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Preface

In this thesis, Invariance in Deep Representations, we propose novel
solutions to the problem of learning invariant representations. We adopt
two distinct notions of invariance. One is rooted in symmetry groups and
the other in causality. Last, despite being developed independently from
each other, we aim to take a first step towards unifying the two notions of
invariance.

• We propose a neural network-based permutation-invariant aggregation
operator that corresponds to the attention mechanism (Section 2). We de-
velop a novel approach for set classification. Notably, an application of the
proposed attention-based operator provides insight into the contribution
of each element to the set label.

• We find that application-oriented research areas like medical imaging
or robotics, data augmentation techniques are used to learn domain
invariant features. We demonstrate that causal concepts can be used
to explain the success of data augmentation by describing how they
can weaken the spurious correlation between the observed domains and
the task labels (Section 3). We demonstrate that data augmentation
can serve as a tool for simulating interventional data. We use these
theoretical insights to derive a simple algorithm that is able to select data
augmentation techniques that will lead to better domain generalization.

• We propose a novel causal reduction method (Section 4) that replaces an
arbitrary number of possibly high-dimensional latent confounders with a
single latent confounder that lives in the same space as the treatment
variable without changing the observational and interventional distribu-
tions entailed by the causal model. After the reduction, we parameterize
the reduced causal model using a flexible class of transformations, so-
called normalizing flows. We propose a learning algorithm to estimate
the parameterized reduced model jointly from observational and inter-
ventional data.
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Preface

• We propose the Domain Invariant Variational Autoencoder (Section 5), a
generative model that tackles the problem of domain shifts by learning
three independent latent subspaces, one for the domain, one for the class,
and one for any residual variations. We show that due to the generative
nature of our model we can also incorporate unlabeled data from known
or previously unseen domains.

Amsterdam, August 25, 2022,

Maximilian Ilse
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Samenvatting

In dit proefschrift, Invariance in Deep Representations, stellen we nieuwe
oplossingen voor voor het probleem van het leren van invariant represen-
tations. We nemen twee verschillende noties van invariantie. De ene is
geworteld in symmetry groups en de andere in causality. Tenslotte willen
we, ondanks het feit dat ze onafhankelijk van elkaar zijn ontwikkeld, een
eerste stap zetten in de richting van het verenigen van de twee noties van
invariance.

• Wij stellen een op een neuraal netwerk gebaseerde permutatie-invariante
aggregatieoperator voor die overeenstemt met het attention mechanism
(Sectie 2). We ontwikkelen een nieuwe aanpak voor set classificatie.
In het bijzonder, een toepassing van de voorgestelde attention-based
operator geeft inzicht in de bijdrage van elk element aan het set label.

• We vinden dat in toepassingsgerichte onderzoeksgebieden zoals medis-
che beeldvorming of robotica, data augmentation technieken worden
gebruikt om domain invariant kenmerken te leren. We tonen aan dat
causale concepten kunnen worden gebruikt om het succes van data aug-
mentaion te verklaren door te beschrijven hoe ze de onechte correlatie
tussen de waargenomen domain en de task label kunnen verzwakken
(Sectie 3). We tonen aan dat data augmentaion kan dienen als een hulp-
middel voor het simuleren van interventional data. We gebruiken deze
theoretische inzichten om een eenvoudig algoritme af te leiden dat in
staat is om data augmentation technieken te selecteren die zullen leiden
tot een betere domain generalization.

• Wij stellen een nieuwe causale reductiemethode voor (Sectie 4) die een
willekeurig aantal mogelijk hoog-dimensionale latent confounders ver-
vangt door één enkele latent confounder die in dezelfde space als de
behandelingsvariabele leeft zonder de observational en interventional
verdelingen te wijzigen die het causale model met zich meebrengt. Na de
reductie parametriseren we het gereduceerde causale model met behulp
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Samenvatting

van een flexibele klasse van transformaties, de zogenaamde normalizing
flows. Wij stellen een leeralgoritme voor om het geparametriseerde gere-
duceerde model gezamenlijk uit observational en interventional data te
trainen.

• Wij stellen de Domain Invariant Variational Autoencoder voor (Sectie
5), een generatief model dat het probleem van domain generalization
aanpakt door drie onafhankelijke latent subspaces te leren, één voor het
domain, één voor de task, en één voor eventuele residuele variaties. We
laten zien dat we door de generatieve aard van ons model ook ongelabelde
data van bekende of voorheen ongeziene domains kunnen opnemen.

8

Contents

Preface 5

Contents 9

List of Publications 13

Author’s Contribution 15

List of Figures 17

List of Tables 21

Abbreviations 23

Notation 25

1. Introduction and Background 27
1.1 The importance of invariance . . . . . . . . . . . . . . . . . . 27
1.2 Two notions of invariance . . . . . . . . . . . . . . . . . . . . . 28

1.2.1 Symmetry groups . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Invariance under intervention . . . . . . . . . . . . . 31

1.3 Deep generative modeling . . . . . . . . . . . . . . . . . . . . . 35
1.3.1 Variational Autoencoder . . . . . . . . . . . . . . . . . 35
1.3.2 Normalizing flows . . . . . . . . . . . . . . . . . . . . . 37

1.4 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 38

2. Attention-based Deep Multiple Instance Learning 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Multiple instance learning (MIL) . . . . . . . . . . . 43
2.2.2 MIL with Neural Networks . . . . . . . . . . . . . . . 45
2.2.3 MIL pooling . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.4 Attention-based MIL pooling . . . . . . . . . . . . . . 46

2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9



Contents

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.1 Classical MIL datasets . . . . . . . . . . . . . . . . . 50
2.4.2 MNIST-bags . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.3 Histopathology datasets . . . . . . . . . . . . . . . . . 54

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.1 Deep MIL approaches . . . . . . . . . . . . . . . . . . 58
2.6.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6.3 Classical MIL datasets . . . . . . . . . . . . . . . . . 58
2.6.4 MNIST-bags . . . . . . . . . . . . . . . . . . . . . . . . 59
2.6.5 Histopathology datasets . . . . . . . . . . . . . . . . . 63

3. Selecting Data Augmentation for Simulating Interventions 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Domain generalization . . . . . . . . . . . . . . . . . . 69
3.2.2 Domain generalization and data augmentation from

a causal perspective . . . . . . . . . . . . . . . . . . . 69
3.2.3 Simulating interventions . . . . . . . . . . . . . . . . 70
3.2.4 Selecting data augmentations for domain general-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Learning symmetries from data . . . . . . . . . . . . 74
3.3.2 Understanding data augmentation . . . . . . . . . . 75
3.3.3 Advanced data augmentation techniques . . . . . . 75
3.3.4 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Rotated MNIST . . . . . . . . . . . . . . . . . . . . . . 78
3.4.3 Colored MNIST . . . . . . . . . . . . . . . . . . . . . . 79
3.4.4 PACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.1 Additional details for SDA . . . . . . . . . . . . . . . 82
3.6.2 Ablation study on rotated MNIST . . . . . . . . . . . 83
3.6.3 Results of domain classifier on each dataset . . . . 83
3.6.4 Colored MNIST . . . . . . . . . . . . . . . . . . . . . . 84
3.6.5 PACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.6 Linear example of intervention-augmentation equiv-

ariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.7 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6.8 Domain generalization . . . . . . . . . . . . . . . . . . 88
3.6.9 Data augmentation . . . . . . . . . . . . . . . . . . . . 91

10

Contents

3.6.10 Data augmentation in application-focused research
areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4. Efficient Causal Inference from Combined Observational
and Interventional Data through Causal Reductions 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Reduction of the latent space . . . . . . . . . . . . . . 98
4.3.2 From causal Bayesian networks to structural causal

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.3 Parameter sharing in the linear Gaussian case . . 102
4.3.4 Reduction with observed confounders . . . . . . . . 103

4.4 Practical implementation . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Observational data . . . . . . . . . . . . . . . . . . . . 104
4.4.2 Interventional data . . . . . . . . . . . . . . . . . . . . 105
4.4.3 Joint optimization and sampling . . . . . . . . . . . 105

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.1 Without observed confounders . . . . . . . . . . . . . 106
4.5.2 With observed confounders . . . . . . . . . . . . . . . 108

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7.1 Theorem A.1 and proof . . . . . . . . . . . . . . . . . 109
4.7.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . 110
4.7.3 Corollary of Theorem 3.1: the linear Gaussian case 111
4.7.4 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . 111
4.7.5 Reduction with observed confounders . . . . . . . . 112
4.7.6 Linear experiment . . . . . . . . . . . . . . . . . . . . 113
4.7.7 Background: Normalizing Flows . . . . . . . . . . . 115
4.7.8 Simulation details: Nonlinear experiments without

observed confounders . . . . . . . . . . . . . . . . . . 117
4.7.9 Simulation details: Nonlinear experiments with

observed confounders . . . . . . . . . . . . . . . . . . 119
4.7.10 Nonlinear experiment results without observed con-

founders . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.7.11 Dataset 4: 3 confounders, random seed = 1 . . . . . 127
4.7.12 Nonlinear experiment results with observed con-

founders . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5. DIVA: Domain Invariant Variational Autoencoders 151
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 Definition of Domain Generalization . . . . . . . . . . . . . . 152
5.3 DIVA: Domain Invariant VAE . . . . . . . . . . . . . . . . . . 153

5.3.1 Semi-supervised DIVA . . . . . . . . . . . . . . . . . . 155
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11



Contents

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.1 Rotated MNIST . . . . . . . . . . . . . . . . . . . . . . 156
5.5.2 Malaria Cell Images . . . . . . . . . . . . . . . . . . . 160

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.7.1 Predicting the label using only one of the latent
subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.7.2 Partitioned latent space . . . . . . . . . . . . . . . . . 164
5.7.3 DIVA without the domain latent subspace or the

residual latent subspace . . . . . . . . . . . . . . . . . 165
5.8 Experiment details . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.8.1 Rotated MNIST . . . . . . . . . . . . . . . . . . . . . . 166
5.8.2 Malaria Cell Images . . . . . . . . . . . . . . . . . . . 168

6. Conclusion 171

References 177

12

List of Publications

This thesis consists of an introduction, a conclusion, and of the following
publications:

I Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based
Deep Multiple Instance Learning. In Thirty-fifth International Confer-
ence on Machine Learning, 2018.

II Maximilian Ilse, Jakub M. Tomczak, and Patrick Forré. Selecting Data
Augmentation for Simulating Interventions . In Thirty-eighth Interna-
tional Conference on Machine Learning, 2021.

III Maximilian Ilse, Patrick Forré, Max Welling, and Joris M. Mooij. Effi-
cient Causal Inference from Combined Observational and Interventional
Data through Causal Reductions. In Under submission, 2021.

IV Maximilian Ilse, Jakub M. Tomczak, Christos Louizos, and Max Welling.
DIVA: Domain Invariant Variational Autoencoders. In Medical Imaging
with Deep Learning, 2020.

13



Author’s Contribution

Publication I: “Attention-based Deep Multiple Instance Learning”

• M. Ilse: text, figures, and experiments

• J. M. Tomczak: text, experiments, and supervision

• M. Welling: text, and supervision

Publication II: “Selecting Data Augmentation for Simulating
Interventions ”

• M. Ilse: text, figures, and experiments

• J. M. Tomczak: text, and supervision

• P. Forré: text, and supervision

Publication III: “Efficient Causal Inference from Combined
Observational and Interventional Data through Causal Reductions”

• M. Ilse: text, figures, and experiments

• P. Forré: text, and supervision

15



Author’s Contribution

• M. Welling: text, and supervision

• J. M. Mooij: text, experiments, and supervision

Publication IV: “DIVA: Domain Invariant Variational Autoencoders”

• M. Ilse: text, figures, and experiments

• J. M. Tomczak: text, and supervision

• C. Louizos: text, and supervision

• M. Welling: text, and supervision

16

List of Figures

1.1 Equilateral triangle. . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2 Mirrored cat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3 Example DAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 Example DAG after intervention on X. . . . . . . . . . . . . . 32
1.5 Graphical model of an VAE. . . . . . . . . . . . . . . . . . . . 36

2.1 The test AUC for MNIST-BAGS with on average 10 in-
stances per bag. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 The test AUC for MNIST-BAGS with on average 50 in-
stances per bag. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 The test AUC for MNIST-BAGS with on average 100 in-
stances per bag. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Example of attention weights for a positive bag. . . . . . . . 54
2.5 Visualization of the attention weights. . . . . . . . . . . . . . 56
2.6 Deep MIL approaches. . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Example of attention weights for a negative bag. . . . . . . 62
2.8 Example of attention weights for a positive bag containing

a single ’9’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.9 Example of attention weights for a positive bag containing

multiple ’9’s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.10 Colon cancer example 1. . . . . . . . . . . . . . . . . . . . . . . 64
2.11 Colon cancer example 2. . . . . . . . . . . . . . . . . . . . . . . 65
2.12 Colon cancer example 3 . . . . . . . . . . . . . . . . . . . . . . 65

3.1 DAG and SCM with a hidden confounder. . . . . . . . . . . . 69
3.2 DAGs for intervention on d and hd, as well as for data

augmentation on x. . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Intervention-augmentation equivariance expressed in a

commutative diagram. . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 DAG and linear Gaussian SCM for synthetic data. . . . . . 77
3.5 Results on synthetic data. . . . . . . . . . . . . . . . . . . . . . 78

17



List of Figures

3.6 DAGs for the generative process for the colored MNIST
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Samples from the PACS dataset. . . . . . . . . . . . . . . . . 85
3.8 Causal structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.9 Domain randomization histopathology, taken from Tellez

et al. [2019]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.10 Domain randomization in robotics, taken from Tobin et al.

[2017]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 A graphical explanation of our causal reduction technique. 100
4.2 A graphical explanation of our reduction technique in the

presence of both observed and latent confounders. . . . . . 114
4.3 Samples from linear Gaussian model. . . . . . . . . . . . . . 116
4.4 Dataset 1: Interventional and observational samples. . . . 121
4.5 Dataset 1: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 122

4.6 Dataset 2: Interventional and observational samples. . . . 123
4.7 Dataset 2: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 Dataset 3: Interventional and observational samples. . . . 125
4.9 Dataset 3: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 126

4.10 Dataset 4: Interventional and observational samples. . . . 127
4.11 Dataset 4: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 128

4.12 Dataset 5: Interventional and observational samples. . . . 129
4.13 Dataset 5: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 130

4.14 Dataset 6: Interventional and observational samples. . . . 131
4.15 Dataset 6: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 132

4.16 Dataset 7: Interventional and observational samples. . . . 133
4.17 Dataset 7: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 134

4.18 Dataset 8: Interventional and observational samples. . . . 135

18

List of Figures

4.19 Dataset 8: Performances measured in terms of negative
log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 136

4.20 Dataset 9: Interventional and observational samples. . . . 137
4.21 Dataset 9: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 138

4.22 Dataset 10: Interventional and observational samples. . . 139
4.23 Dataset 10: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 140

4.24 Dataset 11: Interventional and observational samples. . . 141
4.25 Dataset 11: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 142

4.26 Dataset 12: Interventional and observational samples. . . 143
4.27 Dataset 12: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 144

4.28 Dataset 13: Interventional and observational samples. . . 145
4.29 Dataset 13: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 146

4.30 Dataset 14: Interventional and observational samples. . . 147
4.31 Dataset 14: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 148

4.32 Dataset 15: Interventional and observational samples. . . 149
4.33 Dataset 15: Performances measured in terms of negative

log-likelihood on the observational and the interventional
test sets, respectively. . . . . . . . . . . . . . . . . . . . . . . . 150

5.1 DAG of DIVA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2 2D embeddings of all three latent subspaces. . . . . . . . . . 157
5.3 DIVA reconstructions. . . . . . . . . . . . . . . . . . . . . . . . 158
5.4 Example cells from 10 patients of the Malaria Cell Images

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.5 Reconstructions of x using all three latent subspaces as well

as reconstructions of x using only a single latent subspace
at a time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.6 DAG of an VAE with auxiliary classifiers. . . . . . . . . . . . 165

6.1 Commutative diagram. . . . . . . . . . . . . . . . . . . . . . . 174

19



List of Tables

2.1 Results on classical MIL datasets. . . . . . . . . . . . . . . . 50
2.2 Results on BREAST CANCER. . . . . . . . . . . . . . . . . . . . 55
2.3 Results on COLON CANCER. . . . . . . . . . . . . . . . . . . . 55
2.4 Overview of classical MIL datasets. . . . . . . . . . . . . . . . 59
2.5 Classical MIL datasets: The embedding-based model archi-

tecture [Wang et al., 2016]. . . . . . . . . . . . . . . . . . . . . 59
2.6 Classical MIL datasets: The instance-based model architec-

ture [Wang et al., 2016]. . . . . . . . . . . . . . . . . . . . . . . 59
2.7 Classical MIL datasets: The optimization procedure details

[Wang et al., 2016]. . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.8 MNIST-bags: The embedding-based model architecture [Le-

Cun et al., 1998]. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.9 MNIST-bags: The instance-based model architecture [Le-

Cun et al., 1998]. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.10 MNIST-bags: The optimization procedure details. . . . . . . 60
2.11 MNIST-bags: SVM configuration. . . . . . . . . . . . . . . . . 61
2.12 The test AUC for MNIST-BAGS with on average 10 in-

stances per bag for different numbers of training bags. . . 61
2.13 The test AUC for MNIST-BAGS with on average 50 in-

stances per bag for different numbers of training bags. . . 61
2.14 The test AUC for MNIST-BAGS with on average 100 in-

stances per bag for different numbers of training bags. . . 61
2.15 Histopathology: The embedding-based model architecture

[Sirinukunwattana et al., 2016]. . . . . . . . . . . . . . . . . . 63
2.16 Histopathology: The instance-based model architecture

[Sirinukunwattana et al., 2016]. . . . . . . . . . . . . . . . . . 63
2.17 Histopathology: The optimization procedure details. . . . . 64

3.1 Results on Colored MNIST. . . . . . . . . . . . . . . . . . . . . 79
3.2 Results on Rotated MNIST results. . . . . . . . . . . . . . . . 79
3.3 Results on PACS dataset. . . . . . . . . . . . . . . . . . . . . . 79

21



List of Tables

3.4 Comparing domain accuracy on rotated MNIST for five
different sets of the data augmentation ’rotate’. . . . . . . . 83

3.5 Domain accuracy for each dataset. Average ± standard error. 84

4.1 Comparison of a flow model trained with interventional
samples only and a flow model trained with interventional
and observational samples. . . . . . . . . . . . . . . . . . . . . 106

5.1 Comparison with other state-of-the-art domain generaliza-
tion methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2 Comparison of DIVA trained supervised to DIVA trained
semi-supervised with additional unlabeled data from M30°
and M60°. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 Comparison with other state-of-the-art domain generaliza-
tion methods on the Malaria Cell image dataset. . . . . . . 162

5.4 Results of the semi-supervised experiments for domain
C116P77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.5 Prediction of y using a 2 layer MLP trained using zd, zx

and zy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.6 Comparison of DIVA with a VAE with a single latent space,

a standard Gaussian prior and two auxillary tasks on Ro-
tated MNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.7 Results of ablation study. . . . . . . . . . . . . . . . . . . . . . 166
5.8 Architecture for pθ(x|zd,zx,zy). . . . . . . . . . . . . . . . . . . 167
5.9 Architecture for pθd (zd|d) and pθy(zy|y). . . . . . . . . . . . . 167
5.10 Architecture for qφd

(zd|x), qφx
(zx|x) and qφy

(zy|x). . . . . . . 167
5.11 Architecture for qωd (d|zd) and qωy(y|zy). . . . . . . . . . . . . 168
5.12 Architecture for pθ(x|zd,zx,zy). . . . . . . . . . . . . . . . . . . 169
5.13 Architecture for pθd (zd|d) and pθy(zy|y). . . . . . . . . . . . . 169
5.14 Architecture for qφd

(zd|x), qφx
(zx|x) and qφy

(zy|x). . . . . . . 170
5.15 Architecture for qωd (d|zd) and qωy(y|zy). . . . . . . . . . . . . 170

22

Abbreviations

AI Artificial Intelligence

AUC Area Under the receiver operating characteristic Curve

CNN Convolutional Neural Network

CDANN Conditional Domain Adversarial Neural Network

CVIB Conditional Variational Information Bottleneck

DAG Directed Acyclic Graph

DANN or DA Domain Adversarial Neural Network

DIVA Domain Invariant Variational Autoencoder

DNN Deep Neural Network

DSR Disentangled Semantic Representations

Elbo Evidence lower bound

ERM Empirical Risk Minimization

GAN Generative Adversarial Network

G-CNN Group equivariant Convolutional Neural Network

ICP Invariant Causal Prediction

IRM Invariant Risk Minimization

H&E Hematoxylin and Eosin

MIL Multiple Instance Learning

MSE Mean squared Error

ReLU REctified Linear Unit

23



Abbreviations

ROI Region Of Interest

SCM Structural Causal Model

SDA Select Data Augmentation

SVM Support Vector Machine

VAE Variational AutoEncoder

24

Notation

x a scalar

x a vector

X a scalar valued random variable or a set or a matrix

X a vector valued random variable

p(X = x)/p(X= x) a probability density function, where we use p(x)/p(x)
short for p(X = x)/p(X= x)

P(X ≤ x)= ∫︁ x
−∞ p(x′)dx′ a cumulative distribution function

X a space

φ,θ,ω trainable parameters

25



1. Introduction and Background

1.1 The importance of invariance

In the last twenty years, we have seen an enormous jump in the per-
formance of Artificial Intelligence (AI) systems driven by deep learning.
Among other things, these systems can recognize objects in images or
videos, generate entire pages of text, and predict the chemical properties
of molecules. As a result, we will encounter more and more AI systems in
our everyday lives, be it the autocomplete in messaging apps, the driving
assistant in cars, or the diagnostic tools in hospitals. The latter two use
cases are prime examples of safety-critical applications, where mistakes
of the AI system can lead to fatalities in the worst case. This poses the
important question:

"Are modern AI systems reliable and safe to use?"

An ever-growing collection of research shows how sensitive deep learning-
based AI models can be to small input changes. For example, a slight
change in the lighting condition, color, or perspective of an object can lead
to a drastic decrease in the performance of an AI system [Azulay and Weiss,
2019].

In contrast to AI systems, humans excel at adapting to new environments.
One might have never seen a red banana; still, nobody would mistake it
for a tomato when first encountered. We, as humans, are capable of
separating the color from the shape of an object and subsequently only rely
on the shape information for our assessment. In another instance, we can
separate the shape of an object from its orientation. We are therefore able
to recognize another human even if they stand on their head. In both cases,
we as humans ignore parts of the visual input. More formally, we can
describe the predictions we make as invariant to the color of the banana or
the orientation of the human.
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A safe and reliable AI system would learn to be robust to changes in
the visual input in the same way a human is. While the examples above
focus on vision tasks, there are various modalities where invariance is
crucial. Suppose we want to make predictions about physical or chemical
systems. In that case, the AI system needs to capture the underlying
symmetries, where each symmetry leads to a conserved quantity as de-
scribed by Noether’s theorem [Noether and Tavel, 1971]. Furthermore, in
healthcare applications, we want to make sure that AI systems generalize
across all subpopulations encountered during deployment. In many cases,
it will be required to be invariant to changes in covariates like age, sex,
and ethnicity.

In the present thesis, we will focus on two distinct notions of invariance.
One is rooted in symmetry groups and the other in causality. We will
give numerous examples for each of the invariances and enforce them
using deep learning. Last, despite being developed independently from
each other, we aim to take a first step towards unifying the two notions of
invariance.

1.2 Two notions of invariance

In this section, we will introduce two notions of invariance. The first notion
of invariance is derived from the concept of group symmetries. In contrast,
the second notion is based on the concept of interventions originating from
causality literature. We will see that the two notions lead to a variety of
approaches for training machine learning models. Yet, disregarding the
approach chosen, the result is an invariant machine learning model, i.e.,
some changes in the input of a machine learning model will not change its
output.

1.2.1 Symmetry groups

Symmetry is the property of a mathematical object to remain unchanged
under a set of transformations. Therefore symmetry is considered a type
of invariance. Arguably, the most familiar example of symmetry is the
symmetry of shapes. If we consider the equilateral triangle in Figure 1.1
we find that it has a variety of symmetries. For example, if we rotate the
triangle by 120◦, 240◦, or 360◦ angles, Figure 1.1 would still look the same.
Another type of symmetry that can be found in Figure 1.1 is reflection
symmetry. There are three different mirror lines through which we can
reflect the triangle without changing its appearance.

In order to formalize the notion of symmetries we are going to use the
mathematical concept of groups. Consider a set G and a binary operator
denoted as "·". G and "·" form a group if they satisfy the following conditions,
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Figure 1.1. Equilateral triangle.

also known as group axioms:

• (closure) G is closed under " · ": if g,h ∈G ⇒ g ·h ∈G.

• (identity element) There exists an identity element i ∈G: For all g ∈G
we have g · i = i · g = g.

• (inverse element) Every element g ∈G has an inverse in G: For all g ∈G
there exists an element g−1 ∈G such that g · g−1 = g−1 · g = i.

• (associativity) The binary operator " · " has the associative property: for
all g,h, j ∈G we have g · (h · j)= (g ·h) · j.

Furthermore, we call a function that maps from G×X to X a group action
and use the short notation g ·x for g ∈ G and x ∈ X . Last, if a set and a
binary operator only satisfy the conditions of closure and associativity, it is
called a semigroup.

One common example of a symmetry group is the cyclic group Cn. The
group consists of all rotations around a fixed point by multiples of the
angle 360◦/n. For the triangle in Figure 1.1 the associated symmetry group
is C3 = {120◦,240◦,360◦}. If we take the three additional reflections into
account, the associated group is the dihedral group D3.

However, shapes are not the only mathematical objects that can have
a symmetry. Consider the following common machine learning task. We
have a set of natural images 1 X = {x1, ...,xN }, xi ∈ X , where X is the
input space. In addition, we have a set of corresponding binary labels
Y = {y1, ..., yN }, yi ∈ Y = {0,1}. Last we assume that there exists a labeler
function f : X →Y , that maps the images to their respective class.

In this particular example, we know that there exists a set of transfor-
mations that does not change the label yi of an image xi. Among these
transformations are translations, rotations, and reflections. In Figure
1.2, we show an image of a cat and its horizontal reflection. We know
that horizontal reflections will not change the label of the image. If we
consider the group of horizontal reflections G and the labeler function f ,
the function f is an invariant map if

f (g ·x)= f (x)∀ g ∈G. (1.1)

1Natural images are photos of everyday objects like planes, cars and cats.
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Figure 1.2. Mirrored cat.

In this example, the labeler function f is invariant with respect to the
group of horizontal reflections.

In the following, we will summarize the two most common approaches
found in the deep learning literature to enforce group symmetries. In
both cases, the symmetry of a dataset and the associated task needs to be
known apriori.

Group-equivariant neural networks The research field of group-equivariant
neural networks focuses on designing neural networks that are invariant
or equivariant with respect to a specific symmetry group, where a function
f is an equivariant map if it commutes with a group action g ∈G, i.e.,

f (g ·x)= g · f (x)∀g ∈G. (1.2)

In Cohen and Welling [2016], the Group equivariant Convolutional Neu-
ral Network (G-CNN) was introduced. While the convolutional weight
sharing in standard Convolutional Neural Networks (CNNs) gives rise to
equivariance with respect to the group of translations, G-CNNs generalize
this concept to a larger group of symmetries. By replacing convolutional
layers with group-convolutional layers, Cohen and Welling [2016] were
able to build neural networks that are invariant to rotations and reflec-
tions of the inputs. Unfortunately, group-equivariant neural networks are
restricted to transformations that can be expressed as a group, such as
translation, rotation, and reflection. However, many real-world transfor-
mations cannot be expressed as a group, for example, scaling 2, occlusion,
and the saturation of colors.

Data augmentation Data augmentation describes a loose collection of
transformations of the input data x. The transformed input data is added
to the training set to make the model invariant beyond the symmetries
build into the architecture, e.g., translation symmetry in the case of CNNs.
Common data augmentation techniques for image data are horizontal/ver-
tical flipping, rotation, occlusion, color augmentation, and scaling. The
advantage of data augmentation is that these techniques are not limited
to transformations that form a group. For example, the scaling of a dis-
cretized image does not always have an inverse transformation. The set

2If applied to discretized images
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of scaling transformations on the space of discretized images is therefore
considered a semigroup. As a result, data augmentation can be used to
enforce invariance to a wider variety of transformations of the input space.
However, while the group-equivariant neural networks described in the
previous section enforce strict equivariance or invariance, data augmenta-
tion only leads to approximate invariance. Approximate invariance [Chen
et al., 2020a] is defined as follows:

x≈d g ·x, (1.3)

where x ∈X and ≈d denotes approximate equality in distribution. I.e., the
data distribution does not change too much under a group action. There
exist a plethora of data augmentation techniques for image, audio, and
text data. However, for other modalities like gene sequences, there exist
no established data augmentation techniques. Last, in most cases, expert
knowledge is needed to manually choose the data augmentation technique
that enforces the correct symmetry.

1.2.2 Invariance under intervention

In Section 1.2.1, we developed a notion of invariance using the concept of
symmetry groups. However, a second notion of invariance was developed
independently, not relying on group theory. The core idea is that a ground-
truth causal model is responsible for generating the data we observe. As
such, the causal model captures the relationship between all variables in
a system. We make use of the assumption that the causal model consists
of several independent causal mechanisms. As a result, some components
remain unchanged when altering a subset of the variables in a causal
model. These components are called invariant. We will now introduce a
minimum set of concepts from the causality literature that will enable us
to formally define the notion of invariance from a causal point of view.

Graphical models and SCMs Causal models represent the underlying
mechanism by which the data we observe was generated. A powerful tool
for visualizing and reasoning about causal models are so-called graphical
models. Each variable of a causal model is represented by a node and
each mechanism between variables by an edge. In Figure 1.3, we see a
graphical model that consists of three random variables X,Y , and Z and
three directed edges X→Y , Z→X, Z→Y . In Figure 1.3 there is an arrow
from Z to X and to Y , we therefore call Z a common cause of X and Y or a
confounder. In general, if we do not control for Z, e.g., by conditioning, our
estimate of the causal effect of X on Y will be biased.

In the following, we will only focus on so-called Directed Acyclic Graphs
(DAGs). DAGs have two important properties: (i) all edges have a distinct
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direction, indicating causation. (ii) there are no cycles in a graph. The
graph shown in Figure 1.3 is a DAG.

Z

X Y

Figure 1.3. Example DAG.

Every DAG entails a factorization of the joint distribution of all variables
in the graph. For the DAG in Figure 1.3 the factorization is p(x, y,z) =
p(y|x,z)p(x|z)p(z). In order to make general statements for a set of DAGs
we will need the concept of parent and children nodes. In the DAG in
Figure 1.3 we call the set paY = {x,z} the parents of Y . The concept of
parent nodes lets us write the factorization of any DAG as

p(x1, . . . ,xK )=
K∏︂

j=1

p(x j|paX j ). (1.4)

Every DAG is associated with a so-called Structural Causal Model (SCM).
An SCM is a collection of variables and deterministic functions that de-
scribe all the causal mechanisms of the data generating process. The SCM
that corresponds to the DAG in Figure 1.3 is the following

Z=NZ

X= f (Z,NX)

Y = g(X,Z,NY ), (1.5)

where NX,NY ,NZ are sampled from the jointly independent noise distri-
butions p(NX), p(NY ), p(NZ). In the next section, we will see that SCMs
enable us to compute interventional and counterfactual distributions.

Interventions In Figure 1.4 the DAG after an intervention on X is shown.
In contrast to the DAG in Figure 1.3, X does no longer depend on Z as
indicated by the missing arrow between X and Z.

Z

X Y

Figure 1.4. Example DAG after intervention on X.

