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Chapter 1

1.1 Measuring Psychological Constructs

The measurement of psychological constructs is at the heart of social and behavioral

sciences. Psychological constructs are often referred to as latent constructs because they

are not directly observable. As a result, these constructs are measured with observable

variables such as responses to questionnaire or test items that are assumed to represent the

latent construct. Whether a researcher wants to study social anxiety or an educator wants

to compare students on numerical ability, research and practice often depend on measures

of latent constructs. It is even fair to say that the measurement of latent constructs

can have great impact on individual lives and society in general. For example, a social

anxiety intervention can be categorized as effective or not based on observed measures of

social anxiety in a sample of adolescents, or students may or may not receive additional

support on numerical ability depending on their observed score on a numerical ability test.

Given the dominant role of such tests and questionnaires in social and behavioral sciences

and applications (Brennan, 2004), it is important that the items on these measurement

instruments function the same way across individuals or groups. This requirement is also

referred to as measurement invariance.

There has been a growing awareness regarding the importance of measurement invari-

ance (see Drasgow, 1984; Jöreskog, 1971; Vandenberg & Lance, 2000; Cheung & Rensvold,

1999; Steenkamp & Baumgartner, 1998; Meredith, 1993; Little, 1997; Van de Vijver &

Fischer, 2009; Milfont & Fischer, 2010). If the assumption of measurement invariance is

violated, the observed scores on a test or questionnaire not only depend on the latent

construct intended to be measured but also on variables other than the latent construct.

As a result, individuals with the same level of the latent construct may have different

expected observed scores. This is problematic because researchers or practitioners might

conclude that groups or individuals differ on the latent construct when the differences

in observed scores actually arise from differential measurement caused by variables other

than the latent construct. Hence, measurement invariance is a necessary condition in

order to meaningfully compare groups or individuals on latent constructs and should be

assessed before making such comparisons.

A common class of methods for assessing measurement invariance is confirmatory fac-

tor analysis (CFA), which is a family of statistical analyses within the structural equation

modeling (SEM) framework. A CFA model describes the dependencies between a set of

observed variables by using a limited number of so-called common factors. These common

factors represent the latent constructs that are measured by the observed variables. Mea-

surement invariance can be assessed in CFA models by means of a comparison of specific

features of the model across different levels of variables other than the latent construct.

These other variables are referred to as background variables in this dissertation, but are

also commonly called violators (see Barendse et al., 2010) or covariates (see Bauer, 2017).

The next paragraph shortly addresses different levels of measurement invariance in the

context of CFA.
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General Introduction

1.2 Measurement Invariance

Consider a set of observed indicators X (e.g., items) measuring the latent construct of

interest T , and a set of background variables V (e.g., age or gender). The definition of

measurement invariance can be mathematically expressed as

f1(X|T, V ) = f2(X|T ) (1.1)

where f1(·) and f2(·) denote the conditional probability distributions of observed indi-

cators X. The mathematical expression states that measurement invariance holds if the

distribution of X depends only on the latent construct T and is invariant with respect

to background variables V (Mellenbergh, 1989). If measurement invariance does not hold

(i.e., f1 ̸= f2), the distribution of the observed indicators depends not only on the latent

construct T but also directly on background variables V . Hence, with a lack of measure-

ment invariance, individuals with an equal standing on the latent construct may have

different expected values of X, and differences in the observed scores may not imply true

differences in T . Violations of measurement invariance are also referred to as differential

item functioning (DIF), measurement bias, or measurement noninvariance. A distinction

can be made between full and partial invariance, both indicating different degrees of mea-

surement invariance. Full invariance implies that all observed indicators (e.g., all items

of a test or questionnaire) are measurement invariant, whereas partial invariance implies

that measurement invariance only holds for a subset of the observed indicators.

In addition to different degrees of measurement invariance, different levels of measure-

ment invariance have been defined (Meredith, 1993; Steenkamp & Baumgartner, 1998;

Horn & McArdle, 1992). Consider a CFA model in which the continuous observed vari-

ables X serve as indicators of the latent construct modeled as common factor T . This

model can be specified as

xi = τ + λti + εi (1.2)

where xi is a vector of observed indicator scores for individual i, τ is a vector of indicator

intercepts, and λ is a vector of factor loadings. Moreover, ti is the common-factor score

and εi is a vector of residual scores with variances θ. The different levels of measurement

invariance can be ordered from least to most restrictive. The least restrictive level of mea-

surement invariance is called configural invariance. Configural invariance implies equal

factor loading patterns across the background variable, that is, the latent construct is be-

ing measured by the same indicators across all levels of the background variable. The next

more restrictive level of measurement invariance is metric invariance, which additionally

implies equal factor loadings across the background variable. A yet more restrictive level

of measurement invariance is scalar invariance, which in addition to equal factor loadings

implies equal indicator intercepts across the background variable. The most restrictive

level of measurement invariance is called strict invariance, additionally implying equal

residual variances across the background variable.

9



Chapter 1

One of the traditional methods to evaluate these levels of measurement invariance

across a categorical background variable (e.g., group membership) is multiple-group CFA

(MGCFA; Vandenberg & Lance, 2000). In MGCFA, the data are divided into two or

more independent groups based on V and a CFA model, as shown in Equation 1.2, is

estimated for each group separately. Measurement invariance can then be assessed by

comparing the fit of models with and without increasingly restrictive equality constraints

on the measurement parameters (e.g., the factor loadings λ or intercepts τ ) across the

background variable. Full invariance can be examined with an omnibus test for a particu-

lar level of measurement invariance for all indicators simultaneously (Drasgow & Kanfer,

1985; Horn & McArdle, 1992; Finch & French, 2018; Marsh, 1994). When the omnibus

null hypothesis of full invariance is rejected, one can proceed with examining partial in-

variance. Under partial invariance, groups or individuals can still be validly compared on

the latent construct as long as violations of measurement invariance are correctly detected

and modeled. Establishing partial invariance requires assessing each indicator separately

for measurement invariance by comparing the fit of a model with and without equal-

ity constraints on that indicator’s parameters. This way, each indicator can be assessed

individually while holding a subset of other indicators invariant across the background

variable. These latter indicators are also called anchor indicators and are used to link the

metric of the common factors across the background variable when assessing measurement

invariance on indicator-level. Anchor indicators can be selected using an anchor-selection

strategy (for an overview, see Kopf et al., 2015a).

As MGCFA relies on splitting the data into two groups, it is best suited for categori-

cal background variables. Alternative methods for assessing measurement invariance have

been proposed, among which are restricted factor analysis (RFA; Oort, 1992), multiple in-

dicator multiple cause (MIMIC; Jöreskog & Goldberger, 1975), and moderated nonlinear

factor analysis (MNLFA; Bauer & Hussong, 2009) models. In contrast to MGCFA, these

methods aggregate the data over V (e.g., group membership or age) and will therefore

be referred to as single-group methods throughout this dissertation. There are several

advantages of single-group methods over the MGCFA method, including a potentially

higher statistical power to detect violations of measurement invariance because the num-

ber of parameters to be estimated is reduced by aggregating the data over subsamples in

all single-group methods (see Barendse et al., 2012). Another advantage of single-group

methods over MGCFA is that they easily accommodate tests for measurement invariance

with respect to a continuous background variable V . In MGCFA, testing for measurement

invariance with respect to a continuous background variable would require categorizing

the continuous variable scores, which may lead to a loss of power and measurement relia-

bility (MacCallum et al., 2002). In addition, because the single-group methods do not rely

on splitting the data into groups, they accommodate testing for measurement invariance

across multiple continuous and categorical background variables simultaneously and allow

for more complex functional relationships, such as interactions or curvilinear effects of V .

Various single-group methods, including RFA and MNLFA, have been proposed for

10
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the purpose of assessing measurement invariance. These methods share the same general

form of the measurement model, but differ in the way the background variable V is

modeled and differences in measurement parameters are estimated. Although some studies

have investigated the performance of single-group methods (see Barendse et al., 2010,

2012; Bauer et al., 2020; Woods & Grimm, 2011), more extensive research is needed

to further analyze the performance of these methods in different situations. There are

multiple challenges and unsolved problems regarding the use of single-group methods for

measurement invariance assessment. For example, it is unknown how the performance

of these methods can be improved in order for a more valid assessment of measurement

invariance, or which method can be preferred over the other in certain situations. The

performance of these methods thus remains subject of ongoing research.

1.3 Aim and Outline

This dissertation addresses novel approaches to assess measurement invariance in the

framework of SEM. More specifically, the focus of this dissertation is on new ways to

assess measurement invariance using single-group methods. The dissertation starts with

a study of the single-group method RFA. An RFA model is not readily suited for assessing

metric invariance and is therefore commonly extended with latent moderated structural

equations (LMS). As LMS is implemented in limited SEM computer programs and does

not provide most traditional SEM fit indices, product indicators (PI; Kenny & Judd,

1984) can be used instead in RFA models to assess metric invariance. In Chapter 2, the

use of PI in RFA models is introduced and illustrated. In order to further investigate the

performance of the PI method in RFA, a more extensive simulation study is performed in

Chapter 3. This study not only includes a comparison between PI and LMS, but also a

comparison between two anchor-selection strategies. The anchor-selection strategy that

performs best in the first part of the study is used in the second part of the study in which

the performance of PI and LMS is compared. In contrast to the MGCFA method, RFA

comes with the additional assumptions of equal common-factor variances across different

levels of the background variable (i.e., common-factor homoskedasticity) and equal indi-

cators’ residual variances across different levels of the background variable (i.e., residual

homoskedasticity). The robustness of RFA to violations of common-factor and residual

homoskedasticity is relatively unexplored (see Chun et al., 2016; Harpole, 2015, for excep-

tions). In Chapter 4, a study is presented in which the performance of RFA is examined

in situations with different magnitudes of common-factor and residual variance differences

across the background variable. MNLFA (Bauer & Hussong, 2009; Bauer, 2017) models

may be a more suitable alternative to RFA in the presence of common-factor or residual

heteroskedasticity, because such models do not require assuming common-factor or resid-

ual homoskedasticity with respect to the background variable. MNLFA has not yet been

compared to other methods for measurement-invariance assessment and its statistical

properties in conditions with small samples and continuous indicators are yet unknown.

11
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Therefore, this chapter focuses on comparing the performance of RFA and MNLFA to

test for measurement invariance under common-factor and residual homoskedasticity and

heteroskedasticity. Chapter 5 presents a study on assessing measurement invariance

through MNLFA with the R (R Core Team, 2021) package OpenMx (Boker et al., 2011).

The aim is to make MNLFA more accessible for researchers by providing detailed guide-

lines on performing the method in this open-source SEM software. The chapter therefore

also includes a tutorial. Finally, the dissertation concludes with Chapter 6, which sum-

marizes the research findings of this dissertation and raises several additional research

questions.

12







Chapter 2

Using Product Indicators in

Restricted Factor Analysis to Assess

Measurement Invariance

Abstract

When sample sizes are too small to support multiple-group models, an alternative method

to evaluate measurement invariance is restricted factor analysis (RFA), which is statisti-

cally equivalent to the more common multiple-indicator multiple-cause (MIMIC) model.

Although these methods traditionally were capable of detecting only violations of scalar

invariance, RFA can be extended with latent moderated structural equations (LMS) to

assess violations of metric invariance. As LMS is implemented in limited structural equa-

tion modeling (SEM) software (e.g., Mplus), we propose the use of product indicators

(PI) in RFA models, which are available to use in any SEM software. Using simulated

data, we illustrate how this method can be used to assess measurement invariance, and

we compare the conclusions with those reached using LMS in Mplus. Both methods ob-

tain comparable results, indicating that the PI method is a viable alternative to LMS for

researchers without access to SEM software featuring LMS.

Based on: Kolbe, L., & Jorgensen, T. D. (2018). Using product indicators in restricted

factor analysis models to detect nonuniform measurement bias. In M. Wiberg, S. A.

Culpepper, R. Janssen, J. González, & D. Molenaar (Eds.), Quantitative psychology: The

82nd Annual Meeting of the Psychometric Society, Zurich, Switzerland, 2017 (pp. 235–

245). New York, NY: Springer. doi: 10.1007/978-3-319-77249-3 20



Chapter 2

2.1 Introduction

Measurement invariance entails that scales function similarly across groups, irrespective

of true differences in the construct that the scale was designed to measure. Let T denote

the construct of interest measured by a set of observed variables X. Moreover, let V

be a set of background variables other than T . The formal definition of measurement

invariance can be expressed as follows (Mellenbergh, 1989):

f1(X|T = t, V = v) = f2(X|T = t) (2.1)

where f1(·) is the conditional distribution of X given T and V , and f2(·) the conditional

distribution of X given T . If measurement invariance holds (i.e., f1 = f2), the measure-

ment of T by X is invariant with respect to V . But if measurement invariance does not

hold (i.e., f1 ̸= f2), the measurement of T by X functions differently with respect to

V . A violation of measurement invariance is often referred to as differential item func-

tioning (DIF). A distinction can be made between violations of scalar invariance and

metric invariance, also referred to as uniform and nonuniform DIF, respectively. Uniform

DIF implies that the extent of DIF is constant for all levels of the construct T , whereas

nonuniform DIF implies that the extent of DIF varies with T .

A common method to assess measurement invariance with respect to a grouping vari-

able is multiple-group confirmatory factor analysis (MGCFA; Vandenberg & Lance, 2000),

which requires sufficiently large samples for each group. An alternative for assessing mea-

surement invariance is restricted factor analysis (RFA; Oort, 1992, 1998). An advantage

of this method over MGCFA is that the background variable V may be categorical or

continuous, observed or latent, and multiple background variables can be investigated si-

multaneously. Moreover, RFA does not require the division of the sample into subsamples

by V . The latter advantage comes at the cost of additional assumptions—namely, homo-

geneity of residual variances across groups1. If these additional assumptions hold, RFA

should have more power than MGCFA to detect violations of measurement invariance.

When using RFA, the background variable V is added to a common factor model as

an exogenous variable that covaries with T . Uniform DIF can be assessed by testing

the significance of direct effects of V on X. To assess nonuniform DIF, an extension

for modeling latent interactions is required. RFA is commonly extended with latent

moderated structural equations (LMS; Barendse et al., 2010). This allows for assessing

nonuniform DIF by testing the significance of interaction effects of T ×V on X. Although

this method generally has high power to detect DIF (Barendse et al., 2010, 2012; Woods

& Grimm, 2011), a disadvantage is that LMS is only implemented in the commercial

1In traditional RFA models, common-factor variances are also assumed to be equal across groups.
However, when extending RFA to include a latent interaction factor with product indicators (described
immediately following), differences in common-factor variances can be captured by the covariance between
the common factor and the latent interaction factor.
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Using Product Indicators to Assess Measurement Invariance

structural equation modeling (SEM) software Mplus (L. K. Muthén & Muthén, 2012)2.

Moreover, most traditional SEM fit indices to test for model fit are not available when

using the LMS method in Mplus, except for Akaike’s information criterion (AIC; Akaike,

1998) and Bayesian information criterion (BIC; Schwarz, 1978).

