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ABSTRACT

Literate computing environments, such as the Jupyter (i.e., Jupyter Notebooks, JupyterLab, and JupyterHub), 
have been widely used in scientific studies; they allow users to interactively develop scientific code, test 
algorithms, and describe the scientific narratives of the experiments in an integrated document. To scale up 
scientific analyses, many implemented Jupyter environment architectures encapsulate the whole Jupyter 
notebooks as reproducible units and autoscale them on dedicated remote infrastructures (e.g., high-
performance computing and cloud computing environments). The existing solutions are still limited in many 
ways, e.g., 1) the workflow (or pipeline) is implicit in a notebook, and some steps can be generically used 
by different code and executed in parallel, but because of the tight cell structure, all steps in the Jupyter 
notebook have to be executed sequentially and lack of the flexibility of reusing the core code fragments, and 
2) there are performance bottlenecks that need to improve the parallelism and scalability when handling 
extensive input data and complex computation.

In this work, we focus on how to manage the workflow in a notebook seamlessly. We 1) encapsulate the 
reusable cells as RESTful services and containerize them as portal components, 2) provide a composition 
tool for describing workflow logic of those reusable components, and 3) automate the execution on remote 
cloud infrastructure. Empirically, we validate the solution’s usability via a use case from the Ecology and 
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Earth Science domain, illustrating the processing of massive Light Detection and Ranging (LiDAR) data. The 
demonstration and analysis show that our method is feasible, but that it needs further improvement, especially 
on integrating distributed workflow scheduling, automatic deployment, and execution to develop as a mature 
approach.

1. INTRODUCTION

The study of many scientific problems, e.g., significant environmental challenges or cancer diagnosis, 
requires large data volumes, advanced modeling techniques, and distributed computing facilitates [1, 2]. 
The literate computing environments such as Jupyter notebook, JupyterLab, and JupyterHub have exploded 
in popularity and emerged as a de-facto standard across different engineering and science domains [4, 5, 6], 
e.g., ecology [10, 11], biology [12], and medical research [13, 14]. They provide an excellent combination 
of explanatory text, software code, computational output, and multimedia resources in an executable 
interactive document, in which users input programming code or text in rectangular cells in the Jupyter 
notebook.

The narratives of the scientific experiment in a notebook can be described as scientific pipeline steps or 
workflow contained with executable code fragments. However, the workflow usually is implicit in a 
notebook without an explicit, structured workflow-oriented description. For instance, some steps can be 
represented as atomic tasks in conjunction with the dependencies regarding inputs/outputs. Still, because 
of the tight cell structure of the notebook, the workflow patterns cannot be well extracted, which further 
influences the reusability of some generic code fragments [24]. Besides, from the perspective of input/output 
dependencies, there are still some performance bottlenecks in the workflow execution, e.g., some steps 
need to be parallelized or scaled out, especially when the inputs are a large volume of data.

Current approaches usually enable the computational notebook as the whole job to be scaled out on a 
dedicated remote infrastructure, e.g., high-performance computing (HPC) settings and cloud environments 
[7, 15, 16, 17, 18, 19, 20, 21]. Generally, to bridge the gap between exploratory scientific analysis and 
computing environments, many implemented Jupyter environment architectures are mainly coupled with 
a pre-configurable infrastructure (e.g., via IaaS Cloud) to dynamically deploy and manage notebook-based 
application instances. However, widely-used solutions ignored the workflow-oriented representation and 
management in the single notebook (i.e., workflow structure regarding internal dependencies and efficient 
parallelism for task’s input sizes). As a result, managing such a workflow in the notebook becomes a major 
bottleneck to meet the demands of scaling scientific experiments from domain researchers.

In light of this, we are motivated by the research question: how to seamlessly manage workflow in a 
notebook? In this paper, we give the first answer to this question and propose the Notebook-as-a-Workflow 
(NaaW) method. Our contributions mainly include:

1.  we propose and prototype the component containerizer, which can encapsulate the reusable code 
fragments (cells) as RESTful services and containerize them as science portal components.
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2.  we provide a workflow composition tool for presenting the workflow logic of those reusable 
components with visualization.

3.  we integrate the infrastructure automation tool to automate the workflow execution on remote cloud 
infrastructure.

