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It is foolish to investigate sensory mechanisms blindly—one must also look at the
ways in which animals make use of their senses. It would be surprising if the use
to which they are put was not reflected in the design of the sense organs and
their nervous pathways as surprising as it would be for a bird’s wing to be like a
horse’s hoof.

Horace Barlow, 1 961

We sometimes call these electric potentials ‘messages’, but we have then to bear
in mind that they are not messages in the sense of meaningful symbols. To call
them signals presupposes an interpreter, but there is nothing to read ‘signals’ any
more than ‘messages’. The signals travel simply by disturbing electrically the next
piece on their route.

Sir Charles Sherrington, 1 941
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The inner workings of the brain pose perhaps the most baffling problem in science.
Throughout millions of years of evolution, this organ has developed immense
spatiotemporal complexity. Brief electrical potentials are communicated in a web of
countless intermingled synapses. Billions of specialized neurons collectively sample the
environment, integrate recent with previous experience, model the state of the external
world, and control and guide adaptive behavior.

To follow what is happening in the external world (but also the internal world, i.e. in the
body) the nervous system uses an exquisite variety of sensory systems. Among these senses,
vision is by far the dominant modality for us humans, and vision is so inseparable from our
day-to-day understanding of the world that we tend to say that ‘seeing is believing’. For this
reason - and practical methodological motivations - the visual system has been especially
intensively studied. Seminal work in anesthetized cats found that repeated presentation of
well-defined local visual stimuli evoked stereotypic neuronal responses in the primary
visual cortex (Hubel and Wiesel, 1 959). Further work in immobilized and anesthetized
preparations gave rise to the view that single neurons act as passive feature detectors, each
neuron firing when a particular element of the outside world is present (Barlow, 1 961 ). The
detection of a total set of visual features leads to a representation of a visual scene: with the
same visual input the same scene would be reconstructed.

However, there is a growing understanding that the way we perceive the world is highly
contextual and depends on many additional factors beyond the photons that hit our retina.
For example, we fail to perceive a gorilla walking through a scene if we are focusing our
attention on counting passes between basketball players (Simons and Chabris, 1 999).
Moreover, sounds can make us falsely perceive flashes that are not there (Shams et al.,
2000) or change how we interpret lip movements during speech (Mcgurk and Macdonald,
1 976). A car might be spotted when driving to work after you had your morning coffee, but
not on the way back after a long day of work. In short, what we perceive is strongly
influenced by what we are focusing on, what we expect to see, what else is happening, what
our goal is, and what our state is: are we drowsy, highly alert, or anesthetized?

So, even though the underlying circuitry remains principally unchanged, visual processing
displays a large range of operating modes across conditions and environments. This ability
to change behavioral and neural responses to identical sensory stimuli depending on the
current task and context is an essential component of flexible goal-directed behavior. It is
exactly this capacity to flexibly respond to changing contexts that is likely attributable to
the cortex (Freedman and Assad, 2006; Mante et al., 201 3; Miller and Cohen, 2001 ) and
holds not only for vision, but all sensory modalities (Condylis et al., 2020; Sakata, 201 6).

From vision to action
In this introduction, I will briefly discuss prevalent ideas about how incoming visual
information can be processed from the retina to frontal motor areas to guide behavior in
the external world, i.e. perceptual decision making. However, this process is flexible and
dependent on multiple contextual factors. I will outline how three key processes
dynamically modulate visual processing (state, sound, and task setting) and highlight
anatomical and functional motifs of how this might be implemented. Key organizational
principles of the visual system were established in primates and felines. However, in view
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of the powerful array of experimental tools available for mice, the focus of this introduction
will be on how visually-guided action depends on contextual factors in this species. Note
that context in this thesis is meant in a broad sense, namely as factors beyond the locally
available visual input, and thus operationalized as modulation by sources external to visual
cortex, sources that convey information other than that of retinal origin.

Primary visual cortex
The visual pathway of mammals starts at the retina, where retinal ganglion cells project to
the dorsal lateral geniculate nucleus of the thalamus (dLGN), as well as several other
subcortical regions, including the superior colliculus and suprachiasmatic nucleus. The
dLGN in turn projects to the primary visual cortex (V1 ) and forms the largest pathway for
visual information to reach the cortex. As in all mammals, these projections are highly
structured and follow a retinotopic organization (Kaas, 1 980). This entails that the spatial
organization of light as it hits the retina is conserved throughout the first stages of the visual
system. Therefore, the visual cortex reflects a ‘map’ of the visual field whereby stimuli
coming from the same part of the visual field are also represented by neighboring V1
neurons (Hübener, 2003; Smith and Häusser, 201 0) (Figure 1 .1 ). Single neurons in V1  thus
process local visual inputs from a region in retinal space (their receptive field) and from the
pioneering work by David Hubel and Torsten Wiesel in cats we know that they
preferentially respond to contrasts along a certain orientation (Hubel and Wiesel, 1 959,
1 968). A neuron’s receptive field can often be approximated well by a so-called Gabor
patch, a sinusoidal grating convolved with a Gaussian envelope (Mehrotra et al., 1 992). To
compose visual inputs using these local filters has been argued to result from an
optimization process to efficiently (en)code visual scenes; in other words, to represent a
particular stimulus a minimal amount of action potentials is needed across a population of
V1  neurons (Olshausen and Field, 1 997; Tolhurst et al., 1 981 ). Visual cortical neurons thus
respond to locally oriented contrasts (‘edges’) and enhance the signaling of contours and
edges relative to nondescript isoluminant surfaces (Marr and Hildreth, 1 980). A dominant
approach in the study of cortical circuits has therefore been to use orientated contrasts
(gratings) that reliably and predictably evoke activity in V1  neurons.

Figure 1.1: Pathway of the mouse visual system. Visual information enters the brain via the retina.
Output from the eyes is shown as red (left eye) and blue (right eye). Output via the optic nerve
projects to targets in the suprachiasmatic nucleus in the hypothalamus (SCN), superior colliculus
in the midbrain (SC), and dorsolateral geniculate nucleus of the thalamus (dLGN). Insets show SC
and dLGN in coronal brain sections. Visual information crosses the midline to represent a given
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visual field in the contralateral thalamus and cortex. The right dLGN receives strong input from the
left eye in rodents, whose eyes have reduced visual field overlap compared to binocular species such
as primates. Retinal projections segregate into eye-specific layers (or zones) in adult dLGN. These
then project to the primary visual cortex (VISp). Locations of neurons with binocular RFs are
marked with red and blue stripes outside the ipsilateral patch. Mouse primary visual cortex is
predominantly monocular, with a smaller binocular field. Adapted from (Hooks and Chen, 2020).

Hierarchical organization of higher visual areas
The study of how the visual system is organized downstream to V1 has been mainly pursued
in primates. Through anatomical and functional characterization, V1  is placed as the first
cortical stage in a series of higher visual areas (HVA) that form a hierarchically organized
system (Felleman and Van Essen, 1 991 ). Areas higher up in the hierarchy are driven by
convergent projections from earlier areas, to which they also send reciprocal connections.
Each processing step combines inputs from the previous step to extract and integrate
information across larger fields of view and represent more complex visual features. This
hierarchical organization is reflected functionally with increasing size of receptive fields
and complexity of preferred visual features (Hubel and Wiesel, 1 965, 1 979), as well as
anatomically where feedforward projections terminate mainly in L4 and feedback
projections avoid L4 and hierarchical ordering can be derived from the relative ratio of
feedback and feedforward projections between areas (Felleman and Van Essen, 1 991 ;
Markov et al., 201 4)). Visual information arriving in primary visual cortex is sent in parallel
to diverging HVAs, and individual HVAs are thought to specialize in processing certain
aspects of the visual inputs (Livingstone and Hubel, 1 987). Furthermore, at a higher
organizational level, visual areas more ventrally located in the primate visual system are
more involved in object recognition (what pathway), while dorsally positioned areas are
more action-oriented (where pathway), the so-called dorsal and ventral stream (Mishkin
et al., 1 983).
Anatomical studies have reported that mice, similarly to primates and felines, possess
many higher visual areas. In fact, over 1 0 different areas in mouse cortex have been
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reported to respond to visual input and contain an organized retinotopic map of visual
space (Fig. 1 .2B) (Wang and Burkhalter, 2007). Similar to felines and primates, these areas
are hierarchically organized, with HVAs higher in the hierarchy responding later to visual
inputs and having larger receptive fields (Burkhalter, 201 6; Glickfeld and Olsen, 201 7;
Harris et al., 201 9; Siegle et al., 2021 ). While first-order thalamus (dLGN) mainly provides
input to V1  (and only minimally to HVAs), HVAs receive their main inputs from V1  and
from higher-order thalamus (Lateroposterior area, or LP, in mice; pulvinar in primates
(Baldwin et al., 201 7)), which is connected to and drives activity in HVAs (Bennett et al.,
201 9; Blot et al., 2021 ; Oh et al., 201 4; Roth et al., 201 6; Tohmi et al., 201 4). Based on their
connectivity patterns, these areas are also putatively organized in ventral and dorsal
processing pathways in mice (Wang et al., 201 1 , 201 2).
Figure 1.2: Anatomical and functional organization of mouse visual cortex. (A) Schematic overview of
the dorsal part of the mouse cortex. (B) Triple injections into V1  and anterograde tracing of intracortical
connections reveal topographically organized projection targets of V1 . Area abbreviations: A: anterior,
AL: anterolateral, AM: anteromedial, LI: laterointermediate, LM: lateromedial, P: posterior, PM:
posteromedial, POR: postrhinal, RL: rostrolateral, S1 : primary somatosensory. Panel B has been
reproduced from (Wang and Burkhalter 2007). (C) Schematic organization with V1  surrounded by a set
of HVAs. The areas shown in (B) and (C) correspond to the red dotted region in (A). (D) Distributions of
the preferred speed of visual input in the receptive field of neurons in PM, V1 , and AL. Neurons in PM
neurons prefer slow-moving stimuli whereas neurons in AL prefer fast-moving input. (E) Bar plots of
median peak speed across areas. Panel D and E were adapted from Andermann et al. 201 1 .
Analogously to the primate system, in which HVAs selectively respond to motion or color,
the tuning properties of mouse HVAs are area-specific and vary in temporal and spatial
frequency preferences (Andermann et al., 201 1 ; Marshel et al., 201 1 ). In comparison to the
primate visual system, however, these HVAs appear less functionally specialized and are
much smaller in total surface area compared to V1 (Glickfeld and Olsen, 201 7). To which
extent individual areas are specialized and underlie unique cognitive processes or
computations is a longstanding debate (see Chapter 5 and General Discussion).

Given the sophisticated methods available, the mouse visual system has emerged as a
powerful model system to study the structural and functional organization of hierarchical
visual processing. For example, it has been shown that V1  contains neurons with a wide
range of tuning properties, but that the projections from V1  are specifically tuned to the
preferred properties of the postsynaptic target HVAs in which they terminate and thereby
contribute to areal specialization (Berezovskii et al., 201 1 ; Glickfeld et al., 201 3a).
Feedback projections from these HVAs to lower areas are as abundant as feedforward
projections and important questions as to what the function of these feedback projections
is, remain unanswered.

Frontoparietal decision making
After initial visual processing has taken place, we may ask: how is this information
integrated with the current context and subsequently used to inform decision making?
Recent anatomical tracer studies by the Allen Institute have shown that a series of cortical
midline structures form an important pathway for visual as well as auditory information to
inform more frontally located motor systems to instruct goal-directed movements in mice
(Oh et al., 201 4; Zingg et al., 201 4). This pathway comprises posterior parietal cortex
(PPC), retrosplenial cortex, and more frontally, anterior cingulate and supplementary
motor cortex (Figure 1 .3). Neural responses along this pathway are increasingly
multimodal, choice-related, and context-dependent; in other words, they reflect sensory
features less and less, but rather correlate with how the information bears on the task
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objective and the decision and action the animal is taking. These areas are reciprocally
connected with higher-order thalamic nuclei forming an important cortico-thalamo-
cortical network (Sherman, 201 6). It has been proposed that in this network the role of the
thalamus is in orchestrating transcortical communication (Halassa and Kastner, 201 7;
Schmitt et al., 201 7). Through these pathways, different motor control regions might be
recruited, depending on the required movement. For example, during behavioral tasks
where licking is involved - to report choice and consume reward – different parts of the
mouse motor cortex termed anterolateral motor cortex and tongue-jaw motor cortex are
crucial for behavioral performance (Allen et al., 201 7b; Guo et al., 201 4a; Li et al., 201 5;
Mayrhofer et al., 201 9; Svoboda and Li, 201 8).

Figure 1.3: Sensory information flows converge in posterior parietal and medial prefrontal cortex
to support decision making. (A) Visual, auditory, and somatosensory inputs are relayed to medial
association areas such as posterior parietal cortex and medial prefrontal cortex. The schematic was
constructed based on multisensory evoked cortical network activity. Adapted from (Kuroki et al.,
201 8). (B) Sensory information is routed between sensory areas (VIS, AUD) and higher-order
association areas along the medial bank of the neocortex, such as the retrosplenial (RSP), posterior
parietal cortex (PTLp), anterior cingulate (ACA) and supplementary motor cortex (MOs), to areas
such as orbitofrontal cortex (ORB). This medial subnetwork was identified through tracer injections
placed across the entire mouse neocortex. SSP: primary somatosensory cortex. Adapted from
(Zingg et al., 201 4).

Particularly the PPC is of interest to the study of flexible visual (and auditory) processing.
In primates, the posterior part of the parietal cortex overlaps with several anatomically
distinct areas (Hyvärinen, 1 982). Compared to primates, the mouse posterior parietal
cortex is strongly reduced in relative volume (as are other associative cortices). Due to its
smaller size and less established anatomical work, there is a fair degree of variability in
what exactly different authors refer to as constituting PPC (Hovde et al., 201 9; Lyamzin
and Benucci, 201 9; Wilber et al., 201 5). Roughly, PPC partly overlaps with earlier
mentioned HVAs and is defined as including higher-order visual area A, AM, and extending
to the area anterior to AM (Figure 1 .2C). Neurons in rodent PPC not only respond to visual
inputs but also auditory and somatosensory stimuli (Mohan et al., 201 8; Nikbakht et al.,
201 8; Olcese et al., 201 3; Raposo et al., 201 4; Wallace et al., 2004). Furthermore, compared



Brain state

15
#Parts of the section ‘Brain State’ were previously published in Olcese, Oude

Lohuis, Pennartz, 201 8

to primary sensory areas, neurons in the parietal cortex reflect the decision animals take,
rather than sensory information (Driscoll et al., 201 7; Goard et al., 201 6; Harvey et al.,
201 2; Hwang et al., 201 7; Krumin et al., 201 8; Nikbakht et al., 201 8; Pho et al., 201 8;
Runyan et al., 201 7; Zhong et al., 201 9). Finally, PPC is reciprocally connected with
primary cortices, but also strongly with supplementary motor areas (Oh et al., 201 4; Zhang
et al., 201 6; Zingg et al., 201 4). PPC is thus ideally located to integrate information from
the different senses, filter relevant information, and steer action based on reward and
current context.

However, despite these task-related neural correlates and its position at the interface
between visual and auditory processing and premotor cortices, it is less clear under which
conditions PPC causally contributes to perceptual decision making. Several studies find
PPC necessary for making decisions based on visual stimuli (Driscoll et al., 201 7; Goard et
al., 201 6; Harvey et al., 201 2; Licata et al., 201 7), but not for tactile (Guo et al., 201 4a) or
auditory information (Erlich et al., 201 5; Licata et al., 201 7), or find that the subdivision of
PPC depends on the task modality (Gallero-Salas et al., 2021 ). Other studies have suggested
that PPC is causally involved in both visual and auditory tasks, but only when additional
cognitive processes beyond simple sensorimotor associations are required (Akrami et al.,
201 8; Funamizu et al., 201 6; Harvey et al., 201 2; Hwang et al., 201 7; Licata et al., 201 7;
Song et al., 201 7; Zhong et al., 201 9). Therefore, to what extent perceptual decision making
is supported by PPC remains a matter of debate and is the subject of investigation in
Chapter 5.
This short anatomical and organizational overview paints an almost static picture of
audiovisual sensory processing based on the circuitry-based flow of information. According
to what has thus far been described, perception, cognition, and action proceed as a fixed
cascade of feedforward processing steps and that - by previously made associations -
invariably leads to similar neural and behavioral outcomes. However, this couldn’t be less
true and will be the subject of the next sections.

Brain state
A single sensory stimulus can lead to a very different neural as well as behavioral response
from one moment to the next. When we are deeply asleep, a salient stimulus such as an
alarm clock can elicit a behavioral response. Weak stimuli, on the other hand, are not
noticed, although they would normally be perceived during wakefulness. Also during deep
surgical anesthesia, stimuli are still processed by multiple neocortical areas (Alkire et al.,
2008; Koch et al., 201 6; Mohajerani et al., 201 1 ; Supp et al., 201 1 ), yet this form of evoked
activity is not consciously perceived (Sanders et al., 201 2). The awake state is similarly
puzzling. We are able to process even the fine details of a visual scene easily, but sometimes
we surprisingly fail to detect highly salient objects (Simons and Chabris, 1 999) or major
changes in the visual scene if these coincide with some visual disruption such as an eye
movement or a brief obscuration of the image (Grimes, 1 996; Simons and Levin, 1 997).
What are the mechanisms underlying such a high variability in the way the same sensory
stimulus is processed, and how are they relevant for understanding perception? A key
factor to consider is the interaction between brain state and signals originating from
sensory transducers. While the latter have been extensively investigated, the nature of brain
states and how they influence sensory processing has received surprisingly limited
attention. How is sensory processing shaped by the characteristics of brain states?
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Synchronized and desynchronized brain states
Brain states have been classically distinguished based on the striking differences in
aggregate electrical activity (for example using electroencephalography, EEG).
Wakefulness is classically characterized by the presence of desynchronized neural activity
(McGinley et al., 201 5a), while NREM sleep (as well as forms of non-dissociative
anesthesia, i.e. anesthetics involving general loss of consciousness) is instead characterized
by massive neural synchrony, also referred to as slow wave sleep (SWS). It is not difficult
to imagine that sensory inputs will have different futures depending on whether they arrive
in a system of collective firing, alternating with collective silence (synchronized state), or
when there is sparse balanced activity (desynchronized state).

A host of studies has characterized sensory responses across synchronized and
desynchronized states. Consistently, single neurons in primary sensory areas show
remarkably similar tuning to stimulus features across behavioral states, e.g. neurons in
visual cortex rarely shift their preferred orientation (Durand et al., 201 6; Ecker et al., 201 4;
Goard and Dan, 2009; Goltstein et al., 201 5; Niell and Stryker, 201 0; Nir et al., 201 5). In
general, responses seem to have slightly faster dynamics in desynchronized brain states
(i.e. shorter onset latency and faster transients) (Durand et al., 201 6; Haider et al., 201 3;
Hasenstaub et al., 2007; Wang et al., 201 4; Wörgötter et al., 1 998), but see (Pachitariu et
al., 201 5)). Even though this suggests that major feedforward pathways are to a large extent
functioning similarly throughout brain states, response dynamics can vary considerably
when considering the immediate local state that sensory inputs face when reaching the
cortex.

Early work in the anesthetized cat visual cortex showed that identical stimuli can elicit
different neuronal responses depending on whether they arrive during UP or DOWN states
(Arieli et al., 1 996; Azouz and Gray, 1 999; Haider et al., 2007), but see (Haider et al.,
201 3)). Also in the awake rodent somatosensory cortex responses to single whisker
deflections are larger when occurring during DOWN states of synchronized activity, as
opposed to UP states (Crochet and Petersen, 2006; Hasenstaub et al., 2007; Petersen et al.,
2003; Sachdev et al., 2004; Sachidhanandam et al., 201 3), similar to responses of neurons
in auditory cortex to isolated tones (Deweese and Zador, 2004; Sela et al., 201 6). Across
repeated presentations of the same stimulus this leads to increased trial-to-trial variability,
compared to the desynchronized state, during which fluctuations in population activity and
network excitability are instead smaller (Haider et al., 201 3; Zagha et al., 201 3).

State variability within wakefulness
Also within wakefulness sensory processing dynamically varies alongside fluctuations in
brain state. It is important to note that wakefulness is hardly definable as a single
behavioral state. When we are awake, we can either sit quietly and mind-wander or be
highly involved in a myriad of different activities, from running to thinking. A key factor
which varies during wakefulness is the arousal level (McGinley et al., 201 5b, 201 5a; Reimer
et al., 201 4), as a function of which different levels of cholinergic and noradrenergic activity
(amongst other neuromodulators) modulate baseline neuronal activity and consequently
the way in which sensory stimuli are processed.

The arousal level is primarily measured in terms of pupil diameter, with a larger pupil being
associated with higher arousal (McGinley et al., 201 5a; Reimer et al., 201 4). High arousal
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is accompanied by desynchronized cortical activity, while during low arousal neural
patterns become more synchronized (McGinley et al., 201 5a), to the point that slow
oscillations (the hallmark of NREM sleep) occur during quiet wakefulness (McGinley et al.,
201 5b; Petersen et al., 2003; Sachidhanandam et al., 201 3). Locomotion usually
corresponds to a state of high arousal (measured in terms of pupil size), although the two
are not unequivocally linked, at least as far as visual processing is concerned (Vinck et al.,
201 5a). During locomotion, visual responses are, similar to periods with large pupil
diameter, enhanced (Dadarlat and Stryker, 201 7; Kaneko et al., 201 7; Niell and Stryker,
201 0), yet via a distinct mechanism. While pupil-related arousal suppresses spontaneous
firing activity in V1  (thus promoting the emergence of stimulus-evoked responses),
locomotion increases stimulus-evoked activity (Bennett et al., 201 3; Dadarlat and Stryker,
201 7; Fu et al., 201 4; Polack et al., 201 3; Vinck et al., 201 5a). Through both of these
mechanisms the consistency and signal strength in the coding of stimuli appears to be
enhanced – but see (Shimaoka et al., 201 8). Across identical stimulus presentations the
variability in response is reduced when the arousal level is high (McGinley et al., 201 5b;
Polack et al., 201 3; Schneider et al., 201 4; Schölvinck et al., 201 5) with again a key
contributor being reduced pre-stimulus variability (Bennett et al., 201 3; Zagha et al.,
201 3). This, in combination with higher membrane conductance in the desynchronized
state (Wang et al., 201 4) or during locomotion (Bennett et al., 201 3), can lead to an
increased signal-to-noise ratio (response versus baseline variance) (Bennett et al., 201 3;
Pachitariu et al., 201 5; Vinck et al., 201 5a). These state-dependent alterations in single
neuron coding correlate with increased performance in sensory detection tasks (Bennett et
al., 201 3; McGinley et al., 201 5b; Pinto et al., 201 3), but see (Sachidhanandam et al., 201 3).

High noise correlations during synchronized activity
As we discussed, the information-signaling capacities of single neurons increase during
desynchronized activity. However, whether a single neuron responds to a stimulus – which
still occurs during deep anesthesia – is not informative in explaining why some stimuli
come to be perceived or not. As stimuli are likely coded by patterns of ensemble activity
(Pennartz, 201 5; Pouget et al., 2000), it is essential to understand at a population level how
the representation of information varies across states. We will here discuss the impact of
correlated variability between neurons for accurate perception.
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Figure 1.4: An updated definition of brain states. (A) Brain states have traditionally been
distinguished based on the characteristic of population-level oscillatory dynamics present within a
behaviorally defined homogeneous period. Left, top: local field potential (LFP) trace present in
mouse visual cortex during isoflurane anesthesia. LFP activity is characterized by oscillatory
dynamics with strong power in slow frequencies (0.5–4 Hz). Left, bottom: at the neuronal level,
isoflurane anesthesia determines the alternation of periods of spiking and silence which are
synchronous throughout cortical areas, and in phase with the co-occurring LFP oscillations. Right:
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same as left panel, but during wakefulness. Note the disappearance of slow frequency oscillations
at the LFP level and the overall loss of synchrony for neuronal activity. (B) Recent studies have
shown that, within wakefulness, much more variability is present than previously thought. In
periods characterized by a low arousal level (left) neuronal activity (here shown in terms of
intracellular membrane potential traces) displays patterns indistinguishable from those present
during non-REM sleep or anesthesia. As the arousal level increases, or if a period of activity—
locomotion—occurs (center, right) activity becomes more and more desynchronized. The tick mark
indicates -60 mV as a reference for the voltage traces. (C) During Non-REM sleep and forms of non-
dissociative (e.g., isoflurane) anesthesia UP and DOWN states normally occur globally, i.e.,
involving the whole thalamocortical system. However, UP/DOWN states can also be local events,
involving one set of cortical regions. This mostly occurs during wakefulness when homeostatic sleep
pressure is high (left), and during non-REM sleep when, conversely, sleep pressure is slow. Each
plot shows an example of global or local DOWN state occurring during wakefulness (left) or sleep
(right), and measured in terms of both LFP recordings or neuronal multi-unit activity (MUA). F:
frontal derivation. P: parietal derivation. (D) Sensory processing varies within wakefulness. Visual
evoked potentials (here shown as measured by voltage-sensitive fluorescent proteins, scale bar
indicates fluorescence relative to baseline) are generally weaker when a mouse is running
compared to when it is stationary. The same is observed for audition and somatosensation. β:
Bregma. (E) Arousal differentially affects cortical areas in the mouse. Green indicates cortical areas
where the signal measured via voltage-sensitive fluorescent protein is positively correlated with
arousal (locomotion). Red shows areas where a negative correlation is present. D, E: Adapted from
Olcese et al. 201 8. Panel (A) was produced by M.N. Oude Lohuis (UvA), (B) adapted from McGinley
et al. (201 5b), (C) adapted from Vyazovskiy et al. (201 1 ), (D) and (E) adapted from Shimaoka et al.
(201 8).

Upon rhythmic oscillations in population firing, spiking activity is positively correlated
between nearby neuronal pairs, i.e. neurons increase and decrease their firing together
(Lampl et al., 1 999). Oppositely, during a desynchronized state, neurons do not show this
large synchronous modulation of firing rate and fire more or less independently (Renart et
al., 201 0). If these synchronous fluctuations persist in responses to stimuli, i.e. if neurons
show correlated variability across repeated presentations of the same stimulus, these
pairwise correlations are called noise correlations (Abbott and Dayan, 1 999; Averbeck et
al., 2006; Cohen and Kohn, 201 1 ), in contrast to signal correlations (pairwise correlation
in the average response across stimuli).

Noise correlations are generally high during anesthesia or otherwise synchronized states
(Ecker et al., 201 4; Renart et al., 201 0) due to these common fluctuations in activity, and
primarily arise as a result of neurons transiently ceasing firing together (Mochol et al.,
201 5). However, noise correlations increase even under light anesthesia and in the absence
of clear UP / DOWN states (Golshani et al., 2009; Goltstein et al., 201 5; Greenberg et al.,
2008), and also when focusing only on UP states (Renart et al., 201 0). Noise correlations
can also vary within wakefulness (Gentet et al., 201 0; Poulet and Petersen, 2008).
Specifically, noise correlations decrease upon locomotion (Erisken et al., 201 4; Vinck et al.,
201 5a) or arousal induced by an air-puff (Vinck et al., 201 5a).

Desynchronization improves population coding
Traditionally, noise correlations have been argued to impair sensory processing (Shadlen
and Newsome, 1 998; Zohary et al., 1 994), but recent theoretical work has shown that only
certain noise correlations (termed differential correlations) are information limiting,
namely those fluctuations that are identical to those generated by stimulus variations
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(Kohn et al., 201 6; Moreno-Bote et al., 201 4). Additionally, our previous work suggests that
pairwise noise correlations are not inherently detrimental (Montijn et al., 201 4), especially
when considering them within the context of larger populations (Montijn et al., 201 6). This
is because multidimensional noise correlations (covariability between neuronal triplets
etc.) are more likely to be orthogonal to the dimension coding stimulus identity, limiting
the effect on population readout in downstream areas (Montijn et al., 201 6).

Nonetheless, high noise correlations during synchronized activity do impair population
coding. In macaque visual cortex a locally synchronized state just before stimulus onset
impairs population readout of stimulus identity from a recorded ensemble and impairs
behavioral performance as well (Beaman et al., 201 7), and the amount of decorrelation
upon visual input is correlated with detection of figure-ground stimuli (van der Togt et al.,
2006). Experimentally promoting cortical desynchronization by electrical stimulation of
the nucleus basalis (containing mostly cholinergic neurons) in rats improves population
decoding of natural scenes (Goard and Dan, 2009), and performance in a visual
discrimination task (Pinto et al., 201 3). This suggests that increased desynchronization
facilitates independent coding of stimulus features and that such heterogeneous neuronal
responses contribute to accurate perception. Indeed, the amount of relative contrast in
activity between neurons, indexed as population response heterogeneity, correlates with
hits versus misses in a visual detection task (Montijn et al., 201 5). This study showed that
a highly heterogeneous activity pattern even preceded detected stimuli, whereas
heterogeneity was lower during the pre-stimulus baseline of miss trials. This suggests that
task epochs are characterized by different levels of heterogeneity in neural activity and that
these fluctuations might impact how incoming stimuli are subsequently processed.

While the improved population coding during desynchronized activity might contribute to
accurate perception in sensory detection tasks, it is still present within non-conscious
animals, such as when comparing desynchronized with synchronized epochs during
urethane anesthesia (Goard and Dan, 2009; Pachitariu et al., 201 5). Therefore, whether
desynchronization per se contributes to perception remains to be addressed. This likely
depends as well on whether this decorrelated and more independent coding of sensory
features also actually benefits downstream neurons. Chapter 3 addresses how decorrelation
of V1  population activity might contribute to improved readout in combination with
perturbations of V1  activity with variable timing relative to population decorrelation.

Brain state, and in particular the degree of synchronized fluctuations in activity shape the
feedforward processing in important ways. However, it is particularly contextual
modulations that are dependent on long-range and recurrent interactions with V1  are
affected, or even lost, during sleep or under anesthesia (Adesnik et al., 201 2; Haider et al.,
201 3; Keller et al., 2020a; Vaiceliunaite et al., 201 3). Anesthesia can therefore be used as a
manipulation to study state-dependent brain changes in the context of loss of
consciousness (Alkire et al., 2008; Schröter et al., 201 2; Untergehrer et al., 201 4). In
Chapter 2 we also investigate how the function of feedback from higher-order visual areas
to V1  might be different under states of anesthesia versus wakefulness.
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Task setting
The previous section explicitly addressed how brain state and arousal can radically alter
sensory processing. However, this is not necessarily a homogeneous process for all
potential stimuli. Some encountered stimuli will have value for an organism. For example,
you might wake up more easily from hearing your own name, but not that of others. The
ability to modify sensory processing based on which stimuli are predictive of reward or
danger is central to adaptive brains. How behaviorally relevant stimuli shape sensory
processing can be broadly divided in two ways: reward-dependent structural network
reconfigurations and rapid attentional and engagement effects.

Reward-dependent learning in sensory systems
Sensory systems do not come prewired, ready to analyze the world, but are wired through
repeated interactive experience with the world. Critical periods of enhanced plasticity are
specifically instructive to the appropriate wiring of sensory systems (Hooks and Chen,
2020; Levelt and Hübener, 201 2). However, even during adulthood positive and negative
outcomes are still able to adapt sensory processing to facilitate the analysis of behaviorally
relevant features in the world. Selective stimulus-outcome learning can alter the selectivity
of neuronal representations at both a single neuron and population level all the way down
to early sensory cortices (Bao et al., 2001 ; Fritz et al., 2003; Ghose et al., 2002; Goltstein et
al., 201 3, 201 8; Henschke et al., 2020; Poort et al., 201 5; Schoups et al., 2001 ). At the single
neuron level, the (bottom-up) saliency of a conditioned stimulus might be enhanced by a
selective increase of response amplitude (Blake et al., 2006; Fritz et al., 2003; Goltstein et
al., 201 3; Poort et al., 201 5), by the recruitment of additional neurons that become tuned
to the conditioned stimulus (Weinberger et al., 1 993), or alterations in the tuning curves
(Goltstein et al., 201 3; Schoups et al., 2001 ; Yang and Maunsell, 2004). At the population
level, reward-dependent learning can increase the sparseness of population responses to
the rewarded stimulus (Gdalyahu et al., 201 2; Ghose et al., 2002) or reshape the correlation
structure of ensemble activity (Averbeck et al., 2006; Ghose et al., 2002; Jeanne et al., 201 3;
Montijn et al., 201 5). Even in the absence of an active behavioral task, alterations of
stimulus processing in sensory cortex can result from simple repeated reward pairing
(Henschke et al., 2020; Seitz and Watanabe, 2009). Non-visual feedback or
neuromodulatory inputs have been suggested to form the substrate for learning
experiences to drive plasticity and alter V1  local circuitry (Bao et al., 2001 ; Chubykin et al.,
201 3; Gilbert and Li, 201 3). Perceptual learning might also be associated with
reconfigurations of long-range interactions. In the somatosensory system, texture
discrimination was associated with strengthened connectivity specifically from S1  to S2,
highlighting that behavioral relevance might affect how information is routed from primary
to downstream areas (Chen et al., 201 6). The behavioral relevance of specific sensory
stimuli thus leads to large-scale modifications in sensory processing through experience.

Attention and task engagement
However, stimuli are generally only relevant under certain conditions, rarely under all
circumstances. Rather than long-term changes across learning, mechanisms must be in
play to transiently modulate processing depending on moment-to-moment relevance of
sensory inputs. This study of how the brain achieves dynamic control over which sensory
features require preferential processing over others (i.e. attention) is a research field on its
own. A specific focus of this thesis is the question of how sensory processing is different for
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a stimulus that is directly predictive of an available reward, versus the same input presented
outside of this rewarding context.

In primary sensory cortices, it is often found that a large fraction of neurons responds
similarly to sensory inputs during task engagement, as well as to stimuli presented outside
the task setting. For example, mouse V1  neurons show similar sensory-evoked activity to
visual stimuli presented after task performance when the lick spout is removed (Pho et al.,
201 8; Steinmetz et al., 201 9). Primate S1  neurons also faithfully track tactile inputs also
outside the task (Hernández et al., 201 0). However, the fraction of purely sensory-driven
neurons decreases along the sensorimotor hierarchy. For example in the primate
somatosensory and visual system, the fraction of neurons that cease to respond to the
stimuli outside the task and that are instead modulated by task engagement and the
perceptual decision process increases along the hierarchy (Romo and Rossi-Pool, 2020;
Rossi-Pool et al., 2021 ; Siegel et al., 201 5). Likewise, in ferrets, stimuli that are rewarded
(and therefore more salient and attended to) are enhanced in terms of response amplitude
and evoke enhanced responses, especially in higher-order areas enabling them to better
propagate to frontal areas (Fritz et al., 201 0; Yin et al., 2020). Similarly, mouse parietal
cortex only showed task-related signals in trials in which the visual stimulus could be used
to obtain reward, but not during blocks when the lick spout was removed (Pho et al., 201 8).
Overall, the effect of task engagement thus increases along the sensorimotor hierarchy. It
must be noted that also in early sensory areas, for example in V1 , signals are reported that
index engagement (Steinmetz et al., 201 9) or whether the context is associated with visual
rewards (Hajnal et al., 2021 ). Also in subcortical structures task engagement can amplify
neuronal responses to rewarded target stimuli, for example in inferior colliculus of
primates (Shaheen et al., 2021 ) or mice (De Franceschi and Barkat, 2021 ), but these effects
are often much smaller compared to higher-order areas.

Task engagement thus has a striking effect on how sensory inputs propagate across the
brain. The modulation of sensory processing by task context might thus be for an important
part achieved through modification of the communication of lower-order sensory areas
with higher-order areas and affecting the routing between areas. Large open questions
remain on how selective propagation of task-relevant information is controlled and
implemented. Again, top-down inputs, as well as neuromodulatory influences, could
provide the substrate for directing attentional resources to the selective processing of
relevant stimuli (Desimone and Duncan, 1 995; Maunsell, 201 5; McAdams and Reid, 2005;
Rombouts et al., 201 5; Zhang et al., 201 4), and reshape how areas communicate to allow
sensory information to instruct appropriate actions (Fries, 2005; Kaufman et al., 201 4;
Kohn et al., 2020).

In sum, the processing of relevant stimuli can be modified through long-term structural
changes as well as more dynamic mechanisms. However, identifying whether modulations
of sensory-evoked activity are due to long-term experience, task engagement, or more brain
state-related effects is not trivial. The effect of task engagement is often studied in animals
that are highly trained for a given perceptual task. Furthermore, rewards by themselves
evoke signals in primary sensory areas, either directly or through reward anticipation
(Lacefield et al., 201 9; Shuler and Bear, 2006). Second, to complicate matter further,
rewards, as well as movements, cause increased arousal, which are both associated with
pupil dilation, and in the visual cortex with increases in average firing rate and
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decorrelation of activity (McGinley et al., 201 5b; Vinck et al., 201 5a; Zagha et al., 201 3).
All of these factors are associated with substantial alterations in visual processing. It is
therefore challenging to disentangle the distinct effects of rewards, arousal, and movement
in the average rodent perceptual task (Maunsell, 2004). This is because animals are trained
to restrict movements to report a stimulus when a reward is expected and arousal levels
increase; therefore, in perfectly trained animals accurate perception, reward expectancy as
well as reward delivery, consummatory movements and arousal are tightly correlated and
hard to isolate. Disentangling the contribution of all these variables, requires controlled
manipulation of task engagement, the timing of reward delivery, as well as careful
monitoring of arousal (pupil size) and body movements.

Crossmodal influences on visual cortex
Finally, vision does not operate in isolation, nor does any other sense. Our brains, as well
as nervous systems across the animal kingdom, are continuously sampling the world in an
inherently multisensory manner (Flanigan et al., 2021 ; Ghosh et al., 201 7; Solvi et al.,
2020; Stein and Stanford, 2008). Our perception of flavor, for example, involves the
integration of gustatory and olfactory cues (Maier et al., 201 5; Spence, 201 5) and we use
visual lip movements to understand better what someone is saying (Ross et al., 2007;
Schroeder et al., 2008; Sumby and Pollack, 1 954). Each sense provides unique information
and properly integrating, segregating, selecting, and ignoring multisensory cues improves
our understanding of the world.

Forms of multisensory processing
Multisensory processing research has primarily focused on cue integration, the process by
which the integration of external cues from multiple modalities can provide a more reliable
estimate of an object or event as compared to unimodal cues (Fetsch et al., 201 3; Gleiss and
Kayser, 201 2; Lippert et al., 2007; Meijer et al., 201 8, 2020; Meredith and Stein, 1 986).
For example, we might judge the shape of an object by combining our estimates based on
touching and visually observing the object itself (Ernst and Banks, 2002). However, cue
integration is only one of the many types of multisensory processing (Meijer et al., 201 9),
and additional processes determine the interplay of the senses such as sensory
prioritization (Lakatos et al., 2009; Lee et al., 201 6; Wimmer et al., 201 5) and resolving
multisensory conflicts (Song et al., 201 7). Even more importantly, while the field has
mostly focused on the behavioral and neural correlates of cue integration, most
multisensory events in daily life do not share the same underlying cause and should be
segregated rather than integrated (Körding et al., 2007; Mihalik and Noppeney, 2020;
Noppeney, 2021 ; Rohe and Noppeney, 201 5; Shams and Beierholm, 201 0). For example,
the sound of a honk of a car on the street bears little on the processing of all the other objects
in the scene. In a slightly different vein, it can be argued that it is equally important to
segregate the modality of the stimuli to account for the qualitatively varied nature of
conscious experience (Pennartz 2009; Pennartz, 201 5). Both visual and auditory stimuli
evoke patterns of distributed spiking activity, but are associated with a different character
of experience. According to the latter framework, a form of crossmodal interaction and
calibration is necessary that preserves the informational content in both domains, but
differentiates visually from auditory induced spiking activity to account for the fact that
both modalities have a segregated, distinct qualitative experience. This hypothesis is
central to the design of the behavioral task presented in Chapters 3, 4, and 5. Specifically,
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we aimed at investigating whether auditory changes would lead to activity changes in the
visual system without the purpose to enhance visual feature representation, but rather to
engage crossmodal audiovisual interactions, hypothesized to shape the nature of the
perceived experience (Pennartz, 2009).

To implement these multisensory processes flexibly, we are coming to the understanding
that interactions between the senses occur at most, if not all, levels of the sensory
processing hierarchy and in different forms (A. E. Allen et al., 201 7; Bieler et al., 201 8;
Ghazanfar and Schroeder, 2006). Thus, contrary to the initial sketch of perceptual decision
making introduced earlier, multisensory processes are not restricted to dedicated higher-
order areas such as posterior parietal and frontal cortices, but occur in early as well as late
stages of sensory processing. Therefore, the neural correlates of multisensory processing
are expected to depend on the level under study and on the behavioral relevance and goals
(top-down factors) and not only on bottom-up factors such as spatial and temporal
coincidence (Choi et al., 201 8; De Meo et al., 201 5; Meijer et al., 201 9; van Atteveldt et al.,
201 4).

Audiovisual interactions
Although multisensory interactions occur between the various senses, most research has
focused on audiovisual interactions. Vision and audition are important senses that inform
animals about distal events with high spatiotemporal resolution. Vision and audition
capture fundamentally different physical signals (sound waves versus photons) and it is to
no surprise that they convey different aspects of the reality around us. The most relevant
information in sounds is in the temporal domain and extracting this information requires
highly temporally specific processing. For example, inter-aural time delays which are used
to estimate sound source location depend on microsecond differences between sound wave
impinging on the ears. Oppositely, visual inputs are rich in information in the spatial
domain and the visual system is thus designed to care about local spatial contrasts, rather
than fast temporal changes in inputs. The auditory system, therefore, has a high temporal
resolution and is accurate in estimating timing and onsets – i.e. when something happens
- while the visual system is optimized to provide spatially precise estimates – i.e. where
something happens. This contrast is relative, as humans can also easily perform
localization using audition and temporal estimation using vision. Nonetheless, this relative
specialization is evident in multisensory illusions. The sound-induced double flash illusion
depends on a temporal estimate and sounds can make subjects falsely perceive flashes
(Shams et al., 2000). The ventriloquist illusion, on the other hand, depends on a spatial
estimate, and vision modulates the perceived origin of sounds (Howard and Templeton,
1 966).

Vision and audition thus convey different signals about the world and multisensory
interactions are diverse in nature. With this in mind, it is particularly interesting to ask how
auditory signals could inform visual processing and at which stage. Indications of
audiovisual interactions have been found in the superior colliculus, higher-order
associative areas, as well as primary sensory areas. Reported forms of interaction include
neurons whose response is modulated by simultaneous audiovisual presentation and
neurons that respond to both modalities and show (non)linear responses to simultaneous
audiovisual inputs. In the context of this thesis, modulation of early visual processing by
sounds is particularly relevant. Sounds can modulate visual response properties of V1
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neurons such as orientation and contrast tuning (Ibrahim et al., 201 6; Meijer et al., 201 7).
Neurons in V1  even show direct responses to sounds (Meijer et al., 201 7) and selectivity to
auditory frequency (Knöpfel et al., 201 9). These modulations have been shown to depend
on direct projections from auditory cortex (Ibrahim et al., 201 6; Iurilli et al., 201 2), with
auditory cortical neurons sensitive to sharp sounds onsets being more likely to project to
V1  than neurons sensitive to slowly evolving features (Deneux et al., 201 9). This suggests
that sounds activate visual cortex through fast horizontal connectivity via auditory cortex.
These auditory signals in V1  have been mostly studied in passive animals and in the
framework of cue integration. Major questions remain about the functional organization of
these auditory inputs, how auditory signals are integrated with visual inputs, and how this
supports or interacts with vision. Furthermore, as mentioned above, the nature and
function of different forms of multisensory processing significantly depends on the
behavioral context in which they occur. Furthermore, sounds can lead to motor activity,
which, through direct modulation of V1  activity, can obfuscate the interpretation of sound-
evoked activity (Bimbard et al., 2021 ). It is therefore unclear which aspects of the sound-
evoked activity reflect sensory features, or rather arousal or behavioral components, all
questions that are addressed in Chapter 4.

Methodological considerations
To investigate how contextual modulations affect visual processing, one needs to carefully
consider how to study the unique modulatory effect of each of the considered factors on
visual perception in a way that allows to narrow down the functional motifs, but also the
methods to causally test hypotheses. To address this, we develop an integrated approach
including behavioral manipulations, electrophysiological recordings and causal
manipulation of neural activity.

Behavioral setup
Our central questions revolved around how visual processing is dependent on contextual
factors. To answer this question, experiments in head-fixed mice are ideal because we have
tight control over the sensory stimuli, can train them to report and use certain stimuli to
perform certain behavioral actions, and vary the task contingencies while recording and
manipulating the circuitry under different brain states (anesthetized, quiescent, or
behaving). Furthermore, mice offer a suitable model to study sensory processing in relation
to consciousness (Storm et al., 201 7).

In Chapter 2 we studied hierarchical visual processing in awake or anesthetized mice that
were passively presented with stimuli. In other words, they were not required to report or
act upon the stimuli. For the experiment in chapters 3, 4, and 5, on the other hand, we
developed a multisensory change detection task. To study the modulation of visual
processing we kept the stimuli unchanged and varied, across cohorts of mice, whether
audition and vision were task-relevant or not. We compared 3 cohorts of mice: naive
animals, animals trained to detect visual changes but ignore auditory changes, and lastly,
animals trained to detect and discriminate auditory and visual changes in the full version
of the task. In the full multisensory version, mice were required to continuously and
simultaneously monitor audiovisual stimuli and respond to one side for changes in auditory
frequency and to the other side for changes in the orientation of a drifting grating. In other
words, mice were trained to detect changes and identify the sensory modality in which the
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change occurred. In trained animals, we varied task difficulty by varying the amount of
change relative to the perceptual threshold. These psychophysical methods allow us to
make inferences about perception and decision making by systematically relating sensory
information, neural responses, and perceptual report (Carandini and Churchland, 201 3;
Green and Swets, 1 966; Stüttgen et al., 201 1 ).

We designed this task for various theoretical and experimental reasons. First, by using
changes in a feature of the stimuli (orientation or auditory frequency) we aimed at making
the task reliant on feature-processing and thus cortex-dependent (see Chapters 3 and 4).
Second, by changing features of ongoing stimuli we minimized the effects that sudden and
salient onsets and offsets of sounds and high contrasts have on both neural activity and
arousal (Deneux et al., 201 9; Iurilli et al., 201 2; Yeomans and Frankland, 1 995).
Furthermore, in this way, we maintained constant visual luminance and contrast, which
meant that observed pupil size variability indexed arousal fluctuations rather than
luminance (Mathot, 201 8; McGinley et al., 201 5a). Third, this task goes beyond Go/No-go
tasks as animals cannot simply respond to any input (Carandini and Churchland, 201 3;
Guo et al., 201 4b; Meijer et al., 201 8). Instead, the animal needs to not only detect but also
identify the modality in which the change occurred, hypothesized to require long-range
intracortical signaling differentiating modality-specific representations (Pennartz, 201 5,
2009). Fourth, simultaneous visual and auditory detection permitted us to see how visual
and auditory detection involved distinct or shared neural populations (Masset et al., 2020;
Nikbakht et al., 201 8; Raposo et al., 201 4; Vergara et al., 201 6). Lastly, Go/No-go tasks
suffer from an asymmetry in motor outputs; comparing a withheld still trial (no-go) with a
trial with active behavior, reward expectation, and licking (go trial) conflates choice signals
with those associated with vigorous licking and arousal. Therefore having two-alternative
motor actions in response to the same sensory stimuli allowed us to better dissociate choice
from licking (Burgess et al., 201 7; Guo et al., 201 4b; Runyan et al., 201 7; Steinmetz et al.,
201 9).

Electrophysiological recordings
This task design thus allowed us to answer our research questions by manipulating how
contextual factors modulate visual processing while retaining the same visual and auditory
inputs. We were interested in how horizontal intracortical connections and feedforward
and feedback information flows within or outside the visual system convey contextual or
task-related information. We opted for multi-area laminar probe recordings to dissect this
circuitry as, first, this permitted monitoring the spiking activity of a large number of
neurons across different cortical areas (Jun et al., 201 7; Steinmetz et al., 201 9). Second,
laminar extracellular recordings provide good temporal resolution to distinguish moments
of feedforward and feedback processing (Allman et al., 1 985; Lamme and Roelfsema, 2000;
Roelfsema et al., 1 998), as well as an idea of the laminar distribution to isolate the
anatomical origins of feedforward and feedback (Bastos et al., 201 5; Nandy et al., 201 6;
Senzai et al., 201 9). Furthermore, in the mouse >90% of narrow spiking neurons are
parvalbumin-expressing (PV) inhibitory neurons and >90% of broad spiking neurons are
excitatory neurons (Lee et al., 201 0; Pfeffer et al., 201 3; Rudy et al., 201 1 ) and thus allow
to classify neuron types (Niell and Stryker, 2008, 201 0; Vinck et al., 201 5b) (Figure 1 .5).
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Figure 1.5: Multi-area ensemble
recordings with silicon probes. (A)
Dorsal view of mouse cortex with
areas of interest for neural
recordings and manipulations
highlighted. Data from cingulate
cortex (Cg1 ) is not presented in this
thesis. A1 : primary auditory
cortex; S1 : primary
somatosensory cortex. (B) Example
waveforms of narrow spiking
(putative fast-spiking inhibitory
neurons) and broad spiking
neurons (putative excitatory
neurons) in V1 . (C) Recordings
were performed across the layers
of mouse cortex. The left panel
shows a silicon probe overlaid on a
schematic of the cortical laminae.
The right panel shows the voltage
trace during action potentials for
some example neurons (in different
colors) across all electrode
channels (positioned in the same
zigzag configuration as the probe
schematic in (A)). Neurons
recorded at different cortical
depths evoke voltage deflections at
localized silicon probe channels.

Figure produced by M.N. Oude Lohuis (UvA).

Causal interventions
To test the causal contribution of the neural circuits under investigation we implemented
two causal intervention techniques, muscimol injection and optogenetics. Muscimol is a
potent, selective agonist for the GABAA receptor and when infused in the targeted region of
interest transiently and reversibly silences neuronal activity. Optogenetics involves the use
of light to control neurons that have been genetically modified to express light-sensitive ion
channels. We optogenetically inactivated single cortical regions by virally expressing cre-
dependent ChR2 in PV-cre mice. Subsequent local photostimulation drives PV inhibitory
interneurons and effectively silences activity (Madisen et al., 201 2). Muscimol
manipulations have poor temporal specificity and the possibility of adaptive mechanisms
kicking in to compensate for the loss of function should be considered. Optogenetic
manipulation, on the other hand, has far superior temporal control and was leveraged to
disrupt specific temporal windows during sensory processing. However, care should also
be taken that the immediate disruptive manipulations has no off-target effects (Otchy et
al., 201 5).

Outline of the thesis
Non-visual signals and modulatory influences are thus pervasive throughout the visual
cortex and visual perception appears strongly dependent on sounds, state, and setting
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(Figure 1 .6). To understand why these signals are present we have to consider that, for
visual input to make sense, a lot of additional contextual information needs to be
considered and integrated. For example, to know whether objects in the world are moving
or whether it is you that is moving, the visual system needs information about your own
locomotion. To understand what we are seeing we need to compare and verify visual
information with other modalities, and to act we need to know what is behaviorally
relevant. The process of vision thus involves the active construction of internal models of
the world using sources beyond the eyes and depends on the behavioral and perceptual
needs of the animal.

Contextual influences modulate visual processing via top-down projections from higher
brain areas, intra-areal horizontal connections, or neuromodulatory inputs. However,
knowledge of the circuit mechanisms that integrate feedforward sensory information with
contextual information is still very limited. Likewise, we do not understand how these
might improve or deteriorate visual processing and visually-guided behavior. This thesis
investigates how various contextual factors are encoded in visual cortex, how they interact
with visual input, and how they might support visual perception. We specifically aimed to
understand how visual processing and decision-making is co-determined by:

 Internal feedback: recurrent signals from higher-order areas (Chapters 2, 3, 4)
 State: brain conditions such as anesthesia and wakefulness (Chapters 2-5)
 Multisensory signals: auditory and tactile influences (Chapters 3 and 4)
 Task setting: rules, goals and context (Chapter 3, 4, 5)

First, in Chapter 2, we study feedback connections from higher-order to lower-order areas
in the visual system. Feedback connectivity is thought to convey contextual information to
facilitate lower-order processing and has been linked to attention, prediction, and
awareness. It is unclear how different higher visual areas functionally modulate and shape
visual response properties in V1 . As the functionality of feedback projections is thought to
be selectively affected by state changes (anesthesia vs. wakefulness), an additional question
is therefore whether this functional organization depends on brain state.

In Chapter 3, we investigate whether V1  activity and its contribution to visual perception
are affected by (multisensory) task setting. Several studies have shown that V1  responses
are influenced by the larger visual context. We were interested in whether V1  dynamics
were also affected by the presence of task demands in another modality and tested whether
the role of V1  is fixed for a given stimulus, or can be better conceptualized as a recurrent
node in the network. Finally, we ask if later activity patterns are still causally required for
visual perceptual decision-making.

In Chapter 4, we address a recent controversy regarding the nature of sound-evoked
responses on V1 . Both auditory and motor movements have been shown to influence V1 .
However, it is unclear to what extent sounds cause movements that are subsequently
observed in V1 , nor is it clear how auditory and motor-related inputs jointly shape visual
processing. In Chapter 4 we use multi-area recordings, task manipulations,
pharmacological interventions and optogenetics to dissociate visual, auditory and motor
processing during multisensory evoked activity in V1 .
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Lastly, Chapter 5 moves beyond the primary visual cortex (V1 ) and focuses on the role of
the Posterior Parietal Cortex (PPC). To what extent perceptual decision making is
supported by PPC remains a matter of debate, with specific controversy regarding the task
conditions and sensory modalities that determine the involvement of PPC. In Chapter 5,
we examined the neural correlates of auditory and visual change detection in the PPC and
tested the hypothesis that PPC is causally required to discriminate sensory modalities
rather than to integrate them during an audiovisual change detection task.



Chapter 1 : General Introduction

30

Figure 1.6: Contextual modulation of visual processing. Processing of the same visual input
(schematized as the oriented grating stimulus at the bottom right) was studied under conditions of
variable states, sounds, and task settings. Black arrows denote relevant anatomical pathways
known from the literature to modulate V1  and are hypothesized to play a role in the contextual
feedback to V1 . Note that context in this figure and the thesis is meant as sources of modulation
external to V1 .
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Abstract
Over the past few years, the various areas that surround the primary visual cortex in the
mouse have been associated with many functions, ranging from higher-order visual
processing to decision making. Recently, some studies have shown that higher-order visual
areas influence the activity of the primary visual cortex, refining its processing capabilities.
Here we studied how in vivo optogenetic inactivation of two higher-order visual areas with
different functional properties affects responses evoked by moving bars in the primary
visual cortex. In contrast with the prevailing view, our results demonstrate that distinct
higher-order visual areas similarly modulate early visual processing. In particular, these
areas enhance stimulus responsiveness in the primary visual cortex, by more strongly
amplifying weaker compared to stronger sensory-evoked responses (for instance
specifically amplifying responses to stimuli not moving along the direction preferred by
individual neurons) and by facilitating responses to stimuli entering the receptive field of
single neurons. Such enhancement, however, comes at the expense of orientation and
direction selectivity, which increased when the selected higher-order visual areas were
inactivated. Thus, feedback from higher-order visual areas selectively amplifies weak
sensory-evoked V1  responses, which may enable more robust processing of visual stimuli.
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Introduction
The various areas which make up the mouse visual cortical system have, over the past
decade, emerged as a prime model to study the functional architecture underlying vision in
mammals (Andermann et al., 201 1 ; Glickfeld and Olsen, 201 7; Glickfeld et al., 201 4;
Marshel et al., 201 1 ; Wang and Burkhalter, 2007). The anterior and lateral borders of
primary visual cortex V1  are surrounded by an array of areas, collectively called higher-
order visual areas (HVAs), each having distinct connectivity patterns and visual response
properties, and providing a specific contribution to visual processing (Andermann et al.,
201 1 ; Marshel et al., 201 1 ; Wang et al., 201 2). Several studies have investigated what
functions each of these areas might fulfill in visual processing. A wide range of functions
has been found, complementing V1  in orientation discrimination and contrast detection
(Jin and Glickfeld, 2020), spatial integration (Murgas et al., 2020), perception of higher-
order visual features (Khastkhodaei et al., 201 6) and illusory contours (Pak et al., 2020).
Furthermore, HVAs partially overlap with the rodent posterior parietal cortex, and have
been implicated in several functions beyond simple visual processing, for instance
multisensory integration (Meijer et al., 2020; Olcese et al., 201 3; Song et al., 201 7),
(multi)sensory evidence accumulation and decision making (Erlich et al., 201 5; Hanks et
al., 201 5; Licata et al., 201 7; Raposo et al., 201 4) and navigation (Harvey et al., 201 2;
Krumin et al., 201 8). Moreover, HVAs play a significant role in sensory processing by
means of the input they provide not only to each other, but also to V1 (Wang et al., 201 2).

Feedback projections from HVAs to V1  have been found to be functionally organized (Kim
et al., 201 8; Marques et al., 201 8), similarly to local connections (Cossell et al., 201 5; Ko et
al., 201 1 ) and feedforward projections from V1  to HVAs (Berezovskii et al., 201 1 ; Glickfeld
et al., 201 3a). These feedback projections have been associated with a variety of essential
forms of visual processing: response facilitation (Nurminen et al., 201 8; Pafundo et al.,
201 6), surround suppression (Nassi et al., 201 3; Nurminen et al., 201 8; Vangeneugden et
al., 201 9) and predictive processing (Keller et al., 2020b). A recent study, in particular,
showed that each HVA differently impacts the activity of V1  neurons based on their visual
response properties (Huh et al., 201 8). Inactivating either the anterolateral (AL) or
posteromedial (PM) area primarily reduced responses of those V1  neurons showing
functional properties similar to those of AL and PM, respectively. The Huh et al. (201 8)
study focused on tuning of V1  cells to spatial frequency and investigated how inactivating
AL and PM modulates firing rate responses to drifting gratings moving along the preferred
orientation of single neurons. Overall, previous studies thus indicate that feedback
projections from HVAs to V1  may provide a mechanism to enhance processing of specific
visual stimuli, based on the response properties of each HVA. We expanded the results of
previous literature by combining optogenetics and ensemble recordings to investigate how
HVAs contribute to a broad spectrum of V1  functions – such as orientation and direction
selectivity, receptive field size and single-trial encoding of visual features – as a function of
the speed of visual stimuli. We further compared anesthetized and awake conditions.
Unconscious brain states have been associated with lacking or diminished recurrent
processing (Keller et al., 2020b; Lamme et al., 1 998; Makino and Komiyama, 201 5) and we
investigated whether functionally specific feedback is degraded under anesthetized
conditions. Surprisingly, we found that, in addition to the previously reported, functionally
specific feedback (in which modulation of V1  varies based on the functional tuning of each
HVA), AL and PM similarly enhance V1  responsiveness to visual stimuli, during both
wakefulness and anesthesia. Such enhancement is especially prominent for weak sensory-
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evoked responses and for responses entering the receptive field of single neurons, but
comes at the expense of orientation and direction selectivity. Thus, in addition to previously
discovered functions, HVAs also contribute to amplifying V1  responses, especially to
stimuli which would otherwise evoke small changes in spiking activity.

Materials and Methods
Subjects

All animal experiments were performed according to the national and institutional
regulations. The experimental protocol was approved by the Dutch Commission for Animal
Experiments and by the Animal Welfare Body of the University of Amsterdam. A total of
1 4 male mice from two transgenic mouse lines were used: PVcre (B6;1 29P2-
Pvalbtm1 (cre)Arbr/J, JAX mouse number 008069) and F1  offspring of this same PVcre
line with Ai9-TdTomato cre reporter mice (B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, JAX
mouse number 007909). Animals were at least 8 weeks of age at the start of experiments.
Mice were group housed, with ad libitum access to water and food, under a reversed day-
night schedule (lights were switched off at 8:00 and back on at 20:00). All experimental
procedures were performed during the dark period.

Experimental Design

Headbar implantation

Mice were subcutaneously injected with the analgesic buprenorphine (0.025 mg/kg) and
maintained under isoflurane anesthesia (induction at 3%, maintenance at 1 .5–2%) during
surgery. The skin above the skull was epilated, disinfected, and a circular area was removed
with the edges glued to the outer parts of the skull using tissue adhesive (3M Vetbond, MN,
United States) to prevent post-surgical infections. A custom-made titanium head-bar with
a circular recording chamber (inner diameter: 5 mm) was positioned over the exposed skull
of the left hemisphere to include visual, auditory and somatosensory cortices and attached
using cyanoacrylate and C&B Super-Bond (Sun Medical, Japan).

Intrinsic optical imaging

To localize individual higher visual cortical areas we performed intrinsic optical imaging
(IOI) under lightly anesthetized conditions (0.7-1 .2% isoflurane). A vasculature image was
acquired under 540 nm light before starting the imaging session. During IOI, the cortex
was illuminated with monochromatic 630 nm light. Images were acquired at 1  Hz using an
Adimec 1 000m CCD camera (1 004 x 1 004 pixels) connected to a frame grabber (Imager
3001 , Optical Imaging Inc, Germantown, NY, USA), defocused about 500-600 µm below
the pial surface.

We presented visual, auditory and tactile stimuli. Visual stimuli consisted of full field
drifting gratings (spatial frequency 0.05 cpd, temporal frequency 1 .5 Hz) for 1  second in
each of 8 directions. Auditory stimuli consisted of alternations between chirps sweeping up
or down in frequency (1 -40 kHz) and band-passed white-noise (1 -40kHz) calibrated at 70
dB Sound Pressure Level (SPL). Tactile stimuli were full whisker-pad deflections driven by
a piezo-actuator (1 8˚ angle). For each type of stimulation we acquired 8 seconds of baseline
signal and 8 seconds of hemodynamic response during stimulation. The acquired frames
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during the response were baseline-subtracted, averaged and thresholded to produce a map
of localized individual primary and higher order areas. PM and AL were identified based
on the IOI signal map in combination with previously published maps (Glickfeld and Olsen,
201 7; Olcese et al., 201 3; Wang and Burkhalter, 2007) and marked on the skull based on
the vasculature image. After IOI, the recording chamber was covered with silicon elastomer
(Picodent Twinsil) and mice were allowed to recover for 2-7 days.

Viral injections

Mice were subcutaneously injected with the analgesic buprenorphine (0.025 mg/kg) and
maintained under isoflurane anesthesia (induction at 3%, maintenance at 1 .5–2%) during
surgery. We performed a small craniotomy over the area of interest (either PM or AL in
distinct mice, identified using IOI) using a dental drill and inserted a glass pipette backfilled
with AAV2.1 -EF1 a-double floxed-hChR2(H1 34R)-EYFP-WPRE-HGHpA (titer: 7×1 0¹²
vg/ml, 20298-AAV1 , Addgene). Four injections of 1 3.8 nl were made at two depths (two at
700 μm and two at 400 μm below the dura) using a Nanoject pressure injection system
(Drummond Scientific Company, USA). Each injection was spaced apart by at least 5
minutes from the next one to promote diffusion and prevent backflow. After viral
injections, the recording chamber was covered with silicon elastomer (Picodent Twinsil)
and mice were allowed to recover. In total, we performed successful injections in PM in 5
mice, and in AL in 4 mice.

Craniotomy

After at least 3 weeks to allow for robust viral expression, mice were subcutaneously
injected with the analgesic buprenorphine (0.025 mg/kg) and maintained under isoflurane
anesthesia (induction at 3%, maintenance at 1 .5–2%) during surgery. We performed small
(200 μm) craniotomies over the areas of interest (V1  and either PM or AL) using a dental
drill. The dura was left intact if possible. The recording chamber was sealed off with silicon
elastomer and the mice were allowed to recover for 24h.