In this chapter, we introduce the product indicator (PI) method to model latent in-

teractions in RFA models. The PI method has received a great deal of attention in the

general context of modeling interactions among latent variables in SEM (Henseler & Chin,

2010; Lin et al., 2010; Little et al., 2006; Marsh et al., 2004), but has never been studied

in light of assessing measurement invariance. First, we discuss the assessment of mea-

surement invariance using RFA models, then we introduce the PI method, and finally we

demonstrate how to evaluate measurement invariance using RFA with PI by means of an

illustrative example. We compare the results of PI to LMS on the same simulated data

set.

2.2 Background

2.2.1 Restricted Factor Analysis

In RFA models, the construct T can be modeled as a latent factor with multiple measures

X (e.g., items) as observed indicators. The background variable V is added to the mea-

surement model as an exogenous single-indicator latent variable and is allowed to covary

with the common factor T . The background variable V may represent a grouping variable

by using a dummy-coded indicator. The observed indicator scores X are modeled as

xi = τ + λti + bvi + ctivi + δεi (2.2)

where xi is a vector of indicator scores, ti is the common factor T score, vi is a dummy code

for group membership V , and εi is a vector of the residual scores of subject i. Moreover,

the vector τ contains intercepts, λ is a vector of factor loadings on the common factor T ,

and δ is a vector of residual factor loadings. The vectors b and c are of special interest

and contain regression coefficients. A nonzero element in b or c indicates uniform or

nonuniform DIF, respectively.

Figure 2.1 illustrates an example of an RFA model to assess measurement invariance

using two anchor indicators (i.e., Indicator 1 and 2). The background variable V is

modeled as a latent variable with a single indicator Y representing group membership.

For visual simplicity, the measurement model of T × V is excluded from Figure 2.1, but

those details are discussed in the following subsection. Measurement invariance can be

examined by comparing the fit of an unconstrained model with several constrained models.

In the unconstrained model, all indicators are regressed on V and T × V , except for the

2LMS is also available in the open-source R package nlsem (Umbach et al., 2017), but the implemen-
tation is very limited. It is not possible to assess measurement invariance using RFA models in the nlsem
package, so we do not consider it further.
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V T T × V

Y C XC
1 XC

2 XC
3

ε4 ε1 ε2 ε3

λ1
λ2

λ3b3 c3

Figure 2.1: An example of an RFA model with LMS for assessing measurement invariance.
The dashed and dotted arrows represent effects that may be estimated to test Indicator
3 for uniform and nonuniform DIF, respectively.

indicators in the anchor set. Each constrained model involves fixing the regression of the

studied indicator onto V and T × V at zero.

The pair of constraints for each indicator can be tested simultaneously, where the null

hypothesis of measurement invariance implies both b and c coefficients corresponding to

the studied indicator are zero in the population. These constraints can be tested via model

comparison of a constrained and unconstrained model, producing a likelihood ratio test

(LRT) statistic that is distributed as χ2 random variable with df = 2. A significant LRT

statistic indicates that the studied indicator exhibits DIF with respect to V , and 1-df

follow-up tests of the individual b and c coefficients can reveal whether that indicator’s

DIF is uniform or nonuniform. This chapter focuses only on the 2-df omnibus test for

each indicator.

2.2.2 Product Indicators

The use of PI to model interactions among latent variables was originated by Kenny &

Judd (1984). The PI method involves the specification of a measurement model for the

latent interaction factor. Generally, product terms are built by multiplying the indicators

of the associated latent variables, which serve as indicators for the latent interaction

factor. All indicators, including the product indicators, are assumed to be multivariate

normally distributed if the maximum likelihood estimation procedure is used. Because

products of normal variables are not themselves normally distributed, this assumption is

violated. Thus, a robust maximum likelihood estimator is used to relax this assumption

(see Marsh et al., 2004).

18
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Several variants of the PI method have been proposed, among which is the double-

mean-centering strategy (Lin et al., 2010) that we implement herein. The double-mean-

centering strategy is superior to other strategies because it eliminates the need for a

mean structure and does not involve a cumbersome estimation procedure. Although

the orthogonalizing and double-mean-centering strategy perform equally well when all

indicators are normally distributed, the double-mean-centering strategy performs better

when the assumption that all indicators are normally distributed is violated (Lin et al.,

2010).

The Double-Mean-Centering Strategy

The first step of the double-mean-centering strategy involves mean-centering the indica-

tors of the latent variables of interest. Each of the mean-centered indicators of one latent

variable is then multiplied by the mean-centered indicators of the other latent variable.

The resulting product indicators are centered at their means and are used as indicators of

the latent interaction factor. If the common factor T has P indicators and the background

variable V has Q indicators, then the latent interaction factor can have up to P ×Q prod-

uct indicators, although matching schemes have been proposed to reduce the number of

product indicators (Marsh et al., 2004). In RFA, however, these matching schemes would

be irrelevant when the common factor only interacts with a single-indicator background

variable (or with multiple single-indicator background variables). Figure 2.2 shows an

example of an RFA model with a latent interaction using the PI method. All possible

cross-products are used in this example (i.e., each indicator of T is multiplied by the single

indicator of V ), and all indicators of T and V are centered at their means3.

2.3 Tutorial

To demonstrate how the PI method can be applied for assessing measurement invariance,

we simulated a single data set. R syntax for the use of PI in RFA models is provided

in the following subsection. Barendse et al. (2012) provide Mplus syntax to implement

LMS.

2.3.1 Data Generation

Data were generated for two groups, each with a group size of n = 100. We considered a

scale of P = 10 indicators, 40% of which functioned differently: two indicators exhibited

uniform DIF and two indicators exhibited nonuniform DIF. This way, we are able to

investigate the performance of LMS and PI using a hypothetical scale with a substantial

3In the case of a dummy-coded indicator, the mean is the proportion of the sample in Group 1. Mean-
centering does not affect the variance, so a 1-unit increase in a mean-centered dummy code still represents
a comparison of Group 1 to Group 0, just as the original dummy code does.
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V T T × V

Y C XC
1 XC

2 XC
3

ε4 ε1 ε2 ε3

(
XC

1 × Y C
)C (

XC
2 × Y C

)C (
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3 × Y C
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ε5 ε6 ε7

λ1
λ2

λ3b3 c3

Figure 2.2: An example of an RFA model with product indicators for assessing measure-
ment invariance. The dashed and dotted arrows represent effects that may be estimated
to test Indicator 3 for uniform and nonuniform DIF, respectively.

degree of DIF. Indicator scores of subject i in group y were generated using the following

model:

xi = τ y + λyti + δyεi (2.3)

where xi is a vector of 10 indicator scores, ti is the common factor score, and εi is

a vector of 10 unique factor scores (residuals) for subject i. Moreover, τ y is a vector

containing 10 intercepts, λy is a vector of 10 common factor loadings, and δy is a vector

of 10 residual factor loadings of group y. Following Barendse et al. (2010), differences in

the common factor were simulated by drawing common factor scores ti from a standard

normal distribution N (0, 1) for the reference group and from a normal distribution with

a lower mean N (−0.5, 1) for the focal group. Residual factor scores εi were drawn from

a standard normal distribution.

The same magnitude of uniform and nonuniform DIF used by Barendse et al. (2010)

was used. To introduce uniform DIF, all intercepts τ were equal to 0, except for the

intercept for the second and third indicator in the focal group, which were chosen equal

to 0.5 (small uniform DIF) and 0.8 (large uniform DIF), respectively. Moreover, all

common-factor loadings were fixed at 0.8, except for the factor loadings of the fourth and

fifth indicator in the focal group, which were chosen equal to 0.55 (small nonuniform DIF)

and 0.3 (large nonuniform DIF), respectively. The residual factor loadings were set equal

to the square root of 1− λ2
y. Below we present the R syntax to generate this data set.

> ## set seed

> RNGkind("L’Ecuyer -CMRG")

> .Random.seed <- as.integer(c(407, 1945764513 , -1852313839 , 178524778 ,

> -983224279 , -1572978333 , -68534343))
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> ## specify group size

> n <- 100

> ## draw latent -trait values

> trait1 <- rnorm(n)

> trait2 <- rnorm(n, -0.5, 1)

> ## draw scores on residual factor

> residual <- matrix(NA, 2*n, 10)

> for (j in 1:n) {

> for (i in 1:10) {

> residual[j, i] <- rnorm (1)

> }

> }

> ## model parameters reference group

> lambda1 <- rep(0.8, 10)

> delta1 <- sqrt(1 - loading1 ^2)

> ## model parameters focal group

> tau2 <- c(0, -0.5, -0.8, 0, 0, 0, 0, 0, 0, 0)

> lambda2 <- c(0.8, 0.8, 0.8, 0.55, 0.3, 0.8, 0.8, 0.8, 0.8, 0.8)

> delta2 <- sqrt(1 - loading2 ^2)

> ## simulate indicator scores reference group

> x1 <- matrix(NA, n, 10)

> for (j in 1:n) {

> for (i in 1:10) {

> x1[j,i] <- lambda1[i] * trait1[j] + delta1[i] * residual[j, i]

> }

> }

> ## simulate indicator scores focal group

> x2 <- matrix(NA, n, 10)

> for (j in 1:n) {

> for (i in 1:10) {

> x2[j,i] <- tau2[i] + lambda2[i]*trait2[j] + delta2[i]*residual[j,i]

> }

> }

> ## combine scores of both groups

> dat <- as.data.frame(rbind(x1, x2))

> dat$group <- rep(c(1, 2), each = n)

> names(dat) <- paste0("x", 1:11)

2.3.2 Application

Below is the R syntax for the application of PI in RFA models to assess measurement

invariance in the simulated data set. The RFA models with PI are fitted with the R

package lavaan (version 0.5-23; Rosseel, 2012). In our example, we apply the double-

mean-centering strategy. First, the indProd() function in the semTools package (version

0.4-14; Jorgensen et al., 2019) with the argument doubleMC = TRUE is used to transform the

data in order to be suitable for this strategy. This way, the indicators of the common factor

T and background variable V are mean-centered and indicators of the interaction factor

T × V are built by multiplying the mean-centered indicator of V by each mean-centered

indicator of T . The resulting product indicators are mean-centered again. After the data

are prepared, one constrained model for each studied indicator must be specified. We use

the ninth and tenth indicators, which are both DIF-free, as anchor indicators, so they

are not tested for DIF. Hence, the studied indicators are the first eight indicators, four of

which exhibit DIF, which leads to eight constrained models in total. The unconstrained

model is the same across indicators.
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> ## required package

> library(semTools)

> ## prepare data

> datDMC <- indProd(dat , 1:10, 11, match = FALSE , doubleMC = TRUE)

> ## additional parameters

> paramc <- paste0("group + group.by.trait =~ x", 1:8)

> ## specify and fit unconstrained model

> mod.un <- c(’

> theta =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

> group =~ 1*x11

> group.by.trait =~ x1.x11 + x2.x11 + x3.x11 + x4.x11 + x5.x11 +

> x6.x11 + x7.x11 + x8.x11 + x9.x11 + x10.x11

> x11 ~~ 0*x11’, paramc)

> mod.un.fit <- cfa(mod.un , data = datDMC , estimator = "MLM")

> ## specify and fit constrained models

> out <- matrix(NA, nrow = 8, ncol = 2,

> dimnames = list(paste0("x", 1:8), c("X2", "p")))

> for (i in 1: length(paramc )) {

> mod.con <- mod.un[-(i+1)] # remove b and c for the i-th studied indicator

> mod.con.fit <- cfa(mod.con , data = datDMC , estimator = "MLM")

> outfit <- lavTestLRT(mod.con.fit , mod.un.fit ,

> method = "satorra.bentler .2001")

> out[i ,1:2] <- c(outfit [2,5], outfit [2,7])

> }

> ## print results

> out

The first factor of the unconstrained model is the common factor T with 10 mean-

centered observed variablesXC as indicators. The second factor is the background variable

V with a mean-centered single indicator Y C representing group membership. The residual

variance of Y C is fixed at zero. The interaction factor T × V is the third factor of the

unconstrained model with double-mean-centered product indicators. For example, the

first indicator of the interaction factor is obtained by mean-centering Y C ×XC
1 . For all

factors in the unconstrained model, the factor loading λ of the first indicator is fixed

at unity for identification. Covariances between all three factors are freely estimated.

Finally, factor loadings of all indicators on V and T ×V are added, except for the anchor

indicators. The constrained models are built by removing factor loadings of the studied

indicator on V and T×V from the unconstrained model. The estimator to be used for the

unconstrained and constrained models is set to "MLM", which involves maximum likelihood

estimation with robust standard errors and a Satorra-Bentler scaled test statistic (Rosseel,

2012).

To test each of the eight indicators for DIF, likelihood ratio test statistics are calculated

using the lavTestLRT() function in the lavaan package (version 0.5-23; Rosseel, 2012). This

involves comparing the fit of the unconstrained model with each constrained model. By

setting the argument method = "satorra.bentler.2001", a scaled ∆χ2 test statistic with

df = 2 is computed as described by Satorra & Bentler (2001). An indicator is flagged as

exhibiting DIF with respect to background variable V when the ∆χ2 statistic is significant

using a criterion of α = .05.

Table 2.1 presents the results of measurement invariance assessment using RFA with

LMS and PI. When the PI method was applied, the ∆χ2 statistics of three out of four
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truly DIF indicators were significant. The indicator with small nonuniform DIF, Indicator

4, was not flagged as exhibiting DIF, which is consistent with previous Monte Carlo

studies showing that power to detect uniform DIF is greater than to detect nonuniform

DIF (Barendse et al., 2010, 2012). Moreover, none of the ∆χ2 statistics of the DIF-free

indicators were significant. Thus, none of the indicators were incorrectly flagged using

PI. The LMS method obtained comparable results, but correctly flagged all truly DIF

indicators.

Table 2.1: Results of assessing measurement
invariance using RFA models with PI and
LMS.

Indicator PI LMS
χ2
df=2 p χ2

df=2 p
1 0.425 .809 0.674 .714
2 19.396 .000 17.696 .000
3 38.755 .000 28.000 .000
4 5.212 .074 6.283 .043
5 10.105 .006 10.656 .005
6 0.145 .930 0.201 .904
7 0.948 .622 0.772 .680
8 0.246 .884 0.196 .907

Note. Bold cells indicate significant DIF. Indi-
cators 9 and 10 were used as anchor indicators,
so they were not tested for DIF.

2.4 Discussion

In this chapter, we proposed the use of PI in RFA models as an alternative to LMS to

assess measurement invariance. The illustrative example showed that this method obtains

results comparable to LMS. Because RFA with LMS can only be implemented in Mplus

(L. K. Muthén & Muthén, 2012), knowing that PI performs at least as well as LMS

provides more researchers the opportunity to test for nonuniform DIF using any SEM

software package. An additional advantage of PI is the availability of more traditional

SEM fit indices to test for model fit that are not available when using LMS in Mplus, nor

when using other available strategies for modeling interactions with latent variables (e.g.,

random effects models which treat indicator scores as cross-nested within indicators and

subjects). However, several aspects of the use of PI in RFA models are yet unclear, for

example, which indicators should serve as product indicators for the interaction factor

(e.g., all indicators, only anchor indicators, or anchor indicators and studied indicators).