The rest of the paper is organized as follows. Section 2 states the problem with a use case from the 
ecology and earth science domain, including the challenges and requirements, a review of the existing 
work regarding the topic of scaling scientific applications on distributed computing infrastructures, and a 
summary of the limitations of existing solutions. Section 3 provides the prototype design of our method 
and implementation details of our prototypes; in Section 4, we demonstrate the prototype from an example 
of processing massive Light Detection and Ranging (LiDAR) data and discuss the limitations of current work, 
and, finally, Section 5 concludes this paper and points out future research directions.

2. PROBLEM STATEMENT AND RELATED WORK

2.1  Problem Statement

Consider the example from the ecology and earth science domain, where researchers aim to monitor 
the changes of ecosystem structure over time or derive metrics of vegetation structure to model animal 
distributions and habitat suitability. For this purpose, they process raw data (3D point clouds) from country-
wide, airborne Light Detection and Ranging (LiDAR) dataset (~16TB), using the Laserfarm workflow [11] 
to generate LiDAR-derived metrics related to ecosystem height, ecosystem cover, and ecosystem structural 
complexity. Two examples of statistical metrics that can be derived from LiDAR point clouds are shown in 
Figure 1, i.e., the 95th percentile of normalized height (as a measure of ecosystem height) and pulse 
penetration ratio (as a measure of ecosystem cover). The 95th percentile of normalized height quantifies the 
vegetation height of tallest plants in a given grid cell (e.g., trees in a forest patch) whereas the pulse 
penetration ratio describes vegetation openness as the ratio between the number of ground points relative 
to the total number of points within a given grid cell. By measuring them in two time periods from two 
country-wide LiDAR datasets, researchers can derive measures of ecosystem structural change. It is achieved 
by extracting statistical properties of LiDAR point clouds that are provided by Airborne Laser Scanning (ALS) 
surveys, usually in LAS/LAZ format.

Challenges. Researchers design algorithms and prototypes using a Jupyter environment such as a Jupyter 
notebook and conduct the scientific experiment on the local experimental platform or a small cluster. Those 
studies rely on appropriate algorithms, but even more on large-scale data, e.g., handling multi-terabyte 
datasets. However, the local compute and storage capacities might be inefficient in conducting large-scale 
scientific analysis, e.g., it is burdened by large-scale data inputs and the need for efficient and scalable 
computing. Besides, the notebook’s pipeline steps or component modules can be presented as a workflow, 
as shown in Figure 2. Some modules as generic algorithms can be reused by different code and parallelized 
and scaled out on dedicated remote infrastructures, e.g., Cloud environments. Nevertheless, managing such 
a workflow in the Jupyter notebook is still lacking. Issues of the (un)expected overheads or performance 
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bottlenecks caused by data transfer between containerized components in the NaaW are outside the scope 
of this paper; however, we indeed have considered this problem. When processing the large volume data 
with approximately 16TB, we are using a splitter module and a merger module to cope with this issue at 
present. The splitter module can partition the large data volume into multiple more minor data predefined 
by the user to remove the large data volume transfer between containerized components. The merger 
module is responsible for merging these distributed processed results. As a result, it does not involve very 
frequent transmissions of enormous data volume between containerized components; on the contrary, it 
improves the parallelism of data processing.

Figure 1. Two examples of statistical metrics derived from airborne LiDAR point clouds across the Netherlands to 
measure changes in ecosystem structure, including a visual comparison with images from Google Maps. (a, b) 
Changes in ecosystem height (measured from LiDAR point clouds with a metric called 95th percentile of normalized 
height) to detect deforestation. The blue color indicates the decrease of vegetation height (i.e., 95th percentile of 
normalized height) from 2011 to 2018, while the red color indicates the opposite scenario. (c,d) Changes in 
ecosystem cover (measured from LiDAR point clouds with a metric called pulse penetration ratio) to map the 
succession and re-growth of forests). The red color indicates the increase of pulse penetration ratio from 2011 to 
2018, describing the vegetation cover has decreased during this time period, while the blue color indicates the 
opposite scenario.
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Figure 2. The default workfl ow in the Jupyter notebook using the example of the Laserchicken software [25]. 
LiDAR datasets (e.g., in LAS/LAZ/PLY format) are loaded and a set of target points defi ne the environment point 
cloud (EPC) and the target point cloud (TPC), respectively. The LiDAR point clouds are normalized, neighbors are 
computed and features (i.e., statistical properties of the point cloud) are subsequently extracted over neighbors and 
appended to the associated target points. This forms the enriched target point cloud (eTPC), which can be exported 
in several formats. Optionally, the EPC can be fi ltered before further processing [10].