In vivo electrophysiology

Mice were fixated in a custom-built holder in a dark and sound-attenuated cabinet. The
body of the mouse was put in a tube (diameter: 4 cm) to limit body movements. The
headbar was attached to a custom-made holder via two screws. Before recording sessions,
mice were habituated to this type of head-fixation by daily progressive incremental time
spent in head-fixation.

Recordings were performed either in an awake or anesthetized state and the order was
counterbalanced across recording days. Under anesthesia, pure oxygen with isoflurane (at
0.6-1 .2%) was delivered at 0.8 l/min. The level of anesthesia was monitored by observing
breathing rate and neural activity. Isoflurane levels were slowly lowered over the course of
a recording session to counteract tissue build-up and maintain a stable depth of anesthesia.
Body temperature was monitored throughout and kept at 37.5 ˚C.

Extracellular recordings were performed with 32- or 64-channel microelectrode arrays
(NeuroNexus, Ann Arbor, MI –A1 x32-Poly2-1 0mm-50s-1 77, A4x8-5mm-1 00-200-1 77, or
A1 x64-Poly2-6mm-23s-1 60). Each recording session the electrode arrays were slowly
inserted until the recording sites spanned the cortical layers. We verified visual
responsiveness by displaying full-field gratings and reinserted the electrodes if there was
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no robust visual responsiveness in neural activity. The number of recording sessions was
limited to 3 to minimize recording from a damaged circuit. For some recording sessions
electrodes were dipped in DiI (ThermoFisher Scientific) allowing better post hoc
visualization of the electrode tract (Fig. 2.1 C). After insertion, the exposed cortex and skull
were covered with 1 .3-1 .5% agarose in artificial CSF to prevent drying and to help maintain
mechanical stability. The ground was connected to the headbar and the reference electrode
to the agarose solution. Recordings started at least 1 5 minutes after insertion to allow for
tissue stabilization. Neurophysiological signals were amplified (x1 000), bandpass filtered
(0.1  Hz to 9 kHz) and acquired continuously at 32 kHz with a Digital Lynx 1 28 channel
system (Neuralynx, Bozeman, MT).

Optogenetics

To locally photostimulate PM or AL, a 473 nm laser (Eksma Optics, Vilnius, Lithuania,
DPSS 473nm H300) was connected with a fiber-optic patch cord to a fiber-optic cannula
(ID 200 um, NA 0.48, DORIC lenses) that was positioned directly over the thinned skull at
the area of interest. Photostimulation consisted of 1 0 ms pulses delivered at 20 Hz for the
duration of visual stimulus presentation. Stimulus duration varied depending on the
traversal time of the bar across the screen and, depending on travelled distance and speed
of the bar, ranged from 0.45 s (vertical bar moving at 70˚/s) to 6.3 s (diagonal bar moving
at 20˚/s). Light delivery was controlled by a shutter (Vincent Associates LS6 Uniblitz).
During each session we simultaneously performed extracellular recordings in the areas of
interest (V1  and either PM or AL) and adjusted laser power to the minimum that maximally
inhibited neural activity (range: 2-1 5 mW total power).

Visual stimulation

Visual stimuli were gamma-corrected and presented with a 60 Hz refresh rate on an 1 8.5
inch monitor positioned at a 45˚ angle with the body axis from the mouse at 21  cm from
the eyes, subtending 91 ˚ horizontally and 60˚ vertically. Three sets of visual stimuli were
used.

Checkerboards – Before each session, we displayed full-field contrast-reversing
checkerboards (full contrast, spatial frequency = 1 0 retinal degrees, temporal frequency of
contrast reversal = 0.5 Hz, n=1 0 reversals) to estimate laminar electrode positioning (see
below).

Bars – Each bar stimulus consisted of a single white bar (luminance = 1 33 cd/m2) drifting
across an isoluminant gray screen (luminance = 32 cd/m2) in one of 8 directions at one of
three speeds (20˚/s, 40˚/s or 70˚/s) either in absence or presence of photostimulation.
Stimuli were separated by an inter-trial interval of 3 seconds and repeated 20 times. The
total trial set therefore consisted of 8 (orientations) x 3 (speeds) x 2 (photostimulation
conditions) x 20 (repetitions) = 960 trials.

Gratings – Grating stimuli consisted of full-field drifting square-wave gratings (70%
contrast) for 2 seconds, separated by 2 seconds inter-trial interval. Similar to the bar
stimuli, gratings drifted in one of 8 directions at one of three speeds (20˚/s, 40˚/s or 70˚/s)
either in absence or presence of photostimulation for 20 repetitions. The three speeds were
constructed based on combinations of spatial and temporal frequencies to optimize V1 , PM
and AL responsiveness (Andermann et al., 201 1 ; Marshel et al., 201 1 ): Slow 20˚/s: Spatial
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frequency = 0.1  cpd, Temporal frequency = 2 Hz, Mid 40˚/s: Spatial frequency = 0.075 cpd,
Temporal frequency = 3 Hz, Fast 70˚/s: Spatial frequency = 0.057 cpd, Temporal frequency
= 4 Hz.

Histology

At the end of the experiment, mice were overdosed with pentobarbital and perfused with
4% paraformaldehyde in phosphate-buffered saline, and their brains were recovered for
histology. We cut coronal 50 µm sections with a vibratome, stained them with DAPI (0.3
μM) and imaged mounted sections to verify the viral expression and recording sites. The
borders of individual higher visual areas in individual animals are not definable based on
an atlas. However, with this consideration in mind, data from five animals was excluded
based on weak expression in putative PM or AL or strong off-target expression beyond PM
or AL or into V1 .

Data analysis

Spike sorting

Before spike detection the median of the raw trace of nearby channels (400<um) was
subtracted to remove artefacts. Spike detection and sorting were done using Klusta and
manual curation using the Phy GUI (Rossant et al., 201 6). During manual curation each
proposed single unit was inspected based on its waveform, autocorrelation function and
firing pattern across channels and time. Only high-quality single units were included that
(1 ) had an isolation distance higher than 1 0 (Schmitzer-Torbert et al., 2005), (2) had less
than 0.1 % of their spikes within the refractory period of 1 .5 ms, (3) were present
throughout the session.

Classification of neuron subtypes

Putative pyramidal and putative fast-spiking interneurons were separated based on the
peak-to-trough delay of their average normalized action potential waveform (Niell and
Stryker, 2008). The peak-to-trough delay was computed as the time between peak positive
and peak negative voltage deflection (in ms) and single units with a delay lower than 0.45
ms were classified as narrow-spiking, while units with a delay higher than 0.55 ms were
classified as broad-spiking. The rest remained unclassified. In total 76.9% were labeled as
broad spiking, 20.6% as narrow-spiking and 2.5% as unclassified.

Laminar depth estimation

The laminar depth of each electrode was estimated based on current source density analysis
(CSD) of the local field potential (LFP) in response to contrast-reversing checkerboard
stimuli (see above). The CSD profile was computed by applying standard Nicholson-
Freeman calculations on the low-pass filtered signal (<1 00 Hz, 4th order Butterworth
filter) with Vaknin transform (Vaknin et al., 1 988) with 0.4 Siemens per meter as
conductivity. We calculated the CSD profile for each of the linear arrays of electrodes on
our polytrode configuration separately and then merged the profiles. The electrode with
the earliest visible sink was designated as the center of layer IV. Single units recorded from
electrodes spanning 1 50 μm around this electrode were labeled as granular and units
recorded from electrodes below and above this layer were labeled infra- and supragranular,
respectively.
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Firing rate response

To compute firing rates in response to visual stimuli, spikes times were aligned to stimulus
onset, binned in 1  ms bins and convolved with a Gaussian window (50 ms standard
deviation). To compute single trial responses for bar stimuli we first identified the time of
peak response for each condition (orientation x speed) by averaging across trial repetitions
without photostimulation. The response on each trial was obtained by averaging the single
trial firing rate over 300 ms around this peak time ( 1 50 ms), after subtracting baseline
response (firing rates computed, separately for each trial, in the [-2000, -200] ms window
before stimulus onset). In a set of control analyses we averaged firing rates not over a fixed
time window around peak time, but instead computed, as a function of bar speed, how
much time a bar took to cover a certain portion of the visual field (5 or 1 0 deg, respectively).
Time windows covering a receptive field of 5 deg corresponded to 500 ms at 20 deg/s, 250
ms at 40 deg/s and 1 42 ms at 70 deg/s (and twice as much for a 1 0 deg coverage). For
grating stimuli the single-trial firing rate was averaged over 0-1 000 ms after stimulus onset.
Only neurons showing a significant sensory evoked response (defined as having an average
z-scored response >1  for at least one bar direction) were retained for further analyses. Z-
scoring was done by subtracting for each trial the mean firing rate of the baseline period (-
1  to -0.2 seconds before stimulus) and dividing by the standard deviation of all baseline
periods. The following table summarizes the number of V1  neurons that were retained for
analysis:

Bar speed 20 deg/s 40 deg/s 70 deg/s
PM inactivation – awake recordings 207 206 185

AL inactivation – awake recordings 94 97 79

PM inactivation – anesthetized recordings 88 87 87

AL inactivation – anesthetized recordings 67 65 63

Table 2.1 : Number of recorded neurons.

Quantification of peak latency, tuning curves, and receptive field size

Peak response latency was defined as latency of the peak response (maximal z-scored firing
rate) in the absence of optogenetic inactivation. This was determined for each direction and
each speed separately and was determined only for those conditions in which a z-scored
sensory-evoked response higher than 1  was found. Tuning curves for single neurons were
quantified after computing, independently for each direction and separately for each speed,
the firing rate response to a visual stimulus. The preferred orientation/direction was
computed, separately for each speed, based on the bar direction eliciting the largest average
firing rate response, in the absence of optogenetic inactivation. To align tuning curves, the
preferred orientation of each neuron in the absence of optogenetic inactivation was set to
0 degrees and other orientations were displayed relative to this.

Receptive field size was computed separately for the average responses to each bar
direction. We computed the response onset as the first time point after stimulus onset in
which the z-scored firing rate response exceeded 1 . The response offset was defined as the



Materials and Methods

39

first time point following response onset for which the z-scored firing rate response
dropped below 1 . The receptive field size for a given direction was computed as the duration
of the response (time lag between response onset and offset) multiplied by the speed of the
bar. Receptive field size was aligned to the preferred direction, as described for the tuning
curves.

Orientation and direction selectivity

Orientation and direction selectivity were computed using a global orientation selectivity
index (gOSI) and a global direction selectivity index (gDSI) (Ibrahim et al., 201 6; Mariño
et al., 2005; Ringach et al., 2002a). These two measures were computed as:

= ∑ ( )∑ ( ) (Eq 2.1)
and

= ∑ ( )∑ ( ) (Eq. 2.2)
Here R() is the baseline-corrected firing rate response of a neuron to a bar moving along
direction  and i is the imaginary unit. gOSI and gDSI vary between 0 and 1 , with 0
indicating a neuron completely untuned for orientation/direction, and 1  a neuron only
responding to a single orientation/direction, respectively. For the analysis of gOSI and
gDSI, we only retained neurons that showed significant sensory-evoked responses to at
least one direction in the non-opto condition. If a neuron did not respond (meaning that
no action potential was fired) to any stimulus direction in the opto condition, its gOSI and
gDSI values were undetermined. For this reason, such neurons were removed from further
analysis about how optogenetic inactivation affects gOSI and gDSI values.

Decoding analysis

The population decoding analysis was done using a pseudo-population approach. Decoding
was separately performed for awake and anesthetized recordings. All recorded neurons
were pooled together (even if they were recorded in different sessions) and decoding was
performed on a randomly selected number of neurons equal to the lowest available number
of neurons per condition. For awake recordings, this amounted to 79 neurons; for
anesthetized recordings, to 63 neurons (see the table above). In detail, we used the same
number of neurons to decode the direction of a moving bar presented at every speed,
without optogenetics, or with inactivation of either PM or AL; this procedure allowed us to
fairly compare the different conditions (area being inactivated and bar speed). When
pooling together data from different recording sessions, we only considered conditions
(bars moving along a certain direction and speed) which had been repeated over at least 1 0
trials. For all conditions, 20 trials were sampled over recording sessions (with replacement,
if fewer than 20 trials were present, and without replacement otherwise). This data was
used to train a k-nearest neighbors classifier, which was trained to decode the direction of
the bar being presented, based on the single-trial firing rate response (computed as
described above as the average firing rate in a 300 ms window centered around the peak
latency – here defined as latency of the peak response – of each neuron to a bar with a
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certain speed and direction). The performance of the decoder was assessed with a leave-
one-out cross-validation procedure. Training was repeated 1 00 times, each time with a
different, random set of neurons and randomly sampled trials. For each training set, we
computed the average decoding error (difference between the presented direction of a
moving bar and the estimated direction). Different decoding approaches (random forest,
support vector machine) did not yield significantly better results. In a set of control
analyses, we also computed decoding accuracy as the proportion of trials in which the
direction of movement of a bar was correctly estimated.

Statistical analysis

Statistical analyses were done using parametric methods (t-tests and ANOVAs) if the
assumption of normality was not violated. This was verified via the use of a Kolmogorov-
Smirnov test. Non-parametric tests were used otherwise. If applicable (i.e. when an Anova
was performed), multiple comparisons were corrected using a Tukey post-hoc test. When
multiple, independent comparisons were performed, p-values were corrected via the
application of a Benjamini-Hockberg false discovery rate (FDR) procedure (Korthauer et
al., 201 9).

Data and software availability

Original data and the MATLAB, Python and R scripts used to perform the analyses
presented in this manuscript are available by reasonable request to Umberto Olcese
(u.olcese@uva.nl).

Results
To investigate how HVAs influence V1  responses, we focused on two areas with the largest
known differences in tuning to spatial and temporal frequencies of visual stimuli: AL and
PM. While AL neurons preferentially respond to visual stimuli with high temporal
frequencies and low spatial frequencies, the opposite is true for area PM (Andermann et
al., 201 1 ; Marshel et al., 201 1 ). We performed dual-area silicon probe recordings in head
fixed mice from either V1  and AL or V1  and PM (Fig. 2.1 A). Recordings were done in both
the awake and anesthetized state. As recently reported (Keller et al., 2020b), feedback
modulation from HVAs to V1  is reduced under anesthesia, but the effect of brain state on
V1  response properties is poorly understood (Olcese et al., 201 8), although previous studies
reported a reduction in direction tuning in isoflurane anesthesia compared to wakefulness
(Goltstein et al., 201 5). Localized nano-injections of a viral vector mediating Cre-
dependent expression of channelrhodopsin were performed in either AL or PM of PV-Cre
mice (Madisen et al., 201 2) – Fig. 1 A,C. Areas V1 , AL and PM were localized via intrinsic
optical signal imaging (IOI, Fig. 2.1 B). We verified that expression was confined to AL or
PM and did not extend across the PM-V1  or AL-V1  borders (Fig. 2.1 C, Supplementary Fig.
2.1 A-G). Blue-light illumination was used to inactivate either area AL or PM, via over-
activation of parvalbumin-positive (PV+) interneurons (Olcese et al., 201 3) – Fig. 2.1 D-G.
We experimentally verified that optogenetic inactivation was confined to areas AL and PM,
and did not affect V1  directly (Fig. 2.1 C,H). Specifically, inactivation of either AL or PM
greatly reduced the activity of putative excitatory neurons in the illuminated area (Fig.
2.1 G), but only had a minor effect of spontaneous firing activity in V1  (Fig. 2.1 H) or non-
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photostimulated PM or AL (Supplementary Fig. 2.1 H,I) – see also Supplementary Fig.
2.1 K. Furthermore, positioning the fiber tip over an uninfected control area (primary
somatosensory area) did not affect firing rates in V1 , excluding the possibility that scattered
light reached the retina and affected visual responses (Supplementary Fig. 2.1 J). The
effectiveness of photostimulation in the target area increased as a function of laser power
(Supplementary Fig. 2.1 L). Moving bars were used as visual stimuli to evoke activity in V1
and HVAs (Fig. 2.1 I). Compared to drifting gratings, moving bars enable to assess receptive
field sizes of the recorded neurons (Niell and Stryker, 2008). Bars were moving over 8
different orientations at three different speeds, namely those that previous studies (70
deg/s) (Andermann et al., 201 1 ; Marshel et al., 201 1 ). To verify this speed preference, we
computed, separately for each neuron and area, the response to a bar moving along the
preferred orientation, independently for each speed. For each neuron, responses were
normalized to the speed evoking the strongest response (Fig. 2.1 J). For recordings
performed under anesthesia, the speed preference of neurons in each area was in line with
the literature (Fig. 2.1 J-right). During wakefulness we found a shift for all areas to lower
preferred speeds compared to anesthesia (Fig. 2.1 J-left), although the differential speed
preference of neurons in area PM and AL – with area PM selective for low speeds and AL
for faster speeds – was preserved. Optogenetic inactivation of either area PM or AL strongly
reduced sensory-evoked responses in putative excitatory neurons in the illuminated area –
PM or AL, respectively (Supplementary Fig. 2.2). indicated as being preferred by PM (20
deg/s), V1  (40 deg/s) and AL. Inactivation of single HVAs also reduced – to a lesser extent
– sensory-evoked responses in V1  (Fig. 2.1 K and Supplementary Fig. 2.3A-B, see also later
sections). The reduction in V1  activity was, in contrast to the effect of the manipulation on
PM and AL, limited to sensory-evoked responses, with only minor effects on spontaneous
activity (Fig. 2.1 G, Supplementary Fig. 2.1 K), and can be interpreted in the first instance
to be the consequence of impaired recurrent connectivity from AL or PM (see also Materials
and Methods). We also tested whether temporally extended photostimulation during trials
with low stimulus speeds might have an effect on V1  independent from optogenetics, but
rather due to light-induced heating of the cortical tissue. Nevertheless, we found the effect
of PM or AL inactivation on V1  to be independent of the duration of photostimulation
(Supplementary Fig. 2.1 M).
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Figure 2.1 – Experimental setup.A. Schematic of the experimental design. Left: top view of the left cortical
hemisphere of a mouse, with subdivision in cortical areas – based on (Wang and Burkhalter, 2007).
Adeno-associated viral vector mediating the Cre-dependent expression of ChR2 was injected in area AL
(or PM, not shown). During experiments an optic fiber (blue) was placed on top of AL (or PM) to over-
activate Cre-expressing PV+ interneurons and inactivate area AL (or PM). Right: scheme of coronal
sections of either AL/PM (top) or V1  (bottom) showing laminar probe recordings in both areas.
Expression of ChR2 and fiber-optic-mediated illumination were confined to area AL or PM (top). B.
Intrinsic signal imaging was used to localize cortical areas. Visual stimuli (top right) and auditory stimuli
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(bottom right) were used to activate and thus identify the location of visual and auditory cortices. The
borders of visually- and auditory-evoked signals (blue and red curves, respectively) were overlaid on the
vessel map (left) to identify the location of V1 , AL and PM. In this example, V1 , LM and A1  were directly
activated by visual or auditory stimuli. The location of AL and PM was determined based on published
maps of the mouse visual system (see A). C. Coronal section showing ChR2-conjugated GFP expression in
area AL (green). Red reflects both the tdTomato fluorescent protein expressed in PV+ interneurons as
well as the location of laminar probes stained with DiI. D. Example neuronal trace from a PV+
interneuron recorded in area PM during optogenetic illumination in control trials (during awake
recordings). Raw trace from a channel showing spiking activity evoked in a PV+ interneuron by
optogenetic illumination. Blue areas indicate 1  s periods in which the blue laser was on. The inset shows
the pattern of optogenetic illumination (1 0 ms ON – 40 ms OFF) during each illumination period. E. Top:
Example multiunit activity (MUA) trace recorded in area PM during optogenetic illumination in control
trials. In contrast with panel D, spiking activity decreased during illumination periods. Bottom: Firing
rate traces as extracted from MUA activity shown above. Notice the decrease in firing rates during
illumination. F. Average action potential waveforms from a selection of putative excitatory neurons
(black, characterized by broad spikes) and putative inhibitory neurons (red, characterized by narrow
spikes). G. Scatter plots of firing rates of individual neurons during spontaneous baseline activity and
during optogenetic stimulation in areas PM (left) or AL (right, recording area in black font,
photostimulated area in blue font between brackets), for both putative excitatory and inhibitory neurons
(black and red points, respectively). Average spontaneous firing rates for putative excitatory neurons
significantly decreased upon optogenetic stimulation of PM and AL in both areas (PM, n=338 neurons,
mean values: 2.3 Hz and 1 .0 Hz, p=1 .31 *1 0-26; AL, n=1 99 neurons, mean values 2.5 Hz and 0.9 Hz,
p=2.06*10-21; Wilcoxon signed rank test), while those for putative inhibitory neurons increased
significantly in AL (n=1 8 neurons, mean values 8.6 to 24.3 Hz, p=0.0256, Wilcoxon signed rank test), but
not PM (n=72 neurons, mean values: 3.4 Hz and 1 3.1  Hz, p=0.08, Wilcoxon signed-rank test). H. Same
as G, but for neurons recorded in V1  during optogenetic stimulation of either PM (left) or AL (right).
Optogenetic stimulation of either PM or AL had minor but still significant effects on spontaneous activity
in V1 . Left: average spontaneous firing rates for V1  during optogenetic stimulation of PM significantly
decreased for putative excitatory neurons: n=351  neurons, 3.2 Hz and 2.4 Hz, p=3.9*1 0-1 1 , and putative
inhibitory neurons: n=1 21  neurons, 2.5 Hz to 2.1  Hz, p=0.01 9; Wilcoxon signed-rank test). Right:
average spontaneous firing rates for V1  during optogenetic stimulation of AL significantly increased for
putative excitatory neurons: n=283 neurons, 2.8 Hz and 2.9 Hz, p=0.041 , and putative inhibitory
neurons: n=76 neurons, 2.6 Hz to 3.4 Hz, p=0.006; Wilcoxon signed-rank test). Although spontaneous
firing rates in V1  were affected by optogenetic stimulation in PM or AL, such increments or decrements
were much weaker than those reported in PM and AL (see also Supplementary Fig. 2.1 E). I. Outline of
the visual stimuli (moving bars moving at different speed along 8 possible directions). J. Speed preference
for neurons located in V1  (black), PM (blue) and AL (green) as a function of brain state (left: wakefulness;
right: anesthesia). For each neuron, responses to the preferred orientation were computed across the
three bar speeds, and normalized to the highest response (corresponding to the preferred bar speed).
Asterisks indicate significant differences between speeds, for neurons located in the same area (p<0.05,
one-way Anova with post-hoc Tukey test; V1 -awake: F=1 09.41 , p=3.1 3x1 0-43; PM-awake: F=1 8.5,
p=1 .8x1 0-8; AL-awake: F=8.19, p=0.0004; V1 -anesthetized: F=5.79, p=0.0033; PM-anesthetized:
F=27.47, p=1 .8x10-1 1; AL-anesthetized: F=9.47, p=0.0001). The number of neurons used for this analysis
was: V1 -awake: 339; V1 -anesthetized: 1 58; PM-awake: 222; PM-anesthetized: 89; AL-awake: 70; AL-
anesthetized: 48. K. PSTHs computed for an example neuron in V1 , for bars moving at 40 deg/s across
the 8 different orientations, with and without optogenetic stimulation of area PM (black and red traces,
respectively). The polar plot at the center of the panel shows the tuning curve of the example neuron.

Inactivation of areas AL and PM globally decreases V1 responses to moving bars

Having established that areas AL and PM show sensory-evoked responses which differ
based on the specific speed at which presented bars move (Fig. 2.1 J), we wondered whether
inactivation of AL and PM would differentially modulate V1  responses to bars moving at
different speeds. Surprisingly, we found that inactivating either AL or PM consistently
reduced V1  responses to bars moving at all the speeds we tested, and for both preferred
and non-preferred orientations (Fig. 2.2A-D, see also example traces of single neurons in
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Fig. 2.1 K and Supplementary Fig. 2.3A-B). Importantly, direction preference was not
modified by inactivation of PM and AL (Supplementary Fig. 2.4). This was the case during
both awake (Fig. 2.2A-D) and anesthetized (Supplementary Fig. 2.5) recordings. We next
asked if the extent to which V1  responses were reduced varied as a function of bar speed.
For each neuron and bar speed, we computed the relative change in the response to a bar
moving along the neuron’s preferred direction following optogenetic inactivation of either
area AL or PM. No significant difference was found between speeds when inactivating
either AL or PM (Fig. 2.2E). Only for bars moving at 20 deg/s, we found than PM
inactivation reduced V1  responses more strongly than AL inactivation. To further explore
the possible occurrence of a functionally specific effect, we subdivided V1  neurons in three
groups based on the bar speed for which they showed the highest response – cf. (Huh et al.,
201 8) – and assessed whether AL and PM inactivation had different effects for the three
groups of neurons. While we found no significant differences for bars (Fig. 2.2F), we did
find some differences when presenting drifting gratings, in line with Huh et al. (201 8) –
see Supplementary Fig. 2.6.

We also wondered if the reported effects of optogenetic inactivation of PM and AL on V1
responses could be at least partially ascribed to characteristics of the measurements, or to
the methods we use to quantify sensory-evoked responses. To address this, we first tested
if the higher number of V1  neurons recorded during PM compared to AL inactivation might
explain the different modulation of V1  responses that we observed for low speeds (Fig.
2.2E). We repeated the analysis of Fig. 2.2E by resampling V1  neurons recorded during PM
inactivation such that the same number of neurons was analyzed as was recorded during
AL inactivation (see the legend of Supplementary Fig. 2.7A for details). While, as expected,
the variability of response modulation following PM inactivation increased when the
number of neurons used in the analysis decreased (Supplementary Fig. 2.7A), the main
result reported in Fig. 2.2E were preserved (Supplementary Fig. 2.7B, note the stronger
reduction in responses following PM compared to AL inactivation only for bars moving at
20 deg/s). Furthermore, we tested if the results we obtained might depend on the temporal
window used for quantifying sensory-evoked responses. Instead of a window of a fixed
duration across speeds, we used a window of variable duration (still centered around peak
responses), corresponding to the time a moving bar took to cover a visual angle of either 5
or 1 0 deg, irrespective of bar speed. In both cases, we confirm the results reported in Fig.
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(figure on the previous page) Figure 2.2 – Optogenetic inactivation of area AL and PM during
wakefulness depresses sensory-evoked responses in V1. A. PSTHs (aligned to peak latency in the
absence of optogenetic inactivation) averaged over all V1  neurons responding to visual stimuli
during awake recordings in the absence or presence of optogenetic inactivation of area PM (black
and red curves, respectively). Curves with shading indicate mean ± SEM. From left to right:
responses to bars moving at 20, 40 and 70 deg/s. B. Tuning curves of average responses of V1
neurons during awake recordings to bars moving at different orientation (aligned by the preferred
orientation in the absence of optogenetic inactivation, which is set at 0 rad) in the absence or
presence of optogenetic inactivation of area PM (black and red curves, respectively). Curves with
shading indicate mean ± SEM. Inset: Average response displayed in polar coordinates. Asterisks
indicate significant differences between responses to bars moving at a given orientation in the
absence or presence of PM inactivation (p<0.05, paired t-test, FDR-corrected). From left to right:
responses to bars moving at 20, 40 and 70 deg/s. C. Same as A, but now for the inactivation of area
AL. D. Same as B, but now for the inactivation of area AL. E. Relative effect of optogenetic
inactivation of either PM (blue) or AL (green) on V1  responses evoked by moving bars during awake
recordings (RespOpto/RespNoOpto), as a function of bar speed. Asterisks indicate significant
differences either between speeds (for a given area) or between inactivation of distinct areas, given
the same speed (p=0.0009, 2-way Anova with post-hoc Tukey test: significant main effect for
inactivated area (F=4.83, p=0.028)). Error bars indicate mean ± SEM. F. Same as E, but
subdividing neurons based on their preferred speed, and only considering the effect of optogenetic
inactivation on the preferred speed. The number of neurons included in the analyses shown in the
figure is provided in Table 2.1 .

2.2E (Supplementary Fig. 2.7C-D). Finally, we tested the use of geometric mean to compute
across-neuron average modulation values. We observed similar results with respect to the
use of arithmetic mean, but wider confidence intervals (cf. Fig 2.2E, Supplementary Fig.
2.7E).

In conclusion, inactivating both AL and PM generally decreased V1  responses to moving
bars. While we were able to confirm the previously reported presence of a functionally
specific effect of AL and PM inactivation on V1  activity (i.e., being dependent on the speed
preference of each HVA), this effect was weaker than the generalized decrease in responses
observed across speeds (Fig. 2.2E-F, Supplementary Fig. 2.6).

Inactivation of AL and PM decreases responses to stimuli entering the receptive field of V1
neurons

The general reduction in visually evoked responses (Fig. 2.1 K, 2.2A,C) made us wonder
whether inactivating areas PM and AL would also reduce the receptive field size of V1
neurons. Since we used moving bars, any estimate of receptive field size computed through
responses to such stimuli is conflated with response amplitude (unlike estimates made via
the use of non-moving stimuli). Therefore, in line with the reduction in amplitude and
duration of responses to moving bars (Fig. 2.2), in awake recordings we also observed a
reduction of receptive field size, which was especially pronounced for bars moving at low
speed (20 deg/s; Fig. 2.3A,C), but still present for bars moving at higher speeds, albeit only
at some orientations (Fig. 2.3A,C). Nevertheless, the use of moving bars also allowed us to
assess whether receptive field size (which, as we mentioned, goes in parallel with the size
of sensory-evoked responses), is differentially affected by inactivation of PM and AL based
on whether a stimulus is entering or leaving the receptive field of a neuron. This is an
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important question in view of the possible role of HVAs in predictive processing (Keller et
al., 2020b).

Figure 2.3 – Optogenetic inactivation of area AL and PM during wakefulness asymmetrically
reduces receptive field size of V1 neurons in the rising but not in the decaying phase of sensory
evoked responses. A. Tuning curves of receptive field size of V1  neurons during awake recordings
to bars moving at variable orientation (aligned by the preferred orientation, which is set at 0 rad)

in the absence or presence of optogenetic inactivation of area PM (black and red curves,
respectively). Curves with shading indicate mean ± SEM. Inset: average receptive field size
displayed in polar coordinates; preferred orientation is aligned to the 0 deg (rightward) direction.
Asterisks indicate significant differences between receptive field size to bars moving at a given
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orientation in the absence or presence of optogenetic inactivation of area PM (p<0.05, paired t-test,
FDR-corrected). From left to right: responses to bars moving at 20, 40 and 70 deg/s. B. Receptive
field size computed in the rising or decaying phase of sensory-evoked responses to moving bars
moving along the direction preferred by individual neurons (from stimulus onset to peak response
and after peak response, respectively) in the absence or presence of optogenetic inactivation of area
PM (black and red bars, respectively). Bars indicate mean ± SEM. Asterisks indicate significant
differences between receptive field sizes measured in the absence or presence of optogenetic
inactivation of area PM (paired t-test; *: p<0.05, **: p<0.01 ). From left to right: responses to bars
moving at 20, 40 and 70 deg/s. (P-values for significant differences: 20 deg/s rising phase
p=1 .2x1 0-6; 40 deg/s rising phase p=6.8x1 0-1 0; 70 deg/s rising phase p=3.1 x1 0-6; 40 deg/s decay
phase p=0.008). The inset shows an example PSTH (same as Fig. 2.2A) to graphically explain what
the rising and decaying phases correspond to. C. Same as A, but now for optogenetic inactivation
of area AL. D. Same as A, but now for optogenetic inactivation of area AL. (P-values for significant
differences: 20 deg/s rising phase p=0.0003; 40 deg/s rising phase p=0.0007; 70 deg/s rising phase
p=0.0037). The number of neurons included in the analyses shown in the figure is provided in Table
2.1 .

To address this, we separately computed the receptive field size in the rising phase of the
evoked response (from response onset to peak response) compared to the decaying phase
(after peak response) – see the inset in Fig. 2.3B. We performed this analysis for responses
to stimuli moving along each neuron’s preferred direction. After inactivation of either area
PM or AL, responses during the rising phase became more spatially localized, i.e. neurons
start responding later to moving bars entering the receptive field compared to control
conditions (Fig. 2.3B,D). Receptive field sizes during the decay phase (i.e. for bars leaving
the receptive field) were generally unchanged, except for an increase for bars moving at 40
deg/s upon PM inactivation (Fig. 2.3B,D). The preferential effect of HVA inactivation on
the rising phase of the response to the preferred orientation can also be observed in the
single neuron examples in Fig. 2.1 K and Supplementary Fig. 2.3A. Results were very
similar for recordings performed under anesthesia, with the main difference being larger
receptive fields for V1  neurons in anesthetized than in awake recordings (Supplementary
Fig. 2.8). Thus, inactivating AL and PM specifically reduces and delays V1  responses to
moving bars entering the receptive field of V1  neurons, in line with a role of HVAs in
generating predictions about upcoming visual stimuli.

Orientation and direction selectivity of V1 neurons are enhanced for moving bars when AL
and PM are inactivated

To better explore the functional significance of the reduction in V1  responses and receptive
field size, we wondered how inactivating AL and PM might affect orientation and direction
selectivity of V1  neurons. These were quantified by computing, respectively, a global
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(figure on the previous page) Figure 2.4 – Optogenetic inactivation of area AL and PM during
wakefulness enhances orientation and direction selectivity in V1. A. Scatter plots showing the
orientation selectivity of V1  neurons during awake recordings in the absence or presence of
optogenetic inactivation of area PM (x and y axis, respectively). Each point corresponds to a single
neuron. Asterisks indicate significant differences between gOSI for bars moving at a given
orientation in the absence or presence of optogenetic inactivation of area PM (see exact p value in
each panel, Wilcoxon signed rank test). From left to right: gOSI for bars moving at 20, 40 and 70
deg/s. In each panel, boxplots depict descriptive statistics for gOSI values in No-Opto and Opto
conditions (black and red, respectively). B. Same as A, but now for direction selectivity (gDSI). C.
Same as A, but now for optogenetic inactivation of area AL. D. Same as B, but now for optogenetic
inactivation of area AL. E. Average change in the orientation selectivity of V1  neurons during
awake recordings as a function of bar speed and area being inactivated (PM: blue; AL: green).
Error bars indicate mean ± SEM. No significant difference was found, neither between bar speeds,
nor between areas. F. Same as E, but now for direction selectivity. No significant difference was
found, neither between bar speeds, nor between areas. The number of neurons included in the
analyses shown in the figure is provided in Table 2.1 .

orientation selectivity index (gOSI) and a global direction selectivity index (gDSI) (Ibrahim
et al., 201 6; Mariño et al., 2005; Ringach et al., 2002a) – see Materials and Methods. Values
of gOSI and gDSI were in line with those previously reported for mouse V1 (Ibrahim et al.,
201 6). Based on previous literature (Pafundo et al., 201 6), we hypothesized that
inactivation of HVAs would reduce both gOSI and gDSI. To our surprise, both gOSI and
gDSI instead increased, across all bar speeds and in both wakefulness and anesthesia,
regardless of whether AL or PM was inactivated (Fig. 2.4A-D, Supplementary Figure 2.9).
No significant difference was found between inactivation of AL or PM, or between bar
speeds (Fig. 2.4E-F) – although a more prominent enhancement for both gOSI and gDSI
was observed at low speeds compared to high speeds when PM was inactivated during
anesthesia (Supplementary Fig. 2.9). The increase in orientation and direction selectivity
was observable in single neurons (Fig. 2.1 K, Supplementary Fig. 2.3A-B) and in peak-
normalized tuning curves (Supplementary Fig. 2.3C-D). Overall, these results suggest that,
in contrast with previous literature (Pafundo et al., 201 6), inactivation of AL and PM
differentially reduces responses to bars moving along preferred and non-preferred
orientations, in a way that enhances orientation and direction selectivity.

Single-trial decoding of the orientation of moving bars improves in V1 during wakefulness
following inactivation of AL or PM

Orientation and direction selectivity indices are computed over average responses to visual
stimuli. Therefore, we wondered if, in spite of enhancing gOSI and gDSI, inactivating AL
and PM might have a different effect at the single-trial level. We reasoned that a reduction
in the amplitude of sensory evoked responses might also reduce response variability at the
average level. Thus, the improved gOSI and gDSI that we reported could be the
consequence of both a reduction in response variability as well as of differential changes in
sensory evoked responses to stimuli moving along preferred vs. non-preferred orientations.
On the other hand, single-trial response selectivity would directly reflect changes in sensory
evoked responses and not a reduction in across-trial variability. Thus, we implemented a
pseudopopulation-based decoding approach (i.e. performed by pooling together neurons
recorded in different sessions and animals) to measure how well the direction of moving
bars could be decoded from single-trial V1  responses (see Materials and Methods). In line
with the increase in gOSI and gDSI, we found that, during awake recordings, inactivating
AL or PM significantly enhanced single-trial decoding of bar orientation, irrespective of bar
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speed, and with a stronger improvement following AL than PM inactivation (Fig. 2.5).
Notably, decoding error in control conditions was relatively high (about 70 deg), but
decoding performance was comparable to recent literature (Cai et al., 201 8) when
quantified as the percentage of correctly classified directions (Supplementary Fig. 2.1 0A).
Importantly, decoding performance vastly improved upon inactivation of PM or AL (40
deg). Similar results were observed for recordings under anesthesia, although the
improvement in decoding following inactivation of PM or AL was smaller than for awake
recordings (Supplementary Fig. 2.1 0B). Thus, inactivation of AL and PM not only reduces
visually evoked responses and makes receptive fields smaller (i.e., spatially more precise),
but also – possibly by differentially affecting responses to bars moving along preferred vs.
non-preferred orientations and directions – enhances the selectivity of V1  neurons to the
orientation and direction of moving stimuli, both at the average and single-trial level.

Figure 2.5 – Optogenetic inactivation of area AL and PM during wakefulness enhances single-trial
decoding of bar orientation in V1. Boxplots show the error (in deg) made by a decoder trained to

estimate the orientation of a moving bar
presented during individual trials, from
the activity of a pseudo-population of
V1  neurons (see Materials and Methods
for decoding analysis). A lower
decoding error indicates better ability
to decode the orientation of a moving
bar. Boxplots were separately
computed for trials without optogenetic
stimulation (grey) and for trials in
which either AL (green) or PM (blue)
was inactivated. Asterisks indicate
significant differences (*: p<0.05, **:
p<0.001 ; 2-way Anova with post-hoc
Tukey test (main effect for inactivacted
area: F=1 056.6, p=0.0000; main effect
for bar speed: F=56.6, p=0.0000;
interaction effect: F=3.7, p=0.0052).
The number of neurons included in the
analyses shown in the figure is provided
in Table 2.1 .

AL and PM provide a modulatory
gain to V1, which enhances weak
visual responses during wakefulness

The above results paint a counter-
intuitive role of AL and PM, which would have a primarily detrimental role on the response
selectivity of V1  neurons if their sole purpose was to signal the orientation and direction of
visual stimuli. We thus investigated in more depth whether inactivating AL and PM has a
differential effect based on the size of a neuron’s response to a given orientation. We
reasoned that the modulation provided by AL and PM onto V1  might differentially enhance
responses of different sizes (such as those elicited by bars moving along preferred vs. non-
preferred orientations and directions), as previously shown for other forms of cortical gain
modulation (Ferguson and Cardin, 2020). If the role of AL and PM is to selectively enhance
small V1  responses, to enhance the reliability of responses to – for instance – small sensory
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stimuli just entering the receptive field of a neuron, this might also explain the depressed
orientation and direction selectivity which PM and AL induce. To test this, we first assessed
whether AL and PM might provide a form of additive or multiplicative gain modulation of
V1  responses, as these are often found in visual cortex (Wilson et al., 201 2). To this aim,
we subtracted or divided V1  responses following optogenetic inactivation of AL and PM by
V1  responses in control conditions (Fig. 2.6A-B). During awake recordings, AL and PM
implemented neither an additive nor a multiplicative form of gain modulation. In case of
additive modulation, the curves in Fig. 2.6A would have been flat, reflecting a similar
reduction in evoked responses following inactivation of AL or PM; similarly, in case of
multiplicative modulation, the curves in Fig. 2.6B would not have shown differences
between preferred and non-preferred bar directions. Conversely, inactivating AL and PM
reduced the responses of V1  neurons to their preferred orientation significantly more than
(weaker) responses to non-preferred orientations in terms of absolute difference (Fig.
2.6A), thus indicating a non-additive form of modulation. Similarly, in terms of relative
amplification (division between responses with or without optogenetic inactivation of AL
or PM), responses to preferred orientations were reduced less than smaller responses to
non-preferred orientations (Fig. 2.6B). Next, we computed how optogenetically-induced
response difference (RespNoOpto-RespOpto) and response amplification (RespOpto/RespNoOpto)
of V1  sensory-evoked responses vary as a function of the amplitude of sensory-evoked
responses (irrespective of the orientation/direction of the moving bar to which a response
is made). For the inactivation of both PM and AL, V1  responses were modulated in a way
that does not conform to either an additive or multiplicative model (cf. the colored and grey
lines in Fig. 2.6C,D). Low-amplitude responses were more strongly suppressed than high-
amplitude one, with a cutoff present at around 3 Hz. (Fig. 2.6C-D), which is in line with our
earlier analyses about the modulation of responses to preferred vs. non-preferred
directions. The non-uniformity of response modulation was significant in all instances
(p<2x1 0-1 6, Chi-square goodness of fit test against a uniform distribution) and similar
results were found under anesthesia (Supplementary Fig. 2.1 1 ). Altogether, these results
show that AL and PM provide a form of gain modulation that selectively enhances weak
responses of V1  neurons, such as those
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Figure 2.6 – Areas AL and PM enhance visual responses in V1 during wakefulness neither by
additive nor multiplicative gain. A. Difference in sensory-evoked responses of V1  neurons in the
absence or presence of optogenetic inactivation of either area PM (blue lines) or AL (green lines)
during awake recordings, separately for each orientation of a moving bar – respectively – at 20
deg/s (left), 40 deg/s (middle) or 70 deg/s (right). Curves with shading indicate mean ± SEM. The
asterisks indicate if, separately for each bar speed and area (as indicated by color of asterisk), the
difference in sensory evoked responses was the same for all orientations (null hypothesis,
corresponding to a flat line in the plot), or not (p<0.05, one way Anova; a post-hoc Tukey test
revealed a larger difference for the preferred orientation corresponding to 0 rad; for PM-20deg/s:
F=1 2.43, p=1 .4x1 0-1 5; for PM-40deg/s: F=1 5.02, p=4.0x1 0-1 9; for PM-70deg/s: F=1 7.1 2, p=7.0x1 0-

22; for AL-20deg/s: F=2.54, p=0.01 36; for AL-40deg/s: F=1 .68, p=0.1 1 02; for AL-70deg/s: F=4.66,
p=4.2x1 0-5). B. Same as A, but now for the ratio between sensory-evoked responses of V1  neurons
in the presence or absence of optogenetic inactivation of either area PM (blue lines) or area AL
(green lines). In general, responses to the preferred orientation were reduced less by optogenetic
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inactivation of area PM or AL, compared to responses to non-preferred orientations (p<0.05, one-
way Anova with post-hoc Tukey test; for PM-20deg/s: F=3.59, p=0.0008; for PM-40deg/s: F=2.87,
p=0.0056; for PM-70deg/s: F=3.01 , p=0.0038; for AL-20deg/s: F=1 .91 , p=0.0645; for AL-
40deg/s: F=3.39, p=0.001 4; for AL-70deg/s: F=2.46, p=0.01 68). C. Curves showing difference and
amplification (top and bottom panel, respectively) of V1  responses following PM inactivation as a
function of the amplitude of sensory-evoked responses under unperturbed conditions. Sensory-
evoked responses (x-axis) were divided into 20 equipopulated bins and, for each bin, the mean ±
SEM value of optogenetic-induced responses difference or amplification was computed (solid blue
line and shading, respectively). The grey line indicated the response difference or amplification
obtained when applying an additive (top panel) or a multiplicative (bottom panel) model – see
Materials and Methods for details. Optogenetic inactivation of area PM modulates sensory-evoked
V1  responses in a way that is different from both an additive or multiplicative model. In particular,
the bottom plot shows how optogenetic inactivation of area PM more strongly suppressed low-
amplitude compared to high-amplitude sensory-evoked responses (p<2x1 0-1 6, Chi-square goodness
of fit test against a uniform distribution). D. Same as E, but now for the inactivation of area AL. As
for inactivation of PM, inactivation of AL modulates sensory-evoked V1  responses in a way that is
different from both an additive or multiplicative model. Also, low-amplitude sensory-evoked
responses are more strongly suppressed compared to high-amplitude sensory-evoked responses
(p<2x1 0-1 6, Chi-square goodness of fit test against a uniform distribution). The number of neurons
included in the analyses shown in the figure is provided in Table 2.1 .

evoked by bars moving along non-preferred orientations and directions. To investigate
whether this amplitude-dependent modulation applies to all V1  neurons, independently
from their response amplitude and orientation selectivity, we stratified V1  neurons based
on either the amplitude of the sensory-evoked responses or the value of gOSI. Irrespective
of whether we focused on the top or bottom 50% for the responses to the preferred
orientation or the gOSI, we found that optogenetic inactivation of PM and AL invariably
decreased responses to both preferred and non-preferred orientations (although the latter
were more strongly impacted) and enhanced gOSI (Supplementary Fig. 2.1 2A-D). This
suggests that PM and AL do not implement a selective suppression of weakly responsive or
non-selective neurons, or specifically reduce (or even suppress) low-amplitude responses.
Rather, inactivation of PM and AL similarly affects all V1  neurons and sensory-evoked
responses, albeit in a way that non-linearly depends on response amplitude (Fig. 2.6C-D).
Furthermore, we asked if the enhanced orientation and direction selectivity that we
reported following inactivation of PM and AL might be amplified or even caused by the
occurrence of few, spurious spikes occurring in neurons which would have otherwise been
silenced. To answer this question, we focused on the subset of neurons showing gDSI=1  in
the opto condition. These neurons maintained their direction preference (albeit with lower
direction and orientation selectivity) in the no-opto condition (Supplementary Fig. 2.1 2E),
which indicated that even these extreme values of gDSI are not an artefactual consequence
of optogenetic inactivation.
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(figure on the previous page) Figure 2.7 – Optogenetic inactivation of area AL and PM during
wakefulness similarly affects distinct V1 neuronal subpopulations. A. Current source density profile
of average response to checkerboard stimulation across layers of V1 . The bottom of the earliest sink
after checkerboard onset was used to demarcate the boundary between L4 and L5 – as in (Schnabel
et al., 201 8). We used this in combination with registered depth of penetration of the silicon probe
relative to the cortical surface, to align electrode depth across recordings sessions. Black traces
show the local field potential traces of each channel along the electrode tract. B. Normalized
waveforms for each individually recorded V1  neuron, averaged over all recorded action potentials
and colored by their classification based on peak-to-trough delay (blue: broad spiking neuron; red:
narrow spiking neuron; grey: undetermined). C. Histogram of peak-to-trough delay for the three
classes. Bars at maximum indicate neurons whose trough extended beyond the sampled time
around the action potential (2 ms). D. Tuning curves of average responses of broad spiking V1
neurons located in supragranular layers of V1  during awake recordings to bars moving at different
orientation (aligned by the preferred orientation, which is set at 0 deg) in the absence or presence
of optogenetic inactivation (black and red curves, respectively). Recordings performed during the
inactivation of PM and AL were pooled together. Curves with shading indicate mean ± SEM.
Asterisks indicate significant differences between responses to bars moving at a given orientation
in the absence or presence of optogenetic inactivation (p<0.05, paired t-test, FDR-corrected). From
left to right: responses to bars moving at 20, 40 and 70 deg/s. The number of neurons included in
this analysis was 34 (20 deg/s), 34 (40 deg/s) and 29 (70 deg/s). E. Same as D, but now for broad
spiking V1  neurons in granular layers. The number of neurons included in this analysis was 28 (20
deg/s), 30 (40 deg/s) and 28 (70 deg/s). F. Same as D, but now for broad spiking V1  neurons in
infragranular layers. The number of neurons included in this analysis was 1 61  (20 deg/s), 1 59 (40
deg/s) and 1 39 (70 deg/s). G. Same as D, but now for narrow spiking V1  neurons. The number of
neurons included in this analysis was 67 (20 deg/s), 68 (40 deg/s) and 56 (70 deg/s).

To further explore the mechanism underlying this form of gain modulation, and in
particular whether AL and PM targeted specific neuronal subpopulations in V1 , we
subdivided neurons based on whether their action potential waveform was broad or
narrow, i.e. corresponding to a putative pyramidal or fast-spiking interneuron, respectively
(Olcese et al., 201 3, 201 6; Vinck et al., 201 5b), and based on whether neurons were located
in supragranular, granular or infragranular layers (see Fig. 2.7A-C and Materials and
Methods). However, no difference was observed between putative excitatory and inhibitory
neurons, nor between putative excitatory neurons residing in different cortical layers as
concerns changes in visual responses following inactivation of AL and PM (Fig. 2.7D-G).
Therefore, the modulation provided by AL and PM onto V1  seems to similarly affect all
major neuronal components of V1 .

Discussion
Areas AL and PM impact mostly on weak sensory-evoked responses in V1

Inactivation of either area AL or PM similarly reduced sensory-evoked responses in V1  (Fig.
2.2). Therefore, the main role of AL and PM, in our paradigm, is to enhance sensory-evoked
responses in V1 , in particular weaker ones such as those to non-preferred stimuli (Fig. 2.6)
and those occurring in the early phase of sensory-evoked responses (Fig. 2.3). It was
previously shown that inactivating HVAs (Pafundo et al., 201 6) or feedback projections
from HVAs onto V1 (Huh et al., 201 8) decrease sensory-evoked responses in V1 . However,
in previous studies the effects were either limited to responses to the preferred orientation
(Pafundo et al., 201 6), were specific for the receptive field center and not the surround
(Nurminen et al., 201 8), or were functionally specific (i.e. related to the tuning properties
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of individual HVAs). For instance, Huh et al. (201 8) reported that inactivation of feedback
projections from AL or PM onto V1  specifically reduced responsiveness of V1  neurons
tuned to spatial frequencies similar to those of AL or PM. In contrast, we observed a
generalized decrease in V1  responses and receptive field size that was independent of the
speed tuning of either AL, PM, or individual V1  neurons. This functionally aspecific effect
(at least for what pertains speed tuning for moving bars) is even more unexpected when
considering that anatomical projections from HVAs onto V1  are also functionally specific
(Marques et al., 201 8) and target patches in layer 1  of V1 (D’Souza et al., 201 9; Ji et al.,
201 5) based on factors such as orientation/direction tuning and speed preference. How are
these two apparently discordant effects compatible?

First, most previous studies focused on the lateromedial (LM) secondary visual area
(Marques et al., 201 8; Pafundo et al., 201 6). LM is thought to be part of the mouse ventral
stream, while both AL and PM are attributed to the dorsal stream (Wang et al., 201 2). Thus,
the roles of area LM versus AL and PM in modulating activity in V1  might be different, also
in view of the specific functions of LM in higher order visual processing (Khastkhodaei et
al., 201 6; Matteucci et al., 201 9; Pak et al., 2020; Tafazoli et al., 201 7). Inactivation of LM
primarily affects the superficial layers of V1 (Pafundo et al., 201 6); conversely, in our study
inactivation of AL or PM similarly affected all the major subpopulations of V1 .
Furthermore, none of the prior studies used moving bars, but drifting gratings. Gratings
are commonly displayed over a larger field of view compared to bars (which, in our case,
were only 3 deg wide stimuli). Thus, moving gratings simultaneously evoke activity in a
larger population of neurons compared to bars. Therefore, at the population level, moving
bars elicit an overall instantaneous weaker activity compared to gratings. The aspecific
modulatory effect we report primarily affects weak responses to visual stimuli, but it is
possible that it might occur jointly with a functionally specific form of modulation (i.e.
dependent on the spatial and temporal tuning properties of HVAs and V1  neurons), such
as that described for instance in Huh et al. (201 8). Indeed, when we performed preliminary
experiments with drifting gratings, we found results in line with Huh et al. (201 8).
Nevertheless, it is striking that we did not observe any functionally-specific effect with bars
moving at different speeds, given that speed tuning of AL and PM are among the most
different among HVAs (Andermann et al., 201 1 ; Marshel et al., 201 1 ). Another difference
between our study and Huh et al. (201 8) is that we completely inactivated AL and PM, and
not just the neurons in these areas projecting back to V1 . It may be the case that inactivation
of a network node, and not just of feedback-projecting neurons, may have a broader, less
specific effect, which may be due to a combination of direct and indirect pathways (i.e.,
direct feedback projections from AL and PM to V1 , as well as pathways involving other
cortical regions – in particular other HVAs – as well as cortico-thalamic loops).

An additional contrast between our and previous studies lies in the minor differences that
we observed between the effect of inactivating AL and PM during wakefulness or isoflurane
anesthesia. In spite of differences in speed preference between wakefulness and anesthesia
(Fig. 2.1 J), the effect of optogenetic inactivation of HVAs on V1  responses was very similar
between the two brain states (see for instance Fig. 2.2 and Supplementary Fig. 2.5).
Conversely, other studies reported that inactivation of HVAs more strongly affects V1
during wakefulness than anesthesia (Keller et al., 2020b; Vangeneugden et al., 201 9). This
weaker effect of top-down modulation under anesthesia is in line with results from human
subjects during loss of consciousness (Boly et al., 201 1 ; Sikkens et al., 201 9). A likely
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explanation for these different results lies again in the different type of stimulus that we
used, which evokes less powerful activity changes in visual cortices compared to gratings.

Enhanced sensory-evoked responses in V1 come at the expense of orientation and direction
selectivity

The enhancement of sensory-evoked responses that AL and PM induce in V1  comes,
strikingly, at the expense of orientation and direction selectivity, both at the single-neuron
and population level. This result is particularly surprising given the fact the previous
studies generally showed that HVAs enhance visual processing in V1 . One study in
particular (Pafundo et al., 201 6) reported that inactivation of area LM decreased V1
responses to gratings moving along single neurons’ preferred orientation, and
consequently also reduced orientation and direction selectivity of V1  neurons. In contrast,
we observed a marked enhancement of orientation and direction tuning when AL and PM
were inactivated (see the previous subsection for a discussion or possible reasons
underlying the different results we observed). This finding suggests that the weaker
orientation and direction tuning which is present in V1  with functionally intact AL and PM
is likely sufficient to enable a proper processing of visual stimuli – although different results
might have been obtained with other types of visual stimuli, such as moving gratings (e.g.
(Jin and Glickfeld, 2020)). Therefore, the visual system might operate in a regime that
balances the processing of stimulus features such as orientation and direction with the
ability to process stimuli which are smaller and (at least at the single-neuron level) less
salient.

A second interpretation is that HVAs such as AL and PM might provide contextual,
predictive representations to V1  via recurrent projections. Following a predictive
processing framework (Friston, 2005; Pennartz et al., 201 9; Rao and Ballard, 1 999),
higher-order feedback may modulate V1  based on spatiotemporal predictions of sensory
input, for example modulating neuronal activity of V1  neurons whose receptive field lie
along the expected trajectory of a moving object (Marques et al., 201 8). Our findings that
HVA’s specifically modulate V1  responses during the rising phase of the response (as the
moving bar enters their receptive field) is in line with this interpretation and suggests that
HVA preferentially play a role in shaping the response of V1  neurons as sensory input is
expected to hit their receptive field. Such HVA-mediated prediction-related enhancement
in responses may be, from a functional point of view, more relevant than a further increase
in orientation/direction selectivity. Moreover, this framework may explain why our results
differ considerably from previous studies that used moving gratings, because the latter type
of stimulus conveys a much higher spatial predictability across the visual field than an
isolated moving bar.

Of relevance, the effects of AL and PM inactivation were similar on single-neuron
orientation and direction tuning, but different in terms of population decoding:
inactivating AL improved population decoding of stimulus direction more than inactivation
of PM did (Fig. 2.5). Recent studies also identified different functions of AL and PM in
orientation discrimination and spatial integration, with PM showing larger receptive fields
than AL (Murgas et al., 2020) and no involvement (in contrast with AL) in orientation
discrimination (Jin and Glickfeld, 2020).

Finally, it is worthwhile to highlight that the increased orientation and direction selectivity
that we reported following inactivation to AL and PM are unlikely to be a consequence of
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an “iceberg” effect, in which most responses are silenced with the exception of the strongest
ones. Indeed, we observed a reduction in responses (but not a complete suppression) in all
neuronal cohorts we analyzed, irrespective of response amplitude or orientation/direction
selectivity (Supplementary Fig. 2.1 2).

Higher order visual areas enhance stimulus responsiveness in V1

The classical framework to interpret visual processing in the neocortex follows a
hierarchical approach, in which each subsequent processing stage is tasked with processing
more complex stimulus features (Felleman and Van Essen, 1 991 ; Riesenhuber and Poggio,
1 999). HVA properties seem to support this view, as some higher-order visual processing
is either directly dependent upon, or facilitated by them (Khastkhodaei et al., 201 6;
Matteucci et al., 201 9; Pak et al., 2020; Tafazoli et al., 201 7). Nevertheless, recent studies
have shown that some key features of early visual processing, at the stage of V1 , are enabled
by virtue of top-down modulation originating in HVAs (Keller et al., 2020b; Vangeneugden
et al., 201 9). Our study supports this notion, by indicating that, beyond being involved in
the development of response features such as surround suppression (Vangeneugden et al.,
201 9), complex receptive fields (Keller et al., 2020b) and higher-level representations (Pak
et al., 2020), feedback information from HVAs also contributes to basic properties of V1
such as responses to oriented bars. Our experiments showed that AL and PM enhance weak
sensory-evoked V1  responses more than strong ones. This may be explained by an added
level of non-specific background excitation that HVAs could provide to V1  neurons. Such
additional excitation might modify the supposedly sigmoid input-output transfer function
of V1  neurons in a way that more strongly amplifies weak inputs compared to strong ones.
Other mechanisms, such as non-linearities intrinsic to the generation of action potentials,
cannot however be excluded.

By enhancing stimulus responsiveness, in particular to non-preferred and small,
unexpected visual features, just entering single neurons’ receptive fields, HVAs such as AL
and PM might play a role akin to that fulfilled by inverse effectiveness in the context of
multisensory cue integration (Meijer et al., 201 9; Stein and Stanford, 2008). Specifically,
HVAs might enhance, in particular at the single-neuron level, the signal-to-noise ratio of
sensory evoked responses to stimuli that would not otherwise induce large responses (for
instance non-preferred directions of movement, or stimuli entering the receptive field).
This may provide a behavioral advantage by enabling to more reliably process small, barely
noticeable visual stimuli.