32

Introduction and Background

The distribution entailed by the DAG in 1.4 is called the interventional
distribution. In general the interventional distribution will differ from the
distribution entailed by the original DAG in Figure 1.3. Formally we write

p(y,z|do(x)) ̸= p(y,z|x), (1.6)

where p(y,z|do(x)) is the interventional distribution and p(y,z|x) is the
conditional distribution. We use the do-operator [Pearl, 2009] to indicate
when we perform an intervention.

Interventions let us reason about the effect on a system if we alter the
state of one or more variables. Consider a random variable X j, its set of
parents paX j , and the functional assignment X j = f (paX j ,NX j ). We define
two different types of interventions on X j:

• Hard intervention: do(x j = a)

• Noise intervention: do(x j = ˜︁NX j ), where ˜︁NX j ∼ p( ˜︁NX j ), p( ˜︁NX j ) being an
independent noise distribution

In both cases, X j becomes independent of its parents. Graphically speak-
ing, an intervention is removing all incoming arrows, as seen in Figure 1.4.
Last, we revisit the SCM in Equation 1.5. If we were to perform a noise
intervention on X, the SCM after intervention is

Z=NZ

X= ˜︁NX

Y = g(X,Z,NY ). (1.7)

We see that the value of X is independent of Z.

Independent Mechanisms After having defined the necessary concepts,
we can now introduce a causal notion of invariance. In the following, we
will closely follow the example in Peters et al. [2017]. We start with two
random variables that describe two properties of a city: altitude A and
average annual temperature T. From a purely statistical point of view,
there are two ways of factorizing the joint probability p(a, t)

p(a, t)= p(a|t)p(t) (1.8)

= p(t|a)p(a), (1.9)

where none is preferred over the other. From a causal perspective p(a, t)=
p(a|t)p(t) corresponds to the causal graph T → A, i.e., temperature causes
altitude, whereas p(a, t)= p(t|a)p(a) corresponds to the causal graph A → T,
i.e., altitude causes temperature. We now ask the question: "Which is
the correct causal graph?", where ’correct’ is defined as the graph that
generated the data we observe in the first place.
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We can test the plausibility of the two factorizations by thinking about
the effect of interventions on A and T would have. If we were to change
the altitude of a city hypothetically, we would expect the average annual
temperature to change. In contrast, common sense tells us that changing
the average annual temperature of a city would not change its altitude.
In summary, intervening on A causes T to change, but intervening on T
does not change A. We find that the correct causal graph is A → T, which
entails the factorization p(a, t)= p(t|a)p(a).

Furthermore, we can consider the joint distribution of average annual
temperature and altitude for two different countries: The Netherlands
pN (a, t) and Chile pC(a, t). As shown above, the causal graph A → T leads to
the following factorizations: pN (a, t)= p(t|a)pN (a) and pC(a, t)= p(t|a)pC(a).
While the distributions of the altitude p(a) will vary strongly between
the Netherlands and Chile the mechanism p(t|a) is independent of p(a).
Therefore p(t|a) is called an independent or invariant mechanism.

Using the definition of a set of parent variables in Section 1.2.2, we can
formalize this notion for arbitrary DAGs. Let us consider an SCM C with
random variables X1, . . . ,XN , then

p ˜︁C (︁
x j|paX j

)︁= pC
(︁
x j|paX j

)︁
, (1.10)

for any SCM ˜︁C that is constructed from C by intervening on some Xk

but not on X j. Equation 1.10 tells us that the mechanism p(x j|paX j ) is
invariant to interventions except an intervention on X j.

Learning invariant causal mechanisms The most reliable way of reducing
the confounding bias is obtaining data from a Randomized Controlled
Trial (RCT). The goal of an RCT is to remove all confounding biases by
randomization. In the SCM in Equation 1.7, we have already seen how a
noise intervention can be used to remove confounding. In this example, we
replaced the confounded values of X with random samples from the noise
distribution p( ˜︁NX). In the following, we will call data generated by a known
intervention or an RCT interventional or experimental data in contrast to
observational data that is possibly biased. In general, if we had access to a
dataset where all bias is removed, we could directly learn the invariant
mechanism. However, in many application domains like healthcare, it is
often costly, risky, unethical, or simply impossible to perform an RCT. As
a result, in cases where we are able to perform an RCT, the number of
samples is usually small.

Therefore, many methods aim to learn invariant mechanisms purely
from observational data. Unfortunately, each of those methods relies
on additional, mostly untestable, assumptions or the existence of other
variables, which limits their practical use [Pearl, 1995, Wang and Blei,
2019]. A detailed discussion of these methods is out of scope for the present
thesis. Instead, in Chapter 3 we will show how to simulate interventions
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using data augmentation and in Chapter 4 we will show how to combine
interventional and observational data without the drawbacks mentioned
above.

Last, we will consider combining data from different so-called environ-
ments or domains to learn invariant machine learning models [Peters et al.,
2016]. We assume a different set of interventions was performed for each
domain, i.e., each domain is equal to a different interventional distribution.
However, we do not know the exact nature of each intervention nor which
variables were changed. We only have access to an additional variable
D that indicates from which domain each data point was sampled. For
example, for a simple classification task with input X and target Y from
different domains, the training dataset is the set {xi, yi,di}N

i=1. This is a
common scenario in healthcare applications where we have access to data
from, e.g., different hospitals and populations. In the previous section, we
have seen that an invariant model is invariant to interventions on all but
the target variable Y . In the case of learning with different environments,
we reverse this definition and use it for learning. If we can learn one
mechanism that generalizes to all training domains, we have learned the
true invariant causal mechanism with high probability.

1.3 Deep generative modeling

In the second half of this thesis, Chapter 4 and 5, we will see that deep
generative models are a powerful tool for learning invariant models. By
modeling the generative process, they can learn invariant mechanisms
that will generalize across datasets. We will focus on two classes of deep
generative models in the present thesis: variational autoencoders and
normalizing flows. In the following, we will introduce both classes focusing
on why they are especially well suited for learning invariant models.

1.3.1 Variational Autoencoder

In 2014, Kingma and Welling [2013] and Rezende et al. [2014] introduced
a novel deep latent variable model: the Variational AutoEncoder (VAE). In
Figure 1.5, the DAG of an VAE in its simplest form is shown. It consists of
only two nodes, the observed data X and the latent variable Z.
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Z

X

Figure 1.5. Graphical model of an VAE.

First, we show how to approximate the marginal likelihood of the data
p(x) by introducing a latent variable Z. Using Z we can express p(x) as

p(x)=
∫︂

p(x,z)dz. (1.11)

Since the integral in Equation 1.11 is in general intractable, the VAE
is instead maximizing the so-called Evidence lower bound (Elbo). For a
single data point xi the bound is given by

log p(xi)≥Ez∼qθ(z|xi)
[︁
log pφ(xi|z)

]︁−KL (qθ(z|xi)||p(z))= Elbo(θ,φ,xi). (1.12)

The VAE is called a deep generative model since the posterior qθ(z|xi)
and the likelihood pφ(xi|z) are parameterized by deep neural networks.
Furthermore, the prior p(z) plays an important role in distinguishing the
VAE from a standard autoencoder. Minimizing the KL divergence from the
posterior to the prior regulates the capacity of the latents. In addition, the
latent space Z has a lower dimension than the input space X . Restricting
the capacity of Z encourages that images that are semantically close along
one axis are close in latent space. For example, it is beneficial to cluster all
red objects using one latent and all rotated objects using another latent.
What adds to this pressure is the factorization of the posterior and prior,
i.e., p(z)=∏︁D

i=1 p(zi), q(z|x)=∏︁D
i=1 q(zi|x). As a result, VAEs naturally tend

to learn a disentangled representation Z [Higgins et al., 2018].
For the mirrored cat example in Section 1.2.1, a disentangled represen-

tation would look as follows: one latent is used for the orientation of the
cat (mirrored, not mirrored), and one latent captures the shape of the
cat. Suppose we are interested in a classifier for cats invariant of their
orientation. In that case, we can simply ignore the latent used to encode
orientation and build a classifier on top of the latent that encodes shape.
The model we obtain will be invariant to changes in the orientation of the
input.

We now define disentanglement from a perspective of group symmetry as
seen in Higgins et al. [2018]. We start with considering the group action
g ·x : G×X →X . Furthermore, we assume that the group G decomposes as
a direct product G =G1 ×G2. The group action is called disentangled with
respect to the decomposition of G if

(g1, g2) · (x1,x2)= (g1 ·x1, g2 ·x2). (1.13)
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That is, a group element g1 ∈ G1 acts on x1 but leaves x2 unchanged
and vice versa. Now, we apply this definition of disentanglement to a
representation Z learned by an VAE. We consider the set of observations
X = {x1, . . . ,xN } and corresponding representations Z = {z1, . . . ,zN }, where
z = f (x), f : X → Z . Furthermore, G is a symmetry group acting on X , ·:
G×X →X , where the corresponding action on Z is ·: G×Z →Z so that
the symmetry in X is reflected in Z . As a result a group action g ∈ G
commutes with the map f (x)

g · f (x)= f (g ·x),∀g ∈G and x ∈X . (1.14)

For example, a rotation in X has a corresponding transformation in Z .
Last, the representation Z is called disentangled with respect to the de-
composition G =G1 ×·· ·×Gn if the following three conditions are satisfied

1. There is an action g ·z : G×Z →Z .

2. The map f : X →Z is equivariant between the actions on X and Z .

3. There is a decomposition Z=Z1×·· ·×Zn such that each Zi is fixed by the
action of all G j, j ̸=i and affected only by Gi.

Note that the above definition of disentanglement also holds for semi-
groups. Furthermore, we want to highlight the contrast to group-equivariant
networks, see Section 1.2.1. Instead of choosing and enforcing a group
symmetry apriori, disentanglement emerges during learning and depends
heavily on the training data. In the best case, a diverse data set (different
sizes, colors, orientations) of, e.g., natural objects 3 will lead to a learned
representation where scale, color, and orientation are disentangled. For
disentanglement, no expert knowledge is needed since the symmetries
present in the data will be learned.

However, in contrast to group-equivariant networks, there is no guar-
antee for a disentangled representation to arise. At the time of writing,
the exact cause of disentanglement in VAEs is poorly understood [Burgess
et al., 2018]. Furthermore, Locatello et al. [2019] proof that the unsuper-
vised learning of disentanglement is an ill-posed problem.

1.3.2 Normalizing flows

The second class of deep generative models that we consider are normaliz-
ing flows. Normalizing flows are based on the idea of transforming samples
from a simple distribution into samples from a complex distribution using

3Natural objects are everyday objects like planes, cars, and cats.
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the change of variables formula

p(x)= pZ( fθ(x))
⃓⃓
⃓⃓det

(︃
δ fθ(x)
δx

)︃⃓⃓
⃓⃓ , (1.15)

where z= fθ(x) is a bijective map f : X →Z , pZ(z) a simple prior distribu-
tion, and δ fθ

δx the Jacobian. With recent advances in architecture designs
[Dinh et al., 2017], we are able to efficiently compute the determinant of
the Jacobian for high dimensional x. In contrast to VAEs which compute
a variational approximation, see Section 1.3.1, normalizing flows let us
estimate the marginal p(x) exactly.

Furthermore, we are especially interested in conditional normalizing
flows due to their relationship to SCMs. A slight modification of Equation
1.15 lets us learn conditional probabilities using normalizing flows. If we
consider the conditioning variable Y Equation 1.15 becomes

p(x|y)= pZ( fθ,y(x))
⃓⃓
⃓⃓det

(︃
δ fθ,y(x)

δx

)︃⃓⃓
⃓⃓ , (1.16)

where fθ,y(x)= fθ(x, y) is bijective in X but in general not in Y . Now, assume
we want to learn the mapping between X and Y , assuming a non-linear
causal relationship with graph Y →X. The corresponding SCM is given by

X := fX(Y ,NX), (1.17)

where NX is a noise variable independent of Y . Given samples (x, y) from
the SCM above, we can learn to approximate the causal mechanism fX
using a normalizing flow. Since fθ,y(x) is bijective in x by design, we can
use its inverse to compute x

x= f −1
θ,y(z), z∼ pZ(z), (1.18)

where pZ(z) is commonly chosen to be a standard Gaussian. The two
functions fX and fθ,y are considered equivalent in this setting if for every
value Y = y

fX (Y = y,NX)≈ f −1
θ,Y=y(Z), (1.19)

i.e., the two distributions are interventionally equivalent with respect to
interventions on Y . This property makes normalizing flows a powerful tool
to learn the invariant mechanisms of an SCM.

1.4 Research questions

We formulate the research questions and contributions in this work as
follows.
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Research Question 1: How can we build a permutation-invariant deep
learning architecture for set classification?

A set is a collection of elements without any natural order, e.g., a col-
lection of medical images. Therefore, any deep learning model for set
classification needs to be invariant to changes in the order of the elements
of a set. In general, a deep learning architecture for set classification
consists of an encoder, pooling layer, and classifier. The encoder embeds
each element of a set in a lower-dimensional space. Afterward, a pooling
layer is used to combine the embeddings of all elements into one embed-
ding capturing the characteristics of the whole set. Last, a classifier is
used to map the set embedding to the label. Chapter 2 introduces a novel
pooling layer based on the attention mechanisms. We show significant
improvements in classification performance, especially in the low data
regime, and improved interpretability, where the attention mechanism
predicts a single weight for each element of the set. After training, these
so-called attention weights can highlight the importance of each element
of a set for the prediction task.

Research Question 2: How does the approximate invariance enforced by
data augmentation relate to invariant causal mechanisms?

In Chapter 3, we show that data augmentation can be used to simulate
interventions. As seen in Section 1.2.1, data augmentation is commonly
interpreted as (semi)group transformations of the observational data, with-
out any connection to causal mechanisms. Furthermore, in Section 1.2.2,
we have shown that interventions need to be performed before the data
generation. We show how models trained with data augmentation can
learn invariant mechanisms by reinterpreting data augmentation as a
tool to simulate interventions on purely observed data. We summarize
our findings as a novel condition that we call intervention-augmentation
equivariance. Last, based on those theoretical insights, we propose a sim-
ple algorithm automatically selecting data augmentation from a list of
augmentation techniques. We test the proposed algorithm in a domain
generalization setting and find strong generalization performance.

Research Question 3: How to learn independent mechanisms from obser-
vational and interventional data jointly?

As seen in Section 1.2.2, at least in theory, we can learn invariant mech-
anisms from unbiased data. However, the learned estimate might suffer
from high variance due to the generally low sample size of interventional
data sets. In Chapter 4, we introduce a novel approach of using additional
observational data to reduce the variance without introducing confounding
bias. Our contribution is twofold. First, we present a new theoretical tool
for causal inference called causal reductions, where we can replace any
number of confounders with a single latent confounder that lives in the
same space as the direct cause. The resulting reduced causal model is
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interventionally and observationally equivalent to the non-reduced one.
Second, we propose an efficient parameterization of reduced causal models
using normalizing flows. We exploit that some parameters are shared
between observational and interventional distribution, which results in
lower sample complexity.

Research Question 4: How can we augment a variational autoencoder to
learn domain invariant latent features reliably?

In Chapter 5, we propose an augmented version of the variational autoen-
coder, see Section 1.3.1. To guide the disentanglement, we divide the latent
space into three subspaces: one containing information shared among
domains, one containing information about the differences among domains,
and one for all remaining factors of variation. We call this model the
Domain Invariant Variational Autoencoder (DIVA). Since the first latent
subspace is invariant to domain changes, we can build a domain invariant
classifier by ignoring the other two. Furthermore, we show that DIVA can
be trained in a semi-supervised fashion due to its generative nature, where
we do not have access to the labels of all samples of the training dataset.

40

2. Attention-based Deep Multiple
Instance Learning

We start the central part of the thesis with what we consider the strongest
type of invariance. As seen in Section 1.2.1, we can enforce invariance with
respect to a symmetry group using the architecture of our deep learning
model, where the choice of architecture will depend on the data and task.
As a result, the model will be strictly invariant after training.

In the following, we will focus on the task of set classification. A set is a
collection of unordered elements. Naturally, any machine learning model
for set classification needs to be permutation invariant to the order of
the set. We propose an attention-based pooling layer for set classification,
where the attention mechanism is used to enforce invariance with respect
to the permutation group. I.e., a change in the order of the input set leads
to the same prediction as the original order.

2.1 Introduction

In typical machine learning problems like image classification, it is as-
sumed that an image represents a category (a class). However, multiple
instances are observed in many real-life applications, and only a general
statement of the category is given. This scenario is called multiple in-
stance learning (MIL) [Dietterich et al., 1997, Maron and Lozano-Pérez,
1998] or, learning from weakly annotated data [Oquab et al., 2014]. The
problem of weakly annotated data is especially apparent in medical imag-
ing [Quellec et al., 2017] (e.g., computational pathology, mammography
or CT lung screening) where a single label typically describes an image
(benign/malignant) or a Region Of Interest (ROI) is roughly given.

MIL deals with a bag of instances for which a single class label is as-
signed. Hence, the main goal of MIL is to learn a model that predicts a
bag label, e.g., a medical diagnosis. An additional challenge is to discover
key instances [Liu et al., 2012], i.e., the instances that trigger the bag
label. In the medical domain, the latter task is of great interest because
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of legal issues1 and its usefulness in clinical practice. To solve the pri-
mary task of a bag classification, different methods are proposed, such as
utilizing similarities among bags [Cheplygina et al., 2015b], embedding
instances to a compact low-dimensional representation that is further
fed to a bag-level classifier [Andrews et al., 2003, Chen et al., 2006], and
combining responses of an instance-level classifier [Ramon and De Raedt,
2000, Raykar et al., 2008, Zhang et al., 2006]. Only the last approach is
capable of providing interpretable results. However, it was shown that the
instance level accuracy of such methods is low [Kandemir and Hamprecht,
2015] and in general, there is a disagreement among MIL methods at the
instance level [Cheplygina et al., 2015a]. These issues call into question
the usability of current MIL models for interpreting the final decision.

In this paper, we propose a new method that incorporates interpretabil-
ity into the MIL approach and increases its flexibility. We formulate the
MIL model using the Bernoulli distribution for the bag label and train
it by optimizing the log-likelihood function. We show that the applica-
tion of the Fundamental Theorem of Symmetric Functions provides a
general procedure for modeling the bag label probability (the bag score
function) that consists of three steps: (i) a transformation of instances to
a low-dimensional embedding, (ii) a permutation-invariant (symmetric)
aggregation function, and (iii) a final transformation to the bag probability.
We propose to parameterize all transformations using neural networks (i.e.,
a combination of convolutional and fully-connected layers), which increases
the flexibility of the approach and allows to train the model in an end-
to-end manner by optimizing an unconstrained objective function. Last
but not least, we propose to replace widely-used permutation-invariant
operators such as the maximum operator max and the mean operator mean
by a trainable weighted average. A two-layered neural network gives
weights for each instance. The two-layered neural network corresponds to
the attention mechanism [Bahdanau et al., 2014, Raffel and Ellis, 2016].
Notably, the attention weights allow us to find key instances, which could
further highlight possible ROIs. The experiments show that our model is
on par with the best classical MIL methods on standard benchmark MIL
datasets. It outperforms other methods on an MNIST-based MIL problem
and two real-life histopathology image datasets. Moreover, we provide
empirical evidence that our model can indicate key instances.
1According to the European Union General Data Protection Regulation (taking
effect 2018), a user should have the right to obtain an explanation of the decision
reached.
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2.2 Method

2.2.1 Multiple instance learning (MIL)

Problem formulation In the classical (binary) supervised learning prob-
lem one aims at finding a model that predicts a value of a target variable,
y ∈ {0,1}, for a given instance, x ∈RD . In the case of the MIL problem, how-
ever, instead of a single instance there is a bag of instances, X = {x1, . . . ,xK },
that exhibit neither dependency nor ordering among each other. We as-
sume that K could vary for different bags. There is also a single binary
label Y associated with the bag. Furthermore, we assume that individual
labels exist for the instances within a bag, i.e., y1, . . . , yK and yk ∈ {0,1}, for
k = 1, . . . ,K , however, there is no access to those labels and they remain
unknown during training. We can re-write the assumptions of the MIL
problem in the following form:

Y =
{︄

0, iff
∑︁

k yk = 0,

1, otherwise.
(2.1)

These assumptions imply that a MIL model must be permutation -
invariant. Further, the two statements could be re-formulated in a com-
pact form using the maximum operator:

Y =max
k

{yk}. (2.2)

Learning a model that tries to optimize an objective based on the maxi-
mum over instance labels would be problematic, at least for two reasons.
First, all gradient-based learning methods would encounter issues with
vanishing gradients. Second, this formulation is suitable only when an
instance-level classifier is used.

To make the learning problem more straightforward, we propose to train
a MIL model by optimizing the log-likelihood function where the bag label
is distributed according to the Bernoulli distribution with the parameter
θ(X ) ∈ [0,1], i.e., the probability of Y = 1 given the bag of instances X .

MIL approaches In the MIL setting, the bag probability θ(X ) must be
permutation-invariant since we assume neither ordering nor dependency
of instances within a bag. Therefore, the MIL problem can be considered
in terms of a specific form of the Fundamental Theorem of Symmetric
Functions with monomials given by the following theorem [Zaheer et al.,
2017]:

Theorem 1. A scoring function for a set of instances X, S(X ) ∈ R, is a
symmetric function (i.e., permutation-invariant to the elements in X ), if and
only if it can be decomposed in the following form:

S(X )= g

(︄∑︂
x∈X

f (x)

)︄
, (2.3)
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where f and g are suitable transformations.

This theorem provides a general strategy for modeling the bag probability
using the decomposition given in (2.3). A similar decomposition with max
instead of sum is given by the following theorem [Qi et al., 2017]:

Theorem 2. For any ε > 0, a Hausdorff continuous symmetric function
S(X ) ∈R can be arbitrarily approximated by a function in the form
g (maxx∈X f (x)), where max is the element-wise vector maximum operator
and f and g are continuous functions, that is:

⃓⃓
⃓S(X )− g

(︂
max
x∈X

f (x)
)︂⃓⃓
⃓< ε. (2.4)

The difference between Theorems 1 and 2 is that the former is a univer-
sal decomposition while the latter provides an arbitrary approximation.
Nonetheless, they both formulate a general three-step approach for clas-
sifying a bag of instances: (i) a transformation of instances using the
function f , (ii) a combination of transformed instances using a symmetric
(permutation-invariant) function σ, (iii) a transformation of combined in-
stances transformed by f using a function g. Finally, the expressiveness of
the score function relies on the choice of classes of functions for f and g.

In the MIL problem formulation, the score function in both theorems is
the probability θ(X ), and the permutation-invariant function σ is referred
to as the MIL pooling. The choice of functions f , g, and σ determines
a specific approach to modeling the label probability. For a given MIL
operator, there are two main MIL approaches:

(i) The instance-level approach: The transformation f is an instance-level
classifier that returns scores for each instance. Then individual scores
are aggregated by MIL pooling to obtain θ(X ). The function g is the
identity function.

(ii) The embedding-level approach: The function f maps instances to a
low-dimensional embedding. MIL pooling is used to obtain a bag repre-
sentation independent of the number of instances in the bag. A bag-level
classifier further processes the bag representation to provide θ(X ).

It is advocated in Wang et al. [2016] that the latter approach is preferable
for the bag level classification performance. Since the individual labels
are unknown, there is a threat that the instance-level classifier might be
trained insufficiently, and it introduces additional errors to the final pre-
diction. The embedding-level approach determines a joint representation
of a bag, and therefore it does not introduce additional bias to the bag-level
classifier. On the other hand, the instance-level approach provides a score
that can be used to find key instances i.e., the instances that trigger the
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bag label. Liu et al. [2012] were able to show that a model that is suc-
cessfully detecting key instances is more likely to achieve better bag label
predictions. We will show how to modify the embedding-level approach to
be interpretable by using a new MIL pooling.

2.2.2 MIL with Neural Networks

In classical MIL problems it is assumed that instances are represented
by features that do not require further processing, i.e., f is the identity.
However, for some tasks like image or text analysis additional steps of
feature extraction are necessary. Additionally, Theorem 1 and 2 indicate
that for a flexible enough class of functions we can model any permutation-
invariant score function. Therefore, we consider a class of transformations
that are parameterized by neural networks fψ(·) with parameters ψ that
transform the k-th instance into a low-dimensional embedding, hk = fψ(xk),
where hk ∈ H such that H = [0,1] for the instance-based approach and
H =RM for the embedding-based approach.

Eventually, the parameter θ(X ) is determined by a transformation gφ :
H K → [0,1]. In the instance-based approach the transformation gφ is
simply the identity, while in the embedding-based approach it could be
also parameterized by a neural network with parameters φ. The former
approach is depicted in Figure 2.6(a) and the latter in Figure 2.6(b) in the
Appendix.

The idea of parameterizing all transformations using neural networks is
very appealing because the whole approach can be arbitrarily flexible, and
it can be trained end-to-end by backpropagation. The only restriction is
that the MIL pooling must be differentiable.

2.2.3 MIL pooling

The formulation of the MIL problem requires the MIL pooling σ to be
permutation-invariant. As shown in Theorem 1 and 2, there are two MIL
pooling operators that ensure the score function (i.e., the bag probability)
to be a symmetric function, namely, the maximum operator:

∀m=1,...,M : zm = max
k=1,...,K

{hkm}, (2.5)

and the mean operator:2

z= 1
K

K∑︂
k=1

hk. (2.6)

In fact, other operators could be used such as, the convex maximum op-
erator (i.e., log-sum-exp) [Ramon and De Raedt, 2000], Integrated Seg-
mentation and Recognition [Keeler et al., 1991], noisy-or [Maron and

2Note that the weight 1
K can be seen as a part of the f function.
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Lozano-Pérez, 1998] and noisy-and [Kraus et al., 2016]. These MIL pooling
operators could replace max in Theorem 2 and proofs would follow similarly
(see Supplementary in Qi et al. [2017] for a detailed proof for the maximum
operator). These operators are differentiable; hence, they could be easily
used as a MIL pooling layer in a deep neural network architecture.

2.2.4 Attention-based MIL pooling

All MIL pooling operators mentioned in the previous section have a clear
disadvantage: they are pre-defined and non-trainable. For instance, the
max-operator could be a good choice in the instance-based approach, but
it might be inappropriate for the embedding-based approach. Similarly,
the mean operator is a bad MIL pooling to aggregate instance scores,
although it could succeed in calculating the bag representation. Therefore,
a flexible and adaptive MIL pooling could potentially achieve better results
by adjusting to a task and data. Ideally, such MIL pooling should also be
interpretable, a trait that is missing in all operators mentioned in Section
2.2.3.

Attention mechanism We propose to use a weighted average of in-
stances (low-dimensional embeddings) where weights are determined by a
neural network. Additionally, the weights must sum to 1 to be invariant
to the size of a bag. The weighted average fulfills the requirements of the
Theorem 1 where the weights together with the embeddings are part of the
f function. Let H = {h1, . . . ,hK } be a bag of K embeddings, then we propose
the following MIL pooling:

z=
K∑︂

k=1

akhk, (2.7)

where:

ak =
exp

{︁
w⊤

k tanh
(︁
Vh⊤

k
)︁}︁

∑︁K
j=1 exp

{︂
w⊤

j tanh
(︂

Vh⊤
j

)︂}︂ , (2.8)

where ∀k=1,...,K wk ∈ RL×1 and V ∈ RL×M are parameters. Moreover, we
utilize the hyperbolic tangent tanh(·) element-wise non-linearity to include
both negative and positive values for proper gradient flow. The proposed
construction allows to discover (dis)similarities among instances.

Interestingly, the proposed MIL pooling corresponds to a version of the
attention mechanism [Lin et al., 2017, Raffel and Ellis, 2016]. The main
difference is that all instances are sequentially dependent for the attention
mechanism, while we assume that all instances are independent. There-
fore, a naturally arising question is whether the attention mechanism
could work without sequential dependencies among instances and if it will
not learn the mean operator. We will address this issue in the experiments.

Gated attention mechanism Furthermore, we notice that the tanh(·)
non-linearity could be inefficient to learn complex relations. Our concern
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follows from the fact that tanh(x) is approximately linear for x ∈ [−1, 1],
which could limit the final expressiveness of learned relations among
instances. Therefore, we propose to additionally use the gating mechanism
[Dauphin et al., 2017] together with tanh(·) non-linearity that yields:

ak =
exp

{︁
w⊤

k
(︁
tanh

(︁
Vh⊤

k
)︁⊙sigm

(︁
Uh⊤

k
)︁)︁}︁

∑︁K
j=1 exp

{︂
w⊤

j

(︂
tanh

(︂
Vh⊤

j

)︂
⊙sigm

(︂
Uh⊤

j

)︂)︂}︂ , (2.9)

where U ∈RL×M are parameters, ⊙ is an element-wise multiplication and
sigm(·) is the sigmoid non-linearity. The gating mechanism introduces a
learnable non-linearity that potentially removes the troublesome linearity
in tanh(·).

Flexibility In principle, the proposed attention-based MIL pooling al-
lows to assign different weights to instances within a bag. Hence, the
final representation of the bag could be highly informative for the bag-
level classifier. In other words, it should be able to find key instances.
Moreover, applying the attention-based MIL pooling together with the
transformations f and g parameterized by neural networks makes the
whole model fully differentiable and adaptive. These two facts make the
proposed MIL pooling a potentially very flexible operator that could model
an arbitrary permutation-invariant score function. The proposed attention
mechanism, together with a deep MIL model, is depicted in Figure 2.6(c)
in the Appendix.

Interpretability Ideally, in the case of a positive label (Y = 1), high
attention weights should be assigned to instances that are likely to have
label yk = 1 (key instances). Namely, the attention mechanism allows an
interpretation of the provided decision in terms of instance-level labels
easily. The attention network does not provide scores as the instance-
based classifier does, but it can be considered a proxy. The attention-based
MIL pooling bridges the instance-level approach and the embedding-level
approach.

From the practical point of view, e.g., in the computational pathology, it
is desirable to provide ROIs together with the final diagnosis to a doctor.
Therefore, the attention mechanism is potentially of great interest in
practical applications.

2.3 Related work

MIL pooling Typically, MIL approaches utilize either the mean pooling
or the max pooling, while the latter is mostly used [Feng and Zhou, 2017,
Pinheiro and Collobert, 2015, Zhu et al., 2017]. Both operators are non-
trainable which potentially limits their applicability. Some other MIL
pooling operators contain global adaptive parameters, such as noisy-and
[Kraus et al., 2016]. However, their flexibility is restricted. We propose a
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fully trainable MIL pooling that adapts to new instances.
MIL with neural networks In the classical work on MIL, it is assumed

that pre-computed features represent instances, and there is very little
need to apply additional feature extraction. Nevertheless, recent work on
utilizing fully-connected neural networks in MIL shows that it could still
be beneficial [Wang et al., 2016]. Similarly, in computer vision, the idea
of MIL combined with deep learning significantly improves final accuracy
[Oquab et al., 2014]. In this paper, we follow this line of research since it
allows us to apply a flexible class of transformations that can be trained
end-to-end by backpropagation.

MIL and attention The attention mechanism is widely used in deep
learning for image captioning [Xu et al., 2015] or text analysis [Bahdanau
et al., 2014, Lin et al., 2017]. For the MIL problem, it has rarely been
used and only in a limited form. In Pappas and Popescu-Belis [2014] an
attention-based MIL was proposed, but attention weights were trained
as parameters of an auxiliary linear regression model. This idea was
further expanded, and the linear regression model was replaced by a
one-layer neural network with single output [Pappas and Popescu-Belis,
2017]. The attention-based MIL operator was used very recently in Qi
et al. [2017]. However, the attention was calculated using the dot product,
and it performed worse than the max operator. Here, we propose to use a
two-layered neural network to learn the MIL operator, and we show that
it outperforms commonly used MIL pooling operators.

