition, coverage of the ratio coefficient HBW tends to be too high, especially if the

rater effect is nearly absent. The high coverage may be explained by the small σδ value.

For σδ = .25, HB ≈ HW , hence there is hardly any variation of HBW across different

samples, indicated by a true standard error of .01 (Table 4.1). The bias of the estimated

standard error was .006 (Table 4.4, first row, 6th column), which is identical to the bias in

the σδ = 1 condition (Table 4.4, last row, 6th column), for which the true standard error

is .058 (Table 4.1). Relative to their true standard error, the bias of .006 was 60% for

σδ = .025, and only 10% for σδ = 1. Therefore, coverage was much larger in the σδ = .025

condition compared to the σδ = 1 condition, even though the bias was equal.

4.3.2 Specialized Design

For all conditions in the specialized designs, the bias of the point estimates of the two-level

scalability coefficients was satisfactory with values between -.004 and .014. Because of

the poor performance in the main design, the bias and coverage of the cluster-bootstrap

standard errors were not computed in the specialized designs, so all results for the standard

errors pertain to the delta method. Number of subjects, S, number of answer categories,

m+ 1, item discrimination, αi, item-step location, βix, and rating variance, τ 2r , had little

or no effect on the on bias of the estimated standard errors and the coverage of the Wald-

based confidence interval. As in the main design, for HW and HB, bias was satisfactory

and coverages were accurate; whereas for HBW , the bias was occasionally unsatisfactory

(Bias(SE) ≥ .008) and coverages conservative. Number of raters, Rs and number of items,

I had an effect (Table 4.5). No interaction effect was found between rater effect (σδ) and
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Figure 4.1: Plot of the coverage of the 95% confidence interval of the two-level scalability
coefficients, for different levels of rater effect σδ and the two standard error estimation
methods. Error bars represent the 95% Agresti-Coull confidence interval.

the specialized design variables. Therefore, results are discussed only for σδ = 0.5.

Table 4.5:

Bias of the Delta Method Standard Errors (SE) for the Two-Level Scalability Coefficients
HW , HB, and HBW for Specialized Designs of Numbers of Raters (Rs) and Number of
Items (I).

Rs HW HB HBW I HW HB HBW

2 .002 .002 .009 2 .002 -.009 -.003

5 .002 .001 .004 3 .001 -.004 .000

30 .000 .000 .001 4 .002 -.001 .003

4-6 .004 .005 .008 6 .001 .001 .006

3-7 .013 .015 .017 10 .002 .001 .004

5-30 .032 .037 .035 20 .002 .002 .003

Note. Bias that exceeds the boundary of .004 is printed in boldface.

For unequal numbers of raters, the standard errors of the two-level scalability coef-

ficients were too conservative (Table 4.5, left panel) and the coverage of the confidence

intervals too high (Figure 4.2, left plot, right-hand side of the plot). The overestimation

was stronger if the variation of Rs was larger. As in the main design with 5 raters, the

standard errors were also too conservative for HBW in the condition with 2 raters (Figure

4.2, left plot).

For 2 and 3 items, the standard errors were underestimated for the between-rater

coefficient HB (Table 4.5, right panel). As a result, coverage was too low (Figure 4.2,

right plot).
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Figure 4.2: Coverage plots for the two-level scalability for different number of raters and
items, respectively. Error bars represent the 95% Agresti-Coull confidence interval.

4.3.3 Post-Hoc Simulations

It was unexpected that the cluster bootstrap in the main design performed poorly in

estimating the standard errors of the two-level scalability coefficients, resulting in poor

coverage values. Apparently, the cluster bootstrap does not correctly approximate the

sampling distribution of H in the population. An explanation may be that the cluster

bootstrap ignores the assumption that the raters should be a random sample of the

population of raters. Therefore, an alternative, two-stage bootstrap is proposed (for a

similar bootstrap procedure, see Ng et al., 2013). At stage 1, the clusters are resampled

as in the cluster bootstrap and at stage 2, the raters of the selected subjects are resam-

pled. Compared to the cluster bootstrap, the two-stage bootstrap resulted in substantial

improvements in the standard error estimates and the coverages, (Table 4.6, rows 1 and

2). In an effort to further improve the coverage rates of the two-stage bootstrap, the

percentile and bias-corrected accelerated interval were also computed (see, e.g., Efron &

Tibshirani, 1993, pp. 170-187 for a detailed description). These two methods use the

empirical distribution of Hb to construct an interval, rather than assuming a normal

distribution. The coverages of the percentile and bias-corrected accelerated intervals were

equal to or lower than the coverages of the Wald-based intervals. Because the bias and

coverages of the two-stage bootstrap are still inferior to those of the delta method (Table

4.4, third row), the delta method remains the preferred method.

There were two odd results in the specialized designs: the relatively poor results of

the standard error estimates for unequal group sizes and for a set of two items. The

standard error estimates of the two-level scalability coefficients rapidly increased if the

variation in number of raters across subject became larger. For unequal number of raters

across subjects, R in Equation 4.4 was estimated by the (arithmetic) sample mean R̂ =

S−1
∑S

s=1Rs. As a solution, we estimated R by the harmonic mean, which is lower than
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Table 4.6:

Post-Hoc Results of the Bias(SE) and Coverage for the Two-Stage and Cluster Bootstrap
and the Delta Method, the Arithmetic and Harmonic Mean of Rs, and item-pairs Hij with
Two, Four, and Ten Items, for HW , HB, and HBW , and Main Design Condition With
σδ = .5.