Conclusions

Higher order visual areas are key elements of the cortical network of visual processing, as
they not only further analyse visual information coming from V1 , but also modulate the
activity of V1  itself. Here we showed how two HVAs with different response properties
similarly enhance responses of V1 , especially weak and unexpected ones (such as responses
to non-preferred directions, or responses to bars entering a neuron’s receptive field). At the
population level, AL and PM activity makes it easier for V1  to respond to moving bars, but
at the same time more difficult to decode their precise orientation and direction. Areas AL
and PM therefore provide a major contribution to sculpting of V1  responses to simple visual
objects: they effectively contribute to generating stronger and less sparse responses which,
in turn, might make sensory-evoked responses to small, local and possibly unexpected
stimuli such as moving bars more robust and ultimately more reliable.
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Supplementary Figures

Supplementary Figure 2.1 – Optogenetic inactivation of area AL and PM silences responses to
moving stimuli in the illuminated area. A. Coronal section showing ChR2-conjugated GFP
expression in area AL (green) and the location of a laminar probe positioned in AL and stained with
DiI (red). Area nomenclature follows that of the Allen Brain Atlas: VISal: area AL; VISp: area V1 ;
VISam: anteromedial (AM) secondary visual cortex; PTLp: posterior parietal cortex. B. Same as A,
for an additional example animal with target area AL. C. Coronal section showing ChR2-
conjugated GFP expression in area PM (green) and the location of a laminar probe positioned in V1
and stained with DiI (red). VISpm: area PM; VISl: lateral secondary visual cortex. D. Same as C,
for an additional example animal with target area PM. A-D show examples of different animals
included in the dataset based on localized expression. E. Same as A, but for an excluded animal
where no expression was observed in target area AL. F. Same as C, but for an excluded animal with
target area PM where strong off-target expression was observed in retrosplenial cortex. RSPagl:
Retrosplenial cortex, agranular part. G. Same as Fig. 2.1 C, but for an excluded animal with target
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area AL with expression in S1 bf, other HVA’s, and V1 . S1 bf: Barrel field of primary somatosensory
cortex. H. Same as Fig. 2.1 G,H, but now for the spontaneous activity of neurons recorded in AL
during optogenetic stimulation of PM. For both cell types, spontaneous activity was not
significantly affected (putative excitatory neurons: n=1 2 neurons, 2.24 Hz to 2.23 Hz, p=0.700;
putative inhibitory neurons: n=6 neurons, 1 .53 Hz to 1 .61  Hz, p=0.625, Wilcoxon Signed Rank test).
This further highlights that the inactivation was local to the photostimulated area. I. Same as H,
but for neurons recorded from PM during optogenetic stimulation of AL. For both cell types,
spontaneous activity was not significantly affected (putative excitatory neurons: n=26 neurons, 2.9
Hz to 3.1  Hz, p=0.99; putative inhibitory neurons: n=8 neurons, 2.1  Hz to 1 .9 Hz, p=0.94, Wilcoxon
Signed Rank test). F. Same as Fig. 2.1 G,H, but now for the spontaneous activity of neurons recorded
in V1  during laser illumination of uninfected control area S1 . For both cell types, spontaneous
activity was not significantly affected (putative excitatory neurons: n=7 neurons, 1 .46 Hz to 1 .1 9
Hz, p=0.1 56, putative inhibitory neurons: n=8 neurons: 4.90 Hz to 5.08 Hz, p=0.688, Wilcoxon
Signed Rank test). This excludes the possibility that direct activation of the retina affected activity
in visual cortex. K. Quantification of all scatterplots show in Main Fig. 2.1 G,H and in panels H and
I of this supplementary figure. Each condition shows spontaneous activity during baseline (left)
and photostimulation (right) for neurons recorded in a given area (black font) with optogenetic
stimulation in another area (blue font in brackets). For values and result of significance testing see
legend of associated scatterplots. Dot and errorbar denote mean ± SEM across neurons (black:
putative excitatory neurons; red: putative inhibitory neurons). The slight increase in activity of
putative inhibitory neurons in V1  upon AL illumination is unlikely to be the cause of direct
optogenetic activation as it is simultaneously associated with an increase in firing in excitatory
neurons. L. Spontaneous activity during photostimulation at increasing photostimulation power
(dose-response curve) for putative inhibitory and excitatory neurons in the photostimulated area
(PM and AL neurons combined, n=31  neurons; black: putative excitatory neurons; red: putative
inhibitory neurons), or V1  neurons (n=36 neurons, grey). Putative inhibitory neurons in PM/AL
were increasingly recruited by higher laser powers, while putative excitatory neurons were
increasingly suppressed. V1  neurons were minimally affected, independently from laser power. M.
To test whether photostimulation had non-stationary effects, e.g. due to heating of the illuminated
cortical tissue, we investigated the effect of photostimulation on V1  activity as a function of stimulus
duration (and consequently also photoillumination duration). Trials (all orientations) were binned
based on the duration of stimulus presentation (bars moving at 70 deg/s had on average a stimulus
durations shorter than 2 seconds, and bars moving at 20 deg/s more than 3 seconds). The upper
panel shows the firing rate for control and photostimulated trials. The lower panel show the change
in firing rate by photostimulation (opto - control) indicating that the effect of PM or AL inactivation
on V1  firing rates, when averaged over all stimulus orientations and neurons, was independent of
duration of photostimulation, i.e. the change in firing rate remains constant over time.
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Supplementary Figure 2.2 – Optogenetic inactivation of area AL and PM silences responses to
moving stimuli in the illuminated area. A. Same as Fig. 2.1 K, but now for a neuron located in area
PM and responding to a bar moving at 20 deg/s during wakefulness. Black: control; red:
inactivation of area PM. B. Same as A, but now for a neuron located in area AL and responding to
a bar moving at 70 deg/s during wakefulness. Note how optogenetic stimulation suppresses the
responses of neurons located in PM and AL (panels A and B, respectively), but only reduces the
responses of the neuron located in V1  (Fig. 2.1 J). C. PSTHs (aligned to peak latency) averaged over
all putative excitatory PM neurons responding to visual stimuli during awake recordings in the
absence or presence of optogenetic inactivation of area PM itself (black and red curves,
respectively). Curves with shading indicate mean ± SEM. From left to right: responses to bars
moving at 20, 40 and 70 deg/s. D. Tuning curves of average responses of putative excitatory PM
neurons during awake recordings to bars moving at different orientation (aligned by the preferred
orientation, which is set at 0 rad) in the absence or presence of optogenetic inactivation of area PM
itself (black and red curves, respectively). Curves with shading indicate mean ± SEM. Asterisks
indicate significant differences between responses to bars moving at a given orientation in the
absence or presence of PM inactivation (p<0.05, paired t-test, FDR-corrected). From left to right:
responses to bars moving at 20 (1 27 neurons), 40 (1 27 neurons) and 70 deg/s (1 02 neurons). E.
Same as C, but now for putative excitatory neurons in AL and optogenetic inactivation of area AL
itself. F. Same as D, but now for putative excitatory neurons in AL and optogenetic inactivation of
area AL itself. From left to right: responses to bars moving at 20 (50 neurons), 40 (55 neurons) and
70 deg/s (44 neurons). Notice how optogenetic inactivation reduces visually-evoked responses in
PM and AL much more strongly than in V1  (cf. Fig. 2.2).
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Supplementary Figure2.3 – Optogenetic inactivation of area AL and PM affects V1 orientation and
direction tunedresponses.A. Same as Fig. 2.1 K, but for a neuron located in area PM and responding
to a bar moving at 40 deg/s during wakefulness. Black: control; red: inactivation of area PM. B.
Same as A, but now for a neuron located in area AL and responding to a bar moving at 40 deg/s
during wakefulness. Note how optogenetic stimulation preserves the preferred orientation. C. Same
as Fig. 2.2B, with responses normalized – individually for each recorded neuron and separately for
No-Opto and Opto conditions – to the response to the preferred direction. This panel shows that,
following optogenetic inactivation of area PM, neurons in V1  become more strongly tuned to both
orientation and direction (notice the relatively weaker responses to non-preferred directions in opto
compared to no-opto conditions). D. Same as panel C, but for optogenetic inactivation of area AL.
The number of neurons included in the analyses shown in panels C and D is provided in Table 2.1 .
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Supplementary Figure 2.4 – Optogenetic inactivation of area AL and PM does not modify the
direction preferred by V1 neurons. A. Polar histograms showing the distribution of the differences
in preferred direction between No-Opto and Opto conditions following PM inactivation, as a
function of bar speed (from left to right: 20, 40 and 70 deg/s). No significant difference was
observed (one-sample test for mean angle). B. Same as A, but for the inactivation of area AL. Also
in this case, no significant difference was observed. The number of neurons included in the analyses
shown in the figure is provided in Table 2.1 .
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Supplementary Figure 2.5 – Optogenetic inactivation of area AL and PM under anesthesia
depresses sensory-evoked responses in V1. A. Same as Fig. 2.2B, but now for recordings performed
under anesthesia. B. Same as Fig. 2.2D, but now for recordings performed under anesthesia. C.
Same as Fig. 2.2E, but now for recordings performed under anesthesia. D. Same as Fig. 2.2F, but
now for recordings performed under anesthesia. The number of neurons included in the analyses
shown in the figure is provided in Table 2.1 .
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Supplementary Figure 2.6 – Experiments performed with drifting gratings instead of bars confirm
the previously reported functionally-specific effect of inactivating AL and PM. A. Same as Fig. 2.2F,
but now for responses of V1  neurons to moving gratings during awake recordings. We included in
this analysis 9 V1  neurons for PM inactivation and 70 for AL inactivation. B. Same as A, but now
for recordings performed under anesthesia. Significant differences were observed for PM
inactivation, between 20 and 70 deg/s (p=0.049, 2-way Anova with post-hoc Tukey test: significant
main effect for inactivated area (F=8.34, p=0.0067)). We included in this analysis 27 V1  neurons
for PM inactivation and 1 1  for AL inactivation.
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Supplementary Figure 2.7 – The effect of optogenetic inactivation of PM and AL on V1 responses is
robust with respect to the number of recorded neurons and used metrics. A. Histogram showing the
distribution of SEM values for the relative change in evoked responses (amplitude modulation, see
also Fig. 2.2E) computed over a resampled dataset of V1  neurons recorded in sessions in which PM
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was inactivated. In detail, resampling was performed 1 000 times, and each time a number of
neurons was sampled (without replacement) which corresponded to the number of V1  neurons
recorded in sessions in which AL was inactivated (lower that neurons recorded for PM
inactivation). Red vertical lines show the 95% confidence intervals for the SEM values computed on
the resampled dataset. The blue and green vertical lines indicate, the SEM values obtained for the
complete dataset for PM and AL inactivation, respectively. From left to right: awake recordings
with bars moving at 20, 40 and 70 deg/s. B. Same as A, but for the average value of the relative
change in evoked responses following optogenetic modulation. C. Same as Fig. 2.2E, but with
sensory-evoked responses computed over a time window whose duration was not fixed, but
variable as a function of bar speed, in a way that such window always corresponded to the time a
bar took to travel over a 5 deg window centered around peak response (individually for each
neuron). P=0.0002, 2-way Anova with post-hoc Tukey test: significant main effect for inactivated
area (F=1 0.78, p=0.001 1 ). D. Same as C, but using a time window corresponding to the time a bar
took to travel over a 1 0 deg window centered around peak response. P=0.0004, 2-way Anova with
post-hoc Tukey test: significant main effect for inactivated area (F=1 1 .1 0, p=0.0009). E. Same as
Fig. 2.2E, but using the geometric compared to the arithmetic average. Error bars show the
geometric standard error.
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Supplementary Figure 2.8 – Optogenetic inactivation of area AL and PM under anesthesia
asymmetrically reduces receptive field size of V1 neurons in the rising but not in the decaying phase
of sensory evoked responses. A. Same as Fig. 2.3A, but now for recordings performed under
anesthesia. B. Same as Fig. 2.3B, but now for recordings performed under anesthesia (P-values for
significant differences: 20 deg/s rising phase p=0.0003; 40 deg/s rising phase p=1 .8x1 0-6; 70 deg/s
rising phase p=3.8x1 0-8). C. Same as Fig. 2.3C, but now for recordings performed under anesthesia.
D. Same as Fig. 2.3D, but now for recordings performed under anesthesia (P-values for significant
differences: 20 deg/s rising phase p=0.0038; 40 deg/s rising phase p=6.9x1 0-6; 70 deg/s rising
phase p=0.0002). The number of neurons included in the analyses shown in the figure is provided
in Table 2.1 .
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Supplementary Figure 2.9 – Optogenetic inactivation of area AL and PM under anesthesia
enhances orientation and direction selectivity in V1. A. Same as Fig. 2.4A, but now for recordings
performed under anesthesia. B. Same as Fig. 2.4B, but now for recordings performed under
anesthesia. C. Same as Fig. 2.4C, but now for recordings performed under anesthesia. D. Same as
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Fig. 2.4D, but now for recordings performed under anesthesia. E. Same as Fig. 2.4E, but now for
recordings performed under anesthesia. Asterisks indicate significant differences either between
speeds (for a given area) or between inactivation of distinct areas, given the same speed (p<0.05,
2-way Anova with post-hoc Tukey test (for inactivation of area PM: F=6.59, p=0.001 6)). F. Same
as Fig. 2.4F, but now for recordings performed under anesthesia. Asterisks indicate significant
difference either between speeds (for a given area), or between inactivation of distinct areas, given
the same speed (p<0.05, 2-way Anova with post-hoc Tukey test (for inactivation of area PM:
F=1 9.01 , p=2x1 0-8)). In neither panel E nor F were significant differences between areas
(separately for each speed) found. The number of neurons included in the analyses shown in the
figure is provided in Table 2.1 .
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Supplementary Figure 2.10 – Decoding accuracy during awake recordings; Optogenetic
inactivation of area AL and PM under anesthesia enhances single-trial decoding of bar orientation
in V1. A. Decoding accuracy was computed as the proportion of bar directions correctly estimated
on the same dataset used in Fig. 2.5. Accuracy is in line with previously shown values (Cai et al.,
201 8) and can be seen to increase upon inactivation of both PM and AL. Bars indicate mean ± SEM.
B. Same as Fig. 2.5, but now for recordings performed under anesthesia. (Main effect for
inactivacted area: F=227.9, p=0.0000; main effect for bar speed: F=1 78.0, p=0.0000; interaction
effect: F=60.6, p=0.0000). The number of neurons included in the analyses shown in the figure is
provided in Table 2.1 .
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Supplementary Figure 2.11 - Areas AL and PM enhance visual responses in V1 under anesthesia in
accordance with neither an additive nor a multiplicative gain modulation. A. Same as Fig. 2.6A,
but now for recordings performed under anesthesia (p<0.05, one-way Anova with post-hoc Tukey
test; for PM-20deg/s: F=3.49, p=0.001 1 ; for PM-40deg/s: F=4.22, p=0.0001 ; for PM-70deg/s:
F=6.99, p=4.6x1 0-8; for AL-20deg/s: F=3.00, p=0.0043; for AL-40deg/s: F=3.99, p=0.0003; for AL-
70deg/s: F=6.05, p=8.8x1 0-7). B. Same as Fig. 2.6B, but now for recordings performed under
anesthesia. No significant differences were observed. C. Same as Fig. 2.6C, but for recordings
performed under anesthesia. D. Same as Fig. 2.6D, but for recordings performed under anesthesia.
In panels C and D, low-amplitude responses are more strongly suppressed compared to high-
amplitude sensory-evoked responses (p<2x1 0-1 6, Chi-square goodness of fit test against a uniform
distribution). The number of neurons included in the analyses shown in the figure is provided in
Table 2.1 .
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Supplementary Figure 2.12 – The effect of optogenetic inactivation of PM and AL on V1 responses
remains the same when stratifying V1 neurons in different cohorts. A. The effect of optogenetic
inactivation on V1  neuronal responses to bars moving at 20 deg/s was separately assessed for
neurons with the top 50% sensory-evoked responses to the preferred direction. Neurons were
pooled together from all session (i.e., including the inactivation of both PM and AL). From left to
right: responses to the preferred orientation in the absence (black) or presence (red) of optogenetic
inactivation; responses to the anti-preferred orientation in the absence (black) or presence (red) of
optogenetic inactivation; gOSI in the absence (black) or presence (red) of optogenetic inactivation;
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amplitude modulation as a function of bar orientation. For the leftmost 3 plots, asterisks indicate
significant differences between opto and no-opto conditions (paired t-test). For the rightmost plot,
asterisks indicate if the amplitude modulation of sensory evoked responses was the same for all
orientations (null hypothesis, corresponding to a flat line in the plot), or not (one way Anova). In
all panels: *= p<0.05, **=p<0.001 ; exact p-values are reported in each panel. Similar results were
found for responses to bars moving at 40 deg/s or 70 deg/s. B. Same as A, but for neurons with the
bottom 50% sensory-evoked responses to the preferred direction. C. Same as A, but for neurons with
the top 50% gOSI. D. Same as A, but for neurons with the bottom 50% gOSI. E. Same as Fig. 2.2B,
but for neurons with gDSI=1  in the presence of optogenetic inactivation of either PM or AL. The
number of neurons included in this analysis was 30 (20 deg/s), 34 (40 deg/s) and 39 (70 deg/s).
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Abstract
Primary sensory areas constitute crucial nodes during perceptual decision making.
However, it remains unclear to what extent they mainly constitute a feedforward processing
step, or rather are continuously involved in a recurrent network together with higher-order
areas. We found that the temporal window in which primary visual cortex is required for
the detection of identical visual stimuli was extended when task demands were increased
via an additional sensory modality that had to be monitored. Late-onset optogenetic
inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus
features, and was effective in impairing detection only if it preceded a late, report-related
phase of the cortical response. Increasing task demands were marked by longer reaction
times and the effect of late optogenetic inactivation scaled with reaction time. Thus,
independently of visual stimulus complexity, multisensory task demands determine the
temporal requirement for ongoing sensory-related activity in V1 , which overlaps with
report-related activity.
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Introduction
During perceptual decision making, stimulus presentation triggers an early response
component in primary sensory cortices (driven by thalamic bottom-up input (Harris and
Mrsic-Flogel, 201 3)) and, often, a late component, thought to mostly result from recurrent
activity through top-down, cross-areal interactions (Crochet et al., 201 8; Cul et al., 2007;
Supèr et al., 2001 ). Traditional accounts of how sensory stimuli are transformed into
appropriate behavioral outputs have mostly characterized this process in terms of
feedforward architectures, where progressively higher-order areas extract sensory features
of increasing complexity (DiCarlo et al., 201 2) to eventually instruct motor output. In the
visual cortical system, a fast-acting (<1 50 ms) feedforward sweep is sufficient for image
categorization (Thorpe et al., 1 996). Accordingly, deep feedforward neural networks,
inspired by this cortical hierarchical architecture, achieve near-human performance in
image recognition (LeCun et al., 201 5; Serre et al., 2007). The function of recurrent
architectures has been primarily interpreted in the context of processing ambiguous or
complex stimuli, for cognitive processes such as attention, and for consciousness (Dehaene
and Changeux, 201 1 ; Desimone and Duncan, 1 995; Lamme and Roelfsema, 2000;
Martínez et al., 1 999; Mehta et al., 2000; Noesselt et al., 2002; Pennartz, 201 5). For
example, extra-classical receptive field effects in the visual system, such as surround
suppression, and separating objects from background, are thought to depend on feedback
projections from higher to lower visual areas (Allman et al., 1 985; Boehler et al., 2009; Rao
and Ballard, 1 999; Roelfsema, 2006; Schnabel et al., 201 8). Perceptual decisions involving
figure-ground segregation require recurrent processing (Roelfsema, 2006), the duration of
which becomes longer as a function of visual scene complexity (Kirchberger et al., 2021 ).
Recently, a form of late activity in rodent V1  that reflects non-sensory variables such as
movement, perceptual report, and arousal (Allen et al., 201 7b; Kaplan and Zimmer, 2020;
Musall et al., 201 9; Salkoff et al., 2020; Steinmetz et al., 201 9; Stringer et al., 201 9) was
shown to originate in prefrontal areas and progressively involve more posterior areas
including sensory cortices (Allen et al., 201 7b; Steinmetz et al., 201 9).

Many hypotheses have been proposed on the function of late, recurrent activity in sensory
cortices (including distributed motor command generation and context-dependent sensory
processing)(Kaplan and Zimmer, 2020), but how it causally contributes to perception is
debated. Across primates and rodents, the magnitude of late activity correlates with
behavioral reports of perception (Cul et al., 2007; Manita et al., 201 5; Sachidhanandam et
al., 201 3; Supèr et al., 2001 ). Suppressing late activity in the primary somatosensory cortex
impairs tactile detection (Sachidhanandam et al., 201 3), whereas in primary visual cortex
it has been argued that feedforward activity is sufficient for visual discrimination (Resulaj
et al., 201 8; Thorpe et al., 1 996). We hypothesize that the cognitive demands of a task,
which are captured by the set of task rules as instantiated in an attentional set – see e.g.
(Dias et al., 1 996) – determine the temporal extension of the causal involvement of V1  in
perceptual decision making, independently of stimulus complexity. The cognitive load may
increase as a consequence of increasing attentional demands, such as when multiple
sources of information need to be simultaneously monitored. For instance, integration of
visual information with other sensory modalities (Meijer et al., 201 9; Pennartz, 201 5,
2009) may extend the time required by frontal and pre-motor regions to converge to a
decision. This process might reflect an evidence accumulation model (Gold and Shadlen,
2007; Philiastides et al., 2006), i.e. a need to integrate information originating in V1  for
longer periods in the case of complex, multisensory tasks. Analogously, the predictive
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processing framework (Friston, 2005; Pennartz et al., 201 9; Rao and Ballard, 1 999) posits
that visual and decision-related areas will keep on interacting via recurrent connections to
jointly represent sensory stimuli and transform them into appropriate motor responses,
performing computations for a time interval that may depend on task demands. Therefore,
increasing the cognitive load required to perform a task, for instance by introducing the
need to simultaneously monitor multiple sensory modalities, may extend the temporal
window during which V1  activity remains causally required for perception, independently
of visual stimulus features.

Results
To address this hypothesis, we trained mice in three versions of an audiovisual change
detection task (task A) with the same stimulus configurations, but different reward
contingencies. Head-fixed mice were presented with a continuous audiovisual stream of
inputs with occasional instantaneous changes in the orientation of the drifting grating
(visual trial) or the frequency of harmonic tones in a ‘Shepard’ stimulus (Shepard, 1 964)
(auditory trial, Fig. 3.1 a-b; see Supplementary Fig. 3.1  for auditory stimulus details). We
varied the amount of orientation change (visual saliency) and frequency change (auditory
saliency) across each animal’s perceptual threshold and fit all behavioral data according to
a psychometric multi-alternative signal detection framework (Sridharan et al., 201 4). We
implemented three distinct task contingencies. First, for noncontingently exposed mice
(NE, n=7) neither vision nor audition was predictive of reward, and these mice did not
selectively respond to the stimuli (Fig. 3.1 c). In a second version, only vision was associated
with reward, and these unisensory-trained mice (UST, n=4) were thus trained to selectively
respond to visual changes only, and ignore auditory changes (Fig. 3.1 d). Third,
multisensory-trained mice (MST, n=1 7) were trained to detect both visual and auditory
changes (Fig. 3.1 e; e.g. lick left for vision, lick right for audition). Phrased differently, all
mice were presented with the same stimuli during training and testing, but lick responses
to visual changes were only rewarded in UST and MST mice, and auditory changes only in
MST mice. Trials with a stimulus change are indicated as “hit” when the mouse licked the
correct spout and “miss” when no lick was provided; error trials correspond to trials with a
lick towards the incorrect spout. To compare across cohorts, we also defined (surrogate) hit
and miss trials for NE mice, based on whether (unrewarded) licks were performed after
stimulus change. In all cohorts, mice performed many trials (mean 569, range 21 0-1 047
per session). The discriminability index (d-prime) was high only for rewarded
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contingencies, in both the auditory and visual modality (Fig. 3.1 f; for individual mice, see
Supplementary Fig. 3.2).

Fig. 3.1 Multisensory task contingencies delay reaction time. a Schematic of task setup. b Example
trial structure with reward availability for each cohort. Three cohorts of mice were presented with
the same sensory stimuli: continuous drifting gratings that occasionally changed orientation and
direction (visual trial) and a continuous tone that changed frequency content (auditory trial,
Supplementary Fig. 3.1 ). Cohorts differed in reward structure. Noncontingently exposed (NE) mice
were not rewarded contingently to the stimuli. Unisensory trained mice (UST) were rewarded for
licks to the left spout after visual trials only, i.e. trained on vision only (cyan blocks denote the
reward windows). Multisensory trained mice (MST) were rewarded and trained to lick (for
instance) left to report visual changes and right to report auditory changes, i.e. discriminate
modality. For NE mice, reward windows were temporally decorrelated from the sensory stimuli,
and randomly occurring outside the stimulation period (these windows are denoted as cyan blocks
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with an asterisk). The trial windows indicate the time window used post-hoc to compare stimulus-
related lick rates across cohorts; colors of these window correspond to the different trial types (blue:
visual; red: auditory; grey: catch). For NE mice and auditory trials in UST mice, licks to the visual
spout and auditory spout that happened to fall in these windows were defined as surrogate ‘hits’
and ‘errors’ (see Methods). ITI: inter-trial interval. c The upper panels show behavioral response
rates (dots) and model fits (lines: solid lines for responses to the correct – rewarded – side, dashed
lines for responses to wrong – unrewarded - side) for an example session of a noncontingently
exposed (NE) mouse. The bottom panels show the average psychometric fits for each mouse
obtained by averaging parameters over sessions. Each session was fit with a two-alternative signal
detection model (black lines in upper panels, colored in lower panels). d Same as (c), but for UST
animals. Note how visual hit rates increase as a function of the amount of visual change, but not
auditory change. The relatively high lick rate to the visual spout upon auditory changes arises
because only that spout was associated with reward in this task. eSame as (c), but for MST animals.
Hit rates increased as a function of both visual and auditory change. f D-prime across cohorts.
Visual d-prime was comparable for UST and MST (ANOVA, n=1 51  sessions, F(1 ,29) = 1 .60, p =
0.22,), and lower than auditory d-prime (ANOVA, n=1 39, F(1 ,261 ) = 36.26, p=5.84x1 0-9). Each dot
is the average over sessions for each animal. Error bars denote the median and interquartile
ranges. g The detection threshold for visual orientation changes was comparable for UST and MST
(ANOVA, n=1 51  sessions, F(1 ,31 ) = 0.45, p = 0.51 ). hReaction time for the same subjectively salient
visual stimuli (see Methods) was significantly shorter for UST compared to MST (ANOVA, n=391 7
trials, F(1 ,3865) = 60.1 , p=1 .1 1 x1 0-1 4). Saliency levels: sub=subthreshold, thr=threshold,
sup=suprathreshold, max=maximal change. Boxplot: dot, median; box limits, 25th and 75th
quartiles; whiskers, 1  × interquartile range. **p<0.01 , ***p<0.001 .

Multisensory task contingencies delay reaction time

First, we wondered if visual performance was similar in the unisensory and multisensory
task variants (UST and MST) and whether the more complex task contingency slowed
responses. There were no significant differences between the cohorts for either maximum
d-prime (Fig. 3.1 f), discrimination threshold (Fig. 3.1 g), or sensitivity (for statistics, see
Supplementary Table 2.1 ). Reaction time, however, did vary across conditions (Fig. 3.1 h).
MST mice showed shorter auditory than visual reaction times and reaction times decreased
with increasing levels of stimulus saliency for both UST and MST. For the same visual
stimuli, reaction time was significantly longer for MST than for UST mice. For both vision
and audition, reaction time negatively correlated with performance (Supplementary Fig.
3.2f, g). The addition of auditory task relevance thus increases reaction times for the same
visual stimuli. This result was expected because MST mice were trained to make binary
decisions on whether auditory versus visual changes took place, which requires
comparisons across sensory channels (Hanson et al., 2009).
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Fig. 3.2 Multisensory task demands modulate late activity in V1. a Coronal histological section (3.6
mm posterior to bregma) showing silicon probe tract after recording in V1 . b Representative
example of current source density (CSD) map and LFP traces for checkerboard stimulation.
SG=supragranular, G=granular, IG=infragranular. (CSD analysis was repeated with similar
results for all 28 mice to determine the depth of probe insertion). c Raster plots (bottom) and firing
rate (top panel) show stimulus-evoked and report-related activity in three example neurons
recorded in V1  (Task A). Raster plots are grouped by trial type (visual or catch) and choice. Within
trial type, trials are sorted by post-change orientation and response latency (orange ticks). Note
that hits and misses in NE mice are surrogate conditions and are defined post-hoc. CR = correct
rejection. FA = visual false alarm. d Heatmaps of trial-averaged z-scored activity of all neurons for
the three cohorts for the same conditions as in (b). NE neurons: n=1 59; UST neurons: n=1 28; MST
neurons: n=51 0. e Averaging z-scored firing rate over all neurons for visual and catch trials split
by choice reveals biphasic activity in visual hits but not misses, with late activity only present in
animals for which visual trials were rewarded (UST and MST). Note the increase in firing rates in
FA trials for UST and MST mice but not NE mice. The weak early transient activity during FA trials
in UST and MST mice during this noisy change detection task might be the result of stochastic
variability interpreted as a sensory signal, i.e. falsely perceived changes(Kok et al., 201 4), although
a motor (lick) related signal cannot be excluded. See Supplementary Fig. 3.3 for an in-depth
analysis of the lick-related nature of these responses. f Same as (e), but for each laminar zone
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(neurons from UST and MST mice combined). Inset: maximum z-score during the early (0-200 ms)
and late (200-1 000 ms) phase of visual hits (SG: F(1 ,1 94) = 4.60, p=0.03; G: F(1 ,1 71 ) = 0.00,
p=1 .00; IG: F(1 ,1 284) = 23.32, p<0.001 , ANOVA). g Histogram of peak-to-trough delay for all
neurons (n=81 6 neurons) colored by cell type class: narrow-spiking (peak-to-trough delay<0.45
ms; putative inhibitory; blue) and broad-spiking (peak-to-trough delay>0.55 ms; putative
excitatory; red). Single units with intermediate peak-to-trough values were unclassified. The peak-
to-trough delay was capped at 1  ms for neurons whose trough extended beyond the sampled
window. h Normalized average waveform for all V1  neurons colored by cell type class. i Z-scored
activity averaged over all broad-spiking V1  neurons (left, n=421  neurons) or narrow-spiking
neurons (right, n=202 neurons) across UST and MST mice, split by hit/miss response for maximum
visual change trials only. Throughout the figure, lines and shading are mean ± SEM.

Early and late activity emerges in V1 of trained mice

To investigate whether delayed reaction times corresponded with slower dynamics of late
V1  activity, we performed laminar recordings and sampled single-unit activity across
cohorts (Fig. 3.2a). We used the current source density profile in response to visual
stimulation and multi-unit activity profile to estimate recorded depth along the cortical
layers (Fig. 3.2b). In NE animals the instantaneous orientation change evoked a short
transient activity in V1  (until about 200 ms after stimulus onset) with a short-lasting tail
(Fig. 3.2c). In visually trained animals (UST and MST), a similar transient wave occurred,
but now also a late, second wave of activity was present (emerging around 200 ms after
stimulus onset), primarily in hits and to a lesser extent in false alarms (Fig. 3.2d, e). These
dynamics of early and late wave activity were seen for both threshold-level (thr) and
maximal (max) orientation changes (Supplementary Fig. 3.3a, b). Splitting neurons based
on recorded depth revealed different laminar dynamics. Early sensory-induced activity was
most prominent in the granular and supragranular layers and was similar for hits and
misses (p>0.05 for all laminar zones). During visual hits, late activity was prominent in
supragranular and infragranular layers and was stronger than early activity (Fig. 3.2f). The
late hit-related modulation (hits – misses, subtracted z-scored firing rate during 200-1 000
ms) was stronger in supra- and infragranular layers than in the granular layer (F(2,771 ) =
4, p=0.01 9, ANOVA; Posthoc comparison: IG vs G: F(1 ,784)=1 2.97, p<0.001 ; G vs SG:
F(1 ,784)=6.50, p=0.01 ; IG vs SG: F(1 ,784)=0.58, p=0.45. This is consistent with the idea
that the granular layer is more strongly driven by thalamocortical afferents and
extragranular layers more by recurrent processing. We also classified single units based on
the delay between peak voltage deflection and subsequent trough. The histogram of peak-
to-trough delay showed a bimodal distribution allowing clear classification into narrow and
broad-spiking cell types (Fig. 3.2g, h). The dynamics of early and late components were
present in both cell classes (Fig. 3.2i), suggesting a balanced increase in both excitatory and
inhibitory activity upon hits.
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Fig. 3.3 A generalized linear model dissociates time-varying encoding during late activity. a We
constructed a kernel-based GLM encoding model in which variables related to the sensory
environment, task, and behavioral state were included as predictors of firing rate. Binary task
variables were convolved with raised cosine basis functions that spanned the relevant time window
to model transient firing rate dynamics. b Model fits for three example neurons (one V1  neuron
from each task version) show that predicted and actual firing rates closely overlap and that both
sensory-driven activity (example #1 ), as well as report-related activity for both visual and auditory
hits (examples #2-3), are captured by the model. The five stimulus-response combinations that had
the most counts are plotted (trials with false alarms and licks to the incorrect spout are omitted). c
Explained variance over time for subsets of predictors. Each line shows how much firing rate
variance is explained for each time bin across trials based on only including a subset of all
predictors. Shaded area corresponds to s.e.m.

Neural coding during late V1 activity

Recent studies have shown that late activity in V1  can reflect movement-related variables
(Musall et al., 201 9; Salkoff et al., 2020; Stringer et al., 201 9). We aligned population
activity to the first lick after stimulus onset and found that spiking activity across many
neurons was indeed modulated by licking movements, specifically in UST and MST mice
(Supplementary Fig. 3.3c-j). The amplitude of this modulation was higher in trials with
correct versus incorrect licks. To further disentangle the contribution of stimulus variables
(visual and auditory features and amount of change), movement-related variables (the
timing and number of lick responses), hits (visual and auditory hits), and arousal (pupil
size), we built a kernel-based generalized linear model (GLM)(Park et al., 201 4; Runyan et
al., 201 7; Steinmetz et al., 201 9) where we included these variables as predictors of firing
rate (Fig. 3.3a; see Supplementary Fig. 3.4a, b for model performance). The encoding
model predicted firing rate dynamics of V1  neurons over time (Fig. 3.3b) and to investigate
the contribution of each of the variables we computed the cross-validated variance of firing
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rate explained over time by each of these subsets of predictors (Fig. 3.3c). In NE mice, visual
predictors explained most of the variance with negligible contributions from other
variables. In UST and MST mice, besides visual predictors, we found that both licking
movement and hits explained a significant fraction of variance (Fig. 3.3c, see also
Supplementary Fig. 3.4c-d). In sum, late V1  activity reflected a combination of visual-,
movement- (licking), and hit-related variables, but only in trained mice.

Multisensory context delays the time course of late activity

To quantify in more detail how the delayed reaction time in MST mice was associated with
temporal coding dynamics of single neurons we used a receiver operating characteristic
(ROC) analysis (Green and Swets, 1 966; Rossi-Pool et al., 201 6). Across task versions, the
ratio of neurons coding for visual features (grating orientation, and occurrence of a visual
stimulus change – i.e. visual trials versus trials with no stimulus change, catch trials) was
similar across cohorts (Fig. 3.4a). In UST and MST mice, however, visual report (i.e. visual
hits vs. visual misses, henceforth hit/miss) was also encoded by a substantial fraction of
neurons, in line with the averaged z-scored activity (Fig. 3.2e) and our regression model
(Fig. 3.3). To understand at which time points visual features and hit/miss coding could be
read out, we plotted the fraction of neurons that significantly coded for each of these
variables over time (Fig. 3.4b, Supplementary Fig. 3.5). Temporal dynamics were strikingly
similar across cohorts for sensory variables, while hit/miss coding appeared later in V1  for
MST than UST mice. When we binned neurons based on their recorded cortical depth, we
found that orientation coding was present across cortical layers and the coding of visual
change occurrence was confined to an early transient wave in granular and supragranular
layers (Fig. 3.4c). In contrast, hit/miss coding during late activity was predominant in
infragranular layers. This spatial segregation with coding of visual change predominant in
superficial layers and hit/miss coding in deeper layers suggests that these two processes
have different neural substrates (see also Fig. 3.2f). We quantified the earliest moment of
a significant increase in the fraction of coding neurons relative to baseline and found that
only hit/miss coding was delayed in MST compared to UST (Fig. 3.4d; threshold changes:
288 ms ± 36 ms versus 1 62 ± 28 ms, MST vs. UST, p<0.05; maximal changes: 249 ± 1 04
ms vs 92 ± 56 ms, MST vs. UST, n.s.). In relation to the delayed visual reaction times in
MST mice, we found that the onset of hit/miss coding correlated with reaction time at the
level of population-averaged firing rate differences per session (Fig. 3.4e), as well as the
bootstrapped estimate from single neurons across sessions (Fig. 3.4f). This result was also
confirmed by a GLM-based analysis (Supplementary Fig. 3.4e). Hit/miss-related activity
preceded the first lick by about 280 ms (Fig. 3.4f, Methods). Therefore, at 200 ms after
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stimulus onset (blue dotted line in Fig. 3.4f) UST mice generally showed hit/miss coding in
V1 , while MST mice did not.

Fig. 3.4 The onset of late activity is delayed in MST mice. a The Venn diagrams show for each
training cohort the percentage of neurons encoding orientation (grating after stimulus change),
occurrence (presence of a visual change or not), or hit/miss (visual hits versus visual misses, with
no lick response) as established with ROC analysis. Only maximum visual change trials were used.
Shown are percentages out of all coding neurons; percentage of non-coding neurons per cohort:
NE: 1 5.5%; UST: 1 3.3%, MST: 35.6%. b Fraction of neurons (summed over all recordings) coding
for task-relevant variables over time. Each coding fraction is baseline-subtracted and normalized
by its maximum. Visual hit/miss coding (hits vs misses) was only present in UST and MST mice (as
expected) and started earlier in UST than MST mice (highlighted with black arrows). c Heatmaps
of the fraction of coding neurons across time and cortical depth, with neurons binned based on their
recorded depth relative to the granular layer (400-550 μm from dura). Only UST and MST cohorts
were included to compare sensory and hit/miss coding in the same datasets. SG=supragranular,
G=granular, IG=infragranular. Occurrence coding, 0-200 ms, ANOVA, SG versus IG, F(1 ,1 6)=7.21 ,
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p=0.01 6. Hit/miss coding, Thr, 200-1 000 ms, G vs IG, F(1 ,1 5)=5.21 , p=0.037; Max, G vs IG,
F(1 ,1 5)=4.96, p=0.042. Significance (sidebars): * p < 0.05. d Earliest increase in the fraction of
significantly coding neurons. Mean ± 95% CI (bootstrap). The apparent fast onset of visual
occurrence coding is likely due to temporal smoothing of firing rates. (Bootstrap test, two-sided,
UST n=1 28, MST n=306 neurons, p=0.01 2) e Reaction time correlated with the onset of hit/miss
coding in population-averaged activity (ANOVA, n=26 sessions, F(1 ,24)=5.1 5, p=0.03). Grey
dotted line shows linear regression fit. Each dot is one session. Error bars show mean ± SEM. f
Same as (e), but now for the bootstrapped average for each visually trained condition using single
neuron AUC (as in d). Reaction time correlated with the earliest moment of significant hit/miss
coding (ANOVA, F(1 ,2)=1 02.33, p=0.0096). Error bars show bootstrapped mean and 95% CI. Blue
dotted line at 200 ms marks the time point where late photostimulation was applied (see Fig. 3.5d).
At this point, unisensory trained mice already showed hit/miss- coding in V1 , while multisensory
trained mice did not.

Late activity is causally required for perceptual decision making

Next, we wondered whether V1  activity occurring after the onset of report-related activity
could be causally linked to perception. We locally expressed ChR2 in parvalbumin-
expressing interneurons in V1  (Fig. 3.5a, b, Supplementary Fig. 3.6a) to achieve temporally
specific optogenetic inactivation (Madisen et al., 201 0; Olcese et al., 201 3). Laser
stimulation robustly silenced multiunit activity (Fig. 3.5c). To determine the temporal
window of V1  involvement, we silenced it either from the moment of stimulus change
onwards (“Early”, 0 ms) or from the 200 ms temporal cutoff we identified in the onset of
hit/miss coding in UST and MST mice (“Late”, 200 ms; Fig. 3.4f). Photostimulation was
performed during a subset of all trial types (including catch trials, probing the effect of
photostimulation without any relationship to stimuli or motor responses) and continued
until the animal made a choice. Early blue light stimulation during visual trials (i.e. starting
at the onset of stimulus change) reduced the activity of putative excitatory neurons to about
5% of their baseline activity. Late photostimulation left the initial sensory-driven response
intact but silenced activity after 200 ms relative to stimulus onset (Fig. 3.5d).

Early silencing of V1  strongly reduced detection of orientation changes during both UST
and MST task performance (Fig. 3.5e, g), consistent with the primary role of V1  in visual
feature processing (Glickfeld et al., 201 3b; Resulaj et al., 201 8; Zatka-Haas et al., 2021 ).
For threshold levels of orientation change (Fig. 3.5g), the detection of visual change was
fully suppressed, indicating that early inactivation of V1  is sufficient to impair visual change
detection. Interestingly, late silencing only affected change detection performance of MST
mice (Fig. 3.5f, h). V1  silencing did not affect auditory change detection (Supplementary
Fig. 3.6b). Moreover, photoillumination of control area S1  did not affect visual or auditory
performance (Supplementary Fig. 3.7).
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Fig. 3.5 Late silencing of V1
selectively impairs task performance
of sessions with slow reaction time. a
Cre-dependent ChR2 expression in
bilateral V1  of PvCre mice allowed
robust silencing by locally enhancing
PV-mediated inhibition. A1  =
auditory cortex, S1  = primary
somatosensory cortex. b Dorsal view
of flattened cortical hemispheres
sectioned approximately through
layer 4 showing localized viral
expression in bilateral V1 . (Repeated
with similar results for all 28 mice) c
High-pass filtered trace from an
example V1  recording site showing
robust silencing of multi-unit spiking
activity during bouts of 1 -second
photostimulation (blue bars). d
Baseline-normalized firing rate
averaged over V1  neurons from UST
and MST mice. Control trials are
visual hits. Mean ± SEM. e
Behavioral response rates for
control, early, and late silencing
trials follow plotting conventions of
Fig. 1 c-e. f Same as (e), but for MST
mice. Both early and late silencing
affected visual change detection
rates. For the increase in FA see
Methods. g Early silencing affected
visual discrimination performance
(d-prime) for both saliencies across
UST and MST cohorts. (ANOVA, UST
n=1 8, MST n=34 sessions, UST Thr,
F(1 ,32)=1 6.71 , p=0.0032; UST Max,
F(1 ,32)=1 4.80, p=0.0064; MST Thr,
F(1 ,59)=35.32, p=2x1 0-6; MST Max,
F(1 ,58)=32.56, p=5x1 0-6 , each
corrected for 4 multiple comparisons
(Bonferroni-Holm)) h Effect of late
silencing depended on task type: late

silencing only reduced d-prime in MST (same n as g, ANOVA, Thr, F(1 ,54)=1 3.90, p=0.00553, Max,
F(1 ,53)=1 3.48, p=0.0067) , but not UST mice (Thr, F(1 ,32)=0.29, p=1 , Max, F(1 ,30)=1 .1 9, p=0.85).
For both g and h, *p<0.05, **p<0.01 ,***p<0.001 , errorbars denote inter-quartile range. i The effect
of early silencing (quantified as the reduction in d-prime) was not significantly correlated with the
median reaction time in control trials from the same session (ANOVA, n=40 conditions,
F(1 ,33)=1 .71 , r=0.048, p=0.865). j Same as (i) but for late silencing. The effect of late silencing was
significantly correlated with the reaction time (n= 45, F(1 ,1 5)=1 0.04, r= 0.423 p=0.03).

Even though late silencing impaired visual change detection in MST mice on average,
results across animals and experimental sessions were mixed: some sessions showed
robust behavioral impairment, whereas others showed little effect (Supplementary Fig.
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3.6c, f). We hypothesized that this variability could relate to changes in the speed of the
perceptual decision-making process, with sessions having slow reaction times being
proportionally more affected due to extended reliance on V1 . In fact, this could be observed
when we separately analyzed the behavioral consequences of optogenetic inactivation on
the fastest and slowest sessions (top and bottom 50% of all sessions split by mean reaction
time – see Supplementary Fig. 3.6c-h). To more precisely quantify this, we plotted the
reduction in d-prime as a function of reaction time, the latter quantified in control trials
within that same session (as a proxy for behavioral reactivity in the same animals) (Fig.
3.5i, j, Supplementary Fig. 3.6i, j). Whereas early silencing invariably reduced
performance, the effect of late silencing scaled with reaction time (Fig. 3.5j), and amounted
to a complete impairment in visual detection (1 00% reduction) for sessions with the longest
RTs. This impairment was not found for the animal’s propensity to lick (which affects false
alarms and was quantified with the criterion parameter in our behavioral model;
Supplementary Fig. 3.6k), suggesting that the effect of late inactivation on perceptual
sensitivity increased as a function of rising RT. Furthermore, we considered the possibility
that the reduction in d-prime relative to control trials was confounded by a lower d-prime
on control trials for slow sessions to begin with (Supplementary Fig. 3.2g, see also
Supplementary Fig. 3.6l), but this did not account for the effect (Supplementary Table 3.1 ).
Late silencing thus left performance intact in ‘fast’ sessions in which hit/miss coding
emerged quickly (mostly UST, but also some MST sessions) and reduced performance in
slow sessions where hit/miss coding started after 200 ms (mostly MST sessions with higher
cognitive demands, but note also how one slow UST session was affected; Fig. 3.5j).

Causal involvement of late activity generalizes to visuotactile side detection

So far, our results suggest that in the multisensory variant of the change detection task
(MST), late V1  activity is causally involved whereas in the unisensory variant it mostly is
not. However, UST and MST cohorts do not only differ by sensory contingencies, as UST
mice were trained on a Go/No-Go paradigm, while MST mice learned a two-alternative
choice task. Thus, the results we report could be due to differences in behavioral strategy
rather than to changes in multisensory context. Furthermore, we wondered whether our
results may extend to other sensory modalities. To address these aspects, we developed a
visuotactile side detection task in which mice reported the side of sensory stimulation, i.e.
instructing them to lick left for visual or tactile stimuli presented to the left and oppositely
for the right side (Task B; Fig. 3.6a). Stimuli consisted of monocular drifting gratings
(visual), whisker pad deflection (tactile), or a combination of both. In this task B, visual and
tactile information need to be integrated as an inclusive-OR operation (rather than
discriminated as in task A) to decide on which side (left/right) sensory stimuli appeared.
Again, some mice were trained on responding only to vision to obtain reward (UST), while
another cohort was trained on both vision and somatosensation (MST). Importantly, this
UST version contained two response options and required responding to the correct lick
spout (the visual stimulus could appear on the left or right). In addition to the differences
with task A, this new task allowed us to test if our results extended to another multisensory
processing principle (congruent combination of modalities instead of segregation(Meijer et
al., 201 9)) and the detection of a different stimulus dimension (contrast instead of
orientation change).

We controlled stimulus salience by varying visual contrast and whisker deflection
amplitude and fitted the behavioral data with a psychometric model (Fig. 3.6b; see
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Methods). The visual detection threshold and task performance at maximum saliency were
similar for both cohorts (UST and MST, Supplementary Fig. 3.8a, b). As in Task A, we found
that visual reaction time (RT) decreased for higher stimulus saliencies (Supplementary Fig.
3.8c). In contrast with task A, however, RTs were similar between tactile and visual trials.

Pursuing the comparison with task A, laminar recordings in V1  revealed similar neural
dynamics, with a marked early stimulus-driven component visible in contralateral visual
trials, and late activity in both contra- and ipsilateral visual hits (Fig. 3.6c, Supplementary
Fig. 3.8f; see also Supplementary Fig. 3.8g for lick-aligned neuronal activity). This late V1
activity was also present in tactile-only hits – so without visual stimuli - although only for
MST mice (Supplementary Fig. 3.8h). We optogenetically silenced unilateral V1  either from
stimulus onset (early silencing) or after a delay that separated the late from the early wave
of activity (240 ms, late silencing; Fig. 3.6c). Early silencing of unilateral V1  reduced the
detection of contralateral threshold-contrast stimuli in both UST and MST mice but spared
detection of ipsilateral stimuli and full contrast stimuli (Fig. 3.6d). In MST mice, tactile
detection was not affected by V1  silencing (Supplementary Fig. 3.8d). Consistently with our
results for Task A, while early V1  silencing impaired detection of threshold-level visual
stimuli for both unisensory and multisensory contexts, late V1  silencing only affected such
detection in MST mice (Fig. 3.6d, Supplementary Fig. 3.8e). As in Task A, we observed that
the effect of silencing increased for conditions with longer reaction time (Fig. 3.6e). Overall,
results obtained with task B generalize our findings and confirm that the temporal window
for the causal involvement of V1  in perceptual decision making is extended when subjects
reinstate the more demanding, multisensory attentional set they have been trained on.
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Fig. 3.6 Extended causal requirement of V1 generalizes to visuotactile side detection. a Schematic
of the visuotactile two-sided detection task in which mice reported the side of visual and/or tactile
stimulation. b Psychometric fits for visual and tactile detection for each mouse trained in the UST
and MST version of the task. Same conventions as in Fig. 3.1 c-e, with the x-axis running left for
visual/tactile stimuli presented to the left side and right for visual/tactile stimuli presented to the
right side. Visual and tactile intensities were normalized for rendering purposes. cAverage z-scored
firing rate of responsive V1  neurons during visual (max contrast) and catch trials, split by trial
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outcome. Only neurons from MST mice are shown. The dashed blue line indicates the onset of
optogenetic silencing. Similarly to Task A, contralateral hits elicit more late activity compared to
misses. Also note the weak early transient activity during FA trials (analogously to Task A, see Fig.
3.2e). Shaded area: bootstrapped 95% confidence intervals. dVisual d-prime across V1  inactivation
conditions. Early V1  inactivation (left) impaired the detection performance of contralateral
threshold-level visual stimuli in both UST (ANOVA, n=7 sessions, F(1 ,1 4)=24.57, p=0.000631 8) and
MST (ANOVA, n=6, F(1 ,1 2)=1 7.93, p=0.0023), without effect on ipsilateral threshold-level stimuli
nor contralateral maximum-level stimuli. Late silencing (right) only affected detection
performance of contralateral threshold stimuli in MST mice (ANOVA, n=7 sessions, F(1 ,1 4)=45.1 4,
p=0.000036), but not in UST mice (ANOVA, n=7, F(1 ,1 4)=2.1 5, p=0.1 64). **p<0.01 ,***p<0.001 .
Each corrected for 4 multiple comparisons (Bonferroni-Holm). Errorbars denote inter-quartile
range. e Reduction in d-prime by late silencing correlated with the median reaction time on
corresponding control trials (ANOVA, n=30 conditions, F(1 ,26)=9.785, p=0.00427, r2=0.7056).
Each dot represents a session.

Population decorrelation during hit trials precedes and is locked to reaction time

The late report-related wave of activity during visual hits (Fig. 3.2e, Fig. 3.6c) likely arises
through an interplay of higher-order areas that feed back to V1 , possibly including
premotor or other frontal areas (Allen et al., 201 7b; Musall et al., 201 9; Salkoff et al., 2020;
Zagha et al., 201 3). The timing of this wave predicts the behavioral effects of late V1
inactivation, but the underlying mechanism governing the sculpting of a behavioral
decision remains unclear. One possibility is that late activity is predominantly related to
movement variables, coded orthogonally to sensory representations from a population
perspective (Stringer et al., 201 9). To investigate this, we further explored the properties of
late activity. First, we tested whether the extended causal requirement of V1  was related to
changes in the fidelity of sensory processing, as indexed by orientation decoding. For the
audiovisual change detection task, we observed that, in line with the overall neuronal
population (Fig. 3.2), orientation-selective neurons also showed a late hit-modulation of
firing rate (Fig. 3.7a) and examined the effect of report-related activity modulation at a
population level by training a random forest decoder to decode post-change grating
orientation from V1  population activity. Orientation decoding was possible for hundreds of
milliseconds after the orientation change with comparable performance across the three
task versions (Fig. 3.7b). This suggests that in all visual trial types (regardless of task
contingencies) information regarding the orientation of the stimulus was similarly present
and that the extended requirement of V1  could rather be due to the interaction of this
representation with the rest of the cortical circuit. Correlated firing rate fluctuations that
are unrelated to signal coding (noise correlations – NCs) can impact information coding in
populations of neurons (Kohn et al., 201 6; Montijn et al., 201 6; Zohary et al., 1 994). NCs
decrease as a function of various conditions, for instance when animals become experts at
change detection (Ni et al., 201 8) or through attention (Cohen and Maunsell, 2009). We
computed pairwise firing rate fluctuations over time for visual hits and misses. During
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Fig. 3.7 Onset of report-related activity in task A and drop in noise correlations predict effects of
late silencing. a Average spiking rate for all orientation-selective neurons for preferred and non-
preferred orientations split by hits and misses (UST and MST neurons combined; task A). b
Orientation decoding performance over time. Right panel: decoding performance increased post-
stim (0 to +500 ms) versus pre-stim (-500 to 0 ms; n=1 1  sessions, cohorts combined, ANOVA,
F(1 ,1 7)=44.76, p= 4.1 x1 0-6) and increased in individual sessions from all cohorts (colored dots). c
Change in noise correlation (NC) relative to baseline (200 to 1 000ms compared to baseline -500 to
0 ms) for visual trials split by choice and cohort (for auditory trials, see Supplementary Fig. 3.9a).
Boxplots show the median and interquartile range (box limits) and 0.5 x interquartile range
(whiskers). Noise correlations decreased only during hits in UST and MST mice (ANOVA, UST, n=
1 930 pairs, F(1 ,3856)=82.44, p<1 x1 0-1 9; MST n=1 3972, F(1 ,281 88)=1 42.96, p<1 x1 0-33). Misses in
NE mice were associated with a slight increase in noise correlations (n=2904 pairs,
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F(1 ,5805)=1 4.67, p<0.001 ). d Reaction time distributions for visual hits in UST and MST cohorts
and tertile ranges. e1 Noise correlations over time with respect to baseline, either aligned to
stimulus change (left) or first lick (right). Horizontal dashed lines indicate for each tertile the
threshold for each tertile for the onset of the drop in NCs (below 2 standard deviations of the
baseline; -500 to 0 ms) and this onset is highlighted with colored arrows. Note how noise
correlations (aligned to stimulus change) drop first in fast trials, and progressively later in medium
and slow trials. Right panels show that, when aligning to lick onset, the drop in noise correlations
precedes reaction times by a similar lag, independent of reaction time tertile. e2 Same as (e1), but
for MST mice. f Reaction time and moment of decorrelation were significantly correlated (Pearson
correlation, n=6, r=0.960, p=0.002). Scatterplot shows median reaction time and earliest time point
of decorrelation for each tertile in the two visually trained cohorts. g Average Z-scored firing rates
just before photostimulation (1 00-200 ms) were higher if the trial resulted in a visual hit rather
than a miss in UST mice (Thr: F(1 ,1 56)=1 0.1 6, p=0.002; Max: F(1 ,1 52)=5.66, p=0.01 9; ANOVA).
hSame as (g), but for MST mice. Firing rates just before photostimulation were higher for hits than
misses only for threshold visual changes (F(1 ,268)=1 3.1 9, p=0.001 ), but not maximal changes
(F(1 ,254)=0.59, p=0.44). i Noise correlations for visual hit and miss trials before photostimulation
onset (grouped across UST and MST cohorts and saliency levels). Black bar on top indicates time
bins with a significantly different NCs between hits and misses (p < 0.05). Throughout the figure,
lines and shading are mean ± SEM.

baseline (-500 to 0 ms) NC values were comparable to the literature (Cohen and Kohn,
201 1 ; Ecker et al., 201 0; Hansen et al., 201 2; Meijer et al., 2020) (0.063 ± 0.1 4 std) and
decreased after stimulus change only during hits in UST and MST but not NE mice (Fig.
3.7c, Supplementary Fig. 3.9a). To investigate whether the onset of the decorrelation was
related to reaction time, we split all visual hits from V1  recording sessions into three tertiles
based on reaction time (Fig. 3.7d). Similar to behavioral data without recordings (Fig.
3.1 h), UST mice reacted faster than MST mice (p=0.0041 , Wilcoxon rank sum test). We
quantified the earliest time-point where the drop in NCs reached significance (relative to
baseline) for each tertile for UST and MST mice. NCs decreased at a latency that depended
on reaction time, with the drop in NCs occurring later on slow compared to fast trials (Fig.
3.7e). The latency of the decrease in NCs and reaction time were significantly correlated
(Fig. 3.7f), suggesting that population decorrelation is time-locked to reaction time.
Indeed, noise correlations relative to the first lick (see Methods) dropped just preceding
this first lick, irrespective of reaction time (Fig. 3.7e right part, Supplementary Fig. 3.9b),
with the strongest decrease for visual hits in UST and MST mice and no decrease in
surrogate hits in NE mice (Supplementary Fig. 3.9c). Overall, similarly to the onset of late,
report-related activity, a late drop in NCs also precedes and is time locked to perceptual
report.

Activity level and decorrelation predict the effect of late silencing

If the late-onset increase in spiking activity and drop in NCs were related to perceptual
report, one would expect that the variability in the behavioral effect of silencing (i.e.
whether V1  inactivation was followed by a hit or miss) could be explained at the single-trial
level by whether this drop had already occurred at the time of photostimulation. We
therefore focused on V1  activity during visual trials just before late inactivation started
(n=230 cells), and tested whether the report-related firing-rate modulation and drop in
NCs had both already occurred before 200 ms in hits but not misses. Indeed, hits were
associated with increased activity just before photostimulation started (1 00-200 ms after
stimulus onset) across levels of stimulus change and task versions (Fig. 3.7g, h). Similarly,
NCs showed distinct profiles for hits and misses (Fig. 3.7i) and decreased just before
silencing onset during hits but not misses. Surprisingly, NCs were higher just before and
after stimulus change on hit trials (-1 25 to +25 ms around stimulus change), in contrast
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with (Beaman et al., 201 7). Overall, these results show that increased firing rates, and the
temporally coinciding drop of NCs in V1 , correlate with and predict sensory report (Fig.
3.8).

Fig. 3.8 Schematic summary of results.
Increased task demands (in our tasks
imposed by multisensory requirements)
delay the onset of the late report-related
wave of activity and drop in noise
correlations, and extend the causal
involvement of V1 . Jointly, these
processes predict the behavioral effect of
late V1  inactivation on visual detection,
and whether a trial is going to be a hit or
a miss.

Discussion
In this study, we investigated the nature and function of late, recurrent activity in V1  in
perceptual decision-making. An increase in multisensory task demands delayed behavioral
decisions and extended the temporal window in which V1  was causally involved in
determining perceptual report, given the same visual stimulus. As animals in the MST tasks
were trained to process behaviorally relevant signals in two sensory modalities rather than
one, longer reaction times (compared to UST tasks) are likely needed to integrate and
compare information from distinct sensory modalities, also to assess which of two
modalities is most likely to present an externally (as opposed to self-) induced sensory
change. In particular, sensory selection was previously shown to affect neuronal processing
already at the level of primary sensory cortices (Lee et al., 201 6), via a thalamocortical
feedback loop (Wimmer et al., 201 5). Similarly, in our tasks the detection of a behaviorally
relevant signal might modify how a given sensory modality is routed and processed (Meijer
et al., 201 9), leading to an extended requirement for V1  in multisensory contexts.
Furthermore, in our experiment, a specific visual stimulus under conditions of low saliency
(i.e., a small change in grating orientation) required more time to determine whether there
was a change than in the case of high saliency (Fig. 3.1 h, 3.4f). Therefore, our results may
not be specific to multisensory contexts (Fig. 3.5j). Indeed, increased cognitive demands
(implemented in terms of memory-dependent vs. visually-guided navigation) were shown
to broaden the contribution of dorsal cortical areas to perceptual decision-making beyond
V1 (Pinto et al., 201 9). In conditions of high task demands, these and the present results
suggest that higher-order cortices may need to rely on the output of V1  for longer temporal
windows compared to simpler (e.g., purely visually guided) tasks. Importantly, we obtained
similar results in two completely independent experimental groups (Task A and B). This
further supports the existence of a link between task demands and temporal extension of
V1  requirement.

We found modest differences in onset latencies and orientation coding of visually evoked
V1  responses across task contingencies and cohorts, suggesting that the dynamics of
bottom-up, feedforward processing are mostly conserved. In contrast, striking differences
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were found in the late phase of V1  activity, and particularly in the behavioral consequences
of late optogenetic inactivation. Previous studies in humans and non-human primates
showed that attention-related activity in V1 , similarly to report-related activity, emerges in
a late phase of V1  sensory-evoked responses as a consequence of top-down modulation
(Boehler et al., 2009; Martínez et al., 1 999; Mehta et al., 2000; Noesselt et al., 2002; Supèr
et al., 2001 ). A potential role of attention-related V1  activity in perceptual decision-making
– and not only for processing visual stimuli – was also suggested (Silvanto et al., 2005).
Report-related late activity is also thought to arise from recurrent feedback emitted by
higher-order cortices (Pennartz et al., 201 9), in agreement with the predominance of
report-related coding in deeper cortical layers (Fig. 3.4c, see also Fig. 3.2f). In our
experiments, silencing late V1  activity abolished the detection of orientation changes and
contralateral stimuli in conditions of high cognitive demands (and consequently long
reaction time), as is the case when having to process multiple sensory modalities
simultaneously. This demonstrates a causal role of late V1  activity in perceptual decision
making which is independent of scene complexity (cf. (Kirchberger et al., 2021 )). However,
this result is in apparent conflict with recent studies, which showed that late inactivation of
V1  did not affect perceptual decisions (Resulaj et al., 201 8), unless stimuli to be processed
became more complex (Kirchberger et al., 2021 ). A possible explanation lies in the fact that,
for relatively simple tasks, the window of temporal involvement of V1  in perceptual
decision making might overlap with early, sensory-evoked activity. In line with this, the
effectiveness of late inactivation was most prominent for low-saliency stimuli in MST mice
and linearly scaled with reaction time (Fig. 3.5j, Fig. 3.6e). The only exception was the
detection of high contrast stimuli in MST (but also UST) mice in task B, which was affected
neither by early nor late V1  silencing (Fig. 3.6d, e). This suggests that subcortical structures
(e.g. superior colliculus) may suffice to localize highly salient stimuli (Krauzlis et al., 201 8)
in task B (in contrast to task A, which requires detecting an orientation change), although
we cannot fully exclude that portions of V1 were not completely inactivated. Furthermore,
it is unlikely that late V1  silencing generally impaired cortical network processing (Otchy
et al., 201 5), as it did not affect ipsilateral visual detection in the visuotactile detection task
(task B; Fig. 3.6), nor tactile or auditory performance (Supplementary Fig. 3.6b,
Supplementary Fig. 3.8d). A final point relates to the increase in FAs following inactivation
of late V1  activity in Task A (Fig. 3.5f, Supplementary Fig. 3.6f), which might suggest a
different pathway for the observed behavioral effects. First, the criterion parameter of the
psychometric model indicated that the behavioral effect of late V1  inactivation was not
driven by this increase in FAs. Second, no increase in FAs was found in task B, which
indicates that this increase may be specific to task A, in which mice were trained to react to
any change in visual stimuli. Indeed, inactivation of V1 might be interpreted as a change in
visual scene or view, as indicated by the fact that V1  inactivation did not increase FAs
during auditory trials; moreover, no increase in FAs was observed in the control
inactivation of S1  (Supplementary Fig. 3.7).

We optogenetically silenced both sensory and report-related components of V1  activity,
which are jointly present in the late window (Fig. 3.3c). Importantly, late V1  inactivation
in the absence of an early sensory-related component (e.g. ipsilateral visual stimuli in task
B, or non-visual hit trials) did not impair behavioral responses, in agreement with a recent
study suggesting that the report-related component alone is not sufficient for perceptual
task performance (Kirchberger et al., 2021 ; Zatka-Haas et al., 2021 ). However, the question
remains how sensory-evoked and report-related activity are related to each other during
the late phase (Zatka-Haas et al., 2021 ). On the one hand, increased task demands may
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prolong sensory processing of the visual stimulus, or at least the time downstream regions
need to sample the ongoing flow of V1  activity to gather sufficient evidence on visual
stimulus change (Brody and Hanks, 201 6; Hanks et al., 201 5). On the other hand, recurrent
interactions between visual cortex and connected regions during late windows may jointly
influence sensory representation, in line with the predictive processing framework
(Leinweber et al., 201 7; Pennartz et al., 201 9; Rao and Ballard, 1 999). In other words, in
conditions requiring extended processing time, V1  and downstream regions need to
interact for longer periods to jointly construct a behaviorally conclusive representation of
the modality-specific change (task A) or the side of stimulus presentation (task B). The co-
occurring increase in firing rate and drop in NCs that precede reaction time in hit trials
likely originates in the pre-motor cortex, as previously suggested (Allen et al., 201 7b).
However, the question remains whether the behavioral effect of late V1  inactivation is due
to a prolonged window during which downstream regions process information coming
from V1 , or rather if the late-onset report-related activity and the related drop in NCs
recursively interact with ongoing sensory processing (Leinweber et al., 201 7; Schneider
and Mooney, 201 8; Zagha et al., 201 3) to shape perceptual decision making. Further
experiments will be required to fully understand the mechanisms linking late V1  activity to
perceptual report.

In conclusion, our results show that, although all sensory information that is theoretically
required to perform a task is available in V1  shortly after stimulus onset, transforming such
sensory inputs into a perceptual representation requires substantial recurrent interplay
between cortical areas, which is temporally extended by factors increasing task demands
(such as multisensory interactions). Our results thus dispute the classical picture of
perceptual decision making: late-onset activity in primary visual cortex, which primarily
stems from cortico-cortical recurrent interactions (Kirchberger et al., 2021 ; Li et al., 201 3;
Lien and Scanziani, 201 3), is not simply involved in relaying, refining, and modulating the
processing of complex visual stimuli, but also provides a causally relevant temporal window
for perceptual decision-making.

Methods
Lead contact

Further information and requests for resources and reagents should be directed to and will
be fulfilled by the lead contact, Umberto Olcese (u.olcese@uva.nl).

Materials availability

The study did not generate any unique reagents.

Experimental subjects

All animal experiments were performed according to national and institutional regulations.
The experimental protocol was approved by the Dutch Commission for Animal
Experiments and by the Animal Welfare Body of the University of Amsterdam. We used
two transgenic mouse lines: PVcre (B6;1 29P2-Pvalbtm1 (cre)Arbr/J, RRID:
IMSR_JAX:008069) and F1  offspring of this PVcre line and Ai9-TdTomato cre reporter
mice (Gt(ROSA)26Sortm9(CAG-tdTomato)Hze RRID: ISMR_JAX 007909). A total of 49 male mice
were used for this study:
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• Task A: 28 mice (NE group: 7 mice, UST group: 4 mice, MST group: 1 7 mice)

• Task B: 1 2 mice (UST group: 4 mice, MST group: 8 mice)

Littermates were always assigned to the same experimental group. Mice in our colony are
backcrossed to C57BL/6J wild-type mice from Jackson Laboratories every 1 0 generations.
Mice were at least 8 weeks of age at the start of experiments. Mice were group-housed in a
pathogen-free facility under a reversed day-night schedule (lights were switched off at 8:00
and back on at 20:00). All experimental procedures were performed during the dark period.
Temperature in the housing facility was maintained between 1 9.5 and 23.5 C, and humidity
was kept in a range between 45 and 65%. This study did not involve randomization or
blinding. We did not predetermine the sample size. Some subjects were unable to
successfully learn to make decisions based on both modalities (MST task versions) within
2 months and were excluded from further experiments. Although experiments were
performed in male mice only, recent studies suggest that no difference should be expected
in female mice as concerns the neuron-level mechanisms of perceptual decision making –
see e.g. (Kirchberger et al., 2021 ; Steinmetz et al., 201 9).