MIL for medical imaging The MIL seems to perfectly fit medical imag-
ing where processing a whole image consisting of billions of pixels is
computationally infeasible. Moreover, in the medical domain, it is very la-
borious to obtain pixel-level annotations. Therefore, it is tempting to divide
a medical image into smaller patches treated as a bag with a single label
[Quellec et al., 2017]. This idea attracts great interest in computational
histopathology, where patches could correspond to cells that indicate malig-
nant changes [Sirinukunwattana et al., 2016]. Different MIL approaches
were used for histopathology data, such as Gaussian processes [Kandemir
et al., 2014, 2016] or a two-stage approach with neural networks and EM
algorithm to determine instance classes [Hou et al., 2016]. Other appli-
cations of MIL methods in medical imaging are mammography (nodule)
classification [Zhu et al., 2017] and microscopy cell detection [Kraus et al.,
2016]. In this paper, we show that the proposed attention-based deep MIL
approach can be used to provide the final diagnosis and indicate ROIs in a
histopathology slide.
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2.4 Experiments

In the experiments, we aim at evaluating the proposed approach: a MIL
model parameterized with neural networks and a (gated) attention-based
pooling layer (’Attention’ and ’Gated-Attention’). We evaluate our approach
on a number of different MIL datasets: five MIL benchmark datasets
(MUSK1, MUSK2, FOX, TIGER, ELEPHANT), an MNIST-based image
dataset (MNIST-BAGS) and two real-life histopathology datasets (BREAST

CANCER, COLON CANCER). We want to verify two research questions in
the experiments: (i) whether our approach achieves the best performance
or is comparable to the best performing method, (ii) if our method can
provide interpretable results by using the attention weights that indicate
key instances or ROIs.

To obtain a fair comparison, we use a common evaluation methodology,
i.e., 10-fold-cross-validation, and five repetitions per experiment. In the
case of MNIST-BAGS, we use a fixed division into training and test set.
To create test bags, we solely sampled images from the MNIST test set.
During training, we only used images from the MNIST training set. For
all experiments, we use modified versions of models that have shown high
classification performance on the individual datasets [Wang et al., 2016,
LeCun et al., 1998, Sirinukunwattana et al., 2016]. The MIL pooling
layers are either located before the last layer of the model (the embedded-
based approach) or after the last layer of the model (the instance-based
approach). If an attention-based MIL pooling layer is used, the number
of parameters in U was determined using a validation set. We tested the
following dimensions (L): 64, 128, and 256. The different dimensions only
resulted in minor changes in the model’s performance. For layers using the
gated attention mechanism, U and V have the same number of parameters.
Finally, all layers were initialized according to Glorot and Bengio [2010]
and biases were set to zero.

We compare our approach to various MIL methods on MIL benchmark
datasets. On the image datasets, our method is compared with instance-
level and embedding-level neural networks and commonly used MIL pool-
ing layers (max and mean). In the following, we use ’Instance+max/mean’
and ’Embedding+max/mean’ to indicate networks built from convolutional
and fully-connected layers. In contrast to networks purely build from
fully-connected layers, referred to as ’mi-Net’ and ’MI-Net’ [Wang et al.,
2016].

On MNIST-BAGS we include a SVM-based MIL model, called (MI-SVM).
We do not present results of MI-SVM on the histopathology datasets since
we could not train (including hyperparameter search and five times 10-fold-
cross-validation procedure) the model in a reasonable amount of time.3

3Learning a single MI-SVM took approximately one week due to the large number
of patches.
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To compare the bag level performance, we use the following metrics: the
classification accuracy, precision, recall, F-score, and the Area Under the
receiver operating characteristic Curve (AUC).

2.4.1 Classical MIL datasets

Details In the first experiment, we aim at verifying whether our approach
can compete with the best MIL methods on historically important bench-
mark datasets. Since all five datasets contain pre-computed features and
only a small number of instances and bags, neural networks are most likely
not well suited. First we predict drug activity (MUSK1 and MUSK2). A
molecule has the desired drug effect if and only if one or more of its confor-
mations bind to the target binding site. Since molecules can adopt multiple
shapes, a bag is composed of shapes belonging to the same molecule [Diet-
terich et al., 1997]. The three remaining datasets, ELEPHANT, FOX and
TIGER, contain features extracted from images. Each bag consists of a
set of segments of an image. For each category, positive bags are images
that contain the animal of interest, and negative bags are images that
contain other animals [Andrews et al., 2003]. For detailed information on
the number of bags, instances, and features in each dataset, see Section
2.6.3 in the Appendix.

In our experiments we use the same architecture, optimizer and hyper-
parameters as in the MI-Net model [Wang et al., 2016].

Table 2.1. Results on classical MIL datasets. Experiments were run 5 times and an
average of the classification accuracy (± a standard error of a mean) is reported.
[1] [Andrews et al., 2003], [2] [Gärtner et al., 2002], [3] [Zhang and Goldman,
2002] [4] [Zhou et al., 2009] [5] [Wei et al., 2017] [6] [Wang et al., 2016]

METHOD MUSK1 MUSK2 FOX TIGER ELEPHANT

mi-SVM [1] 0.874±N/A 0.836±N/A 0.582±N/A 0.784±N/A 0.822±N/A

MI-SVM [1] 0.779±N/A 0.843±N/A 0.578±N/A 0.840±N/A 0.843±N/A

MI-Kernel [2] 0.880±0.031 0.893±0.015 0.603±0.028 0.842±0.010 0.843±0.016

EM-DD [3] 0.849±0.044 0.869±0.048 0.609±0.045 0.730±0.043 0.771±0.043

mi-Graph [4] 0.889±0.033 0.903±0.039 0.620±0.044 0.860±0.037 0.869±0.035

miVLAD [5] 0.871±0.043 0.872±0.042 0.620±0.044 0.811±0.039 0.850±0.036

miFV [5] 0.909±0.040 0.884±0.042 0.621±0.049 0.813±0.037 0.852±0.036

mi-Net [6] 0.889±0.039 0.858±0.049 0.613±0.035 0.824±0.034 0.858±0.037

MI-Net [6] 0.887±0.041 0.859±0.046 0.622±0.038 0.830±0.032 0.862±0.034

MI-Net with DS [6] 0.894±0.042 0.874±0.043 0.630±0.037 0.845±0.039 0.872±0.032

MI-Net with RC [6] 0.898±0.043 0.873±0.044 0.619±0.047 0.836±0.037 0.857±0.040

Attention 0.892±0.040 0.858±0.048 0.615±0.043 0.839±0.022 0.868±0.022

Gated-Attention 0.900±0.050 0.863±0.042 0.603±0.029 0.845±0.018 0.857±0.027

Results and discussion The results of the experiment are presented in
Table 2.1. Our approaches (Attention and Gated-Attention) are comparable
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with the best performing classical MIL methods (notice the standard error
of the mean).

2.4.2 MNIST-bags

Details The main disadvantage of the classical MIL benchmark datasets
is that pre-computed features represent instances. To consider a more
challenging scenario, we propose investigating a dataset created using the
well-known MNIST image dataset. A bag comprises a random number of
28×28 grayscale images taken from the MNIST dataset. The number of
images in a bag is Gaussian-distributed, and the closest integer value is
taken. A bag is given a positive label if it contains one or more images
labeled ’9’. We chose ’9’ since it can be easily mistaken with ’7’ or ’4’. We
investigate the influence of the number of bags in the training set and
the average number of instances per bag on the prediction performance.
During the evaluation, we use a fixed number of 1000 test bags. For all
experiments a LeNet5 model is used [LeCun et al., 1998], see Table 2.8 and
2.9 in the Appendix. The models are trained with the Adam optimization
algorithm [Kingma and Ba, 2015]. We keep the default parameters for
β1 and β2, see Table 2.10 in the Appendix. In addition, we compare our
method with a SVM-based MIL method (MI-SVM) [Andrews et al., 2003]
that uses a Gaussian kernel on raw pixel features4.

In the experiments, we use different numbers of the mean bag size,
namely, 10, 50, and 100, and the variance 2,10,20, respectively. Moreover,
we use varying numbers of training bags, i.e., 50,100,150,200,300,400,500.
These different settings allow us to verify how a different number of train-
ing bags and a different number of instances influence MIL models. We
compare instance-based and embedding-based approaches parameterized
with a neural network (LeNet5) with mean and max MIL pooling. We use
AUC as the evaluation metric.

Results and discussion The results of AUC for the mean bag sizes
equal to 10, 50 and 100 are presented in Figure 2.1, 2.2 and 2.3, respec-
tively, and detailed results are given in the Appendix. The findings of the
experiment are the following: First, the proposed attention-based deep MIL
approach performs much better than other methods in the small sample
size regime. Moreover, when there is a small effective size of the training
set that corresponds to 50-150 bags for around 10 instances per bag (see
Figure 2.1) or 50-100 bags in the case of on average 50 instances in a bag
(see Figure 2.2), our method still achieves significantly higher AUC than
all other methods. Second, we notice that our approach is more flexible and
obtained better results than the SVM-based approach in all cases except
large effective sample sizes (see Figure 2.3). Third, the embedding-based

4We use code provided with [Doran and Ray, 2014]: https://github.com/

garydoranjr/misvm
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Figure 2.1. The test AUC for MNIST-BAGS with on average 10 instances per bag.

Figure 2.2. The test AUC for MNIST-BAGS with on average 50 instances per bag.
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Figure 2.3. The test AUC for MNIST-BAGS with on average 100 instances per bag.

models performed better than the instance-based models. However, for a
sufficient number of training images (number of training bags and train-
ing instances per bag) all models achieve very similar results. Fourth,
the mean operator performs significantly worse than the max operator.
However, the embedding-based model with the mean operator converged
eventually to the best value but always later than the one with max. See
Section 2.6.4 in the Appendix for details.

The results of this experiment indicate that for a small sample size
regime, our approach is preferable to others. Since attention serves as
a gradient update filter during backpropagation [Wang et al., 2017], in-
stances with higher weights will contribute more to learning the encoder
network of instances. This is especially important since medical imaging
problems contain only a small number of cases. The more instances are in
a bag, the easier the MIL task becomes since the MIL assumption states
that every instance in a negative bag is negative. For example, a negative
bag of size 100 from the MNIST-bags dataset will include about 11 negative
examples per class.

Finally, we present an exemplary result of the attention mechanism in
Figure 2.4. In this example, a bag consists of 13 images. For each digit, the
corresponding attention weight is given by the trained network. The bag
is correctly predicted as positive, and all nines are correctly highlighted.
Hence, the attention mechanism works as expected. More examples are
given in the Appendix.
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a1=0.00002 a2=0.22608 a3=0.00001 a4=0.00008 a5=0.00001 a6=0.24766 a7=0.00008

a8=0.00002 a9=0.28002 a10=0.00006 a11=0.00006 a12=0.00009 a13=0.24581

Figure 2.4. Example of attention weights for a positive bag.

2.4.3 Histopathology datasets

Details An automatic detection of cancerous regions in Hematoxylin and
Eosin (H&E) stained whole-slide images is a task with high clinical rele-
vance. Current supervised approaches utilize pixel-level annotations [Lit-
jens et al., 2017]. However, data preparation requires a significant amount
of time from pathologists, interfering with their daily routines. Hence, a
successful solution working with weak labels would hold a great promise to
reduce the workload of the pathologists. In the following, we perform two
experiments on classifying weakly-labeled real-life histopathology images
of the breast cancer dataset (BREAST CANCER) [Gelasca et al., 2008] and
the colon cancer dataset (COLON CANCER) [Sirinukunwattana et al., 2016].

BREAST CANCER consists of 58 weakly labeled 896×768 H&E images.
An image is labeled malignant if it contains breast cancer cells. Otherwise,
it is benign. We divide every image into 32×32 patches. This results in 672
patches per bag. A patch is discarded if it contains 75% or more of white
pixels.

COLON CANCER comprises 100 H&E images. The images originate from
a variety of tissue appearances from both normal and malignant regions.
For every image, the majority of nuclei of each cell were marked. In
total, there are 22,444 nuclei with an associated class label, i.e. epithelial,
inflammatory, fibroblast, and miscellaneous. A bag is composed of 27×27
patches. Furthermore, a bag is given a positive label if it contains one or
more nuclei from the epithelial class. Tagging epithelial cells is highly
relevant from a clinical point of view since colon cancer originates from
epithelial cells [Ricci-Vitiani et al., 2007].

For both datasets we use the model proposed in Sirinukunwattana et al.
[2016] for the transformation f . All models are trained with the Adam
optimization algorithm [Kingma and Ba, 2015]. Due to the limited amount
of data samples in both datasets we performed data augmentation to
prevent overfitting. See the Appendix for further details.
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Table 2.2. Results on BREAST CANCER. Experiments were run 5 times and an average (±
a standard error of the mean) is reported.

METHOD ACCURACY PRECISION RECALL F-SCORE AUC

Instance+max 0.614±0.020 0.585±0.03 0.477±0.087 0.506±0.054 0.612±0.026

Instance+mean 0.672±0.026 0.672±0.034 0.515±0.056 0.577±0.049 0.719±0.019

Embedding+max 0.607±0.015 0.558±0.013 0.546±0.070 0.543±0.042 0.650±0.013

Embedding+mean 0.741±0.023 0.741±0.023 0.654±0.054 0.689±0.034 0.796±0.012

Attention 0.745±0.018 0.718±0.021 0.715±0.046 0.712±0.025 0.775±0.016

Gated-Attention 0.755±0.016 0.728±0.016 0.731±0.042 0.725±0.023 0.799±0.020

Table 2.3. Results on COLON CANCER. Experiments were run 5 times and an average (±
a standard error of the mean) is reported.

METHOD ACCURACY PRECISION RECALL F-SCORE AUC

Instance+max 0.842 ± 0.021 0.866 ± 0.017 0.816 ± 0.031 0.839 ± 0.023 0.914 ± 0.010
Instance+mean 0.772 ± 0.012 0.821 ± 0.011 0.710 ± 0.031 0.759 ± 0.017 0.866 ± 0.008

Embedding+max 0.824 ± 0.015 0.884 ± 0.014 0.753 ± 0.020 0.813 ± 0.017 0.918 ± 0.010
Embedding+mean 0.860 ± 0.014 0.911 ± 0.011 0.804 ± 0.027 0.853 ± 0.016 0.940 ± 0.010

Attention 0.904 ± 0.011 0.953 ± 0.014 0.855 ± 0.017 0.901 ± 0.011 0.968 ± 0.009
Gated-Attention 0.898 ± 0.020 0.944 ± 0.016 0.851 ± 0.035 0.893 ± 0.022 0.968 ± 0.010

Results and discussion We present results in Table 2.2 and 2.3 for BREAST

CANCER and COLON CANCER, respectively. First, we notice that the ob-
tained results confirm our findings in MNIST-BAGS experiment that our
approach outperforms all other methods. This trend is especially visible
in the small-sample size regime of the MNIST-BAGS. Surprisingly, the
embedding-based method with the max pooling failed almost completely
on BREAST CANCER. Still, this dataset is generally difficult due to the
high variability of slides and the small number of cases. The proposed
method is not only the most accurate, but it also received the highest recall.
A high recall is especially important in the medical domain since false
negatives could lead to severe consequences, including patient fatality. We
also notice that the gated-attention mechanism performs better than the
basic attention mechanism on BREAST CANCER while these two behave
similarly on COLON CANCER.

Eventually, we present the usefulness of the attention mechanism in
providing ROIs. In Figure 2.5 we show a histopathology image divided
into patches containing (mostly) single cells. We create a heatmap by mul-
tiplying patches by their corresponding attention weight. Although only
image-level annotations are used during training, there is a substantial
matching between the heatmap in Figure 2.5(d) and the ground truth in
Figure 2.5(c). Additionally, we notice that the instance-based classifier
tends to select only a small subset of positive patches (see Figure 2.10(e) in
Appendix) that confirms low instance accuracy of the instance-based ap-
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(a) (b)

(c) (d)

Figure 2.5. Visualization of the attention weights. (a) H&E stained histopathology image.
(b) 27×27 patches centered around all marked nuclei. (c) Ground truth:
Patches that belong to the class epithelial. (d) Heatmap: Every patch from (b)
multiplied by its corresponding attention weight, we rescaled the attention
weights using a′k = ak −min(a)/(max(a)−min(a)).

proach discussed in Kandemir and Hamprecht [2015]. For more examples,
please see the Appendix.

The obtained results again confirm that the proposed approach attains
high predictive performance and highlights ROIs correctly. Moreover, the
attention weights can be used to create a reliable heatmap.

2.5 Conclusion

In this paper, we proposed a flexible and interpretable MIL approach fully
parameterized by neural networks. We outlined the usefulness of deep
learning for modeling a permutation-invariant bag score function in terms
of the Fundamental Theorem of Symmetric Functions. Moreover, we pre-
sented a trainable MIL pooling based on the (gated) attention mechanism.
We showed empirically on five MIL datasets, one image corpora, and two
real-life histopathology datasets that our method is on a par with the best
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performing methods or performs the best in terms of different evaluation
metrics. Additionally, we showed that our approach provides an interpre-
tation of the decision by presenting ROIs, which is extremely important in
many practical applications.

We strongly believe that the presented line of research is worth pursuing
further. Here we focused on a binary MIL problem. However, the multi-
class MIL is more interesting and challenging [Feng and Zhou, 2017].
Moreover, in some applications it is worth to consider repulsion points
[Scott et al., 2005], i.e., instances for which a bag is always negative, or
assume dependencies among instances within a bag [Zhou et al., 2009].
We leave investigating these issues for future research.
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2.6 Appendix

2.6.1 Deep MIL approaches

In Figure 2.6 we present three deep MIL approaches discussed in the
paper.

(a)

(b)

(c)

Figure 2.6. Deep MIL approaches. (a) the instance-based approach, (b) the embedding-
based approach, (c) the proposed approach with the attention mechanism as
the MIL pooling. Red color corresponds to instance scores, blue color depicts a
bag vector representation. Best viewed in color.

2.6.2 Code

The implementation of our methods is available online at https://github.

com/AMLab-Amsterdam/AttentionDeepMIL. All experiments were run on NVIDIA
TITAN X Pascal with a batch size of 1 (= 1 bag) for all datasets.

2.6.3 Classical MIL datasets

Additional details In Table 2.1 a general description of the five benchmark
MIL datasets used in the experiments is given. In Tables 2.5 and 2.6
we present architectures of the embedding-based and the instance-based
models, respectively. We denote a fully-connected layer by ’fc’, and the
number of output hidden units is provided after a dash. The ReLU non-
linearity was used. In Table 2.7 the details of the optimization (learning)
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procedure are given. We provide values of hyperparameters determined by
the model selection procedure for which the highest validation performance
was achieved.
Table 2.4. Overview of classical MIL datasets.

Dataset # of bags # of instances # of features

Musk1 92 476 166
Musk2 102 6598 166
Tiger 200 1220 230
Fox 200 1302 230

Elephant 200 1391 230

Table 2.5. Classical MIL datasets: The embedding-based model architecture [Wang et al.,
2016].

Layer Type

1 fc-256 + ReLU

2 dropout
3 fc-128 + ReLU

4 dropout
5 fc-64 + ReLU

6 dropout
7 mil-max/mil-mean/mil-attention-64
8 fc-1 + sigm

Table 2.6. Classical MIL datasets: The instance-based model architecture [Wang et al.,
2016].

Layer Type

1 fc-256 + ReLU

2 dropout
3 fc-128 + ReLU

4 dropout
5 fc-64 + ReLU

6 dropout
7 fc-1 + sigm

8 mil-max/mil-mean

2.6.4 MNIST-bags

Additional details In Tables 2.8 and 2.9 we present architectures of the
embedding-based and the instance-based models for MNIST-BAGS, respec-
tively. We denote a convolutional layer by ’conv’. In brackets, we provide
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Table 2.7. Classical MIL datasets: The optimization procedure details [Wang et al., 2016].

Experiment Optimizer Momentum Learning rate Weight decay Epochs Stopping criteria

Musk1 SGD 0.9 0.0005 0.005 100 lowest validation error and loss
Musk2 SGD 0.9 0.0005 0.03 100 lowest validation error and loss
Tiger SGD 0.9 0.0001 0.01 100 lowest validation error and loss
Fox SGD 0.9 0.0005 0.005 100 lowest validation error and loss

Elephant SGD 0.9 0.0001 0.005 100 lowest validation error and loss

kernel size, stride, and padding. Kernels are provided after a dash. The
convolutional max-pooling layer is denoted by ’maxpool’, and the pooling
size is given in brackets. The ReLU non-linearity was used. In Table 2.10
the details of the optimization (learning) procedure for deep MIL approach
are given. The details of the SVM are given in Table 2.11. We provide
values of hyperparameters determined by the model selection procedure
for which the highest validation performance was achieved.

Table 2.8. MNIST-bags: The embedding-based model architecture [LeCun et al., 1998].

Layer Type

1 conv(5,1,0)-20 + ReLU

2 maxpool(2,2)
3 conv(5,1,0)-50 + ReLU

4 maxpool(2,2)
5 fc-500 + ReLU

6 mil-max/mil-mean/mil-attention-128
7 fc-1 + sigm

Table 2.9. MNIST-bags: The instance-based model architecture [LeCun et al., 1998].

Layer Type

1 conv(5,1,0)-20 + ReLU

2 maxpool(2,2)
3 conv(5,1,0)-50 + ReLU

4 maxpool(2,2)
5 fc-500 + ReLU

6 fc-1 + sigm

7 mil-max/mil-mean

Table 2.10. MNIST-bags: The optimization procedure details.

Experiment Optimizer β1, β2 Learning rate Weight decay Epochs Stopping criteria

All Adam 0.9, 0.999 0.0005 0.0001 200 lowest validation error+loss

Additional results In Tables 2.12, 2.13 and 2.14 we present the test AUC
value for 10, 50 and 100 instances on average per a bag, respectively.
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Table 2.11. MNIST-bags: SVM configuration.

Model Features Kernel C γ Max iterations

MI-SVM Raw pixel values RBF 5 0.0005 200

In Figure 2.7 a negative bag is presented. In Figure 2.8 a positive bag
with a single ’9’ is given. In Figure 2.9 a positive bag with multiple ’9’s is
presented. In all figures attention weights are provided and in the case of
positive bags a red rectangle highlights positive instances.

Table 2.12. The test AUC for MNIST-BAGS with on average 10 instances per bag for
different numbers of training bags.

# train bags 50 100 150 200 300 400 500

Inst+max 0.553 ± 0.053 0.745 ± 0.100 0.960 ± 0.004 0.979 ± 0.001 0.984 ± 0.001 0.986 ± 0.001 0.986 ± 0.001
Inst+mean 0.663 ± 0.014 0.676 ± 0.012 0.694 ± 0.010 0.694 ± 0.017 0.709 ± 0.020 0.693 ± 0.023 0.712 ± 0.018

MI-SVM 0.697 ± 0.054 0.851 ± 0.009 0.862 ± 0.008 0.898 ± 0.014 0.926 ± 0.004 0.942 ± 0.002 0.948 ± 0.002
Embed+max 0.713 ± 0.016 0.914 ± 0.011 0.954 ± 0.005 0.968 ± 0.001 0.980 ± 0.001 0.981 ± 0.003 0.986 ± 0.002

Embed+mean 0.695 ± 0.026 0.841 ± 0.027 0.926 ± 0.004 0.953 ± 0.004 0.974 ± 0.002 0.980 ± 0.001 0.984 ± 0.002

Attention 0.768 ± 0.054 0.948 ± 0.007 0.949 ± 0.006 0.970 ± 0.003 0.980 ± 0.000 0.982 ± 0.001 0.986 ± 0.001
Gat Attention 0.753 ± 0.054 0.916 ± 0.013 0.955 ± 0.003 0.974 ± 0.002 0.980 ± 0.004 0.983 ± 0.002 0.987 ± 0.001

Table 2.13. The test AUC for MNIST-BAGS with on average 50 instances per bag for
different numbers of training bags.

# train bags 50 100 150 200 300 400 500

Inst+max 0.576 ± 0.059 0.715 ± 0.096 0.937 ± 0.045 0.992 ± 0.002 0.994 ± 0.001 0.997 ± 0.001 0.997 ± 0.001
Inst+mean 0.737 ± 0.014 0.744 ± 0.029 0.824 ± 0.012 0.813 ± 0.030 0.722 ± 0.021 0.728 ± 0.017 0.798 ± 0.011

MI-SVM 0.824 ± 0.067 0.946 ± 0.004 0.959 ± 0.002 0.967 ± 0.002 0.975 ± 0.001 0.976 ± 0.001 0.979 ± 0.001
Embed+max 0.872 ± 0.039 0.984 ± 0.005 0.992 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.997 ± 0.001 0.997 ± 0.001

Embed+mean 0.841 ± 0.013 0.906 ± 0.046 0.983 ± 0.005 0.992 ± 0.001 0.996 ± 0.001 0.997 ± 0.001 0.997 ± 0.001

Attention 0.967 ± 0.010 0.982 ± 0.003 0.990 ± 0.002 0.993 ± 0.002 0.989 ± 0.003 0.994 ± 0.001 0.995 ± 0.001
Gat Attention 0.920 ± 0.042 0.977 ± 0.006 0.993 ± 0.003 0.991 ± 0.002 0.994 ± 0.002 0.995 ± 0.001 0.996 ± 0.001

Table 2.14. The test AUC for MNIST-BAGS with on average 100 instances per bag for
different numbers of training bags.

# train bags 50 100 150 200 300 400 500

Inst+max 0.543 ± 0.054 0.804 ± 0.107 0.899 ± 0.086 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Inst+mean 0.842 ± 0.023 0.855 ± 0.025 0.824 ± 0.014 0.896 ± 0.037 0.859 ± 0.029 0.899 ± 0.012 0.868 ± 0.016

MI-SVM 0.871 ± 0.060 0.991 ± 0.002 0.994 ± 0.002 0.996 ± 0.001 0.997 ± 0.001 0.998 ± 0.001 0.998 ± 0.001
Embed+max 0.977 ± 0.009 0.999 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Embed+mean 0.959 ± 0.010 0.990 ± 0.003 0.998 ± 0.001 0.900 ± 0.089 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Attention 0.996 ± 0.001 0.998 ± 0.001 0.999 ± 0.000 0.998 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Gat Attention 0.998 ± 0.001 0.999 ± 0.000 0.998 ± 0.001 0.998 ± 0.001 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
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a1=0.08884 a2=0.09065 a3=0.11254 a4=0.07189 a5=0.05136 a6=0.03091

a7=0.07404

a8=0.07412 a9=0.16541 a10=0.02777 a11=0.11683 a12=0.04244 a13=0.0532

Figure 2.7. Example of attention weights for a negative bag.

a1=0.00019 a2=0.00011 a3=0.00055 a4=0.00032

a5=0.00041 a6=0.9981 a7=0.00017 a8=0.00017

Figure 2.8. Example of attention weights for a positive bag containing a single ’9’.

a1=0.00002 a2=0.22608 a3=0.00001 a4=0.00008 a5=0.00001 a6=0.24766

a7=0.00008

a8=0.00002 a9=0.28002 a10=0.00006 a11=0.00006 a12=0.00009 a13=0.24581

Figure 2.9. Example of attention weights for a positive bag containing multiple ’9’s.
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2.6.5 Histopathology datasets

Data augmentation We randomly adjust the amount of H&E by decom-
posing the RGB color of the tissue into the H&E color space [Ruifrok and
Johnston, 2001], followed by multiplying the magnitude of H&E for a pixel
by two i.i.d. Gaussian random variables with expectation equal to one.
We randomly rotate and mirror every patch. Lastly, we perform color
normalization on every patch.

Additional details In Tables 2.15 and 2.16 we present architectures of
the embedding-based and the instance-based models for histopathology
datasets, respectively. In Table 2.17 the details of the optimization (learn-
ing) procedure for deep MIL approach are given. We provide values of
hyperparameters determined by the model selection procedure for which
the highest validation performance was achieved.

Table 2.15. Histopathology: The embedding-based model architecture [Sirinukunwattana
et al., 2016].

Layer Type

1 conv(4,1,0)-36 + ReLU

2 maxpool(2,2)
3 conv(3,1,0)-48 + ReLU

4 maxpool(2,2)
5 fc-512 + ReLU

6 dropout
7 fc-512 + ReLU

8 dropout
9 mil-max/mil-mean/mil-attention-128

10 fc-1 + sigm

Table 2.16. Histopathology: The instance-based model architecture [Sirinukunwattana
et al., 2016].

Layer Type

1 conv(4,1,0)-36 + ReLU

2 maxpool(2,2)
3 conv(3,1,0)-48 + ReLU

4 maxpool(2,2)
5 fc-512 + ReLU

6 dropout
7 fc-512 + ReLU

8 dropout
9 fc-1 + sigm

10 mil-max/mil-mean
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Table 2.17. Histopathology: The optimization procedure details.

Experiment Optimizer β1, β2 Learning rate Weight decay Epochs Stopping criteria

All Adam 0.9, 0.999 0.0001 0.0005 100 lowest validation error+loss

Additional results In Figures 2.10, 2.11 and 2.12 five images are pre-
sented: (a) a full H&E image, (b) all patches containing cells, (c) positive
patches, (d) a heatmap given by the attention mechanism, (e) a heatmap
given by the Instance+max.

(a) (b) (c) (d)

(e)

Figure 2.10. Colon cancer example 1. (a) H&E stained histopathology image. (b) 27×27
patches centered around all marked nuclei. (c) Ground truth: Patches that
belong to the class epithelial. (d) Attention heatmap: Every patch from (b)
multiplied by its attention weight. (e) Instance+max heatmap: Every patch
from (b) multiplied by its score from the Instance+max model. We rescaled
the attention weights and instance scores using a′k = ak −min(a)/(max(a)−
min(a)).
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(a) (b) (c) (d)

(e)

Figure 2.11. Colon cancer example 2. (a) H&E stained histopathology image. (b) 27×27
patches centered around all marked nuclei. (c) Ground truth: Patches that
belong to the class epithelial. (d) Attention heatmap: Every patch from (b)
multiplied by its attention weight. (e) Instance+max heatmap: Every patch
from (b) multiplied by its score from the Instance+max model. We rescaled
the attention weights and instance scores using a′k = ak −min(a)/(max(a)−
min(a)).

(a) (b) (c) (d)

(e)

Figure 2.12. Colon cancer example 3. (a) H&E stained histopathology image. (b) 27×27
patches centered around all marked nuclei. (c) Ground truth: Patches that
belong to the class epithelial. (d) Attention heatmap: Every patch from (b)
multiplied by its attention weight. (e) Instance+max heatmap: Every patch
from (b) multiplied by its score from the Instance+max model. We rescaled
the attention weights and instance scores using a′k = ak −min(a)/(max(a)−
min(a)).
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3. Selecting Data Augmentation for
Simulating Interventions

In the previous section, we have shown how to enforce invariance with
respect to a specific symmetry group by altering the architecture of a
deep learning model. However, for many practical applications, one of the
following two problems arises: (i) the required symmetry is not a group,
but a semigroup, (ii) no architecture exists that can enforce the required
symmetry.

In applications like this, data augmentation can often be used to enforce
approximate invariance. In contrast to group-equivariant neural networks,
see Section 1.2.1, data augmentation can be used to enforce invariance
with respect to semigroups like color transformations and occlusion. Since
data augmentation is a transformation of the input, it is independent of
the architecture of the deep learning model.

The present section will show that data augmentation is a powerful
tool to train machine learning models that generalize across domains.
By adopting a causal point of view, we can relate data augmentation to
interventions. As a result, we can explain the success of data augmentation
from a causal perspective by connecting the two notions of invariance
introduced in Section 1.

3.1 Introduction

Despite recent advancements in machine learning fueled by deep learning,
studies like Azulay and Weiss [2019] have shown that deep learning meth-
ods may not generalize to inputs from outside of their training distribution.
In safety-critical fields like medical imaging, robotics, and self-driving cars,
machine learning models must be robust to changes in the environment.
Without the ability to generalize, machine learning models cannot be safely
deployed in the real world.