In addition, RFA models assume strict invariance, that is, equal residual variances across

groups. Future research could investigate how violations of strict invariance affect Type

I error rates.
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Using Restricted Factor Analysis to

Select Anchor Indicators and Assess

Measurement Invariance

Abstract

Restricted factor analysis (RFA) is a powerful method to assess scalar invariance, but it

may require empirically selecting anchor indicators to prevent inflated Type I error rates.

We conducted a simulation study to compare two empirical anchor-selection strategies:

a one-step rank-based strategy and an iterative selection procedure. Unlike the iterative

procedure, the rank-based strategy had a low risk and degree of contamination within the

empirically selected anchor set, even with small samples. To detect violations of scalar in-

variance, RFA requires an interaction effect with the latent factor. The latent moderated

structural equations (LMS) method has been applied to RFA and has revealed inflated

Type I error rates. We propose using product indicators (PI) as a more widely avail-

able alternative to measure the latent interaction. A simulation study, involving several

sample-size conditions and magnitudes of measurement invariance violations, revealed

that PI obtained similar power but lower Type I error rates, as compared to LMS.

Based on: Kolbe, L., & Jorgensen, T. D. (2019). Using restricted factor analysis to select

anchor items and detect differential item functioning. Behavior Research Methods, 51,

138–151. doi: 10.3758/s13428-018-1151-3
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3.1 Introduction

In the absence of measurement invariance, observed differences in composite scores (e.g.,

scale means) might not represent true differences in the construct that a scale is developed

to measure. Measurement invariance is formally defined (Mellenbergh, 1989):

f1(X|T = t, V = v) = f2(X|T = t) (3.1)

where X is a set of observed variables measuring the construct of interest T , and V is a

set of variables other than T that potentially violate measurement invariance (e.g., groups

defined by sex or ethnicity). Throughout this chapter, we will use the term indicator to

refer to the observed indicatorsX of the construct T , and refer to variable V as background

variable. Function f1(·) is the conditional distribution of X given T and V , and f2(·) the
conditional distribution of X given T . If measurement invariance holds (i.e., f1 = f2),

the measurement of T by X is invariant with respect to V . If measurement invariance

does not hold (i.e., f1 ̸= f2), however, the measurement of T by X functions differently

with respect to V . A violation of measurement invariance is commonly referred to as

differential item functioning (DIF). A distinction can be made between violations of scalar

invariance and metric invariance, also called uniform and nonuniform DIF, respectively.

Uniform DIF implies that the magnitude of DIF is constant for all levels of the construct

T , whereas nonuniform DIF implies that the magnitude of DIF varies with T . In different

measurement contexts, DIF goes by many other names, such as measurement bias (Oort,

1992), noninvariance (Byrne et al., 1989), or differential indicator functioning (Kline,

2011, p. 253).

A common method to assess measurement invariance with respect to a grouping vari-

able V is multiple-group confirmatory factor analysis (MGCFA; Vandenberg & Lance,

2000), in which a measurement model is estimated for each group, and then invariance

constraints are imposed on the parameter estimates in order to test whether any indica-

tors exhibit DIF. Hence, this method requires sufficiently large samples for each group.

Restricted factor analysis (RFA; Oort, 1992, 1998) is an alternative when sample sizes are

small. In RFA models, the background variable V is added to a measurement model as

an exogenous variable that is allowed to covary with T . Multiple-indicator multiple-cause

(MIMIC) models (B. O. Muthén, 1989) are statistically equivalent to RFA models, but

instead of a covariance between V and T , a causal effect of V on T is modeled. An

advantage of RFA over MGCFA is that the division of the sample into subsamples by V

is not necessary, but RFA also involves an additional assumption—namely, homogeneity

of common and unique factor variances across groups. If this additional assumption hold,

RFA has slightly higher power than MGCFA to detect DIF (Barendse et al., 2012).

A possible disadvantage of RFA is that it is not readily suited to assess metric invari-

ance. Because a violation of metric invariance implies that the magnitude of DIF varies

as a function of the common factor T , an interaction effect of T with V on X should be

estimated. To this end, RFA has been extended with a distribution-analytic approach to
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model interactions in factor models called latent moderated structural equations (LMS;

Barendse et al., 2010). With LMS the background variable V should be modeled as a

single-indicator latent variable in the RFA model (or MIMIC model; Woods & Grimm,

2011) to enable estimation of a latent interaction of T with V , thus allowing nonuniform

DIF to be estimated as the latent-interaction’s effect(s) on the indicator(s). Barendse et

al. (2010, 2012) showed that RFA with LMS generally has high power (89% to 100%)

to detect both uniform and nonuniform DIF, except in conditions with a small sample

size and small nonuniform DIF. However, severely inflated Type I error rates have been

observed (Barendse et al., 2010, 2012; Woods & Grimm, 2011). This motivated us to find

an alternative method for estimating the interaction effect of T with V on X that would

provide better control of Type I error rates.

The first aim of this chapter was to compare the performance of LMS with that of

product indicators (PI; Kenny & Judd, 1984), which is an alternative method to model

interactions between latent variables in structural equation models. We aimed to examine

whether this method can minimize the inflated Type I error rates obtained with LMS

when assessing measurement invariance using RFA models. The PI method has been

studied extensively in the general context of modeling latent interactions in structural

equation modeling (SEM; Henseler & Chin, 2010; Lin et al., 2010; Little et al., 2006;

Marsh et al., 2004), but its performance in RFA models to assess metric invariance has

not yet been explored. An advantage of PI over LMS is that it can be implemented in

any SEM software package, and several methods for calculating product indicators have

been automated in the open-source R package semTools (version 0.5-0; Jorgensen et al.,

2018). In contrast, assessing metric invariance with RFA models using LMS can only be

applied with the commercial SEM software Mplus (L. K. Muthén & Muthén, 2012). In

addition to its limited availability, this software does not provide most traditional SEM

fit indices to test for model fit when using LMS estimation. A preliminary study on the

use of PI in RFA models suggests that PI and LMS obtain comparable conclusions about

whether an indicator exhibits (non)uniform DIF (Kolbe & Jorgensen, 2018). However, a

more extensive simulation study was necessary to (dis)confirm the promising performance

of the PI method in RFA models for assessing measurement invariance.

Methods for assessing measurement invariance generally require the selection of anchor

indicators. These indicators are indicators used to link the scales of the latent construct

of interest across groups and are assumed to be DIF-free. A common strategy is to use all

indicators other than the studied indicator as anchors. This strategy leads to a contami-

nated subset of anchor indicators when some indicators other than the studied indicator

exhibit DIF, which in turn leads to problems such as inaccurate indicator-parameter esti-

mates and an overestimation of the amount of DIF in the test data (W.-C. Wang, 2004).

Hence, Woods (2009) argued that the inflated Type I error rates obtained with LMS might

be caused by a contaminated subset of anchor indicators. A simulation study of Woods

& Grimm (2011) showed that LMS still resulted in inflated Type I error rates when using

an uncontaminated anchor set, which calls into question whether any alternative method
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might control Type I errors better, given a valid set of anchor indicators.

The importance of an uncontaminated anchor set for assessing measurement invari-

ance provided a second motivation for this chapter: to investigate practical methods of

empirically identifying anchor indicators when they are not known a priori. Rather than

explicitly selecting anchor indicators, Barendse et al. (2012) applied RFA with LMS to as-

sess measurement invariance, iteratively accounting for violations of measurement in one

indicator at a time. They showed that this brings Type I error rates closer to the nominal

level of significance, although some inflation remains. In the present study, we adapted the

iterative procedure suggested by Barendse et al. (2012) as an anchor-selection strategy,

to be implemented before testing for DIF—that is, iteratively removing indicators from

an anchor set initially consisting of all indicators. The iterative procedure can arguably

result in large anchor sets, because it begins by assuming all indicators as anchors and

then selects indicators to remove from this anchor set. The potential danger of a larger

anchor set is that it generally displays a higher risk of contamination than a smaller an-

chor set (Kopf et al., 2015b). Therefore, we contrasted the iterative procedure with the

rank-based strategy proposed by Woods (2009). This is an easily implemented forward-

selection strategy, in which a limited proportion of all indicators—those that show the

weakest evidence against measurement invariance—are added to the anchor set. A similar

strategy has already been applied in MIMIC models (Chun et al., 2016). Woods (2009)

recommended that the number of indicators in the anchor set should be approximately

10% to 20% of the total number of indicators.

We will describe both our adaptation of Barendse et al.’s (2012) iterative procedure and

Woods’ (2009) rank-based strategy for empirically selecting anchor indicators in greater

detail in a later section. Because both of these empirical anchor-selection strategies involve

preliminary assessments of measurement invariance, we begin by describing how to assess

measurement invariance using RFA models with both LMS and PI. A description of

anchor-selection strategies follows, after which we describe two simulation studies: one to

compare anchor-selection strategies and the other to compare latent-interaction models

for assessing measurement invariance.

3.2 Background

3.2.1 Restricted Factor Analysis

The data-generating model for observed continuous scores x with potential uniform and

nonuniform DIF can be written as follows

xi = τ + λti + bvi + ctivi + δεi (3.2)

where xi is a vector of observed scores, ti is the common factor T score, vi is the back-

ground variable V score, and εi is a vector of the residual scores of subject i. The
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background variable V can be either observed or latent, continuous or categorical1, and

it is allowed to covary with the common factor T . The model parameters in Equation 3.2

include a vector of intercepts τ , a vector of factor loadings λ on the common factor T ,

a vector of residual factor loadings δ, and vectors of regression coefficients b and c. The

regression coefficients in b represent the linear effect of the background variable V on the

observed scores xi, and a nonzero element in b indicates uniform DIF (i.e., a violation

of scalar invariance). The regression coefficients in c represent the nonlinear interaction

effects of V with T on xi, and a nonzero element in c indicates nonuniform DIF (i.e., a

violation of metric invariance).

When an MGCFA model is fitted to sample data generated under the population

described by Equation 3.2, b and c are not explicitly estimated, but their effects are

implicitly captured by virtue of allowing τ and λ, respectively, to vary across levels of V .

In contrast, a single-group RFA model for the common factor T with observed indicators

X can be fitted to the data, where the background variable V is added to the model as an

exogenous variable. The analytical RFA model resembles the data-generating Equation

3.2, but it fixes δ = 1 for identification. Furthermore, traditional maximum likelihood

estimation of an RFA model is complicated by the inability to calculate the product

between an observed background variable V and the latent T in order to estimate the

nonlinear interaction effects c. LMS has been proposed as a solution to model these

nonlinear interaction effects in RFA models (e.g., Barendse et al., 2010), and we have

proposed PI as a more widely available alternative method (Kolbe & Jorgensen, 2018),

which we investigated more thoroughly in the current study.

In general, scalar and metric invariance can be assessed through RFA by comparing

the fit of an unconstrained model with the fit of a constrained model. The unconstrained

model freely estimates b and c parameters for all indicators studied (i.e., nonanchor indi-

cators), fixing the b and c parameters of the anchor indicators at zero. In the constrained

model, the b and c parameters of a single studied indicator are additionally fixed at zero.

Any potential DIF in other to-be-studied indicators is controlled for, because the b and

c parameters of those indicators are freely estimated in both models. This minimizes the

chance of inflated Type I error rates (Woods & Grimm, 2011).

For each studied indicator, the constraints on the b and c parameters can be tested

simultaneously via model comparison of that indicator’s constrained model with the un-

constrained model. This comparison produces a likelihood ratio test (LRT) statistic,

which is distributed as a χ2 random variable with df = 2. A significant LRT statistic

indicates that the studied indicator functions differently with respect to V . To reveal

whether this DIF is uniform or nonuniform, follow-up tests of the individual b and c

coefficients can be performed using each parameter’s Wald z statistic. We focused our

investigation only on the omnibus test with df = 2 for each studied indicator.

1Equation 3.2 could be expanded with additional dummy effects or contrast codes when V has > 2
categories. Additional background variables could also be added to Equation 3.2 to reflect additive or
interactive effects on the measurements.
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Latent Moderated Structural Equations

RFA has most commonly been extended with LMS to assess metric invariance (Barendse

et al., 2010, 2012; Woods & Grimm, 2011). The LMS approach to estimate interac-

tion effects of latent variables is a distributional analytic approach available in Mplus

(L. K. Muthén & Muthén, 2012), which implements a maximum likelihood estimation

procedure developed especially for the distributional properties of a model that includes

product terms among normally distributed latent factors (A. Klein & Moosbrugger, 2000).

In LMS, the joint distribution of indicators is represented as a finite mixture of normal

distributions. The mixture distribution function is used in order to obtain maximum like-

lihood estimates by means of the expectation maximization algorithm (Dempster et al.,

1977). The LMS approach assumes multivariate normality for all latent exogenous vari-

ables. The most common situation for testing invariance is a comparison of two groups

(Putnick & Bornstein, 2016), but when the background variable V is a categorical vari-

able, the normality assumption is violated. This violation can be accounted for by using

a robust maximum likelihood estimator (Woods & Grimm, 2011). Additional details on

how to apply LMS in Mplus and an example Mplus script for fitting the RFA model with

LMS are provided by Barendse et al. (2012).

Figure 3.1 depicts an example RFA model estimable with LMS for assessing measure-

ment invariance. The model represents a ten-indicator case, with the last two indicators

treated as anchors. The LMS approach requires the background variable V to be modeled

as a latent variable. In this example, the background variable is measured by a single

indicator Y representing group membership. As indicated in Figure 3.1, the residual

variance of Y has to be fixed at zero in order for the model to be identified. LMS uses

the raw data of all indicators in the model for estimation, but it does not require any

indicators of the latent interaction factor T × V ; hence, that factor is represented by a

dotted circle. Measurement invariance can be assessed for each indicator by comparing

the fit of an unconstrained model with the fit of a constrained model. The unconstrained

model regresses all studied indicators on V and T × V , but not anchor indicators (in

Figure 3.1, the indicators X9 and X10 are anchors, not regressed on V and T × V ). Put

differently, the b and c parameters only of the anchor indicators are fixed at zero. In a

constrained model, the b and c parameters of a studied indicator are additionally set to

zero, to assess measurement invariance for that indicator.