Head-bar surgery

Before the start of any experiments, mice were implanted with a headbar to allow head-
fixation. Mice were subcutaneously injected with the analgesic buprenorphine (0.025
mg/kg) and maintained under isoflurane anesthesia (induction at 3%, maintenance at 1 .5–
2%) during surgery. The skull was exposed and one of two types of custom-made titanium
circular head-bars with a recording chamber (version 1 : inner diameter 5 mm, version 2:
inner diameter 1 0 mm) was positioned over the exposed skull to include V1  and attached
using C&B Super-Bond (Sun Medical, Japan) and dental cement. For task A in which visual
stimuli were centrally presented binocular V1  was targeted based on the following
coordinates (relative to lambda): AP 0.0, ML +/- 3.0 (Fong et al., 201 6). Whereas
coordinates sufficed for task A, for task B, in which lateralized visual stimuli were used, V1
was targeted using intrinsic optical imaging (see below) to localize the retinotopic region of
V1  corresponding to the region of visual space in which the lateralized visual stimuli were
presented. The skin surrounding the implant was covered using tissue adhesive (3M
Vetbond, Maplewood, MN, United States) to prevent post-surgical infections. The
recording chamber was covered with silicon elastomer (Picodent Twinsil). Mice were
allowed to recover for 2-7 days after implantation, then habituated to handling and head-
fixation before starting on the training procedure.

Behavioral training

Mice were subjected to a water restriction schedule and minimum weight was kept above
85% of their average weight between P60-P90. They typically earned their daily ration of
liquid by performing the behavioral task but received a supplement when the earned
amount was below a minimum of 0.025 ml/g body weight per 24h. Mice received ad libitum
food.

Mice were head-fixed in a custom-built headbar holder in a dark and sound-attenuated
cabinet. The body of the mouse was put in a small tube to limit body movements. The task
was controlled in Octave (GNU Octave 4.x) interfacing with Arduino microcontroller
boards (Arduino Uno, with code compiled in Arduino IDE 1 .0.8). Licks were detected by
capacitance-based or piezo-electric-based detectors. Upon correct licking, i.e. in hit trials,
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5-8 μl of liquid reward (infant formula) was delivered immediately using gravitational force
and solenoid pinch valves (Biochem Fluidics). Reward volume was calibrated biweekly to
prevent lateralized response bias due to unequal reward size.

Behavioral task A: Audiovisual Change Detection

Auditory and visual stimuli were continuously presented throughout a behavioral session.
During visual trials a feature changed (the orientation of a drifting grating), after which the
visual display of this altered feature continued (post-change orientation) until the next
visual change, and similarly for the auditory stimuli (post-change frequency).

Visual Stimuli

Visual stimuli consisted of full-field drifting square-wave gratings that were continuously
presented with a 60 Hz refresh rate on an 1 8.5-inch monitor positioned at a straight angle
with the body axis from the mouse at 21  cm from the eyes. Gratings were presented with a
temporal frequency of 1 .5 Hz and spatial frequency of 0.08 cycles per degree at 70%
contrast and gamma-corrected. In trials with a visual change the orientation of the drifting
grating was instantaneously changed (e.g. from 90˚ to 1 20˚) while preserving the phase.
The degree of orientation change determined the visual saliency and was varied across
experimental conditions.

Auditory Stimuli

Each auditory stimulus was a combination of five pure tones at harmonic frequencies. It
was composed mainly of a center tone, as well as two lower and two higher harmonics
(octaves below and above the center tone). If f0 is the center tone: f-2 = ¼*f0, f-1 = ½*f0, f0 =

f0; f+1 = 2*f0; f+2 = 4*f0. All frequencies were expressed in scientific pitch as powers of 2 with
the center tones spanning from 21 3 Hz (=8372 Hz) to 21 4 Hz (=1 6744 Hz). An example
stimulus, 21 3.5 (named by center tone), was therefore composed of five pure tones of 21 1 .5,
21 2.5, 21 3.5, 21 4.5, and 21 5.5 Hz. The weight with which each tone was present was taken from
a Gaussian distribution across all tones for all stimuli, centered at 21 3.5 (=1 1 585 Hz).
Because of this fixed weight distribution, stimuli with higher center tone frequency have
decreasing weights for higher harmonics and increasing weights for lower harmonics.
Stimuli with higher center frequency are thus increasingly made up of lower frequency
components to the point of arriving at the starting stimulus (see also Supplementary Figure
3.1 ). This auditory stimulus design with harmonics and fixed weights was inspired by the
Shepard tone illusion (Shepard, 1 964). However, in contrast to this illusion, our stimuli
were static and not sweeping across frequencies, and the original illusory aspect of a tone
ever-increasing (or decreasing) in pitch was not exploited. The primary reason for this
auditory stimulus design was the circular nature of the stimulus set, which mirrored the
visual stimulus set with drifting gratings in all orientations.

During auditory trials, one stimulus was changed instantaneously to another, resulting in
a shift in spectral power to five new frequencies. Auditory changes were expressed as partial
octaves, with ½ octave maximally salient and the minimal change used was 1 /256 partial
octave. The degree of frequency/octave change determined the auditory saliency and was
varied across experimental conditions. During auditory stimulus changes, the phase across
all tones was preserved. Stimuli were presented with a sampling rate of 1 92 kHz. Stimuli
were high-pass filtered (Beyma F1 00, Crossover Frequency 5-7 kHz) and delivered through
two bullet tweeters (300 Watt) directly below the screen. Note that this high-pass filter
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eliminated the lowest frequency components of the Shepard stimuli, and left the mid and
high frequency components intact (those that span the sensitive part of the mouse hearing
range, 8-1 6 kHz). This was done to prevent damage to the specialized tweeters that we used,
but did not affect the animals’ ability to report even very small differences between
subsequently presented Shepard tones. Sound pressure level was calibrated at the position
of the mouse and volume was adjusted per mouse to the minimum volume that maximized
performance (average ±70 dB).

In an earlier cohort of mice trained on task A (N=1 3/28), the Shepard tones (1 ) were
expressed in absolute Hz (e.g. an auditory trial with Δ2kHz changed from 8 kHz to 1 0 kHz),
(2) had 9 harmonics, (3) were presented with a sampling rate of 48 kHz and (4) were not
phase-preserved during a change in auditory frequency. We observed no qualitative or
quantitative differences in both neural and behavioral results between the cohorts
(behavior between cohorts is compared in Supplementary Fig. 3.2). The horizontal axes
were normalized in Fig. 3.1  to accommodate all mice.

With both auditory and visual stimulus sets being circular, the direction of change
(clockwise or anticlockwise) was behaviorally irrelevant (isotropy), and the only relevant
dimension was the amount of change. Given the use of the full auditory spectrum and full-
field visual gratings, stimuli in both modalities allowed change detection based on feature
selectivity while recruiting neurons across the tonotopic organization of auditory
cortex(Issa et al., 201 4) and across the retinotopic map of visual cortex - which in our case
benefitted both neural data acquisition and interventions.

Versions of Task A

Animals were assigned to one of three versions of a change detection task (NE, UST, MST)
in which the visual and auditory stimuli were identical and only the reward contingencies
varied. As we performed additional experiments with animals from the MST cohort, this
resulted in a higher number of animals in the MST cohort.

NE: Noncontingent exposure (N=7/28 animals) – In this version, neither modality was
associated with reward availability. Both the auditory and visual stimuli were continuously
presented with the same distribution of trial types and temporal statistics as the
multisensory version (see below). To compare intermittent licks, rewards, and stimuli
across task versions, we sought to achieve similar rates of licking and reward delivery.
Therefore, mice in this version could obtain rewards in a hidden ‘response window’ (a 1 500
ms time interval in which either left or right licks could be emitted to acquire reward; same
duration as MST, below). This response window was temporally decorrelated from the
stimuli. Mice thus licked spontaneously at the two spouts and received occasional rewards.
Mice were exposed 2-5 days to this behavioral task before any experiments.

UST: Unisensory version (N=4/28 animals) – In this version, only visual change was
associated with reward availability. Mice were trained to respond to the visual changes only.
Continuous auditory stimuli and changes were presented throughout training and
recording sessions with the same statistics as the multisensory version, but were not
associated with reward and were temporally decorrelated from the task-relevant visual
trials. Given that only one side was rewarded in this version, spontaneous licking to this
side had a higher probability of being rewarded and therefore the response window was
shortened to 1 000 ms (i.e., in this window, licks could be produced to acquire reward).
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MST: Multisensory version (N=1 7/28 animals) – In this version visual and auditory
change were both associated with reward availability. Mice were trained to respond in a
lateralized manner to each modality: lick to one side to report visual changes, to the other
side in case of auditory changes (modality-side pairing was counterbalanced across mice).
Therefore, in this version, subjects had to simultaneously monitor both the auditory and
visual modality, detect changes in a feature and discriminate the modality in which the
change occurred. In other words, mice were required to identify the sensory modality in
which a change occurred.

Training stages

For each trained modality (vision in UST, vision and audition in MST), training occurred
in steps. In the first stage learning was facilitated by (1 ) only including the easiest trial type
(maximally salient trials: 90 degrees orientation change for the visual domain(Goltstein et
al., 201 3) and 4kHz or ½ octave – in earlier and later cohorts, respectively – for the
auditory domain), (2) additional instantaneous changes to increase saliency, (3) a passive
reward on the correct side if the animal did not respond within 900 ms, and (4) the
opportunity to correct after choosing the incorrect side. These facilitating conditions were
phased out throughout the training procedure and trials of varying lower saliency were
introduced. Animals were trained until their psychometric curve in the target modalities
reached a plateau. For the MST version, animals were first trained in one modality, then
the other, after which they were combined (the order of modalities was counterbalanced
across mice).

Trials types were pseudorandomly presented (block-shuffled per 1 0 trials, 1 0% of trials
were catch trials, thus without a stimulus change, 41 % visual trials, 41 % auditory trials, 8%
multimodal trials - see below). The inter-trial interval was taken randomly from an
exponential distribution with a mean of six seconds (minimum 3 and maximum 20
seconds). Directly after a stimulus change, a response window of 1 500 ms followed in which
either left or right licks could be emitted to acquire a reward. Licks during the first 1 00 ms
were not counted as these occurred too early to be considered part of a stimulus-response
sequence. The first lick after this ‘grace period’ was registered as the animal’s choice and
correct licks were directly rewarded. To counter any bias in MST mice, if the fraction of
licks to one spout out of all licks in the last 1 0 trials was above 90%, the next trial was
selected with a 95% probability to be of the other modality. As visual and auditory feature
changes were associated with conflicting motor actions (only in the multisensory version
of the task), a multimodal trial (simultaneous audiovisual change) would present the
animal with conflicting signals. We introduced these conflict trials in a subset of sessions,
but these trials were not included in the current analyses.

For each trained animal (before any recordings) we implemented three behavioral sessions
in which we presented five levels of auditory and visual saliency that spanned the
perceptual range to establish the perceptual sensitivity of each mouse. We fit the
concatenated data of these three sessions with a cumulative normal distribution per
modality with four free parameters (Meijer et al., 201 8):( ) = γ + (1 − γ − λ) 12 1 + erf x − μσ√2 (Eq. 3.1)
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Here, γ describes the false alarm rate (spontaneous licks during catch trials), λ the lapse
rate (misses at maximal saliency), μ the mean (perceptual threshold), and σ the standard
deviation (sensitivity to variations of stimulus intensity). Having established the
psychometric function per mouse, we took four levels of saliency per modality at fixed
points along the psychometric function: subthreshold (μ-σ; sub), threshold (μ; thr),
suprathreshold (μ+σ; sup), and maximal saliency (max). The visual threshold ranged from
4-1 2 degrees, and the auditory threshold from 1 0-1 00 Hz (frequency version) or 1 /64 -
1 /1 6 partial octave (octave version) (Supplementary Fig. 3.2). This analysis was purely
performed to select stimulus intensities of equal subjective saliency across mice for the
experiments. All other analyses were based on fitting the behavioral data with a
psychometric signal detection model (see below).

In recording sessions, we limited conditions to sample sufficient trials per modality x
feature x saliency x choice combination. First, we only used two levels of change: threshold
and maximal saliency. For NE mice and auditory conditions in UST mice, we used
threshold values that matched those from trained animals. Second, we only used four
orientations or tones. Specifically, this means that stimuli jumped between A, B, C, and D,
where distance AB and CD are around threshold and distance AC and BD are maximal. An
example stimulus set for a mouse with a visual threshold of 7˚ and an auditory threshold
of 1 /32 octave was therefore for the visual domain: A=1 00˚, B=1 07˚, C=1 90˚, D=1 97˚,
and for the auditory domain (in Hz): A=21 3.25, B=21 3.25+1 /32, C=21 3.75, D=21 3.75+1 /32.

Behavioral task B: Visuotactile Side Detection

As in paradigm A, mice were trained in on one of two versions of a visuotactile detection
task: a multisensory version, where both visual and tactile modalities were informative on
the side that needed to be chosen to acquire reward (MST) and a unisensory version, where
the tactile modality was present as well, but only the visual modality was informative (UST).

Stimuli used

Visual Stimuli

Visual stimuli consisted of square-wave drifting gratings, with a temporal frequency of 1 .5
Hz, a spatial frequency of 0.025 cycles per degree and 30 degrees orientation. The contrast
of the gratings was modulated per trial to control detection difficulty. Visual stimuli were
generated in Octave using Psychtoolbox3 and were presented monocularly at >24 degrees
from azimuth on each side(Heesy, 2004) with a gamma-corrected 1 8.5-inch monitor at a
frame rate of 60 Hz and a distance to the eye of 1 8 cm.

Tactile Stimuli

Tactile stimuli consisted of a single deflection of the whisker pad using a piezoelectric
bender (PL1 28.1 0, Physik Instrumente) coupled to a 5 cm long pipette ending on a 5x5 mm
patch of Velcro. A voltage driver (E650, Physik Instrumente) and an RC filter were used to
produce a backward deflection of the bender with an exponentially decaying speed (τ=72
ms) during 360 ms, followed by a forward deflection with the same characteristics. The
amplitude of the deflection was modulated to control detection difficulty. Elicited whisker
deflection angles ranged from 0 to 3.6 degrees. For both visual and tactile stimuli, stimulus
intensity was adjusted individually to match the desired saliency.
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Versions of task B:

UST: Unisensory version

Visual and/or tactile stimuli were presented to either the right or left side of the animal. To
obtain a reward, mice had to detect the side where the visual stimulus was presented and
lick the spout at the corresponding side. In this version, only the visual modality was
informative on reward availability. Tactile stimuli were delivered but not associated with
reward and tactile and visual stimulus sides were decorrelated. The inter-trial interval was
drawn from an exponential probability distribution with a mean of 4 seconds (minimum 3,
maximum 7; with a 22% chance of catch trial (no stimulus, no reward) and a maximum of
two catch trials in a row, a mouse could wait up to 21  seconds before another stimulus was
displayed). Visual and/or tactile stimuli were presented for 1  second. In a multisensory trial
(not analyzed here), the tactile stimulus was presented with a lag of 70 ms after the visual
stimulus onset (similar to (Olcese et al., 201 3)). Licks were only rewarded in the interval of
1 40-1 000 ms after stimulus onset. While a correct lick triggered reward delivery, an
incorrect lick (i.e., to the wrong side) terminated the trial and aborted stimulus
presentation. Trials were pseudo-randomly generated by blocks of 60 with 22% catch trials,
1 2% tactile-only trials, 53% visual-only trials, and 1 3% multisensory trials.

MST: Multisensory version

In this version, both visual and tactile modalities were informative on reward availability.
In multisensory trials, visual and tactile stimuli were presented on the same side. Overall,
task B required the mouse to follow an Inclusive-Or rule (lick to the side with either a visual
or tactile stimulus, or a compound stimulus in both modalities). During training, mice first
learned to detect tactile stimuli. Multisensory trials were then added and finally, visual-
only trials were introduced so that mice could eventually detect visual and/or tactile
modalities. Since tactile trials were rewarded, to keep the reward/no-reward balance, we
increased the number of tactile trials: 25% catch, 25% visual-only, 25% tactile-only, 25%
multisensory. Otherwise, both unisensory and multisensory task versions had the same
parameters.

The noncontingent exposure (NE) version was not implemented for task B.

Imaging, Optogenetics, and Electrophysiology

Intrinsic Optical Imaging

To localize the primary visual cortex in task B experiments, we performed intrinsic optical
imaging (IOI) under lightly anesthetized conditions (0.7-1 .2% isoflurane). A vasculature
image was acquired under white light before starting the imaging session. During IOI, the
cortex was illuminated with 630 nm light and images were acquired using a CCD camera
connected with a frame grabber (Imager 3001 , Optical Imaging Inc, Germantown, NY,
USA), defocused about 500 µm below the pial surface. Visual stimulation consisted of
square-wave drifting gratings (duration 8 s, 2 Hz, 0.05 cycles/deg, 1 00% contrast)
presented in the right visual hemifield. All image frames obtained during stimulus
presentations were divided by the average of the first 1 0 frames acquired just before
stimulus presentation. The target area was outlined as the region with visually-evoked
decrease in reflectance, using custom-made software in MATLAB (Olcese et al., 201 3).

Viral injection
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We performed viral injections and optogenetic experiments in a total of 25 mice,
representing a subset of the full experimental cohort (Task A: n=4/4 UST, n=9/1 7 MST;
Task B: n=4/4 UST, n=4/8 MST). Mice were subcutaneously injected with the analgesic
buprenorphine (0.025 mg/kg) and maintained under isoflurane anesthesia (induction at
3%, maintenance at 1 .5–2%) during surgery. We performed small craniotomies (±1 00 μm)
over V1  using an ultrafine dental drill and inserted a glass pipette backfilled with AAV2.1 -
EF1 a-double floxed-hChR2(H1 34R)-EYFP-WPRE-HGHpA (titer: 7×1 0¹² vg/mL, 20298-
AAV1  Addgene). In total 50 nL was injected in V1  (bilateral binocular V1  for Task A and
unilateral V1  for Task B) at 700 μm and 400 μm below the dura (25 nL per depth) using a
Nanoject pressure injection system (Drummond Scientific Company, USA).

Optogenetics

In a random subset of trials (50% of trials for task A, 25% for task B) photostimulation
started at stimulus onset (early inactivation) or was delayed (late inactivation). For the MST
version of task B, early and late inactivation took place in separate sessions. Late
inactivation occurred after 200 ms in Task A and 240 ms in Task B. Photostimulation
continued until the animal made a choice. We interleaved sessions in which we positioned
the fiber over V1  with control sessions in which we either positioned the optic fiber over
area S1  (where no virus was injected) or at the head-bar. To locally photostimulate V1 , a
473 nm laser (Eksma Optics, DPSS 473nm H300) was connected to one or two fiber-optic
cannulas (ID 200 um, NA 0.48, DORIC lenses) that were positioned directly over the
thinned skull at the area of interest (bilateral V1  for Task A and unilateral V1  in Task B).
Light delivery was controlled by a shutter (Vincent Associates LS6 Uniblitz) with variable
pulse and interpulse duration with an average of 20 Hz and 75% duty cycle (Task A) or with
1 0 ms pulses sequentially interleaved by 20 ms and 30 ms (~72% duty cycle, Task B). The
shutter was located in a sound-insulated box distal from the experimental setup. As we
simultaneously performed extracellular recordings in V1  of all mice, we adjusted laser
power for each animal to the minimum power that maximally inhibited neural activity. This
was commonly 2-1 5 mW at the tip of the each fiber (placed 0.5-2 mm above the cortical
surface) corresponding to an effective 1 .5-5.25 mW/mm2 at the cortical surface (taking the
~75% duty cycle into account), which is below the levels that produce unwanted heating in
tissue (Kirchberger et al., 2021 ; Stujenske et al., 201 5).

To prevent light from reaching the eye of the mouse, the cannulae were sealed with black
tape, leaving only the tip exposed. Furthermore, sessions with optogenetic manipulation
were performed in an environment with ambient blue light. Even though we implemented
these measures, we observed an increase in false alarms in some mice in task A. This
suggests either that mice could perceive the laser, or that our manipulation evoked
perceptual changes that were reported as a trial. We therefore verified (1 ) that our main
effect of late silencing was not explained by a change in criterion (see Behavioral Analysis
Task A), (2) positioned the fiber over uninfected somatosensory cortex (S1 ), and (3)
performed the same optogenetic experiments in a second visuotactile paradigm where we
did not have an increase in False Alarm responses by photoinactivation of V1 . In Task B,
due to a lack of sufficient trials to test optogenetic silencing for all conditions, only the
reported conditions were tested (Visual Contralateral Thr and Max, Visual Ipsilateral Thr,
Tactile Contralateral Thr) as well as Multisensory Contralateral Thr.

Extracellular recordings
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Mice were subcutaneously injected with the analgesic buprenorphine (0.025 mg/kg) and
maintained under isoflurane anesthesia (induction at 3%, maintenance at 1 .5–2%) during
surgery. We performed small (about 200 μm) craniotomies over the areas of interest (up to
6 per animal) using a dental drill. The recording chamber was sealed off with silicon
elastomer and the mice were allowed to recover for 24h.

Extracellular recordings were performed on consecutive days with a maximum of 4 days to
minimize damage to the cortex. Microelectrode silicon probes (NeuroNexus, Ann Arbor,
MI – 4 types of either 32 or 64 channels were used, catalog numbers A1 x32-Poly2-1 0mm-
50s-1 77, A2x1 6-1 0mm-1 00-500-1 77, A4x8-5mm-1 00-200-1 77, A1 x64-Poly2-6mm-23s-
1 60) were slowly inserted in the cortex until all recording sites were in contact with the
tissue. V1  was approached perpendicularly to the cortical surface. The medial prefrontal
cortex, primary auditory cortex, and posterior parietal cortex were also recorded, but data
from these areas were not analyzed here. After insertion, the exposed cortex and skull were
covered with 1 .3-1 .5% agarose in artificial CSF (1 25 mM NaCl, 5 mM KCl, 1 .3 mM MgSO4,
2.0 mM NaH2PO4, 2.5 mM CaCl2, pH 7.3) to prevent drying and to help maintain
mechanical stability. The probe was left in place for at least 1 5 minutes before recording to
allow for tissue stabilization. Electrodes were dipped in DiI (ThermoFisher Scientific)
during the final recording session allowing better post hoc visualization of the electrode
tract. The ground was connected to the head bar and the reference electrode to the agarose
solution. Neurophysiological signals were pre-amplified, bandpass filtered (0.1  Hz to 9
kHz), and acquired continuously at 32 kHz with a Digital Lynx SX 64/1 28 channel system
in combination with the acquisition software Cheetah 5.0 (Neuralynx, Bozeman, MT).

Spike sorting of data acquired during task B was done with custom-made software in
MATLAB, as previously described (Olcese et al., 201 3), and only units having less than 1 %
of their spikes within a 1 .5 ms refractory period were kept. For task A we used Klusta 3.0.1 6
and then manually curated with the Phy GUI (Rossant et al., 201 6) (Phy 1 .0.9). Before spike
sorting the median of the raw trace of nearby channels (within 400 μm) was subtracted to
remove common artifacts. Each candidate single unit was inspected during manual
curation based on its waveform, autocorrelation function, and its firing pattern across
channels and time. Only high-quality single units were included, defined as having (1 ) an
isolation distance higher than 1 0 (cf. (Schmitzer-Torbert et al., 2005)) (2) less than 0.1 %
of their spikes within the refractory period of 1 .5 ms (Bos et al., 201 7; Vinck et al., 201 5b),
(3) spiking present throughout the session. Neurons were deemed stably present if they
had spikes in more than 90 out of 1 00 time bins during the entire session.

Recording depth estimation

The estimation of the laminar depth of the electrodes in V1  was based on three aspects.
First, we computed the power in the 500-5000 Hz range to localize layer 5 with the highest
MUA spiking power (Senzai et al., 201 9). Second, we showed contrast-reversing
checkerboards before each recording session and computed the current source density
profile to estimate layer 4 with the earliest current sink, as previously described (Chapter
2). Lastly, this was aligned with the depth registered when the silicon probes were lowered
from the dura. The granular layer was taken to span from 400 to 550 μm from the dura.

Video monitoring

In Task A, the left eye (ipsilateral to the hemisphere of recording) was illuminated with an
off-axis infrared light source (six infrared LEDs 850 nm) adjusted in intensity and position
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to yield high contrast illumination of both the eye and whisker pad. A frame-grabber
acquired images of 752x582 pixels at 25 frames per second through a near-infrared
monochrome camera (CV-A50 IR, JAI) coupled with a zoom lens (Navitar 50 mm F/2.8
2/3" 1 0MP) that was positioned at approximately 30 centimeters from the mouse.

To extract pupil variables (Meijer et al., 2020; Montijn et al., 201 5) we trained
DeepLabCut(Mathis et al., 201 8) (version 2.1 .1 0) on 300 frames from 1 5 video excerpts of
1 -2 minutes with varying pupil size, illumination, contrast, imaging angle, and task
conditions. We labeled the pupil center and 6 radially symmetric points on the edge of the
pupil. An ellipsoid was fit to these 6 outer points. The pupil center was taken as the center
of the ellipsoid and the pupil area as the ellipsoid area from the fitted ellipse parameters.
Single poorly fit frames were replaced by the running median (1 0 frames). We z-scored the
total session trace.

Histology

At the end of each experiment, mice were overdosed with pentobarbital and perfused (4%
paraformaldehyde in phosphate-buffered saline), and their brains were recovered for
histology to verify viral expression and placement of silicon probes in V1 . We cut coronal
50 µm sections with a vibratome, stained them with DAPI, and imaged the mounted
sections. For flattened cortical sections (e.g. Fig. 3.5b) we first removed subcortical tissue
and flattened the cortical sheet of each hemisphere between glass slides by applying
pressure overnight before sectioning 1 00 µm slices with the vibratome (Lauer et al., 201 8).
For coronal sections, area borders were drawn by aligning and overlaying the reference
section from the atlas(Paxinos and Franklin, 2004). For flattened cortical sections, area
borders were drawn based on cell densities aligned to reference maps (Gămănuţ et al.,
201 8).

We frequently observed a minor reduction in fluorescence at the center of the viral injection
site. Therefore, a potential concern could be that the cortical circuit at the center of the site
could be either affected in function or less responsive to optogenetic inactivation. However,
visual task performance was similar before and after viral injection (d-prime around 1 .5 in
maximal visual saliency control trials; Fig. 3.1 f and 3.5g). Moreover, optogenetic
inactivation was highly effective in silencing pyramidal cell activity and in impairing visual
discrimination for difficult visual trial types during both behavioral tasks (Fig. 3.5g; 3.6d).

Quantification and Statistical Analysis

Data analysis

Unless otherwise stated, all data were analyzed using custom-made software written in
MATLAB (R201 6a, The MathWorks, Natick, MA).

Behavioral analysis - Task A

Sessions were terminated when the animal did not respond for 20 trials and these last 20
trials were discarded from analyses. Sessions in which the hit rate for maximal auditory
and visual changes was below 30% were excluded.

Behavioral response rates in task A were fit with a multi-alternative signal detection model
(Sridharan et al., 201 4). This model extends signal detection theory (Green and Swets,
1 966) and aims to accurately and parsimoniously account for observer behavior in a



Methods

109

detection task with multiple signals. In this model, the decision is based on a bivariate
decision variable whose components encode sensory evidence in each modality. Decision
space is partitioned into three regions (no response: neither evidence is strong enough;
auditory response, and visual response). In a given trial, the observer chooses to report
visual or auditory stimuli if the decision variable exceeds a particular cutoff value, the
‘‘criterion’’ for each signal (the animal’s internal signal threshold for responding, in terms
of signal detection framework). We fit two versions of this model. In sessions with two
levels of saliency (threshold and maximum), we fit the d-prime (d’) and criterion (c) to the
behavioral response rates separately for each stimulus change intensity. This consists of
fitting four free parameters (d’ and c for each modality). In sessions with four or five levels
of saliency per modality, we fit the behavioral response rates by fitting a criterion per
modality and a d-prime for each saliency, which is described by a psychophysical function
(three-parameter hyperbolic function). The d-prime at each saliency level follows from:= ∗ ( + )⁄ (Equation 3.2)
where dmax is the asymptotic d-prime, s50 is the stimulus strength at 50% of the asymptotic
value, n is the slope of the psychometric function and xi is the amount of change. This
consisted of fitting a total of 8 free parameters: dmax, n, s50, and c for each modality. We
refer the reader to Sridharan et al. (201 4) for a detailed description of how the d-prime and
criterion subsequently relate to response rates. Single session fits where visual threshold
was below 1  degree or above 45 degrees were excluded (average threshold ±6 degrees,
n=3/1 79 sessions excluded).

Catch trials during the tasks (in all cohorts) served to measure baseline lick responses. As
there were no stimulus changes during the inter-trial interval (visual and auditory stimuli
continued to be presented throughout the session, similarly to catch trials), we used long
inter-trial intervals to insert additional artificial catch trials during offline analysis to
improve the statistical balance across trial type conditions. We controlled for the temporal
expectation of stimulus change and inserted additional catch trials only at time points
conforming to the original inter-trial interval statistics. These additional catch trials
included both false alarms (i.e. spontaneous licks during inter-trial intervals) and correct
rejections (no spontaneous licks). We further constrained the timing of these false alarms
such that the distribution of their response latencies matched those of hit trials. For
sessions with high false alarm rates, FA trials were subsampled to match the distribution
of hit trials. Note that these additional catch trials only served for analysis purposes and
not for measuring behavioral performance.

After analyzing the effects of early and late V1  silencing on audiovisual change detection on
the full dataset, we focused in a subsequent analysis on the relationship between reaction
time and the effect of late silencing (Fig. 3.5i, j, Supplementary Fig. 3.6d-f). Here, we
focused on sessions in which V1  early silencing was effective (minimum 50% reduction in
d-prime on maximal visual change, 59/81  sessions; results were robust to variations of this
criterion, 25% reduction, r=0.1 99, p=0.049; 75% reduction, r=0.51 1 , p=0.001 ). This
threshold was implemented to test if late silencing was effective specifically within those
sessions in which the optogenetic manipulation demonstrably impaired visual detection
(thus exploiting an internal control).

Behavioral analysis - Task B
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Behavioral data in task B was fit with a multinomial logistic regression(Burgess et al.,
201 7). The probabilities of right choice (pright), left choice (pleft) and no choice (pno-go) were
set by:

log = + ∗ + ∗ (3.3)
log = + ∗ + ∗ (3.4)

Where b is a bias parameter, sL and sR are the sensitivity to stimulus evidence to the left
and right side respectively, cL and cR are the stimulus intensity to the left and right side
respectively (contrast for vision, deflection angle for somatosensation), n is an exponent
parameter between ranging between 0 and 1  to allow for saturation.

The model was fit to individual mice, with all sessions pooled together. However, per
mouse, visual behavior (visual-only trials) and tactile behavior (tactile-only trials) were fit
separately. The model was fit using Matlab’s mnrfit and maximum likelihood estimation.
To quantify behavioral performance, we computed d-prime (d’) as:’ = ’(% ) – ’(% ) (3.5)
Where ϕ’ is the normal inverse cumulative distribution function.

Electrophysiological data processing

To visualize the effect of photostimulation on spiking activity at a single electrode channel
the raw signal was high-pass filtered (500 Hz, 4th order Butterworth filter). To compute
firing rates, spikes (following spike detection and sorting) were binned in 1 0 ms bins and
convolved with a causal Half-Gaussian window with 50 ms standard deviation, unless
stated otherwise. Wherever firing rate was z-scored, the mean was subtracted and divided
by the standard deviation of the baseline period (-1  to -0.2 seconds before stimulus). For
Fig. 3.5d the firing rate was only normalized to the baseline to quantify the relative
reduction in firing rate by optogenetic inhibition. For Fig. 3.7g and 3.7h the standard
deviation of the convolutional window was reduced to 1 0 ms to enhance temporal
resolution. For computing noise correlations the standard deviation of the convolutional
window was increased to 1 00 ms to increase noise correlation estimates. For Fig. 3.6c and
Supplementary Fig. 3.8g, h, neurons with an average z-scored firing rate that exceeded 2
standard deviations at any point during the stimulus epoch of any visual trial condition
were considered responsive and included. If neuronal activity was sampled in less than 3
trials in the relevant conditions they were excluded. Neurons in sessions lacking any of the
compared conditions were excluded.

Encoding model of single neuron firing rates

To quantify single neuron encoding of different task variables, we constructed a kernel-
based Poisson regression model. This encoding model allowed us to model, for single
neurons, the time-dependent effects of all measured variables related to the task and the
animal’s behavior simultaneously on single-trial neuronal activity (Park et al., 201 4;
Runyan et al., 201 7). This approach is particularly useful to disentangle the unique
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contribution of experimenter-controlled task events and self-timed behavioral events to
variability in firing rates across the neuronal population.

Construction - For each neuron, we constructed a design matrix based on five sets of
variables; visual, auditory, hit, movement, and arousal variables. Binary variables (all
except pupil size) were modeled with a series of temporal basis functions (raised cosines)
that spanned the relevant epoch of influence. The number and temporal distribution of
these basis functions were selected to maximize the cross-validated explained variance (see
below). For the sensory predictors, we used two kernels with 1 00 ms standard deviation
that spanned the first 200 ms post-stimulus to capture the early spiking activity and 1 0
kernels with 200 ms standard deviation that spanned from 0 to 2000 ms post-stimulus to
capture the late, sustained response. We found that making a separate predictor set per
combination of orientation x amount of change produced the highest quality fit as it
simultaneously took into account the selectivity of neurons for orientation and saliency.
This therefore resulted in (2 + 1 0 basis functions) x 2 (modalities) x 2 (levels of change) x
2 (grouped post-change features) = 96 predictors. For hit variables we used 1 0 temporal
basis functions with 200 ms standard deviation that spanned from 0 to 2000 ms relative to
stimulus change in hit trials (visual hit, audio hit) and 1 0 predictors that spanned -500 ms
to +1 500 ms relative to reward (20 predictors for hit). For movement variables, we used
three basis functions that spanned -200 to +400ms relative to each lick, split by side (6
predictors). To capture arousal effects, the z-scored pupil area was included in the predictor
set: with original timing and two temporal offsets (-800 ms and -400 ms) to account for the
delayed relationship of brain state to pupil size (e.g. (McGinley et al., 201 5b); this equals 3
predictors). We included one whole-trial variable that scaled with the within-session trial
number. This full model summed up to 1 26 predictors. We compared the performance of
this model to a null model, with one predictor (a random variable). For convenience, all
predictors were normalized to their maximum values before being fed into the model.

Fitting - We fitted the encoding model to each neuron’s activity individually, using the
glmnet package in Matlab (Friedman et al., 201 0) (201 5 version) with elastic-net
regularization and a Poisson link function, which involves setting three hyperparameters.
First, we chose elastic net mixing parameter α = 0.95 to allow for a small number of
uncorrelated informative predictors to be favored. Second, model performance was trained
and tested on separate data with 5-fold cross-validation. Third, to maximally punish
weights without losing model fit quality, regularization parameter lambda was maximized
while keeping the cross-validated error within one standard error of the minimum
(lambda_1 se in glmnet). Because very sparsely firing neurons produced fitting difficulties,
only neurons with a session-average firing rate >0.5 Hz were included.

Evaluation - We quantified the model performance by assessing the 5-fold cross-validated
Explained Variance (EV) by the predicted firing rate based on the random or full model, or
a subset of predictors from the full model. Explained Variance was calculated as:

EV = 1 − var −var( ) (3.6)
where Y is the original firing rate and Ŷ the estimated firing rate. Explained Variance was
computed in two ways. First, we computed EV over all concatenated firing rate bins (over
all single trials; -0.5 to 2.5 seconds relative to stimulus change). Second, we computed EV
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on the concatenated firing rate bins of the average firing rate for five trial-type x choice
conditions that captured most trial counts(Musall et al., 201 9; Runyan et al., 201 7) (85%
of all trials). To compute EV over time we computed the explained variance over all
concatenated time bins at a specific moment relative to stimulus onset.

Decoding single neuron activity

To identify which variables could be decoded from single neurons we used ROC analysis
(Green and Swets, 1 966) and identified how well an external observer could discriminate
variables from the firing rate at single time points. In contrast to the GLM encoding
approach, this analysis is more suited to assess at which timepoint downstream neurons
can discriminate task-relevant variables (e.g. by integrating spike rate over a small time
window), in view of its superior temporal resolution due to the absence of kernel fitting.
We computed the area under the ROC curve (AUC) for the firing rate distributions between
two selections of trials. Each class had to have at least 1 0 trials. AUC values are in the range
of 0 to 1  and were rectified to their corresponding values in the range between 0.5 and 1 .
We investigated three types of coding and for each of these we analyzed threshold change
and maximum change trials separately:

Visual Orientation: We grouped the pairs of post-change orientations that were close to
each other (e.g. A and B oriented at 90 and 97 degrees, see above) and thus compared the
firing rate distributions of A&B versus C&D for threshold and maximal change trials
separately.

Occurrence of visual change: We tested whether single neuron firing rates discriminated
between visual and catch trials.

Hit/miss: To identify significant coding of the detection of a visual stimulus we compared
firing rate distributions within visual trials for hits and misses.

To determine the significance of AUC values at each time bin and for each comparison, we
performed a permutation test by shuffling the class labels across trials 1 ,000 times. If the
unshuffled AUC value exceeded 99% of the shuffled distribution (P < 0.01 ) this was deemed
significant. This yielded an AUC value for each neuron for each time bin for each type of
coding and each of these values its significance by the permutation test. For the Venn
diagram in Fig. 3.4A, neurons were classified as coding if their AUC score was significant
for at least three consecutive time bins (=75 ms, permutation test) during the 0 to 1 000 ms
window after a stimulus change.

To compare coding dynamics across cohorts, we normalized the fraction of significantly
coding neurons by subtracting the baseline fraction (average over -0.5 to 0 seconds) and
dividing by the maximum. Each condition was only normalized to maximum if the fraction
of significantly coding neurons increased at least 1 0% over baseline.

To determine the onset of significant coding we tested when the fraction of coding neurons
increased significantly above a multiple of standard deviations of the coding fraction during
baseline. We report results at a threshold of 2 standard deviations (Zscore > 2), but the
results were robust to variations in threshold (e.g. 1  or 3 standard deviations). To estimate
the reliability of the onset of coding and the relationship of hit/miss coding to reaction time,
we bootstrapped by resampling from the total neuronal population (n=1 000 bootstraps).
To investigate the relationship between the onset of hit/miss coding and reaction time we
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used a linear regression, which revealed a systematic relationship between the timing of
hit/miss coding and reaction time (Fig. 3.4e, f). To estimate by how much hit/miss coding
preceded reaction time we used two measures. First, we fixed the slope of the regression fit
at 1  and found an offset of 278 ms. This was similar across variations of threshold (Z > 1 :
288 ms, Z > 3: 250 ms). Second, for each bootstrap, we computed the onset of hit/miss-
coding according to the fit parameters for the average reaction time, which was on average
266 ms before the reaction time.

Identifying the onset of coding by using the fraction of neurons coding above baseline was
not suitable for individual sessions with low numbers of neurons (e.g. n=1 0 neurons).
Therefore, to estimate the onset of hit/miss coding per session we performed the same AUC
analysis, but now on the averaged firing rate across neurons for each session with at least
1 0 neurons. Similarly, per time bin the significance of hit/miss coding was tested against a
shuffled distribution of trial labels (n=1 000 shuffles). The onset was taken as the first
significant time bin after stimulus onset.

For laminar depth localization of coding dynamics, neurons were binned according to their
recorded depth in 50 μm bins spanning from 0 to 1 1 50 μm below the dura. The fraction of
neurons coding for each variable at this depth was computed for each time point (25 ms
temporal bins). This heatmap was convolved for display purposes with a two-dimensional
Gaussian (standard deviation of 1 .3 bins – temporal and spatial). For statistical
comparison across laminar zones, the fraction of coding neurons was computed for each
session (if at least 1 0 neurons were recorded at this depth to estimate coding fraction
reliably) in supragranular, granular, or infragranular layers (granular layer: 400-550 μm
from dura). As sensory and hit/miss-coding was present in different temporal epochs these
were included for statistical comparison (Orientation 0-1 000 ms, Visual occurrence: 0-200
ms, Hit/miss: 200-1 000 ms, relative to stimulus change).

Population coding analysis

To decode visual stimulus orientation, we departed from the four orientations and grouped
the two pairs of orientations close to each other to obtain a two-class classification problem
(AB vs CD, see above). Decoding was performed on recordings that contained at least 1 5
neurons and in which at least 20 trials per orientation pair were available. We equalized
the number of neurons across sessions by randomly drawing 1 0 neurons from all sessions
with more than 1 0 units. Spikes were binned using a sliding window of 200 ms with 50 ms
increments, excluding time bins that contained both pre and post-stimulus spikes.
Decoding was performed using a random forest classifier with 200 trees, as implemented
in Scikit-learn (Pedregosa et al., 201 1 ) (version 0.23.0), and we employed a 5x5 cross-
validation routine with stratified folds (cf. (Bos et al., 201 9)). The average accuracy
obtained in the cross-validation routine was corrected by subtracting the average accuracy
on 50 surrogate datasets in which the orientation labels were permuted across trials to
obtain the improvement in decoding accuracy beyond chance level.

Noise Correlations

To investigate correlated activity across the population we computed pairwise correlations
on the binned spike counts (1 0 ms bins, time range: -1 000 to +1 500 ms relative to stimulus
change) after subtracting the average stimulus-driven response. First, for each neuron the
trial-mean firing rate over time was subtracted for all subsets of trials of interest (per
orientation). Next, the Pearson's correlation coefficient was computed between the residual
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rates for each simultaneously recorded neuronal pair for each time bin. Neuronal pairs for
a given condition were included if they were sampled in more than 1 0 trials. We also
computed pairwise correlations aligned to lick onset and thus subtracted mean activity
related to lick-related modulation of firing rate. We note, however, that the term ‘noise
correlations’ is conventionally reserved for the correlations on residual rates after
subtracting the mean stimulus-evoked activity (rather than movement-evoked activity).
Note also that drop in noise correlations was not a direct result of overall increased firing
rates as we observed no such reduction of noise correlations during early sensory-evoked
activity (0 – 200 ms). Neurons were only included if their session average firing rate was
above 1  Hz.

Statistics

Unless specified otherwise all statistics were performed using linear mixed models (LMMs)
or generalized linear mixed models (GLMMs) in MatLab (MathWorks, Natick, MA).
(G)LMMs take into account the hierarchical nature of our data (neurons and trials sampled
from the same mice) (Aarts et al., 201 4). (G)LMMs describe the relationships between a
response variable and multiple explanatory variables, and comprise two types of
explanatory terms. Fixed effects are the variables of interest, while random effects, also
commonly referred to as grouping variables, specify and account for the nesting group
(mouse ID in our case). For all analysis involving hierarchical data, LMMs were constructed
with mouse ID as a random effect (intercept only). Importantly, mouse ID was not included
as a random effect for analyses with cohort as fixed effect, as variability between mice was
key to those results. As firing rates are generally not normally distributed, for analyses of
firing rate responses (non z-scored) we used Generalized Linear Mixed Models with a
Poisson distribution. Statistical tests were performed on the fixed effect using ANOVAs on
the (G)LMMs. To estimate the denominator degrees of freedom (DF2) for F-tests, the
Satterthwaite approximation was used for LMMs and the residual degrees of freedom for
GLMMs. Linear hypothesis tests were performed in the case of post hoc comparisons using
the relevant contrasts. A description of each test, sample sizes, test statistics, and p values
are provided in Supplementary Table 3.1 . Results with a p-value lower than 0.05 were
considered significant.

To verify whether our cohort-specific results were likely to be a consequence of a difference
in group size, we subsampled MST neurons and sessions to match UST sample size for two
key results (Fig. 3.4d, 3.5h) and found that our results were maintained (1 000 resamples,
see Supplementary Table 3.1 ).

Data availability
All behavioral and neural data related to this study are openly available at
https://gitlab.com/csnlab/olcese-lab/modid-project/2nd-bump and has been deposited
on Zenodo (https://doi.org/1 0.5281 /zenodo.6451 263). Source data are provided with this
paper.

Code availability
All code related to this study is openly available at https://gitlab.com/csnlab/olcese-
lab/modid-project/2nd-bump. The version of the code used in this study is available on
Zenodo (https://doi.org/1 0.5281 /zenodo.6451 263).
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Supplementary Data
Supplementary Table 3.1 Statistical tests

Figure Goal Test Sample sizes Test statistic p-value (significant in
bold)

3.1 f Visual d-prime UST vs MST Linear Mixed Model ANOVA
(fixed effect: cohort)

1 2 UST sessions, 1 39
MST sessions

F(1 ,29) = 1 .60, p=0.22 p=0.22

3.1 f Auditory vs visual d-prime
in MST

Linear Mixed Model ANOVA
(fixed effect: modality, random
effect: mouse ID)

1 39 MST sessions F(1 ,261 ) = 36.26 p=5.84e-9

3.1 g Visual threshold UST vs
MST

Linear Mixed Model ANOVA
(fixed effect: cohort)

1 2 UST sessions, 1 39
MST sessions

F(1 ,31 ) = 0.45 p=0.51

Not
shown

Visual sensitivity UST vs
MST

Linear Mixed Model ANOVA
(fixed effect: cohort)

1 2 UST sessions, 1 39
MST sessions

F(1 ,31 )=3.74 p=0.06

3.1 h Linear dependence between
visual saliency and RT
(UST)

Linear Mixed Model ANOVA
(fixed effect: saliency, random
effect: mouse ID)

493 trials F(1 ,482) = 5.81 p=0.02

Linear dependence between
visual saliency and RT
(MST)

3424 trials F(1 ,3371 ) = 1 44.67 p=1 .1 7e-32

Linear dependence between
auditory saliency and RT
(MST)

4276 trials F(1 ,421 9) = 1 6.52 p=4.91 e-05

3.1 h Auditory vs visual RT
(MST)

Linear Mixed Model ANOVA
(fixed effect: modality,
controlling for saliency, random
effect: mouse ID)

3424 visual trials, 4276
auditory trials

F(1 ,7599) = 706.89 p=5.28e-1 49

3.1 h Visual RT for UST vs MST Linear Mixed Model ANOVA
(fixed effect: cohort, controlling
for saliency)

391 7 trials (493 UST +
3424 MST)
Subthreshold: 71  UST
trials, 483 MST trials
Threshold: 1 1 5 UST
trials, 748 MST trials
Suprathreshold: 1 30
UST trials, 933 MST
trials
Max: 1 68 UST trials,
1 21 7 MST trials

F(1 ,3865) = 60.1 7 p=1 .1 1 e-1 4

3.2f Maximal z-cored response
early vs late phase per
laminar zone

Linear Mixed Model ANOVA
(fixed effect: temporal window,
random effect: mouse ID)

Supragranular - 91
neurons

F(1 ,1 94) = 4.60 p=0.03

Granular - 88 neurons F(1 ,1 71 ) = 0.00 p=0.96

Infragranular: 582
neurons

F(1 ,1 284) = 23.32 p=1 .53e-06

3.2f Hit/miss modulation
different across laminar
zone

Linear Mixed Model ANOVA
(fixed effect: laminar zone,
random effect: mouse ID)

91 +88+592=771
neurons

F(2,771 ) =4 p=0.01 9

F(1 ,784)=1 2.97
F(1 ,784)=6.50
F(1 ,784)=0.58

G vs SG: p=0.0033
G vs IG: p=0.01
IG vs SG: p=0.45

3.4c Fraction of neurons coding
(significant AUC) different
across layers

Linear Mixed Model ANOVA
(fixed effect: laminar zone,
random effect: mouse ID)
Posthoc comparison (Linear
hypothesis test on coefficients)
(Only significant reported, rest
p>0.05)

Visual orientation; no
significant layer
differences.

p>0.05

Visual change
occurrence; 4 sessions
with enough
supragranular neurons,
1 4 sessions with enough
infragranular neurons,

F(1 ,1 6)=7.21 p=0.01 6

Visual hit/miss
threshold; 3 sessions
with enough granular
neurons, 1 5 sessions
with enough
infragranular neurons

F(1 ,1 5)=5.21 p=0.037

Visual hit/miss
maximal; 3 sessions with
enough granular
neurons, 1 5 sessions
with enough
infragranular neurons

F(1 ,1 5)=4.96 p=0.042

3.4d Earliest time point of
increase in coding fraction

Fraction significant neurons
exceeds 2 std above baseline (-

NE: 1 1 6 neurons
UST: 1 28 neurons

Z>2 p<0.02275
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1 000 to 0 ms). This corresponds
to a one-sided t-test with p <
.02275. Very similar results were
obtained with a threshold of 1  or
3 std above baseline.

MST: 306 neurons

3.4d For each variable, the
difference in latency to
coding between cohorts

Bootstrap test (n=1 000
resamples). If the difference
between bootstrap distribution
exceeded the 97.5 percentile this
was deemed significant. This
corresponds to a two-sided p-
value of 0.05.

NE: 1 1 6 neurons
UST: 1 28 neurons
MST: 306 neurons

Hit/miss coding
latency threshold
changes between UST
and MST:
P=0.01 2  Rest p>0.05.

Subsample control (4d) Bootstrap test on n=1 000
resamples with the same number
of neurons between UST and
MST.

UST: 1 28 neurons
MST: 1 28/306 neurons

Hit/miss coding
latency threshold
changes between UST
and MST p<0.05. Rest
p>0.05.

3.4e Linear dependence earliest
hit/miss coding of
population activity and RT
(on individual sessions)

Linear model ANOVA 26 sessions F(1 ,24) = 5.1 5 p=0.03

3.4f Linear dependence earliest
increase in visual hit/miss
coding and RT (on
bootstrapped condition
averages)

Linear model ANOVA 4 conditions (UST and
MST, 2 saliencies each)
RT boostrapped from
n=1 269 Vthr UST trials,
n=1 292 Vmax UST
trials, n=960 Vthr MST
trials, n=1 051  Vmax
MST trials
Coding onset
boostrapped from n=
1 28 UST V1  neurons,
n=306 MST neurons.

F(1 ,2) = 1 02.33 p=0.0096

Bootstrap results: (Mean
and 95% CI)

Slope: 1 .58 (0.27-
2.52)
Offset: -569 ms (-985
to -1 0).

3.5g,5h Effect of inactivation on
discrimination performance
(d-prime) comparing early
or late inactivation versus
control trials for different
saliencies, modalities, and
cohorts

Linear Mixed Model ANOVA
(fixed effect of inactivation,
random effect: mouse ID) with
Bonferroni-Holm correction for
multiple comparisons (4
comparisons)

threshold visual change,
UST, Ctrl vs Early
1 8 sessions

F(1 ,32)=1 6.71 p=0.0032

threshold visual change,
UST, Ctrl vs Late
1 8 sessions

F(1 ,32)=0.29 p=1

threshold visual change,
MST, Ctrl vs Early
34 sessions

F(1 ,59)=35.32 p=0.000002

threshold visual change,
MST, Ctrl vs Late
34 sessions

F(1 ,54)=1 3.90 p=0.00553

maximum visual change,
UST, Ctrl vs Early
1 8 sessions

F(1 ,32)=1 4.80 p=0.0064

maximum visual change,
UST, Ctrl vs Late
1 8 sessions

F(1 ,30)=1 .1 9 p=0.85

maximum visual change,
MST, Ctrl vs Early
34 sessions

F(1 ,58)=32.56 p=0.000005

maximum visual change,
MST, Ctrl vs Late
34 sessions

F(1 ,53)=1 3.48 p=0.0067

auditory change, MST,
all comparisons
34 sessions

All F < 3 All p>0.1

3.5g,5h
(not
shown)

Subsample control of 5g,h Same as above but for n=1 000
resamples of 1 8/34 MST sessions
to match # of UST session

threshold visual change,
MST, Ctrl vs Late
1 8/34 MST sessions

P<0.05 for 82% of
resamples

maximal visual change,
MST, Ctrl vs Late
1 8/34 MST sessions

P<0.05 for 86% of
resamples

3.5i Linear dependence median
RT and percentage
reduction d-prime

Linear Mixed Model ANOVA
(fixed effect of reaction time,
random effect: mouse ID)

Early silencing: 40
conditions (21  Thr and
1 9 Max)

F(1 ,33)=1 .71 p=0.20
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3.5j Linear dependence median
RT and percentage
reduction d-prime

Linear Mixed Model ANOVA
(fixed effect of reaction time,
random effect: mouse ID)

Late silencing: 45
conditions (22 Thr and
23 Max)

F(1 ,1 5)=1 0.04 P=0.006

3.5j
(not
shown)

Linear dependence median
RT and percentage
reduction d-prime
(controlling for visual
dprime on control trials)

Linear Mixed Model ANOVA
(fixed effect of reaction time and
visual dprime; random effect:
mouse ID)

Late silencing: 45
conditions (22 Thr and
23 Max)

RT: F(1 ,20)=1 1 .77,
Dprime: F(1 ,42)=1 .93

p=0.003
p=0.1 72

3.6d Effect of inactivation on D-
prime. Comparing Early or
Late inactivation versus
control trials for different
saliencies, modalities, sides,
cohorts.

Linear Mixed Model ANOVA
(fixed effect: inactivation, random
effect: mouse ID) with
Bonferroni-Holm correction for
multiple comparisons (4
comparisons)

Visual contralateral
threshold detection,
UST, Ctrl vs Early
7 sessions

F(1 ,1 4)=24.57 P=6.31 79e-04

Visual contralateral
threshold detection,
UST, Ctrl vs Late
7 sessions

F(1 ,1 4)=2.1 5 P=0.1 644

Visual contralateral
threshold detection,
MST, Ctrl vs Early
6 sessions

F(1 ,1 2)=1 7.93 P= 0.0023

Visual contralateral
threshold detection,
MST, Ctrl vs Late
7 sessions

F(1 ,1 4)=45.1 4 P=3.6441 e-05

Linear Mixed Model ANOVA
(fixed effect: inactivation, random
effect: mouse ID) with
Bonferroni-Holm correction for
multiple comparisons (4
comparisons)

Visual contralateral
maximum detection,
UST, Ctrl vs Early
7 sessions

F(1 ,1 4)=0.1 6 P=0.9656

Visual contralateral
maximum detection,
UST, Ctrl vs Late
7 sessions

F(1 , 9)=0.53 P=0.9656

Visual contralateral
maximum detection,
MST, Ctrl vs Early
4 sessions

F(1 , 8)=3.73 P=0.2636

Visual contralateral
maximum detection,
MST, Ctrl vs Late
7 sessions

F(1 ,1 3)=6.38 P=0.1 023

Linear Mixed Model ANOVA
(fixed effect: inactivation, random
effect: mouse ID) with
Bonferroni-Holm correction for
multiple comparisons (4
comparisons)

Visual ipsilateral
threshold detection,
UST, Ctrl vs Early
7 sessions

F(1 , 7)=0.04, P=1

Visual ipsilateral
threshold detection,
UST, Ctrl vs Late
7 sessions

F(1 ,1 6)=0.80 P=1

Visual ipsilateral
threshold detection,
MST, Ctrl vs Early
2 sessions

F(1 ,1 0)=0.02 P=1

Visual ipsilateral
threshold detection,
MST, Ctrl vs Late
7 sessions

F(1 ,1 0)=0.38 P=1

3.6e Linear dependence between
percentage reduction d-
prime and reaction time

Linear Mixed Model ANOVA
(fixed effect: median RT, random
effect: mouse ID)

30 conditions (7 UST
thr, 7 UST high, 9 MST
low, 7 MST high)

F(1 ,26)=9.78 p=0.004
r2= 0.7056

3.7b Pre-stim (-500 to 0 ms) vs
post-stim (0 to +500 ms)
decoding improvement over
chance

Linear Mixed Model ANOVA
(fixed effect: time window,
random effect: mouse ID)

1 1  sessions combined
across cohorts

F(1 ,1 7)=44.76 p=4.1 1 8e-06

3.7c Significant decrease in
noise correlations versus
baseline for visual trials
split by choice

Linear Mixed Model ANOVA
(fixed effect of choice; random
effect: mouse ID)

NE – Miss trials, 2904
pairs

F(1 ,5805)=1 4.67 P<1 e-4

NE – Hit trials, 1 476
pairs

F(1 ,2950)=0.33 p=0.56

UST – Miss trials, 1 930
pairs

F(1 ,3856)=0.02 p=0.88

UST – Hit trials, 1 930
pairs

F(1 ,3856)=82.44 p<1 e-1 9

MST – Miss trials,
1 3692 pairs

F(1 ,27467)=3.31 p=0.069
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MST – Hit trials, 1 3972
pairs

F(1 ,281 88)=1 42.96 P<1 e-33

3.7d Difference in visual hit
reaction time between
cohorts (median RT of
session)

Two-sided Wilcoxon rank-sum
test

1 1  UST sessions vs 44
MST sessions

p=0.0041

3.7e Earliest time point of
decorrelation

Earliest time point that noise
correlations drop below baseline
minus two standard deviations
values. This corresponds to a one-
sided t-test with p<0.05. Similar
results were obtained with more
or less strict thresholds.

From 59 sessions:
UST: 4730 neuron pairs
MST: 1 7826 neuron
pairs

Z<-2

3.7f Linear dependence reaction
time and earliest time point
of decorrelation

Pearson correlation 6 condition averages
(fast, mid and slow
tertiles for UST and MST
each)

r=0.960,
p=0.002

3.7g Difference in z-scored
activity between hit-miss
during 1 00-200 ms window

Linear Mixed Model ANOVA
(fixed effect: hit/miss, random
effect: mouse ID)

UST - Thr - 78 neurons F(1 ,1 56)=1 0.1 6 P=0.002

UST - Max - 78 neurons F(1 ,1 52)=5.66 P=0.01 9

3.7h Difference in z-scored
activity between hit-miss
during 1 00-200 ms window

Linear Mixed Model ANOVA
(fixed effect: hit/miss, random
effect: mouse ID)

MST - Thr - 1 34 neurons F(1 ,268)=1 3.1 9 P=0.001

MST - Max - 1 20
neurons

F(1 ,254)=0.59 P=0.445

3.7i Difference in noise
correlation for each time
bin

Two-sided bootstrapped
confidence interval test

230 UST and MST
neurons, 1 564 neuron
pairs, 1 000 bootstraps

Black lines in Figure
5i, indicate P<0.05

Supplementary figures:

S3.2f Linear dependence between
auditory d-prime and RT

Linear Mixed Model ANOVA
(fixed effect: RT, controlling for
saliency; random effect: mouse
ID)

1 39 MST sessions, 4
saliencies each

F(1 ,298) = 1 0.43 p=0.001 38

S3.2g Linear dependence between
visual d-prime and RT

Linear Mixed Model ANOVA
(fixed effect: RT, controlling for
saliency; random effect: mouse
ID)

1 51  UST and MST
sessions, 4 saliencies
each

F(1 ,268) = 1 1 .36 p=0.00086

S3.3b Difference in trial-averaged
z-scored firing rate in 0 to
200ms post-stimulus
window between threshold
and maximal visual change
conditions per cohort

Linear Mixed Model ANOVA
(fixed effect: saliency, random
effect: mouse ID)

1 63 NE neurons F(1 ,326) = 7.27 P=0.0079

1 28 UST neurons F(1 ,256) = 20.43 p=9.46e-06,

525 MST neurons F(1 ,1 568) = 35.90 p=2.56e-09

S3.3i Difference in trial-averaged
z-scored firing rate in -300
to 300ms window between
lick and no-lick conditions

Linear Mixed Model ANOVA:
Fixed effect of Licking:
F(1 ,1 966)=379.35, p=2.1 3e-77;
Fixed effect of Cohort:
F(2,1 966)=6.08, p=0.002;
Interaction effect Licking *
Cohort: (2,1 966)=1 0.59,
p=2.658e-05;

1 63 NE neurons,
1 28 UST neurons
525 MST neurons;

Posthoc comparison:
Linear hypothesis test
on coefficients

p-value in figure,
*p<0.05, **p<0.01 ,
***p<0.001

Specific posthoc
comparison interaction
term Licking*Cohort for
NE versus MST&UST.