2.2 Re lated Work

Many implemented Jupyter environment architectures are mainly based on HPC settings and cloud 
environments [15, 16, 18, 19, 20, 21]. For instance, the work of Milligan et al. [15, 16] implemented the 
classic architectures on which researchers integrated the Jupyter platform with supercomputing resources 
to bridge the gap between exploratory data analysis and HPC, especially leverage Jupyter for interactive 
data-intensive supercomputing services. Their solutions offer HPC notebook service, a science portal for 
the GEMS platform for argo-informatics data sharing and analysis, and BinderHub services. The HPC 
notebooks service implemented at MSI (Minnesota Supercomputing Institute) permits the user to seamlessly 
run the interactive Jupyter notebook web application using normal batch-scheduled clustered computing 
resources. The BinderHub is a component for automatically launching Jupyter-ready Docker containers built 
by JupyterHub with repo2docker within a Kubernetes cluster using public cloud resources. Likely, Zonca 
et al. [19] proposed three deployment strategies for scaling up scientific applications on XSEDE resources 
at different levels of scalability, i.e., JupyterHub on HPC via the batch scheduler, JupyterHub on XSEDE 
Jetstream with Docker Swarm mode and with Kubernetes. The differences between deploying Docker in 
Swarm mode and Kubernetes mainly reflect the former providing notebooks with persistent storage and 
quota while the latter provides a fault-tolerant JupyterHub deployment with elasticity.

Henderson et al. [18] proposed their NERSC (National Energy Research Scientific Computing Center) 
Jupyter infrastructure and JupyterHub deployment model. They use notebooks as reusable curated recipes 
or applications (i.e., having the ability to run the notebook on different data or with varying inputs without 
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copying or editing the notebook each time) to simplify the execution processes. Although the work of 
Henderson et al. [18] is close to NaaW since it also has the potential for scaling up different data inputs 
in the notebook and running these steps in parallel across multiple HPC nodes, it differs heavily from NaaW. 
Because it is based on NERSC HPC resources instead of a cloud environment with on-demand resource 
provisioning, it also performs limitations of the flexibility to reuse critical components in a notebook as 
part of a distributed workflow.

Yin et al. [17] proposed the CyberGIS-Jupyter framework for scalable geospatial analytics. The alternative 
solution adopts Jupyter notebooks instead of web GIS as the front-end interface to provide a consistent and 
agile playground for both developers and users. It uses JupyterHub and Docker Swarm as the CyberGIS-
Jupyter server. Encapsulating CyberGIS capabilities within a pre-configured and containerized environment 
achieves on-demand resource provisioning through Openstack to elastically deploy and manage multiple 
virtual machine (VM) instances of the applications. The hybrid computing environment called ROGER 
integrated HPC and cloud resources offers the underlying infrastructure support for the reproducible 
deployment. Nevertheless, their approach still has several limitations related to the scientific workflow 
representation. For instance, their work did not emphasize pipeline or workflow. Also, the notebook 
performed like the whole job instead of a workflow-oriented application to be packaged out and submitted 
onto the CyberGIS-Jupyter cloud environment.

Most of the existing solutions focus on the execution of the notebook on a pre-configured infrastructure, 
e.g., HPC cluster or virtual machines provisioned in the cloud. In those solutions, there is no explicit 
workflow management in the notebook; users control the execution of the experiment steps via the cells 
in the notebook. The workflow logic and data flows are implicitly described in the order of the cells in the 
notebook, which may hamper the reconfiguration of the notebook at the cell level for different purposes. 
We aim to overcome those limits by providing extra Jupyter extensions to extract the notebook cells as 
reusable components, to compose new logic, and to automate the execution on remote infrastructure. Those 
extensions cover the key steps of workflow management.

3. MA NAGING NOTEBOOK AS A WORKFLOW

3.1 Re quirements

To tackle the above challenges and gaps, we identify the following requirements for managing the 
workflow in notebooks and provide basic design ideas for our solution named NaaW.

•  The workflow management process, e.g., the decomposition of a single notebook containing code 
fragments and workflow composition, must be flexible alongside a native Jupyter environment for 
scientific research. Users should not be restricted in their code fragments’ selection and workflow 
design choices for their experiments.
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•  The workflow building blocks, i.e., the reusable components from the notebooks, must be interoperable 
with self-defined workflow logic. The tool should enable users to select those reusable components 
to construct scientific pipelines and guarantee the dependency constraints between components.