Product Indicators

Another possibility for estimating the nonlinear interaction effects in RFA models is the

PI method proposed by Kenny & Judd (1984). The PI method involves specifying a

measurement model for an additional factor, referred to as the latent interaction factor,

which represents the interaction between two latent variables. Hence, using the PI method

in RFA models requires the background variable V to be modeled as a latent variable, and

the measurement model of the latent interaction factor is specified using products between
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V T T × V

Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

ε11 ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10

1

1

0

Figure 3.1: An RFA model with LMS for assessing measurement invariance. The indi-
cators X9 and X10 are the anchor indicators. The dashed and dotted arrows represent
effects that may be estimated in order to assess scalar and metric invariance, respectively.

the background variable and each of the indicators of T . If maximum likelihood is used to

estimate the parameters of a model with product indicators, all indicators (including the

product indicators) are assumed to be multivariate normally distributed. This assumption

is violated because even products of normal variables are not normally distributed; the

present example, however, involves the product of normal indicators with a binary dummy

code, which is itself not normally distributed. A robust maximum likelihood estimator

should therefore be used (Marsh et al., 2004).

There are various PI methods that differ in the formation of the product indicators

of the latent interaction factor. The most recently proposed PI method is the double-

mean-centering strategy (Lin et al., 2010). Using this strategy, indicators for the latent

interaction factor are built by mean-centering the product terms produced by multiply-

ing the mean-centered indicators of the associated latent variables. In our ten-indicator

example with a grouping variable as the background variable, an initial product term

between the grouping variable Y and an indicator (e.g., the first indicator X1) is first

calculated from the mean-centered variables2: (Y − Ȳ )(X1 − X̄1). The double mean-

2The “mean” of a binary dummy code is the proportion of the sample for whom the dummy code
equals 1, so the mean-centered dummy code will still have only 2 levels: the zeros become negative and
the ones become positive. This transformation does not change the interpretation of its effect because
the distance between the negative value and positive value is still one unit. That is, its effect on an
indicator is interpreted as the average change in that indicator associated with a one-unit change in the
(mean-centered) dummy code, which therefore still represents the difference between two groups’ means
(controlling for other predictors, such as T ). Because the double-mean-centering strategy negates the
need for modeling a mean structure, mean-centering a dummy code does not affect the interpretation of
any (covariance-structure) model parameters.
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V T T × V
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Figure 3.2: An RFA model with product indicators for assessing measurement invariance.
The indicators X9 and X10 are the anchor indicators. The dashed and dotted arrows
represent effects that may be estimated to assess scalar and metric invariance, respectively.

centered product indicator is then formed by mean-centering the initial product term:

(Y − Ȳ )(X1 − X̄1)− (Y − Ȳ )(X1 − X̄1).

Advantages of the double-mean-centering strategy over other strategies are that it does

not require a mean structure to be modeled and does not involve a cumbersome multistep

estimation procedure. An additional advantage is that this strategy outperforms other

strategies when the assumption of normality is violated (Lin et al., 2010). See Kolbe &

Jorgensen (2018) for an example application of RFA using double-mean-centered product

indicators in the R package lavaan (Rosseel, 2012).

Figure 3.2 illustrates the same ten-indicator example of an RFA model, but the latent

interaction factor T × V is estimated with a measurement model using product indica-

tors calculated via the double-mean-centering strategy. This example includes ten mean-

centered indicators, of which the last two are treated as anchors. Each mean-centered

indicator of T is multiplied by the mean-centered indicator of V , and all indicators of

T×V are recentered in order to obtain the double mean-centered product indicators. The

double-mean-centered product indicators are denoted as (Y CXC
p )

C for the p = 1, . . . , 10

indicators in Figure 3.2.

Although the path diagram in Figure 3.2 still represents the statistical model fitted to

the data, it should not be interpreted as representing an actual data-generating model.

The T ×V factor is not an independently identified latent variable, nor are its indicators,
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so their factor loadings should not be interpreted as the causal effects of T × V on the

product indicators. Product indicators are calculated from other variables in the model,

and their loadings merely represent the portion of a product indicator’s variance associated

with the product of T with V , as opposed to the product of V with that indicator’s unique

factor. Thus, the “measurement” of a latent T × V factor is merely an ad hoc technique

for extracting the variance that is in common among all of the (double-mean-centered)

indicators, so that the effects of the latent T×V factor on actual indicators (i.e., indicators

of T ) can be estimated in order to assess metric invariance.

As in the LMS method, measurement invariance can be assessed for each indicator

by comparing the fit of an unconstrained model (i.e., the b and c parameters of only the

anchor indicators are fixed at zero) with the fit of a constrained model (i.e., the b and

c parameters of the studied indicator are additionally set to zero). Unlike the ad hoc

interpretation of the factor loadings for T ×V , the interpretation of cp is straightforward:

the degree to which the effect of latent factor T on observed variable Xp is moderated by

V .

3.2.2 Anchor-Selection Strategies

An anchor-selection strategy guides the decision about which particular indicators should

be used as anchors when assessing measurement invariance on indicator-level. The anchor

indicators are presumed to be DIF-free and are used to identify the latent construct (i.e.,

the model would not be identified if all indicators loaded on T and were regressed on V and

T×V , as well as estimating factor covariances). In RFA models, anchor indicators are not

regressed on V and T × V when assessing studied indicators for measurement invariance.

Several strategies for selecting anchor indicators have been proposed. Some strategies rely

on prior knowledge of DIF-free indicators or content experts’ advice, whereas empirical

strategies are based on preliminary indicator analysis. This study focused only on em-

pirical anchor-selection strategies. We first describe Woods’s (2009) rank-based strategy

because it involves fewer steps than Barendse et al.’s (2012) iterative procedure.

Rank-Based Strategy

The rank-based strategy introduced by Woods (2009) involves an easy procedure to select

anchor indicators. It stems from the idea that the value of each indicator’s test statistic

reflects the magnitude of DIF of that indicator. The proposed strategy is to assess all

indicators for measurement invariance using all other indicators as anchors. A test statistic

with df = 2 can be calculated to assess measurement invariance for one indicator at a

time. In the context of RFA, the fit of a constrained model can be compared with the

fit of several unconstrained models (one per indicator). In the constrained model, none

of the indicators is regressed on V or T × V , whereas in each unconstrained model, only

the studied indicator is regressed on V and T × V . After calculating a test statistic for

each indicator’s set of constraints, the indicators are ranked in ascending order based on
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their test statistics. The indicators with the smallest test statistics (i.e., weakest evidence

against measurement invariance) are selected as anchor indicators. The actual number of

indicators being selected as anchor indicators may be determined by factors such as test

length and sample size. Woods (2009) suggested that the number of indicators selected

as anchors should be approximately 10-20% of the total number of indicators.

Iterative Procedure

The iterative procedure was proposed by Barendse et al. (2012) as a method to detect vio-

lations of measurement invariance, but can also be applied to select anchor indicators (for

examples, see Candell & Drasgow, 1988; Hidalgo-Montesinos & Lopez-Pina, 2002; Kopf

et al., 2015a,b). Similar to the rank-based strategy, this procedure involves comparing the

fit of a constrained model with several unconstrained models. In the constrained model,

none of the indicators is regressed on V and T × V , whereas in an unconstrained model,

a studied indicator is regressed on V and T × V . Instead of choosing anchors among

the indicators with the weakest evidence against measurement invariance, all indicators

are initially considered eligible as anchors, and the indicators with the strongest evidence

against measurement invariance are removed from consideration. In the first run of the

iterative procedure, the indicator with the largest significant test statistic is considered

to function differently. This DIF is taken into account in the second iteration by allowing

for the regression of that indicator on V and T ×V in the constrained and unconstrained

models. The remaining indicators are assessed for measurement invariance, and again,

the indicator with the strongest significant evidence against measurement invariance is re-

moved from consideration. The constrained and unconstrained models are again modified

by regressing this indicator on V and T ×V before testing the remaining indicators. This

procedure continues until none of the remaining indicators has a significant test statistic,

or until half of the indicators are considered to function differently. Any remaining in-

dicators are considered DIF-free and used as anchor indicators when assessing all other

indicators (again3) for measurement invariance.

3.3 Study 1: Selecting Anchor Indicators

3.3.1 Method

In this study, we used simulated data to examine the suitability of the rank-based strat-

egy (Woods, 2009) and the iterative procedure (Barendse et al., 2012) to select anchor

indicators. The suitability of these strategies was assessed in the context of extending

3Recall that measurement invariance is assessed by comparing one constrained model per indicator to
the same unconstrained model (which constrains b and c only for anchor indicators). This is distinct from
the approach used by anchor-selection strategies, which compare one unconstrained model per indicator
to the same constrained model (which constrains b and c for all indicators). The former approach is
preferred for the assessment of measurement invariance to prevent inflating Type I error rates (Woods &
Grimm, 2011).
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RFA with both LMS and PI. In addition to the latent-interaction method (LMS vs. PI),

we manipulated anchor-selection strategy (rank-based with 20% or 70% as anchors, or

iterative procedure), group sample size (n = 50, 100, 150, or 200 per group), and size of

DIF (small or large), yielding a 2×3×4×2 factorial design with 1000 replications in each

condition. The relatively small group sample sizes were used because that is the situation

when RFA is preferred over MGCFA, which requires larger samples (Oort, 1998). Our

outcomes included risk of contamination (i.e., the percentage of replications in which the

anchor set contained at least one indicator exhibiting DIF) and degree of contamination

(i.e., the percentage of selected anchor indicators within each set that exhibited DIF), for

which we report the means in each condition.

Data Generation

Data were generated for two groups under different sample sizes. A scale of P = 10

indicators was considered, of which one indicator exhibited uniform DIF, one indicator

exhibited nonuniform DIF, and one indicator exhibited both types of DIF. This allowed

us to investigate the performance of the anchor-selection strategies under nonideal condi-

tions because a substantial degree of contamination in the anchor set was possible. The

following model was used to generate indicator scores of subject i in group y:

xi = τ y + λyti + δyεi (3.3)

where xi is a vector of 10 indicator scores, ti is subject i’s common factor score, and εi is a

vector of residual factor scores of subject i. Differences in common factor scores between

the groups were simulated by drawing common factor scores ti from a standard normal

distribution N (0, 1) for the reference group and from a normal distribution with a lower

mean and variance N (−0.5, 0.7) for the focal group, similar to (Barendse et al., 2010).

Residual factor scores εi in both groups were drawn from a standard normal distribution

N (0, 1).

The group-specific vector τ y includes 10 intercepts, and λy includes 10 common factor

loadings. We replicated the same magnitude of uniform and nonuniform DIF used by

(Barendse et al., 2010). Uniform DIF was introduced by imposing across-group differences

in intercepts. All intercepts were equal to 0, except for the intercept for the second and

fourth indicator in the focal group, which were equal to 0.5 in the small DIF-size conditions

and 0.8 in the large DIF-size conditions. All common factor loadings were equal to 0.8,

except for the factor loadings of the third and fourth indicator in the focal group, which

were equal to either 0.55 or 0.3 in the conditions with small and large DIF, respectively.

For each group g, the vector of residual factor loadings δy was set equal to
√

1− λ2
y so

the indicators had population variances equal to 1.
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Analytical Procedure

Using RFA with both LMS and PI, measurement invariance was assessed for each indicator

by comparing the fit of a constrained model with the fit of an unconstrained model. In the

constrained model, b and c (see Equation 3.2) are vectors containing zeros, whereas in the

unconstrained model, the elements in b and c corresponding to the studied indicator are

freely estimated. The difference in fit between the models was compared with a robust χ2

statistic with df = 2 (Satorra & Bentler, 2010), using α = .05 as criterion for significance.

In order to enable the estimation of the model parameters, group membership was modeled

as a latent factor with a single indicator whose factor loading was fixed at unity in each of

the models. The residual variance of the group membership indicator was fixed at zero in

the RFA models with PI (see Figure 3.2), whereas this residual variance was fixed at 0.001

in the RFA models with LMS to overcome identification problems. For both methods,

the common factor T was identified by fixing the factor loading of the first indicator at

unity. In RFA models with PI, the factor loading of the first indicator of the interaction

factor T × V was also fixed at unity.

When the iterative procedure was used select anchor indicators, indicators were itera-

tively assessed for measurement invariance. After each iteration, the indicator associated

with the largest significant χ2 test statistic was considered to function differently, and

this DIF was explicitly modeled in the following iteration. The procedure continued until

none of the remaining indicators was associated with a significant χ2 statistic, or until

half (i.e., five) of the indicators were considered to function differently. Any remaining

indicators considered DIF-free after the final iteration were selected for the anchor set.

If the χ2 statistic of one or more of the studied indicators could not be determined (for

instance, because of convergence problems), the procedure was ended and indicators con-

sidered DIF-free in the previous iteration were selected as anchor indicators. With these

criteria, the iterative procedure could select 50–100% of the total number of indicators as

anchors.

With the rank-based strategy, all indicators were assessed for measurement invariance

and ranked in ascending order based on their χ2 statistics. Then, the indicators with the

lowest χ2 statistic were selected for the anchor set. We examined two versions of the rank-

based strategy, one in which 20% of the total number of indicators was selected as anchor

indicator, as suggested by Woods (2009). In order to assess the effect of using a larger

anchor set, and to fairly compare the results of the rank-based strategy to the iterative

procedure by having a larger anchor set, we also examined the rank-based strategy when

selecting seven indicators (70% of the total number of indicators) with the lowest statistic.

In each condition, the risk of contamination was determined, which represents the

percentage of replications that yielded an anchor set containing at least one indicator with

DIF. In addition to the risk of contamination, we evaluated the degree of contamination

in the anchor set, which is the percentage of indicators exhibiting DIF in the anchor set.

For both risk and degree of contamination, we report the mean across replications in each

condition. Because the iterative procedure may result in varying lengths of anchor sets,
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Table 3.1: Percentage of replications us-
ing LMS with invalid results in Study 1

Percentage of invalid results
n Small DIF Large DIF
50 23.10 22,50
100 18.00 15.50
150 19.50 17.40
200 24.40 26.30

Note. The total number of replications in
each condition was 1000. Only the per-
centages of invalid results when using LMS
were reported in this table, because none of
the replications with product indicators ob-
tained invalid results.

the average count (i.e., the average number of indicators with DIF in the anchor set) of

this selection strategy was calculated. The RFA models with LMS were fit with Mplus

(version 7; L. K. Muthén & Muthén, 2012) via the R package MplusAutomation (version

0.7; Hallquist & Wiley, 2018). The RFA models with PI were fit with the R package

lavaan (version 0.5-23; Rosseel, 2012). Results were analyzed with R (version 3.3.2; R

Core Team, 2016).

3.3.2 Results

After conducting the analysis for each of the conditions, we found that the LMS method

did not always produce valid results due to convergence problems. The percentages of

replications with invalid results in each condition with the LMS method are represented in

Table 3.1. Across all conditions, convergence problems occurred in 20.84% of all replica-

tions using LMS. The convergence problems did not seem to be associated with either the

sample size of the groups or the size of DIF. Among the cases with convergence problems,

one or more indicators could not be assessed for measurement invariance because the χ2

statistic(s) for the corresponding indicator(s) could not be calculated. When such prob-

lems occurred with the LMS method using the rank-based strategy, the results of that

replication in that condition were not included in the analysis, because an unambiguous

decision about anchor indicators could not be made in practice. Similarly, when conver-

gence problems occurred with the LMS method in the first run of the iterative procedure,

the replication in that condition was not included in the analysis.