F(1 ,1 960)=1 9.71 , p=9.526e-06

S3.3j Difference in trial-averaged
z-scored firing rate in -300
to 300ms window between
hit and incorrect conditions
for trained UST and MST
conditions

Linear Mixed Model ANOVA
(fixed effect: Correct, random
effect: Mouse ID):

Visual Incorrect vs Hits,
n = 1 28 UST neurons

F(1 ,256) = 2.59 p=0.1 09

Visual Incorrect vs Hits,
n = 525 MST neurons

F(1 ,1 371 ) = 1 40 P=2.54e-08

Auditory Incorrect vs
Hits, n = 525 MST
neurons

F(1 ,1 371 ) = 9.67 p=0.002

S3.4a Difference in explained
variance over single trials
between cohorts over all
trials using all predictors

Linear Mixed Model ANOVA
(Fixed effect: cohort):

(F(2,51 6) = 4.71 , p=0.01 ,
ANOVA)

Posthoc comparison: Linear
hypothesis test on coefficients

n=1 1 6 NE neurons,
n=1 28 UST neurons,
n=272 MST neurons,
(only neurons >0.5 Hz)
NE vs UST

F(1 ,51 3)=0.81 p=0.36

NE vs MST F(1 ,51 3)=8.28 p=0.004

UST vs MST F(1 ,51 3)=3.62 p=0.058

S3.4b Difference in explained
variance over averaged trial
types between cohorts over
all trials using all predictors

Linear Mixed Model ANOVA
(fixed effect: cohort):

(F(2,51 6) = 7.01 , p=0.001 ,
ANOVA)
Posthoc comparison: Linear
hypothesis test on coefficients

(n same as Fig. S4a)
NE vs UST

F(1 ,51 3)=1 .40 p=0.23

NE vs MST F(1 ,51 3)=1 2.55 p=0.0004

UST vs MST F(1 ,51 3)=5.06 p=0.025

S3.4c Explained variance
averaged over 0-200ms

Linear Mixed Model ANOVA
(fixed effect: cohort with posthoc

n=1 1 6 NE neurons
n=1 28 UST neurons

Vision :
(MST vs

Vision :
(MST vs NE)
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(early activity) between
predictor sets within cohort

comparison: Linear hypothesis
test on coefficients)

n=272 MST neurons NE):F(1 ,51 3)=1 6.60
(NE vs
UST):F(1 ,51 3)=22.40
(MST vs
UST):F(1 ,51 3)=2.09
Movement:
(MST vs
NE):F(1 ,51 3)=23.1 6,
(NE vs
UST):F(1 ,51 3)=6.28,
(MST vs
UST):F(1 ,51 3)=3.93,
Hit:
(UST vs
NE):F(1 ,51 3)=39.48
(MST vs
NE):F(1 ,51 3)=2.02
(MST vs
UST):F(1 ,51 3)=23.06
Pupil:
(MST vs
NE):F(1 ,51 3)=0.1 7
(NE vs
UST):F(1 ,51 3)=3.05
(MST vs
UST):F(1 ,51 3)=6.32

p=0.000053
(NE vs UST)
p=0.0000028
(MST vs UST)
p=0.1 4888
Movement:
(MST vs NE)
p=0.000001 9
(NE vs UST)
p=0.01 25
(MST vs UST)
p=0.0480
Hit:
(UST vs NE)
p=0.0000000007
(MST vs NE)
p=0.1 562
(MST vs UST)
p=0.000002
Pupil:
(MST vs NE)
p=0.68004471 93
(NE vs UST)
p=0.081 524891 8
(MST vs UST)
p=0.01 22326371

S3.4d Explained variance
averaged over 200-1 000ms
(late activity) between
predictor sets within cohort

Linear Mixed Model ANOVA
(fixed effect: cohort with posthoc
comparison: Linear hypothesis
test on coefficients)

n=1 1 6 NE neurons
n=1 28 UST neurons
n=272 MST neurons

Vision :
(MST vs
NE):F(1 ,51 3)=9.1 4
(NE vs
UST):F(1 ,51 3)=1 2.27
(MST vs
UST):F(1 ,51 3)=1 .1 3
Movement:
(MST vs
NE):F(1 ,51 3)=32.08
(NE vs
UST):F(1 ,51 3)=7.45
(MST vs
UST):F(1 ,51 3)=6.74
Hit:
(MST vs
NE):F(1 ,51 3)=53.50
(NE vs
UST):F(1 ,51 3)=41 .98
(MST vs
UST):F(1 ,51 3)=0.03
Pupil:
(MST vs
NE):F(1 ,51 3)=0.1 5
(NE vs
UST):F(1 ,51 3)=1 .27
(MST vs
UST):F(1 ,51 3)=0.91

Vision :
(MST vs NE)
p=2.632963e-03
(NE vs UST)
p=5.003239e-04
(MST vs UST)
p=2.885020e-01
Movement:
(MST vs NE)
p=2.470784e-08
(NE vs UST)
p=6.573378e-03
(MST vs UST)
p=9.705983e-03
Hit:
(MST vs NE)
p=1 .001 21 6e-1 2
(NE vs UST):
p=2.1 62020e-1 0
(MST vs UST):
p=8.557330e-01
Pupil:
(MST vs NE):
p=7.01 701 3e-01
(NE vs UST)
p=2.596394e-01
(MST vs UST)
p=3.409608e-01

S3.4e Onset latency of significant
hit encoding different for
UST and MST cohorts
Onset latency = time bin
where EV exceeded baseline
+ 2 standard deviations

Linear Mixed Model ANOVA
(fixed effect: modality)

n=1 28 UST neurons
n=272 MST neurons

F(1 ,337) = 1 .54 p=0.21

S3.6b Effect of inactivation on
discrimination performance
(d-prime) comparing early
or late inactivation versus
control trials for auditory
saliencies

Linear Mixed Model ANOVA
(fixed effect of inactivation,
random effect: mouse ID)

Auditory change, MST,
all comparisons
34 sessions

All F < 6 All p>0.1

S3.6e Effect of inactivation on
discrimination performance
(d-prime) comparing early
or late inactivation versus
control trials for visual
saliencies, for sessions with
the fastest average RT (top
50%)

Linear Mixed Model ANOVA
(fixed effect of inactivation,
random effect: mouse ID)

n=1 8 sessions Visual thr change MST,
Ctrl vs Early:
F(1 ,31 )=29.1 5

p=0.000027

Visual max change MST,
Ctrl vs Early::
F(1 ,25)=46.00

p=0.000002

Visual thr change MST,
Ctrl vs Late:
F(1 ,27)=2.1 8

p=0.606787

Visual max change MST,
Ctrl vs Late:
F(1 ,28)=9.05

p=0.0221 90
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S3.6h Effect of inactivation on
discrimination performance
(d-prime) comparing early
or late inactivation versus
control trials for visual
saliencies, for sessions with
the slowest average RT
(bottom 50%)

Linear Mixed Model ANOVA
(fixed effect of inactivation,
random effect: mouse ID)

n=1 7 sessions Visual thr change MST,
Ctrl vs Early:
F(1 ,30)=1 1 .76

p=0.0071 36

Visual max change MST,
Ctrl vs Early:
F(1 ,30)=5.34

p=0.1 1 1 827

Visual thr change MST,
Ctrl vs Late:
F(1 ,31 )=1 6.31

p=0.001 31 3

Visual max change MST,
Ctrl vs Late:
F(1 ,29)=6.98

p=0.00471 51

S3.6k Linear dependence median
RT and percentage
reduction in criterion

Linear Mixed Model ANOVA
(fixed effect of RT, random effect:
mouse ID)

87 conditions (45 Thr
and 42 Max)

F(1 ,39)=1 .55 p=0.22

S3.6fk
(not
shown)

Linear dependence median
RT and FA visual lick spout

Linear Mixed Model ANOVA
(fixed effect of RT, random effect:
mouse ID)

94 conditions (47 Thr
and 47 Max)

F(1 ,46)=0.05 p=0.82

S3.6l Late silencing delays
reaction times: difference in
reaction time between
control and late silencing
visual hits

Generalized Linear Mixed Model
ANOVA (fixed effect of
inactivation, random effect:
mouse ID)

maximal changes:
Control hits (n=795
trials) and late silencing
hits (n=388 trials)

F(1 ,1 1 81 )=3.1 2 p=0.08

threshold changes:
Control hits (n=509
trials) and late silencing
hits (n=252 trials)

F(1 ,759)=0.28 p=0.59

S3.7b-c D-prime visual and audio
change, UST and MST, Ctrl
vs Early and Ctrl vs Late (S1
inactivation)

Linear Mixed Model ANOVA
(fixed effect of inactivation,
random effect: mouse ID) with
Bonferroni-Holm correction for
multiple comparisons (4
comparisons)

1 3 UST sessions, 1 6
MST sessions

All F < 6 Non-significant, all
comparisons p>0.05

S3.8a D- prime maximum, visual
UST vs MST

Linear Mixed Model ANOVA
(fixed effect: Cohort, controlling
for side).

UST: 4 mice x 7 sessions
x 2 sides
MST: 4 mice x 1 5
sessions x 2 sides

F(1 ,44)=3.1 822 P=0.081 4

S3.8b Visual detection threshold,
UST vs MST

Linear Mixed Model ANOVA
(fixed effect: Cohort, controlling
for side)

MST: 4 mice x 2 sides
UST: 4 mice x 2 sides

F(1 ,1 6)=0.3675 p=0.5529

S3.8c Visual RT, UST vs MST Generalized Linear Mixed Model
ANOVA (fixed effect: cohort,
controlling for saliency and side)
with Bonferroni-Holm correction
for multiple comparisons (2
comparisons)

1 395 trials F(1 ,1 391 )= 54.075 p=3.2832e-1 3

Visual RT (UST), Thr vs
Max

Generalized Linear Mixed Model
ANOVA (fixed effects: Saliency,
controlling for Side, random
effects: session, mouse) with
Bonferroni-Holm correction for
multiple comparisons (2
comparisons)

61 7 trials F(1 ,61 4)= 1 29.85 P=4.0354e-27

Visual RT (MST), Thr vs
Max

778 trials F(1 ,775)= 56.91 9 P=2.5486e-1 3

Tactile RT (MST), Thr vs
Max

Generalized Linear Mixed Model
ANOVA (fixed effects: Saliency,
controlling for Side, random
effects: session, mouse)

625 trials F(1 ,622) = 5.403 P= 0.020424

S3.8d D-prime tactile
contralateral, threshold,
MST, Ctrl vs Early

Linear Mixed Model ANOVA
(fixed effect: inactivation, random
effect: mouse ID) with
Bonferroni-Holm correction for
multiple comparisons (2

6 sessions F(1 ,1 2)=3.78 p=0.1 51 3

D-prime tactile
contralateral, threshold,

9 sessions F(1 ,1 4)=0.1 2 p=0.7339
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MST, Ctrl vs Late comparisons)

S3.8e Effect of inactivation on the
percentage of right-sided
licks for condition: Thr
Contralateral Visual

Linear Mixed Model ANOVA
(fixed effect: inactivation, random
effect: mouse ID) with
Bonferroni-Holm correction for
multiple comparisons (4
comparisons)

UST, Early vs Ctrl, 7
sessions

F(1 ,1 0.7)=39.08 P = 2.0943e-04

UST, Late vs Ctrl, 7
sessions

F(1 ,1 0.7)=7.805 P = 0.01 78

MST, Early vs Ctrl, 7
sessions

F(1 ,1 2)=32.456 P = 2.0943e-04

MST, Late vs Ctrl, 6
sessions

F(1 ,1 8)=38.242 P = 3.0993e-05

S3.9a Significant decrease in
noise correlations versus
baseline for audio trials
split by choice

Linear Mixed Model ANOVA
(fixed effect of choice, random
effect: mouse ID)

NE – Miss trials, 2904
pairs

F(1 ,5805)=1 .96 P=0.1 6

NE – Hit trials, 21 06
pairs

F(1 ,1 748)=3.83 p=0.054

MST – Miss trials,
1 3656 pairs

F(1 ,27395)=22.61 p=1 .99e-6

MST – Hit trials, 1 4462
pairs

F(1 ,28847)=99.90 P=1 .7e-23

S3.9b Linear dependence reaction
time and earliest time point
of decorrelation relative to
first lick

Pearson correlation 6 condition averages
(fast, mid and slow
tertiles for UST and MST
each)

r=0.738 p=0.094
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Supplementary Figure 3.1 Auditory stimulus design a) Each auditory stimulus was composed of
five pure tones at harmonic frequencies (octaves below and above other tones). The weight with
which each tone contributed to the overall stimulus was taken from a Gaussian distribution across
all possible tones. The example stimulus A in pink is composed of a tone of 21 3.25 Hz (center tone,
highest weight) and two lower (at 21 1 .25 and 21 2.25 Hz) and two higher harmonics (at 21 4.25 and 21 5.25

Hz). Tones followed scientific pitch and are expressed as powers of two: 21 3 corresponds to 8.1 92
kHz, and C9 in scientific pitch notation. During an auditory trial, the stimulus changed to a stimulus
of five new harmonic tones with different weights (for example stimulus A to B). b) The center
diagram shows the circular arrangement of all stimuli. For each cardinal direction the insets show
the tonal weights associated with these stimuli. Note how ever increasing the center tone frequency
ultimately results in a circular shift back to the starting stimulus. This feature is exploited in the
Shepard illusion, but note that our stimuli were static and had no illusory component. This
circularity can also be seen in panel a: going up and down half an octave from stimulus A always
results in stimulus B. The auditory stimulus set is therefore circular and mirrors the visual stimulus
set with drifting gratings in all orientations (inset for comparison in right lower corner). The
amount of frequency change (expressed in partial octaves, red) or orientation change (expressed in
degrees, blue) determined saliency. c) Spectrogram over time including two auditory change trials.
Auditory stimuli continued to be presented until the next auditory change, which could be identified
based on a difference in spectral content, and experienced as an increase or decrease in pitch. The
example shows an easy auditory trial (salient change; stimulus A to B, half an octave) followed
later by a difficult trial (subtle change; 1 /32 of an octave). Note that this is only a schematic
depiction, hence time is depicted in arbitrary units.
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Supplementary Figure 3.2 Detailed psychophysical performance across versions of task A. This
figure shows the data for individual animals and individual sessions for each variant of task A. We
implemented two versions of auditory stimuli (frequency changes expressed in the amount of Hertz,
or octaves, see Methods) and split figures here based on version. The figure follows the same
conventions as Fig. 1 c-e in the main text. Dots in D-prime graphs indicate individual sessions from
a single mouse (identified by color). a) Animals (N=5) were used for the noncontingently exposed
(NE) variant with auditory changes in Hz. The two leftmost panels show fitted psychometric
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functions (two-alternative detection model) displaying behavioral response rates at increasing
levels of auditory change (left panel) and increasing levels of visual orientation change (right
panel). Solid lines are hits and dotted lines are errors. Blue indicates responses to the visual lick
spout and red responses to the auditory lick spout. These baseline lick rates after stimulus changes
in NE mice result from the animal spontaneously licking (some licks were rewarded, but this was
not temporally related to the stimuli, see Methods). Sometimes licks were emitted accidentally,
briefly after a change in stimulus (‘surrogate hits’). The subpanels to the right side show for each
animal (different rainbow colors) and for each session (single dots) the parameters of the single
session fits for the asymptotic d-prime for auditory detection (left) and visual detection (right).
Within each subpanel, the boxplot shows the median (dot), interquartile range (box limits) and
minima and maxima (whiskers). b-e) Same as (a), but for the other reward contingencies for task
A (UST and MST). For animals trained to report either visual or auditory changes, the detection
thresholds are also shown. These include the visual threshold in UST and the visual and auditory
threshold in MST mice. Thresholds for non-rewarded conditions were higher than the maximum
saliency or infinite. No mice were trained for the UST variant of the task with auditory changes in
Hz. f) In MST animals, d-prime decreases as a function of reaction time for auditory conditions
(F(1 ,298) = 1 0.43, p=0.001 38; ANOVA). Each dot is one saliency condition within a single session.
g) Same as (f), but for the negative correlation between reaction time and d-prime in all visual
conditions across combined UST and MST sessions (F(1 ,268) = 1 1 .36, p=0.00086; ANOVA).
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Supplementary Figure 3.3 Early and late wave dynamics across levels of change saliency and
aligned to lick (Task A). a Raster plots for four example neurons showing early sensory-driven
transients and late activity both for threshold and maximal orientation changes. Orange ticks
indicate first lick and immediate reward delivery. Same conventions as in Fig. 2. b Averaging Z-
scored firing rate across all neurons again reveals early sensory-driven activity in all cohorts, while
hits are associated with a strong late increase in activity only in UST and MST mice for both visual
saliency levels. The amplitude of early sensory-driven activity (average activity 0-200 ms, hits and
misses combined) was smaller for threshold than for maximal changes for all three cohorts (shown
in insets; NE: F(1 ,326)=7.27, p=0.00739; UST: F(1 ,256)=20.43, p=9.47x1 0-6; MST:
F(1 ,1 568)=35.90, p=2.57x1 0-9; Linear Mixed Model ANOVA). Lines and shading indicate mean ±
SEM across neurons. c-e We computed the average z-scored activity across all recorded neurons in
V1  aligned to the first lick for 9 stimulus-response combinations: three stimulus type conditions
(A=auditory, V=visual, and C=catch – i.e. no change) and three response options (lick to visual
spout, lick to auditory spout, and no lick). In NE mice, all conditions with licking (left 6 heatmaps)
showed slight modulations of activity around licks, which were absent in the three conditions
without licking (right 3 heatmaps). This lick-aligned modulation, however, was much more
prominent in MST and UST mice (panels (d) and (e), respectively). For trials in which there was no
lick, activity was aligned to the median response latency from all other trials. Conditions for which
not enough trials were present to compute a reliable mean z-score for that neuron (fewer than 3
trials), were omitted from the heatmap. Therefore, trial-averaged estimates for licks to the auditory
spout are absent in UST animals (trained on vision only), as animals rarely responded to the never-
rewarded auditory lick spout. f-h All conditions with licking (left 2 panels for each row) show
activity modulations hundreds of milliseconds before and after lick-onset. Each plot combines three
conditions from the heatmaps in c-e (taken per column), and shows the Z-scored firing rate
averaged over neurons (f: NE; g: UST; h: MST). Lines show mean across neurons. As in (d), not
enough events were available to calculate licks to the auditory lick spout in UST animals. i Licks
evoked consistently higher V1  firing activity than no-licks for all cohorts (ANOVA, n=1 63+1 28+525
neurons, F(1 ,1 966)=379, p=2.1 3x1 0-7) in the time window around lick onset (-300 ms to +300 ms
relative to lick onset, gray-shaded patch in (f-h). Lick modulation was stronger for trained cohorts
versus naive mice (ANOVA, UST vs NE, MST vs NE, F(2,1 966)=6.08, p=0.002); *p<0.05, **p<0.01 ,
***p<0.001 . Violinplots show distribution of rates across neurons. Inner white dot and black line
show median and interquartile range. j Correct licks were associated with higher V1  firing activity
than incorrect licks in MST mice (ANOVA; UST, n=1 28, F(1 ,256)=2.59, p=0.1 09; MST n=525,
visual, F(1 ,1 371 )=1 40, p=2.54x1 0-8, auditory, F(1 ,1 371 )=9.67, p=0.002). *Incorrect licks include
both false alarms and mistaken licks to opposite spout (e.g. visual stimulus, lick to auditory lick
spout). Conditions are separated to allow comparing between licks to the same spout. Same style
as (i).



Chapter 3: Multisensory task demands temporally extend the causal requirement
for visual cortex in perception

128

SupplementaryFigure3.4 Application of the generalized linear encoding model to explain variance
of firing rates from different cohorts (Task A). a We constructed two models. The first model
operated as a null model and consisted of a random predictor only (Rand). The second model
included all predictors (Full). We quantified the model performance in two ways. First, we
computed the cross-validated explained variance (EV) over all single-trial firing rates for all
neurons (n=1 1 6 NE neurons, n=1 28 UST neurons, n=272 MST neurons). The full model always
explained significantly more variability than the random model (all p<1 e-20), and explained
variance was slightly higher for V1  neurons from MST mice than NE neurons (Linear Mixed Model
ANOVA; F(2,51 6) = 4.71 , p=0.01 , ANOVA; Posthoc comparisons: MST vs NE: F(1 ,51 3)=8.28,
p=0.004. NE vs UST: F(1 ,51 3)=0.81 , p=0.36; MST vs UST: F(1 ,51 3)=3.62, p=0.058. Boxplots show
the median (dot), interquartile range (box limits) and minima and maxima (whiskers). b We also
quantified model performance by computing the EV of the firing rate averaged over the five
stimulus x choice conditions that captured nearly all trials20,38. Again, the full model explained
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significantly more variability than the random model (all p<1 e-33), and explained variance was
higher for MST compared to NE and UST neurons (Linear Mixed Model ANOVA: F(2,51 6) = 7.01 ,
p=0.001 , ANOVA; Posthoc comparison: MST vs NE: F(1 ,51 3)= 1 2.55, p<0.001 ; NE vs UST:
F(1 ,51 3)=1 .40, p=0.23; MST vs UST: F(1 ,51 3)=5.06, p=0.025. Same style as a. c We computed the
variance of the firing rate as explained by each subset of predictors for each of the task versions
over time (cf. Fig. 3c). During the early post-stimulus window (averaging EV over 0-200 ms) visual
predictors explained more variance in NE than UST and MST mice. (ANOVA, n=1 1 6 NE neurons,
1 28 UST neurons, 272 MST neurons, *p<0.05, **p<0.01 , ***p<0.001 ). Boxplots show the median
and interquartile range (box limits) and 1  x interquartile range (whiskers). d Same as (c), but for
the late window (200-1 000 ms). The hit predictor now explains more variance than during the early
period and explains more variance in both UST and MST than in NE mice (p<0.001 ). Therefore,
knowing when licks occurred and whether the trial was a hit or not, contributed to predicting late
V1  firing in UST and MST mice. Moreover, visual predictors continue to make strong contributions
in the late phase across the three training cohorts. e The onset latency for significant EV by visual
and hit predictors. Note the difference in onset latency of hit coding between UST and MST
(corresponding to the ROC analysis in Fig. 4d). Shown are mean ± SEM across neurons. (UST
n=1 28, MST n=272 neurons, ANOVA, F(1 ,337) = 1 .54, p=0.21 ).
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Supplementary Figure 3.5 Single neuron coding over time (Task A). a Percentage of V1  neurons
significantly encoding selected variables over time for visual changes of maximal saliency. The
strength of encoding (AUC value above shuffled) gave similar results as the fraction of coding
neurons (shown here). b Same as (a), but for threshold visual changes.
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Supplementary Figure 3.6 Detailed characterization of early and late V1 inactivation in task A. a
Coronal histological section revealing localized bilateral expression in V1 . V2L: lateral secondary
visual cortex. V2M: medial secondary visual cortex. Histological analyses were repeated with
comparable results for all 28 mice. b Neither early nor late silencing affected auditory
discrimination performance (d-prime) for both threshold and maximum saliencies and across UST
and MST cohorts (n=34 sessions, ANOVA, all F<6, all p>0.1 ). c Behavioral detection rates for two
example sessions from MST mice with fast reaction times (median visual hit reaction time 359 and
362 ms). d Same as Fig. 5f, but for sessions with fast reaction times (top half of all reaction times).
e Effect of early and late inactivation on d-prime for fast sessions, as a function of visual salience
(thr vs. control and max vs. control. Asterisks indicate the result of a Linear Mixed Model ANOVA:
*p<0.05, **p<0.01 ,***p<0.001 . Exact p values: Visual thr change, Ctrl vs. Early: p=0.000027;
Visual max change, Ctrl vs. Early: p=0.000002; Visual thr change, Ctrl vs. Late: p=0.606787;
Visual max change, Ctrl vs. Late: p=0.0221 90. f Same as (d) for two example sessions from MST
mice with slow reaction times (median visual hit reaction time 435 and 463 ms). g Same as (d) but
for sessions with slow reaction times (bottom half of all reaction times). h Same as (e) but for
sessions with slow reaction times. Exact p values: Visual thr change, Ctrl vs. Early: p=0.0071 36;
Visual max change, Ctrl vs. Early: p=0.1 1 1 827; Visual thr change, Ctrl vs. Late: p=0.001 31 3;
Visual max change, Ctrl vs. Late: p=0.00471 51 . Panels (c-h) jointly show how late silencing affects
behavioral performance in slow sessions, but not fast sessions. i Scatter plot of visual d-prime on
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control (colored) and photostimulation trials (black). One data point is one session. Data points
from the same session are connected with a line to visualize the reduction in d-prime. j Same as (i)
but for late silencing. Note how sessions with short reaction time are proportionally less affected
than sessions with long reaction time. Quantification of this effect as the percentage reduction in d-
prime is in Fig. 3i-j. k We tested whether late inactivation could affect motivation by changing the
criterion parameter in our signal detection framework (see Methods). The reduction in visual
criterion by late photostimulation was not significantly correlated to the median reaction time on
control trials in the same recording session (F(1 ,39)=1 .55, p=0.22). Similarly, we found no effect
when we repeated this analysis on the false alarm rate directly (F(1 ,46)=0.05, p=0.82). l As late
photostimulation partially reduced hit rate for visual changes in MST mice depending on reaction
time (Fig. 3h, j), some visual changes were still detected. Visual hits with and without late
photostimulation were not associated with a significant difference in reaction times (MST – max:
n=1 1 85 trials, F(1 ,1 1 79)=2.95, p=0.09; MST – thr: n=761  trials, F(1 ,761 )=0.28, p=0.60; Linear
Mixed Model ANOVA). Traces show mean ± SEM across visual hits. *p < 0.05.
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Supplementary Figure 3.7 Illumination of control area S1 in task A has no behavioral effects. a
Control experiment with positioning of the optical fiber over uninfected S1 . b D-prime across visual
conditions. Neither early nor late S1 -illumination significantly affected visual detection
performance for UST or MST mice (ANOVA, n= 29 sessions, all F<6, all p>0.05, corrected for 4
multiple comparisons (Bonferroni-Holm)). c Same as (b), but for auditory conditions. Neither early
nor late S1 -illumination significantly affected auditory detection performance (n= 29 sessions, all
p>0.05). For b and c, errorbars denote inter-quartile range. d Behavioral response rates for UST
(left) and MST (right) mice for control, early and late S1 -illumination trials.
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Supplementary Figure3.8 Effects of optogenetic V1 silencing on visuotactile behavior (task B). a D-
prime at maximum saliency for visual and tactile detection. Each dot represents one session and
either right or left side detection performance. Visual performance was comparable for UST and
MST mice (ANOVA, n=22 sessions, 8 mice, F(1 ,44)=3.1 8, p=0.081 4). Note that null d-prime for
tactile detection is expected for UST mice. For panels a, b, d, e, errorbars denote inter-quartile
range. b Visual contrast detection thresholds were comparable for UST and MST mice (ANOVA,
n=8 mice, F(1 ,1 6)=0.3675, p=0.5529). Computed for each mouse from psychometric fit, for both
right and left side detections. c Median reaction times for each rewarded condition for threshold
and maximum levels of saliency (right and left sides pooled together). Boxplots show the median
and interquartile range (box limits) and 1 .5 x interquartile range (whiskers). Visual reaction times
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were significantly shorter for UST compared to MST (ANOVA, n=1 395 trials, F(1 ,1 391 )= 54.075,
p=3.28x1 0-1 3, corrected for 2 multiple comparisons (Bonferroni-Holm)). *: p<0.05; ***: p<0.001 ).
Note that tactile and visual reaction times were similar, ruling out the possibility of a sequential
detection strategy where one modality would be sampled before the other one. d D-prime of
contralateral tactile detection at threshold saliency. V1  silencing did not affect tactile performance
(ANOVA, Early silencing: n=6 sessions, F(1 ,1 2)=3.78, p=0.1 51 3; Late silencing: n=9 sessions,
F(1 ,1 4)=0.1 2, p=0.73). Thus, for MST, silencing late V1  activity impaired visual but not tactile
detection, indicating that late activity per se is not required for licking behavior. e Left:
Psychometric curves for experiments with left hemisphere V1  silencing (same experiments as Fig.
6c), for visual-only trials. Data points for MST Max left are missing because these were not assessed
in the experimental protocol (same for Max left and Thr left conditions in control experiments).
Since monocular stimuli were used and left hemisphere V1  was silenced, potential effects were
expected for stimuli on the right side (contralateral) but not on the left side (ipsilateral). (ANOVA,
n=7 sessions, UST Early, F(1 ,1 0.7)=39, p=0.0002; UST Late, F(1 ,1 0.7), p=0.01 78; MST Early,
F(1 ,1 2)=32, p=0.0002; MST Late, F(1 ,1 8)=38, p=3x1 0-5). *: p<0.05. Note that late silencing for UST
mice had a significant effect on the percentage of right choices, but no effect on the corresponding
d-prime. Right: psychometric curves for control experiments where the optic fiber was placed above
the mouse headbar cement and therefore not above V1  (all not significant). Errorbars denote
interquartile range. f Average z-scored activity for all recorded left-hemisphere V1  neurons for each
of all 9 possible visual-only stimulus-response combinations for UST (left) and MST (right) trained
mice. Neurons for which no more than three trials were present in the given condition were omitted.
For each condition, neurons were sorted according to their mean z-score between 50 and 500 ms.
g Average z-scored firing rate of responsive V1  neurons during visual-only trials, for three different
conditions eliciting the same licking response (left: contralateral lick, right: ipsilateral lick),
showing that late V1  activity cannot be explained by licking alone (see also Supplementary Fig. 3).
Activity was aligned to the first lick in the response window. Licks made to the wrong side were
termed “errors”. Same neurons as in Fig. 6c. Shaded area: bootstrapped 95% confidence intervals.
h Average z-scored firing rate of responsive V1  neurons during contralateral tactile trials, split by
choice, for UST and MST mice. For UST, surrogate hits correspond to licks to the same side of the
tactile stimulus (although unrewarded) and surrogate misses correspond to trials without licks.
Late activity was present only in MST Hits, indicating that the same stimulus and the same
behavioral response triggered late activity in a context-dependent manner. Shaded area:
bootstrapped 95% confidence intervals.
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Supplementary Figure 3.9 Noise correlations in auditory trials and latency of the drop in noise
correlations during visual trials in task A. a Decrease in noise correlation (NC) of V1  cell pairs with
respect to baseline for auditory hits and misses across cohorts (same conventions as Fig. 5c). For
UST mice there were too few auditory hits to compute noise correlations. In MST mice, noise
correlations decreased during hits (ANOVA, n=1 4462 trials, F(1 ,28847) = 99.90, p = 1 .7*1 0-23) and
increased during misses (ANOVA, n=1 3656 trials, F(1 ,27395) = 22.61 , p=1 .99*1 0-6). The fact that
NCs also decrease in auditory hits indicates that the drop in NCs in the visual cortex is not specific
to visual trials, and possibly is a more general mechanism that may subserve decision making.
Boxplots show the median and interquartile range (box limits) and 1  x interquartile range
(whiskers). b Drop in NCs during visual trials, but relative to the first lick for each tertile of reaction
times for UST and MST. Same as Fig. 5f, but aligned to reaction time. No significant correlation is
found (p=0.09), in contrast with Fig. 5f, indicating that the drop in NCs precedes reaction time by
a relatively constant time lag. c Noise correlations (NC) of V1  cell pairs over time aligned to the first
lick for the different trial types and cohorts. Dotted line shows the threshold for a significant drop
in NCs with respect to baseline (-1 000 to -500 ms relative to first lick). Noise correlations decreased
most for visual hits in visually trained mice (UST and MST), but not in NE mice. For UST mice there
were too few auditory hits to compute noise correlations. Shaded area corresponds to s.e.m.
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Abstract
Primary sensory cortices respond to crossmodal stimuli, for example auditory
responses are found in primary visual cortex (V1 ). However, it remains unclear
whether these responses reflect sensory inputs or behavioural modulation through
sound-evoked body movement. We address this controversy by showing that
sound-evoked activity in V1  of awake mice can be dissociated into auditory and
behavioural components with distinct spatiotemporal profiles. The auditory
component began at ~27 ms, was found in superficial and deep layers and
originated from auditory cortex, as shown by inactivation by muscimol. Sound-
evoked orofacial movements correlated with V1  neural activity starting at ~80-1 00
ms, was more sustained and explained auditory frequency-tuning. Visual, auditory
and motor activity were expressed by segregated neuronal populations. During
simultaneous audiovisual stimulation, visual representations remained dissociable
from auditory and motor-related activity. This threefold dissociability of auditory,
motor and visual processing is central to understanding how distinct inputs to
visual cortex interact to support vision.
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Introduction
During our everyday lives, we sample the world through active exploration with
our different senses. Already in primary sensory cortices, contextual signals about
ongoing events in other sensory and motor modalities are integrated with
modality-specific signals to enable meaningful sensory processing (Ghazanfar and
Schroeder, 2006; Guitchounts et al., 2020; Jones and Powell, 1 970; Kayser and
Logothetis, 2007; Meijer et al., 201 9; Niell and Stryker, 201 0; Stringer et al., 201 9).
In general, integration of crossmodal and motor information may enhance sensory
detection and discrimination by way of Bayesian cue integration, may subserve
cross-modal predictions, and may underlie the contextual and modally distinct
representations characteristic of conscious experience (Fetsch et al., 201 3;
Pennartz, 201 5, 2009). In rodents, primary and secondary visual and auditory
cortices share direct anatomical connections (Budinger and Scheich, 2009;
Budinger et al., 2006; Campi et al., 201 0; Cappe and Barone, 2005; Falchier et al.,
2002; Miller and Vogt, 1 984; Paperna and Malach, 1 991 ; Rockland and Ojima,
2003) and auditory inputs to primary visual cortex (V1 ) have been found to target
L1  and L5/L6 (Ibrahim et al., 201 6; Iurilli et al., 201 2; Mesik et al., 201 9; Rockland
and Ojima, 2003). Auditory inputs affect visual response properties such as
orientation and contrast tuning in V1 (Ibrahim et al., 201 6; Meijer et al., 201 7),
with some V1  neurons directly responding to sounds (Meijer et al., 201 7). Even
more strikingly, selectivity to auditory features such as spatial location and
frequency has been reported in cat visual cortex (Fishman and Michael, 1 973;
Morrell, 1 972; Spinelli et al., 1 968) and mouse V1 (Knöpfel et al., 201 9).

In addition to crossmodal inputs, other factors strongly impact activity in primary
sensory areas. Locomotion and increases in arousal both desynchronize spike
patterns and increase V1  activity (Fu et al., 201 4; Niell and Stryker, 201 0; Vinck et
al., 201 5c). Also eye, head and orofacial movements lead to marked activity
changes (Bouvier et al., 2020; Guitchounts et al., 2020; Stringer et al., 201 9). The
exact function of motor signaling to primary sensory cortices remains unknown,
but it possibly provides an efference copy serving to predict the sensory
consequences of body movement. Failing to account for these motor-related
influences risks misinterpreting the observed sensory cortical activity (Musall et
al., 201 9; Zagha et al., 2022). Indeed, V1  activity during sound clips has been
argued to have a behavioral rather than sensory origin and relate to stereotyped
sound-evoked movements (Bimbard et al., 2021 ). The origins of crossmodal
activity in sensory cortex are thus unclear and dissociating auditory from
behavioral signals in V1  is central to correctly interpret (multi-)sensory activity and
to understand how distinct inputs to visual cortex interact to support vision.

To examine whether visual, auditory and motor processing can be dissociated in
V1 , we trained mice on a task which required them not only to detect sensory
changes, but also to distinguish or segregate the modality in which the change
occurred. In awake animals performing this task, auditory stimuli evoke
frequency-tuned neuronal responses in V1 , that are largely, but not completely,
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explained by orofacial movements. We disentangled auditory-related from motor-
related activity using multi-area recordings, task manipulations, pharmacological
interventions and optogenetics. An early, sound-evoked component of V1
responses originates from auditory cortex, is transient, and is found predominantly
in superficial and deep layers. In contrast, motor-related activity following
auditory stimuli results from rapid orofacial movements with an onset-latency of
60-1 00 ms, is found mostly in superficial layers, and underlies the bulk of late
sound-evoked neural activity changes in visual cortex, but not in auditory cortex.
Jointly, these signals strongly affected visual cortical activity in a way that leaves
visual stimulus coding intact.

Results
To disentangle visual, auditory and behavior-related signaling in V1  we presented
three different cohorts of head-fixed mice with the same sensory stimuli, but
trained them to report only visual stimuli, both auditory and visual stimuli, or
neither (Fig. 4.1 a). Visual stimuli were continuous full-field drifting gratings and
visual trials consisted of uncued, occasional orientation changes. Auditory stimuli
consisted of weighted combinations of five harmonic tones that occasionally
changed frequency (auditory trial; Ext. Data Fig. 4.1 a-c). Noncontingently exposed
mice (NE; N=7) were not rewarded for licking after any stimulus change, but were
pseudorandomly rewarded for spontaneous licks and therefore served as naive
control animals. Unisensory trained mice (UST; N=4) were only rewarded for lick
responses to visual changes and learned to ignore auditory changes. In the
multisensory task version (MST; N=1 7), responses to both visual and auditory
changes were rewarded and animals were trained to lick left to auditory changes
and right to visual changes (or vice versa). Thus, not only the change but also
modality identity was behaviorally reported through directional lick responses. Hit
rate scaled with stimulus saliency (amount of visual or auditory feature change)
only in modalities for which mice were rewarded (Fig. 4.1 b), confirming effective
manipulation of the task-relevance of sensory changes.
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Figure 4.1: Task dependent recruitment of auditory activity in visual cortex upon behavioral
relevance. a) Stimuli and reward contingencies for the three cohorts of mice. Visual and auditory
stimuli were continuously presented and visual trials (V) consisted of uncued orientation changes
(blue arrow), auditory trials (A) of uncued frequency changes (red arrow), and catch trials (C) of no
change. Noncontingently exposed mice (NE) were not rewarded for licking after stimulus changes,
unisensory trained mice (UST) for licks after visual but not auditory changes, and multisensory
trained mice (MST) for reporting both visual and auditory changes. In MST mice, each lick spout was
associated with a single modality. Ochre rectangle indicates reward availability. *For NE mice, reward
windows were temporally decorrelated from the sensory stimuli, and randomly occurring outside the
stimulation period. The dotted trial windows indicate the time window used post-hoc to compare
stimulus-related lick rates across cohorts. ITI: inter-trial interval. b) Average hit rates at different
stimulus saliencies for each cohort. Sub: subthreshold, thr: threshold, sup: suprathreshold, max:
maximal). Behavioral hit rates increased as a function of the amount of auditory change (step size in
frequency) in MST mice (left panel), and as a function of visual orientation change for UST and MST
mice (right panel), in line with their reward schedule. UST mice were only rewarded for licks to the
visual lick spout and therefore chose not to lick the auditory lick spout. Mean ± SEM. c) DAPI-stained
(blue) coronal section showing electrode track in left V1  stained with DiI (red) ±3.56 mm posterior
to Bregma. V2M and V2L: medial and lateral secondary visual cortex, respectively. Au1 : primary
auditory cortex. AuD: dorsal secondary auditory cortex. d) Raster plots showing sound-evoked
activity in example V1 neurons from each cohort. Black ticks indicate the first lick after stimulus
change, which was rewarded only in MST mice. e) Averaged z-scored firing rate (referenced to
baseline) for auditory responsive V1  neurons to preferred post-change auditory stimulus. Inset shows
response averaged across the shaded analysis window (0-200 ms). *p<0.05, **p<0.01 . Mean ± SEM.
f) Scatter plot of z-scored firing rate, corrected for baseline activity (analysis window 0-200 ms) and
following auditory and visual stimulus changes. Each dot is a neuron. (NE: N=1 63; UST: N=1 28;
MST: N=81 2). Colors denote cells with a significant response to any modal input (gray: no significant
response). g) Individual V1  neurons show frequency-specific sound-evoked activity. Raster plots as
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in (d), but for the two sets of auditory post-change frequencies (where A and B are two similar
frequencies and C and D as well; Ext. Data Fig. 4.1 e). Left example from NE mouse, right from MST
mouse.

Sound-evoked activity in primary visual cortex
We recorded single unit and LFP activity in V1  (Fig. 4.1 c). During recording
sessions, two levels of change saliency were presented per modality: threshold level
(Vthr and Athr, individually titrated per animal based on psychophysical data; see
Methods) and maximal saliency (Vmax and Amax, 90° and ½ octave change,
respectively; Ext. Data. Fig. 4.1 d). Furthermore, stimuli were restricted to four
orientations and four frequencies. Within these visual or auditory stimulus sets,
stimuli A and B were highly similar (differing at threshold level), as were C and D,
and nearby stimuli were grouped into pairs for analyses (set A/B vs. set C/D; see
Ext. Data Fig. 4.1 e).
Auditory frequency changes at maximal saliency (Amax) induced spiking activity
in V1  neurons of mice from all three cohorts (Fig. 4.1 d). These responses were
generally transient and subsided after 200 ms. A sizeable fraction of V1  neurons
had a significantly higher firing rate (0-200 ms) compared to baseline following at
least one of the post-change auditory stimuli (Wilcoxon signed rank test, p<0.05;
during Amax trials). This fraction was similar across cohorts (NE: 25.5 ± 4.0%, n=5
sessions; UST: 34.8 ± 4.8% n=4 sessions; MST: 20.9 ± 0.7% n=27 sessions;
p=0.30, Kruskal-Wallis test). A large fraction of V1  neurons also responded to one
of the two visual orientation changes in all three cohorts (NE: 42.4 ± 7.9%; UST:
53.2 ± 6.8 %; MST: 30.2 ± 0.8%; mean ± SEM; p=0.1 3, same sessions as above,
Kruskal-Wallis test). To quantify and compare neuronal activity, firing rates during
auditory and visual trials were z-scored (Fig. 4.1 e,f). Auditory responses of V1
neurons (0-200 ms after stimulus change) were particularly strong in MST
animals, in which responses exceeded those observed in NE and UST animals
(F(2,232)=4.96, p=0.01 ; Posthoc comparison: MST vs NE: F(1 ,229)=4.40,
p=0.037; NE vs UST: F(1 ,229)=0.02, p=0.876; MST vs UST: F(1 ,229)=7.75,
p=0.006). V1  neurons were previously found to be selective for auditory stimulus
features such as sound frequency (Fishman and Michael, 1 973; Knöpfel et al.,
201 9; Morrell, 1 972; Spinelli et al., 1 968). Indeed, individual neurons displayed
stimulus-specific sound-evoked firing rate responses (Fig. 4.1 g) and a surprisingly
large fraction of V1  neurons discriminated post-change auditory stimulus identity
(1 2.7% ± 3.7%, Mean +- SEM across sessions, A/B vs C/D Amax trials,
permutation test; p<0.05), which was comparable across cohorts (NE: 1 1 .9 ±
2.7%; UST: 1 6.1  ± 4.5%; MST: 1 2.1  ± 1 .9%; p=0.68, Kruskal-Wallis test). This was
significantly smaller than the fraction of orientation-selective cells across cohorts
(31 .9 ± 3.7%; fraction frequency- versus orientation-tuned: F(1 ,52)=1 8.48,
p=7.54*1 0-5). This fraction is lower than commonly reported in the literature,
presumably because we only sampled four irregularly spaced grating orientations
(Ext. Data Fig. 4.1 e).

Motor contribution to sound-evoked activity in visual cortex
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The enhanced sound-evoked responses in V1  of MST animals are potentially
explained by licking as only these mice were rewarded for reporting auditory
changes. Auditory lick reaction times in MST mice were around 320 ms (median,
IQR: 21 9-446 ms) and faster than visual reaction times (median: 404 ms; IQR:
320-509 ms; F(1 ,270) = 1 05.65, p=3.94 * 1 0-21), suggesting motor-related activity
changes in V1  could already play a role during early time windows after the change
in sound (0-200 ms). We recorded the mice’s faces and often observed orofacial
movements following auditory stimulus changes in trained, but also untrained
mice. We therefore explored to what extent sound-evoked activity in V1  was related
to (stereotypical) movements (Bimbard et al., 2021 ; Williams et al., 2021 ). To
investigate this, motion energy was extracted from video footage (video ME) as the
overall pixel intensity difference between consecutive frames (Fig. 4.2a), which
included snout, whisking and licking movements.

Visual stimulus changes induced movements only in UST and MST mice, the
cohorts rewarded for licking. A change in auditory stimulus was followed by strong
movements in MST mice, but to a lesser extent also in NE and UST mice (Fig. 4.2b).
In Amax auditory trials, these orofacial movements started roughly 60-1 00 ms
after the stimulus change, but our temporal resolution was limited by a frame rate
of 25 fps. In MST animals, instrumental licking movements dominated, while in
NE and UST animals, where sounds were behaviorally irrelevant, they evoked
mainly whisking and snout movements (Ext. Data Fig. 4.2a,b). Similarly, if we
removed the lick spout in MST mice, auditory stimuli continued to evoke orofacial
movements other than licking, while movements disappeared altogether following
visual stimuli (Ext. Data Fig. 4.2c-e). Sounds thus evoked orofacial movements
whether relevant or irrelevant to the current task, in contrast to visual stimuli,
which only led to reward-contingent movements.
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Figure 4.2 – Sound-evoked orofacial movements explain frequency-tuned activity in visual cortex. a)
Example frame and motion energy from the video (video ME). Red indicates more orofacial
movements. b) Video ME for auditory (threshold and maximal saliency, Athr and Amax) and visual
(Vthr and Vmax) trials across cohorts. Inset shows a zoom in of boxed region in Amax trials. c) Trial-
by-trial spiking activity correlates with video ME in an example V1  neuron (MST animal). Columns
from left to right: firing rate during auditory trials (red is high firing rate), video ME during auditory
trials (warm colors is increased orofacial motion), firing rate during visual trials (blue is high firing
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rate), video ME during visual trials. Trials include hits and misses and are separated by saliency (thr
and max) and sorted by magnitude of video ME. Upper panels show trial-averages of heatmaps below.
Heatmap color range is the axis range of the upper plot. d) Same as c, but for another example V1
neuron (MST cohort) with sound-evoked spiking activity in Amax trials without changes in video ME
in a subset of trials. e) Average Pearson correlation of single neuron firing rate to video ME during
auditory (red) and visual (blue) trials over time. f-h) Same as c, but with trials separated based on
visual and auditory post-change stimulus class (set A/B versus set C/D). In the left two examples,
both firing rate and video ME discriminate post-change auditory feature, and firing rate and video
ME are correlated across trials. In the right example, firing rate discriminated grating orientation
independently of orofacial movements and video ME was largely unrelated to grating orientation.
Pre-change coding resulted from the fact that gratings changed from A/B to C/D, or vice versa.
Neurons from MST mice. i) Left: frequency selectivity of V1  neurons (x-axis) and video ME-based
selectivity in the same session (y-axis). Selectivity was measured as AUC, rescaled between -1  and 1 .
Each dot is a neuron (all cohorts combined). Right: same but for orientation selectivity.

Sound-evoked movements underlie frequency tuning
For of a number of individual V1  neurons, activity correlated with video ME (Ext.
Data Fig. 4.3a) (Stringer et al., 201 9). Also during auditory trials, some neurons
showed an overall similarity between trial-to-trial firing rate and video ME (Fig.
4.2c). However, example neurons also showed sound-evoked activity in trials
without increases in video ME (Fig. 4.2d). The increase in orofacial movements
after auditory changes could therefore underlie sound-evoked activity in V1  at least
in a fraction of neurons. As a first test of this hypothesis, we correlated firing rate
with video ME during auditory and visual trials for all neurons (Fig. 4.2e). Relative
to baseline, the average correlation decreased for visual trials, likely due to visually
driven activity unrelated to ongoing movements. Following auditory changes, the
average correlation transiently dropped and then increased after roughly 1 00 ms,
in line with the observed movement-related activity of individual V1  neurons.
We next wondered whether movements could also underlie the observed auditory
frequency-specific V1  activity (Fig. 4.1 g). As illustrated for two example neurons
(Fig. 4.2f,g), frequency-tuned activity was strongly aligned to variability in video
ME in those trials. Both neuronal activity and video ME thus responded to auditory
changes in a stimulus-specific manner. This was not the case for orientation-tuning
(Fig. 4.2h). Auditory feature tuning could therefore result from ‘motor-tuning’.
Indeed, across the full population, tuning to either one of the auditory stimuli
(quantified using the receiver operating characteristic, ROC) was accompanied by
strong movements to that stimulus (F(1 ,688)=286.27, R=0.542, p=5.92*1 0-54),
but this was not the case for visual neuronal selectivity (F(1 ,692)=2.90, R=0.065,
p=0.09; Fig. 4.2i). Furthermore, if strong motor activity drove frequency
selectivity, one would expect all simultaneously recorded cells to be preferentially
tuned to the same auditory stimulus (viz. that elicited most movement). Indeed,
simultaneously recorded V1  neurons responded to the same auditory stimuli, while
their preferred grating orientation was mixed (Ext. Data Fig. 4.3b). These findings
were corroborated in a separate set of animals trained on a stimulus detection
(rather than change detection) version of the task, which allowed us to test a more
extended range of visual and auditory stimuli (see Methods; Ext. Data Fig. 4.4). We
found similar results when training population decoders on V1  population spiking
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activity or on high-dimensional video data (Ext. Data Fig. 4.3c-k; dimensions are
understood here as different PCA components; Stringer et al. 201 9). Auditory
frequency could be decoded from neural and video data in a highly correlated
manner, whereas grating orientation could be deduced only from V1  activity. In
sum, auditory stimuli led to fast orofacial movements that correlated with sound-
induced and tone-specific V1  activity.

Dissociable auditory and motor-related signals
A purely behavioral origin of sound-evoked activity in V1  would be in disagreement
with some previous findings. Primary auditory and visual cortices are
monosynaptically connected and sound-evoked activity has been reported under
anesthetized conditions where overt movements and changes in behavioral state
play a very minor role, if any (Henschke et al., 201 5; Ibrahim et al., 201 6; Iurilli et
al., 201 2). Furthermore, in our recordings, many neurons showed short-latency
sound-evoked activity also in trials without apparent changes in motor activity (e.g.
Fig. 4.2d). We therefore explored whether auditory activity can be disentangled
from motor-related activity in visual cortex.
First, we compared sound-evoked V1  activity to spiking activity in auditory cortex,
where the importance of bottom-up auditory signaling is well established (AC;
including primary auditory cortex, anterior auditory field and dorsoposterior
auditory cortex; Fig. 4.3a). AC strongly responded to auditory stimulus changes,
but only minimally to visual orientation changes (Fig. 4.3b, right). We aggregated
population activity across neurons to achieve a higher temporal resolution than
single-unit activity and compared the latency to firing-rate increases evoked by
visual and auditory stimuli in V1  and AC (Fig. 4.3b). The auditory response started
at 1 8 ms in AC and 27 ms in V1 . The small increase in AC activity after visual
stimuli became significant only after 1 56 ms. This short onset latency of sound-
evoked activity in visual cortex fits auditory-related inputs to V1 . Visual responses
started at 54 ms in V1 , matching the canonical retinogeniculate drive (Schnabel et
al., 201 8).

To further disentangle auditory and motor-related signals, we built a regression
model (Fig. 4.3c) to predict single-neuron activity based on trial number (e.g. to
account for drift in motivational state), visual and auditory stimulus features and
motor activity (the first 25 video PCs). Given that video predictors represented
orofacial movement, we termed the correspondingly explained neural activity
motor-related. This approach succeeded in separating the temporally overlapping
contributions of sensory stimuli and motor-related activity to trial-by- trial single-
neuron firing rate (Ext. Data Fig. 4.5a). Visual stimuli explained most V1  variance
during 0-200 ms post-stimulus change, followed by motor-related activity as next
best predictor (Fig. 4.3d). Auditory stimuli explained a modest but significant
fraction of the variance. Motor activity explained roughly three times as much
variance as the auditory stimuli. In auditory cortex, firing rate was best explained
by auditory stimuli, with only a minor contribution of trial-number and motor
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activity, and no apparent influence of visual stimuli. In V1 , visual encoding was
found largely in a separate set of neurons (Fig. 4.3e) and visual EV was not
correlated to motor EV (r=-0.03, F(1 ,471 )=0.61 , p=0.44), nor auditory EV (r=-
0.08, F(1 ,484)=3.49, p=0.06). Neurons were observed that uniquely encoded
auditory or motor features, as well as jointly auditory-motor coding neurons and
the overall EV was moderately correlated (R=0.32, F(1 ,473)=40.56, p=4.52x1 0-1 0).
To examine how auditory or motor-related activity distinctly contributed to the
average response in V1 , single neuron firing rate was predicted using only subsets
of predictors in our model (Fig. 4.3f). Averaging this predicted activity across V1
neurons revealed that activity during visual trials was mostly visual in the early
phase (0-200 ms), with a late motor-related component (>200 ms). Activity during
auditory trials presented a combination of temporally overlapping auditory and
motor-related components, with only early activity (<1 00 ms) being
predominantly auditory. This was strikingly not the case in auditory cortex, which
showed a negligible contribution of motor activity to the averaged response. The
sound-evoked activity in V1  was thus composed of a distinct, early auditory and a
later motor-related component. Performing these analyses for the different cohorts
showed that auditory-related activity in V1  was similar across cohorts and that the
larger sound-evoked response in MST mice (Fig. 4.1 e) was likely the result of
increased motor-related activity due to instrumental licking in this cohort (Ext.
Data Fig. 4.5b,c).
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Figure 4.3 – Temporal and spatial dissociation of auditory and motor-related activity in auditory and
visual cortex. a) DAPI-stained (blue) coronal section showing electrode track in Auditory dorsal
(AuD) and primary Auditory cortex (Au1 ) approximately ±2.46 mm posterior to Bregma. b)
Population firing rate after auditory and visual stimulus changes in V1  (left) and AC (right). Inset
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shows close-up of boxed region and the latency to cross a threshold of Z-score > 1 . Line and shaded
region are mean and SEM across sessions. c) Schematic of regression model. Single neuron firing rate
was predicted as a linear combination of four sets of predictors. A ‘Trial’ predictor captured rate
fluctuation throughout the session. For visual (V) and auditory (A) stimuli a set of separate predictors
spanned one second after stimulus change per saliency level and feature (orientation and auditory
frequency; shown only for one trial type) to capture neuron-specific response patterns. Motor
predictors included the top 25 video PCs. d) Explained variance during 0-200 ms of all trials for each
category of predictors. Mean ± SEM across neurons. Results based on 51  sessions; NE: 9, UST: 1 0,
MST: 32 sessions, 1 9.451  trials, 790 V1  and 99 AC neurons. Asterisks indicate significance of a post
hoc F-test on the relevant contrast in the linear mixed effects model. *p<0.05, **p<0.01 , ***p<0.001 .
e) Distribution of explained variance across V1  neurons for each category of predictors (except Trial),
showing encoding of sensory and motor variables in distinct and overlapping neurons. Neurons are
sorted based on visual minus motor encoding and centered by auditory encoding. f) The firing rate of
single neurons was predicted using only subsets of predictors (visual: blue, auditory: red, motor:
green) or all predictors (gray) and compared to the original firing rate (black). Shown is the firing
rate during different trial types averaged across V1  neurons (upper row) or AC neurons (bottom row).
g) Heatmap of z-scored firing rate with V1  neurons binned by cortical depth. Leftmost heatmaps show
original data; middle and right panels show predictions using sensory or motor variables from the
regression model. Rightmost panel shows normalized multi-unit activity peaking in L5 used to
demarcate layers (see Ext. Data Fig. 6). Throughout the figure neurons from all cohorts were
combined. See Ext. Data Fig. 5b,c for cohort-specific findings.

Laminar organization of auditory and motor-related inputs to V1
As V1  was recorded with microelectrode arrays that spanned the different layers,
we next wondered whether the auditory and motor-related components had
distinct spatiotemporal profiles. The electrode position was aligned to the cortical
depth for each V1  penetration (Ext. Data Fig. 4.6, Methods). We constructed
heatmaps of z-scored firing rate as a function of cortical depth and time relative to
the stimulus change, using either the raw data or the activity predicted from
stimulus or motor components only (Fig. 4.3g). Visually induced spiking activity
clustered in layer 4 (L4) to L2/3 as well as later in L6, while motor-related activity
accounted for the later component predominantly in superficial layers 2/3, but also
L6. Sound-evoked activity was decomposed into an early auditory-related
component spanning the layers, but most prominently in L2/3 and L5/6, with
motor-related activity again mostly contributing in superficial layers. Note how
motor activity explained a similar pattern during auditory and visual trials, but
shifted to an earlier time window in auditory as compared to visual trials. These
results were corroborated by analyses of the local field potential, showing similar
onset latencies of auditory and visual evoked activity and predominance of motor-
related activity in superficial layers (Ext. Data Fig. 4.7). When estimating the
laminar organization of visual and auditory components with a model-free
approach and plotting the onset latency of visual- and auditory-evoked single-unit
activity as a function of cortical depth, we found similar results as for the GLM
analysis of firing patterns (Ext. Data Fig. 4.7h). Together, these results indicate
different spatiotemporal profiles for visual, auditory, and motor-related
components in V1 . Our data are most consistent with auditory stimuli evoking fast
auditory-related inputs predominantly to deep layers and later, motor-related
activity mostly in superficial layers.



Results

151

Auditory cortex as a source of early sound-evoked activity in V1
The short-onset, sound-evoked activity in V1  (27 ms), shortly after AC (1 9 ms, Fig.
4.3b), suggests that AC may be a source of early auditory-related activity in V1 . To
test this, we first bilaterally injected AAV-CamKIIa-ChR2-eYFP in AC of naive mice
(Ext. Data Fig. 4.8a). Axonal terminals were observed in layers L1  and L5/6 of V1
(Ext. Data Fig. 4.8b,c). This AC-V1  projection pattern matches that found in earlier
studies (Ibrahim et al., 201 6; Rockland and Ojima, 2003). In a subset of animals,
cell bodies were photostimulated in AC and the LFP response was recorded in V1
(Ext. Data Fig. 4.8f-j). Ten millisecond laser pulses over AC led to short-latency
LFP deflections in V1 , indicative of AC to V1  connections (Ext. Data Fig. 4.8g), in
line with (Ibrahim et al., 201 6; Iurilli et al., 201 2).

Next, we bilaterally injected AC with muscimol in MST mice during task
performance (Fig. 4.4a). Muscimol infusion immediately abolished spontaneous
multi-unit activity in AC (Fig. 4.4b) but did not affect V1  firing rate as compared to
the saline control (Fig. 4.4c). Muscimol moderately impaired auditory hit rates at
maximal saliency (Amax: F(1 ,1 9)=6.41 , p=0.020; catch: Athr: F(1 ,1 9)=4.26,
p=0.053; F(1 ,1 9)=1 .69, p=0.21 0; n=1 1  saline, 1 1  muscimol sessions; Fig. 4.4d)
without effects on visual hit rates (catch: F(1 ,1 9)=3.88, p=0.064; Vthr:
F(1 ,22)=0.09, p=0.773; Vmax: F(1 ,1 8)=0.43, p=0.522). Reaction times were
unaffected, except for a small reduction in Vmax trials (Vthr: F(1 ,569)=0.1 6,
p=0.686; Vmax: F(1 ,748)=6.03, p=0.01 4; Athr: F(1 ,487)=0.05, p=0.81 8; Amax:
F(1 ,705)=0.30, p=0.581 ; Fig. 4.4e).
Recordings during task performance revealed that the firing rate of V1  neurons
following visual stimuli during AC inactivation was similar to control experiments
(Fig. 4.4f). However, AC inactivation affected V1  firing during auditory trials
particularly in the first 1 00 ms and was still associated with a later increase in
average firing rate. The onset latency of increased firing was not significantly
different for visual stimuli (control: 69 ms (47 - 81  ms) versus muscimol: 58 ms
(43 - 67) ms; median and bootstrapped 95% CI; maximal saliency), but delayed for
auditory stimuli (control: 50 ms (30 - 82) ms versus muscimol: 98 ms (84 - 1 1 7)
ms; bootstrap test; p<0.05). Thus, muscimol suppressed the early component of
the V1  response to auditory stimuli (from about 30 to 80 ms; Fig. 4.4f). Muscimol
did not affect activity during Athr trials consistent with the fact that V1  activity
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during these trials was mostly motor-related, with only a minimal auditory-related
component (see Fig. 4.3f).
Figure 4.4: Muscimol in auditory cortex impairs auditory change detection and early evoked activity
in visual cortex. a) Histological section and schematic of approach to bilaterally inactivate auditory
cortex with muscimol. Red blob shows BODIPY TMR-X conjugated muscimol localized mainly in
primary auditory cortex (Au1 ). AuD/AuV: dorsal/ventral secondary auditory cortex. b) Multi-unit
activity in AC normalized to session start before and after muscimol injection, showing a severe
reduction of spiking activity. Inset shows a high-pass voltage trace (cut off at 500 Hz) at one electrode
during the same timeframe. Scale bar indicates 1 00 microvolt and 5 minutes. c) Average single-unit
activity in V1  normalized to session start for saline and muscimol sessions. Injections were 1 -5
minutes prior to recordings. Line and shading indicate mean ± SEM across sessions. d) Hit rates in

auditory trials (left panel) and visual trials (right panel) for muscimol and saline sessions. Mean ±
SEM across sessions. *p<0.05. e) Reaction times. Mean ± SEM across trials. *p<0.05. f) V1 spiking
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activity with and without AC inactivation during visual (left) and auditory (right) trials of maximal
saliency. Main panels show average spiking activity with the line and shading indicating mean ± SEM
across neurons. The lower colormap scales with p-value of bootstrapped test of difference per time
bin (n=1 0.000 bootstraps, p<0.05, Bonferroni corrected; control neurons were subsampled to match
the number of recorded V1  neurons during AC muscimol infusion; dataset: 32 control sessions, 570
V1  neurons; 4 muscimol sessions, 53 V1  neurons). The insets show a close up of the early post-
stimulus time window and bootstrapped activity (line and shading indicate mean ± 95% confidence
interval). The dashed line indicates statistical threshold of deviations from baseline. Upper horizontal
dot and error bar indicate when bootstrapped activity significantly exceeded baseline activity. The
non-overlap of these distributions showed a significant difference in onset latency (p<0.05). g)
Overall orofacial motion energy during auditory trials. Grey line: stimulus change. Mean ± SEM
across trials. h) Explained variance of V1  spiking activity by each predictor subset in the regression
model with and without AC inactivation. Mean ± SEM across neurons. *p<0.05. **p<0.01 .

Given that auditory performance was reduced but not abolished by muscimol
injection, the residual auditory hits were still associated with instrumental licking
and orofacial movements (Fig. 4.4g), which could underlie late V1  firing during
auditory trials. We tested whether muscimol selectively affected the contribution
of auditory predictors to V1  firing rate, while preserving other components (Fig.
4.4h). Auditory predictors explained significantly less variance under muscimol
(p=0.04; Wilcoxon rank sum test), while visual and motor predictors were not
associated with significant reductions (Vis: p=0.23; Motor: p=0.95). The variance
explained by trial number increased (p=0.01 ). In sum, AC inactivation selectively
affected the early auditory-related component of sound-evoked V1  activity, but not
the motor-related component.

Behavioral dominance of audition over vision
How do auditory and motor signals impact concurrent visual processing? In a
subset of sessions in MST mice, we interleaved trials in which both visual and
auditory stimuli changed simultaneously with standard trials presenting a
unisensory change and catch trials. In these mice, visual and auditory feature
changes were associated with different motor actions. The modalities therefore
acted as competing inputs and a simultaneous change presented the animal with a
conflicting situation. Therefore we first describe the behavior.
In behavioral sessions we presented four levels of visual and auditory feature
change that matched in subjective saliency across modalities (Meijer et al., 201 8;
Song et al., 201 7). Stimuli were taken as the x-axis positions corresponding to the
same positions along the psychometric function of each modality in unimodal trials
and thus matched performance (Fig. 4.5a; subthreshold (sub), threshold (thr),
suprathreshold (sup), maximal (max)). Saliency-matched conditions led to
comparable increases in pupil dilation (Ext. Data Fig. 4.9a,b). In conflict trials,
animals predominantly chose the auditory lick spout (Ext. Data Fig. 4.9c).
Behavioral choice scaled with the saliency of the sensory input, but in saliency-
matched conditions auditory choices dominated (Fig. 4.5b,c; Ext. Data Fig. 4.9d).
A saliency-matched dominance index (smDI) was computed as a ratio of auditory
to visual choices for saliency-matched conflict conditions (Fig. 4.5d). The smDI
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was significantly higher than zero (indicating auditory dominance), confirming
auditory dominance (smDI: 0.33, Wilcoxon signed rank test, p=0.001 4, n=1 7
mice, based on 97 sessions, 51 .932 trials). Audition thus dominates behaviorally
over vision in our modality identification task and this is partly explained by faster
auditory processing (Ext. Data Fig 4.9).

Dissociation of auditory and visual processing: preserved orientation coding
during conflicting multisensory inputs
To examine how auditory- and motor-related inputs intersect with concurrent
visual processing, we sampled neural activity during conflict trials of threshold and
maximal audiovisual saliency in 65 out of 1 22 recording sessions with MST mice.
The time window of analysis was broadened to 0-500 ms to investigate continued
interaction between visual, auditory and motor-related processing.
We first compared trial-averaged activity during multisensory conflicts with
saliency-matched unimodal trial types (Fig. 4.5e). Neurons that responded during
visual or auditory trials continued doing so during conflict trials. In the regression
model, visual, auditory and motor-related predictors continued to predict V1  firing
rate in held-out conflict trials (Fig. 4.5f).
These results are in line with our finding that visual, auditory and motor
components evoked activity in largely distinct neuronal subsets of V1  (Fig. 4.3f).
Briefly revisiting the unisensory trials, population activity would be expected to
distinguish between visual and auditory trials. Indeed a decoder trained to
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Figure 4.5: Preserved orientation coding in V1 during multisensory trials showing auditory
behavioral dominance. a) To equalize subjective saliency during conflict trials, four levels of auditory
and visual change were taken at equal positions along this schematic psychometric curve. All data in
this figure are from MST animals. b) Dominance index (DI) as a heatmap across unimodal and
conflict trials for an example animal showing auditory dominance. A positive (red) DI indicates a
higher fraction of auditory choices relative to visual. c) Heatmap as in (b), but averaged across all
animals (n=1 7). d) Saliency-matched Dominance Index (smDI) taken by averaging the DI of all
saliency-matched conflict conditions (conditions along top-right to bottom-left diagonal in heatmaps
of (b) and (c), excluding catch trials). Each dot is one mouse. Grey dot and error bar are mean ± SEM.
**p<0.01 . e) Heatmap of z-scored firing rate across V1  neurons (each row in each heatmap is a
neuron). Each heatmap shows a trial type, with columns increasing in auditory saliency (no change,
threshold, maximal) and rows increasing in visual saliency. Lower right 4 panels indicate conflict
trials. Neurons are sorted by response magnitude difference between unimodal visual and auditory
trials. During audiovisual trials, subsets of visually responsive (upper rows in each heatmap) and
auditory responsive neurons (bottom rows) respond similarly as during unimodal trials. f) Total
explained variance in firing rate of V1  cells for each trial type, with each color indicating the
contribution of each predictor subset. Result obtained from the regression model. C: catch trials. g)
Decoding performance over time for decoders trained to discriminate the modality of unimodal trials
(visual versus auditory) from V1  pseudopopulation activity (n=1 50 neurons). Line and shading
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indicate mean and 95% CI. Grey dotted line is chance level. h) Same as (g), but for performance of
decoders trained to discriminate visual orientation. Decoders were trained and tested on held-out
test trials of the same trial type (within condition: V-V and AV-AV) or trained on visual and tested on
held-out audiovisual trials, or vice versa (cross-condition: V-AV and AV-V). Baseline performance
results from a subset of neurons persistently coding orientation, see Fig. 2h,m. Line and shading
indicate mean and 95% CI. i) Quantification of orientation decoding performance averaged over
dashed time window in (h) for different pseudopopulation sizes. j) Orientation decoding weights
(SVM coefficients) at t=0.1 75 sec from decoders trained separately on visual or audiovisual trials.
Each dot is a neuron. k) Orientation selectivity during visual (Vmax) and audiovisual trials
(Vmax+Athr or Vmax+Amax).

discriminate the modality of unimodal trials from V1  pseudopopulation spiking
data (pseudopopulation size n=1 50 neurons) did so with high accuracy (Fig. 4.5g).
Returning to conflict trials, the auditory stimulus and orofacial movements
explained more variability in conflict trials than visual stimuli did (Fig. 4.5f). With
these multimodal inputs competing, we wondered how visual representations
would be affected. We trained the same population decoder to discriminate visual
orientation in unimodal visual and multimodal (conflict) trials and tested
performance on held-out test data of the same or different trial type (i.e. with or
without auditory stimuli). For all conditions tested, orientation decoding
performance increased after visual stimulus change (Fig. 4.5h) and was
comparable between visual-only and conflict trials, also when tested for various
population sizes (Fig. 4.5i). The contributions of individual neurons (SVM
coefficients) were strongly correlated between visual and audiovisual trials (Fig.
4.5j; R=0.70, F(1 ,247)=236.24, p=7.28*1 0-38). This population-level finding
matched with single-neuron analyses, where orientation selectivity during visual
and conflict trials was strongly correlated in a similar, but even stronger manner
(Fig. 4.5k; R=0.837; F(1 ,529)=282.61 , p=3.97*1 0-51). Therefore, while sounds
dominate behavioral choice and V1  variance, visual feature coding is only
minimally affected.