In the field of domain generalization, one tries to find a representation
that generalizes across different environments, called domains, each with
a distinct shift of the input. This problem is especially challenging when
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changes in the domain are spuriously correlated with changes in the actual
task labels, e.g., due to a biased data gathering process. An example is
given by Arjovsky et al. [2020]: If we consider a dataset of images of cows
and camels in their natural habitat, then there is a strong correlation
between the type of animal and the landscape in the image, e.g., a camel
standing in a desert. If we now train a machine learning model to predict
the animal in a given image, the model is prone to exploit the spurious
correlation between the type of animal and the type of landscape. As a
result, the model can fail to recognize a camel standing in a green pasture
or a cow standing in a desert.

A large corpus of methods designed to learn representations that will
generalize across domains has been formulated in recent years. While the
proposed methods can achieve good results on various domain generaliza-
tion benchmarks, most lack a theoretical foundation. In the worst-case
scenario, these methods enforce the wrong type of invariance, as proven
in Appendix 3.6.8 . Researchers have found a practical way of dealing
with the spurious correlation between domains and the actual task, es-
pecially in more applied fields, like medical imaging and robotics. Data
augmentation in combination with Empirical Risk Minimization (ERM)
[Vapnik, 1992] is used to enforce invariance of the machine learning model
to changes in the domain. The appropriate data augmentation is selected
using prior knowledge. In Appendix 3.6.10, we give a detailed summary of
two successful applications of data augmentation in the context of domain
generalization.

However, the success of data augmentation is often described in vague
terms like ’artificially expanding labeled training datasets’ [Li, 2020] and
’reduce overfitting’ [Krizhevsky et al., 2012]. In this paper, we present a
causal perspective on data augmentation in the context of domain general-
ization and contribute to the field in the following manner:

• First, we introduce the concept of intervention-augmentation equiv-
ariance that formalizes the relationship between data augmentation
and interventions on features caused by the domain. We show that if
intervention-augmentation equivariance holds, we can use data augmen-
tation to simulate interventions using only observational data.

• Second, we derive a simple algorithm that can select data augmenta-
tion techniques from a given list of transformations. We compare our
approach to a variety of domain generalization methods on three do-
main generalization benchmarks. We demonstrate that we consistently
outperform all other methods.
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3.2 Method

3.2.1 Domain generalization

We first formalize the problem of domain generalization following the nota-
tions used in Muandet et al. [2013]. We assume that during training we
have access to samples S from N different domains, where S ={︁

Sd=i}︁N
i=1.

From each domain ni samples Sd=i ={︁
(xd=i

k , yd=i
k )

}︁ni

k=1 are included in the
training set. The training data is represented as tuples of the form (x, y,d)
sampled from the observational distribution p(x, y,d). The goal of domain
generalization is to develop machine learning methods that generalize
well to unseen domains. In order to test the ability of a machine learning
model to generalize, we use samples Sd=N+1 from a previously unseen test
domain d = N +1.

In this paper, we are interested in the general case where the observed
domains d and targets y are spuriously correlated in the training dataset,
i.e., where we might have p(y|d = i) ̸= p(y|d = j), i, j ∈ {1, . . . , N}. Since the cor-
relation between d and y is assumed to be spurious, it does not necessarily
hold for the test domain d = N +1.

3.2.2 Domain generalization and data augmentation from a
causal perspective

For readers unfamiliar with the concepts of causality, a brief introduction
of the causal concepts that are used throughout this paper can be found
in Appendix 3.6.7. For an in-depth introduction please see Pearl [2009] or
Peters et al. [2017].

First, we introduce a Structural Causal Model (SCM) in order to describe
what we believe in many cases reflects the underlying causal structure of
domain generalization problems. The SCM is shown in Figure 3.1 (right)

c

d

hd

y

hy

x

d := fD(c)

y := fY (c)

hd := fHd (d)

hy := fHy(y)

x := fX(hd,hy),
(3.1)

Figure 3.1. DAG and SCM with a hidden confounder.

where c is a hidden confounder (and a exogenous variable), d the domain,
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y the target, hd high-level features, e.g., color and orientation, caused by
d, hy high level-features, e.g., shape and texture, caused by y, and x the
input. We omit including noise variables for clarity. The corresponding
Directed Acyclic Graph (DAG) is shown in Figure 3.1 (left), where a grey
node means the variable is observed and a white node corresponds to a
latent (unobserved) variable. The presented DAG is similar to the ones
constructed in Subbaswamy and Saria [2019] and Castro et al. [2020]. In
Figure 3.1, the node c is a hidden confounder. The hidden confounder c
opens up a backdoor path (a non-causal path) d ←− c−→ y [Pearl, 2009]. This
path allows d to enter y trough the back door.

As a result, the domain d and the target y are in general no longer inde-
pendent, p(y,d) ̸= p(y)p(d). Since the high-level features, hd are children of
d, they are spuriously correlated with y as well, i.e., hd becomes predictive
of y. We now assume that we train a machine learning model using ERM
[Vapnik, 1992] and observational data generated from the DAG in Figure
3.1. The task is to predict y from x, which itself is anti-causal. Since d
and y are correlated, the machine learning model will likely rely on all
high-level features hd and hy to predict y. Furthermore, we assume that
the correlation of d and y is spurious. Therefore, it will not hold in general
and will break under intervention. A machine learning model relying on
high-level features hd that are caused by d is thus likely to generalize
poorly to unseen domains. Returning to our introductory example of classi-
fying animals in images, the hidden confounder can be used to model the
fact that there is a common cause for the type of animal and the landscape
in an image. For example, the confounder could be the country where a
particular image was taken, e.g., in Switzerland, we are more likely to see
a cow standing in a green pasture than a camel or a desert.

3.2.3 Simulating interventions

One possible approach to deal with the spurious correlations between d
and y is to intervene on d. Such an intervention would render d and y
independent. In Figure 3.2 (left), we see the same DAG as in Figure 3.1 but
after we intervened on d. We find that in Figure 3.2 (left) there is no more
arrow connecting the hidden confounder c and the domain d. The backdoor
path d ←− c−→ y has vanished. In the examples of animals and landscapes,
we would have to physically move a cow to a desert to intervene on the
domain d (the landscape). It becomes apparent that the interventions have
to happen in the real world and are not operations on the already gathered
observational data. In most domain generalization problems, it will not be
feasible to collect new data with specific interventions.

In Figure 3.2 (center) we present a second way of addressing the problem
of correlated variables d and y. In theory one could perform an intervention
on all high-level features hd, i.e., do(hd), since d affects x only indirectly
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via hd, in our example hd could represent the colors and textures of the
landscapes. Again, an intervention like this would need to happen during
the data collection process in the real world, e.g., by moving sand to a
pasture.

However, we argue that in certain cases we can simulate data from the
interventional distribution p(x, y|do(hd)) using data augmentation in com-
bination with observational data. For example, we could randomly perturb
the colors in the animal images. This type of augmentation simulates a
noise intervention on hd, i.e., do(hd = ξ), where ξ is sampled from a noise
distribution Nξ [Peters et al., 2016].

In theory, we could intervene on hd by setting hd to a fixed value instead
of performing a noise intervention. However, to simulate data from such
an interventional distribution using data augmentation, we would require
hd to be observed, which we argue is generally not the case. In Appendix
3.6.10, we describe that there exist data augmentation methods that try to
infer hd for each sample x before setting hd to a fixed value for all samples.
Yet, these augmentations seem to perform worse than randomly sampled
augmentations.

By augmenting only high-level features hd that are caused by d we
guarantee that the target y and features hy are unchanged. After data
augmentation the pairs (xaug, y) should closely resemble samples from the
interventional distribution p(x, y|do(hd)). In Figure 3.2 (right) we see that
we only require observational data from the DAG without any interven-
tions. While each augmented sample xaug individually can be seen as a
counterfactual, we argue that we effectively marginalize over the coun-
terfactual distribution by generating a multitude of augmented samples
xaug from each x. We argue that for correctly chosen data augmentation
we cannot distinguish the data generated by any of the three models in
Figure 3.2.

If we want to choose data augmentation xaug = aug(x), as a transformation
aug(·) applied to observed data x, such that it simulates an intervention
on the high-level features hd caused by d, one needs to make assumption
about the causal data generating process. Formally, we require that aug-
menting the data x to xaug = aug(x) commutes with an intervention do(hd)
prior to the data generation. We call this intervention-augmentation equiv-
ariance. In more formal detail, assume that we have the causal process
from Equation 3.1: x := fX(hd,hy). Then augmenting x via aug(·) does:

xaug = aug(x)

= aug( fX(hd,hy)). (3.2)

We then say that the causal process fX : Hd ×H y ↦→ X , is intervention-
augmentation equivariant if for every considered stochastic data augmen-
tation transformation aug(·) on x ∈X we have a corresponding noise inter-
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c

d

hd

y

hy

x

c

d

hd

y

hy

x

c

d

hd

y

hy

x

xaug

Figure 3.2. Left: DAG with hidden confounder after intervention on d. Center: DAG with
hidden confounder after intervention on hd . Interventional nodes are squared.
Right: DAG with hidden confounder plus data augmentation. Note that we do
not have to intervene in the system that generates the data in the latter case.
Data augmentation should be chosen in a way such that the augmented data
simulates data from the center or left DAG.

vention do(·) on hd ∈Hd such that:

aug( fX(hd,hy))= fX(do(hd),hy). (3.3)

The intervention-augmentation equivariance is expressed as a commuta-
tive diagram in Figure 3.3. We argue that by making strong assumptions
about the true causal process we need to first identify the high-level fea-
tures hd caused by d. Second, we have to choose data augmentation aug(x)
that commutes with a corresponding intervention do(hd) under the causal
process fX(hd,hy). A special case of intervention-augmentation equivari-

(hd,hy) x

(do(hd),hy) xaug

fX

augdo

fX

Figure 3.3. Intervention-augmentation equivariance expressed in a commutative dia-
gram.

ance occurs in the classical case of an G-equivariant map fX, where G
can be any (semi)group. For this to hold, we need G to act on the spaces
H y, Hd, X , and we need to make sure that G acts trivially on H y. So
any element g ∈G can transform elements x ∈X into g ·x ∈X , which we
will interpret as data augmentation, as demonstrated in Section 3.4. The
elements g ∈G also transform hd ∈Hd into g ·hd ∈Hd, which we consider
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as a special type of intervention. Furthermore, hy ∈H y are assumed to be
kept fixed g ·hy =hy for all g ∈G. So we put:

do(hd) := g ·hd, (3.4)

aug(x) := g ·x, (3.5)

where we assume that the elements g ∈ G are randomly sampled from
some distribution p(g) on G. In this setting, any G-equivariant map fX is
then automatically also intervention-augmentation equivariant, as can be
seen from:

aug(x)= g · fX(hd,hy) (3.6)

= fX(g ·hd, g ·hy) (3.7)

= fX(do(hd),hy), (3.8)

a linear example of intervention-augmentation equivariance can be found
in the Appendix.

In general, we find that the most frequently used data augmentations
can be expressed as simple group actions. For example, randomly ro-
tating the input image x can be understood as randomly sampling and
applying elements g from the two-dimensional rotation group SO(2) on
the two-dimensional pixel grid. Randomly changing the hue of an image
x corresponds to randomly sampling and applying elements g from the
two-dimensional rotation group SO(2), since hue can be represented as an
angle in color space. Applying random permutations to the color channels
of an image x is equivalent to randomly sampling and applying elements g
from permutation group S3, in the case of three separate color channels.

3.2.4 Selecting data augmentations for domain generalization

In Figure 3.2 (center), we see that if we successfully simulate an inter-
vention on hd using data augmentation the arrow from d to hd vanishes.
Based on this theoretical insight, we propose an algorithm that can select
data augmentation techniques to improve domain generalization instead
of manually choosing them. In the following, we will refer to the algorithm
as Select Data Augmentation (SDA). Similar to Cubuk et al. [2019], we
start with a list of data augmentation techniques including: ’brightness’,
’contrast’, ’saturation’, ’hue’, ’rotation’, ’translate’, ’scale’, ’shear’, ’vertical
flip’, and ’horizontal flip’. Since these transformations do not influence
each other, they can be tested separately. The hyperparameter for each
augmentation can be found in the Appendix. The proposed SDA algorithm
consists of three steps:

1. We divide all samples from the training domains into a training and
validation set.
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2. We train a classifier to predict the domain d from input x. During
training, we apply the first data augmentation in our list to the training
set samples. We save the domain accuracy on the validation set after
training. We repeat this step with all data augmentations in the list.

3. We select the data augmentation with the lowest domain accuracy
averaged over five seeds. If multiple data augmentations lie within the
standard error of the selected one, they are selected as well, i.e., there is
no statistically significant difference between the augmentations.

Intuitively, SDA will select data augmentation techniques that destroy
information about d in x. From a causal point of view, this is equivalent
to weaken the arrow from d to hd. In Appendix 3.6.2, we perform an abla-
tion study showing that SDA also reliably selects the most suitable data
augmentation if the list contains the same augmentation with different
hyperparameters.

There is one caveat, though. Throughout this entire section, we assume
that we are successfully augmenting all high-level features hd caused
by d. In a real-world application, we usually have no means to validate
this assumption. We might only augment a subset of hd. Furthermore,
we might even augment high-level features hy that are caused by the
target node y. Nonetheless, we argue there are cases where we still obtain
better generalization performance than a machine learning model trained
without data augmentation. This may happen in cases where weakening
the spurious confounding influence of hd on y recovers more of the anti-
causal signal for y than the data augmentation on the features hy destroys.
We evaluate this hypothesis empirically in Section 3.4.

3.3 Related work

3.3.1 Learning symmetries from data

In the previous section, we argue that choosing the right symmetry group
for data augmentation relies on prior knowledge, e.g., preselecting a list
of transformations to test. While this is a clear, practical limitation of our
approach, there are no approaches that can learn symmetries from purely
observational data to the best of our knowledge. Contemporary approaches
like Lagrangian neural networks [Cranmer et al., 2020], graph neural
networks [Kipf and Welling, 2017], and group-equivariant neural networks
[Cohen and Welling, 2016] are enforcing apriori chosen symmetries instead
of learning them.
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3.3.2 Understanding data augmentation

Recently, Gontijo-Lopes et al. [2020] develop two measures: affinity and
diversity. The measures are used to quantify the effectiveness of existing
data augmentation methods. They find that augmentations that have
high affinity and diversity scores lead to better generalization performance.
While affinity and diversity rely on the iid assumption, we provide an
alternative for non-iid datasets. Lyle et al. [2020] investigate how data
augmentation can be used to incorporate invariance into machine learning
models. They show that while data augmentation can lead to tighter PAC-
Bayes bounds, data augmentation is not guaranteed to lead to invariance.
In Equation, 3.3 we formalize under which condition (namely intervention-
augmentation equivariance) data augmentation will lead to invariance.

3.3.3 Advanced data augmentation techniques

Zhang et al. [2018] introduced a method called mixup that constructs new
training examples by linearly interpolating between two existing examples
(xi, yi) and (x j, yj). In Gowal et al. [2020] and Perez and Wang [2017]
a Generative Adversarial Network (GAN) is used to perform so-called
’adversarial mixing’. The GAN can generate new training examples that
belong to the same class y but have different styles. Furthermore, Perez
and Wang [2017] propose a novel method called ’neural augmentation’
where they train the first part of their model to generate an augmented
image from two training examples with the same class y.

3.3.4 Causality

In Peters et al. [2016] a method for Invariant Causal Prediction (ICP) is
developed. It is built on the assumption that causal features are stable
given different experimental settings. Given the complete set of causal
features, the conditional distribution of the target variable y must remain
the same under interventions, e.g., change of the domain. Whereas predic-
tions made by a machine learning model relying on non-causal features
are generally not stable under interventions. Recently, Arjovsky et al.
[2020] proposed a framework called Invariant Risk Minimization (IRM)
that shares the same goal as ICP. In IRM, a soft penalty in combination
with an ERM term is used to balance the invariance and predictive power
of the learned machine learning model. In contrast to ICP, IRM can be
used for tasks on unstructured data, e.g., images. However, while both
methods (ICP and IRM) try to learn features that are parents of y, we
argue that for the majority of domain generalization problems, the task of
predicting y from x is anti-causal. Therefore we are interested in augment-
ing only features caused by d, i.e., the descendants of d, assuming that the
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remaining features are caused by y. In Arjovsky et al. [2020], they argue
that there exists a discrepancy between the true label (part of the true
causal mechanism) that caused x and the annotation produced by human
labelers. Learning this ’labeler function’ will lead to a good generalization
performance, even though it might rely on patterns that are anti-causal or
non-causal. In this situation, the IRM objective becomes ineffective.

Heinze-Deml and Meinshausen [2021] introduced the Conditional vari-
ance Regularization (CoRe). CoRe uses grouped observations (e.g., training
samples with the same class y but different styles) to learn invariant rep-
resentations. Samples are grouped by an additional ID variable, which is
different from the label y. We find that in most cases, it is difficult to obtain
an additional ID variable, e.g., none of the datasets in Section 3.4 features
such a variable. If no such ID variable exists, CoRe can use pairs of original
images and augmented images to learn invariant representations.

While we are focusing on the DAG in Figure 3.1, Bareinboim and Pearl
[2016] and Mooij et al. [2020] have developed general graphical repre-
sentations for relating data generating processes across domains. If the
confounder c was observed methods that find stable feature sets such as
those in Rojas-Carulla et al. [2018] and Magliacane et al. [2018], could
be used. Furthermore, Subbaswamy et al. [2019] shows that instead of
intervening in some cases, it is possible to fit an interventional distribution
from observational data. However, imaging data poses a challenge that
existing causal-based methods cannot deal with, thus motivating data
augmentation.

3.4 Experiments

We evaluate the performance of data augmentation in combination with
Empirical Risk Minimization (ERM) [Vapnik, 1992] on four datasets. While
the first is a synthetic dataset, the other three are benchmark image
datasets (rotated MNIST, colored MNIST, and PACS) where the domain d
and target y are confounded. The synthetic dataset is used to study the
effect of data augmentation on a model’s performance when high level-
features caused by domain and high level-features caused by the label are
augmented. For the benchmark image datasets, we first use SDA to select
the best data augmentation techniques. The results for this first step can
be found in Table 3.5 in the Appendix. Afterward, we apply the selected
data augmentations and train the respective model using ERM. Finally,
we perform an ablation study that applies all data augmentations to all
three image datasets instead of the selected ones.

Code to replicate all experiments can be found under https://github.com/

AMLab-Amsterdam/DataAugmentationInterventions.
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3.4.1 Synthetic data

For the first experiment we simulate data from the linear Gaussian SCM
in Figure 3.4 (right), where the corresponding DAG can be seen in Figure
3.4 (left).

c

d y

hd hy

c :=N (0,σ2
c)

d := c ·Wc−→d +N (0,σ2)

y := c ·Wc−→y +N (0,σ2)

hd :=d ·Wd−→hd +N (0,σ2)

hy := y ·Wy−→hy +N (0,σ2),
(3.9)

Figure 3.4. DAG and linear Gaussian SCM for synthetic data.

We choose c, d, y, hd and hy to be five dimensional vectors. Furthermore,
we sample the elements of the square matrices Wc−→d, Wc−→y, Wd−→hd and
Wy−→hy from N (0, I). In all of our experiments σc = I and σ = 0.1 · I. The
task is to regress

∑︁5
i yi from x, where x= [hd,hy], a 10 dimensional feature

vector. During training the data is generated using the DAG in Figure 3.4
(left), where due the confounder c the features hd and y are spuriously
correlated. During testing we set d :=N (0, I), keeping Wc−→d, Wc−→y, Wd−→hd

and Wy−→hy the same as during training. As a result, features hd and y are
no longer correlated. A model relying on features hd will not be able to
generalize well to the test data. In all experiments, we use linear regression
to minimize the empirical risk. As our data augmentation technique, we
choose to add noise sampled from a uniform distribution U[−10,10]. We
vary the number of dimensions of hd as well as of hy that are augmented.
Each experiment is repeated 50 times. In Figure 3.5 we plot the mean of
the mean squared error (MSE) together with the standard error.

In Figure 3.5, we see that ERM using only features hy (pink line) achieves
the lowest MSE. Next, we apply data augmentation to one, two, three, four,
and five dimensions of hd while keeping hy unchanged (orange line). We
find that if data augmentation is applied to all five dimensions of hd, we
can match the MSE of ERM with only features hy. In this case, we satisfy
the condition in Equation 3.3. Furthermore, we find that unsurprisingly
the MSE of models trained with data augmentation applied to features hy

increases (green, red, purple, and brown line). However, we can see that as
long as we apply data augmentation to at least three dimensions of hd, the
resulting MSE is lower than ERM using all features hd and hy (blue line).
Perhaps the most surprising result of this experiment is that there exist
conditions under which applying data augmentation to features caused by
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Figure 3.5. Results on synthetic data.

d and features caused by y will result in better generalization performance
compared to ERM using all features.

3.4.2 Rotated MNIST

We construct the rotated MNIST dataset following Li et al. [2018b]. This
dataset consists of four different domains d and ten different classes y, each
domain corresponds to a different rotation angle: d = {0◦,30◦,60◦,90◦}. We
first randomly select a subset of images x from the MNIST training dataset
and afterward apply the rotation to each image of the subset. For the next
domain, we randomly select a new subset. To guarantee the variance of
p(y) among the domains, the number of training examples for each digit
class y is randomly chosen from a uniform distribution U[80,160].

For each experiment, three domains are selected for training, and one
domain is selected for testing. For the test domain, the corresponding
rotation is applied to the 10000 examples of the MNIST testset. In Table
3.2, we compare data augmentation in combination with ERM to ERM,
a Domain Adversarial Neural Network (DANN) [Ganin et al., 2016] and
a Conditional Domain Adversarial Neural Network (CDANN) [Li et al.,
2018b]. All methods use a LeNet [LeCun et al., 1998] type architecture
and we repeat each experiment 10 times. First, we use SDA to find the
best data augmentation technique, where we use the same LeNet model
and training procedure for the domain classifier and only samples from
the training domains. The data augmentation with the lowest domain
accuracy in all four cases, where we leave out one of the domains for testing,
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is ’rotation’. In addition, we perform an ablation study showing that SDA
reliably picks the most suitable hyperparameters. The results can be
found in Table 3.4 in the Appendix. Second, we apply random rotations
between 0◦ and 359◦ to the images x during training, denoted by DA. If we
assume hd to be equal to the rotation angle of the MNIST digit in a given
image x, applying random rotations to x is equal to a noise intervention
on hd, see Equation 3.3. As described in Section 3.2, applying random
rotations to x can be understood as randomly sampling elements g from
the two-dimensional rotation group SO(2). Note that elements g ∈ SO(2)
act trivially on hy: Rotations do not change the digit shapes. The result
is a training dataset where d and y are independent. In Table 3.2, we see
that the results of DA are similar for all four test domains. Furthermore,
we find that DA outperforms ERM, DANN, and CDANN, where CDANN is
specially designed for the case where d and y are spuriously correlated.

Table 3.1. Results on Colored MNIST. Average accuracy ± standard deviation for ten
seeds.

Acc ERM IRM REx SDA

Train 87.4 ± 0.2 70.8 ± 0.9 71.5 ± 1.0 72.1 ± 0.4
Test 17.1 ± 0.6 66.9 ± 2.5 68.7 ± 0.9 74.1 ± 0.9

Table 3.2. Results on Rotated MNIST results. Average accuracy for ten seeds.

Target ERM DANN CDANN SDA

0◦ 75.4 77.1 78.5 96.1
30◦ 93.4 94.2 94.9 95.9
60◦ 94.5 95.2 95.6 95.7
90◦ 79.6 83.0 84.0 95.9
Ave 85.7 87.4 88.3 95.9

Table 3.3. Results on PACS dataset. Average accuracy for five seeds.

Test ERM CDANN L2G GLCM SSN IRM REx MetaReg JigSaw SDA

A 63.3 62.7 66.2 66.8 64.1 67.1 67.0 69.8 67.6 70.45
C 63.1 69.7 66.9 69.7 66.8 68.5 68.0 70.4 71.7 68.49
P 87.7 78.7 88.0 87.9 90.2 89.4 89.7 91.1 89.0 88.35
S 54.1 64.5 59.0 56.3 60.1 57.8 59.8 59.3 65.2 72.24

Ave 67.1 68.9 70.0 70.2 70.3 70.7 71.1 72.6 73.4 74.9

3.4.3 Colored MNIST

Following Arjovsky et al. [2020], we create a version of the MNIST dataset
where the color of each digit is spuriously correlated with a binary label y.
We construct two training domains and one test domain where the digits
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of the original MNIST classes ’0’ to ’4’ are labeled y= 0, and the digits of
the classes ’5’ to ’9’ are labeled y = 1. Subsequently, for 25% of the digits,
we flip the label y. We now color digits labeled y= 0 red and digits labeled
y= 1 green. Last, we flip the color of a digit with a probability of 0.2 for the
first training domain and 0.1 for the second training domain. In the test
domain, the color of a digit is flipped with a probability of 0.9. By design,
the original MNIST class of each digit (’0’ to ’9’) is a direct cause of the new
label y, whereas the color of each digit is a descendant of the new label y.

The DAG of the colored MNIST, shown in Appendix Figure 3.6, deviates
slightly from the DAG in Figure 3.1, nonetheless the reasoning in Section
3.2 is still valid. In Table 3.1, we see that while ERM is performing well
on the training domains, it fails to generalize to the test domain since it is
using the color information to predict y. In contrast, IRM [Arjovsky et al.,
2020] and REx [Krueger et al., 2020] generalizes well to the test domain.
Again, we use SDA to find the appropriate data augmentations. We use
the same MLP and training procedure as in Arjovsky et al. [2020] for the
domain classifier. We want to highlight that SDA only relies on samples
from the two training domains, whereas the hyperparameters of IRM
and REx were fine-tuned on samples from the test domain as described
in Krueger et al. [2020]. In the case of the colored MNIST dataset, the
selected data augmentations are ’hue’ and ’translate’, denoted by DA. As
described in Section 3.2, applying random permutations to the hue value
of x is equivalent to randomly sampling and applying elements g from
the permutation group SO(2). We argue that elements g do not change hy:
high-level features that contain information about the shape of each digit.
In our experiment, we use the same network architecture and training
procedure as described in Arjovsky et al. [2020]. Each experiment is
repeated ten times. We find that DA can successfully weaken the spurious
confounding influence of the domain d on y, see Table 3.1.

3.4.4 PACS

The PACS dataset [Li et al., 2017] was introduced as a strong benchmark
dataset for domain generalization methods that features large domain
shifts. The dataset consists of four domains: d = [’photo’ (P), ’art-painting’
(A), ’cartoon’ (C), ’sketch’ (S)], i.e., each image style is viewed as a domain.
The numbers of images in each domain are 1670, 2048, 2344, 3929, re-
spectively. There are seven classes: y = [dog, elephant, giraffe, guitar,
horse, house, person]. We fine-tune an AlexNet-model [Krizhevsky et al.,
2012], that was pre-trained on ImageNet, using ERM in combination
with data augmentation. We apply SDA to select the data augmentation
for the following experiment. For the domain classifier, we fine-tune an
AlexNet-model as described above. In addition, we use a cross-validation
procedure where we leave one domain out and use the three domains for
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training. SDA determines four data augmentation techniques to be useful:
’brightness’, ’contrast’, ’saturation’, and ’hue’. In combination, these four
augmentations are commonly called color jitter or color perturbations. By
randomly applying color perturbations, we are weakening the spurious
confounding influence of hd on y, as described in Section 3.2. In Table
3.3, we compare DA to various domain generalization methods: CDANN
[Li et al., 2018b], L2G [Li et al., 2018a], GLCM [Wang et al., 2018], SSN
[Mancini et al., 2018], IRM [Arjovsky et al., 2020], REx [Krueger et al.,
2020], MetaReg [Balaji et al., 2018], JigSaw [Carlucci et al., 2019a], where
all methods use the same pre-trained AlexNet-model. We repeat each
experiment 5 times and report the average accuracy. We find that DA
obtains the highest average accuracy. The biggest performance gains of DA
compared to ERM are on the test domains ’art painting’ and ’sketch’. For
example, the domain ’sketch’ consists of black sketches of the seven object
classes on white background, see Figure 3.7. Since the object’s color is not
correlated with the class, a model relying on color features will generalize
poorly to the ’sketch’ domain. However, by randomly changing the colors of
the images in the training domains (’art painting’, ’cartoon’, ’photo’), we
find that DA can generalize much better.

Ablation study: Using all data augmentation techniques We repeat the
previous experiments on Rotated MNIST, Colored MNIST, and PACS using
all data augmentation techniques listed in the Appendix. We compare the
accuracy of a classifier trained using all data augmentation techniques to
a classifier trained using SDA. We find that using all data augmentation
techniques together results in a significant drop in performance for all
three datasets: 25.4% for Rotated MNIST, 8.7% for Colored MNIST, and
16.1% for PACS. We observe combinations of datasets and data augmenta-
tion techniques that lead to a drastic drop in performance on their own, e.g.,
the PACS dataset and random rotations. We argue that a model trained
without random rotations exploits the fact that, e.g., the orientation of an
animal or person is usually upright. This example shows that we cannot
simply describe data augmentation as ’label-preserving transformations’
since a rotated animal or person will still have the same label.

3.5 Conclusion

In this paper, we present a causal perspective on the effectiveness of data
augmentation in the context of domain generalization. Using an SCM, we
address a core problem of domain generalization: the spurious correlation
of the domain variable d and the target variable y. While, in theory, we
could intervene on the domain variable d, this solution is impractical since
we assume that we only have access to observational data. However, we
show that data augmentation can be a surrogate tool for simulating in-
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terventions on the domain variable d and its children. Prior knowledge
can be used to choose data augmentation techniques that only act on the
non-descendants of the target variable y. Furthermore, we show that
randomly applying data augmentation can be understood as randomly
sampling elements from common symmetry groups. In addition, we pro-
pose a simple algorithm to select suitable augmentation techniques from a
given list of transformations. We use a domain classifier to measure how
well each augmentation can weaken the causal link between the domain d
and hd high-level features caused by d. We evaluated this approach on four
different datasets and were able to show that empirical risk minimization
in combination with accurately selected data augmentation results in good
generalization performance. The analysis in this paper could be further
used to design data augmentation to simulate interventional datasets for
domain generalization methods by exploiting intervention-augmentation
equivariance.

3.6 Appendix

3.6.1 Additional details for SDA

All data augmentations are implemented using the TORCHVISION.TRANSFORMS

module of PyTorch [Paszke et al., 2019]. We choose the range of the
hyperparameters of the augmentations in such a way that they do not
destroy all information in x, e.g., setting the brightness of all pixels to 0 or
translating all pixels by the full image width. In all experiments we use
the following data augmentations:

• ’brightness’:

torchvision.transforms.ColorJitter(brightness=1.0, contrast=0, saturation=0, hue=0)

• ’contrast’:

torchvision.transforms.ColorJitter(brightness=0, contrast=10.0, saturation=0, hue=0)

• ’saturation’:

torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=10.0, hue=0)

• ’hue’:

torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0.5)

• ’rotation’:

torchvision.transforms.RandomAffine([0, 359], translate=None, scale=None, shear=None,

resample=PIL.Image.BILINEAR, fillcolor=0)

• ’translate’:
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torchvision.transforms.RandomAffine(0, translate=[0.2, 0.2], scale=None, shear=None,

resample=PIL.Image.BILINEAR, fillcolor=0)

• ’scale’:

torchvision.transforms.RandomAffine(0, translate=None, scale=[0.8, 1.2], shear=None,

resample=PIL.Image.BILINEAR, fillcolor=0)

• ’shear’:

torchvision.transforms.RandomAffine(0, translate=None, scale=None, shear=[-10., 10.,

-10., 10.], resample=PIL.Image.BILINEAR, fillcolor=0)

• ’vflip’:

torchvision.transforms.RandomVerticalFlip(p=0.5)

• ’hflip’:

torchvision.transforms.RandomHorizontalFlip(p=0.5)

3.6.2 Ablation study on rotated MNIST

We will demonstrate now that SDA can also be used to find the most
suitable hyperparameters for the data augmentations used in this paper.
In this example, we focus on the rotated MNIST dataset and the data
augmentation ’rotate’. We use the same experimental setup as described
in the rotated MNIST experiment. We choose {30◦,60◦,90◦} as training do-
mains and 0◦ as the test domain. We compare five sets of hyperparameters,
where each set defines the range from which the rotation angle is uniformly
sampled. In Table 3.4, we find that the hyperparameters [0◦,359◦] lead to
the lowest domain accuracy, i.e., simulate an intervention on hd the best.