•  The approach must provide scalable solutions for large-scale scientific experimental analysis, 
especially for large datasets or complicated computation demands, and automatically execute the 
workflow on remote infrastructures such as the cloud. The scientific experimental process must be 
scalable and parallel to solve performance bottlenecks.

•  The solutions should be embedded as part of the current Notebook ecosystem so that the scientists 
do not have to drop the advantages of the native Jupyter.

3.2 Pr oposed Jupyter Extensions

Based on the requirements, we proposed four Jupyter extensions.

Component Containerizer creates reusable workflow building blocks from the notebook cells. Technical 
details of this extension have been discussed in our earlier paper [22]. This Jupyter extension allows users 
to select code cell(s) from Jupyter Notebooks effectively and generate reusable workflow building blocks 
(REST services) in a WYSIWYG manner. The extension can also containerize the services as self-contain 
deployable containers (i.e., Docker) and store them in a local catalog or remote Docker Hub.

Experiment Manager allows users to compose workflows using containerized notebook code (using 
the component containerizer). Users can compose dependencies among different blocks and construct 
distributed workflows by visually connecting the input and output parameters within the metadata 
description. This extension can save the generated workflow as workflow specification documents such as 
YAML or CWL syntax. For example, Figure 3 presents a straightforward vision of the experiment manager usage.

Figure 3. A conceptual diagram of the experiment manager extension.
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Distributed Workflow Bus plans and schedules the workflow deployment and execution on remote 
infrastructures. The automation of the infrastructure services provisioning and deployment will be provided 
by the extension called remote infrastructure automator, to be discussed next. This extension enables users 
to submit the workflow specifications (created by the experiment manager), together with input data sources, 
resource budget (for using cloud services). The workflow bus first invokes the remote infrastructure automator 
to initialize the run-time infrastructure and then uses its built-in scheduling algorithms to schedule the 
workflow execution on the infrastructure, as shown in Figure 4. Currently, this function is built atop the 
Argo workflow engine, enabling developers to select built-in scheduler policies or even add their self-
defined scheduling strategies.

scheduling
algorithm

   Workflow specifications
   : tasks
   : dependencies

User requirements
: privacy-preserving
: data localization 
: time-critical constraints
: fault tolerance

Available resources
: compute
: storage
: network bandwidth
: pricing of resources

experimental
platform

Scheduling strategies
: centralized workflow scheduling
: decentralized workflow scheduling

Distributed
workflow bus

Remote infrastructure
automator

Figure 4. The data fl ow of the distributed workfl ow bus and remote infrastructure automator.

Remote Infrastructure Automator plans the cloud infrastructure capacity and automates the resource 
provisioning and service deployment. This extension is extended from earlier work of Dynamic real-time 
infrastructure planner [24].

3.3 How  do They Work Together

The four key components will be installed as Jupyter extension, as shown in Figure 5. The grey boxes 
present the four key components, i.e., the component containerizer, experiment manager, distributed 
workflow bus, and remote infrastructure automator. We also highlight the catalog that contains workflow 
building blocks and the dedicated remote infrastructure for scalable experiments.

Users prototype scientific pipeline steps using Jupyter environments (e.g., Notebooks) to conduct their 
experiments at a small scale, e.g., on a local computer or a small cluster. Based on the native Jupyter 
notebook front-end, users can use the component containerizer to encapsulate a cell as a REST service and 
containerize it (step 1), store the containerized components in a local catalog (step 2), and make further 
changes to the components (step 3). Using the experiment manager extension, the user can design a new 
workflow experiment (step 4) by selecting containerized components from the local catalog (step 5) and 
create a representation of the workflow (step 6). The workflow description will be executed by the distributed 
workflow bus (step 7) by first initializing virtual infrastructures (e.g., VMs or Kubernetes cluster) from 
providers (step 9) via the remote infrastructure automator extension. The runtime status and the results can 
be monitored by the workflow bus via a dashboard (step 10).
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4.  SYSTEM PROTOTYPE AND DEMONSTRATION

As discussed before, Figure 2 presents a sample workflow of the Laserchicken software from the ecology 
domain, which mainly consists of six functional modules, including the load, normalize, filter, compute 
neighbors, features, and export, each of them has different code fragments with additional input and output 
parameters. Practically, the whole process is placed and has to be run sequentially with a tight cell structure 
in the notebook, which strongly influences the performance and scalability of the experiment, e.g., reducing 
the parallelism and reusability of the code fragments. To validate our method, we demonstrate the critical 
components of workflow-oriented management in a Jupyter notebook environment using the above use case.