Discussion
Several studies have reported sound-evoked activity in V1 , but often without
controlling carefully and systematically for sound-evoked behavioral changes. We
found that a large part of sound-evoked activity in V1  appeared correlated to
orofacial movements, in line with a recent report (Bimbard et al., 2021 ). However,
next to motor-related activity, distinct early auditory-related activity was observed
in V1 . These inputs likely reflected auditory sensory-evoked inputs as they had
short-onset latencies in spiking and LFP data, did not correlate to orofacial
movements, and were reduced after AC inactivation (Fig. 4.2d,e; 4.3b,f,g; 4.4f,h;
Ext. Data Fig. 4.7g,h). Rather than there being a single external input of a purely
sensory or purely behavioral origin, both auditory and motor-related inputs reach
primary visual cortex, and these are segregated in time and space (via different V1
subsets). Sounds can thus lead to strong activity changes in visual cortex through
multiple pathways. In addition to the dissociability of auditory and motor
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processing, we show that auditory and visual streams remain largely segregated,
most poignantly illustrated by the preserved orientation coding during
multisensory conflict trials in which auditory inputs dominated behaviorally.

Early auditory-related activity in visual cortex
Even when motor-related influences were accounted for, short-latency AC-
dependent signals were present in V1 . Onset latencies of sound-evoked activity
were comparable to the prior literature with 1 8 ms in AC (1 1  ms in Sakata and
Harris, 2009) and 27 ms in V1 (35.8 ms in Iurilli et al., 201 2). This latency
difference is compatible with mono- or disynaptic AC-V1  connections. The specific
reduction of auditory-related activity in V1  after bilateral pharmacological
inactivation of AC further establishes the efficacy of the AC-V1  pathway during task
performance (Fig. 4.4). Muscimol injections also increased the variance explained
by trial number; it may be speculated that this effect was caused by slow
fluctuations in excitability of thalamocortical networks affecting V1  activity across
the session, even though the mean firing rate was comparable to control recordings
(Fig. 4.4c). AC inactivation impaired but not abolished the detection of frequency
changes, in line with a modest role for AC in pitch discrimination (Ceballo et al.,
201 9). Given that primary auditory and visual cortices are monosynaptically
connected and sound-evoked activity in V1  has been reported under anesthetized
conditions (Henschke et al., 201 5; Ibrahim et al., 201 6; Iurilli et al., 201 2), our
findings underscore the efficacy of direct auditory inputs to visual cortex in awake
behaving mice, which is apparently not overshadowed by motor and arousal effects
or task-dependent factors that could in principle regulate the strength of these
inputs (cf. Knopfel et al. 201 9).
Our anatomical tracing and LFP results are in line with previous reports that
sounds can modulate visual cortex through both superficial L1  projections
(Ibrahim et al., 201 6) and deeper inputs (Iurilli et al., 201 2). These inputs may
modulate cortical activity through translaminar dendrites (e.g. targeting L1  apical
dendrites of L2/3 and L5 neurons) as well as through translaminar inhibitory
circuits, modulating activity in supragranular and infragranular layers (Fig. 4.3)
(Ibrahim et al., 201 6; Iurilli et al., 201 2; Knöpfel et al., 201 9; Meijer et al., 201 7).
Visually evoked activity in auditory cortex, on the other hand, was strikingly
absent. This asymmetry – or predominance of auditory crossmodal influences on
visual cortex relative to visual-to-auditory cortex influences - matches earlier
physiologial and anatomic studies (Budinger and Scheich, 2009; Campi et al.,
201 0; Ibrahim et al., 201 6; Iurilli et al., 201 2; Oh et al., 201 4), but is noteworthy
because it now is shown to hold in a task setting where auditory and visual changes
were of equal behavioral relevance. This asymmetry, however, might also depend
on the stimulus characteristics (Chou et al., 2020).

Behavioral component of sound-evoked activity in visual cortex
A large part of sound-evoked activity in V1  correlated to orofacial movements.
Already 60-1 00 ms after auditory changes, motor activity started (Fig. 2a) which
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correlated with V1  spiking activity (Fig. 4.2e; 4.3f; 4.5f) and LFP (Ext. Data Fig.
4.3g). These orofacial movements were themselves stimulus-specific, such that
auditory stimulus identity could be decoded from video footage (Fig. 4.2j-l).
Although the auditory stimuli were a weighted combination of different tones,
‘motor-tuning’ might arise through differences in subjective saliency, arousal, or
aversion to particular auditory frequencies. These results, including the frequency-
tuned responses in V1 , are in agreement with a recent study showing that different
sound clips were associated with stereotypical orofacial movements across mice,
which correlated to V1  activity (Bimbard et al., 2021 ). These and the present
results strongly argue for cautious interpretations of multisensory interactions in
awake subjects and underline the need to carefully monitor behavioral state.
We labeled neural activity changes related to orofacial movements as motor-
related. It is unclear whether these are better interpreted as corollary discharge
signals to V1  predicting (or otherwise relating to) visual consequences of motor
movements (Guitchounts et al., 2020; Leinweber et al., 201 7; Pennartz et al., 201 9;
Schneider et al., 201 4), or as internal state changes associated with arousal levels,
which may be linked with increased movement (Niell and Stryker, 201 0; Vinck et
al., 201 5c). Visual and auditory stimuli evoked approximately similar levels of
pupil dilation (Ext. Data Fig. 4.9a), but auditory stimuli could in addition elicit fast
arousal responses, known to originate from intralaminar thalamic nuclei
(Minamimoto and Kimura, 2002; Van der Werf et al., 2002). As corollary discharge
signals might be temporally shifted relative to video-observed movements
(Leinweber et al., 201 7), a methodological limitation is that our regression model
does not take into account nonlinear or temporally shifted relationships between
orofacial movements and V1  activity. Whether sounds predominantly activate
arousal or sensorimotor signaling in visual cortex is a question for future
investigation.

Preserved orientation coding during auditory behavioral dominance
Mice reported auditory over visual stimulus changes during saliency-matched
conflict trials in a similar manner as in Song et al. (201 7) (but see (Coen et al.,
2021 ) for balanced audiovisual weighting). During these conflict trials, the
combination of auditory and motor-related components explained more variability
in firing rate than visual stimuli, even though orientation coding was preserved. In
other words, both auditory and motor influences on V1  activity appear to be largely
orthogonal to visual feature representations, cf. (Montijn et al., 201 6; Stringer et
al., 201 9). This preserved orientation coding matches well with our observation
that visual, auditory, and motor-related activity occurs in rather segregated cell
populations (Fig. 4.3f) and underscores their dissociability. Primary visual cortex
thus supports (relatively independent) parallel encoding of signals related to
different sensory and motor modalities. This segregation somewhat contrasts with
studies reporting predominantly jointly responsive neurons (Bizley et al., 2007;
Knöpfel et al., 201 9), which may relate to our behavioral task in which auditory
and visual cues were explicitly not to be integrated.
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Beyond cue integration
Our work differs in an important way from the large body of literature on
multisensory cue integration (Fetsch et al., 201 3; Meijer et al., 201 9; Stein and
Stanford, 2008), where for instance crossmodal inputs are interpreted to improve
the inference of grating orientation (Ibrahim et al., 201 6; Nikbakht et al., 201 8;
Williams et al., 2021 ). In the MST task, the two modalities were not jointly
informative about the same external variable (e.g. they were not jointly indicating
a source location, heading direction or stimulus rate), but rather auditory signals
were statistically uninformative about visual features (and vice versa), in contrast
to e.g. (Garner and Keller, 2022; Lippert et al., 2007; Meijer et al., 201 8, 2020;
Sheppard et al., 201 3). Instead, animals needed to monitor potential changes in
both modalities across time, without a trial onset cue, and discriminate in which
modality a change occurred.
Our finding that auditory changes not only modulated, but evoked spiking in V1  of
naive and visually trained mice as well as in mice trained to discriminate auditory
and visual signals, suggests a broader role for auditory signals in V1  than only
sharpening visual tuning. As shown elsewhere, auditory signals in V1  do not
become causally important for audition during MST training, as V1  optogenetic
inhibition impacts visual but not auditory change detection performance (Oude
Lohuis et al., 2022). Even if auditory inputs to visual cortex are not directly relevant
for detecting single visual features, they are hypothesized to fit in a broader view of
sensory cortical function (Meijer et al., 201 9; Pennartz, 201 5, 2009; Petro et al.,
201 7), where crossmodal interactions serve to orchestrate perception across a
larger cortical network, guide crossmodal attention, and inform visual processing
in distributed networks about ongoing auditory events. In this respect, it is
interesting that the auditory component was stable across cohorts (Ext. Data Fig.
4.5c), consistent with a basal, rather than task-specific function. Part of this
orchestration may reside in predictions that fast auditory processing conveys upon
vision; another part may relate to the observation that perceptual phenomenology
is qualitatively rich, and thus requires segregation as well as integration of sensory
modalities (Pennartz, 201 5, 2009).

In sum, to correctly interpret (multi)sensory-evoked activity, careful dissociation
of sensory and motor origins is necessary. Through this dissociation it becomes
clear that sound evokes inputs from auditory to visual cortex that are fast and
transient, as well as to later, secondary motor modulations through sound-evoked
body movements. The associated activity patterns temporally overlap somewhat
and co-exist with visual processing, although this remains dissociable as apparent
from population coding of visual grating orientation. An exciting direction of future
research will be to understand how these multiple signals co-exist to contextualize
sensory input to generate meaningful information processing and behavior.
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Methods
Animals
All animal experiments were approved by the Dutch Commission for Animal
Experiments and by the Animal Welfare Body of the University of Amsterdam.
Thirty-three male mice were used from different genotypes: wildtype C57BL/6,
PVcre (JAX 008069), and PVcre/TdTomato (JAX 027395). Mice were at least 8
weeks of age at the start of experiments. Mice were group-housed under a reversed
day-night schedule and all experimental procedures were performed during the
dark period (8:00 – 20:00).

Head bar implantation
Before the start of any experiment, a custom-made titanium head-bar was
implanted to allow head fixation. Mice were anesthetized with isoflurane and fixed
in a stereotaxic apparatus. A circular patch of skin was removed to expose and
disinfect the skull. A circular head bar (inner diameter 1 0 mm) was positioned over
the skull to include bilateral V1  and AC and glued and cemented to the exposed
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skull. After a recovery period of 2-7 days, mice were habituated to handling and
head-fixation before start of the training procedure.
Behavorial tasks
Mice were water-deprived throughout the course of experiments and earned their
daily ration of liquid by performing the behavioral task. In the case of low
performance, daily intake was supplemented to a minimum of 0.025 ml per gram
of body weight. During a session, mice were headfixed their bodies were positioned
in a cylindrical holder. Two lick spouts were positioned symmetrically on the left
and right side within reach of their tongue. Licks were detected by capacitance-
based (during training) or piezo-electric based detectors (during recordings).
Correct licks were immediately rewarded with 5-8 μl of liquid reward (infant
formula; Nutrilon) delivered through the same lick spout using gravitational force
and solenoid pinch valves (Biochem Fluidics, Boonton, USA).

Audiovisual change detection task
In the audiovisual change detection task, auditory and visual stimuli were
continuously, without pre-cueing, presented throughout a behavioral session.
During visual trials a feature (the orientation) changed, after which this new
feature (the post-change orientation) continued to be shown. Similarly, auditory
trials consisted of a change of one auditory stimulus to another.

Stimuli
Visual stimuli were drifting square-wave gratings with a temporal frequency of 1 .5
Hz and spatial frequency of 0.08 cpd at 70% contrast (35 cd/m2 luminance
difference between bright and dark). In trials with a visual change the orientation
of the drifting grating was instantaneously changed (e.g. from 60˚ to 90˚) while
preserving its phase. Visual stimuli were presented with a 60 Hz refresh rate on an
1 8.5-inch monitor positioned at a straight angle with the body axis from the mouse
at 21  cm from the eyes.
Each auditory stimulus was a weighted combination of five pure tones at harmonic
frequencies: a center tone, as well as two lower and two higher harmonics (octaves
below and above the center tone). If f0 is the center tone, then: f-2 = ¼*f0, f-1 = ½*f0,
f0 = f0; f+1 = 2*f0; f+2 = 4*f0. We name each auditory stimulus after the frequency of
its center tone. All frequencies were expressed in scientific pitch as powers of 2 with
the center tones spanning from 21 3 Hz (=8372 Hz) to 21 4 Hz (=1 6744 Hz). An
example stimulus, 21 3.5 (named by center tone), was therefore composed of five
pure tones of 21 1 .5, 21 2.5, 21 3.5, 21 4.5, and 21 5.5 Hz. The weight with which each tone
was present was taken from a Gaussian distribution across all tones for all stimuli,
centered at 21 3.5 (=1 1 585 Hz). Lower and higher harmonics thus contributed less
to the auditory stimulus than the center tone. Because of this fixed weight
distribution, stimuli with higher center tone frequency have decreasing weights for
higher harmonics and increasing weights for lower harmonics. Stimuli with higher
center frequency are thus increasingly made up of lower frequency components to
the point of arriving at the starting stimulus (see also Ext. Data Fig. 4.1 ). This
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auditory stimulus design with harmonics and fixed weights was inspired by the
Shepard tone illusion (Shepard, 1 964). However, in contrast to this illusion, our
stimuli were static and not sweeping across frequencies, and the original illusory
aspect of a tone ever-increasing (or decreasing) in pitch was not exploited. The
primary reason for this auditory stimulus design was the circular nature of the
stimulus set, which mirrored the visual stimulus set with drifting gratings in all
orientations.
During trials with an auditory change, one stimulus was changed instantaneously
to another. This resulted in a shift in spectral power to five new frequencies which
appeared to the mouse as an increase or decrease in pitch. Auditory changes were
expressed as partial octaves, with ½ octave maximally salient and the minimal
change used was 1 /256 partial octave. The degree of frequency/octave change
determined the auditory saliency and was varied across experimental conditions.
During auditory stimulus changes, the phase across all tones was preserved.
Stimuli were presented with a sampling rate of 1 92 kHz. Stimuli were high-pass
filtered (Beyma F1 00, Crossover Frequency 5-7 kHz; Beyma, Valencia, Spain) and
delivered through two bullet tweeters (300 Watt) directly below the screen. Note
that this high-pass filter eliminated the lowest frequency components of the
Shepard stimuli, and left the mid and high frequency components intact (those that
span the sensitive part of the mouse hearing range, 8-1 6 kHz). This was done to
prevent damage to the specialized tweeters that we used, but did not affect the
animals’ ability to report even very small differences between subsequently
presented Shepard tones. Sound pressure level was calibrated at the position of the
mouse and volume was adjusted per mouse to the minimum volume that
maximized performance (average ±70 dB).
In an earlier cohort of mice (N=1 3/33) and for the audiovisual detection task (n=3,
see below), the Shepard tones (1 ) were expressed in absolute Hz (e.g. an auditory
trial with Δ2kHz changed from 8 kHz to 1 0 kHz), (2) had 9 instead of 5 harmonics,
(3) were presented with a sampling rate of 48 kHz and (4) were not phase-
preserved during a change in auditory frequency. We observed no qualitative or
quantitative differences in both neural and behavioral results between the cohorts
and the data was pooled for all analyses.

Trial types
Trials simply consisted of an instantaneous feature change (visual, auditory or
audiovisual) and an ensuing reward window. Trial onset was defined by an
instantaneous change in the visual or auditory stimulus, or no change (catch trial).
All analyses are relative to this stimulus change. Trials were separated by an inter-
trial interval randomly taken from an exponential distribution (mean 6, minimum
3, and maximum 20 seconds). Trial types were pseudorandomly ordered by block-
shuffling per 1 0 trials (8% catch trials=no change, 46% visual trials, 46% auditory
trials). In sessions with multimodal conflict trials these replaced unimodal trials
(see below).
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Task versions
Animals were assigned to one of three versions of the audiovisual change detection
task in which the visual and auditory stimuli were identical and only the reward
contingencies varied (i.e. which stimuli were rewarded). This led to a controlled
manipulation of the behavioral relevance of the stimuli as well as differences in the
amount of instructed movements (goal-directed licking). Noncontingently exposed
(NE, n=7) animals were not rewarded for licking after auditory or visual stimulus
changes, but obtained rewards for licks during hidden ‘response windows’ that
were temporally offset from the stimuli. This resulted in spontaneous licking
behavior at the two spouts that was occasionally rewarded. Unisensory-trained
(UST, n=4) animals were trained to only report visual changes and ignore auditory
changes. Auditory stimuli and changes were presented throughout all sessions, but
were not associated with reward and changes were temporally decorrelated from
the task-relevant visual trials (no accidental conflict trials were programmed).
Multisensory-trained animals (MST, n=1 7) animals were trained to detect and
identify one of both modalities. Animals were required to respond in a lateralized
manner to each modality: lick to one side to report visual changes, to the other side
for auditory changes (modality-side pairing was counterbalanced across mice). In
other words, mice were required to simultaneously monitor both the auditory and
visual modality and identify the sensory modality in which a change occurred. As
we performed additional experiments with animals from the MST cohort, this
resulted in a higher number of animals in the MST cohort.

Psychometric performance
Animals in the NE cohort were accustomed to spontaneous licking behavior
irrespective of sensory stimuli in a few sessions. Animals in the UST and MST
cohorts were trained over the course of several weeks in which progressively more
difficult trial types (lower saliency) were introduced and reward size was lowered
until performance stabilized. To match the subjective salience of auditory and
visual stimuli across mice and modalities we chose intensities according to their
unimodal hit rates (Meijer et al., 201 8; Song et al., 201 7). For each trained animal
we established perceptual sensitivity by presenting five levels of auditory and visual
saliency (amount of change) that spanned the perceptual range for three
consecutive behavioral sessions. We fit the concatenated data of these three
sessions with a cumulative normal distribution per modality with four free
parameters (Meijer et al., 201 8):( ) = γ + (1 − γ − λ) 12 1 + x − μσ√2 ( . 4.1)
Here, γ describes the false alarm rate (spontaneous licks during catch trials), λ the
lapse rate (misses at maximal saliency), μ the mean of the cumulative normal
distribution (perceptual threshold), and σ the standard deviation (sensitivity to
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variations of stimulus intensity). Having established the psychometric function per
mouse, we took four levels of saliency per modality at fixed points along the
psychometric function: subthreshold (μ-σ; sub), threshold (μ; thr), suprathreshold
(μ+ σ; sup), and maximal saliency (max).

Conflict trials
In a subset of sessions we introduced multimodal trials in which auditory and
visual stimuli simultaneously changed (conflict trials, making up 25% of all trials;
replacing a fraction of unimodal trials). These multimodal trials were introduced
in experiments with NE and MST mice. Multimodal trials were omitted in
experiments with UST mice as systematic pairing of auditory and visual changes
would render the auditory stimuli predictive of concurrent visual changes, while in
these mice we aimed to study the processing of auditory stimuli under behaviorally
irrelevant conditions.
For NE mice, multimodal trials were presented during nearly all recording sessions
(n=27/28 sessions). For MST mice, we first quantified behavioral choice during
conflict trials in a set of sessions without recordings for all combinations of visual
and auditory saliencies (4x4=1 6 saliency combinations). This protocol was
repeated for 4-7 sessions per animal and the data was averaged for analysis (total
N=97 sessions; N=1 7 mice). For MST mice, the side of the first lick was registered
as the animal’s choice. To maintain consistency in task rules (i.e., that a change
predicts reward) licking to both spouts was rewarded. In a separate set of
experiments (N=20 sessions, 4 mice) we systematically varied the stimulus-onset-
asynchrony (SOA) of the auditory and visual change in conflict trials. In these trials
we presented only one combination of auditory and visual subjective intensity
(both at threshold saliency) and used the temporal offsets: -300 ms, -1 00 ms, -30
ms, 0, +30 ms, +1 00 ms, +300 ms (where negative values mean that the auditory
stimulus changes first). Multimodal trials were also introduced in a subset of the
recording sessions (N=65/1 22 recording sessions). During recording sessions only
two levels of saliency were used.
Due to our continuous stimulus design, we were constrained in the timing of visual
and auditory changes. A constraint on the auditory change resulted from the fact
that the auditory stimulus was changed only when all component tones were
aligned in phase. This was done to avoid inducing artefacts changing the frequency
of pure tones out of phase. For the visual domain, a constraint on precise timing
resulted from the refresh rate of the monitor (60 Hz). To achieve maximal
alignment in audiovisual trials, we first computed the future timestamp of the
phase-preserved change in auditory frequency. The visual stimulus changed at the
frame closest to that timestamp. Stimulus-onset asynchrony was therefore
maximally 8.33 ms; half the duration of the interframe interval (0.5 * 1 6.67 ms).
The direction of this misalignment varied and was small relative to the timescale
of analysis of conflict trials (0-500 ms).

Stimuli during recording sessions



Methods

165

During recording sessions, the trial type conditions were limited to get sufficient
repetitions. First we limited trials to use only two levels of saliency, threshold and
maximum. Threshold intensity was obtained through psychophysical experiments
per modality and per mouse (described earlier) and maximum intensity was always
fixed (90 deg and ½ octave). Second, we fixed the auditory and visual stimulus
identities, such that changes occurred only between 4 visual stimulus orientations
and 4 auditory frequencies (A, B, C, D). The distance between A and B and between
C and D was at threshold level, while the distance between A and C and between B
and D was maximal. An example stimulus set was 90, 97, 1 80, 1 87 (in degrees),
and 21 3, 21 3.031 25, 21 3.5, 21 3.531 25 (in partial octaves; Ext. Data Fig. 4.1 d,e). Auditory
and visual stimuli therefore jumped back and forth between four orientations and
frequencies across trials, providing reliable estimates of tuning to specific features.
For naive mice we used threshold values that matched those from trained animals.
Nearby stimuli (A and B, as well as C and D) evoked highly similar activity patterns
and for all analyses, the two nearby stimuli were grouped (i.e. set A/B and set C/D).

Engaged versus passive
In a subset of MST mice and in a separate set of sessions (N=5), we combined task-
engaged and passive blocks within the same recording session. During active
blocks the lick spouts were accessible, while in passive blocks the lick spouts were
manually positioned out of reach. The stimuli as well as the temporal statistics and
trial type distributions were the same for the active and passive blocks within that
recording session. In some sessions we implemented one passive and one active
block. In other sessions multiple active and passive blocks were alternated (n=5-7
blocks). The order of passive and active blocks was counterbalanced across
sessions. No differences were found between single versus multiple alternating
blocks and data were pooled. Only video data was analyzed (Ext. Data Fig. 4.2c-e).

Audiovisual stimulus detection task
We trained additional mice (n=3) on a simpler variant of the change detection task,
in which we could present a larger set of stimuli. In this detection task animals had
to detect stimulus presence, rather than stimulus change. Each trial consisted of a
blank intertrial interval (gray screen, no sound) drawn randomly from the same
distribution as the change detection task and a stimulus window (1 .5 seconds)
during which a reward could be obtained for licking the correct lick spout.
Analogous to the change detection task, animals had to report presence of a
stimulus and its modality by directed licks to either the left lick spout (visual) or
right (auditory). Modality-side pairing was the same for the three animals. Four
trial types were used: visual (41 % of trials), auditory (41 %), catch (no stimulus,
8%), and conflict trials (1 0%). Conflict trials were not analyzed. The same stimulus
set (full-field drifting gratings and Shepard tones) was used as in the change
detection task. The saliency of each trial was now determined by grating contrast,
while auditory saliency was determined by sound volume.
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Similar to the change detection task, we first established psychophysical
performance of each mouse in a series of behavioral sessions with variable visual
and auditory saliency across the perceptual range (Meijer et al., 201 8).
Subsequently, for recording sessions a fixed saliency was chosen at threshold level
in the same way as for the change detection task, resulting in substantial numbers
of hits and misses. Eight orientations (spaced 45˚) and eight frequencies (center
tone spacing at 1  kHz) were presented at this saliency level. Visual contrast levels
for the three animals were 9.7%, 1 0%, 1 3%. Auditory saliency levels were 56, 78,
82 dB. Note the higher volume used for two animals. This cohort of animals was of
old age at the time of experiments (40-43 weeks) and two of these animals showed
a progressive decline in their sensitivity to auditory stimuli of lower and
intermediate volumes. This is in line with age-related hearing loss reported in
C57BL/6 mice (Henry and Lepkowski, 1 978; Spongr et al., 1 997). We included
these mice irrespective of their decreased hearing sensitivity as we titrated auditory
intensity to result in similar subjective saliency (hit rates were comparable for both
visual and auditory trials: 49% and 46%, respectively) and we focused in this task
on correlated feature tuning of V1  neurons, not on performance aspects.

Electrophysiological recordings
On the day before the start of extracellular recording sessions, mice were
anesthetized with isoflurane and small (~200μm) craniotomies were made using a
dental drill over the areas of interest. Areas of interest were binocular V1  (relative
to lambda: AP 0.0, ML ± 3.00 mm) and AC (relative to bregma: AP -2.6 mm, ML ±
4.3 mm). Craniotomies and recordings in medial prefrontal cortex and posterior
parietal cortex were also performed, but data from these areas were not analyzed
here. Extracellular recordings were performed on consecutive days with a
maximum of 4 days per mouse to minimize damage to the circuitry. Each recording
session, up to three microelectrode arrays (silicon probes) of 32 or 64 channels
(NeuroNexus, Ann Arbor, USA – A1 x32-Poly2-1 0mm-50s-1 77, A4x8-5mm-1 00-
200-1 77, A1 x64-Poly2-6mm-23s-1 60) were slowly inserted into their target area.
We approached V1  perpendicularly to the cortical surface and lowered the silicon
probe until all recording sites spanned the cortical layers of V1 . Because of the
circular headbar (inner diameter 1 0 mm) we used, craniotomies were located
slightly medially on the skull surface and AC was approached with an angle
approximately 30˚ away from the midline and with 64-channel laminar probes that
spanned 1 450 μm. Due to the span and angle of approach, we recorded multiple
subfields of the auditory cortex. In a subset of animals, on the last day of recordings
the probe was covered in DiI (ThermoFisher Scientific) to facilitate post hoc
reconstruction of the electrode tract. Neurophysiological signals were pre-
amplified, bandpass filtered (0.1  Hz to 9 kHz), and acquired continuously at 32
kHz with a Digital Lynx 1 28 channel system (Neuralynx, Bozeman, MT). The start
of the behavioral task commenced at least 1 5 minutes after probe insertion to allow
for tissue stabilization.
Video monitoring
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A near-infrared monochrome camera (CV-A50 IR, JAI, Copenhagen, Denmark)
was coupled to a zoom lens (50 mm F/2.8 2/3" 1 0MP, Navitar, Rochester, USA)
and positioned at approximately 30 centimeters from the mouse to capture the lick
spouts and face of the mouse within a single view. The left side of the face was
illuminated with an off-axis infrared light source (IR-LEDs, 850 nm) positioned to
yield high contrast illumination of both the eye and whisker pad. A frame grabber
acquired images of 752x582 pixels at 25 frames per second. With this acquisition
rate the timing precision for the facial motion and pupil size and location was about
40 ms.

Optogenetics
Mice (N=5 NE animals, 20 weeks old) were subcutaneously injected with the
analgesic buprenorphine (0.025 mg/kg) twenty minutes prior to surgery. During
surgery, mice were maintained under isoflurane anesthesia (induction at 3%,
maintenance at 1 .5–2%). We aimed at infecting bilateral AC and centered our
injection at primary auditory cortex (A1 ). We performed a small craniotomy over
bilateral primary auditory cortex (A1 relative to bregma: AP -2.60 mm, ML ± 4.30
mm) using an ultra-fine dental drill and inserted a glass pipette backfilled with
AAV2-CamkIIa-hChR2(H1 34R)-EYFP (titer: 3×1 0¹² viral genomes per ml,
26969-AAV2, Addgene). AC was approached similar to extracellular recordings.
Four injections of 1 3.8 nl were made using a Nanoject pressure injection system
(Drummond Scientific Company, USA) at two depths: two at 1 200 μm and two at
1 000 μm below the dura (ending up in A1  because of the angle). Each injection was
spaced apart from the next one by 5 minutes to promote diffusion and prevent
backflow. After viral injections, the recording chamber was covered with silicon
elastomer (Picodent Twinsil) and mice were allowed to recover.
After 4-6 weeks to allow for viral expression, the silicon elastomer was removed
during recording sessions. To photostimulate AC, a fiber-optic cannula (inner
diameter 200 um, numerical aperture 0.48, DORIC Lenses, Quebec, Canada) was
positioned directly over AC. The fiber-optic cannula was sealed with black tape,
leaving only the tip exposed to prevent light from reaching the eye of the mouse. A
fiber optic patch cord connected the cannula to a 473 nm laser (DPSS 473nm
H300, Eksma Optics, Vilnius, Lithuania). A shutter (LS6 Uniblitz, Vincent
Associates, Rochester, USA) controlled light delivery and was located in a sound-
insulated box distal from the experimental setup to prevent any auditory-evoked
activity. AC was stimulated with 1 0 ms pulses with variable laser power (0-20 mW
total power) and variable frequencies (5, 1 0, 20 and 50 Hz).

Muscimol inactivation of AC
On the day before the start of muscimol experiments a craniotomy over AC was
made using the same coordinates as for the recordings and optogenetics. To
inactivate AC, 300 nl of muscimol solution (1 0 mM in saline, pH 7.2; Sigma
Aldrich) or saline solution (control) was injected in bilateral AC. AC was
approached with the same coordinates (centered at primary auditory cortex) and
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angle of approach as with extracellular recordings or viral injections. Glass
micropipettes were backfilled and slowly inserted through the craniotomy. Three
injections of 50 nl were done at 1 200 μm and three at 1 000 μm below the dura
using the Nanoject injection system, with one minute spacing between each
injection. AC inactivation was verified using multi-unit recordings in A1 , taking V1
as a control area. In a subset of animals we injected BODIPY TMR-X conjugated
muscimol (ThermoFisher Scientific; Catalog number: M23400) during the last
session to assess the localization and spread of AC muscimol injections. Injecting
300 nanoliter led to localized expression in AC, primarily in A1  (Fig. 4.4a), whereas
we found that injecting a larger volume of 500 nanoliter led to reduction of
spontaneous activity in V1  after approximately 1 0 minutes, which we interpreted
as extended diffusion. During experiments with simultaneous recordings the
silicon probe was first inserted to stabilize, then we performed muscimol
injections, and directly after these the behavioral experiment was started.
Muscimol or saline injections were performed on alternating days. We observed
comparable behavioral performance on days after muscimol experiments.

Histology
At the end of the experiment, mice were overdosed with pentobarbital (>1 00
mg/kg) and perfused (4% paraformaldehyde in phosphate-buffered saline, pH
7.2). The brains were recovered for histology to verify viral expression and
recording sites. Coronal sections were cut at 50 μm and overlaid with the matching
reference section from the atlas (Paxinos and Franklin, 2004). Flattened cortical
sections were cut at 50 μm, prepared as described previously (Lauer et al., 201 8),
and V1  and AC were identified based on cell densities aligned to reference maps
(Gămănuţ et al., 201 8).
DATA ANALYSIS
Unless otherwise stated, all data were analyzed using custom-made software
written in MATLAB (The MathWorks, Natick, USA) or Python (analysis on
population decoding only). All code and data will be made available on Github
(insert link) and FigShare. Given that sound-evoked activity consisted of both
auditory and motor-related activity in V1  of mice from all three cohorts, data from
all cohorts were combined, unless otherwise specified.

Video analysis
To capture and describe orofacial movements from video recordings, the principal
components of motion across the video frames were extracted using FaceMap
(Stringer et al., 201 9). Briefly, the video was spatially downsampled (1  every 4
pixels) and singular value decomposition was applied on the frame-to-frame pixel
intensity differences of a representative excerpt of frames (4000 frames).
Subsequently, frame-to-frame motion of all frames was projected into the first 500
principal components. Total video motion energy (video ME) was taken as the
absolute sum across all 500 components. To investigate the relationship between
neural measurements and more detailed orofacial movements, the first n principal
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components were selected that captured movements explaining most of the frame-
to-frame pixel intensity differences. For the regression model this was n=25 PCs,
and for population feature decoding this was n=30 PCs. The first 25 PCs captured
roughly 62% of the variance in frame-to-frame pixel intensity differences.
Pupil size and position were extracted using DeepLabCut (Mathis et al., 201 8). The
network was trained on 300 frames from 1 5 video excerpts of 1 -2 minutes with
varying illumination, contrast, pupil size, imaging angle, and task conditions. We
labeled the pupil center and 6 radially symmetric points on the edge of the pupil.
An ellipsoid was fit to these 6 outer points. The x and y coordinates of pupil center
were taken as the center of the ellipsoid and pupil area as the ellipsoid area from
the fitted ellipse parameters. Poorly fitted frames (likelihood <0.9999, output
DeepLabCut) were replaced by the running median (median of 1 0 good frames),
except if more than five adjacent frames were poorly fit (e.g. during extended
periods of eye closure). We z-scored the total session traces.

Behavioral dominance
Behavioral dominance was quantified per trial condition by computing a
behavioral dominance index (BDI):= −+ ( . 4.2)
where Alick and Vlick are the amount of conflict trials in which the animal chose the
auditory or visual lick spout, respectively. Note that misses are not taken into
account in this index. BDI values range from +1  to -1 , where +1  means exclusively
auditory choices and -1  exclusively visual ones. The saliency-matched BDI
(smBDI) was obtained by averaging the BDI of saliency-matched conflict trials
(Asub + Vsub, Athr + Vthr, etc.). To describe and determine behavioral dominance as a
function of audiovisual SOA we fitted the behavioral data with a cumulative
Gaussian function: ( ) = 1 − γ + (2 − γ − λ) − 12 1 + t − μσ√2 ( . 4.3)
Here, γ is the asymptotic visual dominance, λ the asymptotic auditory dominance,
μ the mean of the cumulative Gaussian (time point of crossover), and σ the
standard deviation (sensitivity to variations in SOA). We fitted the data using
MATLAB’s fit function and constrained μ between -300 and +300 ms,  between 0
and 200 ms, and  and  between 0 and 1 . Bootstrapped 95% CI was computed
from n=1 000 fits on resampled data.

Neural data processing
Before spike sorting the median of the raw trace of nearby channels (within 400
μm) was subtracted to remove common noise artefacts. Automatic and manual
spike sorting were done using Klusta and the Phy GUI, respectively (Rossant et al.,
201 6). During manual curation each putative single unit was inspected based on
its waveform, autocorrelation function, and its firing pattern across channels and
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time. High-quality single units were included as having (1 ) an isolation distance
higher than 1 0 (Schmitzer-Torbert et al., 2005) (2) less than 0.1 % of their spikes
within the refractory period of 1 .5 ms (Bos et al., 201 7; Vinck et al., 201 6), (3)
stable presence throughout the session. This latter was quantified by binning the
firing across the entire session (approximately 45-75 minutes) in 1 00 time bins
and only including neurons that spiked in more than 90 time bins.
To compute firing rates, spikes were binned in 1 0 ms bins and convolved with a
causal half-Gaussian window with 50 ms standard deviation, unless stated
otherwise. For analyses where neurons were compared, the firing rate of each
single unit was z-scored by subtracting for each trial the mean firing rate of the
baseline period (-1  to -0.1  seconds before stimulus change) and dividing by the
standard deviation of all baseline periods.
For the initial assessment of how many neurons were significantly modulated after
visual or auditory stimulus changes, the firing rate during baseline (-1 000 to 0 ms)
and post-change window (0-200 ms post stimulus) was compared with a paired
two-tailed Wilcoxon signed rank test (p<0.025). Neurons were deemed
significantly visually responsive if the firing rate was significantly different for at
least one of the two grouped orientations (i.e. A/B or C/D) during maximal saliency
trials (and similarly for auditory trials). Only conditions with at least 1 0 trials were
tested. The fraction of significantly responsive neurons was only computed for
sessions with at least 1 5 simultaneously recorded V1  neurons.
The onset latency of spiking activity for individual neurons was estimated using
ZETA, a recently developed bin-less statistical test for determining whether a
neuron shows a time-locked modulation of spiking activity (Montijn et al., 2021 ).
We opted for this as visual and auditory stimuli can elicit very different neural
dynamics in visual and auditory cortex (specifically, spiking responses in A1  can
be very brief (DeWeese et al., 2003)) and ZETA prevents confounds related to
different temporal dynamics by avoiding the need to bin spikes. ZETA was
computed over time for auditory and visual maximal saliency trials. Neurons were
deemed significantly modulated if ZETA exceeded a value of 2 during 0-1 000 ms
after stimulus change. The onset of this spiking response was taken as the onset
latency. For Ext. Data Fig. 4.7g, we focused on sensory-evoked spiking and to
minimize occlusion by motor-related confounds, we excluded auditory and visual
spiking activity with onsets occurring later than 200 ms (note, however, that this
approach does not strictly separate sensory from motor-related activity).
To estimate the onset latency of visually or auditory induced spiking activity with
greater temporal detail, the spiking activity was pooled across neurons in an area.
Only sessions with at least 1 0 neurons were included. The spike train of each
neuron was divided across 1  ms bins and smoothed with a causal half-Gaussian
window with 1 0 ms standard deviation. The activity was averaged over trials of
interest (Vmax or Amax trials). To compare across sessions, the firing rate was
averaged across all simultaneously recorded neurons in each area and z-scored, as
described for single neurons. The first time bin this z-scored activity crossed a
threshold of 1  was taken as the onset latency of the population activity.
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Feature tuning
Feature tuning in the change detection task was assessed using ROC analysis
(Green and Swets, 1 966), which quantifies how well an external observer could
discriminate between two sets of values. The area under the ROC curve (AUC) was
computed for the distributions of either the firing rate response of V1  neurons or
video ME (0-200 ms) between grating orientations A/B or C/D, or auditory
frequencies A/B or C/D. Each class had to have at least 1 0 trials. AUC values are in
the range of 0 to 1 , but were rescaled between -1  and 1 , where -1  indicates complete
selectivity to A/B and 1  to C/D.
Orientation and frequency tuning in the stimulus detection paradigm (Ext. Data
Fig. 4.4) was assessed using the global Orientation Selectivity Index (gOSI). This
measure adequately captures tuning in a circular domain (Ringach et al., 2002b).
As the stimulus set in both the visual and auditory domain was circular (visual
orientations, and auditory tones due to the Shepard harmonic weights, see above)
this measure captured selectivity to stimuli in both modalities similarly. The gOSI
was computed as: = ∑ ( )∑ ( ) ( . 4.4)
Here R() is the firing rate response of a neuron (0-200 ms) to either a grating
moving along direction  or a Shepard tone with center frequency  and i is the
imaginary unit. gOSI varies between 0 and 1 , with 0 indicating a neuron completely
untuned, and 1  a neuron only responding to a single orientation/frequency.
Neurons were deemed significantly tuned if their gOSI exceeded 95% of the
shuffled distribution (recomputing gOSI for n=1 000 shuffles of orientation or
frequency labels). Signal correlations were computed as the Pearson correlation of
the trial-averaged tuning curve between pairwise tuned neurons.

Local field potential (LFP) analyses
The LFP was obtained by down-sampling the recorded voltage signal over time
from 32000 Hz to 1 024 Hz and low-pass filtered below 300 Hz (4th order
Butterworth filter). For current source density (CSD) and event-related potential
(ERP) analyses the signal was further low-pass filtered below 1 00 Hz (4th order
Butterworth filter). The CSD profile was computed by applying standard
Nicholson-Freeman calculations on the LFP signal with Vaknin transform (Vaknin
et al., 1 988) with 0.4 Siemens per meter as conductivity (Logothetis et al., 2007).
We calculated the CSD profile for each of the linear arrays of electrodes on our
polytrode configuration separately, interpolated between sites, and then merged
the profiles. The ERP was the stimulus-onset locked trial-average LFP response.
To separate the sensory and motor contributions, trials were split into ‘still’ and
‘moving’ trials based on the amount of motor activity. The z-scored video ME was
computed (0-500 ms post-stimulus change) and ‘still’ trials had z-scored video ME
between -0.5 and 0.5 and ‘moving’ trials a z-scored video ME larger than 1 . For
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each trial type (e.g. Amax trials changing to set A/B) the CSD and ERP was
computed for still and moving trials separately. Only conditions with at least 3
trials in both still and moving conditions were included. Subsequently, the
different auditory and visual trial types (saliencies and features) were averaged
within modality.
We excluded a subset of sessions in which movement artefacts were present (N=1 6
sessions excluded from 62 sessions with video and LFP recordings in V1 ). To
identify movement artefacts, the ERP and the CSD were computed aligned to one
lick event. Sessions with movement artefacts were easily identified by the presence
of low-frequency large deflections in the LFP that were several fold larger than
spontaneous activity, strikingly dissimilar between adjacent channels instead of
smoothly varying across cortical depth. These sessions were not included in LFP
analyses.

Cortical depth estimation
The laminar depth of each silicon probe in V1  was estimated based on a
combination of two factors. First, we computed the CSD profile to contrast-
reversing checkerboard stimuli. Before each session, we displayed full-field
contrast-reversing checkerboards (full contrast, spatial frequency = 1 0 retinal
degrees, temporal frequency of contrast reversal = 0.5 Hz, n=1 0 reversals). The
earliest visible current sink was taken to indicate layer 4 (Niell and Stryker, 2008;
Schnabel et al., 201 8). Second, we computed the power in the 500-5000 Hz range
of the raw, unfiltered signal for each channel (Senzai et al., 201 9) and set the
channel with highest MUA spiking power as the center of L5 at 600 μm from the
dura and rereferenced all channels to this depth. Channels that were above 0 μm
or below 1 000 μm were excluded from the analyses.

Regression model
To quantify single neuron encoding of sensory and motor variables we constructed
a linear regression model. This approach is particularly useful to disentangle the
time-dependent contribution of experimenter-controlled task events and self-
timed behavioral events to single-trial neuron firing rate. The model was trained
to predict the firing rate (-500 to +1 000 ms relative to stimulus change in 20 ms
time bins, convolved with a gaussian with a standard deviation of 25 ms). We
included four sets of predictors: trial number, visual, auditory and motor variables.
The trial number predictor consisted of a whole-trial value scaled by trial number
within that session. For sensory variables a separate predictor set was made per
combination of orientation (or frequency) and amount of change, taking
simultaneously into account the selectivity of neurons for features and saliency.
For a given stimulus, there was a separate predictor for each post-stimulus time
bin (50 time bins from 0 to 1 000 ms). This resulted in 50 time bins x 2 saliencies
(thr and max) x 2 stimuli (set A/B and set C/D) = 200 predictors per modality. For
motor variables the first 25 video PCs were included. For convenience, all
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predictors were normalized to their maximum values before being fed into the
model.
This resulted in a predictor matrix of size P x T for each neuron, where P is the
number of predictors (1  trial number, 200 visual, 200 auditory, and 25 video
predictors = 426 predictors) and T is the number of total time bins. The regression
model was fit on concatenated single trials and T is therefore the number of trials
(typically 200-500 trials per session) multiplied by the number of time bins per
trial (75 time bins; -0.5 to +1  sec relative to stimulus change, 20 ms time bins).
The model was fit on catch, auditory, and visual trials (audiovisual trials were
excluded during fitting) from all sessions with V1  or AC recordings during the
change detection task with recorded video and without pharmacological or lick-
spout manipulations. Sparsely firing neurons produced fitting difficulties and
neurons with a session-average firing rate below 0.5 Hz were excluded. The total
dataset for the regression analysis consisted of: n=51  sessions, NE: 9, UST: 1 0,
MST: 32 sessions, 1 921 7 trials, 790 V1  and 99 AC neurons. For analyses of conflict
trials, the model was fit on trials excluding conflict trials and tested on the held-
out conflict trials. As conflict trials were only presented in a subset of sessions and
not in UST mice this dataset consisted of 37 sessions (NE: 9; MST: 28 sessions,
1 6021  trials, 648 V1  neurons). The model was fit with a Gaussian link function
with the glmnet package in Matlab (Friedman et al., 201 0). We used elastic-net
regularization (α = 0.95) and 5-fold cross-validation. To maximally punish weights
without losing model fit quality, lambda was maximized while minimizing the
cross-validated error. We quantified model performance by assessing the 5-fold
cross-validated explained variance (EV):= 1 − var Y − Yvar(Y) ( . 4.5)
where Y is the original firing rate and Ŷ the predicted firing rate. EV was computed
for the concatenated firing rate during a specified time window (0-200 ms for Fig.
4.3 and 4.4; and 0-500 ms for Fig.4.5).
After fitting, the model could be used to predict firing rates on held-out test trials
or with restricted predictors. To estimate the contribution of different predictors
to firing rate variability, EV was computed using only one set of predictors (all
other predictors were set to zero). Regularization and cross-validation already
minimized overfitting to predictors, but to further verify that predictors were not
capturing unrelated variance, we fit the model with one set of predictors circularly
shuffled across time within the session. Thus, the original temporal relationship
between for example auditory stimulus predictors and actual auditory-evoked
activity was destroyed. The additional EV explained by the intact model relative to
the shuffled model was taken as uniquely explained variance (Musall et al., 201 9).
We found very similar results for a linear model that used smooth temporal basis
functions instead of boxcar bins, or when using different elastic net mixing
parameters. Note that our measure of predicting single trial binned spike counts
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leads to low levels of explained variance (Steinmetz et al., 201 9), while we obtained
high levels of explained variance when predicting trial-averaged activity (Runyan
et al., 201 7). Here, we were however interested in explaining single trial firing rate
due to trial-by-trial differences in orofacial movements.

Multivariate stimulus decoding from neural and video data
We used multivariate analyses to decode visual orientation or auditory frequency
from either V1  population spiking activity or dominant orofacial movements (video
PCs). In all decoding analyses, nearby orientations/frequencies were grouped
together (denoted as set A/B versus C/D) in order to have a two-class classification
problem, and here we considered only large stimulus changes (Amax and Vmax).
Only sessions with V1  recordings and at least 1 5 trials for each
orientation/frequency were included. We balanced the two classes with random
subsampling of the majority class.
For the analysis in Figure 2j-o we decoded auditory or visual feature identity from
simultaneously acquired data from individual sessions. We subselected all sessions
which contained at least 5 neurons recorded in V1 . Spikes were binned in 200 ms
time bins and advanced by 25 ms. For orientation/frequency decoding using video
footage, ‘population’ data was created by replacing the binned spike counts with
the binned values of the first 30 principle components of the motion energy (video
PCs).
We trained a support vector machine (SVM; linear kernel) using stochastic
gradient descent (as implemented in scikit-learn (Pedregosa et al., 201 1 )) to
predict the orientation/frequency at every time point. We employed 3 repeats of a
3-fold stratified cross-validation routine, whereby trials for training and testing are
drawn randomly, but the equal ratio of the two classes is preserved in each set.
Note that the same train/test splits are used across all time points in a given
bootstrap iteration. Features (neuronal spike counts or video PCs) were
standardized to have zero mean and unit variance (features of the test set were
standardized using the mean and standard deviation of the training set). Reported
decoding performance is the accuracy on the held-out test data. The average
decoding accuracy averaged across the time bins whose edges did not exceed the
0-300 ms range were used to generate the scatter plots.
For the analyses in Figure 5g-j pseudopopulation data was constructed by
combining data acquired during different sessions. We employed a bootstrapping
procedure in which at every iteration we randomly sampled a subset of V1  neurons
or video PCs across all recording sessions. When training the model on unisensory
trials and testing on audiovisual trials (or vice versa), we selected only sessions in
which for each trial type there were at least 1 0 trials for each
orientation/frequency. When training and testing the model on the same trial type,
we required at least 20 trials for each orientation/frequency. For every bootstrap
iteration, we constructed a train and a test set by randomly sampling for every
session 1 0 trials of each class for the train set, and 1 0 trials of each class for the test
set (in the case where we trained and tested on the same trial type, trials appearing
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in the training set did not appear in the test set). Spikes were binned in 1 00 ms
time bins and advanced by 25 ms. For every time point, we then assembled a
feature matrix X_t of size 20 (2x1 0) by N, where N is the number of neurons, such
that column i is the binned spike count of neuron i at time t in the 20 subsampled
trials, and row j is the binned spike count at time t of all randomly selected neurons
of a pseudo-trial that merges data from different sessions. For
orientation/frequency decoding using video footage, pseudopopulation data was
created in the same way by replacing the binned spike counts with the binned
values of the first 30 principle components of the motion energy (video PCs). In
other words, a similar data matrix was constructed subsampling video PCs (from
the first 30 video PCs) during trials of specific orientation/frequency from different
sessions.
The SVM was then fitted on the train set and evaluated on the test set at every time
point (without a full cross-validation routine). The SVM coefficients (Fig. 4.5k)
were obtained with an adaptation of the pseudopopulation method. For every
bootstrap iteration, a random subset of 50 V1  neurons was selected. Using 3x3
stratified cross-validation routine, a linear SVM was fitted on the train set
(consisting of either visual or audiovisual trials), and the coefficient of each neuron
was recorded. The same pseudopopulation approach was also employed in Fig.
4.5g, where the orientation/frequency label was replaced by the trial type (visual
versus auditory).

Statistical analysis
Unless specified otherwise, all statistics were performed using linear mixed models
(LMMs) in MatLab (MathWorks, Natick, MA). LMMs can account for the
hierarchical nature of our data (neurons and trials sampled from the same
mice)(Aarts et al., 201 4). LMMs describe the relationship between a response
variable and multiple explanatory variables, and comprise two types of explanatory
terms. Fixed effects are the variables of interest, while random effects, also
commonly referred to as “grouping variables”, specify and account for the group.
For all analysis involving hierarchical data, LMMs were constructed with mouse
identity as a random effect (intercept only). Importantly, mouse identity was not
included as a random effect for analyses with cohort as fixed effect, as variability
between mice was key to those results. Statistical tests were performed on the fixed
effect using ANOVAs on the LMMs. To estimate the denominator degrees of
freedom (DF2) for F-tests, the Satterthwaite approximation was used for LMMs.
Linear hypothesis tests were performed in the case of posthoc comparisons using
the relevant contrasts. Non-nested data was tested using nonparametric methods.
Results with a p-value lower than 0.05 were considered significant. When multiple,
independent comparisons were performed, p-values were corrected by applying a
Bonferroni correction.



Chapter 4: Triple dissociation of visual, auditory and motor processing in primary
visual cortex

176

Extended Data

Extended Data Figure 4.1: Details of auditory and visual stimulus design. a) Each auditory stimulus
was composed of five pure tones at harmonic frequencies (octaves below and above other tones). The
weight with which each tone contributed to the overall stimulus was taken from a Gaussian
distribution across all possible tones. The example stimulus A in pink is composed of a tone of 21 3.25

Hz (center tone, highest weight) and two lower (at 21 1 .25 and 21 2.25 Hz) and two higher harmonics (at
21 4.25 and 21 5.25 Hz). Tones followed scientific pitch and are expressed as powers of two: 21 3

corresponds to 8.1 92 kHz, and C9 in scientific pitch notation. During an auditory trial, the stimulus
changed to a stimulus of five new harmonic tones with different weights (for example stimulus A to
B). b) The left polar diagram shows the circular arrangement of auditory stimuli. For each cardinal
direction the insets show the tonal weights associated with these stimuli. Note how ever increasing
the center tone frequency ultimately results in a circular shift back to the starting stimulus. This
circularity can also be seen in panel a: going up and down half an octave from stimulus A always
results in stimulus B. The auditory stimulus set is therefore circular. This feature is exploited in the
Shepard illusion of eternal rise or drop in pitch. However, our stimuli were static so the illusory effect
of continuously increasing or decreasing pitch was absent. The only illusory component was that half
an octave change could be both experienced as an increase or decrease in pitch. This circular design
of auditory stimuli mirrors the visual stimulus set (right part) with drifting gratings in all orientations.
The amount of frequency change (expressed in partial octaves, red) or orientation change (expressed
in degrees, blue) determined the saliency of auditory and visual changes. c) Example stimuli during
three consecutive trials. The upper spectrogram over time includes two auditory change trials.
Auditory stimuli continued to be presented until the next auditory change, which could be identified
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based on a difference in spectral content, and experienced as a change in pitch. The example shows
an easy auditory trial (salient change; stimulus A to B, half an octave) followed later by a difficult trial
(subtle change; 1 /32 of an octave). The lower schematic shows visual orientation over time including
a visual trial. Note that the gratings were continuously drifting in the direction orthogonal to the
grating orientation. An audiovisual trial would consist of a simultaneous change in both modalities
(not shown). Note that this is only a schematic depiction, hence time is depicted in arbitrary units. d)
Schematic of the different levels of saliency (i.e. amount of change) between threshold and maximal
saliency. Threshold saliency was titrated per mouse based on task performance. e) The stimulus set
during recording sessions was limited to four visual and four auditory stimuli with two levels of
change between them. Tables show one example stimulus set for each modality, but stimuli were
varied across sessions.