In contrast, each of the models converged for every single replication among all condi-

tions using PI. Because the results of the LMS method were based on a smaller number of

replications, the validity of comparing results between the two methods could be consid-

ered questionable (e.g., if the subsample of replications for which LMS had convergence

problems was not a random sample from all 1000 replications, at least with respect to

our outcomes of interest). Therefore, we also calculated results for the PI method using
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Table 3.2: Results of the anchor-selection strategies for each of the conditions in Study 1

Average risk of contamination Average degree of contamination
Method Size of DIF n RB(20%) RB (70%) IP RB(20%) RB (70%) IP
LMS Small 50 6.11 62.68 88.30 3.06 (0.061) 9.23 (0.646) 14.14 (1.203)

100 1.46 36.83 73.05 0.73 (0.015) 52.26 (0.368) 11.39 (0.973)
150 0.62 23.35 55.78 0.31 (0.006) 3.34 (0.234) 9.43 (0.826)
200 0.13 14.68 43.52 0.07 (0.001) 2.10 (0.147) 8.14 (0.735)

Large 50 0.52 24.52 52.77 0.26 (0.005) 3.52 (0.247) 8.77 (0.764)
100 0.12 4.26 26.04 0.06 (0.001) 0.61 (0.043) 5.91 (0.556)
150 0.00 0.85 17.68 0.00 (0.000) 0.12 (0.008) 4.64 (0.452)
200 0.95 0.95 20.90 0.47 (0.009) 0.14 (0.009) 5.93 (0.585)

PI Small 50 5.80 65.70 89.50 2.90 (0.058) 9.66 (0.676) 12.33 (0.995)
100 2.00 43.40 75.30 1.00 (0.020) 6.20 (0.434) 9.53 (0.753)
150 0.40 31.80 57.30 0.20 (0.004) 4.54 (0.318) 7.29 (0.573)
200 0.30 21.30 43.70 0.15 (0.003) 3.04 (0.213) 5.54 (0.437)

Large 50 2.90 31.80 49.60 1.45 (0.029) 4.63 (0.324) 6.38 (0.506)
100 0.20 7.30 11.00 0.10 (0.002) 1.04 (0.073) 1.42 (0.111)
150 0.10 2.20 0.50 0.05 (0.001) 0.31 (0.022) 0.07 (0.005)
200 0.00 0.40 0.20 0.00 (0.000) 0.06 (0.004) 0.02 (0.002)

Note. The average count (i.e., the average number of DIF indicators in the anchor set) is reported
in parentheses alongside the average degree (percentage) of contamination. LMS = latent moderated
structural equations; PI = product indicators; RB (20%) = rank-based strategy selecting 20% of all
indicators as anchors; RB (70%) = rank-based strategy selecting 70% of all indicators as anchors; IP
= iterative procedure. Risk of contamination = percentage of replications in which the anchor set
contained at least one indicator exhibiting DIF; Degree of contamination = percentage of indicators
exhibiting DIF in the anchor set averaged over all replications.

only the replications for which LMS converged. We found the same pattern of results

when comparing methods using only the replications that had no convergence problems,

so below we present results using all available converged replications in each condition.

Risk of Contamination

Table 3.2 shows the risk and degree of contamination of the selection strategies within

each condition. Across all conditions, the rank-based strategy selecting 20% of the total

number of indicators as anchors had the lowest risk of contamination compared to the

rank-based strategy selecting 70% of the indicators as anchors and the iterative procedure.

The rank-based strategy selecting 20% of the total number of indicators as anchors had a

risk of contamination of 0.00% to 6.11%, whereas the rank-based strategy selecting 70%

of the indicators as anchors had a risk of contamination ranging from 0.40% to 65.70%.

The selection strategy with the highest risk of contamination in each of the conditions

was the iterative procedure, except in conditions using PI where the size of DIF was large

and the sample size was either 150 or 200. Among all conditions, the iterative procedure

had a risk of contamination of 0.20% to 89.50%. The risk of contamination generally

decreased with sample size and size of DIF for each selection strategy. For example, the

risk of contamination for the iterative procedure with small DIF and n = 200 was less

than half of the risk of contamination with small DIF when n = 50.

38



Using Restricted Factor Analysis to Assess Measurement Invariance

Table 3.3: Average number of indicators selected as anchors in the
iterative procedure

Number of indicators in the anchor set
Size of DIF n LMS PI
Small 50 8.112 7.897

100 7.878 7.671
150 7.739 7.476
200 7.631 7.350

Large 50 7.679 7.415
100 7.460 7.034
150 7.366 6.929
200 7.479 6.920

Note. LMS = latent moderated structural equations; PI = product indi-
cators. Ideally, only seven indicators would be included in the anchor set
(i.e., the seven indicators without DIF in the population).

Degree of Contamination

Similar to the risk of contamination, the degree of contamination typically decreased with

sample size and size of DIF for each selection strategy. The rank-based strategy selecting

20% of the indicators as anchors had the lowest degree of contamination in the majority

of the conditions, with an overall degree of contamination of 0.68%. The only condition

in which the rank-based strategy selecting 70% of the indicators as anchors had a lower

degree of contamination was when using LMS with a large size of DIF and a sample size

of n = 200. In this condition, the rank-based strategy selecting 20% of the indicators

as anchors yielded a degree of contamination of 0.47%, whereas the rank-based strategy

selecting 70% as anchor indicators had a degree of contamination of 0.14%. In all other

conditions, the rank-based strategy selecting 20% of the indicators as anchors performed

better than the two other selection strategies with respect to the degree of contamination.

In addition, the iterative procedure had the highest degree of contamination in the major-

ity of the conditions. To ensure a fair comparison between the anchor-selection strategies

on the outcome variables, the average number of anchor indicators selected by the itera-

tive procedure for each sample size and size of DIF condition is reported in Table 3.3. The

average number of indicators selected as anchors by the iterative procedure was typically

close to seven (ranging from 6.920 to 8.112 across conditions), which was comparable to

the number of indicators selected by the rank-based strategy in the 70% condition.

3.4 Study 2: Assessing Measurement Invariance

3.4.1 Method

In Study 2, we evaluated the Type I error rates and power of the LMS and PI methods

in RFA models to detect violations of scalar and metric invariance. In addition to the
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latent-interaction method (LMS vs. PI), we again manipulated the reference and focal

group sample sizes (n = 50, 100, 150, or 200 per group) and the size of DIF (small or

large), but not anchor-selection strategy. Because Study 1 showed that the rank-based

strategy selecting 20% of the total number of indicators as anchors yielded the lowest risk

and degree of contamination in the anchor set, only two out of 10 indicators were used

as anchors in Study 2. But we manipulated an additional factor (known vs. unknown

anchors). The performance of LMS and PI was assessed in the best-case scenario; that

is, two known DIF-free indicators (Indicators 9 and 10) were used as anchor indicators

and were not assessed for measurement invariance. This best-case scenario always yielded

a DIF-free anchor set. By comparison, we also used an empirical-selection scenario, in

which the two anchor indicators selected by the rank-based strategy from Study 1 were

used as anchors to assess all other indicators for measurement invariance. This yielded a

2× 3× 4× 2 factorial design, using the same random-number seeds to generate the same

1000 data sets in each sample-size and DIF-size condition of Study 1.

Analytical Procedure

Measurement invariance was assessed for each indicator by comparing the fit of an uncon-

strained model with the fit of several constrained models (one per studied indicator) using

a robust χ2 statistic with df = 2 (Satorra & Bentler, 2010). In the unconstrained model,

all elements in b and c were freely estimated, except for the elements corresponding to

the anchor indicators. For all studied indicators, a constrained model was fitted, in which

the corresponding elements in b and c for the studied indicator were fixed at zero. The

same identification constraints were used as in Study 1. An indicator was flagged as an

indicator with DIF when the χ2 statistic was significant at α = .05.

Power and Type I error rates were calculated across all conditions. Power reflects

the proportion of replications in which the truly DIF indicators were correctly flagged

as indicator with DIF. The Type I error rate represents the proportion of replications

in which there was at least one Type I error (i.e., one of the DIF-free indicators was

incorrectly flagged as indicator with DIF). Agresti-Coull confidence intervals 4 (Agresti

& Coull, 1998) around the observed Type I error rates were calculated to evaluate the

significance of inflation. Power was calculated for each type (uniform, nonuniform, and

both) and magnitude (small and large) of DIF separately. The models were fit with Mplus

(version 7; L. K. Muthén & Muthén, 2012) via the MplusAutomation package (version

0.7; Hallquist & Wiley, 2018) in the LMS conditions and lavaan (version 0.5-23; Rosseel,

2012) in the PI conditions, and results were analyzed with R (version 3.3.2; R Core Team,

2016).

4Agresti-Coull confidence intervals were obtained by first defining J̃ = J + z2, where J is the total
number of replications in a single condition and z the 1−α/2 quantile of a standard normal distribution.
Then, the midpoint for E Type I errors is determined by p̃ = 1

J̃
(E + z2

2
). The Agresti-Coull confidence

interval around the Type I error rate is given by p̃±
√

p̃

J̃
(1− p̃).
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Table 3.4: Percentage of replications with invalid results in Study 2 for
the best-case and empirical scenarios

Percentage of invalid results
Method Size of DIF n Best-case Empirical
LMS Small 50 21.50 24.40

100 18.10 19.70
150 26.50 22.50
200 31.40 26.40

Large 50 21.50 24.10
100 18.00 18.30
150 25.60 22.60
200 32.50 28.90

Note. The total number of replications in each condition was 1000. Only
the percentages of invalid results when using LMS were reported in this ta-
ble, because none of the replications with product indicators obtained invalid
results.

3.4.2 Results

After performing the analysis for each of the conditions, we again observed a number

of replications with invalid results when using the LMS method. Table 3.4 shows the

percentages of replications with invalid results among the conditions for the best-case

scenario and empirical scenario. On average across all best-case scenario conditions,

invalid results were obtained in 24.39% of all replications using LMS. For each of these

replications, the problem involved a non-converging unconstrained model. Due to this

complication, a χ2 statistic could not be calculated for any of the indicators. The results

of these replications in the best-case scenario were not included in the analysis because in

practice, a researcher would not be able to assess measurement invariance in this situation

using RFA. The empirical scenario obtained invalid results in 23.36% of all replications

averaged across the conditions with LMS. These replications were excluded from the

analysis for this scenario because in practice, a decision could not be made regarding the

selection of anchor indicators, or measurement invariance could not be assessed due to a

non-converging unconstrained model.

The PI method did not produce any convergence problems. All models converged for

every replication in each condition. Because the analysis of the LMS method included

a smaller number of replications, we again compared results between the two methods

using only the replications for which LMS converged. The same pattern of results was

found for this smaller set of replications, so we present results using all available converged

replications in each condition.
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Table 3.5: Power of the LMS and PI method under each
condition of the best-case scenario in Study 2

Small DIF Large DIF
Type of DIF n LMS PI LMS PI
Uniform 50 .828 .737 .932 .981

100 .960 .995 .977 1.000
150 .973 1.000 .991 1.000
200 .994 1.000 .991 1.000

Nonuniform 50 .162 .108 .535 .464
100 .341 .218 .834 .839
150 .544 .358 .882 .973
200 .672 .493 .825 .996

Combination 50 .660 .710 .925 .977
100 .947 .994 .966 1.000
150 .980 1.000 .974 1.000
200 .993 1.000 .982 1.000

Note. LMS = latent moderated structural equations; PI =
product indicators; small uniform DIF = a difference of 0.5 in
intercepts across groups; large uniform DIF = a difference of 0.8
in intercepts across groups; small nonuniform DIF = a difference
of 0.25 in factor loadings across groups; large nonuniform DIF
= a difference of 0.5 in factor loadings across groups.

Best-Case Scenario

Table 3.5 shows the power of LMS and PI across conditions in the best-case scenario

(always a DIF-free anchor set). In the majority of the conditions, the PI method obtained

a higher power than LMS, although the differences were quite small. Exceptions included

the power to detect small nonuniform DIF, which was higher for LMS than for PI. In

contrast, large nonuniform DIF was more often detected by PI than by LMS. Power

generally increased with sample size for all types and sizes of DIF. Relative to uniform

DIF, nonuniform DIF was more difficult to detect, which is consistent with previous

research (Barendse et al., 2010). Both LMS and PI especially yielded low power for

small nonuniform DIF. With a sample size of n = 50, for example, small nonuniform

DIF was only detected in 10.80% to 16.20% of all replications. Moreover, the power to

detect indicators exhibiting both uniform and nonuniform DIF was in most conditions

comparable to the power for uniform DIF.

Type I error rates for the LMS method in the best-case scenario ranged between .080

and .200 (see, Table 3.6). In each of the conditions, the error rates were significantly larger

than the nominal level of significance (5%). The Agresti-Coull confidence intervals for

the error rates in each condition with LMS were above the nominal level of significance.

The PI method yielded Type I error rates ranging from .047 to .068. When n = 100,

the error rates were above the nominal level of significance, and the Agresti-Coull lower

confidence limits for these error rates were just above the nominal level of significance. In
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Table 3.6: Type I error rates of LMS and PI under each condition of
the best-case scenario in Study 2

Type I error [95% CI]
Size of DIF n LMS PI
Small 50 .088 [.070, .110] .058 [.045, .074]

100 .129 [.108, .154] .068 [.054, .085]
150 .151 [.127, .179] .051 [.039, .067]
200 .197 [.169, .228] .047 [.035, .062]

Large 50 .080 [.063, .101] .059 [.046, .075]
100 .133 [.111, .158] .069 [.055, .087]
150 .149 [.125, .177] .051 [.039, .067]
200 .200 [.167, .227] .049 [.037, .064]

Note. LMS = latent moderated structural equations; PI = product in-
dicators. Bold font indicates the lower 95% confidence limit exceeds the
nominal 5% alpha level, implying the Type I error rate is statistically sig-
nificantly inflated. The square brackets contain Agresti-Coull confidence
intervals around the error rates.

the remaining conditions, error rates were slightly above or below α = .05. However, the

error rates for these conditions were not significantly smaller or larger than .05 because

Agresti-Coull confidence intervals for the Type I error rates in conditions with n = 50,

n = 150, and n = 200 included the nominal level of significance. Because there is no

reason to expect only the n = 100 condition to yield (barely) inflated error rates, we

assume this only reflects Monte Carlo sampling error.

Empirical Scenario

Table 3.7 shows the power of LMS and PI across conditions in the empirical scenario in

which two anchor indicators were selected with the rank-based strategy. The pattern of

results found for the empirical scenario was comparable to the best-case scenario. For

example, similar to the best-case scenario, the PI method had more power to detect DIF

than LMS in the majority of the conditions, but the differences were generally small.

Again, a noticeable exception was the power to detect small nonuniform DIF, which was

higher for LMS than for PI. With a sample size of n = 50, small nonuniform DIF was

only detected by PI in 5.70% of all replications.