Table 3.4. Comparing domain accuracy on rotated MNIST for five different sets of the
data augmentation ’rotate’. Average ± standard error over five seeds.

Hyperparameter domain accuracy

[−15◦,15◦] 92.60 ± 0.98
[−45◦,45◦] 82.63 ± 0.89
[−90◦,90◦] 69.79 ± 0.91
[0◦,180◦] 63.16 ± 1.51
[0◦,359◦] 51.70 ± 2.21

3.6.3 Results of domain classifier on each dataset

We train a domain classifier for each dataset using the same architecture
and training procedure as used for the label classifier. We only use samples
from the training domains and repeat each experiment five times. In
Table 3.5, we show the domain accuracy for each of the datasets. In the
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case of rotated MNIST, we perform four experiments where each of the
domains d = {0◦,30◦,60◦,90◦} is used for testing once, while the remaining
three domains are used for training. For each experiment, SDA returns
the augmentation ’rotate’ as the most suitable. In Table 3.5, we show
the average of the four experiments that were each repeated five times.
In the case of colored MNIST, the training and test domains are fixed.
Therefore, we only conducted one experiment. We show the average of the
one experiment that was repeated five times. For PACS, we perform four
experiments where each of the domains d = {’photo’, ’art painting’, ’cartoon’,
’sketch’} is used for testing once, while the remaining three domains are
used for training. We use cross-validation over all four experiments to
select the data augmentation. In Table 3.5, we show the average of the
four experiments that were each repeated five times.

Table 3.5. Domain accuracy for each dataset. Average ± standard error.

Data Augmentation rotated MNIST Colored MNIST PACS

’brightness’ 98.45 ± 0.24 50.1524 ± 0.1527 96.46 ± 0.37
’contrast’ 98.64 ± 0.23 50.1470 ± 0.0506 96.41 ± 0.37

’saturation’ 98.95 ± 0.21 50.1894 ± 0.0593 96.03 ± 0.43
’hue’ 98.66 ± 0.36 50.0006 ± 0.0028 96.32 ± 0.41

’rotation’ 64.70 ± 2.21 50.0024 ± 0.0030 96.59 ± 0.39
’translation’ 90.84 ± 1.65 50.0004 ± 0.0008 96.82 ± 0.34

’scale’ 91.42 ± 1.34 50.2082 ± 0.1327 97.00 ± 0.29
’shear’ 91.48 ± 1.14 50.2252 ± 0.1531 96.82 ± 0.34

’vertical flip’ 88.79 ± 0.50 50.1560 ± 0.0140 96.88 ± 0.34
’horizontal flip’ 91.98 ± 0.29 50.4060 ± 0.0274 96.54 ± 0.33

3.6.4 Colored MNIST

The DAG of the data generating process for the colored MNIST experiment
is shown in Figure 3.6 (left), where d is the domain, y is the binary label, ŷ
is the original MNIST label, hd are high-level color features caused by d
and y, hy are high-level shape features caused by ŷ, and x is the observed
image. In the case of the colored MNIST dataset, the spurious correlation
between d and y is the result of the collider hd (that itself is a parent of
the observed node x). While the cause of the spurious correlation between
d and y is different, the reasoning in Section 3.2 is still valid. In Figure
3.6 (right), we show that in theory an intervention on hd will remove the
spurious correlation between d and y. We argue that an intervention on hd

can be simulated by data augmentation. We present experimental evidence
in Section 3.4.
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d

hd y ŷ

hyx

d

hd y ŷ

hyx

Figure 3.6. Left: DAG of the data generating process for the colored MNIST dataset.
Right: The same DAG after intervention on hd . Interventional nodes are
squared.

3.6.5 PACS

Example images of the PACS dataset, see Figure 3.7

Figure 3.7. Samples from the first four classes (’dog’, ’elephant’, ’giraffe’, ’guitar’) for
each domain (art-painting (A), cartoon (C), photo (P), sketch (S)) of the PACS
dataset [Li et al., 2017].

3.6.6 Linear example of intervention-augmentation
equivariance

A simple linear example can be constructed where the domain d causes
a specific ordering in hd that is spuriously correlated with the label y.
In addition, G is the permutation group and g ∈G acts as a permutation
matrix A on x, i.e., Ax= g ·x. In particular, we assume that fX(·) is a linear
transformation

x= fX(hd,hy)= Chd +Dhy +e, (3.10)
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where x,hd,hy,e are vectors and C,D are matrices correspondingly sized.
The data augmentation can be expressed as a linear transformation of the
form

xaug = Ax, (3.11)

where A is a correspondingly sized matrix sampled from the set of all
permutation matrices. Combining Equation 3.10 and 3.11, we obtain

xaug = Ax

= AChd + ADhy + Ae

= C
(︁
C−1 AChd

)︁+ ADhy + Ae

= fX
(︁
doA (hd) ,hy

)︁
. (3.12)

We find that if that AD = D and Ae = e, i.e., D and e are permutation
invariant, the transformation Ax = g ·x successfully simulates the noise
intervention doA (hd) := C−1 AChd (with slight abuse of notation), i.e., we
find that it satisfy the intervention-augmentation equivariance condition.

3.6.7 Causality

What follows is a brief introduction of causal concepts that are used
throughout this paper. It hopefully makes the paper more self-contained
and more accessible for readers who encounter these concepts for the first
time. For an in-depth introduction please see Pearl [2009] or Peters et al.
[2017].

Structural causal models We say that a set of variables x1, . . . , xl causes a
variable y if intervening on any of the xm changes the distribution of y. This
is usually different from (conditional) observational dependence between
the xm and y. Structural Causal Models (SCMs) are used to formalize those
causal interactions between variables. We need to distinguish between two
types of variables: exogenous and endogenous variables. Exogenous vari-
ables, usually unobserved independent random variables, can be seen as an
entry point to our SCM. The endogenous variables xm are then determined
by the causal mechanisms, which are formalized via functional relations:
xm = fm(xpam

), where xpam
is the tuple of the so-called parent variables of

xm. These relations of an SCM induce a corresponding graphical model.
This paper only deals with acyclic relationships, leading to Directed Acyclic
Graphs (DAGs) as part of a Bayesian network. In Figure 3.8, we see three
SCMs and their corresponding DAGs. Note that the direction of the arrows
indicates the causal direction.

The SCMs in Figure 3.8 are considered to be the three main building
blocks of every causal model: chain, confounder, and collider. Where each
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x y z
y := fY (x)
z := fZ(y)

x y z
x := fX (y)
z := fZ(y)

x y z y := fY (x, z)

x y= y0 z
y := y0

z := fZ(y)

SCMDAG

Figure 3.8. Causal structures. Top to bottom: chain, confounder, collider, chain with
intervention on y.

of them introduces a different (conditional in-)dependence structure. First
row: In case of a chain the variables x and z become conditionally indepen-
dent if we condition on the center variable y, i.e., p(z|x, y)= p(z|y). Second
row: An observed confounder y can introduce spurious correlation between
its two children variables x and z, i.e., we may have p(x, z) ̸= p(x)p(z). If
we condition on the confounding variable y they become conditionally in-
dependent again, i.e., p(z|x, y)= p(z|y) and p(x|z, y)= p(x|y). Third row: In
case of an unobserved collider y the two parent variables are indepen-
dent, p(x, z) = p(x)p(z). However, if we condition on y they may become
conditionally dependent, i.e., p(x, z|y) ̸= p(x|y)p(z|y).

Interventions In its simplest form an intervention can be described as
setting a variable y to a constant value, e.g., y= y0 irrespective of its parent
variables. The result of such an intervention on the SCM of a chain and
the corresponding DAG can be seen in the bottom row of Figure 3.8. In this
example, the variable y becomes independent of its parent variable x, i.e.,
we are replacing the function assignment y = f (x) with y = y0, effectively
deleting the function f (·) and the corresponding arrow in the DAG. Using
the do-operator [Pearl, 2009] we can write the resulting interventional dis-
tribution as follows: p(z|x,do(y= y0))= p(z|do(y= y0)). In this paper, we use
a special form of interventions, so-called noise or stochastic interventions
[Peters et al., 2016]. Instead of setting the intervened variable to a fixed
value, we randomize the values of y, i.e., do(y= ξ), where ξ is sampled from
a noise distribution Nξ.
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3.6.8 Domain generalization

Arguably, the most commonly used approach in domain generalization
relies on learning domain invariant features. The learning of invariant
features can be achieved by mapping an input x to intermediate features z
that are uninformative of the domain d, i.e., p(z|d = i)= p(z|d = j). At the
same time, the intermediate features z are optimized for a low prediction
error on all training domains. This results in finding a saddle point for the
setting commonly referred to as domain adversarial learning [Ganin et al.,
2016]. It is assumed that such z will generalize well to the test domain
and, thus, result in a low test error.

Recent work of Zhao et al. [2019], Johansson et al. [2019] and Arjovsky
et al. [2020], in the context of domain adaptation, shows that enforcing
p(z|d = i)= p(z|d = j) is not necessarily leading to a low test error if the do-
mains d and targets y are spuriously correlated, i.e., p(y|d = i) ̸= p(y|d = j).
We now extend the findings of Zhao et al. [2019] to domain generalization.

As shown in Zhao et al. [2019], an information-theoretic lower bound can
be derived for the domain adaptation case. The bound "demonstrates that
learning invariant representations could lead to a feature space where
the joint error on both domains is large." We provide a straightforward
extension of this bound for the domain generalization case.

Introduction of notation:

• x: input

• z: intermediate representation

• ŷ: output

• function composition: x g−→ z h−→ ŷ

• y: true label

• h: function mapping x to z

• g: function mapping z to ŷ

• JSD: Jensen-Shannon divergence

• ϵd=i: empirical risk on domain d = i

Besides, we need the following two lemmas from Zhao et al. [2019]. Proofs
can be found in Zhao et al. [2019].
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Lemma 4.6:

JSD(p( ŷ|d = i)||p( ŷ|d = j)) (3.13)

≤ JSD(p(z|d = i)||p(z|d = j)), (3.14)

where p( ŷ|d = i) are the marginal distributions of the output in domain
d = i and p(z|d = i) are the marginal distributions of the intermediate
representation in domain d = i.

Lemma 4.7:

JSD(p(y|d = i)||p( ŷ|d = i))≤
√︁

ϵi(h◦ g), (3.15)

i.e., how well is my output distribution matching the true labels distribu-
tion.

We start with the pairwise sum of Jensen-Shannon divergence between
all N training domains and the N +1 test domain

∑︂
1≤i< j≤N+1

JSD(p(y|d = i)||p(y|d = j)). (3.16)

Since JSD is a metric we can write
∑︂

1≤i< j≤N+1

JSD(p(y|d = i)||p(y|d = j)) (3.17)

≤
∑︂

1≤i< j≤N+1

JSD(p( ŷ|d = i)||p( ŷ|d = j)) (3.18)

+2
N+1∑︂

k

JSD(p(y|d = k)||p( ŷ|d = k)). (3.19)

Using Lemma 4.6 we get
∑︂

1≤i< j≤N+1

JSD(p(y|d = i)||p(y|d = j)) (3.20)

≤
∑︂

1≤i< j≤N+1

JSD(p(z|d = i)||p(z|d = j)) (3.21)

+2
N+1∑︂

k

JSD(p(y|d = k)||p( ŷ|d = k)). (3.22)

Using Lemma 4.7 we get
∑︂

1≤i< j≤N+1

JSD(p(y|d = i)||p(y|d = j)) (3.23)

≤
∑︂

1≤i< j≤N+1

JSD(p(z|d = i)||p(z|d = j)) (3.24)

+2
N+1∑︂

k

√︁
ϵd=k(h◦ g). (3.25)
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Extracting terms that belong to the test domain d = N +1 leads to

N∑︂
l=1

JSD(p(y|d = l)||p(y|d = N +1)) (3.26)

+
∑︂

1≤i< j≤N

JSD(p(y|d = i)||p(y|d = j)) (3.27)

≤
N∑︂

l=1

JSD(p(z|d = l)||p(z|d = N +1)) (3.28)

+
∑︂

1≤i< j≤N

JSD(p(z|d = i)||p(z|d = j)) (3.29)

+2
√︁

ϵd=N+1(h◦ g)+2
N∑︂
k

√︁
ϵd=k(h◦ g) (3.30)

Assuming we find a perfect intermediate representation z for all N
training domains and the test domain d = N+1 (assuming such an z exists)
we are left with

N∑︂
l=1

JSD(p(y|d = l)||p(y|d = N +1)) (3.31)

+
∑︂

1≤i< j≤N

JSD(p(y|d = i)||p(y|d = j)) (3.32)

≤ 2
√︁

ϵd=N+1(h◦ g)+2
N∑︂
k

√︁
ϵd=k(h◦ g) (3.33)

As it was the case for domain adaptation, we see that the joint risk across
all domains (training and test) is lower bounded by the pairwise divergence
of the marginal label distribution of all domains. Given the existence
of an unobserved confounder, as seen in Figure 3.1, the marginal label
distribution is unlikely to match.

However, there exists a multitude of domain generalization methods that
do not explicitly address the problem of hidden confounders [Balaji et al.,
2018, Carlucci et al., 2019b,a, Ding and Fu, 2018, Ghifary et al., 2015,
Ilse et al., 2020, Li et al., 2018a, Mancini et al., 2018, Motiian et al., 2017,
Shankar et al., 2018, Tzeng et al., 2014, Wang et al., 2018]. However, the
majority of these methods are evaluate on benchmark datasets, e.g., VLCS
[Khosla et al., 2012] or PACS [Li et al., 2017], where the domain d and
the target y are confounded. As shown in Equation 3.33, this can result
in poor generalization performance. Nonetheless, we cannot rule out the
possibility that some of these methods can implicitly deal with confounders,
thus achieving good generalization performance.

To the best of our knowledge, there are currently very few methods
that address the issue of spuriously correlated domains d and targets
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y [Arjovsky et al., 2020, Heinze-Deml and Meinshausen, 2021, Li et al.,
2018b, Krueger et al., 2020], where Li et al. [2018b] extends the idea of
domain adversarial learning to enforce conditional domain invariance, i.e.,
p(z|y,d = i)= p(z|y,d = j).

3.6.9 Data augmentation

We will briefly summarize how data augmentation is currently viewed in
the computer vision community for an in-depth survey see Shorten and
Khoshgoftaar [2019]. In computer vision, data augmentation is seen as
an effective technique for improving performance on various tasks such
as image classification, object detection, and image segmentation. In the
image domain, data augmentation techniques can be roughly divided into
two categories:

1. Augmenting the geometry of an image: Commonly used transformations
are rotations, horizontal and vertical flips, scaling, cropping, occlusion,
and elastic deformations.

2. Augmenting the color of an image: Random values are added or sub-
tracted from the color channels of an image. Instead of applying this
transformation directly in the RGB colorspace, other color spaces like
CIELAB and HSL are commonly used [Tellez et al., 2019].

Data augmentation combines the transformation listed above that are
randomly applied to all images during training.

3.6.10 Data augmentation in application-focused research areas

In the following, we summarize two examples of the successful application
of data augmentation for domain generalization in medical imaging and
robotics. We want to highlight that in both examples, the actual task and
the domains are spuriously correlated.

Histopathology The high variability of the appearance of histopathology
images is a major obstacle for the deployment of automatic image analysis
systems. The variability of appearance results from a multitude of prepa-
ration steps that are applied to the specimen: cutting, fixating, staining,
and scanning. Each step introduces its artifacts. This leads to different
color distributions among histopathology laboratories. Tellez et al. [2019]
perform a detailed comparison of commonly used data augmentation, see
Appendix Figure 3.9. The augmentation techniques consist of random
rotation and flipping, random color perturbation, and color normalization.
These augmentation techniques are compared on a dataset composed of
histopathology images from nine different laboratories. We argue that
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a hidden confounder exists that spuriously correlates the staining and
scanner artifacts (caused by the laboratories) and the abnormalities in the
tissue (caused by the diseases). By augmenting the color of the histopathol-
ogy images Tellez et al. [2019] can learn features that are invariant to
the laboratories. Furthermore, Tellez et al. [2019] find that random color
perturbation outperforms color normalization. We argue that random color
perturbation simulates noise interventions, whereas color normalization
tries to simulate interventions where the color of a histopathology image
is set to a fixed value. As described in Section 3.2, this requires first to
estimate the color distribution of the original histopathology image, which
is a challenging problem. As a result, data augmentation in the form of
random color perturbation is better suited to simulate interventional data.

Figure 3.9. Domain randomization histopathology, taken from Tellez et al. [2019].
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Robotics Performing robotic learning on physical hardware is often not
feasible due to: (i) the large number of training samples that are required,
and (ii) potential damage to the hardware if the learning relies on random
exploration. Therefore, learning in a physics simulator is of great interest.
While learning in a simulator is cheap and safe, we are facing a new prob-
lem, namely, how to overcome the so-called reality gap, i.e., the differences
between simulation and the real world. In Tobin et al. [2017] they focus
on a robotic manipulation task that involves a robotic arm and eight 3D
objects that are placed on a table. In this scenario, a neural network is
used to detect the location of an object. To be able to generalize from the
simulation to the real world, Tobin et al. [2017] apply a variety of data
augmentation techniques to the simulator, e.g., randomization of position
and texture of all objects on the table, textures of the table, floor, skybox,
and robot, and the addition of random noise. We argue that there exists
a hidden confounder that introduces a spurious correlation between, e.g.,
the lighting conditions and the location of the objects on the table. By
applying heavy data augmentation during the training process they are
able to generalize to unseen lighting conditions in the real world.

Figure 3.10. Domain randomization in robotics, taken from Tobin et al. [2017].
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4. Efficient Causal Inference from
Combined Observational and
Interventional Data through Causal
Reductions

We now consider the case where we have no apriori knowledge about the
symmetries in the data. Therefore we cannot use the invariant architec-
tures or data augmentation techniques presented in Section 1.2.1. As
seen in Section 1.2.2, we need to make additional assumptions about the
data generating process to train invariant machine learning models. Sup-
pose we have access to experimental data, e.g., from an RCT. In that case,
we can directly learn invariant machine learning models, in contrast to
Chapter 3, where we simulated interventions using data augmentation.
However, in most practical settings, we won’t have access to many interven-
tional samples. Therefore, training machine learning models purely from
interventional samples can lead to high variance estimates. By adding
observational samples, we can potentially reduce the variance of the esti-
mator. However, we are at risk of introducing bias. In the following, we
show how to use normalizing flows to learn interventional and observa-
tional distribution with a single model in this instance. We exploit the fact
that parts of the parameters can be jointly trained using interventional
and observational data. The parameter sharing allows us to reduce the
variance without introducing bias.

4.1 Introduction

In this work, we propose a novel principled approach for causal effect
estimation that can efficiently combine observational and interventional
samples, even in the presence of unobserved confounding in the obser-
vational regime. We show that this method can potentially reduce the
required Randomized Controlled Trial (RCT) sample size when sufficient
observational samples are available (e.g., in the form of electronic health
records). Recent real-world examples that could benefit from such an ap-
proach are the COVID-19 vaccine trials. Several of the vaccines require
two dosages. For example, the interval during the vaccine trials was 21
days between doses for the Pfizer vaccine and 28 days for the Moderna
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vaccine. However, due to a shortage of supplies and logistical challenges,
the second dosage is delayed in many countries. The question then arises:
What is the effect of the time between the first and the second dosage on
the vaccine efficacy? In the absence of any large randomized controlled
trials that provide a definite answer to this question, one may hope to esti-
mate this by combining the few available clinical trial data with massive
global observational data collected as a part of the different vaccination
campaigns performed worldwide. The method we propose here provides a
principled approach for such causal inference problems.

The main complication when estimating causal effects is the potential
presence of observed and—in particular—unobserved confounders (com-
mon causes of the cause and the effect). Our key technical contribution,
which we believe to be a valuable tool on its own, is a construction that
typically reduces the size of the latent confounder space in a structural
causal model (or causal Bayesian network with latent confounders). This
construction only assumes the absence of causal feedback from outcome
to treatment. The data was not subject to selection bias due to implicit
conditioning on common effects of treatment and outcome.

This causal reduction operation shows that without loss of generality,
one only needs to model a single latent confounding variable that lives in
the same space as the treatment variable, even if, in reality, there could be
many latent confounders and their joint space might be much larger. In
particular, for a real-valued, one-dimensional treatment variable, a real-
valued, one-dimensional confounder suffices. The causal reduction is a key
step towards a parsimonious joint parameterization of the observational
and interventional distributions.

For the linear-Gaussian case, we prove that our reduced parameterization
implies that the observational and interventional distributions are not
independent but are related by equality constraints. This complements
existing work on inequality constraints in the case of discrete treatment
and outcome variables (Bell [1964], Balke and Pearl [1997], Wolfe et al.
[2019]). We conjecture that such dependencies between the observational
and interventional distribution hold more generally (i.e., not only in the
linear-Gaussian or discrete settings) and provide empirical support for this
conjecture.

To make progress in the general nonlinear setting, we parameterize the
reduced causal model using a flexible class of easily invertible nonlinear
transformations, so-called normalizing flows [Tabak and Turner, 2013,
Rezende and Mohamed, 2015]. Normalizing flows enables the use of a
simple multi-task maximum-likelihood approach to estimate the reduced
model parameters, where one can now combine observational and interven-
tional training data, allowing for latent confounding in the observational
regime.

We perform a series of experiments on data simulated using nonlin-
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ear causal mechanisms. We find that we can significantly reduce the
number of interventional samples required to achieve a certain accuracy
when adding sufficient observational training samples. We observe that
parameter sharing allows one to learn a more accurate model from a com-
bination of data than from each subset individually. This suggests that
this approach successfully exploits the conjectured dependence between
the observational and interventional distributions, and opens up practical
applications and further theoretical questions regarding the precise nature
of the relationship between observational and interventional distributions.

In summary, our three main contributions are: (i) A causal reduction
method that replaces arbitrary latent confounders with a single latent
confounder that lives in the same space as the treatment variable, without
changing the observational and interventional distributions entailed by
the causal model; (ii) A flexible parameterization of the reduced model
using normalizing flows, which enables us to estimate the observational
and interventional distributions by jointly learning from observational and
interventional data without making strong parametric assumptions; (iii) A
derivation of equality constraints between interventional and observational
distributions entailed by linear Gaussian causal models.

4.2 Related work

Prior work on causal inference from multiple datasets can be roughly di-
vided into addressing three different tasks: (i) identifying causal effects
when the causal structure is known (see, e.g., Lee et al. [2020] and ref-
erences therein), (ii) discovering/learning the causal structure (see, e.g.,
Mooij et al. [2020] and references therein), and (iii) estimating causal ef-
fects. The present work addresses the latter task, focussing on continuous
treatment and outcome.

There exists a plethora of work on estimating causal effects solely from
observational data. The vast majority of proposed methods assumes that a
set of observed variables can be used to adjust for all confounding factors
[Colnet et al., 2020]. Unfortunately, one can never test this assumption,
and the reliability of the conclusions of such observational studies is de-
bated [Madigan et al., 2014]. While most work considers the case in which
treatment is binary, Hirano and Imbens [2005] generalize the propensity
score for continuous treatment variables.

Researchers recently started looking into combining those different
modalities to address the limitations of causal effect estimation from inter-
ventional or observational data alone. Most prior work on this topic still
relies on the assumption that all confounders are observed in the observa-
tional regime (e.g., Silva [2016], Rosenman et al. [2018]). We only found
three papers that allow for latent confounding in the observational regime.
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The method by Rosenman et al. [2020] attempts to reduce confounding
bias rather than completely removing it. For binary treatments, Kallus
et al. [2018] rely on an additional assumption that the hidden confounder
has a certain parametric structure that can be modeled effectively (which
may also reduce confounding bias). In contrast, Athey et al. [2020] depend
on observed short-term and long-term outcome variables. In contrast, our
approach can completely remove confounding bias without making such
additional assumptions.

Another approach that sidesteps the strong untestable assumption of no
unobserved confounding is to bound the causal effect in terms of properties
of observational data [Balke and Pearl, 1997, Pearl, 1995]. While these
bounds are valid in the presence of arbitrary unobserved confounding, they
are often too loose to be of practical relevance and only hold for discrete
treatment variables. Recently, Wolfe et al. [2019] introduced a technique
called inflation that can be used to derive tighter bounds.

Furthermore, methods that do not rely on bounds or an adjustment set
have to make other untestable assumptions on the causal mechanism. For
example, Angrist et al. [1996], Kilbertus et al. [2020], Gunsilius [2020]
rely on the existence of instrumental variables that are not affected by
unobserved confounders and on restrictions of the model space. Miao et al.
[2018] and Louizos et al. [2017] assume proxy variables that, while being
correlated with unobserved confounders, do not confound the treatment
and outcome themselves. Last, the deconfounder of Wang and Blei [2019]
builds on the assumptions that there are no unobserved single-cause
confounders.

4.3 Theory

For simplicity of exposition, we will make some assumptions regarding the
types of variables below, but the construction of the causal reduction can
be done for any standard measurable spaces. Furthermore, we will only
consider perfect (hard/atomic/surgical) interventions and make use of the
corresponding do-operator notation introduced by Pearl [2009].

4.3.1 Reduction of the latent space

Consider a treatment variable X ∈ X = RM and an outcome variable Y ∈
Y =RN . We assume that the outcome does not cause the treatment. Fur-
thermore, let there exist K latent confounders Z1, . . . , ZK , where Zi ∈Z i =R,
with an arbitrary dependency structure, see Figure 4.1 (a) for the corre-
sponding Directed Acyclic Graph (DAG). Without loss of generality, we can
summarize the K latent confounders Z1, . . . , ZK with arbitrary dependency
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structure using a single latent confounder Z ∈Z =RK :

p(x,y)=
∫︂

Z1

· · ·
∫︂

ZK

p(x,y, z1, . . . , zK )dz1 . . .dzK =
∫︂

Z

p(x,y,z)dz. (4.1)

The resulting causal Bayesian network is shown in Figure 4.1 (b), which
has the following factorization:

p(x,y,z)= p(y|x,z)p(x|z)p(z). (4.2)

We aim to replace the above causal Bayesian network with one that is
interventionally equivalent with respect to interventions on X and Y, but
where the latent confounder space Z is lower-dimensional.

First, we generate a copy W := X of the treatment variable X. We will
interpret W as a latent variable and X as an observed deterministic effect
of W, via the function X= id(W). We obtain the Bayesian Network in Figure
4.1 (c):

p(x,y,w,z)= p(y|x,z)p(x|w)p(w|z)p(z), (4.3)

where p(w|z) := p(x|z)|x=w is a copy of the Markov kernel from above evalu-
ated in w rather than in x. Furthermore, p(x|w) := δw(x) is the delta peak
centered at w, representing the deterministic identity map from W to X.
If we marginalize out W we arrive at the initial causal Bayesian network
in Figure 4.1 (b) again. Since interventions on observed variables com-
mute with marginalizing over latent variables [Bongers et al., 2020], the
Bayesian networks in Figure 4.1 (b) and (c) are interventionally equivalent
with respect to interventions on X and Y.

Second, we refactorize the latent distribution as shown in Figure 4.1 (c),
(d) and (e):

p(x,y,w,z)= p(y|x,z)p(x|w)p(w|z)p(z) (4.4)

= p(y|x,z)p(x|w)p(w,z) (4.5)

= p(y|x,z)p(x|w)p(z|w)p(w). (4.6)

The Bayesian networks representing these three factorizations are inter-
ventionally equivalent with respect to interventions on X and Y, as we only
factor the latent distributions differently and do not consider interventions
on the latent variables.

Last, we can marginalize over Z and obtain:

p(x,y,w)= p(y|x,w)p(x|w)p(w), (4.7)

where we used the following composed Markov kernel:

p(y|x,w) :=
∫︂

p(y|x,z)p(z|w)dz. (4.8)
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Figure 4.1. A graphical explanation of our causal reduction technique. (a) We assume
a treatment variable X, an outcome variable Y, and K latent confounders
Z1, . . . , ZK with an arbitrary dependency structure. (b) We represent the K
latent confounders Z1, . . . , ZK by Z ∈Z =RK . (c) We create a copy of X called W.
We use a double circle to indicate that a variable is a deterministic function
of its parents. (d, e) Instead of using the factorization from (c), p(w,z) =
p(w|z)p(z), we choose p(w,z) = p(z|w)p(w). (f) Last, we marginalize over Z.
Note that at every step (a–f) the Bayesian networks are interventionally
equivalent with respect to interventions on X and Y.
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Again, since marginalizing over latent variables and interventions com-
mute, the final Bayesian network in Figure 4.1 (f) is interventionally
equivalent to the ones in Figure 4.1 (a–e) with respect to interventions on
X and Y.

Since W is a copy of X, we successfully reduced the dimensionality of the
latent confounder from K to M (assuming M < K). In the common case of
one-dimensional X, we expect M = 1≪ K and therefore achieve a significant
reduction of the latent space. We formulate the conclusion as a theorem:

Theorem 4.3.1 (Causal Reduction). Let M be a causal Bayesian network
with observed variables X ∈X ,Y ∈Y and latent variables, Z1 ∈Z1, . . . , ZK ∈
ZK such that Y is not an ancestor of X.

Then there exists a causal Bayesian network M∗ with observed variables
X ∈X and Y ∈Y and a single latent confounder W ∈X (that takes values in
the same space as X) such that M∗ is interventionally equivalent to M with
respect to interventions on the observed variables X and Y:

pM (x,y)= pM ∗(x,y)

pM (x | do(y))= pM ∗(x | do(y))

pM (y | do(x))= pM ∗(y | do(x))

We call the causal Bayesian network M∗ a causal reduction of M since
it will typically be the case that the latent space will be reduced, yet the
causal semantics are preserved by construction. The single latent con-
founder Z in M∗ will parsimoniously represent the causal influence of all
latent confounders of X and Y in M . For example, a single binary con-
founder suffices for a binary treatment variable. Extending the derivation
to simple structural causal models (an extension of causal Bayesian net-
works that can represent feedback loops [Bongers et al., 2020]) is straight-
forward, as long as X and Y are not part of a causal cycle (although the
other variables might be involved in cycles).

4.3.2 From causal Bayesian networks to structural causal
models

Whereas in the previous section, we relied on causal Bayesian networks to
conduct our reduction, we now move to Structural Causal Models (SCMs)
[Pearl, 2009, Bongers et al., 2020] to obtain convenient parameterizations.
We make use of the exogenous variables U,V to represent the noise in
the reduced causal model. This, in turn, allows us to express all causal
relationships as deterministic functions. Estimating the model then boils
down to estimating these functions, as we will illustrate in Section 4.4.

Theorem 4.3.2. Let P(X|Y) be a Markov kernel (e.g. a conditional probabil-
ity distribution) of a RM-valued variable X with components Xm, m = 1, . . . , M

101



Efficient Causal Inference from Combined Observational and Interventional Data through Causal Reductions

and with argument Y that can take values in any measurable space.
Then there exists a M-dimensional standard normal random variable
Z∼N (0,IM) independent of Y and a deterministic measurable map F such
that:

X= F(Z,Y) a.s. (4.9)

Furthermore, the map F is ‘well-behaved’, in the sense that it is composed
out of (inverse) conditional cumulative distribution functions.