Chapter 4: Triple dissociation of visual, auditory and motor processing in primary
visual cortex

178

Extended Data Figure 4.2: Sounds evoke instructed and uninstructed orofacial movements. a)
Sounds evoke brief whisking and eye twitching movements in NE mice (example session). Upper
images show heatmap of the increase in video ME overlaid on one reference frame. Lower trace shows
video ME averaged over auditory trials with dots highlighting time points of upper frames. b) Same
as b, but for an example MST session. Here auditory trials not only evoked whisking and eye
movements (uninstructed), but also continued instrumental licking movements as mice were
rewarded for reporting auditory stimuli. c) To further test whether the increase in motor activity was
not associated with licking behavior, we continued sensory stimuli but removed the lick spout. Blocks
of active trials (with lick spout, left image) and passive trials (without lick spout) were interleaved
during a session. d) The increase in video ME normally seen following visual stimuli (due to report-
related licking movements) was absent during passive blocks. On the other hand, auditory stimuli
continued to evoke orofacial movements during passive blocks in the absence of licking to a rewarded
lick spout. These results are in line with the comparison between cohorts (Fig. 4.2b) where
unrewarded auditory stimuli (but not unrewarded visual stimuli) still evoke orofacial movements.
Motor-related confounds are thus important to control for not only in auditory behavioral tasks, but
also naive animals. e) Same as (a, b), but for auditory trials during passive blocks of an example MST
session. Auditory trials continued to evoke uninstructed orofacial movements, but less prolonged due
to the absence of licking movements.
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Extended Data Figure 4.3: Detailed orofacial movements underlie frequency-tuned activity. a)
Normalized firing rate and video ME over time for two example V1  neurons. Top: r=0.61 , UST mouse.
Bottom: r=0.55, MST mouse.
b) Activity heatmap for simultaneously recorded V1  neurons showing a distribution of selectivity to
orientations but similar tuning to auditory frequency. Left and right are taken from different sessions.
c) To extract more detailed video information, we applied PCA to the frame-to-frame pixel intensity
difference (FaceMap; Stringer et al., 201 9) and extracted principal components that captured the
most dominant movements (video PCs). Most movement was confined to snout, whisker pad and
tongue regions. PC: principal component. d) Example traces of the first three PCs during individual
trials of different modalities and decisions. Hit trials were associated with motor activity during lick
responses and reward consumption. Data from one MST session. Gray line indicates stimulus change.
e) First three video PCs for an example session showing similar movements following changes in
visual grating orientation, but variable movements following different auditory stimuli. V1  could still
encode auditory features beyond what is explained by the modulatory effects of orofacial movements.
We therefore tested how well we could decode stimulus identity by considering population spiking
activity in V1 , and compared this to detailed video analysis. A population decoder (support vector
machine, SVM) was trained to discriminate auditory or visual stimulus identity using either the
spiking data or these video PC values. f) Auditory stimulus frequency could be decoded from V1
population activity. Decoding performance of decoders trained to discriminate post-change auditory
frequency from V1  population activity. Horizontal dashed line indicates chance level. Line and
shading indicate mean and 95% CI. g) Same as (f), but for decoding auditory frequency from the first
30 video PCs.  Auditory stimulus frequency could be decoded from video data. h) Relationship across
sessions between auditory frequency decoding performance using V1  data (x-axis) and video data (y-
axis). Decoding performance was highly variable across sessions and, interestingly, strongly
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correlated between spiking and motor activity (R=0.71 , F(1 ,1 7)=29.1 3, p=4.49*1 0-5). Those sessions
with frequency-selective orofacial movements thus also displayed frequency-selective population
activity. Further, video decoding outperformed neural decoding (F(1 ,49)=8.25, p=0.006). Dot size
scales with number of simultaneously recorded neurons for that session and dot color indicates
cohort. i) Same as (f), but for decoders to discriminate post-change visual orientation. Visual grating
orientation could be decoded from V1  population activity. Baseline coding results from the fact that
gratings jumped between the same stimuli (A/B to C/D and vice versa) and neurons showed
persistent selectivity, seen in (Fig. 4.2h). j) Same as (i), but for visual orientation. Visual grating
orientation could not be decoded from video PCs. k) Same as (h), but for the relationship between
orientation decoding based on V1  activity versus video PCs. Decoding performance was not correlated
across sessions (R=0.1 5,F(1 ,28)=0.67, p=0.42) and higher for V1  spikes than for video PCs
(F(1 ,42)=51 .1 4, p=9.09*1 0-9). Although absolute decoding performance from these qualitatively
different sources is less meaningful, the dissimilarity between modalities is striking.
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Extended Data Figure 4.4: Similar frequency tuning of primary visual cortical neurons during
audiovisual stimulus detection. a) To establish whether our findings generalized beyond our change
detection task, we trained animals (n=3) to detect the presence of auditory and visual stimuli (same
stimulus set as in the change detection task) and to discriminate and selectively report the modality,
as in the MST task of our main change detection paradigm. Rewards were allocated upon licking to
the auditory lick spout after the onset of one of eight tones, and upon licking to the visual lick spout
to one of eight gratings was rewarded. b) Performance on an example session on the detection of
auditory stimuli of varying volume (left panel) and of varying contrast (right panel). Note how
auditory and visual hit rates increase as a function of volume and contrast, respectively. The
behavioral data was fit with the same two-alternative signal detection model as behavioral data from
the change detection task. Behavioral response rates are shown as dots, model fits as lines. c) Average
psychometric fits for each mouse obtained by averaging the parameters of single session fits. d) Raster
plot and tuning curve of an example orientation-tuned V1  neuron. Upper panels show firing rate (0-
200 ms) in response to eight drifting grating orientations (left) and eight compound Shepard tones
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with center tone spaced between 8 and 1 5 kHz (right). Dot and error bar show mean + SEM across
trials. Colored tickmarks in the lower raster plots show trial-by-trial spiking. Black tick marks indicate
first lick after the stimulus. Note the classical orientation tuning expected from V1  neurons in
response to full-field oriented drifting gratings. Auditory frequency tuning was not significant. e)
Same as (d), but for two V1  neurons from the same session where the auditory response depended
on the frequency components of the auditory stimulus. Note how the neurons are similarly tuned and
their firing rates are associated with licking behavior as well. f) Tuning curves for orientation and
frequency for all V1  neurons (individual lines) from one session. Note dissimilarity in orientation
tuning, but similarity in frequency tuning. g) The signal correlation of all significantly orientation-
tuned (left) and frequency-tuned (right) neurons. Signal correlations were computed as the Pearson
correlation of trial-averaged tuning curves between neuronal pairs. Signal correlation was higher
between frequency-tuned neurons than orientation-tuned neurons (F(1 ,406)=9.50, p=0.0022;
n=1 48 signal correlations from 23 orientation-tuned V1  neurons, n=258 from 36 frequency-tuned
V1  neurons). The finding that V1  neurons responded to the same frequencies (those associated with
motor movement, Fig. 4.2i; Ext. Data Fig. 4.3b) suggests that variability in motor variables drives
tuning. **p<0.01 .
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Extended Data Figure 4.5: Dissociating visual, auditory and motor-related activity using a regression
model. a) Each heatmap shows the firing rate over time for a subset of trials with each row
representing a different trial type, and each column a different source of the firing rate. The leftmost
column shows the original firing rate. The second column shows the predicted firing rate for the same
trials using all predictors in the model. The remaining columns show the predicted firing rate using
only a subset of the predictors. For this example neuron, the trial number explained little variability
(trial number captured response drift across the session for some other neurons, not shown). Visual
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predictors explained an early response transient especially in Vmax trials. Auditory predictors
captured an early response transient in some auditory trials (set C/D), whereas motor variables (the
first 25 video PCs) captured variability across visual and auditory trial types. b) Same as Figure 4.3f,
but for each of the task cohorts separately and auditory trials only. Auditory-related activity was
present in all three cohorts. Sound-evoked motor-related activity was larger in the MST cohort,
quantified in (c). c) Predicted sound-evoked response (0-200 ms minus baseline activity) for each of
the cohorts using either auditory predictors (top) or motor predictors only (bottom). Cohorts did not
significantly differ in auditory-related activity (F(2,790)=0.1 8, p=0.835), while motor-related activity
was significantly different (F(2,790)=8.07, p=0.00034) and significantly larger in MST mice
compared to NE and UST (Posthoc comparison: NE vs. MST: F(1 ,787)=1 1 .4, p=0.000789; UST vs.
MST: F(1 ,787)=7.3, p=0.00702; NE vs. UST: F(1 ,787)=0.3, p=0.582). The larger sound-evoked
response in MST mice in Figure 4.1 e,f is therefore attributable to increased motor-related and not
auditory-related activity. Mean ± SEM across neurons.
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Extended Data Figure 4.6: Cortical depth estimation in primary visual cortex using physiological
markers. a) Close-up of a coronal section on V1  showing the electrode track stained with DiI. b)
Example distribution along the probe of spectral power (500 Hz to 5 kHz) indicative of multi-unit
activity (MUA). High MUA power is characteristic of L5. Compare with (Senzai et al., 201 9). c)
Current source density (CSD) map and LFP traces (black lines) in response to checkerboard
stimulation. B and C are from the same example session. Color corresponds to CSD power. d)
Overview of electrode span across layers. Each line is one session (n=84 sessions). Data from
electrodes at depths above 0 or below 1 000 µm were excluded from analyses. e) Same as b, but for all
sessions. Gray lines are individual sessions, black line the median. f) Same as c, but averaged across
all sessions.
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Extended Data Figure4.7: Early sensory and late motor-related components of current-source density and
cell-type spiking profiles in visual cortex. a) The current source density (colormap, CSD) and event-related
potential (black traces, ERP) for auditory and visual stimulus changes in the same example session (MST
mouse). b) Histogram of z-scored video ME (0-500 ms post-change) across visual and auditory trials of all
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sessions with LFP recordings in V1  (all cohorts). To separate the contribution of motor activity to the LFP,
all trials were split into ‘still’ and ‘moving’ trials based on the amount of motor activity. ‘Still’ trials had z-
scored video ME between -0.5 and 0.5 and ‘moving’ trials a z-scored video ME larger than 1 . c) For each
session a CSD map was constructed using either still or moving trials given the same visual stimuli. Average
across n=46 sessions (NE: 1 2 sessions; UST: 7; MST: 27). Visual stimuli evoked a consistent and
characteristic current source density (CSD) profile with an early sink in L4 and subsequent sink-source
pairs in L2/3 and L5/6, in line with earlier reports (Niell and Stryker, 2008; Schnabel et al., 201 8; Senzai
et al., 201 9). d) The difference between the Vstill and Vmoving maps in (c), which we interpret as mostly
related to motor differences. Note how most of the motor-related CSD power is expressed after 200 ms in
L2-5 and predominantly in superficial and middle layers. e) Same as (c), but for auditory trials. Note how
the early sinks and sources in deep layers of the auditory CSD map in the example session of (a) are only
partially reflected in the average. f) Difference map of the Astill and Amoving maps in (e). Note how the
movement-associated CSD pattern resembles that of visual trials (d), but is generated somewhat earlier in
time. g) Absolute ERP response (in μV) averaged across cortical depth for selected trial categories. The tick
marks and text denote the first time bin the LFP response is different from baseline (-500 to 0 ms) during
auditory or visual trials irrespective of motor activity (p<0.05, Wilcoxon signed rank test, Bonferroni
correction). These latencies closely match spiking onset latencies (Fig. 4.3b). The LFP response for auditory
trials can be seen to diverge between still and moving trials around 1 00 ms after stimulus onset and was
significantly different after 243.4 ms (bootstrap test, n=1 000 resamples, p<0.05) and after 324.4 ms for
visual trials (p<0.05) suggestive of late motor-related signals. Line and shading are mean ± SEM. h)
Laminar organization of onset latencies of visual and auditory responses in V1  (spiking data, not LFP). Top
histogram shows the distribution of onset latencies of all significantly auditory responsive neurons (red)
and visually responsive neurons (blue). Significance and onset latency were assessed using a binning-free
algorithm, ZETA (Montijn et al., 2021 ). Spiking onset was significantly earlier for auditory versus visual
stimuli (55.3 ms (31 .4 - 1 08.5 ms) versus 80.3 ms (61 .5 - 98.5 ms); median and interquartile range;
F(1 ,41 1)=5.37, p=0.0209), similar to our earlier population-averaged approach (Fig. 4.3b). Bottom panel
shows each neuron’s onset latency as a function of its recorded depth and cell type. If neurons are bimodally
responsive they appear twice. Symbols are scaled by response magnitude. Putative pyramidal cells (broad-
spiking) and putative parvalbumin expressing cells (narrow-spiking) were classified based on their
waveform. L1  is mostly empty because almost no cells were recorded in that layer. *p<0.05, **p<0.01 .
Visually driven cells first began to fire significantly in the middle and superficial layers and later in deeper
layers, consistent with the canonical sensory processing scheme (Douglas and Martin, 2004; Harris and
Shepherd, 201 5). Auditory-evoked firing started at similar latencies across layers, with many auditory
responsive neurons in deep layers. Cortical depth was significantly correlated to spiking onset latency
during visual trials (r=0.71 , p=0.01 5, Pearson correlation), but not auditory trials (r=0.1 3, p=0.696).
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Extended Data Figure 4.8: Auditory cortical projections modulate superficial and deep layers of
primary visual cortex. a) Coronal section showing bilateral AC expression of AAV2-CaMKIIa-
hChR2(H1 34R)-eYFP (green: eYFP) in a PvCre-tdTomato mouse (magenta: tdTomato), centered at
primary auditory cortex (Au1 ). AuV: ventral secondary auditory cortex. AuD: dorsal secondary
auditory cortex. V2L: lateral secondary visual cortex. b) Same as a, but for a flattened cortical section
showing ChR2-eYFP expression in AC. c) Close up of densely labeled projections in medial geniculate
nucleus of the thalamus (MGN) confirming infection of AC. d) Reference section with the box
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outlining the location of close up image shown in (E). e) Close up image of highlighted section in D
showing axonal terminals in superficial L1 and L5/6. f) Schematic of the experiment verifying
optogenetic excitation of AC cell bodies. g) Raw voltage trace from an example electrode in AC during
AC photostimulation, verifying effective optogenetic recruitment of local neurons. 5 mW, 1 0 ms
pulses @ 20 Hz. h)Schematic of the experiment to optogenetically stimulate AC cell bodies and record
laminar LFP in V1 . i) CSD and LFP profile in V1  during AC photostimulation (average of n=2 sessions
in 2 animals). Note how pulsed AC stimulation gives rises to a repetitive CSD response (sink) in the
superficial (< 1 50 μm) and middle/deeper layers (500-800 μm). Vertical dashed lines indicate
repeated AC stimulation. j) Same as in (i), but for an example visual checkerboard stimulation for
comparative purposes. k) The event-related potential (ERP) following photopulses (+5 to +20 ms
after pulse) increases as a function of fiber power, suggesting optogenetic stimulation affects V1  LFP
in a dose-dependent manner. The ERP response was obtained by averaging the absolute signal from
channels over all cortical depths.
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Extended Data Figure 4.9 – Auditory behavioral dominance in conflict trials is stable, independent of
performance, and depends on relative stimulus timing. a) As a proxy for subjective saliency or arousal, we
measured pupil dilation over time for saliency-matched auditory and visual trials. Cropped image shows
pupil fit. Line and shading indicate mean ± SEM across N = 40 sessions from 9 mice. All data in this figure
are from MST mice. b) Quantification of maximal pupil dilation. The effect of modality on pupil dilation
was tested in a linear mixed model with fixed effects of hit/miss, saliency, modality and random effect of
mouse ID. Whether it was a hit or miss had the largest effect (F(1 ,7530)=11 38.95, p=1 .24*1 0-232), then
saliency (F(1 ,7524)=33.36, p=7.97*1 0-9, with no effect of modality (F(1 ,7526)=1 .53, p=0.21 64). This
supports the idea that visual and auditory conditions were matched in subjective saliency. c) Auditory
dominance in an example session. Raster plots show for each trial type licks and rewards at the auditory
and visual lick spout (red and blue tick marks respectively) aligned to stimulus change (t=0). Colored zones
indicate response window (0 to 1 .5s). Gray: inter-trial interval. Licks before t=0 were spontaneous. Note
how during conflict trials, auditory licks and rewards dominate. d) Dominance index (DI) heatmap (as in



Extended Data

191

Fig. 4.5b) for the only animal out of 1 7 MST mice) displaying visual dominance. e) A heatmap of the
auditory dominance index for conditions binned based on performance (d-prime) on unimodal trials. This
is in contrast to the analyses presented in the main text, where conditions were grouped based on the
predetermined saliency gauged by psychophysical performance in previous sessions. The current analysis
controls for changes in performance by reassigning each bin of the heatmap to d-prime levels within that
session. It can be seen that performance-matched conflict trial conditions (along the diagonal) have positive
dominance index values, confirming auditory dominance. f) The saliency-matched dominance index
(smDI) for conflict trials that are matched in performance to unimodal trials (conditions along the bottom-
left to top-right diagonal of e) is significantly different from zero (Wilcoxon signed rank test, n=1 7 mice,
p=0.030). Grey dot is mean + SEM, *p <0.05. In (f) to (l), each dot is the smDI of one animal. g) Auditory
dominance was stable across the session, with auditory dominance computed on the first and second half
of sessions being similar (Wilcoxon signed rank test, n=1 7 mice, p=0.492). h) Dominance was not
correlated with visual performance (d-prime on unimodal trials of maximal visual saliency in the same
sessions; r=-0.29, p=0.26). i) Dominance was not correlated with auditory performance (d-prime on
unimodal trials of maximal auditory saliency in the same sessions; r=0.24, p=0.35). j) Dominance was not
correlated with mean reaction time in visual trials (r=0.38, p=0.1 4). k) Dominance was not correlated with
mean reaction time in auditory trials (r=0.09, p= 0.73). l) Reaction times on visual, auditory and conflict
trials. For conflict trials, only saliency-matched conflicts are shown (Vsub + Asub, Vthr + Athr, etc.).
Conflict trials were split based on choice. Mean ± SEM. m) We varied stimulus onset asynchrony between
auditory and visual stimulus changes during conflict trials. The plot shows the percentage of auditory choice
(red), visual choice (blue) or no lick (black) during saliency-matched threshold-level conflict trials as a
function of stimulus onset asynchrony (SOA). A positive SOA value means that the visual change was
presented first, followed by the auditory change. n) Purple error bars show mean and standard deviation of
DI as a function of stimulus-onset asynchrony. Black line and gray shading show bootstrapped cumulative
Gaussian fit of DI as a function of SOA (median and 95% confidence interval). Top error bar and dotted
line indicate crossover point, i.e. fitted µ parameter (median and 95% confidence interval). Auditory
dominance reverses once the visual stimulus change precedes the auditory change by 89.9 ms (95% CI:
47.7-1 38.7 ms). This is close to the difference in reaction time between saliency matched auditory and
visual conditions: 1 1 0.5 ms on average. In other words, when the visual change preceded the auditory
change by about 90 ms, auditory dominance was halfway to reversing into visual dominance. Further
advancing the visual change in time completely reversed the dominance. This may reflect a scenario in
which the visual evidence has instructed the decision-making system to an extent that subjects have already
committed to a motor plan (namely to lick the visual spout) before the auditory evidence may take control.
Similar temporal dominance of audition over vision has been reported in humans (Burr et al., 2009; Repp
and Penel, 2002; Shams et al., 2000).
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Abstract
The posterior parietal cortex (PPC) plays a key role in integrating sensory inputs from
different modalities to support adaptive behavior. Neuronal activity in PPC reflects
perceptual decision making across behavioral tasks, but the mechanistic involvement of
PPC is unclear. In an audiovisual change detection task, we tested the hypothesis that PPC
is required to arbitrate between the noisy inputs from the two different modalities and help
decide in which modality a sensory change occurred. In trained male mice, we found
extensive single-neuron and population-level encoding of task-relevant visual and auditory
stimuli, trial history, as well as upcoming behavioral responses. However, despite these rich
neural correlates, which would theoretically be sufficient to solve the task, optogenetic
inactivation of PPC did not affect visual or auditory performance. Thus, in spite of neural
correlates faithfully tracking sensory variables and predicting behavioral responses, PPC
was not relevant for audiovisual change detection. This functional dissociation questions
the role of sensory- and task-related activity in parietal associative circuits during
audiovisual change detection. Furthermore, our results highlight the necessity to dissociate
functional correlates from mechanistic involvement when exploring the neural basis of
perception and behavior.

Significance Statement
The Posterior Parietal Cortex (PPC) is active during many daily tasks, but capturing its
function has remained challenging. Specifically, it is proposed to function as an integration
hub for multisensory inputs. Here, we tested the hypothesis that, rather than classical cue
integration, mouse PPC is involved in the segregation and discrimination of sensory
modalities. Surprisingly, even though neural activity tracked current and past sensory
stimuli and reflected the ongoing decision-making process, optogenetic inactivation did not
affect task performance. Thus, we show an apparent redundancy of sensory and task-
related activity in mouse PPC. These results narrow down the function of parietal circuits,
as well as direct the search for those neural dynamics that causally drive perceptual decision
making.
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Introduction
The construction of context-dependent representations of sensory inputs is
required to inform adaptive decision making. This process involves multiple
functions, such as processing of stimuli coming from different sensory modalities,
evidence accumulation and integration with past information, and finally
transformation of sensory information into an appropriate motor plan. The
parietal cortex has been identified as a key hub for these functions through classical
lesion studies in humans (Bender and Teuber, 1 947; Denny-Brown et al., 1 952;
Holmes, 1 91 8), including seminal studies on hemineglect (Kerkhoff, 2001 ; Vallar,
1 998), and through extensive work in primates (Andersen and Cui, 2009; Bisley
and Goldberg, 201 0; Cui and Andersen, 2007; Freedman and Assad, 2006; Platt
and Glimcher, 1 999; Robinson and Goldberg, 1 978). In rodents – a key animal
model to study the circuit-level mechanisms of cognitive processes – the posterior
parietal cortex (PPC) is located at the nexus of visual, auditory, and somatosensory
cortices (Hovde et al., 201 9; Wilber et al., 201 5) and is bidirectionally connected
to sensory and motor areas, as well as to other associative cortical areas (Oh et al.,
201 4; Shadi et al., 2020), homologous to primate PPC (Whitlock et al., 2008;
Wilber et al., 201 5). Neurons in rodent PPC respond to visual, auditory, and
somatosensory inputs (Mohan et al., 201 8; Nikbakht et al., 201 8; Olcese et al.,
201 3; Raposo et al., 201 4; Wallace et al., 2004). Sensory-evoked PPC responses
have been described in naive animals (Olcese et al., 201 3), but PPC is mostly
recruited during task engagement (Pho et al., 201 8). Neuronal activity in PPC has
been shown to reflect aspects of perceptual decision making such as an animal’s
decision (Driscoll et al., 201 7; Funamizu et al., 201 6; Goard et al., 201 6; Krumin
et al., 201 8; Pho et al., 201 8; Runyan et al., 201 7; Song et al., 201 7), accumulated
evidence (Hanks et al., 201 5), trial history (Akrami et al., 201 8; Hwang et al., 201 7)
and working memory (Harvey et al., 201 2). This combination of sensory-, task-
and choice-related activity suggests an important role in perceptual decision
making, but under which conditions PPC is causally involved is less clear. Several
studies find PPC necessary for making decisions based on visual stimuli (Driscoll
et al., 201 7; Goard et al., 201 6; Harvey et al., 201 2; Licata et al., 201 7), but not for
tactile (Guo et al., 201 4a) or auditory information (Erlich et al., 201 5; Licata et al.,
201 7). Other studies have suggested that PPC is causally involved in both visual
and auditory tasks, but only when additional cognitive processes beyond simple
sensorimotor associations are required (Akrami et al., 201 8; Funamizu et al., 201 6;
Harvey et al., 201 2; Hwang et al., 201 7; Licata et al., 201 7; Song et al., 201 7; Zhong
et al., 201 9).

As PPC receives converging inputs from auditory and visual cortices and is strongly
connected to (pre)motor areas, we tested the hypothesis that PPC is required to
solve tasks in which signals from two different modalities have to be compared to
reach a behavioral decision. We designed an audiovisual change detection task for
which PPC is conjectured to arbitrate between noisy inputs from different sensory
channels and help decide in which modality a sensory change occurred. In line with



Materials and Methods

195

our hypothesis, we found that PPC displayed rich visual, auditory, and decision-
related activity that reflected sensory processing and predicted task performance.
However, optogenetic inactivation of PPC did not affect either visual or auditory
change detection. These results fundamentally question which function sensory-
and task-related activity in PPC may fulfill, and to what extent the presence of rich
sensory and task correlates reflects the role in perception and behavior of a cortical
area.

Materials and Methods
Data and Code Availability

The data and code that support the findings of this study are available from the
corresponding authors, M.O.L., C.M.A.P., and U.O., upon reasonable request.

Animals

All animal experiments were approved by the Dutch Commission for Animal
Experiments and by the Animal Welfare Body of the University of Amsterdam. A
total of 24 male mice was used from two transgenic mouse lines: PVcre (JAX
008069) and F1  offspring of Pvcre (JAX 008069) and Ai9-TdTomato cre-reporter
mice (JAX 007909). Mice were at least 8 weeks of age at the start of experiments
and group-housed under a reversed day-night schedule (lights were switched off at
8:00 and back on at 20:00). All experimental procedures were performed during
the dark period.

Head bar implantation

Before the start of any experiment, mice were implanted with a custom-made
titanium head-bar to allow head fixation. Mice were anesthetized with isoflurane
and fixed in a stereotaxic apparatus. A circular head bar was positioned to include
V1  and PPC bilaterally and glued and cemented to the exposed skull. Areas of
interest were located based on stereotaxic coordinates (V1  relative to lambda: AP
0.0, ML ± 3.0, PPC relative to bregma: AP 1 .9, ML ± 1 .6 (Goard et al., 201 6; Le
Merre et al., 201 8; Song et al., 201 7)). Mice were allowed to recover for 2-7 days
after implantation and were then habituated to handling and head-fixation before
the start of the training procedure.

Audiovisual change detection task

Throughout experiments, mice were water-deprived and earned their daily ration
of liquid by performing the behavioral task. Mice were head-fixed and two lick
spouts were positioned symmetrically on the left and right side within reach of
their tongue. Licks were detected by capacitance-based (training setups) or piezo-
electric-based detectors (recording setup). Upon correct licking, 5-8 μl of liquid
reward (Infant formula, Nutrilon) was delivered through the lick spout using
gravitational force and solenoid pinch valves (Biochem Fluidics).
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Stimuli were continuously presented throughout behavioral sessions. Visual
stimuli were drifting square-wave gratings with a temporal frequency of 1 .5 Hz and
spatial frequency of 0.08 cpd at 70% contrast. Stimuli were presented with a 60 Hz
refresh rate on an 1 8.5-inch monitor positioned at a straight angle with the body
axis from the mouse at 21  cm from the eyes. In trials with a visual change the
orientation of the drifting grating was instantaneously changed (e.g. from 1 50˚ to
1 80˚) while preserving the phase. The auditory stimulus was a stationary Shepard
tone (Shepard, 1 964) composed of a center tone and multiple harmonics (2 lower
and 2 higher harmonics). The center tones ranged a full octave spanning from 21 3

Hz (=8372 Hz) to 21 4 Hz (=1 6744 Hz). For each given Shepard tone in this stimulus
set, the weight of the center and harmonic tones are taken from a fixed Gaussian
weight distribution over all center and harmonic tones, in this case centered at 21 3.5

(=1 1 585 Hz). Stimuli were presented with a sampling rate of 1 92 kHz. Stimuli were
high-pass filtered (Beyma F1 00, Crossover Frequency 5-7 kHz) and delivered
through two bullet tweeters (300 Watt) directly below the screen. Sound pressure
level was calibrated at the position of the mouse and volume was adjusted per
mouse to the minimum volume that maximized performance (average ±70 dB). In
trials with an auditory change, the stimulus was modified instantaneously from
one Shepard tone to another with a different center frequency and associated
harmonics, while preserving the phase across all compound tones. For example, an
auditory change of ¼ octave would jump from 21 3 to 21 3.25. The amount of change
determined stimulus difficulty (see also below).

Animals were trained to respond in a lateralized manner to sensory changes in each
modality: lick to one side to report visual changes, to the other side for auditory
changes (modality-side pairing was counterbalanced across mice). In other words,
mice were required to simultaneously monitor both the auditory and visual
modality and identify the sensory modality in which a change occurred.

Trials were separated by a random inter-trial interval (taken from an exponential
distribution with a mean of six seconds, minimum three, and maximum twenty
seconds). Trial types were pseudorandomly ordered by block-shuffling: every block
of 1 0 trials contained a mixture of trial types in a fixed proportion but random
order (8% catch trials=no change, 46% visual trials, 46% auditory trials). For
instance, each block contained on average 46% of visual trials randomly
interspersed among the other trial types. Directly after stimulus change, a response
window of 1 500 ms followed in which mice could obtain a reward by licking the
correct side (no reward available in catch trials). The first lick on the correct side
during the response window was immediately rewarded (median reaction time was
324 ms across all auditory hits and 407 ms across all visual hits).

It is not likely that mice solved the task using short-term memory or prolonged
evidence accumulation, as mice could respond immediately and the observed
reaction times are shorter than the time windows usually considered in behavioral
tasks explicitly including evidence accumulation or working memory (~1 000 ms)



Materials and Methods

197

(Akrami et al., 201 8; Brunton et al., 201 3; Odoemene et al., 201 8). However, it can
still be argued that this task could be solved for instance by keeping the previous
orientation in memory and comparing it to the previous one.

For each trained animal, we presented five levels of auditory and visual amount of
change that spanned the perceptual range. We fitted this psychophysical data (see
below) to establish the perceptual threshold for the visual and auditory domains
for each animal. To sample sufficient trials per condition in recording sessions, we
used two levels of change (threshold and maximal). For noncontingently exposed
(NE) mice, we used threshold values that matched those from trained animals.

As visual and auditory feature changes were associated with different motor
actions (in trained but not in NE animals) a simultaneous auditory and visual
change would present the animal with conflicting signals (the visual change
predicts reward for licking left, auditory change predicts reward for licking right).
In a subset of sessions, we introduced these conflict trials (25% of the trials –
replacing unimodal trials) and registered the choice (side of the first lick). Both
sides were rewarded in conflicting trials.

We compared multisensory trained animals (MST, n=1 7) with NE animals (n=7).
For NE animals, the sensory environment was identical; both the auditory and
visual stimuli were continuously presented with the same distribution of trial types
and temporal statistics as for trained animals. However, these animals received
rewards if they licked during a hidden response window that was temporally
decorrelated from the stimuli. Spontaneous licks were therefore occasionally
rewarded and this allowed us to compare intermittent licks, rewards, and stimuli
between trained and noncontingently exposed mice. Each session was terminated
after 20 trials of unresponsiveness and these last 20 trials were always discarded
from all analyses.

We further excluded a subset of sessions from trained animals with poor behavioral
performance due to (1 ) a high false alarm rate to auditory or visual spout (>50%,
one session excluded), (2) a high lapse rate on easiest auditory or visual trials (a
threshold of >30% hit rate on both visual and audio trials with a maximal amount
of change had to be met, two sessions excluded for low auditory performance, nine
sessions for low visual performance). Note that in this two-alternative unforced
choice task, performance at chance level is not 50% with three response options
(lick to visual spout, auditory spout, no lick) and depends on spontaneous lick rates
and trial type distribution.

Viral injection

Once animals were trained to asymptotic performance, we aimed at optogenetically
inactivating PPC by locally expressing Channelrhodopsin-2 in a cre-dependent
manner in PVcre mice, therefore driving inhibitory interneurons. Mice were
subcutaneously injected with the analgesic buprenorphine (0.025 mg/kg) and
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maintained under isoflurane anesthesia (induction at 3%, maintenance at 1 .5–2%)
throughout the surgery. Small craniotomies (~1 00 μm) were made over the area of
interest (V1  or PPC) using a dental drill. A glass micropipette backfilled with
AAV2.1 -EF1 a-double floxed-hChR2(H1 34R)-EYFP-WPRE-HGHpA (titer:
7×1 0¹² vg/mL, 20298-AAV1  Addgene) was slowly lowered in the cortex, and 25nL
was injected at 700 μm and 400 μm below the dura each using a Nanoject pressure
injection system (Drummond Scientific Company, USA). Further experiments
continued after three weeks to allow for viral expression. A potential concern is that
expression of ChR2 in deep PV-expressing pyramidal neurons (Tanahira et al.,
2009) led to an increase rather than a decrease of activity in deep layers. We
observed no such expression in deep pyramidal neurons of PPC (Figure 5.6B).

Neuronal recordings in PPC

We performed craniotomies on the day before starting extracellular recording
sessions. Mice were anesthetized with isoflurane and small (~300-500μm)
craniotomies over the areas of interest were made using a dental drill leaving the
dura intact. Craniotomies were made in the left hemisphere over V1 , PPC, as well
as primary auditory cortex and medial prefrontal cortex. Only data from V1  and
PPC was analyzed for this study. The data presented from these areas was partly
recorded in the same animals. Data regarding optogenetic manipulations of V1  and
PPC activity was gathered in different animals.

Extracellular recordings were performed on consecutive days with a maximum of
4 days to minimize damage to the cortical tissue. Microelectrode arrays of 32 or 64
channels (NeuroNexus, Ann Arbor, MI – A1 x32-Poly2-1 0mm-50s-1 77, A1 x64-
Poly2-6mm-23s-1 60) were slowly inserted perpendicularly to the cortical surface
until all recording sites were in contact with the tissue. To allow for tissue
stabilization, the start of the behavioral task commenced at least 1 5 minutes after
array insertion. For the recording session on the final day before perfusion, the
array was covered in DiI (ThermoFisher Scientific) to facilitate post hoc
visualization of the electrode tract. Neurophysiological signals were pre-amplified,
bandpass filtered (0.1  Hz to 9 kHz), and acquired continuously at 32 kHz with a
Digital Lynx 1 28 channel system (Neuralynx, Bozeman, MT).

Optogenetics

In sessions with optogenetic interventions, a random subset of trials (50% of trials)
was associated with photostimulation. Photostimulation started at stimulus onset
and continued until the animal made a choice. Two fiber-optic cannulas (ID 200
μm, NA 0.48, DORIC lenses) were connected to a 473 nm laser (Eksma Optics,
DPSS 473nm H300) and positioned within 1  mm directly over the thinned skull at
the area of interest. We performed extracellular recordings simultaneous with
photostimulation in all mice to verify the effectiveness of inactivation and we
adjusted the laser power for each animal to the minimum power that maximally
inhibited neural activity. The horizontal offset between the fiber tip and insertion
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site of the microelectrode array was minimized within the limited space constraints
and measured approximately 200-400 μm (for comparison: PPC measures
approximately 1 .0-1 .5 by 1 .0-1 .5 mm, depending on delineation (Lyamzin and
Benucci, 201 9)). The range of laser powers used was the same for PPC animals
compared to V1  animals (2-1 5 mW at the tip of each fiber-optic cannula,
corresponding to 1 5.9 – 1 1 9.3 mW mm-2). This laser power in combination with
our optogenetic approach was previously shown to lead to effective spatial
inhibition across our infected target area (Li et al., 201 9). To allow rapid control
over light delivery, laser beam continuity was controlled by a shutter (Vincent
Associates LS6 Uniblitz). We stimulated with 1 0 ms pulses at 20 Hz (40 ms off,
20% duty cycle). For the photoinactivation of V1 , a stimulation scheme was used
in which the pulse and interpulse duration were variable with an average of 20 Hz
and 75% duty cycle. The higher duty cycle of V1  inhibition versus PPC inhibition
(75% versus 20%) is unlikely to explain the difference in effect on task performance
for two reasons. First, when we investigated spiking activity relative to single laser
pulses we observed no rebound activity during the interpulse interval (see Figure
5.6D). Second, the same stimulation protocol has been used in the same lab to
effectively silence higher visual areas to study the impact on V1 (Chapter 2). To
prevent light from reaching the eye of the mouse, the fiber-optic cannulas were
sealed with black tape leaving only the tip exposed. Furthermore, animals
performed the task in an environment with ambient blue pulsating light.

Pupil monitoring

The left eye was illuminated with an off-axis infrared light source (IR-LEDs, 850
nm) positioned to yield high contrast illumination of both the eye and whisker pad.
A near-infrared monochrome camera (CV-A50 IR, JAI) coupled with a zoom lens
(Navitar 50 mm F/2.8 2/3" 1 0MP) was positioned at approximately 30 centimeters
from the mouse to capture a view of the lick spouts and face of the mouse. A frame-
grabber acquired images of 752x582 pixels at 25 frames per second. The pupil size
and position were extracted from the obtained videos by labeling the pupil center
and 6 radially symmetric points on the edge of the pupil using DeepLabCut (Mathis
et al., 201 8) and pupil size was quantified as the surface area of an ellipse fit to
these points.

Histology

At the end of the experiment, mice were overdosed with pentobarbital and perfused
(4% paraformaldehyde in phosphate-buffered saline). The brains were recovered
for histology to verify viral expression and recording sites. We cut coronal and
flattened cortical sections as described previously (Lauer et al., 201 8). For coronal
sections, area borders were drawn by aligning and overlaying the reference section
from the atlas (Paxinos and Franklin, 2004). For flattened cortical sections areas
were identified based on cell densities aligned to reference maps (Gămănuţ et al.,
201 8).
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Data analysis

Unless otherwise stated, all data were analyzed using custom-made software
written in MATLAB (The MathWorks, Natick, MA).

Behavior: analysis of performance

Behavioral hit rates were fit with a multi-alternative signal detection model
(Sridharan et al., 201 4). This model extends signal detection theory (Green and
Swets, 1 966) for multiple signals and has been designed to accurately and
parsimoniously account for observer behavior in a detection task with multiple
signals. In our behavioral task, these are the auditory and visual signals to be
reported at different lick spouts. In this model, the decision is based on a bivariate
decision variable whose components encode sensory evidence in each modality,
and decision space is partitioned in three regions (miss: neither evidence is strong
enough, auditory response and visual response). In a given trial, the observer either
chooses to report nothing (no licking) or report visual or auditory stimuli (by
licking left or right) if the decision variable exceeds a particular cutoff value, the
‘‘criterion’’ for each signal (the animal’s internal signal threshold for responding,
in terms of signal detection framework). We fit two versions of this model. In
sessions with two levels of change per modality (threshold and maximum), we fit
the d-prime (d’) and criterion (c) to the behavioral response rates for each stimulus
difficulty separately. This consists of fitting four free parameters: the d-prime
parameters (d’vis, d’aud) and criterion parameters (cvis, caud). In sessions with four
levels of change per modality, we fit the behavioral response rates by fitting a fixed
criterion and a d-prime (d’) at each stimulus difficulty that was described by
psychophysical function (three-parameter hyperbolic function). The d-prime at
each stimulus difficulty follows from:′ = ′ ∗ ( + ) ( . 5.1)⁄
where d´max is the asymptotic d’, s50 is the stimulus strength at 50% of the
asymptotic value, n is the slope of the psychometric function and xi is the amount
of change. This consisted of fitting a total of 8 free parameters: d’max, n, s50, and c
for each modality. These eight parameters are presented in Figure 5.8.

For a detailed description of how the d-prime and criterion subsequently relate to
response rates, we refer the reader to (Sridharan et al., 201 4). This analysis was
used before the start of experimental sessions to establish for each animal the
perceptual threshold and therefore auditory and visual stimulus difficulty to use,
as well as quantify behavioral performance on control and optogenetic trials.

Behavior: regression model of choice

To test whether PPC inactivation affected other factors beyond performance
averaged over trial types we constructed a regression model of behavioral choice
(Akrami et al., 201 8; Busse et al., 201 1 ; Hwang et al., 201 7). We selected a
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multinomial logistic regression model, as in our behavioral task the animal was
presented with three discrete choice options (lick to visual spout, lick to auditory
spout, or no-go). In this model, each regressor has two weights, where positive
weights increase the probability of responding relative to a third reference option.
We chose ‘no-go’ (not licking) as the reference option, such that the linear sum of
weights across regressors determine the probabilities of the choice on a given trial
through:

log = + ∗ (5.2)
log = + ∗ (5.3)

Where b is a bias parameter, β are sets of regression coefficients (or weights), and
X the matrix with the values of regressor variables for every trial. As regressors, we
used information from the current and the previous trial. Only information from
up to one trial in the past was used, as this captured the strongest effects on
behavioral choice and allowed us to test the effects of PPC inactivation. First, to
construct a null model we included a random predictor with random values
between 0 and 1  (abbreviated to N in Figure 5.9). This null model can already
predict behavioral choice above chance by matching choice fractions. Second, we
included the within-session trial number to account for non-stationarity in
behavioral choice due to satiation (T). Third, for sensory information we used the
amount of visual and auditory change (degree of grating orientation and pitch
change, respectively) as a scalar variable (both log-transformed to account for
logarithmic sensitivity in sensory systems) (Sv, SA), and sensory stimuli on the
previous trial (SV-1 , SA-1). Fourth, reward on the previous trial was captured in two
binary regressors per modality (RV-1, RA-1; 0=not-rewarded, 1 =rewarded). Fourth,
we included choice history (C-1). Because this was a detection task with sensory
stimuli at or near the perceptual threshold, licks outside ‘trials’ to the auditory or
visual lick spout could be interpreted as reports of perception. Therefore, we
included for choice history a binary predictor that reflected the side of the last lick
(0= last auditory lick, 1 = last visual lick). Lastly, to capture the effect of PPC
photoinactivation on choice a binary predictor of photostimulation was included
(O).

All sessions of single animals were concatenated as if it were one session (N=7.2
sessions on average). The model was fit on this concatenated trial data per animal
(N=1 7 animals, M=58.652 trials in total) using the glmnet package in Matlab
(Friedman et al., 201 0) with elastic-net regularization (alpha=0.95) and 3-fold
cross-validation. Regularization parameter lambda was maximized while not
decreasing cross-validated performance. Model fit quality was assessed as the
fraction of held-out test trials in which the estimated choice (choice with the
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highest probability) matched the actual choice. We term this cross-validated model
performance and it is shown in the figure. In partial models, we used a subset of
variables and performed the same regression procedure; for instance a model with
and without including photostimulation as a predictor to assess the effect of PPC
inactivation on model performance. The analysis of the effects of photoinactivation
was done on the five animals with PPC inactivation.

Neural data processing

Before spike sorting, the median of the raw trace of nearby channels (within 400
μm) was subtracted to remove common noise artifacts. Automated spike sorting
and manual curation were done using Klusta and the Phy GUI, respectively
(Rossant et al., 201 6). During manual curation, each putative single unit was
inspected based on its waveform, autocorrelation function, and its firing pattern
across channels and time. High-quality single units were included as having (1 ) an
isolation distance higher than 1 0 (Schmitzer-Torbert et al., 2005); (2) less than
0.1 % of their spikes within the refractory period of 1 .5 ms (Bos et al., 201 7; Vinck
et al., 201 5b), (3) stable presence throughout the session. This latter was quantified
by binning the firing across the entire session (~50 minutes) in 1 00 time bins and
only including neurons that spiked in more than 90 time bins. We recorded a total
of 671  neurons from 1 4 animals over 32 sessions that met our criteria.

For Figure 5.1 D and 5.1 F, spike times were binned in 1  ms bins, convolved with a
Gaussian window with 50 ms standard deviation, and z-scored by subtracting the
mean baseline activity and dividing by the standard deviation of all baseline
periods (-1  to -0.2 seconds before stimulus). For the single neuron encoding model,
spikes were binned in 25 ms bins and convolved with a Gaussian window with a 50
ms standard deviation.

Single neuron encoding model

We constructed an encoding model that allowed us to model, for single neurons,
the time-dependent effects of all measured variables related to the task and the
animal’s behavior simultaneously on single-trial neuronal activity. This approach
is particularly useful to disentangle the different events that contribute to
heterogeneous responses in associative regions such as parietal cortex (Park et al.,
201 4).

We included six categories of predictors: visual stimuli, auditory stimuli, reward,
licking movement, pupil size, and trial history. Binary variables (stimulus present
or not, last trial rewarded or not; all variables except for pupil size were binary)
were modeled with a series of temporal basis functions (raised cosines) that
spanned the relevant epoch of influence to fit time-dependent modulation of
neuronal responses by these predictors.
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For the auditory and visual predictors, we used two kernels with 1 00 ms standard
deviation that spanned the first 200 ms post-stimulus to capture the early spiking
activity and 1 0 kernels with 200 ms standard deviation that spanned from 0 to
2000 ms post-stimulus to capture the late, sustained response. A separate
predictor set was used per combination of orientation/frequency x amount of
change. For reward variables, we used 1 0 kernels with 200 ms standard deviation
that spanned from 0 to 2000 ms relative to stimulus change in hit trials (visual hit,
audio hit) and 1 0 predictors that spanned -500 ms to +1 500 ms relative to reward.
We used reward as a single term to refer to hit-trial specific activity (rewarded
visual and auditory hits). This definition was used also in tensor component
analysis and population decoding (see below). Note that this definition captures
activity related to correct detection and report as well as reward-related activity
and this encoding model dissociated this from other confounds (such as licking and
arousal) by exploiting the trial-by-trial variability in timing. For licking movement,
we used three kernels that spanned -200 to +400ms relative to each lick, split by
lick side. To capture arousal effects, the z-scored pupil area was included in the
predictor set: with original timing and two temporal offsets (-800 ms and -400 ms).
We included three binary history-dependent predictors, capturing the modality of
the previous trial (visual or auditory), reward (hits or not), and choice (lick to visual
or auditory spout). Lastly, the trial number was included to account for non-
stationarity in firing rate across the entire session due to, for example, motivational
signals and electrode drift, but was not reported in figures.

The number, width, and spacing of temporal basis functions were selected by
optimizing the variance explained on a diverse subset of representative neurons
(Runyan et al., 201 7). For example, the use of trial-spanning history predictors was
based on the fact that history had an offset effect throughout the trial duration in
example neurons (Figure 5.3). Explained variance both on trial averages and single
trials was comparable to previously reported studies (Runyan et al., 201 7;
Steinmetz et al., 201 9).

This resulted in a predictor matrix of size P x T for each neuron, where P is the
number of predictors and T is the number of total time bins. The encoding model
was fit on concatenated single trials and T is therefore the number of trials
(typically 200-500 trials) multiplied by the number of time bins per trial (1 00 time
bins; -0.5 to +2 sec relative to stimulus change, 25 ms time bins). The encoding
model (a generalized linear model, GLM) was fit with a Poisson link function to
single neuron activity with the glmnet package in Matlab (Friedman et al., 201 0).
We used elastic-net regularization (α = 0.95) and 5-fold cross-validation. To
maximally punish weights without losing model fit quality, lambda was maximized
while keeping the cross-validated error within one standard error of the minimum.
We quantified model performance by assessing the 5-fold cross-validated
explained variance (EV) in two ways. First, we computed EV over all concatenated
firing rate bins (over all single trials). Second, we computed EV on the concatenated
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firing rate bins of the average firing rate for four main trial type conditions with
most trial counts (visual and auditory hits and misses) (Musall et al., 201 9; Runyan
et al., 201 7).

To quantify the contribution of subsets of predictors we calculated the single-trial
EV for a firing rate prediction based on only those predictors. In other words, how
much of the firing rate variance is explained by only considering the weights from,
for example, visual variables. This value was compared to a shuffled distribution
where the EV was computed using the predicted firing rate and the actual firing
rate from shuffled trials (N=1 000 shuffles). A neuron was deemed to significantly
encode this variable if it exceeded the 99% percentile of this shuffled distribution.
This permutation test approximately labeled variable encoding in single neurons if
at least 1 % of the single-trial variance was explained, as we found very similar
results when we simply thresholded on 1 % EV.

To quantify whether the joint encoding of variables was significantly different from
a random distribution across neurons, we shuffled (N=1 000) the vectors of neuron
indices that significantly encoded visual, auditory, and reward variables relative to
each other and recomputed joint or unique encoding, i.e. recomputing the Venn
diagram. For instance, with 50% of neurons encoding visual and 50% encoding
auditory variables, this shuffling procedure would generate percentages of joint
audiovisual encoding neurons around 25%, against which the actual percentage
was tested (exceeding the 2.5% or 97.5% percentile, corresponding to a two-sided
test with p<0.05).

Population decoding analysis

We tested whether PPC ensembles were responsive to audiovisual stimuli and
reward by training decoders to classify (1 ) audio vs. catch trials, (2) visual vs. catch
trials, (3) visual vs. audio trials, and (4) rewarded vs. non-rewarded trials. In (1 ),
(2), and (3) we included only trials with large stimulus changes. Decoding was
performed on recordings that contained at least 1 5 neurons and 1 5 trials per class.
Spikes were binned using a sliding window of 1 00ms with 50ms increments,
whereas for the insets, showing broader temporal dynamics, we used a window of
500ms moved with 250ms increments. Trials were aligned to the moment of
stimulus change (Figure 5.4A-H) or the timing of the first response lick (i.e. the
first lick occurring at least 1 00ms after stimulus change, Figure 5.4I,J). When trials
were aligned to stimulus change, temporal bins containing data before and after
stimulus change (t=0) were excluded from the analysis. Decoding was performed
using a random forest classifier with 200 trees, as implemented in Scikit-learn
(Pedregosa et al., 201 1 ), and we employed a 5x5 cross-validation routine with
stratified folds (which preserves the proportions of samples of the two classes in
each fold). The average accuracy obtained in the cross-validation routine was
corrected by subtracting the average accuracy on 300 surrogate datasets in which
the trial labels were randomly permuted to obtain the improvement in decoding
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accuracy beyond chance level. For every time point, we tested whether the
corrected accuracy was significantly different from 0 using Wilcoxon signed-rank
test; p-values were corrected for multiple comparisons using the Benjamini–
Yekutieli method, with a significance level of 0.05. We additionally trained
decoders to classify the orientation of the drifting gratings and the frequency of the
audio tone (Figure 5.4G,H). Before decoding visual and auditory stimulus identity,
we grouped the two pairs of orientations/frequencies, to obtain a two-class
classification problem, and included only trials in which the stimulus changed from
one pair of stimuli to the other (max changes).

Tensor Component Analysis

We applied tensor component analysis, TCA, (Williams et al., 201 8) to recordings
that contained at least 1 5 neurons. As the objective and similarity plot did not
demarcate a fixed number of components to decompose our data, we chose a rank
of 8 and tested the robustness of our analysis to different choices of rank (5 and 1 0
components, data not shown). As a way of identifying components representing
noise and drift in the recordings, we filtered out components that were expressed
in less than 20% of units or less than 20% of trials. For each component, we
measured with a ROC-AUC score how well the trial factors discriminated (1 ) audio
trials vs. catch trials, (2) visual trials vs. catch trials, and (3) correct trials vs.
incorrect trials. For each AUC score, we computed an associated p-value by
generating a null distribution of AUC values calculated on randomly permuted trial
labels and computing the fraction of values in the null distribution which were
equal or larger than the observed AUC score. AUC scores were considered
significant with p<0.05. For Figure 5B,C components were labeled based on the
contrast associated with the highest AUC score and included if the highest AUC
score had an associated p<0.05.

Statistics

We used Bayesian statistics throughout the manuscript (Jeffreys, 1 939; Rouder et
al., 2009) to facilitate intuitive interpretation of the strength of evidence as well as
establish evidence of the absence of effects (Keysers et al., 2020). Bayesian
statistics assess the likelihood of the data under both the null and the alternative
hypotheses. In most cases, we report the Bayes Factor that corresponds to the ratio
of likelihoods p(data|H1)/p(data|H0), abbreviated to BF. For instance, BF=1 0
would mean that the data are 1 0 times more likely under H1  than H0 providing
very strong support for H1 , while BF=0.1  would mean that the data are 1 0 times
more likely under H0 than H1 providing very strong support for H0. Generally, a BF
between 1 /3 and 3 indicates that the data is similarly likely under H1 and H0 and
that the data thus does not adjudicate which is more likely. A BF below 1 /3 or above
3 is interpreted as supporting H0 or H1, respectively, corresponding roughly to
P<0.05 for moderate sample sizes (Jeffreys, 1 939). Evidence of absence of an
effect, where the null hypothesis is more likely given the data, is denoted by the
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hashtag symbol (‘#’) in figures, next to the standard asterisk symbol (‘*’) for
evidence for the alternative hypothesis.

We also performed classical frequentist statistics (i.e., calculating the probability
of observing the data given a hypothesis) for each test and found nearly identical
results, except for one statistical test in Figure 5.8C, where the auditory threshold
was slightly affected by PPC inactivation.

We made four exceptions and used the classical frequentist test when we required
a significance threshold without an available Bayesian alternative: (1 ) chi-square
test for fractions for significant increased and decreased fractions of PPC neurons
(Figure 5.1 D) and (2) AUC values per TCA component versus a shuffled
distribution (Figure 5), (3) significant time points of decoding performance (Figure
5.4), (4) significant (joint) encoding of stimulus and behavioral variables versus
shuffled distributions (Figure 5.3).

Results
We trained mice to continuously and simultaneously monitor audiovisual stimuli
and respond to one lick spout for changes in auditory frequency and the other spout
for changes in the orientation of a drifting grating (Figure 5.1 A). In other words,
mice were required to identify the sensory modality in which a change occurred
and could respond as soon as a change was detected. Behavioral performance was
analyzed using a multi-alternative signal detection model (Sridharan et al., 201 4).
This model extends classical signal detection theory to distinguish perceptual
sensitivity from choice bias in detection tasks with multiple signals (in this case
visual and auditory changes) – see Methods. Trained animals selectively reported
both orientation and frequency changes and performance increased as a function
of the amount of change (Figure 5.1 A). Animals were mostly tested in these
unisensory trials, in which either a visual or an auditory change were presented,
but never simultaneously. We also presented some truly multisensory trials, which
will be discussed later. Mice lateralized their licks well, with occasional licks to the
incorrect spout (1 0.5% errors at the visual lick spout, 1 4.9% errors at the auditory
lick spout).
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Figure 5.1: Posterior parietal
cortex is recruited during
audiovisual change detection. (A)
An auditory stimulus (Shepard
tone) and a visual stimulus
(drifting grating) were
continuously presented.
Headfixed mice had to report
frequency changes (e.g. lick left on
auditory trials) and orientation
changes (lick right on visual
trials). Gray lines show the
psychometric fit of behavioral hit
rates for individual sessions for
an example mouse and colored
lines the average across sessions
(n=7 sessions). Dotted lines are
licks to the incorrect spout. Licks
at zero orientation and frequency
change are false alarms (center of
panels). The fraction of trials
without a licking response is not
shown but can be inferred from
the figure as they sum to 1 00%
together with shown response
rates. (B) We recorded single-unit
activity in PPC. Image shows
histological verification with
DAPI-staining in blue and
electrode tract stained with DiI
(in red) overlaid with reference
section from (Paxinos and
Franklin, 2004). LTPa: Lateral
Parietal association area, V2L:
lateral secondary visual cortex.
RSA/G: retrosplenial cortex
(a)granular part. (C) Flattened
cortical section in a PvCre-
tdTomato mouse providing
landmarks through cell densities
in red (Gămănuţ et al., 201 8),
with additional DiI-stained
electrode tracts in V1  and PPC

(also red): V1 : primary visual cortex, LM: lateromedial, PM: posteromedial, A: anterior, AM:
anteromedial, RSP: retrosplenial, S1 bf: barrel field of primary somatosensory cortex. (D) Heatmap
of trial-averaged z-scored activity over all recorded neurons aligned to stimulus change. Each row
corresponds to one PPC neuron recorded in noncontingently exposed animals (left panels; n=21 8
NE neurons) and multisensory trained animals (right panels; n=453 MST neurons), sorted by post-
stimulus activity. (E) Fraction of neurons with significantly increased or decreased firing rate
(Bayesian paired one-sided t-test BF>3, pre-stimulus -500 to 0 ms, post-stimulus 0 to 500 ms; BF
corresponds to the ratio of likelihoods of the alternative and null hypothesis) is increased in MST
versus NE animals (Chi-square two-sample tests: visual-increase, p<0.001 , visual-decreased,
p=0.003, auditory-increase, p=0.031 , but not for auditory-decrease, p=0.998). Inset in top left
panel is a close-up of the visually responding fractions in NE mice. (F) Z-scored firing rate for
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neurons with increased and decreased rate for visual and auditory trials separately show increased
amplitude of modulation for trained versus naive mice. Black tick mark indicates median reaction
time.

After establishing psychophysical performance, we only used two levels of change
for each modality for subsequent sessions: threshold (individually titrated per
animal) and maximal. We first wondered what types of task-relevant activity the
PPC displays. We compared this cohort of multisensory-trained mice (MST) to
another cohort of animals that was noncontingently exposed to the stimuli (NE).
NE mice were not trained to detect changes but were pseudorandomly rewarded
for spontaneous licks. We recorded single-unit activity in mouse PPC (Figure
5.1 B,C), which corresponds to cortical areas also referred to as mouse Lateral
Parietal Association cortex (LTPa; Paxinos and Franklin, 2004) or Anteromedial
visual cortex (AM; Driscoll et al., 201 7; Wang and Burkhalter, 2007). We found
that the fraction of neurons responding to visual stimuli with changes in firing rate
significantly increased from 5% in naive animals to 29.3% in trained animals, and
from 31 .6% to 39.3% for auditory stimuli (Figure 5.1 D,E). In contrast to what is
commonly reported in primary sensory areas, sensory stimuli both increased and
decreased firing activity of PPC neurons (Figure 5.1 F). The coupling between
modality and rewarded lick spout (left or right) was counterbalanced across mice.
We found, however, no systematic relationship for both modalities between the
associated lick spout and evoked responses in contralateral PPC (Figure 5.2). We
therefore show that, in addition to visual stimuli (Pho et al., 201 8), also auditory
stimuli evoke activity increments and decrements in PPC during task performance
compared to passive stimulation.

(figure on the previous page) Figure 5.2: Increased auditory and visual responsiveness irrespective
of modality-side pairing. The modality-reward side pairing (which lick spout was associated with
reporting changes in which modality) was counter-balanced across MST mice, while PPC was

always recorded in the left hemisphere. To investigate whether the modality-reward side pairing
was associated with different dynamics (e.g. increased auditory responsiveness in PPC if the
auditory lick spout was contralateral), we repeated Figure 1 E,F for neurons based on the pairing
of the animals they were recorded from. Data from NE mice was the same as modalities were not
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associated with specific lick spouts. Results were qualitatively similar for both sets of neurons. A)
Same as Figure 1 F, but for PPC neurons contralateral to auditory lick spout. B) Same as Figure 1 F,
but for PPC neurons contralateral to visual lick spout. C) Same as Figure 1 E, but for PPC neurons
contralateral to auditory lick spout. Chi-square two-sample tests: visual-increase, p<0.001 , visual-
decreased, p=0.01 49, auditory-increase, p=0.01 8, but not for auditory-decrease, p=0.424. D) Same
as Figure 1 E, but for PPC neurons contralateral to visual lick spout. Chi-square two-sample tests:
visual-increase, p<0.001 , visual-decreased, p<0.001 , auditory-increase, p<0.001 , but not for
auditory-decrease, p=0.1 43). E) We tested directly whether more neurons were modulated during
trials associated with a contralateral response (left PPC neurons during trials rewarded at the right
lick spout) versus ipsilateral trials. The rise in the fraction of significantly responsive neurons was
not significantly different based on laterality (n=8 fractions, BF=0.35).

Sensory and behavioral correlates are heterogeneously distributed across single
parietal neurons

We next focused on characterizing single-neuron responses in relation to stimuli
and behavioral decisions. In trained animals, these were highly heterogeneous
(Figure 5.3A-C). We found neurons that responded specifically to visual (example
1 ), or auditory stimuli (example 2), or were bimodally responsive (examples 3, 4).
Additionally, the firing rate of many neurons was modulated during rewarded, but
not unrewarded trials (examples 5, 6) or showed a mix of stimulus and reward-
related activity (example 7; ‘reward’ refers specifically to hit trials and thus
captures activity related to stimulus detection, report, and reward, see Materials
and Methods). Firing rates were further modulated by spontaneous licks outside
trials (example 8), as well as by the previous trial’s outcome (reward or not) and
choice (left or right lick), indicating a history effect (examples 9, 1 0).

To capture and quantify the encoding of such heterogeneous sensory and task-
related variables in the firing rate of single PPC neurons, we implemented a kernel-
based regression model (Park et al., 201 4; Runyan et al., 201 7). This model
accurately predicted single neuron firing rates (dashed lines in Figure 5.3A),
explaining on average 46.1 % of trial-averaged and 1 1 .6% of trial-to-trial firing rate
variance during 0-500 ms post-stimulus. This trial-to-trial variance was jointly
explained by visual (1 2.1 %) and auditory (23.4%) stimulus features, as well as
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Figure 5.3: Heterogeneous
task-related responses in single
parietal neurons. (A) Peri-
stimulus time histograms
(PSTH) for 7 example neurons
for visual and auditory trials
split by decision (hit or miss;
licks to incorrect spout omitted).
The dashed line shows the
predicted firing rate based on a
kernel-based regression model.
Neurons responded to visual (1 )
and auditory changes (2), or
changes in both modalities (3,4)
and were modulated by decision
(1 ,5,6,7). Black tick marks
indicate mean reaction time in
that session. (B) PSTHs for
example neuron (8) aligned to
spontaneous licks during inter-
trial intervals (or random non-
licking time points). (C) PSTHs
for two other example neurons
conditioned on the previous
trial: reward (example 9), and
choice (1 0), indicating history
effects. We found no clear
examples of neurons encoding
stimulus history. (D) Explained
variance of the trial-to-trial
firing rate across 0-500 ms post-
stimulus (this window includes
lick response and reward
delivery) for each category of
predictors (Bayesian Anova,
main effect of predictor group,
BF=7.9 x 1 01 3). Mean ± SEM. (E)
Venn diagram showing the
percentage of all PPC neurons
that significantly encoded
visual, auditory or reward, but
also all combinations thereof
(tested against random trial
permutations, p<0.01 ,
corresponding roughly to >1 %
EV). Gray numbers indicate
where example neurons in A-C
are located. (F) Scatter plot of

explained variance by vision, audition, or reward. Each dot is a single neuron, with the RGB color
scaled by the amount of EV for each variable (light=high EV; dark = low EV). Logarithmic axes
were used to capture the spread in EV. The absence of clear clustering indicates heterogeneous
mixed selectivity across the PPC population. (G) Average variance explained by each predictor for
neurons based on cortical depth, showing that explained variance was not due to a subset of
neurons localized to specific layers. Lines show mean ± SEM. N=483 neurons. (H) We tested



Results

211

whether the distribution of visual, auditory, and reward encoding across neurons was different
from a random distribution based on chance (given the number of neurons significantly encoding
each of these variables). Each inset in the Venn diagram shows the shuffled distribution and the
actual percentage (in red if exceeding the 1 % or 99% percentile of the shuffle distribution). The
fractions of neurons exclusively encoding auditory stimulus features (1 4%) or reward (1 1 %) were
significantly lower than shuffled, while the percentage of neurons encoding all three variables
(1 1 %) was higher than that expected based on a random distribution of encoding across PPC
neurons. So, joint encoding of auditory stimuli, visual stimuli, and reward was more common than
exclusive coding of auditory stimulus and reward, and also more common than what would have
been expected from a random distribution of encoding variables across neurons.

reward (37.6%), licking movement (7.8%), pupil size (1 6.3%), and trial history
(stimulus, choice, and reward on the previous trial; 2.9%) (Figure 5.3D). We
investigated whether these variables were encoded by distinct or the same neurons
and focused on the variables most relevant to trial-by-trial performance (vision,
audition, and reward). We found a mixed profile, with some neurons coding a
single variable, while other neurons encoded two or all three of these variables
simultaneously (Figure 5.3E), in line with the example neurons shown in Figure
5.3A. Visual, auditory, and reward coding were smoothly distributed across the
neuronal population, without any clear clustering or organization (Figure 5.3F,G).
Moreover, the number of neurons encoding all three variables was higher than
expected based on chance (Figure 5.3H). Thus, single neuron correlates of
audiovisual change detection were heterogeneously distributed, and not
segregated, across the neuronal population.

Structure and content of parietal ensemble activity

To further investigate how information is globally encoded in PPC, we focused on
how parietal population activity coded task-relevant variables relative to stimulus
onset and decision. We used population decoding on ensemble activity recorded in
individual experimental sessions and found that PPC activity sufficed to decode the
presence of a sensory change (Figure 5.4A-C; significant decoding in 1 2/1 4
sessions for audition, 8/1 4 for vision), as well as the sensory modality of this
change (Figure 5.4D-F; significant in 1 3/1 4 sessions for sensory modality). This
suggests parietal activity does not indiscriminately respond to any sensory change,
but that different subspaces encode visual vs. auditory information (Raposo et al.,
201 4). It was even possible to decode the sensory feature (specific orientation or
frequency) in a subset of sessions (Figure 5.4G,H; significant in 5/1 3 sessions
orientation, and 5/1 1  for tone frequency). Furthermore, population activity
sufficed to decode the animal’s decision (Figure 5.4F,I,J, significant in 1 4/1 4
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sessions for reward), already about 250 ms before reaction time (dotted line in
Figure 5.4I).

Figure 5.4: Parietal ensemble activity suffices to decode stimulus and decision. (A) Accuracy of
population decoding relative to chance plotted over time for random forest classifiers trained to
discriminate visual versus catch trials (blue) and auditory versus catch trials (red). Trials were

aligned to the time of stimulus change. Accuracy above chance was obtained by subtracting from
the decoding accuracy the average decoding accuracy obtained after repeatedly shuffling the trial
labels (for absolute decoding accuracies see Table 1 ). Diamonds indicate time points at which the
distribution of decoding accuracy across recordings was significantly different from chance
(Wilcoxon signed-rank test, p<0.01 ). Shaded bands indicate 95% confidence intervals. The vertical
grey dotted line and shaded band mark the median and interquartile range of lick times,
respectively. Inset shows the same decoding over a longer time window with larger temporal bins
(similar in D and I). (B) Decoding of auditory versus catch and visual versus catch at t=0.25s (time
bin extending from 0 to 0.5s). Each dot is a session; where the p-value for each session was
computed as the fraction of decoding accuracies obtained on shuffled data which were larger than
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the observed accuracy (similar in E and H). (C) Same as A, but for individual recording sessions
and longer time windows. Average decoding performance was not driven by a subset of sessions
but was possible from nearly all recorded PPC populations. (D) Same as A, but for sensory modality
and reward, i.e. discriminating visual versus auditory trials (purple), and rewarded versus
unrewarded trials (green). (E) Same as B, but for sensory modality (visual versus auditory trials)
and reward (rewarded versus unrewarded trials). Decoding performance was significantly above
chance (p<0.05) in 1 3 out of 1 4 sessions for sensory modality, and 1 4 out of 1 4 for reward. (F) Same
as D, but for individual recording sessions and longer time windows. (G) Population decoding of
drifting grating orientation (blue) and Shepard tone frequency (red) over time (same as A but with
large temporal bins). Decoding aggregated across sessions was not significant overall (Wilcoxon
signed-rank test, p>0.05 for virtually all time points). (H) Same as B, but for decoding of drifting
grating orientation (blue) and Shepard tone frequency (red). Decoding performance was
significantly above chance (p<0.05) in 5 out of 1 3 sessions for visual orientation frequency, and 5
out of 1 1  for tone frequency. This shows that in a subset of recordings, not only the presence of an
auditory of visual change was encoded, but also the identity of the post-change stimulus. (I) Same
as A, but for decoding rewarded versus unrewarded trials when aligned to first lick (note that
licking activity/reward expectancy allows above-chance decoding before reaction time). Vertical
dashed green line indicates the time point at which decoding accuracy reached half of the maximum
accuracy (t=-0.25s). (J) Same as I, but for individual recording sessions and longer time windows.

In addition to supervised decoding, we also used an unsupervised dimensionality reduction
method (Williams et al., 201 8) to test whether the dominant low-dimensional neural
dynamics of PPC activity were task-relevant. This analysis showed that the distributed
patterns of task-related neuronal activity were well described by latent components that
closely corresponded to auditory and visual responses and decision-related behavior
(Figure 5.5). Thus, well before reaction time, parietal population activity shows rich visual,
auditory, and decision representations – including task-relevant information about which
sensory modality shows a change – which are, theoretically, sufficient for downstream
areas to execute the motor decision.

Sensory and task-related representations in PPC are not required for task performance

Altogether, when animals are trained to detect auditory and visual changes, PPC
multiplexes sensory and task-related variables, thus suggesting a potential role in linking
task-relevant auditory and visual inputs to adaptive decisions. To investigate the causal
nature of this link, we optogenetically inactivated PPC bilaterally (by locally enhancing
inhibition by parvalbumin-expressing (PV) interneurons). We verified that viral expression
spanned PPC across the anteroposterior and mediolateral axes and across cortical layers
(Fig. 5.6A-C) and that photostimulation excited a fraction of PPC neurons (putative ChR2-
expressing PV-cells) while effectively suppressing ongoing activity (Fig. 5.6D-F).
Optogenetic inactivation was less powerful in the deepest layers compared to more
superficial ones (Fig. 5.6F), also in comparison to inactivation of V1  achieved using the
same methodological approach (Fig. 5.6G). As opposed to the major silencing effect on PPC



Chapter 5: Functional (ir)relevance of posterior parietal cortex during audiovisual
change detection

214

itself, optogenetic inhibition of PPC had a slight excitatory effect on activity in V1  (Fig.
5.6H).

Figure 5.5: Latent dimensions of parietal population activity correspond to task-relevant
components. To capture, visualize, and quantify the dominant low-dimensional neural dynamics of
population activity in PPC, we used an unsupervised dimensionality reduction technique, Tensor

Component Analysis (TCA) (Williams et al., 201 8). TCA decomposes population activity into a
limited set of components, each of which corresponds to an assembly of cells with rapid, common
within-trial dynamics expressed across a variable set of trials. (A) Three selected components from
a TCA analysis of two example sessions (8-component model; see Methods). Each row corresponds
to a component (#1 -3) that captures a subpopulation of neurons (unit factors, left column), that
share a temporal response profile within the trial (temporal factors, central column), which is in
turn expressed differently across trials (trial factors, right column). All factors are unitless. Neurons
are ranked based on their contribution to the first plotted component, then the second, etc. The
dotted line and the shaded grey (middle panel) indicate the median and interquartile range of
reaction times, respectively. The TCA decomposition is performed with no information about trial
types, which are colored a posteriori. Nonetheless, the identified latent components show selective
expression in auditory (#1 ), visual (#2), and hit trials (#3) in both example sessions, showing that
the main dimensions of population activity are task-related. (B) AUC scores measure how
individual components are selectively expressed in auditory versus catch trials (red), visual versus
catch trials (blue), and rewarded versus not rewarded trials (green). Components whose AUC
scores were significantly larger than chance (tested against random trial permutations, p<0.05)
are marked by darker dots. Boxes indicate the quartile and 1 .5 times the interquartile range of the
significant AUC scores. White-filled dots locate the AUC scores of the three components shown in
the top TCA decomposition of (A). Donut plot shows the fraction of components that have a
significant AUC score for each contrast, across all recordings. ‘#’ BF<1 /3. (C) Averaging the time
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factors of all selective components from different sessions (i.e. those with a significant AUC score,
corresponding to the components marked in darker dots in B) showed a distinct temporal profile
with a progression of first auditory, then visual, and lastly decision components. Shaded bands
indicate 95% confidence intervals. Vertical dashed lines mark the peak time of the averaged
temporal factors.

Figure 5.6: Optogenetic inactivation of Posterior Parietal Cortex. (A) Coronal section showing viral
expression in bilateral PPC and the electrode tract stained with DiI for simultaneous physiological
validation. (B) Viral infection was present throughout layers of PPC. No evidence was obtained for
infection of deep pyramidal neurons with large somata, as reported for S1 (Tanahira et al., 2009).
(C) Series of coronal sections from one mouse showing the extent of viral infection of PPC along the
anteroposterior and mediolateral axis, cf. (Paxinos and Franklin, 2004). Numbers denote
approximate anteroposterior offset from Bregma. When aligning to the Allen Mouse Brain Atlas,
the first expression starts in the Anteromedial visual cortex (AM) and ends in the Posterior Parietal

Association area (PTLp). (D) We inactivated PPC by local activation of Parvalbumin-expressing
interneurons and photostimulation with an optic fiber (2-1 0 mW, 1 0 ms pulses at 25 Hz) directly
over the thinned skull. Top trace shows the high-pass filtered voltage (>500 Hz) at an example
electrode site (recorded at approximately 450 μm below dura) with effective inhibition of spiking
activity (i.e., multi-unit activity, MUA) upon photostimulation. Bottom trace shows a close up of
individual pulses during 1  second photostimulation. (E) The average waveform was narrower for
PPC neurons that showed increased (red) versus decreased (blue) firing rate upon
photoinactivation of PPC. This is in line with putative narrow-spiking PV cells being recruited by
photoinhibition to suppress broad-spiking pyramidal cells. Inset shows a significant difference in
the peak-to-trough delay (0.81  vs 0.70 ms, 90 vs 38 neurons, BF=4.47). *BF>3. (F) Effectiveness of
optical manipulation across cortical depth is shown as the percentage of the baseline firing rate.
Neurons were separated into inhibited (n=95 neurons; blue) and excited (n=39 neurons; red)
populations. We clipped the range of modulation ratios at 200% (some neurons were strongly
recruited by photostimulation). Lines and shading show mean ± SEM. (G) Same as F, but for V1
inhibition (n=1 50 inhibited neurons in blue, 68 excited neurons in red). Compared to PPC,
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optogenetic inhibition in V1  was more effective in the deeper layers. (H) To investigate the spatial
extent of PPC inactivation we analyzed V1  activity during PPC photostimulation. Optogenetic
inhibition of PPC had a slight excitatory effect on activity in V1  (Bayesian t-test photostimulation
vs baseline, n=21 3 V1  neurons, Cohen’s d: 0.41 , BF = 4.08), as opposed to the major silencing effect
on PPC itself. At the minimum, this suggests PPC inactivation does not affect V1  in a major way, in
line with the extent of viral expression seen in C. *BF>3.