Type I error rates for the LMS method in the empirical scenario ranged from .077 to

.247 (see Table 3.8). As in the best-case scenario, each of the error rates of LMS was

significantly larger than the nominal level of significance. The Agresti-Coull confidence

intervals for these error rates were entirely above the nominal level of significance. By

comparison, the Type I error rates for the PI method ranged from .022 to .048. In the

condition with large DIF and a sample size of n = 50 or n = 100, the Agresti-Coull

confidence interval around the error rate included the nominal level of significance. The

confidence intervals of the other conditions were all below α = .05.

43



Chapter 3

Table 3.7: Power of the LMS and PI method under each
condition of the empirical scenario in Study 2

Small DIF Large DIF
Type of DIF n LMS PI LMS PI
Uniform 50 .718 .560 .906 .949

100 .963 .979 .969 .998
150 .983 1.000 .994 .999
200 .997 1.000 .992 1.000

Nonuniform 50 .168 .057 .573 .422
100 .367 .156 .859 .825
150 .563 .288 .894 .980
200 .696 .414 .834 .997

Combination 50 .577 .537 .920 .948
100 .949 .977 .963 .999
150 .974 .999 .984 1.000
200 .997 1.000 .997 1.000

Note. LMS = latent moderated structural equations; PI =
product indicators; small uniform DIF = a difference of 0.5 in
intercepts across groups; large uniform DIF = a difference of 0.8
in intercepts across groups; small nonuniform DIF = a difference
of 0.25 in factor loadings across groups; large nonuniform DIF
= a difference of 0.5 in factor loadings across groups.

Table 3.8: Type I error rates of LMS and PI under each condition
of the empirical scenario in Study 2

Type I error [95% CI]
Size of DIF n LMS PI
Small 50 .077 [.060, .098] .022 [.014, .033]

100 .105 [.085, .128] .026 [.018, .038]
150 .129 [.107, .155] .023 [.015, .034]
200 .247 [.217, .280] .035 [.025, .048]

Large 50 .083 [.065, .105] .048 [.036, .063]
100 .106 [.087, .130] .041 [.030, .055]
150 .123 [.101, .148] .032 [.023, .045]
200 .231 [.201, .263] .032 [.023, .045]

Note. LMS = latent moderated structural equations; PI = product
indicators. Bold font indicates the lower 95% confidence limit exceeds
the nominal 5% alpha level, implying the Type I error rate is statisti-
cally significantly inflated. The square brackets contain Agresti-Coull
confidence intervals around the error rates.
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3.5 Discussion

The present study concerned assessing measurement invariance using RFA models. One

of the aims of this study was to compare LMS with PI, an alternative method to model

latent interactions. We examined whether this method can minimize the inflated Type I

error rates obtained with LMS when assessing measurement invariance using RFA models.

Woods (2009) argued that the inflated Type I error rates of LMS might be caused by a

contaminated set of anchor indicators. Hence, prior to the comparison between the two

methods to model latent interactions, we investigated which anchor-selection strategy is

most suitable when assessing measurement invariance using RFA models.

The findings of Study 1 indicate that Wood’s (2009) rank-based strategy selecting

a small number of indicators as anchors is more suitable than an iterative procedure of

removing indicators with DIF from the anchor set (Barendse et al., 2012). The rank-

based strategy selecting 20% of the total number of indicators as anchors consistently

yielded lower risk and degree of contamination and performed well across all sample

sizes. These results are in line with previous studies (M. Wang & Woods, 2017; Woods,

2009), which showed that the rank-based strategy frequently obtains a DIF-free anchor

set. The most striking finding of Study 1 is perhaps the high risk of contamination

yielded by the rank-based strategy when selecting 70% of the total number of anchor

indicators and by the iterative procedure. These selection strategies allow for larger

anchor sets, which generally display a higher risk of contamination than smaller anchor

sets (Kopf et al., 2015b). It is also worth noting that other promising empirical anchor-

selection strategies have been identified in the IRT literature that could also generalize

well to RFA (or multigroup CFA)—namely, the forward mean test-statistic threshold and

forward mean p-value threshold methods (Kopf et al., 2015a)—but their implementation

is not as straight-forward as the rank-based strategy, which yielded excellent results even

with small samples. Future research could focus on identifying optimal anchor-selection

strategies for factor analysis models in various contexts (e.g., MGCFA).

In Study 2, we compared the LMS and PI methods to model latent interactions in

RFA models. The main conclusion is that PI obtained similar power but lower Type

I error rates compared to LMS. In line with previous studies, severely inflated Type I

error rates were observed in conditions with LMS (Barendse et al., 2010, 2012; Woods &

Grimm, 2011). Although it has been argued that the inflated Type I error rates obtained

with LMS might be caused by a contaminated set of anchor indicators (Woods, 2009),

our results contradict this possible explanation. The severely inflated error rates were

not only observed in the empirical scenario in which contamination of the anchor set was

allowed, but also in the best-case scenario with a DIF-free anchor set. This suggests that a

contaminated anchor set may not fully account for the frequently observed inflated error

rates when using LMS. In response to a reviewer’s suggestion to increase the external

validity of our Monte Carlo design, we allowed factor variances to differ across groups.

This could explain why our Type I error rates under LMS were larger than those reported
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by Barendse et al. (2010, 2012) and Woods & Grimm (2011), given further support by

Chun et al. (2016) recent demonstration that unequal factor variances yield more inflated

Type I error rates than equal factor variances when using LMS.

In contrast, the Type I error rates observed in conditions with PI were all close to the

nominal level of significance in the best-case scenario of a DIF-free anchor set, and slightly

below the nominal level of significance when using empirically selected anchors. Hence,

the results of the current study indicate that the PI method can minimize the inflated

Type I error rates obtained with LMS. We suspect a possible explanation for PI’s better

control of errors could be the explicitly estimated covariance between the latent factor

T and interaction T × V , which is not a free parameter in LMS estimation algorithms

(A. Klein & Moosbrugger, 2000). This warrants further investigation, but is beyond the

scope of the current investigation.

Corresponding to findings of previous studies (Barendse et al., 2010, 2012), we found

that nonuniform DIF was more difficult to detect than uniform DIF. Power to detect

nonuniform DIF was especially low in conditions with a small sample size. This finding is

concerning to some extent, because the present investigation included a best-case scenario

of a DIF-free anchor set. As opposed to simulation studies where the indicators with true

DIF are known, in practice there may seldom be any reliable prior knowledge about DIF

in the indicators of a scale. The results of the empirical scenario, however, show that

empirically selecting anchor indicators using the rank-based strategy selecting 20% of the

total number of indicators has minor impact on the assessment of measurement invariance.

The power to detect DIF using an empirically selected anchor set with this strategy was

comparable to the power observed in the best-case scenario. A possible explanation for

this minor impact is that the selection strategy used in the empirical scenario yielded a

remarkably low risk and degree of contamination in Study 1. Future research could more

extensively investigate the consequences of different anchor-selection strategies on power

and Type I error in the context of RFA.

An additional limitation of the LMS method brought to light by the present study

is the large proportion of invalid results due to convergence problems. These conver-

gence problems point to an important practical limitation of the LMS method, because

in practice, a researcher would be unable to make a decision about anchor indicators or

to assess indicators for measurement invariance. Moreover, this study showed that the

PI method to model latent interactions in RFA models generally performs at least as

well as the LMS method for the purpose of assessing measurement invariance. Because

RFA extended with LMS can only be applied in the commercial SEM software Mplus

(L. K. Muthén & Muthén, 2012), knowing that PI is a viable alternative to LMS provides

more researchers with the opportunity to assess metric invariance using RFA with any

SEM software package. However, several aspects of the use of PI are yet unclear, for

example, which indicators should serve as product indicators for the interaction factor.

There are various possibilities regarding the formation of product indicators, among oth-

ers are using only the studied indicator, only the anchor indicators, the anchor indicators
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and the studied indicator, or all indicators (the latter of which was employed in the cur-

rent study). Although this study showed promising results, more research is necessary to

determine the optimal use of PI in RFA models for assessing measurement invariance.
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The Impact of Unmodeled

Heteroskedasticity on Assessing

Measurement Invariance

Abstract

This study compared two single-group approaches for assessing measurement invariance

across an observed background variable: restricted factor analysis (RFA) and moderated

nonlinear factor analysis (MNLFA). In MNLFA models, heteroskedasticity can be ac-

counted for by allowing the common-factor variance and the residual variances to differ

as a function of the background variable. In contrast, RFA models assume homoskedas-

ticity of both the common factor and the residuals. We conducted a simulation study

to examine the performance of RFA and MNLFA under common-factor and residual

homoskedasticity and heteroskedasticity. Results suggest that MNLFA and RFA with

product indicators outperform RFA with latent moderated structural equations in condi-

tions with heteroskedastic common factors, and MNLFA outperforms RFA in conditions

with residual heteroskedasticity. We provide an explanation for the robustness of RFA

with product indicators to violations of common-factor homoskedasticity.

Based on: Kolbe, L., Jorgensen, T. D., & Molenaar, D. (2021). The impact of unmodeled

heteroskedasticity on assessing measurement invariance in single-group models. Structural

Equation Modeling, 28 (1), 82–98. doi: 10.1080/10705511.2020.1

766357
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4.1 Introduction

Research in the social and behavioral sciences commonly depends upon measures of con-

structs that are not directly observable. In order to meaningfully compare measurements

of latent constructs across individuals or groups, measurement invariance is required.

Measurement invariance is formally defined as

f1(X|T, V ) = f2(X|T ), (4.1)

where f1(·) and f2(·) denote probability distributions, X is a set of observed variables

(also referred to as indicators in this chapter) measuring the latent construct of interest

T , and V is a set of background variables that are a potential source of a violation

of measurement invariance (Mellenbergh, 1989). If measurement invariance holds, the

measurement X depends only on the latent construct T and is invariant with respect to

other variables V . However, if measurement invariance does not hold (i.e., f1 ̸= f2), the

measurement X depends not only on the latent construct T but also on V . With a lack of

measurement invariance, individuals with an equal standing on the latent construct may

have different expected values of X, and differences in the observed-score means may not

represent true differences in T . Hence, before comparing measures of a latent construct,

it is important to test the assumption of measurement invariance.

The majority of studies about measurement invariance involve omnibus tests for all

of a particular type of measurement parameter (i.e., factor loadings or intercepts; see

Drasgow & Kanfer, 1985; Horn & McArdle, 1992; Finch & French, 2018; Marsh, 1994),

as described below. But much less advice is available on how researchers should proceed

when they reject an omnibus null hypothesis. Byrne et al. (1989) introduced the idea that

partial invariance is sufficient to compare groups on their common-factor distributions.

In the absence of a strong theory to specify a priori partial-invariance models to be

tested, establishing partial invariance requires exploring which indicators’ measurement

parameters differ as a function of V . In some cases (e.g., many groups, no obvious reference

group), recently proposed alignment (B. Muthén & Asparouhov, 2018; Marsh et al., 2018)

or projection methods (Deng & Yuan, 2016; Jiang et al., 2017) may offer a promising way

to compare latent distributions without explicitly locating violations of invariance. But

when comparing very specifically chosen groups (e.g., men and women, clinical and healthy

populations), it might be of great substantive interest to discover and explain why some

indicators function differently across groups (or across a continuous V such as age), with

important implications for how a scale or test is used in practice. When researchers have

such interest, an analysis of indicator-level measurement invariance or differential item

functioning (DIF)—as is more frequently discussed in the context of item-response theory

(IRT) than structural equation modeling (SEM)1—could be indispensably informative.

A commonly used method to assess measurement invariance with respect to a cate-

1Exceptions include Suh (2015); Masyn (2017); Kolbe & Jorgensen (2019).

50



The Impact of Heteroskedasticity on Assessing Measurement Invariance

gorical variable V is multiple-group confirmatory factor analysis (MGCFA; Vandenberg

& Lance, 2000). In MGCFA, a confirmatory factor model is simultaneously estimated

for each group in which the construct T is modeled as a common factor with multiple

indicators X, and invariance constraints are imposed on the parameter estimates in or-

der to assess increasingly restrictive levels of measurement invariance (Meredith, 1993).

Invariance can be tested for multiple factors without loss of generality, but we focus on

the context of a single-factor model (Mellenbergh, 1994) to keep the discussion concise.

The least restrictive level of invariance, called configural invariance, implies that the same

factor structure holds across different levels of V . A more restrictive level of invariance

is metric invariance, reflected by equality of the factor loadings across different levels of

V . Yet more restrictive is scalar invariance, which posits that in addition to the factor

loadings, each indicator’s intercept is also equal across V . Additionally constraining resid-

ual variances (i.e., the variance of each indicator’s unique factor) to equality across V is

referred to as strict invariance.

An alternative method for evaluating measurement invariance with respect to a cate-

gorical variable V is restricted factor analysis (RFA; Oort, 1992, 1998). RFA models are

single-group confirmatory factor models in which T is modeled as a common factor with

multiple measures X as indicators, and V is included as an exogenous variable that freely

covaries with T . To test whether scalar invariance is violated with respect to a particular

X, X is regressed on V , and that slope represents a difference in intercepts of X across

levels of V . RFA is thus readily suited to assess (violations of) scalar invariance, but as-

sessing metric invariance requires estimating an interaction effect of T with V on X (i.e.,

different loadings across V implies that V moderates the effect of T on X). This interac-

tion can be modeled in several ways, including the distribution-analytic approach called

latent moderated structural equations (LMS; Barendse et al., 2010). Although RFA with

LMS has high power to detect violations of scalar and metric invariance, several stud-

ies observed severely inflated Type I error rates (Barendse et al., 2010, 2012; Woods &

Grimm, 2011). An alternative to LMS for estimating the interaction effect of T with V

on X is the product indicator (PI; Kenny & Judd, 1984) method. Studies showed that

the PI method generally performs well with respect to bias, precision, power, and Type

I error rates in the context of modeling latent interactions in SEM (Henseler & Chin,

2010; Lin et al., 2010; Little et al., 2006; Marsh et al., 2004). Most recently, Kolbe &

Jorgensen (2018) proposed the use of PI in RFA models to assess metric invariance. A

simulation study on RFA with PI has shown that this method obtains similar power but

more acceptable Type I error rates than LMS (Kolbe & Jorgensen, 2019).

There are several advantages of RFA over MGCFA. As the data are aggregated over

subsamples in RFA models, RFA may provide higher power than MGCFA to detect viola-

tions of measurement invariance (Barendse et al., 2012). Another advantage of RFA over

MGCFA is that it easily accommodates tests for measurement invariance with respect to

a continuous variable V . In MGCFA models, testing for measurement invariance with

respect to a continuous variable would require the continuous variable V to be catego-
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rized, which can lead to a loss of power and measurement reliability (MacCallum et al.,

2002). However, RFA comes with the additional assumptions of equal common-factor

variances across different levels of V (i.e., common-factor homoskedasticity) and equal

indicators’ residual variances across different levels of V (i.e., residual homoskedasticity).