The proof is provided in the Appendix 4.7.2. Theorem 4.3.2 enables us
to obtain a reduced SCM from the reduced causal Bayesian network in
Equation 4.7 with structural equations

X= F(U), (4.10)

Y=G(U,V,X), (4.11)

where U∼N (0,IM) ⊥⊥ V∼N
(︁
0,IN

)︁
, and F,G are deterministic maps. This

SCM encodes the same observational distribution p(x,y) and interventional
distributions p(y|do(x)), p(x|do(y)) as the causal Bayesian network. This
allows us to parameterize the reduced causal model in terms of the two
functions F and G.

4.3.3 Parameter sharing in the linear Gaussian case

We now consider the case where all causal relationships in Figure 4.1 (a)
are linear, and all distributions are Gaussian. We can then guarantee that
the reduced causal model is linear Gaussian as well. The precise statement
and proof are delegated to Appendix 4.7.3.

We use the reduced linear Gaussian model from Corollary 4.7.2 to prove
that the parameters of the interventional distribution constrain the pa-
rameters of the observational distribution.

Theorem 4.3.3 (Linear Gaussian parameter constraints). Consider a
linear-Gaussian SCM (or causal Bayesian network with possible latent
variables) with two observed variables X and Y such that Y is not ancestor
of X. The entailed observational and interventional distributions are Gaus-
sian. Modeling p(x), p(y|x) and p(y|do(x)) independently from each other
could be done with the following parameterization:

p(x)=N (x|α,Σ) , (4.12)

p(y|x)=N
(︁
y|γ+∆x,Π

)︁
, (4.13)

p(y|do(x))=N
(︁
y|˜︁γ+ ˜︁∆x, ˜︁Π)︁ , (4.14)

with covariance matrices Σ, Π, ˜︁Π. However, using the reduced causal model
from Corollary 4.7.2 we find that these parameters are constrained by the
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following relations:
(︁˜︁γ−γ

)︁+(︁˜︁∆−∆
)︁
α= 0, (4.15)

(︁˜︁∆−∆
)︁
Σ
(︁˜︁∆−∆

)︁⊤+Π= ˜︁Π. (4.16)

From Equation 4.16 we can easily see that ˜︁Π−Π is positive semidefinite.
Furthermore, we see that these constraints lead to a reduced parameter
count, N parameters for Equation 4.15 and N(N+1)/2 parameters for Equa-
tion 4.16, assuming y to be N-dimensional. In total, we have reduced the
parameter count by N(N +3)/2 by modeling the parameters of the observa-
tional and interventional distributions jointly. The proof of Theorem 4.3.3
can be found in Appendix 4.7.4.

Now consider the task of learning the parameters of our reduced model.
In the linear Gaussian case, the reduced causal model tells us exactly how
many parameters we need to model the observational and interventional
distribution and which parameters are shared. Since the parameters c,D,E
and, F are shared between the observational and interventional distribu-
tion. We can estimate them jointly using observational and interventional
data, effectively reducing sample complexity when trying to model the
interventional distribution. This is beneficial for causal effect estimation
when we assume that we only have access to a small number of inter-
ventional samples and a large number of observational samples. In the
Appendix 4.7.6, we experiment on observational and interventional data
generated with linear causal mechanisms, giving a linear parameterization
of the reduced linear model that can learn linear causal mechanisms.

4.3.4 Reduction with observed confounders

There are many scenarios where we are interested in estimating the
conditional causal effect of interventions given additional covariates C
that might confound treatment and outcome, for example when estimating
the efficacy of a vaccine depending on age, weight or gender. We consider an
additional set of L observed confounders C1, . . . ,CL of X and Y, taking values
in arbitrary measurable spaces, and with an arbitrary joint distribution
p(c). In the following, we summarize all L observed confounders using
a single variable C ∈ C . We provide a more detailed derivation in the
Appendix 4.7.5 and give only a short sketch here. First, we follow the same
steps as in Section 4.3.1 to derive a reduced causal model of the following
form

p(x,y,w,c)= p(y|x,w,c)p(x|w)p(w|c)p(c). (4.17)

Again, at every step, the Bayesian network is interventionally equivalent
to the ones before w.r.t. interventions on X and Y. Then, we use a similar
approach as in Section 4.3.2 but also marginalize out W to convert the
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causal Bayesian Network into an SCM with structural equations of the
form

X= F(U,C), (4.18)

Y=G(U,V,X,C), (4.19)

where U ∼ N (0,IM) ⊥⊥ V ∼ N
(︁
0,IN

)︁
and F and G are two deterministic

maps. Again, this preserves the observational and interventional distribu-
tions w.r.t. interventions on X and Y.

4.4 Practical implementation

Now that we have successfully reduced the model complexity, we will pa-
rameterize the functions F and G to learn the model from data. Intuitively,
the reduced SCM in Section 4.3.2 tells us that the parameters of G are
shared among observational and interventional samples for an interven-
tion on X, whereas the parameters of F are not. While this can be done in
many different ways, we use diffeomorphisms, i.e., mappings that are differ-
entiable and have a differentiable inverse. Using the change-of-variables
formula, we can derive a maximum-likelihood estimator for the mappings’
parameters that can be efficiently optimized through backpropagation. In
the deep learning community, those invertible and differentiable mappings
are called normalizing flows, and much recent research went into finding
flexible and easily invertible mappings, see Pawlowski et al. [2020] and
Khemakhem et al. [2020] for other recent applications of normalizing flows
to approximate nonlinear causal mechanisms. Our flow model consists of
two flows where the first flow is trained using observational data and the
second flow is trained using observational and interventional data.

In the following, we derive the loss function for observational and inter-
ventional data separately. For the remaining part of this paper we focus
on one-dimensional treatment outcome pairs, i.e. x ∈X =R and y ∈Y =R,
and (optionally) a L-dimensional observed confounder c ∈C =RL.

4.4.1 Observational data

Following the SCM in Equation 4.11 the joint-likelihood p(x, y) can be fac-
torized as log p(x, y)= log p(y|x)+ log p(x). We now use the following bijective
transformations between observed variables x, y and latent variables u,v

u = fφ(x), (4.20)

v = gx,u;θ(y), (4.21)

where the function g(.) is invertible with respect to v. Here, fφ = F−1 from
Equation 4.10 and gx,u;θ is the inverse of v ↦→G(u,v, x) from Equation 4.11
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(for fixed u, x,θ). Without loss of generality we assume independent, stan-
dard Gaussian distributions for u,v: pU (u)=N (0,1) ⊥⊥ pV (v)=N (0,1). The
transformations defined above allow us to rewrite the joint likelihood using
the change of variable formula

log p(x, y)= log pV (gx,u;θ(y))+ log
⃓⃓
⃓⃓∂gx,u;θ(y)

∂y

⃓⃓
⃓⃓+ log pU ( fφ(x))+ log

⃓⃓
⃓⃓∂ fφ(x)

∂x

⃓⃓
⃓⃓ .

= log pV (gx, fφ(x);θ(y))+ log
⃓⃓
⃓⃓∂gx, fφ(x);θ(y)

∂y

⃓⃓
⃓⃓+ log pU ( fφ(x))+ log

⃓⃓
⃓⃓∂ fφ(x)

∂x

⃓⃓
⃓⃓ .

(4.22)

where in the last step, we substituted u = fφ(x) into gx,u;θ(y). The param-
eters φ and θ are jointly updated by minimizing

∑︁NO
o=1− log p(xo, yo) given

NO observational training samples.

4.4.2 Interventional data

In contrast to the observational setting, we only have to consider the
conditional likelihood p(y|do(x)) in the interventional case. Since we cannot
use fφ(x) to impute u, we instead marginalize over u

log p(y | do(x))= log
∫︂

p(y|do(x),u)p(u)du. (4.23)

Inserting the bijective mapping v = gx,u;θ(y) in Equation 4.23, we obtain

log p(y | do(x))= log
∫︂

pV (gx,u;θ(y))
⃓⃓
⃓⃓∂gx,u;θ(y)

∂y

⃓⃓
⃓⃓ p(u)du, (4.24)

where we use the trapezoidal rule to compute a numerical approxima-
tion of the integral. The parameter θ can be updated by minimizing∑︁NI

i=1− log p(yi|do(xi)) given NI interventional training samples.

4.4.3 Joint optimization and sampling

Assuming we have NO observational samples and NI interventional sam-
ples, the full loss is given by

loss = 1
NO

NO∑︂
o=1

− log p(xo, yo)+ 1
NI

NI∑︂
i=1

− log p(yi|do(xi)). (4.25)

The parameters φ and θ of the transformation f and g are learned by
minimizing the loss using gradient descent.

After training we are able to generate observational and interventional
samples from p(y | x) with a single flow model. The sampling procedure
for observational samples consists of the following steps: v ∼ N (0,1),u =
fφ(xo), and yo = g−1

xo,u;θ(v), where we assume xo ∈ R to be observed. If we
instead want to generate an interventional sample from p(y | do(x)), the
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sample procedure follows: v ∼N (0,1),u ∼N (0,1), and yi = g−1
xi ,u;θ(v), where

we assume xi ∈ R to be observed. In order to parameterize the SCM in
Equation 4.17 we simply have to replace the functions f (.) and g(.) by
u = fc;φ(x) and v = gx,u,c;θ(y) where c ∈ RL is assumed to be observed. The
optimization procedure does not change.

4.5 Experiments

Following the analysis in Section 4.3.3, we perform a series of experiments
on simulated data, where the causal relationships between all variables
are nonlinear, showing that we can significantly reduce the number of
interventional samples required to estimate the interventional distribu-
tion p(y|do(x)) by training jointly with (possibly confounded) observational
and interventional samples. Throughout this section, we are using the
parameterization described in Section 4.4, where we use linear ratio-
nal spline flows [Dolatabadi et al., 2020]. For a detailed description of
this choice, see the Appendix 4.7.7. We perform two sets of experiments:
(1) We consider K latent confounders Z1, . . . , ZK ∈ R with an arbitrary de-
pendency structure. (2) We consider L additional, observed confounders
C1, . . . ,CL ∈R with an arbitrary dependency structure. All flow models are
implemented with the automatic differentiation packages Pytorch [Paszke
et al., 2019] and Pyro [Bingham et al., 2019]. All code is available under
https://github.com/max-ilse/CausalReduction.

4.5.1 Without observed confounders

Table 4.1. Comparison of a flow model trained with interventional samples only and a flow
model trained with interventional and observational samples. We calculate the
ratio N∗

I /NI , where N∗
I is the number of interventional samples necessary to

match the interventional test log-likelihood of a flow model trained with NI
interventional and 1000 observational samples. E.g. in the case of dataset 3
and NI = 100, if we were to use only interventional samples, we would require
twice as many interventional samples compared to using 100 interventional
and 1000 observational samples. For dataset 11 to 15, we simulate an additional
observed confounder C. Note that if a large number of interventional samples
(250< NI ≤ 1000) are available the improvements become smaller as shown in
the Appendix 4.7.10.

NI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

50 1.4 1.8 2.2 1.2 0.2 2.2 2.1 1.7 1.9 1.6 3.2 3.2 2.2 2.7 3.2
100 0.8 2.6 2.0 1.5 0.3 2.1 2.0 2.5 2.0 2.1 3.2 2.9 2.5 3.0 2.5
250 1.0 1.5 1.8 1.6 0.5 1.7 1.1 1.5 1.2 1.7 2.4 2.3 2.3 2.1 1.7

We simulate cause and effect pairs from the SCM with structural equa-
tions: X = F(EX ,Z), Y = G(X ,EY ,Z). A single dataset consists of observa-
tional and interventional samples. All causal relationships are simulated
using fully connected neural networks with a single hidden layer, where
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the weights are randomly initialized. The activation functions are REcti-
fied Linear Units (ReLUs). As a result, the simulated causal mechanisms
are nonlinear. The values of EX ,EY ,Z and do(X ) are sampled from a ran-
dom distribution, as seen in Mooij et al. [2016]. A detailed step-by-step
description of the simulation procedure is given in the Appendix 4.7.8.
Following the process described above, we simulate 100 datasets while
varying the number of dimensions K of the unobserved confounder Z and
the random seed that is, among others, controlling the initialization of
the neural networks used to model the causal mechanisms. We choose K
between 1 and 10 since for K > 10, the joint distribution p(x, y) becomes
increasingly Gaussian due to the central limit theorem. Next, we manually
select ten datasets with the smallest overlap of observational and inter-
ventional samples to select cases with “strong” confounding. Note that we
choose these ten datasets before training a single flow model. A scatter
plot of 1000 observational and 1000 interventional samples for each of the
ten datasets can be found in Appendix 4.7.10.

In this experiment we are interested in estimating the interventional
distribution p(y|do(x)). For each dataset, we train three variants of our
reduced causal model parameterized with normalizing flows. The first
flow model is trained using only observational data, see Section 4.4.1. The
second flow model is trained using only interventional data, see Section
4.4.2. The third flow model is trained using observational and interven-
tional data jointly, see Section 4.4.3. For each of the ten datasets, we
keep the number of observational samples constant at 1000 and use an
increasing number of interventional samples 50, 100, 250, 500, 750, 1000,
resulting in six experiments per dataset. For example, in the case of 50
interventional and 1000 observational samples, the first flow model is
trained with 1000 observational samples, the second flow model is trained
with 50 interventional samples, and the third flow model is jointly trained
with 1000 observational and 50 interventional samples. Motivated by the
work of Oliver et al. [2018] on the realistic evaluation of semi-supervised
learning algorithms, we use the same number of samples for training and
validation. In every case, we use 1000 interventional samples for testing.
To compare the performance of the three flow models, we calculate the
negative log-likelihood averaged over the test set, − 1

NI

∑︁NI
i=1 log p(yi | do(xi)).

To have a fair comparison, the same training procedure, architecture, opti-
mizer, and hyperparameters are used for all flow models in all experiments.
We use Adam [Kingma and Ba, 2015] with a learning rate of 0.001 and the
default values for β1,β2. We train for 10000 epochs. The training is termi-
nated early when the validation loss did not improve for 1000 epochs. We
perform full batch gradient descent, where we alternate between batches
of observational and interventional samples for the third flow model. For
the linear rational spline flows, we use 32 bins and set the bound B = 6. We
use a fully connected neural network with two hidden layers and ReLU
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activations for the conditional version of the linear rational spline flows.
In the Appendix 4.7.10, we provide extensive visualizations of the results
of all experiments, including scatter plots of training data, samples from
the trained flow models, negative log-likelihood values for all flow mod-
els on the interventional and observational test sets. To summarize our
findings, we calculate the ratio of samples required to reach the same per-
formance, measured in averaged negative log-likelihood when only using
interventional samples. In Table 4.1 we see that in the case of dataset 3
and NI = 100, we need two times the number of interventional samples
(in the absence of observational training samples) to achieve the same
performance as a flow model that is jointly trained with 100 interventional
and 1000 observational samples. We can substantially reduce the num-
ber of interventional samples required when using an additional 1000
observational samples in eight of the ten datasets. Only in the case of
dataset 5, we find that we need substantially more interventional samples
to train our flow model jointly with observational and interventional data.
We argue that in dataset 5, the interventional distribution resembles a
standard Gaussian distribution that can easily be estimated from very few
interventional samples. Last, the results in Table 4.1, dataset 1 to 10, are
in agreement with qualitative results in the Appendix 4.7.10. We find that
samples from the flow model trained with interventional and observational
data better resemble the training data compared to samples from a flow
model trained with only interventional data.

4.5.2 With observed confounders

We now consider the case of an additional L-dimensional observed con-
founder C. We use the same setup as in Section 4.5.1 to simulate triples
(x, y,c). We use the following nonlinear causal mechanisms to generate
treatment X and outcome Y : X = f (EX ,Z,C) and Y = g(X ,EY ,Z,C), a de-
tailed description of the simulation procedure is given in the Appendix
4.7.8. Again, we generate 100 datasets by varying K ,L between 1 and 5
and the random seed. We select five datasets following the same criteria
as described in Section 4.5.1. Furthermore, we use the implementation
described in Section 4.4.3 to estimate the SCM in Figure 4.3.4. For each of
the five datasets, we keep the number of observational samples constant at
1000 and use an increasing number of interventional samples: 50, 100, 250,
500, 750, 1000, resulting in six experiments per dataset. We compare three
flow models trained with observational, interventional, and observational
plus interventional data, respectively. The training details are the same as
in Section 4.5.1. An extensive comparison of the three flow models, as well
as visualizations for each dataset, can be found in the Appendix 4.7.12.
The main result of the experiments with additional observed confounders
is the following: For each of the five datasets, we can substantially reduce
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the required number of interventional samples with our flow model trained
with observational and interventional data, see Table 4.1, dataset 11 to 15.
We find that we can reduce the number of required samples by a factor of
two to three when training with 1000 additional observational samples.

4.6 Conclusion

We propose a causal reduction technique that replaces any number of (pos-
sibly high-dimensional) unobserved confounders with a single confounder
of the same dimensionality as the treatment variable, preserving the ob-
servational distributions entailed by the model and the interventional
distributions for interventions on the treatment and outcome variable.
Using a reduced model, we derive constraints between the observational
and interventional distributions in the linear Gaussian case, showing that
these objects are not independent. In the nonlinear case, we propose a
flexible parameterization of the reduced causal model using normalizing
flows. This parameterization allows us to train a single flow model by
combining observational and interventional data. In simulations, for 13
out of 15 simulated datasets, we substantially reduce the required number
of interventional samples if sufficient observational samples are available.
Possible future work includes (i) applying the flow model to high dimen-
sional outcome variables, e.g., medical images, (ii) using the reduction
technique for causal discovery, e.g., inferring causal directions, and (iii)
analyzing the relationship between the constraints in Section 4.3.3 and
the instrumental and Bell inequalities [Pearl, 1995, Bell, 1964].

4.7 Appendix

4.7.1 Theorem A.1 and proof

Theorem 4.7.1. Let P(X |Y) be a Markov kernel, where the variable X takes
values in R (or [−∞,∞]) and argument Y has values in any measurable space
(e.g. RN). Then there exists a uniformly distributed variable E ∼U[0,1] that
is independent of Y and a deterministic function F, namely the conditional
quantile function of X given Y, such that:

X = F(E|Y) a.s. (4.26)

Proof. Consider the interpolated conditional cumulative distribution func-
tion (iccdf) of X given Y with u ∈ [0,1]:

G(x;u|y) := P(X < x|y)+u ·P(X = x|y). (4.27)
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Furthermore, consider the conditional quantile function (cqf) of X given Y
with e ∈ [0,1]:

F(e|y) := inf{x̃ ∈R |G(x̃;1|y)≥ e}. (4.28)

Then take any uniformly distributed random variable U ∼U[0,1] indepen-
dent of (X ,Y) and define:

E :=G(X ;U |Y), (4.29)

where we plugged X , U and Y into G. Then one can check using standard
arguments for cdf and cqf that E is uniformly distributed, E ∼U[0,1], which
is independent of the value y of Y. Furthermore, one can show that:

X = F(E|Y) a.s. (4.30)

A detailed proof can be found in Forré [2021] in Appendix G.

4.7.2 Proof of Theorem 3.2

Proof. We use Theorem 4.7.1 inductively.

1. Consider the cqf F1 of P(X1|Y). Then by 4.7.1 there is a random variable
E1 ∼U[0,1] independent of Y such that X1 = F1(E1|Y) a.s.

2. Now consider the cqf F2 of P(X2|E1,Y). Then by 4.7.1 there is a random
variable E2 ∼U[0,1] independent of E1, Y such that X2 = F2(E2|E1,Y) a.s.

3. Now consider the cqf F3 of P(X3|E2,E1,Y). Then by 4.7.1 there is a
random variable E3 ∼ U[0,1] independent of E2,E1, Y such that X3 =
F3(E3|E2,E1,Y) a.s.

4. and so on .... until:

5. XM = FM(EM |EM−1, . . . ,E1,Y) a.s. with EM ∼U[0,1] independent of
EM−1, . . . ,E1, Y.

Now we put Zd :=Φ−1(Ed), where Φ is the cdf of N (0,1). Then Ed =Φ(Zd)
and the Zd are N (0,1)-distributed and Z = (Z1, . . . , ZM) is independent Y).
So Z= (Z1, . . . , ZM)∼N (0,IM) and independent of Y. Furthermore, we have
almost surely the equations:

X1 = F1(Φ(Z1)|Y), (4.31)

X2 = F2(Φ(Z2)|Φ(Z1),Y), (4.32)

... . . . (4.33)

XM = FM(Φ(ZM)|Φ(ZM−1), . . . ,Φ(Z1),Y). (4.34)
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4.7.3 Corollary of Theorem 3.1: the linear Gaussian case

Here we state and prove a special case of the causal reduction for the linear
Gaussian case.

Corollary 4.7.2 (Reduced linear Gaussian model). Consider a linear Gaus-
sian SCM (or causal Bayesian network with possible latent variables) with
observed variables X and Y such that Y is not ancestor of X. Then this
causal model is interventionally equivalent to a reduced linear Gaussian
causal model with the following structural equations:

X= a+BU, (4.35)

Y= c+DX+EU+FV, (4.36)

with vectors a, c and matrices B, D, E, F, where B and F can be chosen to
be lower-triangular with non-negative diagonal entries, and where U is a
standard Gaussian latent variable of the same dimension as X and where
V is a standard Gaussian latent variable of the same dimension as Y that
is independent of U.

Proof. This follows the same steps as the general construction in Equations
4.2, 4.3, 4.4, 4.5, where p(x|w)= δw(x) reflects the identity map. In Equation
4.6, note that p(z|w) is linear Gaussian by the well-known conditioning
formula for jointly Gaussian distributions. We then arrive at Equation 4.7,
where it can be checked that in Equation 4.8 both parts, p(z|w) and p(y|x,z),
are linear Gaussian, thus makes p(y|x,w) linear Gaussian. Finally, we use
the reparameterization trick together with a Cholesky decomposition, as
seen in Section 4.3.2, to turn p(w) into a standard Gaussian p(u), which
makes p(x|u), as a composition of identity map and linear Gaussian also
a linear Gaussian. Note that p(y|x,u) again is linear Gaussian by similar
arguments. Last we use the reparameterization trick again to obtain
p(y|x,u,v) where V∼N (0,IN ).

4.7.4 Proof of Theorem 3.4

Proof. The linear version of the reduced SCM in Equation 4.36 entails the
following distributions over x and y

p(x)=N
(︁
x|a,BB⊤)︁ , (4.37)

p(y|x)=N
(︁
y|c+Dx+EB−1(x−a

)︁
,FF⊤), (4.38)

p(y|do(x))=N
(︁
y|c+Dx,EE⊤+FF⊤)︁ , (4.39)

111



Efficient Causal Inference from Combined Observational and Interventional Data through Causal Reductions

Comparing Equations 4.12, 4.13, 4.14 with 4.37, 4.38, 4.39 we immedi-
ately get the equations for the parameters:

α= a, (4.40)

Σ= BB⊤, (4.41)

γ+∆x= c+(︁
D+EB−1)︁x−EB−1a, (4.42)

γ
x=0= c−EB−1a, (4.43)

Π= FF⊤, (4.44)

˜︁γ= c, (4.45)

˜︁∆= D, (4.46)

˜︁Π= EE⊤+FF⊤. (4.47)

Substituting a,c,D,FF⊤ and then subtracting Equation 4.43 from 4.42 and
solving for all x we get the constraints:

∆= ˜︁∆+EB−1, (4.48)

γ= ˜︁γ−EB−1α, (4.49)

˜︁Π=Π+EE⊤. (4.50)

With Equation 4.48 we see that E = (∆− ˜︁∆)B, which we can just plug into
Equations 4.49 and 4.50. Finally using Equation 4.41 to replace BB⊤ with
Σ in Equation 4.50 will give the claim.

4.7.5 Reduction with observed confounders

There are many scenarios where we are interested in estimating the
conditional causal effect of interventions given additional covariates C
that might confound treatment and outcome, for example when estimating
the efficacy of a vaccine depending on age, weight or gender. We again
consider a treatment variable X ∈ X = RM, an outcome variable Y ∈ Y =
RN , and a set of K latent confounders Z1, . . . , ZK in arbitrary standard
measurable spaces (e.g., Rd or discrete). In addition, let there be L observed
confounders C1, . . . ,CL of X and Y, again in arbitrary standard measurable
spaces. We allow for arbitrary causal relations and dependencies between
the confounders. In the following, we summarize all observed confounders
using a single variable C = (C1, . . . ,CL) ∈ C and all latent confounders as
Z = (Z1, . . . , ZK ) ∈ Z . We follow a similar sequence of steps as in Section
4.3.1 to derive a reduced causal model of the following form

p(x,y,w,c)= p(y|x,w,c)p(x|w)p(w|c)p(c). (4.51)
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as illustrated in Figure 4.2 (a–d). At every step, the Bayesian network
is observationally equivalent to the ones before and also interventionally
equivalent for interventions on X and Y.

We can now use a similar approach as in Section 4.3.2, and in addition
marginalize out W as seen in Figure 4.2 (g), to convert the causal Bayesian
Network into an SCM with structural equations of the form given below

X= F(U,C), (4.52)

Y=G(V,X,U,C), (4.53)

where U ∼ N (0,IM) ⊥⊥ V ∼ N
(︁
0,IN

)︁
and F and G are two deterministic

maps. This is illustrated in Figure 4.2 (e–h). Again, at every step, the
Bayesian network is observationally equivalent to the ones before and also
interventionally equivalent for interventions on X and Y.

4.7.6 Linear experiment

We now show the capabilities of our flow model to learn the model parame-
ters jointly from observational and interventional data. Throughout this
experiment we assume x, y ∈R. We generate training, validation and test
data using the following linear SCM
Observational

u ∼N (0,1) ⊥⊥ v ∼N (0,1) (4.54)

xo = 2 ·u+1 (4.55)

yo = 1.5 ·v− xo −3 ·u+2 (4.56)

Interventional

u ∼N (0,1) ⊥⊥ v ∼N (0,1) (4.57)

xi ∼N (0,1) (4.58)

yi = 1.5 ·v− xi −3 ·u+2 (4.59)

Since we know that the data is generated by a linear SCM we choose the
transformations in our flow model to be linear as well

u = fa,b(x)= a · x+b (4.60)

x = f −1
a,b(u)= 1

a
· (u−b) (4.61)

v = gx,u;c,d,e, f (y)= c · y+d · x+ e ·u+ f (4.62)

y= g−1
x,u;c,d,e, f (v)= 1

c
· (v−d · x− e ·u− f ), (4.63)
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Figure 4.2. A graphical explanation of our reduction technique in the presence of both
observed and latent confounders. (a) We assume a treatment variable X ∈RM ,
an outcome variable Y ∈RN , latent confounders Z1, . . . , ZK , and observed con-
founders C1, . . . ,CL, with arbitrary causal and probabilistic relations between
the confounders. (b) We combine the latent confounders into Z ∈ Z and the
observed confounders into C ∈ C , and factorize their joint distribution as
p(z | c)p(c). (c) We create a copy of X called W. (d) We refactorize p(w,z,c)
as p(z | w,c)p(w | c)p(c). (e) We marginalize over Z. (f) We reparameterize
p(w | c) using Theorem 4.3.2 as a deterministic function, introducing an inde-
pendent noise variable U. (g) We marginalize over W. (h) We reparameterize
p(y | x,u,c) with Theorem 4.3.2 as a deterministic function, introducing an
independent noise variable V. Note that at every step (a–h) the models remain
observationally equivalent (i.e., p(c,x,y) is invariant), and also intervention-
ally equivalent with respect to interventions on X and Y (i.e., p(y,c | do(x)) and
p(x,c | do(y)) are invariant).
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in this case the volume terms in Equation 4.22 are simply given by
⃓⃓
⃓⃓∂ fa,b(x)

∂x

⃓⃓
⃓⃓= |a| (4.64)

⃓⃓
⃓⃓∂gx,u;c,d,e, f (y)

∂y

⃓⃓
⃓⃓= |c| . (4.65)

Given a dataset consisting of observational and interventional data we can
optimize the following loss

loss =
NO∑︂
o=1

− log p(xo, yo)+α

NI∑︂
i=1

− log p(do(xi), yi), (4.66)

where

log p(xo, yo)= log pV (c · yo +d · xo + e ·u+ f )

+ log |c|+ log pU (a · xo +b)+ log |a| , (4.67)

and

log p(do(xi), yi)= log
∫︂

pV (c · yi +d · xi + e ·u+ f ) |c| p(u)du

+ log p(xi). (4.68)

We choose α= NO/NI . In Equation 4.67, we now use u = fa,b(x)= a · x+b to
impute u. Resulting in

log p(xo, yo)= log pV (c · yo +d · xo + e · (a · xo +b)+ f )

+ log |c|+ log pU (a · xo +b)+ log |a| . (4.69)

In Figure 4.3, we show the training data set (left) and samples from our
flow model trained with 100 observational samples and 100 interventional
samples (right). Our flow model correctly finds the parameters used in
the SCM used to generate the data. After training, our flow model can
generate both observational and interventional samples, as described in
Section 4.4.3.

4.7.7 Background: Normalizing Flows

Normalizing flows are based on the idea of transforming samples from a
simple distribution into samples from a complex distribution using the
change of variable formula [Rezende and Mohamed, 2015, Tabak and
Turner, 2013]:

p(x)= pZ( f (x))
⃓⃓
⃓⃓det

(︃
∂ f (x)
∂x

)︃⃓⃓
⃓⃓ , (4.70)
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Figure 4.3. Samples from linear Gaussian model. Left: 1000 observational and 1000
interventional samples generated from the linear SCM in Section 4.7.6. Right:
1000 observational and 1000 interventional samples generated from our flow
model trained with 100 observational and 100 interventional samples.

where z = f (x) is a bijective map f : X →Z , pZ(z) a simple prior distribu-
tion, and ∂ f (x)

∂x the Jacobian with respect to x. The transformation f (x) is
commonly composed of K transformations f (x)= fK ◦ · · · ◦ f1(x) to increase
the overall expressivity of f (x). The choice of f (x) is restricted by the com-
putational complexity of calculating the Jacobian ∂ f (x)

∂x . In recent years, a
multitude of transformations with easy to compute Jacobians have been
developed, for an overview see Kobyzev et al. [2020], Papamakarios et al.
[2021].

In this paper we will use neural spline flows [Durkan et al., 2019,
Dolatabadi et al., 2020]. Neural spline flows have two major advantages: 1.
A better functional flexibility than affine transformations (y= sx+ t), 2. A
numerically stable, analytic inverse that has the same computational and
space complexities as the forward operation. While Durkan et al. [2019]
use quadratic, cubic, and rational quadratic functions whose inversion is
done after solving polynomial equations, Dolatabadi et al. [2020] show
that piecewise linear rational splines can perform competitively with these
methods without requiring a polynomial equation to be solved in the inver-
sion. Because of its reduced computational cost, we will use linear rational
splines throughout this paper.

Consider a set of monotonically increasing points {(x(k), y(k))}K
k=0 called

knots and a set of derivatives at each of the points {d(k)}K
k=0. For each bin

[x(k), x(k+1)] we want to find a linear rational function of the form ax+b
cx+d that

fit the given points and derivatives.
The values returned by Algorithm 1 are subsequentely used to express

the following linear rational spline function

f (φ)=
{︄ w(k) y(k)(λ(k)−φ)+w(m) y(m)φ

w(k)(λ(k)−φ)+w(m)φ
0≤φ≤λ(k)

w(m) y(m)(1−φ)+w(k+1) y(k+1)(φ−λ(k))
w(m)(1−φ)+w(k+1)(φ−λ(k)) λ(k) ≤φ≤ 1

(4.71)

where φ= (x− x(k))/(x(k+1) − x(k)).
Spline flows have two hyperparameters, the boundary B of the interval

[−B,B] and the number of bins K . Outside of the interval [−B,B], the
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Algorithm 1 Fuhr and Kallay [1992] Linear Rational Spline Interpolation
of Monotonic data in the interval

[︁
x(k), x(k+1)

]︁
.