Surprisingly, optogenetic silencing of PPC had significant effects on neither visual nor
auditory change detection, with evidence for the absence of an effect (Keysers et al., 2020)
in both visual and auditory conditions (Figure 5.7A-C). We additionally inactivated V1  in a
separate cohort of animals. Bilateral inactivation of V1  strongly reduced detection of visual
orientation changes, but not auditory frequency changes, consistent with the primary role
of V1  in visual feature processing (Glickfeld et al., 201 3b; Resulaj et al., 201 8; Zatka-Haas
et al., 2021 ).

PPC inactivation could affect other aspects of behavioral performance, despite overall
preserved visual and auditory hit rates. However, we found that all tested aspects of
behavioral performance persisted with PPC inactivation. First, we found no effect on
reaction times (Figure 5.7D). Second, we tested the hypothesis that PPC inactivation could
be restricted to a subset of animals showing a particular behavioral strategy. However, we
found both small increases and decreases in task performance in individual mice and no
relationship between changes in task performance and the bias to report visual or auditory
stimuli (Figure 5.7E,F). Third, even though detection of stimuli at perceptual threshold –
those most sensitive to perturbation – was preserved (Fig. 5.7A-C), psychometric
performance could potentially be affected in other subtle ways. However, when we
inactivated PPC at various levels of auditory and visual stimulus difficulty levels, hit rates
were unaffected (Figure 5.8A). We fit each session with a psychometric version of our signal
detection model and found no evidence for an effect - but also no evidence for the absence
of an effect - on sensitivity, threshold, and bias (Figure 5.8B, C).



Results

217

Figure 5.7:
Optogenetic

inactivation of
Posterior Parietal
Cortex does not affect
visual or auditory
change detection. (A)
Bilateral V1  inhibition
reduced visual
detection performance
as quantified by d’ with
a two-alternative
signal detection model
(Bayesian paired t-
test, 1 9 sessions;
Threshold visual
changes: Cohen's d =
1 .1 62, BF=1 35.55;
Maximal visual
changes: Cohen's d =
1 .251 , BF=593.51 ),
with no effect on
auditory performance
(Threshold auditory
changes: Cohen's d =
0.231 , BF=0.49;
Maximal auditory
changes: Cohen's d =
0.1 32, BF=0.30).

Bilateral PPC inhibition had no effect on either visual or auditory performance (Bayesian paired t-
test, 1 5 sessions; Threshold visual changes: Cohen's d = -0.1 97, BF=0.34; Maximal visual changes:
Cohen's d = -0.1 1 0, BF=0.30; Threshold auditory changes; Cohen's d = -0.1 78, BF=0.27; Maximal
auditory changes: Cohen's d = 0.41 7, BF=0.32). (B) Behavioral response rates averaged over V1
inactivation sessions for control and photostimulation trials. Error bars show SEM across sessions.
(C)Same as B, but for PPC silencing, where behavioral hit rates are unaffected. (D) PPC inactivation
did not affect reaction times. Boxplot show median and interquartile ranges. Auditory hits: 257 ms
(control, median reaction time), 238 ms (opto), 1 454 vs 91 5 trials, Cohen's d = -0.036, BF=0.033;
Visual hits: 391  ms (control), 392 ms (opto), 1 1 1 5 vs 735 trials, Cohen's d = -0.001 , BF=0.01 6.
Outliers were omitted from the plot for visual clarity. (E) Average d-prime with and without PPC
inactivation for each animal. Same data as the right part of A. (F) The change in d-prime by PPC
inactivation was not related to the threshold for visual or auditory report, i.e. the criterion
parameter in signal detection theory (Bayesian correlation; visual: r=-0.06, BF=0.1 8; auditory:
r=0.01 , BF=0.1 7). Each dot is a session. *, **, ***, ****, indicate BF > 3, 1 0, 30, 1 00, respectively; #
is BF<1 /3 and denotes evidence for the absence of an effect.
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Figure 5.8: Inactivating PPC does not affect psychometric parameters in the audiovisual detection
task. (A) Same as Figure 5.7C, but now for PPC inactivation during sessions with four levels of
auditory and visual change (n=9 sessions). (B) We fitted a psychometric two-alternative signal
detection model on control and photostimulation trials of individual sessions separately. Thin lines
show single session fits, thick lines show the median fit. Based on the same data as in A. (C) For each
of the eight model parameters we found no evidence for an effect on fitted parameter value
comparing control and photostimulation trials with a Bayesian paired t-test (n=9 sessions):
Auditory parameters: d', Cohen's d = -0.1 96, BF=0.363; sensitivity: Cohen's d = 0.668, BF=1 .469;
threshold: Cohen's d = -0.534, BF=0.898; criterion: Cohen's d = 0.761 , BF=2.1 08; Visual
parameters: d’: Cohen's d = -0.1 60, BF=0.344; sensitivity: Cohen's d = 0.1 34, BF=0.333; threshold:
Cohen's d = -0.41 9, BF=0.61 7; criterion: Cohen's d = -0.1 54, BF=0.342. For 4 of these parameters
BF was close to (but not below) 1 /3 suggesting evidence of absence of an effect.

Behavioral choice is history-dependent, but this effect is not dependent on posterior
parietal cortex

Previously, PPC was shown to mediate history-dependent effects on behavioral choice
(Akrami et al., 201 8; Hwang et al., 201 7). To investigate this, we constructed a multinomial
logistic regression model that uses information about the current and previous trial to
predict the animal’s choice (3 response options: lick to visual spout, lick to auditory spout
or no lick). To test the contribution of individual sensory and behavioral features, we
constructed ten models with different regressor combinations (Fig. 5.9A). Data was fit on
concatenated sessions of individual animals and model predictions were evaluated on held-
out test data (3-fold cross-validation). Relative to a null model, including sensory history
improved model performance slightly, while including reward history and choice history
had larger effects (Fig. 5.9B). Including information about the sensory stimulus of the
current trial (amount of visual and auditory change) boosted performance significantly,
confirming animals mostly base their choice on the current stimulus.
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Figure 5.9: Behavioral choice is history-dependent, but this effect is not dependent on posterior
parietal cortex. (A) Overview of ten models with different combinations of regressors. A null model
served as a baseline comparison, and models 2-6 included different single predictors, while models
7-1 0 contained multiple predictors. (B) Cross-validated performance (% correctly predicted choices
on held-out test data) for the 8 model variants (without photoinactivation of PPC). Each dot is the
average performance over 3 folds for one animal. Models differed in their predictive performance
(Bayesian Anova, Bayes factor relative to intercept only=5.6x1 032). Models 2-6 all performed better
than the null model (Trial number: Cohen's d: 0.67, BF=41 .92; Sensory history: Cohens' d: 1 .34,
BF=4.1 0; Reward history: Cohen’s d: 1 .27, BF=577.24; Choice history: Cohen’s d: 3.51 , BF=350.1 5;
Sensory evidence: Cohen’s d: 4.25, BF=6,6x1 07). (C) Weights of the different predictors on
probability ratios of licking to auditory and visual spouts relative to no-lick in the full model (Model
8). Errorbars indicate mean ± SEM. *,**,***,*** BF>3, 1 0, 30, 1 00 respectively, # BF<1 /3. (D) The
effect of PPC inactivation on choice behavior was tested in four different ways. First, we compared
model performance with and without including photostimulation as a regressor in the sensory and
motor history model (Model 7 vs 9, Bayesian t-test; Cohen's d = -0.51 9, BF=0.643). Each dot is one
animal. (E) Same as D, but for the full model with and without photostimulation (Model 8 vs 1 0,
Bayesian t-test; Cohen's d = -0.006, BF=0.397). (F) Second, as in (Hwang et al., 201 7) we compared
model performance when training on control trials and testing on control or photostimulation trials
(Bayesian t-test; cross-validated correct trials on control versus opto): Cohen's d = 0.21 7,
BF=0.437). (G) Third, as in (Akrami et al., 201 8) we tested model performance (Model 8) when
training and testing separately on control or photostimulation trials only (Bayesian t-test; cross-
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validated correct trials, control versus opto: Cohen's d = 0.454, BF=0.582). (H) Finally, as in
(Akrami et al., 201 8) we compared the sum of motor and reward weights when training and testing
separately on control or photostimulation trials only (Bayesian t-test; sum of history weights
control vs opto: Cohen's d = -0.21 4, BF=0.436).

We investigated the regressor weights in the full model, with positive auditory or visual
weights indicating a higher probability of licking the auditory or visual lick spout,
respectively, relative to not licking (Fig. 5.9C). Trial number had a small negative weight
on both lick probabilities, in line with growing satiety. The other weights were modality-
specific. Auditory and visual stimuli on the current trial had strong positive weights,
sensory history a slight negative weight, and previous reward a positive weight. The
previous choice had opposite weights suggesting animals repeated their choice.

We next tested the effect of PPC inactivation on history-dependent behavioral choice in
four different ways, but found no evidence for effects of PPC inactivation on how sensory
information of the current trial is used, nor how trial history affects behavior (Fig. 5.9D-H)
(Akrami et al., 201 8; Hwang et al., 201 7). In sum, although we found that behavioral choice
was influenced by reward and choice history (but not sensory history), these history effects
were unchanged by PPC inactivation.

Lastly, we presented a subset of multimodal trials in which both modalities changed
simultaneously, which implies a conflicting situation (i.e., mice could lick either left or
right, based on which sensory modality prevails). In contrast to Song et al. (201 7), who
found that PPC inactivation shifted behavioral choice from auditory to visual report, we
observed no such effect (Figure 5.1 0). Therefore, despite robust encoding of sensory- and
task-related variables well before response onset, we found no causal relevance of PPC in
audiovisual change detection.

Discussion
We tested the hypothesis that PPC is required to arbitrate between sensory modalities in a
change detection task that required mice to segregate and identify sensory modalities.
Training mice on this task led to qualitatively rich and heterogeneous auditory, visual, and
decision-related activity changes in PPC (Figure 5.1 -5.5), which was however not causal to
performing the task (Figure 5.7-5.1 0).
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Figure 5.10: Behavioral choice during audiovisual trials is preserved during PPC inactivation. (A)
As visual and auditory feature changes were associated with rewards at different lick spouts and
thus different motor actions, the modalities acted as competing inputs. A simultaneous change
presents the animal with a conflicting situation (i.e., mice could lick either left or right, based on
which sensory modality prevailed). A reward was given for licking either spout. (B) We tested
whether PPC inactivation specifically affected the auditory or visual choice fraction in conflict
trials; this was not the case (Bayesian t-test, N=1 5 sessions; Auditory choice: Cohen's d=0.21 ,
BF=0.289; Visual choice: Cohen's d = -0.404, BF=0.30). ‘#’ BF<1 /3 and denotes evidence for the
absence of an effect. (C) We found no effect of PPC inactivation on reaction times only during
conflict trials. Auditory choice trials: 253 ms (control), 255 ms (opto), 507 vs 290 trials, Cohen's d
= -0.027, BF=0.01 8. Visual choice trials: 368 ms (control), 390 ms (opto), 284 vs 21 1  trials, Cohen's
d = -0.031 , BF=0.01 8. Boxplots indicate median and interquartile ranges.

Previous studies reported a similar absence of behavioral consequences despite strong
decision-related activity in PPC (Erlich et al., 201 5; Hanks et al., 201 5; Katz et al., 201 6;
Licata et al., 201 7; Raposo et al., 201 4). Our results further reveal a surprising dissociation
between rich representations in PPC (preceding reaction time) and causal involvement in
task performance. This is especially surprising given the dense interconnection of PPC with
both primary sensory cortices (V1  and A1 ) and nearby associative areas such as
anterolateral visual cortex (AL) (Meijer et al., 2020) and premotor areas such as
supplementary motor cortex, which show multisensory task correlates and are causally
involved in task performance (Allen et al., 201 7b; Barthas and Kwan, 201 6; Coen et al.,
2021 ; Erlich et al., 201 5). Therefore, in spite of its uniquely suited anatomical and
functional properties, at the interface between visual and auditory processing and premotor
cortices, PPC is required for neither auditory nor visual change detection. A different result
might have been obtained if visual and auditory had to be integrated. Another possible
explanation, however, is that sensory and decision-related activity in PPC may reflect
secondary processes not directly subserving behavioral decision-making in our task, or
functional processing of an order of complexity that is not required to solve the task, as this
may be solved by lower-order (e.g. subcortical) structures. Interestingly, the large increase
in auditory responses that we reported in trained mice conforms with similar reports in
rodent association cortices (Meijer et al., 2020; Raposo et al., 201 4; Zhong et al., 201 9), but
is different from what has been reported in primates (Cohen, 2009; Grunewald et al., 1 999).
In particular, limited auditory responses have been reported in primate area LIP upon
engagement in an auditory task (Grunewald et al., 1 999). This may indicate different
circuitry for auditory processing in rodent vs. primate PPC, but also the fact that primate
experiments were performed in an area (LIP) that bears no homologue in rodents. The
increase in visual and auditory responses that we observed could result both from extensive
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behavioral training as well as active task engagement, as both were confounded in our
experimental comparison between trained and naïve mice.

Considering the broader literature on rodent PPC, under which task conditions would
parietal circuitry be causally involved? In recent studies, stimuli and context were fixed
while task demands were varied, and PPC - amongst other regions - became necessary only
when evidence accumulation, working memory, or in any case an extension in the time
scale of the task were required (Arlt et al., 2021 ; Harvey et al., 201 2; Pinto et al., 201 9).
Our results fit with this view and suggest that PPC is dispensable for tasks that have fixed
one-to-one sensorimotor mappings (but see Arlt et al. 2021 ). Along these lines, PPC is
thought to participate in a larger cortical network constructing contextual representations
of multimodal inputs. These representations likely serve to maintain information across a
delay (working memory) or across trials (history effects) or integrate information with
previous experience (learning) and are not crucial for the detection of sensory stimuli. An
interesting parallel interpretation of the richness of neural PPC correlates in the absence of
a causal role in audiovisual change detection relates to the involvement of the human PPC
in hemineglect (Driver and Vuilleumier, 2001 ; Kerkhoff, 2001 ; Vallar, 1 998), pointing to a
function of the PPC in generating the multisensory spatial survey that we associate with
consciousness and spatial attention (Pennartz, 201 5; Pennartz et al., 201 9). Intriguingly,
our results shows that PPC displays classical neural correlates of consciousness (Koch et
al., 201 6), without being causally involved in the reportability of sensory stimuli. This
indicates the need to critically evaluate the potential relevance of neuron-level correlates of
sensory detection in the context of consciousness research – but see (Nieder et al., 2020;
Vugt et al., 201 8) for recent studies in which such correlates are interpreted as markers of
consciousness. Overall, based on this functional angle, PPC activity may become
behaviorally relevant when utilization of this contextual information is necessary, for
example in guiding decisions based on unfamiliar sensory stimuli or during learning
(Wander et al., 201 3; Wilber et al., 201 7; Zhong et al., 201 9), as also reported in primary
somatosensory cortex (Hong et al., 201 8) or in a more complex task requiring a
multisensory spatial survey of the subject in its environment.

Another possible interpretation is that choice-related activity in PPC may reflect - at least
to some extent - movement variables (Mimica et al., 201 8; Whitlock et al., 201 2), which are
increasingly reported as affecting widespread cortical circuits in rodents (Musall et al.,
201 9; Salkoff et al., 2020; Stringer et al., 201 9). Indeed, movement variables did explain a
fraction of the variance across the PPC population activity (Figure 5.3D). Alternatively, the
modality identification task tested here may be solved by a distributed network of nodes in
which the PPC participates in a causally redundant manner or that PPC’s role is
redistributed through fast-acting compensatory mechanisms (Mejías and Wang, 2022;
Sigler et al., 2009). The inconsistency between our reported absence of an effect of PPC
inactivation on auditory dominance with Song et al. (201 7) may lie in the fact that we used
instantaneous sensory changes, which do not result in an extended temporal window of
conflicting signals. Finally, a potential concern is that our protocol for optogenetic
inactivation spared a limited functionality of the PPC in its deep layers sufficient for full
task performance (Figure 5.6F). Although viral infection expression encompassed PPC
across the full mediolateral axis of PPC and reached the deepest layers (Figure 5.6A-C), and
we effectively suppressed visual perception using the same experimental approach in V1 ,
we cannot exclude that a portion of PPC might have been spared and might have been
sufficient to prevent behavioral impairment.
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In conclusion, we showed that neuronal responses in mouse PPC during audiovisual change
detection, in spite of being multisensory and anticipating task-related responses, are not
causally related to task performance. This sheds light on the function and architecture of
parietal associative circuits and emphasizes the importance of cautiously interpreting the
causal relevance of neural activity for task performance.
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Table 1: Absolute and shuffled population decoding accuracy

Decoding variable: Trial contrast: Shuffled accuracy:
Auditory presence Auditory trials vs. catch trials 0.603 (0.521 - 0.660)
Visual presence Visual trials vs. catch trials 0.588 (0.51 9 - 0.633)
Modality Auditory vs. visual trials 0.503 (0.503 - 0.507)
Reward (stim-aligned) Rewarded vs. unrewarded trials 0.548 (0.525 - 0.579)
Auditory frequency Post-change frequency AB vs. CD 0.528 (0.497 - 0.584)
Visual orientation Post-change orientation AB vs. CD 0.527 (0.509 - 0.578)

This table reports the absolute decoding accuracy, in contrast to the performance above accuracy on
shuffled trial labels as presented in the main text and Figure 5.4. For each of the decoded variables
(first column), it lists which two sets of trials were contrasted (second column), the median and
interquartile range of the cross-validated classification accuracy on shuffled trial labels (third
column), and accuracy when trained and tested on the true trial labels (fourth column) and to which
panel from Figure 5.4 the analysis corresponds to (fifth and last column). Decoding accuracy is
performed at t=0.25s (time bin extending from 0 to 0.5s).
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Summary of results
This thesis investigated how visual processing is impacted by different contextual factors
across four chapters. Context was defined in a broad sense as modulation by sources
external to visual cortex that convey information other than direct visual input of retinal
origin.

In Chapter 2, we studied how higher visual areas (HVAs) shape activity in primary visual
cortex (V1 ). We found that optogenetic inactivation of two HVAs with different functional
properties similarly affected basic visual response properties of V1  in both awake and
anesthetized conditions. These areas enhanced stimulus responsiveness to moving bars by
more strongly amplifying weaker compared to stronger sensory-evoked responses. This
degraded feature selectivity, but this amplification of responses to stimuli that would
otherwise not induce large responses enables more robust responses to weak visual stimuli.
Feedback from higher-order visual areas thus selectively amplifies weak sensory-evoked
activity in V1  and determines basic properties of visual processing.

In Chapter 3, we investigated whether the function of V1  during perceptual decision
making is dependent on task demands in other modalities. Specifically, we tested whether
V1  functions as a fixed visual processing step or as a node in a network in which the
contribution of V1  might change depending on the task needs. We found pronounced V1
activity changes in a late stage of the V1  response in task settings where vision was task-
relevant. The onset of this late response and reaction times were delayed in task settings
with additional auditory or tactile relevance. Late-onset optogenetic inactivation of V1  only
affected visual detection in multisensory contexts. In other words, although the demand to
report identical visual stimuli was unchanged, the addition of an extra modality prolonged
reaction times and extended the causal involvement of V1 . We interpreted these results as
an indication that the temporal window transforming the same sensory inputs into a
perceptual representation and motor decision requires substantial recurrent interplay
between cortical areas, which depends on multisensory task context.

In Chapter 4, we investigated the nature of sound-evoked activity in visual cortex. Sound-
evoked activity in V1  is thought to reflect auditory sensory inputs to the visual system,
mediated in part through early (subcortical or cortical) auditory pathways to V1 . However,
sounds can evoke body movements that are known to also modulate the visual cortex,
suggesting that previously reported sound-evoked activity in V1  rather reflects secondary
behavioral modulations. To address this controversy, we disentangled auditory-related
from motor-related activity using multi-area recordings, task manipulations,
pharmacological interventions, and optogenetics. Sound-evoked activity consisted of both
auditory and motor components, with distinct spatiotemporal profiles. Short-latency
auditory-related activity originated from auditory cortex and was found in superficial and
deep layers of V1 . However, sounds also evoked rapid orofacial movements accompanied
by distinct motor-related activity distinguishable as early as 60-1 00 ms. These separate
components co-existed in visual cortex in a way that, during conflicting audiovisual inputs,
the ability of visual cortex to represent visual features was preserved and visual orientation
coding stayed intact.

In Chapter 5, we tested the hypothesis that Posterior Parietal Cortex (PPC) is required to
arbitrate between the noisy inputs from the two different modalities and help decide in
which modality a sensory change occurred in our newly developed audiovisual change
detection task. Despite extensive single-neuron and population-level encoding of task-
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relevant visual and auditory stimuli, as well as upcoming behavioral responses, optogenetic
inactivation of PPC did not affect task performance.

Contextual modulation as predictive coding
We found that V1  activity was affected by feedback from higher visual areas (Chapter 2),
auditory signals (Chapter 4), and orofacial movements (Chapter 3-4). How can this
diversity of non-visual signals in V1  be interpreted in a unified way of how vision works?
One candidate framework is that of predictive coding. This broad theory states that what
we directly perceive are not the direct sensory inputs, but rather the inferred cause of the
sensory data; in other words, we perceive that what we infer to have most likely caused the
specific pattern of inputs across the senses (Gregory, 1 980; Helmholtz, 1 867; Lee and
Mumford, 2003). How these inferred causes relate to external signals constitutes an
internal model. This model serves to efficiently interpret new sensory inputs, as well as
continuously generate predictions of the world and body in space or time. One can both
infer and learn the internal representations using deviations from what was predicted, what
is referred to as prediction errors.

Amongst the many proposed advantages of such a coding scheme is its efficiency. For
instance, the visual domain is full of strong spatial and temporal correlations. Patterns in
natural scenes are often predictable across space (e.g. the horizon from left to right) and
time (remaining roughly the same from one moment to the next). An occluded part of a tree
can be predicted based on the rest of the tree, and the future trajectory of a bird from its
past flight. Much of visual input can therefore be explained by nearby visual inputs (spatial
predictions) or past inputs (temporal predictions). A processing strategy based on
removing these redundancies has been argued to be highly efficient, given that one needs
to only process the errors rather than the full image. A further extension involves not only
using current spatial and temporal correlations, but also predictions based on prior
experience (Attneave, 1 954; Barlow, 1 961 ; Knill and Richards, 1 996; Lewicki, 2002;
Mumford, 1 992; Olshausen and Field, 1 997; Srinivasan et al., 1 982). Under this view, the
main function of the visual cortex is to learn and maintain an internal model of the visual
world, and visually evoked activity mainly corresponds to the processing of unexpected
changes in the visual environment to guide updating of the internal model. In addition to
processing the errors, predictive representations also have to be maintained that track
current states (Keller and Mrsic-Flogel, 201 8; Pennartz et al., 201 9; Spratling, 201 7). How
is the myriad of context-dependent inputs to V1  to be interpreted within this framework?

Higher-order feedback - First, feedback from higher to lower areas plays an
essential role in most hierarchical network implementations of predictive coding. How
feedback projections could contribute to encoding images has been explored in a seminal
modeling framework (Rao and Ballard, 1 999). In their 2-layer neural network sensory
inputs from an input layer were used by a higher layer to generate a predictive
representation of the actual sensory input. The predictive representation is fed back to the
input layer via recurrent projections and updating this network explained extraclassical
receptive field properties like end-stopping and contextual modulations (Rao and Ballard,
1 999). In the mouse visual cortex, feedback connections have been shown to provide
contextual modulation to V1  neurons of relevant features outside their receptive field
(Keller et al., 2020a; Kirchberger et al., 2021 ). Especially L2/3 neurons show diminished
responses if their input is highly predictable from the surround and the suppression of
predictable responses is mediated by the VIP disinhibitory circuit (Keller et al., 2020a). In
the experiments presented in Chapter 2, we used a single bar moving across the visual field.
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From the past trajectory, future visual input can be predicted for V1  neurons that represent
spatial locations just ahead of the bar. HVAs, with their larger receptive fields and longer
timescales of activity (Runyan et al., 201 7; Siegle et al., 2021 ), are poised to convey these
predictions to V1 . Our finding that HVA inactivation selectivity affected V1  responses as
the predictable moving bar is about to enter the receptive field (Fig. 2.3) is in line with a
specific role for HVAs in modulating V1  based on input predictability. A circuit
implementation would involve HVA projections to V1  neurons (possibly through
interneurons) that represent retinotopic locations spatially ahead of the direction of the
bar. This interpretation is inconsistent however with an earlier study that found that HVA
feedback preferentially targets V1  neurons that represent the part of visual space that is
actually slightly behind what the higher-order neurons have information about (Marques
et al., 201 8). This inconsistency might result from our silencing not just HVA to V1
feedback but rather the whole area, and leaves open other circuit implementations of
predictive processing. Namely, whether and how hierarchical networks use predictive
computations critically depends on the supposed circuit implementation of the algorithm
(Keller and Mrsic-Flogel, 201 8; Pennartz et al., 201 9; Teufel and Fletcher, 2020). For
example, a different conceptual interpretation would arise in a predictive circuit model
where representations are propagated forward and the errors are propagated backward
(Heeger, 201 7).

Audition - Auditory signals in the visual cortex have been explained within the PC
framework as well. Just as visual scenes are full of spatial and temporal correlations, so are
correlations between auditory and visual signals abundant. Learning the structure of these
relationships allows one to predict signals from one domain to the other. The sight of a dog
opening his jaws is associated with hearing barking sounds, and the sound of an overhead
helicopter predicts seeing one. Here, ‘prediction’ can be understood in a temporal sense
(stimulus X predicts what will happen next) or may as well pertain to ‘predicting the
present’ (stimulus X at time t influences the perception of another stimulus Y at or around
time t). One main function of auditory-to-visual inputs might then be to facilitate visual
inference based on past audiovisual experience. Indeed, audio-visual experience can cause
neuron-specific reconfigurations in V1 (Knöpfel et al., 201 9). Furthermore, after repeated
sequential presentation of the same auditory and visual stimulus pair, the responses of V1
neurons to the same visual stimulus can be reduced by the auditory stimulus (the prediction
error is smaller because the visual stimulus is expected based on the preceding sound)
(Garner and Keller, 2022). Auditory stimuli have further been reported to improve visual
feature representation (Ibrahim et al., 201 6; Williams et al., 2021 ). These auditory
modulations are therefore interpreted to facilitate cue inference in classic multisensory
integration frameworks (which can be reformulated as a case of predictive inference
without strong priors). In Chapter 4, however, we reported low-latency auditory signals in
V1  not only in naive animals, but also in animals trained to segregate rather than integrate
audiovisual inputs. These signals (jointly with motor-related activity) did not boost or
degrade visual orientation coding (Fig. 4.6), but evoked spiking in a separate set of V1
neurons that were not visually driven (Fig. 4.3e). Our results suggest that auditory inputs
do not merely serve immediate inference of present visual features, moving beyond tuning
curve modulations. Rather, they might act - also in contexts without immediate inference -
as an early predictor (present earlier than visual stimuli, Fig. 4.3b), enabling V1  to generate
a prediction about what we will see, or are currently seeing.

Motor movement – In the predictive coding framework, body movement signals in
sensory areas are readily explained. Movement complicates even the most basic sensory
inference that would be trivial for a stationary observer. For example, during vision, head
and eye movements transform the image of a static visual scene into a complicated and
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dynamic retinal input that depends on the precise gaze and eye movements. Determining
features of a stationary input, such as the orientation, suddenly becomes nontrivial.
Distinguishing self-generated stimulation (‘reafference’) from stimulation driven by the
outside world (‘exafference’) is therefore fundamentally ambiguous and can only be
resolved using internal signals about self-generated motor commands (termed efference
copy or corollary discharge) (Crapse and Sommer, 2008; Cullen, 201 9; Schneider and
Mooney, 201 8; Schneider et al., 201 4; Sommer and Wurtz, 2008). Accurate visual inference
about the external environment necessitates corrective computations using these predicted
sensory consequences of motor commands.

We found that in task-trained animals (UST and MST cohorts; Ch. 3), correct
reports but also false alarms were associated with a large increase in activity in a significant
fraction of V1  neurons. Regression modeling and carefully observing body movements
showed that activity during visual, but also auditory trials partly related to motor activity
(Ch. 3-5). This increase in activity was also seen in PPC (Fig. 5.2 and 5.3), and to a lesser
extent in auditory cortex (AC) (Fig. 4.3). Moreover, this brain-wide distributed activity was
observed to a lesser extent in naive animals. These results align with a series of recent
studies that show a distributed coding of goal-directed movements in trained animals and
coding of ongoing movements and behavioral variables in naive animals (Allen et al.,
201 7b; Musall et al., 201 9; Salkoff et al., 2020; Stringer et al., 201 9). Surprisingly, in our
data as well as in the cited studies the variability of V1  firing activity explained by these
orofacial movements was comparable to or exceeded that explained by visual input (Fig.
4.3d). One interpretation of such pervasive motor signals is that perceptual inference
throughout cortical sensory systems fundamentally relies on access to, correcting for
and/or canceling self-generated movements (Kaplan and Zimmer, 2020; McCormick et al.,
2020). Indeed, locomotion is accompanied by frontal-to-V1  signals conveying predicted
visual flow and V1  L2/3 neurons incorporate these predictions and predominantly signal
deviations from expected visual flow (Attinger et al., 201 7; Fiser et al., 201 6; Keller et al.,
201 2; Leinweber et al., 201 7). Furthermore, V1  neurons are tuned to specific head and eye
movements depending on ambient light, i.e. depending on whether visual changes are
expected (Bouvier et al., 2020; Guitchounts et al., 2020). Motor-related activity in sensory
areas can thus be interpreted as sensory-predictive signals.

Perceptual outcome - The hit-related activity that we observed was also partly
explained by trial outcome (Fig. 3.2c). In our behavioral task, as well as many other tasks
used in the field, hit trials are associated with stimulus perception, reward expectancy,
movements related to the report and consumption of the reward, and increases in arousal.
As highlighted in the introduction as well, in well-trained animals these signals are tightly
correlated and hard to isolate. In our task, predictive representations need to be
constructed from the different sensory inputs of future rewards and associated actions. The
late report-related activity we report can therefore be interpreted in this context as the
result of recurrent interactions between the visual cortex and downstream decision-making
circuits in constructing such predictive representations going beyond a pure motor-related
interpretation. The relevance of these predictive representations and what is predicted
(reward or not) depends on task engagement and task context (whether visual stimuli are
associated with rewarded actions and the existence of alternative auditory-informed
actions). Alternative interpretations of the relevance of brain-wide multidimensional
behavioral signals therefore include distributed associational learning, context-dependent
sensory processing, or distributed motor command generation (Crochet et al., 201 8; Engel
et al., 201 5; Kaplan and Zimmer, 2020; Wang et al., 201 8).

Synthesis – How vision is affected by higher-order feedback, audition, perceptual
outcome, and movement can in principle all be framed in the PC framework, where sensory
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cortical hierarchies attempt to build a stable representation of the outside world. In our
experiments, the central tenet that errors between predictions and sensory data are used to
update internal representation was not specifically addressed. However, the machinery to
support vision using signals from a wide variety of contextual sources is clearly there. It
might be an interesting question for future research whether three types of signals (HVA
feedback, auditory, and motor signals) engage the same predictive coding circuit in V1 . In
other words, under specific circumstances, contextual visual signals, auditory signals, and
movements might predict the same visual input (for example oriented visual flow at some
retinotopic location (Zmarz and Keller, 201 6)) and this could be tested by intersecting
methodological approaches to control visual predictions by sounds (Garner and Keller,
2022), visual context (Fiser et al., 201 6; Keller et al., 2020a) and movement (Keller et al.,
201 2). A unifying predictive coding account of the visual cortical system would predict that
the fundamental error computations are the same (irrespective of the source of the
prediction) and thus would involve the same neuronal network, for example through the
same negative and positive prediction error neurons (Jordan and Keller, 2020) and VIP
disinhibitory circuits (Keller et al., 2020a).

Laminar organization of visual cortex modulation
Although we did not investigate error coding throughout our experiments, we did
consistently sample activity across layers of V1  (Figure 1 .5c). We can therefore compare
the laminar organization of contextual modulation of V1  processing. According to the
canonical microcircuit of the sensory cortex (Douglas and Martin, 2004; Harris and
Shepherd, 201 5), visual information from the dLGN mainly arrives in L4, propagates to
L2/3 after which the strongest reciprocal connections are with L5. Layer 5 neurons
constitute the main output of the cortex through local and long-range projections, with
intracortical projections from L5a and subcortical projections from L5b. Layer 6 consists
of pyramidal cells that primarily send feedback to the thalamus.
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Figure 6.1: Laminar organization of contextual modulation in V1. Left: Visual input arrives mostly
in L4 from dLGN and is subsequently processed in L2/3 and L5/6. Right: Throughout the thesis, the
laminar organization of contextual modulation was identified by pinpointing the spiking activity
related to the various factors of interest. Arrows denote hotspots of somatic spiking, not the location
of anatomical projections. Note that perceptual outcome and motor modulation are difficult to
disentangle and overlap in time. Based on figures: 2.7d-f (HVA feedback), 3.2f, 3.4c (Perceptual
outcome), 4.4a-b (Motor modulation and Auditory signals).

We aligned the cortical depth of our V1  recordings using the laminar profile of the local
field potential and the multi-unit activity (Fig. 2.7a; 3.2b; Supplementary Figure 4.6). Our
multi-unit activity profile was consistent with previous reports with highest power in L5
due to its neurons with large somata and high discharge rates (Senzai et al., 201 9). Also our
current source density profiles were in line with earlier reports and were consistent with
this propagation of visual information. The earliest current sink was visible in L4 and
prominent sink-source pairs in L2/3 and L5/6 (Niell and Stryker, 2008; Schnabel et al.,
201 8; Senzai et al., 201 9). This was also the case when analyzing at which timepoints
neurons at which depth encoded visual information. The earliest visual encoding appeared
in granular and supragranular layers and later in infragranular layers (Fig. 3.4 and Fig.
4.4).

We compared this spatiotemporal profile of visual coding to auditory coding and found that
auditory-related activity was present in supragranular and especially infragranular layers
(Fig. 4.4). Motor-related activity, on the other hand, was most prominent in supragranular
layers, but also infragranular layers (Fig. 4.4). The report-related activity that we analyzed
in Chapter 3, capturing visual hit/miss differences (including perceptual outcome as well
as motor-related activity) was most prominent in supragranular and especially
infragranular layers (Fig. 3.4), again avoiding the granular layer. We found that the
inactivation of HVAs similarly affected all layers of V1  (Fig. 2.7).

Our results regarding the laminar specificity of contextual modulation can thus be
summarized as in Figure 6.1  where the canonical visual information flow is represented
alongside hotspots of modulations by sounds, perceptual outcome and motor activity, and
feedback from HVAs. Even though anatomical connectivity and top-down modulation from
higher visual areas (HVAs) are layer-specific (Harris et al., 201 9; Keller et al., 2020b; Young
et al., 2021 ), HVA feedback affected V1  activity throughout the layers. In general, however,
contextual modulation was most prominent in extragranular layers. This is consistent with
the idea that L4 is mostly driven by feedforward projections from dLGN, while infra- and
supragranular layers contextualize and associate input through horizontal and feedback
connections (Shen et al., 2020).

It is important to note that the depth of contextual modulation of spiking activity does not
have to match anatomical projections. Indeed, nearly all neurons extend their dendrites to
other layers with especially L5 pyramidal neurons sampling many layers and branching
extensively in Layer 1 . We found anatomical projections from auditory cortex to V1  in L1
and L5/6 (Fig. 4.1 4). This matched earlier reports of A1 -V1  connectivity (Ibrahim et al.,
201 6; Rockland and Ojima, 2003), as well as that of feedback projections to V1  coming
from higher visual areas (Young et al., 2021 ) and prefrontal cortex (Zhang et al., 201 4)
(Figure 6.2). The similarity of these laminar profiles suggests different cortical regions
might recruit similar mechanisms to modulate V1  processing. For example, L1  neurons in
V1  respond to movement signals as well as auditory noise bursts and sharpen visual
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orientation tuning by a disinhibitory effect (Ibrahim et al., 201 6; Mesik et al., 201 9). A
particular subset of L1  interneurons (NDNF-positive) has also been shown to modulate the
gain of the cortical column upon fluctuations in arousal by acting on pyramidal apical
dendrites and through other interneurons (Cohen-Kashi Malina et al., 2021 ). Also L6 has
been shown to modulate the gain of visually-evoked responses either through feedback
projections to the thalamus or through intracortical projections to other layers (Olsen et
al., 201 2). Furthermore, L6 acts as a site where head motion signals are integrated with
visual signals (Vélez-Fort et al., 201 8). Both L1  and L6 and perhaps to a lesser extent L2/3
and L5 can thus be seen as nodes through which convergent inputs from several brain areas
can regulate the earliest steps of cortical visual processing (Harris and Shepherd, 201 5;
Schuman et al., 2021 ). Middle L4 is thus wrapped in a ‘contextual sandwich’ by superficial
and deep layers.

Figure 6.2: Projections from distinct sources of horizontal andtop-down inputs to V1 have a similar
laminar distribution of axons. a) HVA feedback to V1 . Anterogradely labeled feedback axons from
area lateromedial to V1 . Adapted from Young et al. (2021 ). b) Frontal top-down projections to V1 .
Fluorescence image in V1 of anterograde tracing from cingulate cortex. Adapted from Zhang et al.
(201 4). c) Auditory cortex projections to V1 . Reproduced from Fig. 4.1 4 (this thesis). Scale bars are
all 200 μm.

It is worth emphasizing that feedforward and feedback (horizontal or top-down)
communication are not temporally distinct or independent. In mouse visual cortex,
feedforward and feedback projections are stronger on L5/6 neurons that project back to
the source area (looped connectivity), suggesting a tight link between bottom-up and top-
down information streams (Young et al., 2021 ). In primates, simultaneous recordings in
V1 , V2, and V4 have revealed that the integration of features across visual space depends
on simultaneous and synergistic processing across areas (Chen et al., 201 4, 201 7; Liang et
al., 201 7).

Besides information about recording depth, our extracellular recordings allowed us to
identify putative cell types based on the waveform (Figure 1 .5b). We used this to verify our
optogenetic strategy of driving narrow-spiking parvalbumin (PV)-expressing interneurons
(Fig. 2.1  and 5.1 1 ). PV-interneurons are key regulators of rhythmic activity, most
prominently gamma oscillations, and control the window of excitability of nearby
pyramidal neurons (Bosman et al., 201 4; Cardin et al., 2009; Sohal et al., 2009). When
analyzing the responses of both broad- and narrow-spiking cell classes we found similar
visually-evoked as well as report-related dynamics (Fig. 3.2) and similar effects of HVA
inactivation (Fig. 2.7). Although we did not characterize tuning in detail, these results are
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consistent with the findings that narrow-spiking cells are strongly recurrently connected to
nearby excitatory neurons and play a main role in balancing excitation levels to prevent
runaway excitation or suppression (Ahmadian et al., 201 3; Ferguson and Cardin, 2020;
Kim et al., 201 8; Tsodyks et al., 1 997; Xue et al., 201 4).

It is clear that understanding the role of inhibitory neuron types is crucial to an
understanding of cortical computation. For example, the differential circuit underlying the
comparison of predicted and actual visual input in predictive coding is thought to involve
specific inhibitory interneurons. For instance, the difference between excitatory inputs
reflecting actual sensory input and inhibitory inputs (through VIP or SOM-expressing
interneurons) reflecting movement-predicted input, could lead to neurons representing
deviations from expected states (Attinger et al., 201 7; Keller and Mrsic-Flogel, 201 8).
Although efforts have been made to differentiate more neuron types using extracellular
recordings (Trainito et al., 201 9; Vinck et al., 201 5b), genetic approaches have proven
incredibly powerful in approaching these issues.

Local versus distributed computation
Throughout our experiments, we recorded neuronal activity from a diverse set of cortical
areas. Even though neural responses differed between areas, there was also substantial
overlap (or redundancy). In Chapter 2 we recorded neuronal activity from V1  and two
HVAs that were previously shown to differ most among all HVAs in their tuning to visual
input: PM and AL (Andermann et al., 201 1 ; Marshel et al., 201 1 ). Although these areas
show functional specialization in terms of preferred spatial and temporal frequencies of
visual input, many characteristics also indicated substantial overlap. We recapitulated with
extracellular recordings the earlier finding that PM and AL indeed show different tuning
properties, while at the same time including neurons that prefer slow as well as fast stimuli
(Fig. 2.1 j). Moreover, silencing PM or AL produced qualitatively similar effects on V1
despite this tuning dissimilarity. Likewise, in multisensory trained animals (Chapters 3, 4,
and 5), we found that neurons throughout the auditory, visual, and posterior parietal cortex
(as well as medial prefrontal cortex; data not shown, manuscript in preparation), were
modulated by vision, audition, and behavioral report (with the exception of visual coding
in auditory cortex, which was strikingly absent). With variable coding distributed across
recorded cortical areas, the question arises whether these areas are all doing something
different or whether they collectively contribute to similar processes by processing
information in a distributed fashion.

First, our findings are in line with comprehensive surveys of brain-wide activity that show
that task-stimuli never evoke activity in single areas and that especially goal-directed action
is associated with widespread activity changes (Allen et al., 201 7b; Kauvar et al., 2020;
Musall et al., 201 9; Salkoff et al., 2020; Steinmetz et al., 201 9). The fraction of neurons
encoding these variables was different per region, suggesting functional gradients exist
across the brain rather than homogeneous responses in individual areas (Tseng et al.,
2022).

Most areas are connected in the mouse brain (Oh et al., 201 4). Single neurons project
routinely to multiple different target areas (Han et al., 201 8) and these neurons form
segregated subnetworks (Glickfeld et al., 201 3a; Kim et al., 201 8). The fact that there are
very specific projections between areas and these form functional loops suggests that
functional networks can exist that can form tight links, perhaps even functionally stronger
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than within-area connectivity (Chen et al., 201 3; Condylis et al., 2020; Mao et al., 201 1 ;
Petreanu et al., 2009; Young et al., 2021 ).
One interpretation that follows from the presence of such distributed signals is that
computation is distributed (Christophel et al., 201 7; Mejías and Wang, 2022; Thorpe,
1 989). Instead of a set of local neurons performing computations, neurons across many
areas form the functional substrate underlying a given behavior or task. An alternative
interpretation is that areas and/or local circuits are strongly functionally specialized and
that distributed signals provide the contextual information necessary for those local circuits
to perform their relevant computations. This interpretation fits better with our reported
dissociation between neural correlates and functional contributions to task performance.
In spite of widespread visual, auditory, and report-related activity, visual detection was
only affected by V1  inactivation (Chapter 3) and auditory detection only by auditory cortex
inactivation (Chapter 4) and task-related activity in PPC was redundant to both visual and
auditory task performance (Chapter 5). Although somewhat antagonistic, both
interpretations suggest that information propagates through a densely connected network
and it is not at all trivial to uncover which local signals or neuronal interactions within or
between areas are involved in the relevant computations.

Task-dependent network reconfigurations
Several conclusions in this thesis were the result of monitoring and perturbing the same
circuitry while varying behavioral relevance and task requirements. First, the causal
involvement of V1  was extended in the multisensory task context relative to unisensory
trained mice (Chapter 3) and this conclusion would not have been reached without either
causal interventions or varying task context. Second, varying behavioral relevance across
mice led to different amounts of instructed orofacial movements (licking) for each
modality, which allowed to dissociate motor and auditory origins of sound-evoked activity
across multisensory task context (Chapter 4). Third, this approach revealed that the
response magnitude of PPC neurons to visual and auditory stimuli during audiovisual
change detection was enhanced in trained versus naive mice, even though this was not
associated with an acquired causal role in the task (Chapter 5).

These results emphasize the powerful insights that might be obtained by contrasting neural
circuit functioning between contexts that differ in task demands and associated required
strategy. A study by Pinto et al. (201 9) similarly reported that increasing task demands by
introducing evidence accumulation or working memory in a virtual navigation task
(keeping roughly similar visual cues) increased the importance and task-related activity in
various dorsal cortical areas such as parietal cortex. This approach might be further guided
and constrained by computational theory and statistical models of task-performing neural
circuits (Linderman and Gershman, 201 7; Maheswaranathan et al., 201 8). For example,
modeling of recurrent neural networks trained to produce required behavioral outputs as
in a perceptual decision making task allows in silico perturbations to test the causal role of
specific parts of the circuitry in such a task (Pinto et al., 201 9; Yang et al., 201 9).

Nevertheless, we only varied behavioral context between animals, and not within. It would
be interesting for future experiments to tease out whether task-dependent reconfigurations
are the result of extensive behavioral training or can depend on the immediate task context.
In a detection task in which the likelihood of tactile and visual stimuli was varied across
sessions, rats responded faster to the same stimuli in high-likelihood sessions, suggesting
reprioritization across modalities (Lee et al., 201 6). This was shown to be even possible on
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a trial-by-trial basis if the relevant modality was cued (Wimmer et al., 201 5). In Chapter 3
we report the effect of adding another relevant modality on the duration of involvement of
V1  between cohorts of mice. Possibly V1  involvement could dynamically vary based on
whether - in a given trial - also other modalities need to be monitored. Alternatively,
extended training on multiple modalities shapes the way V1  and the rest of the circuitry
solve the task, and training history determines circuit implementation (Arlt et al., 2021 ). A
further avenue is to consider potential variability in strategies between animals (Waskom
et al., 201 9). In an auditory and tactile short-term memory task, mice displayed different
strategies to solve the task. These strategies were associated with different patterns of
neural activity as well as causal involvement across dorsal cortical areas (Gallero-Salas et
al., 2021 ; Gilad et al., 201 8).

Similarly, we employed acute recordings and sampled different neurons in each session. It
would be interesting to track the course of neuronal activity across days to identify the
plastic changes underlying the differential network configurations underlying our task-
dependent differences. Tracking the activity of the same neuronal populations either with
implanted electrodes or with chronic calcium imaging (Andermann et al., 201 0; Kim et al.,
201 6), has shown that during learning of a perceptual task the selectivity of neurons
changes (Poort et al., 201 5) and noise correlations between neurons decrease (Najafi et al.,
2020; Ni et al., 201 8), both resulting in improved representations of rewarded stimuli
(Goltstein et al., 201 3, 201 8).

Circuit causally underlying audiovisual change detection
We reported a stark contrast between the presence of distributed sensory and report-
related information and direct functional contribution to auditory and visual change
detection. We found that optogenetic inactivations of V1  impaired visual change detection
and muscimol inactivations of auditory cortex impaired auditory change detection
(Chapters 3 and 4). Classically, higher-order regions such as the parietal cortex have been
considered the main regions of interest to perform multisensory processing and decision
making (Hanks et al., 201 5; Raposo et al., 201 4; Stein and Stanford, 2008; Wallace et al.,
2004). In our experiments, this is a region that is surprisingly not involved in task
performance, or at least to be redundant relative to other circuits. Can we pinpoint the
circuitry required to solve the task?

Auditory and visual signals may bypass PPC and propagate from primary sensory areas to
more frontal areas or other areas directly, instructing behavioral output. Alternatively,
these signals could propagate via more lateral higher-order areas in between the primary
visual and auditory cortex, such as the anterolateral area (AL) (Meijer et al., 2020; Oh et
al., 201 4; Wang et al., 201 1 ; Zingg et al., 201 4). It is further possible that fast network
reconfigurations compensate for the local loss of function and recruit redundant cortical
pathways. However, it is even more likely that subcortical areas, not emphasized in this
corticocentric thesis, play an important role. First, multisensory interactions are abundant
in subcortical circuits such as the thalamus (Allen et al., 201 7a; Bieler et al., 201 8) and
superior colliculus (Meredith and Stein, 1 986; Stein and Stanford, 2008). In line with this,
optogenetic silencing of V1  did not affect the detection of high-contrast contralateral visual
stimuli during visuotactile side detection (Fig. 3.6), suggesting subcortical visual circuits,
such as the superior colliculus, might be sufficient to perform visual detection and orienting
tasks (Krauzlis et al., 201 3, 201 8; Wang et al., 2020). Incomplete V1  inactivation might
also explain these results. Cortical projections that bypass parietofrontal areas and go
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directly to the relevant parts of the striatum can also drive sensory-based decisions
(Znamenskiy and Zador, 201 3). Recent technological developments have generated a
scaling up in the number of simultaneously probed neurons and areas that is promising to
allow a less restrictive focus on a subset of areas and in principle design less biased
experiments. These approaches have pointed to relatively unknown subcortical areas, such
as the zona incerta, that display surprising selectivity for choice, but not action, during
visual decision making (Steinmetz et al., 201 9).

‘Grounding’ neural activity
I would also like to explicate some of the implicit frameworks that underlie much of current
systems neuroscience, as well as the studies and analyses presented in this thesis. As is
routinely done in sensory neuroscience experiments, we varied sensory variables along
prespecified dimensions (grating orientation or tone frequency) and search in the brain for
those activity patterns that correlate with chosen variables. We average the spiking rate in
an experimenter-defined time window across subsets of trials throughout a session.
Neurons that correlate with these experimental variables are said to ‘encode’ these
properties. However, the brain has no access to any of these variables: it merely processes
spikes. This issue has often been expressed by various researchers (Buzsáki, 201 9; Gregory,
1 980; Helmholtz, 1 867; Pennartz, 201 5, 2009), and quickly forgotten or disregarded upon
analyzing neural data.

However, for the brain to know that activity increments or decrements relate to specific
external variables, additional context or a cipher is necessary. In many studies, the problem
that some variable that is encoded must also be deciphered is relegated elsewhere and
routinely solved by postulating the existence of downstream ‘decoding’ neurons; this poses
the question of whether there are separate encoding and decoding neurons or distinct
decoding parts of the brain (Brette, 201 9). This problem is more generally called the
‘grounding problem’: how do neural circuits figure out what their activity relates to in the
external world (Harnad, 1 990). Several researchers have offered different solutions, such
as differentiating/grounding signals through the relational properties of their input
statistics within, but importantly also across, the sensory modalities (Pennartz, 201 5,
2009). Others emphasize the need for action-based feedback interactions and the need to
ground sensory inputs by exploring movement-induced sensory consequences (Buzsáki,
201 9; Chemero, 2009; Clark, 201 3; Friston, 201 0).

Importantly, these viewpoints emphasize the need to understand how neural activity is
used and makes sense within the brain and what is available locally. For example, in
Chapter 3 we reported auditory responses in V1  neurons: how do these neurons ‘know’ that
they are representing auditory features? In Pennartz et al. (2009), this is posited as a
distinct problem at the level of the different senses, i.e. the modality identification problem.
How come visually-induced spiking activity has a qualitatively different character from
auditory-induced activity, even though both consist of a pattern of spikes distributed across
neurons? At the level of sensory modalities, one might propose that crossmodal
interactions between the senses are necessary to differentiate and calibrate the modally
distinct activity patterns (Pennartz, 2009). This identification problem holds however for
all features and submodalities: what grounds the activity of V1  neurons as relating to
certain oriented contrasts in the external world and not others? To avoid regression into
needing ‘identification machinery’ for each neuron, one natural avenue is to search for a
higher-order mechanism that arises through the collective interaction of distributed
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neurons (Pennartz, 201 5). Others pose that the causal structure between elements
(neurons) determines the qualitative nature of the experience (Tononi et al., 201 6).

One analytical approach to come closer to this problem is to take the brain’s perspective
when analyzing data. Making sense of physiological data without any knowledge of
experimental variables appears as a profound analytical challenge, but that is the situation
neural circuits are in, trapped inside a skull. For example, we might revisit and extend our
interpretation of the results in Chapter 5 as follows. In this chapter, we observed single
neuron and population ‘coding’ of visual, auditory, and hit/miss variables (using the
experimental knowledge about the trials in the task). However, optogenetic inactivation did
not affect task performance. We concluded that it is important to search for those activity
patterns that directly and causally inform perceptual decision making (cf. Panzeri et al.,
201 7; Ritchie et al., 201 6). A further specification is to search for activity that is task-
informative and makes sense to the rest of the neural circuit given its current state (and not
only to the experimenter). What are the learning rules or circuit motifs that allow activity
to acquire meaning intrinsic to the system? This analytical exercise seems more tractable
when taking brain development into account and with more complete circuit data than a
subset of V1  neurons. Investigating these questions will rely on (i) developing methods and
experimental approaches that take the brain’s perspective and thus have access to local and
ongoing neuronal dynamics, without knowledge of external experimental variables (cf.
Mayner et al., 2022), as well as (ii) developing causal perturbations that interrogate the
circuit in a closed-loop manner and induce physiologically meaningful activity patterns
(Jazayeri and Afraz, 201 7). This approach might help in starting to understand how the
brain makes inferences and constructs representations that are meaningful within the
brain.

Methodological limitations
Despite the power of head-fixed experiments with controlled sensory stimuli, we should
note limitations of this approach. To study the mechanistic underpinnings of how
responses of single neurons in visual and auditory cortex encode sensory features and how
this processing is flexibly modulated, we used simple gratings and static harmonic tones.
These low-dimensional stimuli are optimized to elicit predictable and well-described
activity in their respective cortices as neurons in the visual cortex are tuned to oriented
edges (Hubel and Wiesel, 1 979; Marr and Hildreth, 1 980), while auditory cortical neurons
are tuned to frequency-specific on- and offsets (Chong et al., 2020; Issa et al., 201 4; Scholl
et al., 201 0). Especially in combination with head-fixed conditions with two-alternative
response options, this allowed us to tightly control the sensory inputs and dissociate
feature-specific processing (stimulus A or B), from signaling the stimulus presence and
modality (visual, auditory, or no stimulus) and behavioral variables (Chapter 3, 4, and 5).
Furthermore, this made the task cortex-dependent as V1  was necessary for visual
performance (Chapter 3) and AC for auditory performance (Chapter 4).

Despite these clear advantages, combining low-dimensional cortex-optimized stimuli with
low-dimensional behavioral output under head-fixed conditions also raises problems. This
concern has been voiced in various ways (Juavinett et al., 201 8; Kaplan and Zimmer, 2020;
Krakauer et al., 201 7), but I would like to discuss two points particularly relevant to the
current thesis. First, head-fixation is quite an unnatural condition. Under head-fixed
conditions, contractions of the head and body muscles cease to evoke their normal expected
changes in sensory inputs, disrupting the continuity of normal sensorimotor loops. We
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found striking neural activity patterns that were to a considerable extent explained by
motor variables in V1  as well as PPC (Chapters 3, 4, and 5). A fuller interpretation of our
results will benefit from further research on the role of these widespread motor correlates
(see also above); what is their role in freely moving contexts and consequently, and what
are the functional consequences of partially discontinued sensorimotor functioning under
head fixation (Parker et al., 2020)? The importance of sensorimotor interactions with the
world is evident in naturalistic behavioral paradigms, either freely moving or through head-
fixed virtual reality, and these are associated with much faster learning rates compared to
two-alternative stimulus-response paradigms (Havenith et al., 201 8; Rosenberg et al.,
2021 ). Developments in the application of machine learning techniques to quantify animal
behavior in videos will aid in a more detailed characterization of animal movements with
high precision and a better understanding of the animal’s strategy (Kabra et al., 201 3;
Mathis et al., 201 8; Robie et al., 201 7).

Second, in the multisensory version of our behavioral task (MST), we required animals to
discriminate the modalities and respond oppositely to visual and auditory changes. This
specific perceptual task – the grouping of non-naturalistic stimuli according to their
modality – does not directly map onto ecological behaviors (e.g. always take a left at an
intersection if you see something, but go right if you hear something). Therefore, we should
take extra caution in how such settings lead to insights into brain functioning that
generalize to more ecological settings and humans. Of course, humans can readily report
the modality of presented stimuli and this seems inextricably linked to the perception of
these stimuli (Lehman, 1 982; Overgaard et al., 201 3). It is only after recall that they
sometimes turn out to have forgotten if they heard or saw something (Lehman, 1 982).
Overall, however, this behavioral paradigm is an important step towards a broader view of
multisensory processing beyond cue integration (Meijer et al., 201 9).

Translation to humans
How do these results improve our understanding of all brains, including those of humans?
First, it is important to question to what extent primary visual cortex in mice corresponds
to primate V1 . We report striking non-visual signals already in primary visual cortex.
Whether this is specific to mice or also holds for primate V1  is unclear. Classic work in
primates suggests that auditory signals do indeed affect activity in early visual cortices, but
report only modulatory effects, rather than evoking responses by themselves (Lakatos et
al., 2009; Molholm et al., 2002; Petro et al., 201 7; Senkowski et al., 201 1 ; Wang et al., 2008)
- but see (Brang et al., 2022). We further report motor-related activity in V1 . It is known
that the primate visual cortex is modulated by eye movements (Supèr et al., 2004; Wurtz,
1 968), but whether the same degree of sensorimotor integration is present with body
movements affecting a large fraction of V1  neurons, is yet unclear (Busse et al., 201 7;
Froudarakis et al., 201 9).

However, similar to mice, humans use vision in very flexible ways and it is very clear that
human vision ought to be and is strongly influenced by context. Human vision is similarly
affected by the discussed contextual factors as evidenced by the many multisensory
illusions (Mcgurk and Macdonald, 1 976; Sekuler et al., 1 997; Shams et al., 2000),
attentional task effects (Simons and Chabris, 1 999) and movement effects (Simons and
Levin, 1 997). This flexible use of vision depends on cortical circuits in occipital and parietal
cortex to integrate contextual information with incoming visual information to guide
action.
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Conclusion
Overall, the results presented in this thesis suggest that factors beyond immediate visual
input are fundamental to basic features of visual processing. Feedback projections shape
basic visual response properties to facilitate robust encoding and, besides visual recurrent
signals, also sounds, movements and arousal strongly affect V1  activity. These signals are
dependent on the multisensory task context and should be carefully disentangled as they
constitute separate components present alongside visual inputs. Furthermore, visual
processing is not a static process. Even the involvement of processing at the first cortical
stage in the context of plain stimulus detection depends on the task context, as instantiated
via other modalities. The fact that optogenetic silencing of V1  specifically affected visual
but not auditory perception defends the idea that V1  is primarily involved in visual
processing, but otherwise primary visual cortex seems hardly visual alone. It just needs
some context.
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Summary of: “Contextual signals in visual cortex: how sounds, state, and task
setting shape how we see”

What we see is not always what we get. Even though the light that hits the retina
might convey the same images, how visual information is processed and what we
eventually do with it depend on many contextual factors such as our internal state,
movements, other senses and any task we are performing. In this thesis, I studied
how the sensory processing of the same visual input in the visual cortex of mice is
affected by different contextual factors. In Chapter 2 we describe how activity in
the primary visual cortex (V1 ) is affected by recurrent activity originating within
higher visual areas. This recurrent activity specifically enhanced stimulus
responsiveness of V1  neurons by more strongly amplifying weaker compared to
stronger sensory-evoked responses and in a similar manner during anesthetized as
awake conditions. In Chapter 3, we found that visual stimuli evoked similar early
sensory-evoked activity in V1 , but that later activity strongly depended on whether
mice were trained to report the visual stimuli, and on the specific task. Specifically,
adding a second modality to the task demands extended the temporal window
during which V1  was causally involved in visual perception. In Chapter 4, we
reported that not only visual stimuli but also sounds led to strong activity increases
in V1 , and that this response was composed of two distinct components. We found
a transient auditory-related component originating from auditory cortex, but also
a motor-related component reflecting a rapid effect of sound-evoked movements
on V1  activity. Finally, in Chapter 5 we studied the role of Posterior Parietal Cortex
(PPC) in an audiovisual change detection task. Despite extensive single-neuron
and population-level encoding of task-relevant visual and auditory stimuli, as well
as upcoming behavioral responses, optogenetic inactivation of PPC did not affect
task performance. Whereas these contextual factors have previously been studied
in isolation, we now have an integrative view of their interactions with early visual
processing. Feedback from higher visual areas targets visually-responsive neurons,
while auditory and motor signals are present in distinct subsets of neurons giving
rise to a diverse palette of contextual channels to the early visual system. In
conclusion, after this thesis we gained a better understanding of how the visual
system flexibly operates and of how factors beyond visual information determine
what we actually see.
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Samenvatting van: “Contextuele signalen in de visuele cortex: hoe geluid, onze
staat, en de taak beïnvloeden hoe we zien”

Wat we zien hangt niet alleen af van het licht dat op onze retina valt. Visuele
verwerking wordt mede bepaald door onze verwachtingen, of er belangrijke dingen
zijn om op te letten en wat we met onze andere zintuigen waarnemen. Het is
bekend dat deze contextuele factoren een groot effect hebben op latere stadia van
de visuele verwerking, in de hogere gebieden van de cortex. Deze thesis beschrijft
een aantal experimenten waarin gekeken werd hoe de activiteit en functie van de
primaire visuele cortex in muizen (een vroeg stadium van visuele verwerking)
afhangt van contextuele factoren.
Uit dit onderzoek blijkt dat visuele verwerking ook in vroege stadia geen statisch
proces is. In Hoofdstuk 2 onderzochten we hoe hogere visuele gebieden invloed
hebben op de verwerking in lagere gebieden binnen het visuele systeem, en vinden
dat deze specifiek zwakke responsen kunnen versterken. In Hoofdstuk 3,
rapporteren we dat de tijdspanne dat de primaire visuele cortex nodig is in een
detectie-taak afhangt van de taak: als het dier gelijktijdig een ander zintuig (geluid
of tast) moet monitoren duurt de causale betrokkenheid van de visuele cortex
langer. De taak had ook effect op de elektrische activiteit. Kort na de stimulus was
de activiteit van neuronen in de visuele cortex tamelijk onveranderlijk,
onafhankelijk van de taak. Maar op een later tijdspunt hing de activiteit sterk af
van het (gedragsmatig) detecteren van de stimulus en vervolgens het rapporteren
ervan, maar ook van de motorische bewegingen en verhoogde alertheid. Ook
geluiden hadden sterke effecten op de primaire visuele cortex (Hoofdstuk 4).
Omdat geluiden echter ook vaak bewegingen rond de snuit veroorzaakten, en deze
weer effecten hadden op visuele cortex, had geluid effect op de visuele cortex via
twee processen. Auditieve signalen en motor signalen waren te vinden in
verschillende neuronen in de primaire visuele cortex en lieten visuele verwerking
intact. Ten slotte beschrijft dit proefschrift in Hoofdstuk 5 hoe hogere gebieden
zoals de pariëtale cortex ook al deze signalen kunnen laten zien die samenhangen
met een audiovisuele detectietaak, maar toch overbodig zijn voor het uitvoeren van
de taak. Deze thesis heeft ons kennis gebracht hoe geluid, beweging, taak, en zicht
interacteren in een georganiseerde manier en een flexibele context verschaffen
voor vroege stadia van visuele verwerking.
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