The robustness of RFA to common-factor heteroskedasticity is relatively unexplored (see

Chun et al., 2016; Harpole, 2015, for exceptions). Chun et al. (2016) studied the effect

of common-factor heteroskedasticity with a categorical V on assessing measurement in-

variance using multiple-indicator multiple-cause (MIMIC) models, which are statistically

equivalent to RFA models. Their study showed that Type I error rates were inflated

as a result of common-factor heteroskedasticity. A more extensive study is required to

examine whether the performance of RFA (or MIMIC) varies as a function of different

magnitudes of factor-variance differences across V . The robustness of RFA to residual

heteroskedasticity has also not yet been explored in depth, however, it has been argued

that residual heteroskedasticity has similar impacts as common-factor heteroskedasticity

(Meredith & Teresi, 2006).

When common-factor variances are suspected to differ with V , moderated nonlinear

factor analysis (MNLFA) models may be a more suitable alternative to RFA for assessing

measurement invariance. MNLFA was developed by Bauer & Hussong (2009, but see the

earlier work by e.g., Neale, 1998; Neale et al., 2006; Mehta & Neale, 2005) and described as

a tool for measurement invariance assessment by Bauer (2017). Similar to RFA, MNLFA

does not require dividing the sample into subsamples by V , therefore also allowing for

a continuous V . In MNLFA models, measurement invariance is examined in a single-

group confirmatory factor model by means of parameter moderation. The variable V

may alter the values of any subset of parameters including the common-factor variance

and residual variances of the indicators X. As such, MNLFA does not require assuming

common-factor or residual homoskedasticity with respect to V . The use of MNLFA for

assessing measurement invariance has been evaluated with empirical data (see Bauer,

2017; Hildebrandt et al., 2016), and a simulation with categorical indicators showed that

it performs well in large samples (e.g., N = 2000) when combined with a regularization

approach (Bauer et al., 2020). However, its statistical properties (e.g., Type I error rates

and power) have not yet been compared to other methods or investigated in simulation

studies including conditions with small samples and continuous indicators.

The aim of the present study was to compare the Type I error rates and power of

different single-group methods to test for measurement invariance with respect to a cate-

gorical or a continuous V . We conducted a Monte Carlo simulation study to evaluate the

performance of RFA and MNLFA under common-factor and residual homoskedasticity

and heteroskedasticity. The current study built on earlier work by Kolbe & Jorgensen

(2019) for RFA models—as well as by Chun et al. (2016) for MIMIC models—but more

extensively examined the impact of heteroskedasticity of both the common-factor and

indicators’ residuals on assessing metric and scalar invariance. That is, we investigated

different magnitudes and directions of common-factor and residual variance differences,
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and we simulated conditions with either a categorical or continuous variable V . Addi-

tionally, we contrasted not only LMS and PI within RFA models, but we also contrasted

RFA with MNLFA models.

Following the results of previous studies (Chun et al., 2016; Kolbe & Jorgensen, 2019;

Harpole, 2015), common-factor heteroskedasticity was hypothesized to inflate Type I er-

rors using RFA with LMS to assess measurement invariance. We expected no impact of

common-factor heteroskedasticity using RFA with PI because Kolbe & Jorgensen (2019)

did not observe inflated Type I error rates despite common-factor variances being unequal.

Appendix I offers an explanation for the robustness of the PI approach to violations of

common-factor homoskedasticity. Although residual heteroskedasticity appears relatively

unexplored in the context of RFA (or MIMIC), we held similar hypotheses about its in-

flation of Type I error rates, although we were unsure whether its impact would be as

severe as that of common-factor heteroskedasticity.

The remainder of the chapter is organized as follows. First, we briefly describe RFA

with LMS and PI, followed by a description of the MNFLA method for assessing mea-

surement invariance. Then we present a Monte Carlo simulation study to compare these

methods under various conditions. The chapter concludes with advice for applied re-

searchers and suggestions for future research.

4.2 Background

We will start by considering the general form of a single-group confirmatory factor model.

The basic principle of single-group models is that a set of common factors is modeled as

being drawn from a single multivariate-normal distribution with a constant mean vector

and covariance matrix for the entire population from which data were sampled. As men-

tioned above, we focus on a single-factor model. In a single-group model, the construct

of interest T is operationalized as a latent factor with multiple observed measures X as

indicators. Assuming continuous indicators X, the general form of a single-group model

may be written as

xi = τ +Λti + εi, (4.2)

where xi is a P × 1 vector of P observed indicator scores for person i, τ is a P × 1 vector

of indicator intercepts, Λ is a P × 1 vector of factor loadings, ti is the common-factor

score for person i and εi is a P × 1 vector of residual scores for person i.

If measurement invariance holds with respect to a background variable V , the observed

indicators X are affected directly only by the latent construct T , and only indirectly by

V via T . Metric invariance requires equal Λ with respect to V , and scalar invariance

additionally requires equal intercepts τ . In order to evaluate metric and scalar measure-

ment invariance in a single-group model, the model for continuous indicators X can be
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rewritten as

xi = τ i +Λiti + εi

= (τ 0 + bvi) + (Λ0 + cvi)ti + εi,
(4.3)

where vi is the background variable score for person i, τ 0 is a P × 1 vector of baseline

intercepts when subject i’s score on the variable V is vi = 0, and Λ0 is a P × 1 vector of

baseline factor loading when vi = 0. The P × 1 vectors b and c are of special interest,

because they contain coefficients that reflect violations of measurement invariance (i.e.,

DIF). A nonzero element in b implies a difference in an indicator’s intercept τ with respect

to V , and thus represents a violation of scalar invariance (called uniform DIF in the IRT

literature). Similarly, a nonzero element in c implies an indicator’s factor loading differs

with respect to V , violating metric invariance (called nonuniform DIF).

The evaluation of scalar and metric invariance is thus concerned with testing the

significance of the coefficients b and c. For each indicator, an omnibus test of metric

and scalar invariance can be conducted by comparing the fit of a constrained model with

the fit of an unconstrained model. In the unconstrained model, all elements in b and c

are freely estimated, except for the indicators that serve as anchors (i.e., indicators that

are known or assumed to be invariant, rather than tested). In the constrained model

for a particular tested indicator, that indicator’s b and c are additionally fixed to zero,

implying invariance of that indicator’s measurement parameters. Any potential violation

of measurement invariance in the other to-be-tested indicators is accounted for because

the elements in b and c of those indicators are freely estimated in both models. The

model comparison produces a likelihood ratio test (LRT) statistic that is distributed as a

χ2 random variable with df = 2. A significant LRT statistic is taken as evidence against

the null hypothesis that the studied indicator is measurement invariant. Equivalently, a

Wald test statistic can be used. A Wald test is asymptotically equivalent to the LRT

(Buse, 1982) but advantageously only requires estimating the unconstrained model, not

any constrained models.

Multiple single-group modeling approaches, including RFA and MNLFA, have been

proposed for the purpose of assessing measurement invariance. These approaches share

the same general form (Equation 4.3), but differ in the way the background variable V is

modeled and b and c are estimated. We will discuss the RFA and MNLFA approaches

in the following paragraphs. First, we will describe RFA followed by a description of

MNLFA, because an RFA model can be seen as a restrictive MNLFA model.

4.2.1 Restricted Factor Analysis

In RFA, the variable V—across which measurement invariance is potentially violated—is

added to the single-group model as an exogenous variable that covaries with the common

factor T . This covariance captures how common-factor means differ across V . MIMIC

models are statistically equivalent to RFA models but include a direct effect of V on the
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common factor instead of a covariance. This direct effect can readily be interpreted as

the difference in common-factor means for each 1-unit increase in V .

Measurement invariance is evaluated in an RFA model by means of direct and inter-

action effects of the background variable V on the indicators X. In order to assess scalar

invariance, the elements in b are modeled as direct effects of V on X. A nonzero effect of

V on X implies that the observed measure depends on V even when holding the common

factor constant (i.e., the indicator’s intercept τ differs with V , controlling for T ). In order

to assess metric invariance, the elements in c are modeled as interaction effects between

T and V (i.e., T × V ) on X. A nonzero interaction effect implies that the magnitude of

DIF varies with T (i.e., the indicator’s factor loading λ differs with V ).

Using maximum likelihood to estimate RFA poses a challenge to testing metric invari-

ance because estimating c—the T × V interaction effects on X—would require modeling

the product between V (which could be observed or latent) and the latent common fac-

tor T . LMS provides an analytical solution to estimate these interaction effects in RFA

models (Barendse et al., 2010; Woods & Grimm, 2011), and Kolbe & Jorgensen (2018,

2019) proposed the PI method as a more widely available alternative. Next, we elaborate

on both methods to model interactions in RFA models.

Latent Moderated Structural Equations

LMS is a distributional analytic approach for the estimation of latent interaction effects

in structural equation models (A. Klein & Moosbrugger, 2000). With LMS the variable

V is modeled as a single-indicator latent variable in the RFA model, which allows c to be

estimated as latent interaction effects on the indicators X. The latent interaction effects

are estimated by means of a finite mixture of multivariate normal distributions, which

takes into account the nonnormality induced by multiplying two normally distributed

latent factors. Specifically, the distribution of the observed variables X is regarded as

finite mixtures of multiple distributions conditional on the latent variables.

Figure 4.1 shows an RFA model amenable to LMS for assessing measurement invari-

ance with respect to variable V . In this example, T is measured by P indicators denoted

X, and V is measured by a single indicator Y . In order for the model to be identified,

the factor loading and residual variance of Y are commonly fixed at unity and zero, re-

spectively. Instead of modeling the interaction of T with V as a factor with observed

indicators, the LMS approach estimates the interaction effect of T × V directly using

mixture distributions (A. Klein & Moosbrugger, 2000). Therefore, the interaction of T

with V is represented in Figure 4.1 by the product T × V in a dotted circle. Note that

associations (i.e., covariances) of the product factor with T and V are not explicitly de-

picted in Figure 4.1 because they are not estimated, but the estimation implicitly allows

those associations exist. A nonzero effect of V on Xp, denoted bp, implies uniform DIF

for indicator p, whereas a nonzero effect of T × V on Xp, denoted cp, implies nonuniform

DIF for indicator p.

The LMS approach is a full information maximum likelihood approach that assumes
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V T T × V

Y X1 X2 XP

εP+1 ε1 ε2 εP

λ1 λ2 λP
bPb1 b2 cP

c1 c2

Figure 4.1: An RFA model with LMS for assessing measurement invariance. The dashed
and dotted arrows represent effects that may be estimated to assess scalar and metric
invariance, respectively.

multivariate normality for all exogenous variables (e.g., the common factors and resid-

uals) in the model. But when V is a categorical variable, this normality assumption is

clearly violated. Studies showed that LMS provides efficient estimators when the distri-

butional assumptions are met (A. Klein & Moosbrugger, 2000; Dimitruk et al., 2007), but

with nonnormal variables inflated Type I error rates were observed when testing for the

significance of a latent interaction effect (A. Klein & Moosbrugger, 2000; A. G. Klein &

Muthén, 2007). A violation of multivariate normality can, however, be accounted for by

using a robust maximum likelihood estimator (L. K. Muthén & Muthén, 2012). Barendse

et al. (2012) provided a description and example syntax of how to apply RFA with LMS

in Mplus (L. K. Muthén & Muthén, 2012).

Product Indicators

The PI method by Kenny & Judd (1984) involves the formation of product indicators

that serve as indicators of an ad hoc latent interaction factor representing the interaction

between two latent variables. There are various ways to compute the product indicators

of the latent interaction factor. Most recently, the double-mean-centering strategy was

proposed (Lin et al., 2010). With this strategy, product indicators are built by mean-

centering the product terms obtained by multiplying the mean-centered indicators of the

associated latent variables. Kolbe & Jorgensen (2018) provided an R (R Core Team, 2018)

syntax example of RFA with the PI method using the R packages lavaan (Rosseel, 2012)

and semTools (Jorgensen et al., 2019). Note that an advantage of the PI method is that

it can be applied using any standard SEM software because it merely requires calculating
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V T T × V
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Figure 4.2: An RFA model with PI for assessing measurement invariance. The dashed
and dotted arrows represent effects that may be estimated to assess scalar and metric
invariance, respectively.

products of indicator scores to be treated as indicators of the latent interaction factor.

Figure 4.2 depicts an RFA model for the assessment of measurement invariance in

which the latent interaction factor T × V is measured by double-mean-centered product

indicators. The potential source of a violation V is a latent variable measured by the

indicator Y . Similar to LMS, the factor loading and residual variance of Y can be fixed at

unity and zero, respectively, in order for the model to be identified. As illustrated in Figure

4.2, the indicators of T and V are mean-centered. The double-mean-centered product

indicator of the p-th indicator is denoted (Y C ×XC
p )

C . Nonzero b and c parameters imply

violations of scalar and metric invariance, respectively. Whereas LMS only estimates the

covariance between T and V , the PI method additionally allows for the estimation of the

covariance between V and T × V as well as the covariance between T and T × V . The

latter covariance will be nonzero only when the common-factor variance differs across

levels of V , thus accounting for common-factor heteroskedasticity (see Appendix I for

details).

The maximum likelihood estimation procedure typically used with the PI method

assumes multivariate normality of all indicators in the model (including the product indi-

cators). This assumption is inevitably violated because even products of normal variables

are not normally distributed (Jöreskog & Yang-Wallentin, 1996). A robust maximum

likelihood estimator can be used to correct for nonnormality (Satorra & Bentler, 2010).

Studies have shown that PI methods, including the double-mean-centering strategy, are

generally robust against violations of multivariate normality of the product indicators

(Marsh et al., 2004; Lin et al., 2010).
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Figure 4.3: An MNLFA model for assessing measurement invariance. The variable V may
have an effect on all parameters in the model represented in the dashed border.

4.2.2 Moderated Nonlinear Factor Analysis

The MNLFA approach (Bauer & Hussong, 2009; Bauer, 2017) includes the background

variable V in the model only as a moderator variable, whereby parameters can be defined

as functions of V . Figure 4.3 illustrates the parameter moderation with the arrow point-

ing from V to the measurement model for the indicators X. Subject to identification

constraints, the variable V may be a predictor of any parameter in the factor analysis

model, including the common factor mean and variance, each indicator’s intercept and

residual variance, and all factor loadings. Thus, no latent interaction is needed.

Measurement invariance can be assessed for each indicator by testing whether V mod-

erates the indicator’s intercept τ or factor loading λ. To assess scalar invariance, the

vector of intercepts can be written (following from Equation 4.3) as

τ i = τ 0 + bvi, (4.4)

where any nonzero element of b indicates a linear change in τ associated with V (i.e.,

uniform DIF). Metric invariance can be assessed by expressing factor loadings as

Λi = Λ0 + cvi, (4.5)

where any nonzero element of c reflects a linear change in Λ associated with V (i.e.,

nonuniform DIF).