Input: x(k) < x(k+1), y(k) < y(k+1), d(k) > 0, d(k+1) > 0

1: set w(k) > 0
2: set 0<λ(k) < 1

3: w(k) =
√︃

d(k)

d(k+1) w(k)

4: ym = w(k) y(k)(︁1−λ(k))︁+w(k+1) y(k+1)λ(k)

w(k)(︁1−λ(k))︁+w(k+1)λ(k)

5: w(m) = (︁
λ(k)w(k)d(k) +(︁

1−λ(k))︁w(k+1)d(k+1))︁ x(k+1)−x(k)

y(k+1)−y(k)

Return: λ(k),w(k),w(m),w(k+1), y(m)

identity function is used. Using Equation 4.70 we can update the param-
eters of the neural spline flow using maximum-likelihood estimation in
combination with gradient descent. In the case where x has two or more
dimensions, either coupling layers [Dinh et al., 2017] or autoregressive
layers [Papamakarios et al., 2017] can be used.

At multiple points in this paper we are required to estimate conditional
distributions, e.g. p(y|x), where we will use conditional normalizing flows
to estimate conditional probabilities. We consider the mapping f : X ×Y →
Z , which is bijective in Y and Z , and a simple prior distribution pZ(z).
Again, using the change of variable formula we can express the conditional
distributions p(y|x) as follows

p(y|x)= pZ( fx(y))
⃓⃓
⃓⃓det

(︃
∂ fx(y)
∂y

)︃⃓⃓
⃓⃓ . (4.72)

The conditional version of the linear rational spline transformation uses
a neural network to predict the derivatives d, width w, height h, and λ

from x: w,h,d,λ= NNθ(x).

4.7.8 Simulation details: Nonlinear experiments without
observed confounders

The generation of observational and interventional samples follows Mooij
et al. [2016]. Instead of using Gaussian processes to model the causal
mechanisms, we use two randomly initialized neural networks, NN1 and
NN2.

Sampling from a random distribution
We use the following steps to generate samples from a random distribution

1. X ∼N (0,1)

2. sort X in ascending order =−→
X

3. Sample from Gaussian Process: F ∼ N (0,Kθ(
−→
X )+σ2I), where for the

kernel Kθ we use the squared exponential covariance function with
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automatic relevance determination kernel

4. use the trapezoidal rule to calculate the cumulative integral of exp(F), we

obtain a vector G where each element Gi corresponds to Gi =
∫︁ −→

Xi−→
X1

exp(F(x))dx

We will denote this whole sampling procedure by G ∼RD(θ,σ), where we
sample θ from a Gamma distribution Γ(a,b) and set σ= 0.0001.

Generate observational and interventional data
1. Sample from latent variables

θEX ∼Γ(aEX ,bEX ), (4.73)

θEY ∼Γ(aEY ,bEY ), (4.74)

θZ ∼Γ(aZ,bZ), (4.75)

EX ∼RD(θEX ,σ), (4.76)

EY ∼RD(θEY ,σ), (4.77)

Z∼RD(θZ,σ). (4.78)

2. Generate Xobservational

Xobservational = NN1(EX ,Z). (4.79)

3. Normalize Xobservational

Xobservational =
Xobservational −E

[︁
Xobservational

]︁
√︁

V[Xobservational]
. (4.80)

4. Generate Yobservational

Yobservational = NN2(Xobservational,EY ,Z). (4.81)

5. Sample from latent variables

EY ∼RD(θEY ,σ) (4.82)

Z∼RD(θZ,σ) (4.83)

6. Generate Xinterventional

θX ∼Γ(aX ,bX ), (4.84)

Xinterventional ∼RD(θX ,σ). (4.85)

7. Normalize Xinterventional

Xinterventional =
Xinterventional −E

[︁
Xinterventional

]︁
√︁

V[Xinterventional]
. (4.86)
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8. Generate Yinterventional

Yinter = NN2(Xinter,EY ,Z). (4.87)

9. Generate noise

ϵx,observational ∼N (0,1), (4.88)

ϵx,interventional ∼N (0,1), (4.89)

θϵx ∼Γ(aϵx ,bϵx ), (4.90)

ϵy,observational ∼N (0,1), (4.91)

ϵy,interventional ∼N (0,1), (4.92)

θϵy ∼Γ(aϵy ,bϵy). (4.93)

10. Add noise

X ′
observational = Xobservational +θϵxϵx,observational, (4.94)

X ′
interventional = Xinterventional +θϵxϵx,interventional, (4.95)

Y ′
observational =Yobservational +θϵyϵy,observational, (4.96)

Y ′
interventional =Yinterventional +θϵyϵy,interventional. (4.97)

11. Normalize Y jointly

Y ′ = [Y ′
observational,Y

′
interventional], (4.98)

Y ′
observational =

Y ′
observational −E

[︁
Y ′]︁

⎷
V[Y ′]

, (4.99)

Y ′
interventional =

Y ′
interventional −E

[︁
Y ′]︁

⎷
V[Y ′]

. (4.100)

The two neural networks NN1 and NN2 are Multi-layer perceptrons
with a single hidden layer. The hidden layer contains 1024 units. The
input layer and the hidden layer use a ReLU activation function. The
weights and biases for both neural networks are uniformly sampled from
the interval [−1,1]. We choose the other simulation parameters as follows:
aEX = aEY = aZ = aX = 5, aϵx = aϵy = 2, bEX = bEY = bZ = bX = bϵx = bϵy = 0.1,
σ= 0.0001

4.7.9 Simulation details: Nonlinear experiments with observed
confounders

In order to simulate data with additional observed confounders, we first
generate C

θC =Γ(aC,bC), (4.101)

C∼RD(θC,σ), (4.102)
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where aC = 10 and bC = 1. In addition, we modify steps 2,4 and 8 as follows

Xobservational = NN1(EX ,Z,C), (4.103)

Yobservational = NN2(Xobservational,EY ,Z,C), (4.104)

Yinter = NN2(Xinter,EY ,Z,C). (4.105)
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4.7.10 Nonlinear experiment results without observed
confounders

Figure 4.4. Dataset 1: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
flow model trained with 50 interventional samples. Bottom: Observational
and interventional samples from a flow model trained with 50 interventional
samples and 1000 observational samples. The samples are generated as
described in Section 4.4.3.
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Figure 4.5. Dataset 1: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model trained
with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow model
trained with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 interventional
samples from the test set. Bottom: Comparison of a flow model trained with
1000 observational samples, a flow model trained with 50, 100, 250, 500,
750, 1000 interventional samples, and a flow model trained with both 1000
observational samples and 50, 100, 250, 500, 750, 1000 interventional samples.
All flow models are evaluated on 1000 observational samples from the test set.
We report the mean and standard error for ten runs of each experiment.

Dataset 1: # of confounders = 1, random seed = 6
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Figure 4.6. Dataset 2: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.7. Dataset 2: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model trained
with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow model
trained with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 interventional
samples from the test set. Bottom: Comparison of a flow model trained with
1000 observational samples, a flow model trained with 50, 100, 250, 500,
750, 1000 interventional samples, and a flow model trained with both 1000
observational samples and 50, 100, 250, 500, 750, 1000 interventional samples.
All flow models are evaluated on 1000 observational samples from the test set.
We report the mean and standard error for ten runs of each experiment.

Dataset 2: # of confounders = 1, random seed = 8
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Figure 4.8. Dataset 3: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.9. Dataset 3: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model trained
with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow model
trained with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 interventional
samples from the test set. Bottom: Comparison of a flow model trained with
1000 observational samples, a flow model trained with 50, 100, 250, 500,
750, 1000 interventional samples, and a flow model trained with both 1000
observational samples and 50, 100, 250, 500, 750, 1000 interventional samples.
All flow models are evaluated on 1000 observational samples from the test set.
We report the mean and standard error for ten runs of each experiment.

Dataset 3: # of confounders = 2, random seed = 7
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4.7.11 Dataset 4: 3 confounders, random seed = 1

Figure 4.10. Dataset 4: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.11. Dataset 4: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow
model trained with both 1000 observational samples and 50, 100, 250, 500,
750, 1000 interventional samples. All flow models are evaluated on 1000
interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.
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Figure 4.12. Dataset 5: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.13. Dataset 5: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow
model trained with both 1000 observational samples and 50, 100, 250, 500,
750, 1000 interventional samples. All flow models are evaluated on 1000
interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 5: # of confounders = 4, random seed = 0
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Figure 4.14. Dataset 6: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.

131



Efficient Causal Inference from Combined Observational and Interventional Data through Causal Reductions

Figure 4.15. Dataset 6: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow
model trained with both 1000 observational samples and 50, 100, 250, 500,
750, 1000 interventional samples. All flow models are evaluated on 1000
interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 6: # of confounders = 4, random seed = 7
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Figure 4.16. Dataset 7: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.17. Dataset 7: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow
model trained with both 1000 observational samples and 50, 100, 250, 500,
750, 1000 interventional samples. All flow models are evaluated on 1000
interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 7: # of confounders = 5, random seed = 5
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Figure 4.18. Dataset 8: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.19. Dataset 8: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow
model trained with both 1000 observational samples and 50, 100, 250, 500,
750, 1000 interventional samples. All flow models are evaluated on 1000
interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 8: # of confounders = 5, random seed = 9
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Figure 4.20. Dataset 9: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.21. Dataset 9: Performances measured in terms of negative log-likelihood on the
observational and the interventional test sets, respectively. Top: Comparison
of a flow model trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional samples, and a flow
model trained with both 1000 observational samples and 50, 100, 250, 500,
750, 1000 interventional samples. All flow models are evaluated on 1000
interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 9: # of confounders = 7, random seed = 0
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Figure 4.22. Dataset 10: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.23. Dataset 10: Performances measured in terms of negative log-likelihood
on the observational and the interventional test sets, respectively. Top:
Comparison of a flow model trained with 1000 observational samples, a flow
model trained with 50, 100, 250, 500, 750, 1000 interventional samples, and
a flow model trained with both 1000 observational samples and 50, 100, 250,
500, 750, 1000 interventional samples. All flow models are evaluated on
1000 interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 10: # of confounders = 7, random seed = 5
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4.7.12 Nonlinear experiment results with observed confounders

Figure 4.24. Dataset 11: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.25. Dataset 11: Performances measured in terms of negative log-likelihood
on the observational and the interventional test sets, respectively. Top:
Comparison of a flow model trained with 1000 observational samples, a flow
model trained with 50, 100, 250, 500, 750, 1000 interventional samples, and
a flow model trained with both 1000 observational samples and 50, 100, 250,
500, 750, 1000 interventional samples. All flow models are evaluated on
1000 interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 11: # of latent confounders = 1, # of observed confounders = 3,
random seed = 7
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Figure 4.26. Dataset 12: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.27. Dataset 12: Performances measured in terms of negative log-likelihood
on the observational and the interventional test sets, respectively. Top:
Comparison of a flow model trained with 1000 observational samples, a flow
model trained with 50, 100, 250, 500, 750, 1000 interventional samples, and
a flow model trained with both 1000 observational samples and 50, 100, 250,
500, 750, 1000 interventional samples. All flow models are evaluated on
1000 interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 12: # of latent confounders = 1, # of observed confounders = 3,
random seed = 9
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Figure 4.28. Dataset 13: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.29. Dataset 13: Performances measured in terms of negative log-likelihood
on the observational and the interventional test sets, respectively. Top:
Comparison of a flow model trained with 1000 observational samples, a flow
model trained with 50, 100, 250, 500, 750, 1000 interventional samples, and
a flow model trained with both 1000 observational samples and 50, 100, 250,
500, 750, 1000 interventional samples. All flow models are evaluated on
1000 interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 13: # of latent confounders = 2, # of observed confounders = 1,
random seed = 0
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Figure 4.30. Dataset 14: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.31. Dataset 14: Performances measured in terms of negative log-likelihood
on the observational and the interventional test sets, respectively. Top:
Comparison of a flow model trained with 1000 observational samples, a flow
model trained with 50, 100, 250, 500, 750, 1000 interventional samples, and
a flow model trained with both 1000 observational samples and 50, 100, 250,
500, 750, 1000 interventional samples. All flow models are evaluated on
1000 interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 14: # of latent confounders = 3, # of observed confounders = 3,
random seed = 5
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Figure 4.32. Dataset 15: Interventional and observational samples. Top: Observational
and interventional training samples. Center: Interventional samples from a
model trained with 50 interventional samples. Bottom: Observational and
interventional samples from a model trained with 50 interventional samples
and 1000 observational samples. The samples are generated as described in
Section 4.4.3.
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Figure 4.33. Dataset 15: Performances measured in terms of negative log-likelihood
on the observational and the interventional test sets, respectively. Top:
Comparison of a flow model trained with 1000 observational samples, a flow
model trained with 50, 100, 250, 500, 750, 1000 interventional samples, and
a flow model trained with both 1000 observational samples and 50, 100, 250,
500, 750, 1000 interventional samples. All flow models are evaluated on
1000 interventional samples from the test set. Bottom: Comparison of a flow
model trained with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a flow model trained
with both 1000 observational samples and 50, 100, 250, 500, 750, 1000
interventional samples. All flow models are evaluated on 1000 observational
samples from the test set. We report the mean and standard error for ten
runs of each experiment.

Dataset 15: # of latent confounders = 4, # of observed confounders = 4,
random seed = 2
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5. DIVA: Domain Invariant Variational
Autoencoders

In the last section of the main part of the thesis, we focus on what we
consider the most challenging experimental setup. As in Chapter 4, we
assume that we have no apriori knowledge about the symmetries of the
data and the task. Therefore we cannot use invariant architecture or data
augmentation techniques to train invariant machine learning models. In
contrast to Chapter 4, we assume that we have no access to experimental
data with known interventions either. Instead, we will solely rely on data
from multiple domains. As seen in Section 1.2.2, we assume that there
exist invariant causal mechanisms that generalize across all domains.
Subsequently, we assume that latent features exist that are invariant to
domain changes, so-called domain invariant features. We propose using
an augmented VAE, see Section 1.3.1, to learn those domain invariant fea-
tures. By learning disentangled features, we can obtain domain invariant
features as a subset of the latent space. We demonstrate that we can learn
features invariant to (semi)groups like color transformations and rotations
without specifying the group symmetry before hands.

5.1 Introduction

Deep Neural Networks (DNNs) led to breakthroughs in various areas like
computer vision and natural language processing. Despite their immense
success, recent research shows that DNNs learn the bias present in the
training data. As a result, they are not invariant to cues that are irrelevant
to the actual task [Azulay and Weiss, 2019]. This leads to a dramatic
performance decrease when tested on data from a different distribution
with a different bias.

In domain generalization, the goal is to learn representations from a set of
similar distributions called domains that can be transferred to a previously
unseen domain during test time. A common motivating application, where
domain generalization is crucial, is medical imaging [Blanchard et al.,
2011, Muandet et al., 2013]. For instance, in digital histopathology, a
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typical task is the classification of benign and malignant tissue. However,
preparing a histopathology image includes tissue staining and scanning,
which can significantly vary between hospitals. Moreover, the samples
from a single patient could be preserved in different conditions [Ciompi
et al., 2017]. As a result, each patient’s data could be treated as a separate
domain [Lafarge et al., 2017]. Another problem commonly encountered
in medical imaging is class label scarcity. Annotating medical images is
a highly time-consuming task that requires expert knowledge. However,
obtaining domain labels is surprisingly cheap since hospitals generally
store information about the patient (e.g., age and sex) and the medical
equipment (e.g., manufacturer and settings). Therefore, we are interested
in extending the domain generalization framework to deal with additional
unlabeled data, as we hypothesize that it can help improve performance.

In this paper, we propose to tackle domain generalization via a new deep
generative model that we refer to as the Domain Invariant Variational
Autoencoder (DIVA). We extend the Variational AutoEncoder (VAE) frame-
work [Kingma and Welling, 2013, Rezende et al., 2014] by introducing
independent latent representations for a domain label d, a class label y
and any residual variations in the input x. Such partitioning of the latent
space will encourage and guide the model to disentangle these sources of
variation. Finally, by having a generative model, we can naturally han-
dle the semi-supervised scenario, similarly to Kingma et al. [2014]. We
evaluate our model on a version of the MNIST dataset where each domain
corresponds to a specific rotation angle of the digits and on a Malaria Cell
Images dataset where each domain corresponds to a different patient.

5.2 Definition of Domain Generalization

We follow the domain generalization definitions used in Muandet et al.
[2013]. A domain is defined as a joint distribution p(x, y) on X ×Y , where
X denotes the input space and Y denotes the output space. Let PX×Y

be the set of all domains. The training set consists of samples S taken
from N domains, S = {S(d=i)}N

i=1. Here, the ith domain p(d=i)(x, y) is repre-
sented by ni samples, S(d=i) = {(x(d=i)

k , y(d=i)
k )}ni

k=1. Each of the N distributions
p(d=1)(x, y), . . . , p(d=i)(x, y), . . . , p(d=N)(x, y) are sampled from PX×Y . We fur-
ther assume that p(d=i)(x, y) ̸= p(d= j)(x, y), therefore, the samples in S are
non-i.i.d. During test time we are presented with samples S(d=N+1) from
a previously unseen domain p(d=N+1)(x, y). We are interested in learning
representations that generalize from p(d=1)(x, y), . . . , p(d=N)(x, y) to this new
domain. Training data are given as tuples (d,x, y) in the case of supervised
data or as (d,x) in the case of unsupervised data.
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5.3 DIVA: Domain Invariant VAE

Assuming a perfectly disentangled latent space [Higgins et al., 2018], we
hypothesize that there exists a latent subspace that is invariant to changes
in d, i.e., it is domain invariant. We propose a generative model with three
independent sources of variation; zd, which is domain specific, zy, which is
class specific and finally zx, which captures any residual variations left in
x. While zx keeps an independent Gaussian prior p(zx), zd and zy have con-
ditional priors pθd (zd|d), pθy(zy|y) with learnable parameters θd,θy. This
will encourage information about the domain d and label y to be encoded
into zd and zy, respectively. Furthermore, as zd and zy are marginally
independent by construction, we argue that the model will learn represen-
tations zy that are invariant with respect to the domain d. All three of
these latent variables are then used by a single decoder pθ(x|zd,zx,zy) for
the reconstruction of x. Since we are interested in using neural networks
to parameterize pθ(x|zd,zx,zy), exact inference will be intractable. For
this reason, we perform amortized variational inference with an inference
network [Kingma and Welling, 2013, Rezende et al., 2014], i.e., we employ
a VAE-type framework. We introduce three separate encoders qφd

(zd|x),
qφx

(zx|x) and qφy
(zy|x) that serve as variational posteriors over the latent

variables. Notice that we do not share their parameters as we empirically
found that sharing parameters leads to a decreased generalization perfor-
mance. For the prior and variational posterior distributions over the latent
variables zx,zd,zy we assume fully factorized Gaussians with parameters
given as a function of their input. We coin the term Domain Invariant VAE
(DIVA) for our overall model, which is depicted in Figure 5.1.

x

zxzd zy

yd x

zxzd zy

yd

Figure 5.1. DAG of DIVA. Left: Generative model. Right: Inference model. A grey node
means the variable is observed and a white node corresponds to a latent
(unobserved) variable. Dashed arrows represent the auxiliary classifiers.

Given a specific dataset, all of the aforementioned parameters can be
optimized by maximizing the following variational lower bound per input
x:

Ls(d,x, y)= Eqφd (zd |x)qφx (zx|x),qφy (zy|x)
[︁
log pθ(x|zd,zx,zy)

]︁

−βKL
(︁
qφd

(zd|x)||pθd (zd|d)
)︁

−βKL
(︁
qφx

(zx|x)||p(zx)
)︁
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−βKL
(︁
qφy

(zy|x)||pθy(zy|y)
)︁

. (5.1)

Notice that we have introduced a weighting term β. This is motivated by
the β-VAE [Higgins et al., 2017] and serves as a constraint that controls
the capacity of the latent spaces of DIVA. Larger values of β limit the
capacity of each z, and in the ideal case, each dimension of z captures one
of the conditionally independent factors in x.

To further encourage separation of zd and zy into domain- and class-
specific information respectively, we add two auxiliary objectives. During
training zd is used to predict the domain d and zy is used to predict the
class y for a given input x:

FDIVA(d,x, y)=Ls(d,x, y)+αdEqφd (zd |x)
[︁
log qωd (d|zd)

]︁

+αyEqφy (zy|x)
[︁
log qωy(y|zy)

]︁
, (5.2)

where αd, αy are weighting terms for each of these auxiliary objectives.
Since our main goal is a domain invariant classifier, during inference
we only use the encoder qφy

(zy|x) and the auxiliary classifier qωy(y|zy).
For the prediction of the class y for a new input x, we use the mean of
zy. Consequently, we regard the variational lower bound Ls(d,x, y) as a
regularizer. Therefore, evaluating the marginal likelihood p(x) of DIVA is
outside the scope of this paper.

Locatello et al. [2019] and Dai and Wipf [2019] show that learning a
disentangled representation, i.e., qφ(z)=∏︁

i qφ(zi), in an fully unsupervised
fashion is impossible for arbitrary generative models. Inductive biases,
e.g., some form of supervision or constraints on the latent space, are
necessary to find a specific set of solutions that matches the true generative
model. Consequently, DIVA is using domain labels d and class labels y
in addition to input data x during training. Furthermore, we enforce
the factorization of the marginal distribution of z in the following form:
qφ(z) = qφd

(zd)qφx
(zx)qφy

(zy), which prevents the impossibility described
in Locatello et al. [2019]. We argue that the strong inductive biases in
DIVA make it possible to learn disentangled representations that match
the ground truth factors of interest, namely, the domain factors zd and
class factors zy.

In the Appendix, we perform multiple ablation studies that further
justify the design of DIVA. We find that a partitioned latent space is indeed
necessary to obtain good generalization performance. In line with the
results in [Klys et al., 2018], we find that while omitting zd is not leading
to a significant decrease in generalization performance. It leads to a less
interpretable model, see Section 5.5.2.
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5.3.1 Semi-supervised DIVA

In Kingma et al. [2014] an extension to the VAE framework was introduced
that allows to use labeled as well as unlabeled data during training. While
Kingma et al. [2014] introduced a two step procedure, Louizos et al. [2016]
present a way of optimizing the decoder of the VAE and the auxiliary
classifier jointly. We use the latter approach to learn from supervised data
{(dn,xn, yn)} as well as from unsupervised data {(dm,xm)}. Analogically to
Louizos et al. [2016], we use qωy(y|zy) to impute y:

Lu(d,x)= Eqφd (zd |x)qφx (zx|x)qφy (zy|x)
[︁
log pθ(x|zd,zx,zy)

]︁

−βKL
(︁
qφd

(zd|x)||pθd (zd|d)
)︁

−βKL
(︁
qφx

(zx|x)||p(zx)
)︁

+βEqφy (zy|x)qωy (y|zy)
[︁
log pθy(zy|y) log qφy

(zy|x)
]︁

+Eqφy (zy|x)qωy (y|zy)
[︁
log p(y)− log qωy(y|zy)

]︁
, (5.3)

where we use Monte Carlo sampling with the reparametrization trick [Kingma
and Welling, 2013] for the continuous latent variables zd,zx,zy and explic-
itly marginalize over the discrete variable y.

The final objective combines the supervised and unsupervised variational
lower bound as well as the two auxiliary losses. Assuming N labeled and
M unlabeled examples, we obtain the following objective:

FSS-DIVA =
N∑︂

n=1

FDIVA(dn,xn, yn)+
M∑︂

m=1

Lu(dm,xm)

+αdEqφd (zd |xm)
[︁
log qωd (dm|zd)

]︁
. (5.4)

5.4 Related Work

The majority of proposed deep learning methods for domain generalization
fall into one of two categories: 1) Learning a single domain invariant
representation, e.g., using adversarial methods [Carlucci et al., 2019b,
Ghifary et al., 2015, Li et al., 2018b,a, Motiian et al., 2017, Shankar et al.,
2018, Wang et al., 2018]. While DIVA falls under this category, there is
a key difference: we do not explicitly regularize zy using d. Instead we
learn complementary representations zd, zx and zy utilizing a generative
architecture. 2) Ensembling models, each trained on an individual domain
from the training set [Ding and Fu, 2018, Mancini et al., 2018]. The size
of models in this category scales linearly with the number of training
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domains. This leads to slow inference if the number of training domains is
large. However, the size of DIVA is independent of the number of training
domains. In addition, during inference time we only use the mean of the
encoder qφy

(zy|x) and the auxiliary classifier qωy(y|zy).
Concurrently to DIVA, Cai et al. [2019] developed a framework to learn la-

tent Disentangled Semantic Representations (DSR) for domain adaptation.
DSR assumes that the data generation process is exclusively controlled by
the domain d and class y. As a result, DSR lacks a third latent space zx.
We designed DIVA assuming that not all variations in x can be explained
by the domain d and the class y. Therefore we introduce zx to capture
these residual variations. Furthermore, while DSR uses gradient reversal
layers, we directly parameterize the ground truth generative model.

An area that is closely related to domain generalization is that of the
statistical parity in fairness. The goal of fair classification is to learn
a meaningful representation that at the same time cannot be used to
associate a data sample to a specific group [Zemel et al., 2013]. The
significant difference to domain generalization is the intention behind
that goal, e.g., to protect groups of individuals versus being robust to
variations in the input. Consequently, DIVA is closely related to the fair
VAE [Louizos et al., 2016]. In contrast to the fair VAE, which uses a
hierarchical latent space, DIVA uses a partitioned latent space. Moreover,
the fair VAE requires the domain label during inference, while DIVA
alleviates this issue by learning the classifier without d. Similar to DIVA,
there is an increasing number of methods showing the benefits of using
latent subspaces in generative models [Siddharth et al., 2017, Klys et al.,
2018, Jacobsen et al., 2018, Bouchacourt et al., 2018, Atanov et al., 2019,
Antoran and Miguel, 2019].

We derived DIVA by following the VAE framework, where the generative
process is the starting point. A Conditional version of the Variational
Information Bottleneck (CVIB) was proposed by Moyer et al. [2018] that
likewise leads to an objective consisting of a reconstruction loss. However,
CVIB suffers from the same limitation as the fair VAE: the domain must
be known during inference. Hence, we excluded it from our experiments.

5.5 Experiments

5.5.1 Rotated MNIST

The construction of the Rotated MNIST dataset follows Ghifary et al.
[2015]. We sample 100 images from each of the ten classes from the original
MNIST training dataset. This set of images is denoted M0°. To create five
additional domains, the images in M0° are rotated by 15, 30, 45, 60, and 75
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degrees. In order to evaluate their domain generalization abilities, models
are trained on five domains and tested on the remaining 6th domain, e.g.,
train on M0°, M15°, M30°, M45° and M60°, test on M75°. The evaluation
metric is the classification accuracy on the test domain. All experiments
are repeated ten times. Detailed information about hyperparameters,
architecture, and the training schedule can be found in the Appendix.

First, we visualize the three latent spaces zd, zx, and zy to see if DIVA
can successfully disentangle them. In addition, we want to verify whether
DIVA utilizes zx in a meaningful way since it is not directly connected to
any auxiliary classifier. For now, we restrict the size of each latent space zd,
zx, and zy to two dimensions. Therefore, we can plot the latent subspaces
directly without applying dimensionality reduction, see Figure 5.2, where
we trained. DIVA on 5000 images from five domains: M0°, M15°, M30°, M45°
and M60°.

Figure 5.2. 2D embeddings of all three latent subspaces. In the top row, embeddings
are colored according to their domain, in the bottom row they are colored
according to their class. First column: zd encoded by qφd (zd |x). The top plot
shows five distinct clusters, where each cluster corresponds to a single domain.
In the bottom plot, no clustering is visible. Second column: zx encoded by
qφx (zx|x). We observe a correlation between the rotation angle of each MNIST
digit and zx[0] in the top plot. Upon visual inspection of the original inputs x,
we find a correlation between the line thickness digit and zx[0] as well as a
correlation between the digit width and zx[1] in the bottom plot. As a result,
we observe the clustering of embeddings with class ’1’ at the lower left part of
the plot. Third column: zy encoded by qφy (zy|x). In the top plot, no clustering
is visible. The bottom plot shows ten distinct clusters, where each cluster
corresponds to a class.

Yet another way to gain insight into the disentanglement abilities of
DIVA is conditional generation. We first train DIVA with β = 10 using M0°,
M15°, M30°, M45° and M60° as training domains. After training, we perform
two experiments. In the first one, we are fixing the class and varying the
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domain. In the second experiment, we are fixing the domain and varying
the class.

Change of class The first row of Figure 5.3 (left) shows the input images
x for DIVA. First, we generate embeddings zd, zx and zy for each x using
qφd

(zd|x), qφx
(zx|x) and qφy

(zy|x). Second, we replace zy with a sample z′y
from the conditional prior pθy(zy|y). Last, we generate new images from zd,
zx and z′y using the trained encoder pθ(x|zd,zx,zy). In Figure 5.3 (left) rows
2 to 11 correspond to the classes ’0’ to ’9’. We observe that the rotation angle
(encoded in zd) and the line thickness (encoded in zx) are well preserved,
while the class of the image is changing as intended.

Figure 5.3. DIVA reconstructions. Left: First row is input, row 2 to 11 correspond to labels
’0’ to ’9’. Right: First row is input, row 2 to 6 correspond to domains 0, 15, 30,
45, 60.

Change of domain We repeat the experiment from above but this time
we keep zx and zy fixed while changing the domain. After generating
embeddings zd, zx and zy for each x in the first row of Figure 5.3 (right), we
replace zd with a sample z′d from the conditional prior pθd (zd|d). Finally,
we generate new images from z′d, zx and zy using the trained encoder
pθ(x|zd,zx,zy). In Figure 5.3 (right) rows 2 to 6 correspond to the domains
M0° to M60°. Again, DIVA shows the desired behaviour: While the rotation
angle is changing the class and style of the original image is maintained.

The qualitative results above conclude that DIVA is disentangling the
information contained in x as intended, as zd only contains information
about d and zy only information about y. In the case of the Rotated MNIST
dataset, zx captures any residual variation that is not explained by the
domain d or the class y. We now turn to a quantitative evaluation of DIVA.
We compare DIVA against the well known domain adversarial neural
networks (DA) [Ganin et al., 2016] as well as three recently proposed
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Table 5.1. Comparison with other state-of-the-art domain generalization methods. Meth-
ods in the first half of the table (until the vertical line) use only labeled data. The
second half of the table shows results of DIVA when trained semi-supervised (+
X times the amount of unlabeled data). We report the average and standard
error of the classification accuracy.

Test DA LG HEX ADV DIVA DIVA(+1) DIVA(+3) DIVA(+5) DIVA(+9)

M0° 86.7 89.7 90.1 89.9 93.5 ± 0.3 93.8 ± 0.4 93.9 ± 0.5 93.2 ± 0.5 93.0 ± 0.4
M15° 98.0 97.8 98.9 98.6 99.3 ± 0.1 99.4 ± 0.1 99.5 ± 0.1 99.5 ± 0.1 99.6 ± 0.1
M30° 97.8 98.0 98.9 98.8 99.1 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1
M45° 97.4 97.1 98.8 98.7 99.2 ± 0.1 99.0 ± 0.2 99.2 ± 0.1 99.3 ± 0.1 99.3 ± 0.1
M60° 96.9 96.6 98.3 98.6 99.3 ± 0.1 99.4 ± 0.1 99.4 ± 0.1 99.4 ± 0.1 99.2 ± 0.2
M75° 89.1 92.1 90.0 90.4 93.0 ± 0.4 93.8 ± 0.4 93.8 ± 0.2 93.5 ± 0.4 93.2 ± 0.3

Avg 94.3 95.3 95.8 95.2 97.2 ± 1.3 97.5 ± 1.1 97.5 ± 1.2 97.4 ± 1.3 97.3 ± 1.3

methods: LG [Shankar et al., 2018], HEX [Wang et al., 2018] and ADV
[Wang et al., 2018]. For the first half of Table 5.1 (until the vertical line),
we only use labeled data. The first column indicates the rotation angle
of the test domain. We report test accuracy on y for all methods. For
DIVA, we report the mean and standard error for ten repetitions. DIVA
achieves the highest accuracy across all test domains and the highest
average test accuracy among all proposed methods. The second half of
Table 5.1 showcases the ability of DIVA to use unlabeled data. For this
experiment, we add the same amount (+1) of unlabeled data as well as
three (+3), five (+5), and nine (+9) times the amount of unlabeled data
to our training set. We first add the unlabeled data to M0° and create
the data for the other domains. In Table 5.1 we can see a performance
increase when unlabeled data is added to the training set. When the
number of unlabeled data is much larger than the number of labeled data,
the balancing of loss terms becomes increasingly more challenging, which
can lead to declining performance of DIVA, as seen in the last two columns
of Table 5.1.