Figure 6 presents the interface of the component containerizer alongside a Jupyter notebook. The single 
notebook contains scientific pipeline steps with different component functions. Users can select the code 
fragments to encapsulate them as a component. And as shown in the left bar, it also automatically inspects 
the corresponding metadata, e.g., inputs, outputs, parameters, and package dependencies for each component 
encapsulation. And as workflow building blocks, they can be added to the catalog for further usage.

Figure 7 shows the function of experiment manager. The local catalog contains the metadata of 
encapsulated components. Users can select different components as reusable workflow building blocks to 
compose self-defined workflow logic, e.g., tasks and dependencies, and export the workflow. The desirable 
output of the experiment manager is the generated workflow specification document, which is one of the 
inputs of the distributed workflow bus module.

As shown in Figure 8, currently, the distributed workflow bus is implemented atop the Argo workflow 
engine for Kubernetes. It uses the default scheduler for the workflow planning and scheduling; the underlying 
infrastructure, such as virtual machines, still manually allocate virtual machines for launching the Kubernetes 
platform.

Figure 5. The conceptual model of our proposed solution.
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Figure 6. The interface of the component containerizer modular.

Figure 7. The interface of the experiment manager modular.
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Figure 8. The current distributed workfl ow bus solution with Argo workfl ow engine.

Figure 9 shows the interface of the remote infrastructure automator (also called Cloud-cells). This Jupyter 
notebook extension allows the user to deploy dockers generated by Cloud-Cells to the cloud. But it has 
not yet been completely integrated into the NaaW method.

4.1 Disc ussion

In this paper, we discussed the key components in Notebook-as-a-Workflow (NaaW) solution. The four 
components are prototyped as extensions embedded in the Jupyter working environment of the scientists. 
This solution extends some of our previous work [22, 24] and further extends to a workflow-oriented 
management approach to bridge the gap between the Jupyter environment and workflow management at 
scale. By demonstrating via a LiDAR processing example from the ecology and earth science domain, the 
proposed solution can achieve the workflow management process mentioned in the requirements. Using 
those Jupyter extensions, a scientist can 1) interactively encapsulate code fragments (one or more notebook 
cells) in the Jupyter notebook as reusable workflow components, 2) compose a workflow using those 
workflow components and customize the execution logic based on data volume and locations, 3) automate 
the cloud infrastructure based on the workflow requirements (data volume, and resource budgets), and 4) 
interactively execute the composed workflow on the cloud infrastructure to achieve the required scale. In 
the paper, we only focus on the key steps in workflow management, e.g., workflow component 
containerization from the notebook, workflow composition, infrastructure automation, and workflow 
execution. There are still several features that have not yet been implemented or can be improved. For 
instance, the experiment manager tool could not inspect the correctness of dependencies between two 
workflow building blocks. It needs an inspection before users save their generated workflow specifications 
and submit them to the distributed workflow bus module. In addition, the design and implementation of 
distributed workflow bus are not developed maturely now since it is still based on a third party, e.g., the 
Argo workflow engine. Many workflow scheduling algorithms are not well developed as well, e.g., we still 
use the default scheduler of the Argo workflow engine to deploy and execute the submitted workflows. The 
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integration of distributed workflow bus and remote infrastructure automator does not work seamlessly. These 
two modules could not cooperate smoothly though both of them as Jupyter extensions can be built-in 
Jupyter environment. Some steps have to be completed manually.

5. CONC LUSION AND FUTURE WORK

In this work, we focus on managing the workflow in a Jupyter notebook architecture. We propose four 
core components to achieve our goal, i.e., the component containerizer, experiment manager, distributed 
workflow bus, and remote infrastructure automator, respectively. We 1) encapsulate the reusable cells as 
RESTful services and containerize them as portal components in the component containerizer module, 2) 
provide a composition tool for describing workflow logic of those reusable components, and 3) automate 
the execution on remote cloud infrastructure according to the distributed workflow bus and remote 
infrastructure automator. We validate the usability of the solution via a LiDAR use case from the ecology 
and earth science domain. This work is still developing and in continuous improvement. The missing 
features mentioned in the discussion section will be on our agenda for the next steps.

Figure 9. The remote infrastructure automator.
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