Bias(SE) Coverage

HW HB HBW HW HB HBW

Method

Two-stage bootstrap -.003 -.004 -.007 .930 .930 .880

Cluster bootstrap -.008 -.009 -.010 .865 .861 .853

Delta method .002 .001 .004 .955 .950 .970

Rs Mean

4-6
A .004 .005 .008 .970 .972 .983

H .003 .003 .007 .965 .965 .979

3-7
A .013 .015 .017 .991 .993 .990

H .009 .011 .013 .984 .984 .989

5-30
A .032 .037 .021 .999 .999 1.00

H .018 .021 .021 .992 .994 .999

Number of Items

2 .002 -.009 -.003 .944 .910 .941

4 .002 -.001 .011 .945 .938 .983

10 .002 .003 .019 .950 .953 .989

Note. Bias that exceeds the boundary of .004 and coverages where .95 is outside the Agresti-Coull
interval are printed in boldface. The Two-Stage Bootstrap results are based on 100 replications. The
Hij results are averaged across all item-pairs. A = arithmetic mean and H = harmonic mean of Rs.

the arithmetic mean if group sizes differ, and is computed as R̂ = S/
∑S

s=1R
−1
s . Using

the harmonic mean improved the bias of the standard error and the coverage compared

to the use of the arithmetic mean (Table 4.6, rows 4-9). However, the estimates were still

too conservative, and equal group sizes are preferred.

The standard error of between-rater coefficient HB was underestimated for sets of

two items. Although in general testing with a small set of items is discouraged (see,

e.g., Emons et al., 2007), this condition was of interest because for only two items, the

total-scale coefficient HB is equal to item-pair coefficient HB
ij . To investigate whether

bias in the standard error of item-pair coefficient HB
ij persisted for larger sets of items,

the coefficients and their standard errors were computed in a new condition with four

items and in the main design with ten items (both for σδ = .5). As is shown in Table

4.6, bottom three rows, bias of HB
ij standard errors vanished as the number of items

increased. However, Table 4.6 also shows that the standard error estimates estimates and

coverages of item-pair ratio coefficient HBW
ij were increasingly conservative, more than

the total-scale coefficient HBW .
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4.4 Discussion

Point estimates of the two-level scalability coefficients were unbiased in all conditions, with

bias values approximately zero. Standard errors were mostly unbiased if the delta method

was used but not for the traditional cluster bootstrap. A two-stage cluster bootstrap was

proposed that mitigated the bias, yet the delta method remains the preferred method.

The delta method resulted in unbiased standard error estimates for both the within-

and between-rater scalability coefficientsHW andHB, respectively. For large rater effects,

the coverage of the within-rater coefficient HW was slightly conservative. However, if the

rater effect is large, standard errors are of less interest, because the test will be determined

of poor quality based on the (unbiased) coefficients alone. Standard error estimates and

coverages for ratio coefficient HBW were conservative, especially if HBW was close to its

upper bound 1. In this latter situation, standard errors are also of less interest, because

if the coefficient estimate is so high, so is its interval estimate.

For all coefficients, the delta method overestimated the standard error if the number

of raters was unequal across subjects, especially if the variation was larger. Post-hoc

simulations showed some improvements if the harmonic mean of the group size was used

rather than the arithmetic mean, but equal group sizes are recommended. In addition,

for small sets of items the standard errors between-rater coefficient HB were too liberal.

Post-hoc simulations showed that the standard errors of the total scale and the item-

pair between-rater coefficients are unbiased, provided that a scale consists of at least four

items.

The results of this study demonstrate that in general the estimated scalability coef-

ficients and delta method standard errors are accurate and can therefore be confidently

used in practice. If the scalability of a multi-rater test is deemed satisfactory, a related

(but different) topic concerns the reliability. For a given test, Snijders (2001a, p. 13)

presented coefficient alpha to determine how many raters are necessary for reliable scaling

of the subjects. Note that the magnitude of the scalability coefficients is not affected by

the number of raters. Alternatively, generalizability theory provides a more extensive

selection of methods to investigate reliability (generalizability) of multi-rater tests (see,

e.g., Shavelson & Webb, 1991).

The application of two-level scalability coefficients and their standard errors is not

limited to multi-rater data. They may also be applied in research with multiple (random)

circumstances or time points in which the same questionnaire is completed. Also, the items

may be replaced by a fixed set of situations in which a particular skill is scored using a

single item. The standard errors derived in this chapter are also useful for single-level

Mokken scale analysis for data from clustered samples (e.g., children nested in classes)

because the single-level standard error will typically underestimate the true standard error

(see, e.g., Koopman, Zijlstra, & Van der Ark, 2020, for an example). Future research may

focus on how the point and interval estimates can be useful to select a subset of items

from a larger set of items.
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