In the experiment described above, each training domain consists of la-
beled and unlabeled examples. We investigate a more challenging scenario:
We add a domain to our training set composed of only unlabeled examples.
Regarding our introductory example of medical imaging, here, we would
add unlabeled data from a new patient or hospital to the training set. In
the following, we are looking at two different experimental setups. In both
cases, M75° is the test domain: For the first experiment we choose the
domains M0°, M15°, M45° and M60° to be part of the labeled training set. In
addition, unlabeled data from M30° is used. We find that even in the case
where the additional domain is dissimilar to the test domain, DIVA can
slightly improve, see Table 5.2. For the second experiment we choose the
domains M0°, M15°, M30° and M45° to be part of the labeled training set.
Also, unlabeled data from M60° is used. When comparing with the results
in Table 5.1, we notice a drop in accuracy of about 20% for DIVA trained
with only labeled data. However, when trained with unlabeled data from
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M60° we see an improvement of about 7%, see Table 5.2. The comparison
shows that DIVA can successfully learn from samples of a domain without
any labels.

Table 5.2. Comparison of DIVA trained supervised to DIVA trained semi-supervised with
additional unlabeled data from M30° and M60°. We report the average and
standard error of the classification accuracy on M75°.

Unsupervised domain DIVA supervised DIVA semi-supervised

M30° 93.1 ± 0.5 93.3 ± 0.4
M60° 73.8 ± 0.8 80.6 ± 1.1

5.5.2 Malaria Cell Images

The majority of medical imaging datasets consist of images from a multi-
tude of patients. In a domain generalization setting, each patient is viewed
as an individual domain. While we focus on patients as domains in this
paper, this type of reasoning can be extended to, e.g., hospitals as domains.
We, among others [Rajaraman et al., 2018, Lafarge et al., 2017], argue
that machine learning algorithms trained with medical imaging datasets
should be evaluated on a subset of holdout patients. This presents a more
realistic scenario since the algorithm is tested on images from a previously
unseen domain. In the following, we use a Malaria Cell Images dataset
[Rajaraman et al., 2018] as an example of a dataset consisting of samples
from multiple patients. The images in this dataset were collected and
photographed at Chittagong Medical College Hospital, Bangladesh. It
consists of 27558 single red blood cell images taken from 150 infected and
50 healthy patients. A human expert manually annotated the images. A
cell has the label y= 1 if it shows the parasite and the label y= 0 if not. To
facilitate the counting of parasitized and uninfected cells, the cells were
stained using Giemsa stain, which turns the parasites inside the cell pink.
Besides, the staining process leads to a variety of colors of the cell itself.
While the color of the cell is relatively constant for a single patient, it can
vary significantly between patients, see Figure 5.4. A human observer
can easily ignore this variability in the appearance of the cells. However,
machine learning models can fail to generalize across patients. In our
experiments, we will use the patient ID as the domain label d. We argue
that for this specific dataset, the patient ID is a good proxy of appearance
variability. In addition, there is no extra cost for obtaining the patient ID
for each cell. Subsequently, we use a subset of the Malaria Cell Images
dataset consisting of the ten patients with the highest number of cells.
The amount of cells per patient varies between 400 and 700, and there
are 5922 cell images in total. The choice of this subset is motivated by a
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similar number of cells as well as the similar marginal label distributions
per patient, the latter being a necessary condition for successful domain
generalization Zhao et al. [2019]. Furthermore, we rescale all images to
64 × 64 pixels. To artificially expand the size of the training dataset, we
use data augmentation in the form of vertical flips, horizontal flips, and
random rotations.

(a) C116P77 (b) C132P93 (c) C137P98 (d) C180P141

(e) C182P143 (f) C184P145 (g) C39P4 (h) C59P20

(i) C68P29 (j) C99P60

Figure 5.4. Example cells from 10 patients of the Malaria Cell Images dataset.

We investigate the three latent subspaces zd, zx, and zy to see if DIVA
can successfully disentangle them. In addition, we want to see if DIVA
utilizes zx in a meaningful way since it is not directly connected to any
auxiliary classifier. Figure 5.5 shows the reconstructions of x using all
three latent subspaces as well as reconstructions of x using only a single
latent subspace at a time. First, we find that DIVA can reconstruct the
original cell images using all three subspaces (Figure 5.5, second row).
Second, we find that the three latent subspaces are indeed disentangled:
zd is containing the color of the cell (Figure 5.5, third row), zx the shape of
the cell (Figure 5.5, fourth row) and zy the location of the parasite (Figure
5.5, fifth row). The holes in the reconstructions using only zx indicate
that there is no probability mass in zd and zy at 0, similar to Figure
5.2. From the reconstructions in Figure 5.5, we conclude that DIVA can
learn disentangled representations that match the ground truth factors of
interest, here, the appearance of the cell and the presence of the parasite.

Models are trained on nine domains (patient IDs) and tested on the
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x

x∼ pθ(x|zd,zx,zy)

x∼ pθ(x|zd,0,0)

x∼ pθ(x|0,zx,0)

x∼ pθ(x|0,0,zy)

Figure 5.5. Reconstructions of x using all three latent subspaces as well as reconstructions
of x using only a single latent subspace at a time.

remaining 10th domain to further evaluate domain generalization abilities.
We choose ROC AUC on the holdout test domain as the evaluation metric
since the two classes are highly imbalanced. All experiments are repeated
five times. We compare DIVA with a ResNet-like [He et al., 2016] baseline
and DA. All three models have the same architecture during inference,
seven ResNet blocks followed by two linear layers. Detailed information
about hyperparameters, architecture, and the training schedule can be
found in the Appendix. We compare DIVA against a ResNet (Baseline), a
domain adversarial neural networks (DA), and HEX [Wang et al., 2018].
We find that the results are not equally distributed across all test domains.
In five cases, DIVA significantly improves upon the baseline model, DA,
and HEX. However, averaged over all domains, none of the four methods
performs significantly better than the others, see Table 5.3. We find that
while HEX can achieve excellent generalization performance, it is not
stable for different seeds. The large standard error reflects this for each of
the test domains.

Table 5.3. Comparison with other state-of-the-art domain generalization methods on the
Malaria Cell image dataset. We report the average and standard error of ROC
AUC.

Model C116P77 C132P93 C137P98 C180P141 C182P143 C184P145

Baseline 90.6 ± 0.7 97.8 ± 0.5 98.9 ± 0.2 98.5 ± 0.2 96.7 ± 0.4 98.1 ± 0.2
DA 90.6 ± 1.7 98.3 ± 0.4 99.0 ± 0.1 98.8 ± 0.1 96.9 ± 0.4 97.1 ± 0.8

HEX 76.33 ± 10.38 80.58 ± 7.86 77.80 ± 4.38 73.22 ± 8.94 89.38 ± 2.39 63.81 ± 7.04
DIVA 93.3 ± 0.4 98.4 ± 0.3 99.0 ± 0.1 99.0 ± 0.1 96.5 ± 0.3 98.5 ± 0.3

Model C39P4 C59P20 C68P29 C99P60 Average

Baseline 97.1 ± 0.4 82.8 ± 2.8 95.3 ± 0.6 96.2 ± 0.1 95.2 ± 1.6
DA 97.4 ± 0.3 83.2 ± 3.3 96.3 ± 0.1 96.1 ± 0.3 95.4 ± 1.6

HEX 72.84 ± 7.58 81.52 ± 7.80 67.88 ± 7.15 84.99 ± 3.48 76.8 ± 2.5
DIVA 97.8 ± 0.2 82.1 ± 3.0 96.3 ± 0.2 96.6 ± 0.3 95.8 ± 1.6

As described in Section 5.3.1, we are interested in learning from domains
with no class labels since such an approach can drastically lower the
amount of labeled data needed to learn a domain invariant representation,
i.e., a model that generalizes well across patients. For the semi-supervised
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experiments, we choose domain C116P77 to be the test domain since its
cells show a unique dark pink stain. Furthermore, unlabeled data from
domain C59P20 is used since it is visually the closest to domain C116P77,
see Figure 5.4. The evaluation metric on the hold-out test domain is
ROC AUC again. In Table 5.4 we compare the baseline model, DA, and
DIVA trained with labeled data from domain C59P20, unlabeled data from
domain C59P20, and no data from domain C59P20. We argue that the
improvement of DIVA over DA arises from the way the additional unlabeled
data is utilized. In the case of DA, the unlabeled data (d, x) is only used
to train the domain classifier and the feature extractor in an adversarial
manner. In Section 5.3.1 we show that due to DIVA’s generative nature
qφy

(zy|x), pθy(zy|y) can be updated using qωy(y|zy) to marginalize over y
for an unlabeled sample x. In addition, the unlabeled data (d, x) is used
to update qφd

(zd|x), pθd (zd|d), qωd (d|zd), qφx
(zx|x) and pθ(x|zd,zx,zy) in the

same way as in the supervised case.

Table 5.4. Results of the semi-supervised experiments for domain C116P77. Comparison of
baseline method, DA and DIVA trained with labeled data from domain C59P20,
unlabeled data from domain C59P20, and no data from domain C59P20. We
report the average and standard error of ROC AUC.

Training data Baseline DA DIVA

Labeled data from C59P20 90.6 ± 0.7 90.6 ± 1.7 93.3 ± 0.4
Unlabeled data from C59P20 - 72.05 ± 2.2 79.4 ± 2.8

No data from C59P20 70.0 ± 2.6 69.2 ± 1.9 71.9 ± 2.7

5.6 Conclusion

We have proposed DIVA as a generative model with three latent subspaces.
We evaluated DIVA on Rotated MNIST and a Malaria Cell Images dataset.
In both cases, DIVA can learn disentangled representations that match the
ground truth factors of interest, represented by the class y and the domain
d. By learning representations, zy that are invariant to the domain d DIVA
improves upon other methods on both datasets. Furthermore, we show that
we can boost DIVA’s performance by incorporating unlabeled samples, even
from entirely new domains for which no labeled examples are available.
This property is highly desirable in fields like medical imaging, where the
labeling process is very time-consuming and costly. It appears that there
is a key difference between interpolation and extrapolation, a distinction
currently not made by the domain generalization community. If we assume
that the domains lie in intervals like [0°,15°, 30°] or [’red’, ’orange’, ’yellow’]
then the performance for the domains in the center of the interval, e.g., 15°
and ’orange’, seems to be better than for the domains on the ends of the
interval. We argue that DIVA can use unlabeled data from a domain close
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to the test domain to improve its extrapolation performance.

5.7 Appendix

5.7.1 Predicting the label using only one of the latent subspaces

We test how predictive zd, zx, and zy are for the class y on the Malaria
Cell Images dataset. First, we use the trained DIVA models from 5.5.2 to
create embeddings zd, zx and zy for every x in the training domain and the
holdout test domain. Second, we train a 2-layer MLP on the embeddings
zd, zx, and zy from the training domains. We train the MLP for 100 epochs
using ADAM [Kingma and Ba, 2015]. After training, we test the MLP
embeddings zd, zx, and zy from the test domain. In Table 5.5 we see that
zy captures all relevant information to predict y, while the MLPs trained
using zd and zx perform worse than a classifier that would always pick the
majority class.

Table 5.5. Prediction of y using a 2 layer MLP trained using zd , zx and zy. We report
the mean and standard error of the classification accuracy on the hold out test
domain.

test domain zd zx zy majority class

0 84.6 ± 1.0 85.0 ± 0.2 87.9 ± 0.9 0.86
1 89.5 ± 0.4 88.2 ± 0.5 96.8 ± 0.1 0.9
2 68.2 ± 3.5 80.0 ± 1.6 96.9 ± 0.5 0.81
3 87.0 ± 0.3 75.2 ± 2.9 95.5 ± 0.2 0.88
4 89.1 ± 0.3 82.7 ± 2.4 92.5 ± 0.4 0.90
5 88.3 ± 0.2 87.7 ± 0.2 90.6 ± 0.5 0.88
6 82.6 ± 3.7 56.3 ± 5.1 91.1 ± 0.1 0.90
7 88.3 ± 0.1 88.3 ± 0.1 90.8 ± 0.8 0.88
8 89.5 ± 0.3 85.3 ± 1.7 93.5 ± 0.4 0.90
9 89.1 ± 0.2 86.9 ± 1.5 94.0 ± 0.3 0.89

5.7.2 Partitioned latent space

We compare DIVA to a VAE with a single latent space, a standard Gaussian
prior, and two auxiliary tasks. The resulting graphical model is shown in
Figure 5.6. The results in Table 5.6 clearly show the benefits of having a
partitioned latent space z.
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Figure 5.6. DAG of an VAE with auxiliary classifiers. Left: Generative model. According
to the graphical model we obtain p(x,z)= pθ(x|z)p(z). Right: Inference model.
We propose qφ(z|x) as the variational posterior. Dashed arrows represent the
two auxiliary classifiers qωd (d|z) and qωy (y|z).

The objective is given by,

FVAE(d,x, y) := Eqφ(z|x) [log pθ(x|z)]−βKL
(︁
qφ(z|x)||p(z)

)︁

+αdEqφ(z|x)
[︁
log qωd (d|z)

]︁+αyEqφ(z|x)
[︁
log qωy(y|z)

]︁
. (5.5)

Table 5.6. Comparison of DIVA with a VAE with a single latent space, a standard Gaussian
prior and two auxillary tasks on Rotated MNIST. We report the average and
standard error of the classification accuracy.

Test VAE DIVA

M0° 88.4 ± 0.5 93.5 ± 0.3
M15° 98.3 ± 0.1 99.3 ± 0.1
M30° 97.4 ± 0.2 99.1 ± 0.1
M45° 97.4 ± 0.4 99.2 ± 0.1
M60° 97.9 ± 0.2 99.3 ± 0.1
M75° 84.0 ± 0.3 93.0 ± 0.4
Avg 93.9 ± 0.1 97.2 ± 1.3

5.7.3 DIVA without the domain latent subspace or the residual
latent subspace

We compare DIVA as proposed in Section 5.3 to two ablated versions of
DIVA:

1. DIVA without zd: The domain label d is not used during training. There-
fore, there exist no latent space zd, no encoder qφd

(zd|x), no prior pθd (zd|d)
and no classifier qωd (d|zd). The decoder becomes pθ(x|zx, zy).

2. DIVA without zx: There exist no latent space zx, no encoder qφx
(zx|x)

and no prior p(zx). The decoder becomes pθ(x|zd, zy).

In Table 5.7, we compare DIVA and the two ablated versions on the Ro-
tated MNIST dataset. Surprisingly, for Rotated MNIST, we could not find
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a significant difference in performance between DIVA and DIVA without
zd, as seen in the third column. However, not having zd drastically reduces
the interpretability of our model since, without zd, we cannot find the
variations in x that are explained by the domain d. E.g., in Figure 5.5,
we show that we can generate samples conditioned on the domain label
that give us a clear idea of the meaning of d. We find that the patient
ID is highly correlated with the color of the stain. While the cell shape
is not correlated with d or y and therefore is captured by zx. Without zd,
we cannot gain such (especially from a medical perspective) important
insights. In the fourth column, we see that for M0° and M75° DIVA with
zx performs significantly better than without. We argue that if zx does
not exist, zd and zy will capture the residual variations in x that are not
explained by d or y. We believe this makes it harder to predict y using zy

and d using zd.

Table 5.7. Results of ablation study.

Test DIVA DIVA without zd DIVA without zx

M0° 93.5 ± 0.3 93.4 ± 0.5 92.7 ± 0.5
M15° 99.3 ± 0.1 99.3 ± 0.1 99.4 ± 0.1
M30° 99.1 ± 0.1 98.9 ± 0.1 99.2 ± 0.1
M45° 99.2 ± 0.1 99.1 ± 0.1 99.1 ± 0.1
M60° 99.3 ± 0.1 99.1 ± 0.1 99.4 ± 0.1
M75° 93.0 ± 0.4 92.8 ± 0.4 92.4 ± 0.4

Avg 97.2 ± 1.3 97.1 ± 1.3 97.1 ± 1.5

5.8 Experiment details

5.8.1 Rotated MNIST

Training procedure All DIVA models are trained for 500 epochs. The
training is terminated if the training loss for y has not improved for 100
epochs. As proposed in Burgess et al. [2018], we linearly increase β from
0.0 to 1.0 during the first 100 epochs of training. We set αd = 2000. As seen
in Maaløe et al. [2019], we adjust αy according to the ratio of labeled (N)
and unlabeled data (M),

αy = γ
M+N

N
, (5.6)

where we set γ= 3500. Last, zd, zx and zy each have 64 latent dimensions.
All hyperparameters were determined by training DIVA on M0°, M15°,
M30°, M45° and testing on M60°. We searched over the following parameters:
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αd, αd ∈ {1500,2000,2500,3000,3500,4000}; dim(zd) = dim(zx) = dim(zy) and
dim(zx) ∈ {16,32,64}; βmax ∈ {1,5,10}.

All models were trained using ADAM [Kingma and Ba, 2015] (with
default settings), a pixel-wise cross-entropy loss, and a batch size of 100.

Architectures To enable a fair experiment, the encoder qφy
(zy|x) and aux-

iliary classifier qωy(y|zy) form a DNN with the same number of layers and
weights as described in Wang et al. [2018].

Table 5.8. Architecture for pθ(x|zd ,zx,zy). The parameter for Linear is output features.
The parameters for ConvTranspose2d are output channels and kernel size. The
parameter for Upsample is the upsampling factor. The parameters for Conv2d
are output channels and kernel size.

block details

1 Linear(1024), BatchNorm1d, ReLU
2 Upsample(2)
3 ConvTranspose2d(128, 5), BatchNorm2d, ReLU
4 Upsample(2)
5 ConvTranspose2d(256, 5), BatchNorm2d, ReLU
6 Conv2d(256, 1)

Table 5.9. Architecture for pθd (zd |d) and pθy (zy|y). Each network has two heads one for
the mean and one for the scale. The parameter for Linear is output features.

block details

1 Linear(64), BatchNorm1d, ReLU
2.1 Linear(64)
2.2 Linear(64), Softplus

Table 5.10. Architecture for qφd (zd |x), qφx (zx|x) and qφy (zy|x). Each network has two
heads one for the mean one and for the scale. The parameters for Conv2d are
output channels and kernel size. The parameters for MaxPool2d are kernel
size and stride. The parameter for Linear is output features.

block details

1 Conv2d(32, 5), BatchNorm2d, ReLU
2 MaxPool2d(2, 2)
3 Conv2d(64, 5), BatchNorm2d, ReLU
4 MaxPool2d(2, 2)

5.1 Linear(64)
5.2 Linear(64), Softplus
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Table 5.11. Architecture for qωd (d|zd) and qωy (y|zy). The parameter for Linear is output
features.

block details

1 ReLU, Linear(5 for qωd (d|zd)/10 for qωy (y|zy)), Softmax

5.8.2 Malaria Cell Images

Training procedure: DIVA All DIVA models are trained for 500 epochs.
The training is terminated if the validation accuracy for y has not im-
proved for 100 epochs. As proposed in Burgess et al. [2018], we linearly
increase β from 0.0 to 1.0 during the first 100 epochs of training. We
set αd = 100000 and αy = 75000. Last, zd, zx and zy each have 64 la-
tent dimensions. We searched over the following parameters: αd, αd ∈
{25000,50000,75000,100000}; dim(zd) = dim(zx) = dim(zy), dim(zx) ∈ {32,64};
βmax ∈ {1,5,10}. All hyperparameters were determined using a validation
set that consists of 20 % of the training set. All models were trained us-
ing ADAM [Kingma and Ba, 2015] (with default settings), a mixture of
discretized logistics [Salimans et al., 2017] loss and a batch size of 100. In
case of the semi-supervised experiment in Section 5.5.2 we adapt αd and
αy according to Equation 5.6.

Training procedure: Baseline and DA In the case of the supervised experi-
ments in Section 5.5.2, all models are trained for 500 epochs. The training
is terminated if the validation accuracy for y has not improved for 100
epochs. In the case of the semi-supervised experiments in Section 5.3.1, the
amount of epochs is adjusted to match the number of parameter updates
of DIVA. For DA, we follow the same training procedure as described in
Ganin et al. [2016]. In the supervised case, a labeled batch randomly
sampled from the training distributions is used to update the class clas-
sifier, domain classifier, and feature extractor in an adversarial fashion.
Second, a second batch randomly sampled from the training distributions
is used to update only the domain classifier and the feature extractor in an
adversarial fashion. In the semi-supervised case, samples from the unsu-
pervised domains from the second batch and samples from the supervised
domains. We use the same domain adaptation parameter λ schedule as
described in Ganin et al. [2016]. Determined by hyperparameter search,
DA performs better when λ · ϵ is used. Here, ϵ= 0.001. We searched over
the following values of ϵ ∈ {0.1,0.05,0.01,0.005,0.001,0.0005,0.0001}. In case
of the semi-supervised experiment in Section 5.5.2 ϵ= 0.01 was determined
by hyperparameter search.
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Architecture In the following, we will describe the architecture of DIVA
in detail. Note that the architecture for the baseline model is the same
as qφy

(zy|x) (we only use the mean of zy) followed by qωy(y|zy) where zy

has 1024 dimensions. DA is using qφy
(zy|x) without the linear layer as a

feature extractor. The class classifier and the domain classifier consist of
two linear layers. The feature extractor for all models consists of seven
ResNet blocks [He et al., 2016]. During training, batch norm Ioffe and
Szegedy [2016] is used for all layers.

Table 5.12. Architecture for pθ(x|zd ,zx,zy). The parameter for Linear is output features.
The parameters for ResidualConvTranspose2d are output channels and kernel
size. The parameters for Conv2d are output channels and kernel size.

block details

1 Linear(1024), BatchNorm1d, LeakyReLU
2 ResidualConvTranspose2d(64, 3), LeakyReLU
3 ResidualConvTranspose2d(64, 3), LeakyReLU
4 ResidualConvTranspose2d(64, 3), LeakyReLU
5 ResidualConvTranspose2d(32, 3), LeakyReLU
6 ResidualConvTranspose2d(32, 3), LeakyReLU
7 ResidualConvTranspose2d(32, 3), LeakyReLU
8 ResidualConvTranspose2d(32, 3), LeakyReLU
9 ResidualConvTranspose2d(32, 3), LeakyReLU

10 Conv2d(100, 3)
11 Conv2d(100, 1)

Table 5.13. Architecture for pθd (zd |d) and pθy (zy|y). Each network has two heads one for
the mean and one for the scale. The parameter for Linear is output features.

block details

1 Linear(64), BatchNorm1d, LeakyReLU
2.1 Linear(64)
2.2 Linear(64), Softplus
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Table 5.14. Architecture for qφd (zd |x), qφx (zx|x) and qφy (zy|x). Each network has two
heads one for the mean one and for the scale. The parameters for Conv2d
are output channels and kernel size. The parameters for ResidualConv2d are
output channels and kernel size. The parameter for Linear is output features.

block details

1 Conv2d(32, 3), BatchNorm2d, LeakyReLU
2 ResidualConv2d(32), LeakyReLU
3 ResidualConv2d(32), LeakyReLU
4 ResidualConv2d(64, 3), LeakyReLU
5 ResidualConv2d(64, 3), LeakyReLU
6 ResidualConv2d(64, 3), LeakyReLU
7 ResidualConv2d(64, 3), LeakyReLU
8 ResidualConv2d(64, 3), LeakyReLU

9.1 Linear(64)
9.2 Linear(64), Softplus

Table 5.15. Architecture for qωd (d|zd) and qωy (y|zy). The parameter for Linear is output
features.

block details

1 LeakyReLU, Linear(9 for qωd (d|zd)/2 for qωy (y|zy)), Softmax
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6. Conclusion

In each of the previous four chapters, we have encountered a different
experimental setup, where each experimental setup required a different
approach to train invariant machine learning models. In Chapter 2, we use
an attention-pooling layer to build a permutation invariant deep learning
architecture. In Chapter 3, we use data augmentation to obtain invariance
to symmetries described by (semi)group transformations like rotation,
reflection, and color. In Chapter 4, we use normalizing flows to learn
invariant mechanisms from interventional and observational data. Last,
in Chapter 5, we use an augmented VAE to learn domain invariant features
by disentanglement.

We argue that there is a hierarchy of the difficulty of the experimental
setups. The difficulty arises from the amount of expert knowledge we
use in each of the four cases. We consider knowing the exact symmetry
group of the data and task a large amount of expert knowledge. This type
of knowledge is usually derived from decades of research in respective
fields like chemistry and physics. On the other hand, using additional
information like metadata 1 to group the training data into domains, we
consider the least amount of background knowledge.

Furthermore, we argue that a trade-off exists between the "quality" of
the invariance and the amount of expert knowledge used. Where more
expert knowledge leads to strict invariance and less expert knowledge
leads to approximate invariance. We summarize the above arguments in a
ladder of invariances.

1. The symmetry of the data and task is known and can be expressed as a
group and therefore enforced using a specifically designed architecture.
The resulting machine learning model is strictly invariant. This approach
is often used in chemistry and physics applications, where the underlying
symmetry of, e.g., molecules or a system of particles is known. One of the
most recent examples of this approach is AlphaFold 2, a deep learning

1Metadata refers to additional information about a sample, e.g., in a healthcare
application we would refer to age, sex, and ethnicity as metadata.
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model for protein structure prediction [Jumper et al., 2021]. An SE(3)-
Transformer is used to ensure equivariance with respect to rotation and
translation.

2. The symmetry of the data and task is known but cannot be expressed
as a group. In this case, instead of a specifically designed architecture,
we can often use data augmentation. However, the resulting machine
learning model will only be approximately invariant. This approach is
commonly used for images, where invariance with respect to semigroup
transformations like color perturbations and scaling is favorable. We
want to highlight that recent progress in self-supervised learning [Chen
et al., 2020b] heavily relies on data augmentation, preventing the model
from overfitting.

3. The symmetry of the data and task is unknown, but we have access to
experimental samples with known interventions from, e.g., RCTs. This
approach allows the machine learning model to learn independent causal
mechanisms directly. However, experimental data is often not fully unbi-
ased [Mansournia et al., 2017]. Therefore strict invariance of the machine
learning model is not guaranteed. While this approach is commonly used
to estimate the efficiency of treatments such as medical drugs, there is a
growing interest in the reinforcement learning community [Zhang et al.,
2020].

4. The symmetry of the data and task is unknown. In addition, we have
no access to experimental samples with known interventions. Instead,
we have data from multiple domains, where for example, metadata can
be used to cluster the data. This approach assumes that a machine
learning model that generalizes across training domains will generalize
to previous unseen domains. The success of such an approach depends on
the variety of the machine learning model’s training data and inductive
bias. Therefore, it comes with no guarantees that the model will be
invariant after training. This approach is commonly used with medical
data from different hospitals or self-driving car data collected in multiple
countries.

Our so-called ladder of invariance shows that there is currently no one-
size-fits-all approach for training invariant machine learning models. In-
stead, in most cases, extensive expert knowledge is required to obtain a
machine learning model with the correct type of invariance, where expert
knowledge can often be represented in the form of a symmetry group or a
causal graph, see Section 1.2.1 and 1.2.2.

Unifying the two view points In Section 1, we formally introduced two
notions of invariance. One is derived from the concepts of symmetry
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groups, the other from invariant causal mechanisms. We explicitly connect
data augmentations and interventions in Chapter 3, where we defined data
augmentations as (semi)group transformations, thus connecting symmetry
groups to causal inference.

In addition, we have seen a more implicit connection of symmetry groups
and causal inference in Chapter 5. To train DIVA, we require data from dif-
ferent domains. We assume a different set of interventions was performed
for each domain, i.e., each domain is equal to a different interventional
distribution. To obtain domain invariant features, we rely on the disen-
tanglement of the latent space, where disentanglement is defined using
the concept of group symmetry, see Section 1.3.1. We implicitly find a
connection of the encoder that maps to a domain invariant subspace and
the true invariant causal mechanism that generalizes across domains.

The above connection of disentangled representation and invariant causal
mechanisms motivates the following extension of the intervention-augmen-
tation equivariance condition from Chapter 3 to include learned invariant
representations.

We consider the same setup as in Chapter 3, Figure 3.2. We assume that
there are high-level features hy caused by the target variable Y and high-
level features hd caused by nuisance variables, e.g., the domain variable
D. Furthermore, we call the function fX : Hd ×H y → X the true causal
mechanism.

In addition, we define a set of transformations G on X that form a
(semi)group, where the group actions g can be interpreted as data augmen-
tations, i.e., xaug = g ·x.

We now extend our setup with a learned representation Z ∈Z , an encoder
fθ : X →Z with trainable parameters θ, and a classifier hφ : Z →Y with
trainable parameters φ. Furthermore, we assume that there exists a
corresponding action on Z , g ·z : G×Z →Z , where we denote the zg = g ·z.

We call the function fθ an equivariant map if it commutes with a group
action g ∈G, i.e.,

fθ(g ·x)= g · fθ(x). (6.1)

We can rewrite the LHS and the RHS using the definitions of xaug and z as
follows

fθ(xaug)= g ·z. (6.2)

Last, using zg = g ·z we obtain

fθ(xaug)= zg. (6.3)

Above, we have demonstrated that first applying data augmentation fol-
lowed by fθ results in the same representation as computing the embedding
z first and then applying a group action g ∈G.
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Throughout the present thesis, we have seen multiple examples of such
equivariant maps fθ. The most obvious one being group-equivariant neural
networks in Section 1.2.1.

In addition, we have seen two examples of the special case where the
fθ is an invariant map, i.e., fθ(g ·x) = fθ(x), which is equivalent to zg = z.
The first example is the attention-pooling layer introduced in Chapter 2,
that maps a set to a representation Z invariant to the set’s permutations.
The second example is the encoder of an VAE that maps to a disentangled
representation as seen in Chapter 5. For simplicity, we now assume that
the disentangled latent space consists of two subspaces (z,z′), where the
subspace z is invariant with respect to group actions g ∈ G. We can now
define fθ as the part of the encoder that maps from x to z, excluding z′.

Last we define a classifier hφ that maps z to the target variable y. In
Figure 6.1, we show a commutative diagram that relates all of the elements
above.

(hd,hy) x

(do(hd),hy) xaug

z

zg

y

y

fX

g·do

fX

fθ

fθ

hφ

hφ

g· id

Figure 6.1. Commutative diagram.

As seen in Chapter 3, we find that augmenting the data commutes
with intervention before data generation. In addition, we see that data
augmentation commutes with the group action g on z, a result that is at
the basis of research concerning group-equivariant neural networks. Last,
we are able to connect equivariant representations z to interventions prior
to data generation. Intuitively, fθ inverts parts of the causal mechanism fX
and is, therefore, able to recover the true high-level features hy that were
initially caused by Y . In summary, the commutative diagram in Figure 6.1
connects all concepts we have encountered throughout the present thesis:
interventions, causal mechanisms, data augmentation, group-invariant,
and group-equivariant representations.
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