In addition to measurement parameters, factor means and variances may also depend

on V . For example, the mean of the common factor T can be written as

αi = α0 + gvi. (4.6)
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Here α0 is the baseline common-factor mean when vi = 0 and g captures the linear

effect of V on the common-factor mean. Similarly, the common-factor variance can be

expressed as a function of V , but a linear regression model is not suitable for variances

because it allows for negative values. Therefore, Bauer & Hussong (2009) proposed to

model variances as exponential functions of V . The variance of the common factor T may

be written as

ψi = ψ0exp(hvi), (4.7)

where ψ0 is the baseline common-factor variance when vi = 0 and h is the effect of V on

the common-factor variance. This effect thus captures heteroskedasticity of the common-

factor. To model the indicators’ residual variances as a function of V , one can adopt the

same idea as above, that is,

εi = ε0exp(dvi), (4.8)

where ε0 is a vector of baseline residual variances and the effects of V on the residual

variances are captured by d. The baseline coefficients for the common factor α0 and ψ0

can be fixed at zero and one, respectively, in order to identify the model in the situation

that an anchor indicator’s intercept and loading are not constrained to zero and one for

identification.

Although MNLFA and RFA differ in the way V is modeled and b and c are estimated,

they share the same general model for the indicators X (Equation (4.3)). The MNLFA

model is equivalent to the RFA model when only the factor means, indicators’ intercepts,

and factor loadings are linearly moderated by V . However, the advantage of MNLFA

over RFA is that it also allows the common-factor variance and the indicators’ residual

variances to vary as a function of V . The MNLFA method can thus be conceptualized as

an extended RFA model in which variances need not be assumed equal across different

levels of V (Bauer, 2017), making it potentially as unrestrictive as multigroup CFA when

V is a grouping variable, yet more so because V can also be continuous. Bauer (2017)

provided SAS and Mplus (L. K. Muthén & Muthén, 2012) syntax examples of MNLFA

in their supplementary materials. For more details about MNLFA and its precursors, see

Neale (1998); Neale et al. (2006); Mehta & Neale (2005); Molenaar, Dolan, Wicherts, &

van der Maas (2010); or Purcell (2002).

4.3 Method

We conducted a Monte Carlo simulation study to evaluate the robustness of RFA/LMS,

RFA/PI, and MNLFA against violations of the homoskedasticity assumption in the case

of categorical and continuous V . The outcomes of interest were Type I error rates and

power, which we evaluated for each method under multiple conditions that differed with

respect to five design factors:

1. Type of noninvariance: scalar or metric.
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2. Total sample size: N = 100, 200, 500, or 1000.

3. Type of V : categorical or continuous.

4. Magnitude and direction of common-factor heteroskedasticity.

5. Magnitude and direction of residual heteroskedasticity.

The levels of the first design factor varied within replications, by assigning different

indicators to have different types of noninvariance. We did not vary the magnitude of

noninvariance as a design factor because the focus of the current study was not on the

impacts of violations of measurement invariance, but on the impacts of different sources of

heteroskedasticity on (a) the power to detect violations of measurement invariance and (b)

the Type I error rates when indicators have truly invariant measurement parameters. The

remaining four design factors were between-replications factors that were fully crossed.

For each of these conditions, 1000 replications were generated. The relatively small group

sample sizes (N
2
) were investigated because in such conditions single-group models such as

RFA models would be preferred over MGCFA (Oort, 1998), as would be preferable when

V is continuous (regardless of sample size).

4.3.1 Data Generation

Data were simulated under different sample sizes using the following data-generating

model

xi = τ +Λti + bvi + ctivi + εi (4.9)

where xi is a vector of 10 continuous indicator scores, ti is the common-factor score, vi is

the score on the background variable, and εi is a vector of 10 residual scores of subject

i. Moreover, the vector τ includes 10 intercepts set at 0 for all indicators, Λ includes 10

common factor loadings set at 0.8 for all indicators, and b and c are vectors of regression

coefficients fixed at 0 for all indicators that did not violate measurement invariance.

How we violated invariance and homoskedasticity assumptions in our population model

depended on whether V was continuous or categorical. For violations of both common-

factor and residual homoskedasticity, we strove to vary the variances such that they ranged

from approximately half to double the variance across the range of V , whether that range

was across two categories or across two or three standard deviations above and below the

mean of V .

Continuous Background Variable

In conditions where the background variable V is a continuous variable, scores on the

background variable were drawn from a standard normal distribution vi ∼ N (0, 1). The

common-factor scores ti were drawn from a normal distribution with a mean equal to vi
and a variance of either 1, exp(−0.25vi), or exp(0.25vi). Hence, there were three levels
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of common-factor heteroskedasticity: h = −0.25, h = 0 (i.e., homoskedasticity), and

h = 0.25. Figure 4.4 shows the common-factor variances as a function of V for different

levels of h. In the two heteroskedastic conditions, the population common-factor variances

ranged from 0.61 to 1.65 for −2 ≤ V ≤ 2 and from 0.47 to 2.12 for −3 ≤ V ≤ 3.

Figure 4.4: The common-factor and residual variances as a function of continuous V .

Residual scores of each indicator were drawn from a normal distribution εi ∼ N (0, 0.3)

in conditions with residual homoskedasticity. In order to test the effect of residual het-

eroskedasticity with respect to a continuous V on the power and Type I error rates, the

residuals of one measurement-invariant indicator (Indicator 1) and two indicators that

violated measurement invariance (Indicator 2 with uniform DIF and Indicator 4 with

nonuniform DIF) were drawn from a normal distribution with a mean of 0 and variance

of either 0.3 (in the homoskedastic conditions), 0.3exp(−0.25vi), or 0.3exp(0.25vi). This

resulted in three levels of residual heteroskedasticity: d = −0.25, d = 0 (i.e., homoskedas-

ticity), and d = 0.25. Figure 4.4 shows the residual variances as a function of V for

different levels of d. The residual variances in the population ranged from 0.18 to 0.49 for

−2 ≤ V ≤ 2 and from 0.14 to 0.64 for −3 ≤ V ≤ 3 in the two conditions with residual

heteroskedasticity.

Uniform DIF was introduced by setting b = 0.25 for the second and third indicators,

and nonuniform DIF was introduced by setting c = 0.1 for the fourth and fifth indicators.

These magnitudes reflect small effects of V and T ×V on these indicators (Cohen, 1988).

A table with the population parameter values for each indicator is available in Appendix

II.

Categorical Background Variable

In conditions where the background variable V is a categorical variable, we generated

a dummy code that represent group membership. In specific, we chose vi = 0 for the

reference group and vi = 1 for the focal group (for more than two groups, multiple
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dummy codes would be necessary). The common-factor scores ti were drawn from a

normal distribution with a mean of 0 for the reference group and a mean of -0.5 for

the focal group, representing a moderate difference between groups (Kolbe & Jorgensen,

2019). The population common-factor variance in the reference group was equal to 1,

whereas the population common-factor variance of the focal group was equal to 0.5, 1,

1.5, or 2. Hence, in total there were four levels of common-factor heteroskedasticity:

h = ln(0.5), h = 0 (i.e., homoskedasticity), h = ln(1.5), and h = ln(2).

Residual scores of each indicator for the reference group—and all but three indicators

in the focal group—were drawn from a normal distribution εi ∼ N (0, 0.3). The residual

variances of one measurement-invariant indicator (Indicator 1) and two indicators that

violated measurement invariance (Indicator 2 with uniform DIF and Indicator 4 with

nonuniform DIF) were 0.15, 0.3, or 0.6 for the focal group, representing three levels of

residual heteroskedasticity: d = ln(0.15/0.3), d = 0 (i.e., homoskedasticity), and d =

ln(0.6/0.3).

A violation of scalar invariance of the second and third indicator was introduced by

fixing b at 0.5, and a violation of metric invariance of the fourth and fifth indicator was

introduced by fixing c at 0.25. These effect sizes reflect small violations of scalar and

metric invariance with respect to a categorical V (Barendse et al., 2010).

4.3.2 Analysis

When measurement invariance was examined with RFA, an unconstrained model was

fitted in which all elements in b and c were freely estimated, except for the elements

corresponding to the ninth and tenth indicator. These indicators were used as anchor

indicators to set the scale of the common factor T and were not assessed for measurement

invariance2. Violations of scalar and metric invariance were examined simultaneously for

each of the nonanchor indicators by testing the null hypothesis that the studied indicator

p’s bp = 0 and cp = 0 using a 2-df Wald test with α = .05 level of significance. In order

to enable the estimation of the b and c parameters, V was modeled as a single-indicator

factor whose factor loading was fixed at unity and residual variance fixed to zero in the

RFA models with PI, whereas this residual variance was fixed at a near-zero value of

0.001 in the RFA models with LMS to prevent estimation problems. A robust maximum

likelihood estimator was used to account for violations of the normality assumption.

When indicators were assessed for measurement invariance with MNLFA, a measure-

ment model for the common factor T with indicators X was estimated where the common-

2In the present study, we focus on the inflation of Type I error rates due solely to unmodeled het-
eroskedasticity, but see Kolbe & Jorgensen (2019) for guidance on empirically selecting anchor indicators
and for the impact of contaminated anchor sets on Type I error rates.
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factor mean and variance, the residual variances3, and nonanchor indicators’ intercepts

and factor loadings are a function of V . Similar to RFA, the ninth and tenth indicator

were used as anchor indicators and were not tested for measurement invariance. The

common-factor mean and variance for the reference group (V = 0) were fixed at zero

and one, respectively, for identification. Violations of scalar and metric invariance were

examined simultaneously for each indicator by testing the null hypothesis that the effect

of V on the indicator’s intercept and factor loading is equal to zero, again tested using a

2-df Wald test with α = .05 level of significance. A robust maximum likelihood estimator

was used with MNLFA to account for nonnormality.

Power and Type I error rates were calculated across all conditions. Power was esti-

mated as the proportion of replications in which Indicator 2 and Indicator 4 (i.e., indicators

with uniform and nonuniform DIF, respectively) were correctly flagged as violating mea-

surement invariance. The Type I error rate was estimated as the proportion of replications

in which Indicator 1 (i.e., a measurement-invariant indicator) was incorrectly flagged as

violating measurement invariance. A 95% Agresti–Coull confidence interval (CI; Agresti

& Coull, 1998) around the expected Type I error rate of α = .05 was calculated to evalu-

ate whether observed error rates were statistically significantly different from the nominal

value (i.e., by checking whether the observed value was in the 95% CI). We considered

values inflated > 0.1 as being substantially important (i.e., practical significance).

In addition to the power and Type I error rates, the accuracy and efficiency of the

parameter estimates in b and c of the indicators with DIF were evaluated for each method

by calculating the relative bias, root mean squared error (RMSE), and coverage rates. The

relative bias of the parameter estimate b of Indicator 2 was defined as a percentage using

((b̄ − b)/b) × 100%, where b̄ is the average parameter estimate across replications and b

is the true parameter value. We considered relative bias larger than 5% as substantial

bias. Moreover, the RMSE of the parameter estimate b of Indicator 2 was defined as√
(b̄− b)/b. The coverage rate of the parameter estimate b of Indicator 2 was defined as

the proportion of replications in which the 95% confidence interval around the parameter

estimate contained the population value b. The relative bias, RMSE, and convergence

rates of the parameter estimate c of Indicator 4 were defined similarly.

The power, Type I error rates, relative bias, RMSE, and coverage rates are presented

in figures, but tables of these outcome variables are available in Appendix II. The

RFA/LMS and MNLFA models were fit in Mplus (version 7; L. K. Muthén & Muthén,

2012) via the MplusAutomation package (version 0.7-2; Hallquist & Wiley, 2018), and the

RFA/PI models were fit with the R (version 3.4.3; R Core Team, 2018) package lavaan

(version 0.5-23; Rosseel, 2012), relying on the semTools function indProd() to calculate

3This MNLFA specification allows for both types of heteroskedasticity, so it is therefore less restric-
tive than RFA. When MNLFA does not include effects of V on variances, it would be as restrictive as
RFA/LMS. Because the estimation method is so computationally intensive, we did not include such a ”ho-
moskedastic MNLFA” in our simulation. We did conduct example analyses applied to real data, available
on our Open Science Framework project https://osf.io/vsp4f/, which showed that a homoskedastic
MNLFA and RFA/LMS yielded very similar results.
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double-mean-centered product indicators. All data generation and analysis of results were

conducted in R. See our Open Science Framework project https://osf.io/vsp4f/ for

example scripts.

4.4 Results

Before we present the power and Type I error rates, we first elaborate on the convergence

rates of the different methods. Detailed convergence rates across conditions are available

in Appenidx II. Across all methods, we encountered the largest nonconvergence rates

for RFA/LMS. The nonconvergence rates when V was continuous decreased with sample

size. In the smallest sample-size conditions the percentages of nonconvergence ranged

from 0.10 to 4.80, whereas in the largest sample-size condition the RFA/LMS model

always converged.

The nonconvergence rates were substantially larger for RFA/LMS when V was a cat-

egorical variable. On average across all conditions with a categorical V , the RFA/LMS

model did not converge in 16.64% of all replications. The largest nonconvergence rates

were observed in conditions in which the common-factor variance of the focal group was

larger than the common-factor variance of the reference group. All replications with non-

convergence were excluded from the analysis for RFA/LMS, because in such replications,

measurement invariance could not be assessed with this method.

The MNLFAmethod only once produced convergence problems. Similar to RFA/LMS,

this replication could not be included in the analysis for MNLFA. The RFA/PI models con-

verged for every replication in each condition. Because in some conditions the results for

RFA/LMS were based on a notably smaller number of replications compared to RFA/PI

and MNLFA, the validity of a comparison between the methods could be questioned. In

a comparable study, Kolbe & Jorgensen (2019) showed that using a smaller subset of

replications for RFA/LMS does not affect the pattern of the results. Hence, below we

present the results based on all available converged replications in each condition.

4.4.1 Continuous Background Variable

Power and Type I Error Rates

The power to detect violations of metric invariance using each method across conditions

with a continuous variable V is presented in Figure 4.5. Because for scalar invariance

the differences across the methods were quite negligible, we only include a figure for the

power to detect scalar invariance in Appendix III. For each of the methods, power to

detect violations of both scalar and metric invariance increased with sample size and was

effectively 1.00 in all conditions with a sample size of N ≥ 500. More apparent differences

in power were observed when N = 100 or N = 200. The RFA/LMS method generally

obtained higher power to detect violations of metric invariance than RFA/PI and MNLFA

in conditions with a positive effect of V on the common-factor variance (but at the expense
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Figure 4.5: The power to detect a violation of metric invariance of Indicator 4 (i.e., c4 ̸= 0)
of each method across all conditions with a continuous V . Note that h is the effect of V on
the common-factor variance, and d is the effect of V on the indicator’s residual variance.

of inflated Type I error rates), and lower power to detect violations of metric invariance

than RFA/PI and MNLFA when this effect was negative. Residual heteroskedasticity did

not seem to substantially affect the power of the methods.

Figure 4.6 illustrates the Type I error rates of each method in conditions with a

continuous variable V . The light gray region from .01 to .10 represents a region of practical

equivalence (ROPE), outside of which are substantially inflated error rates. The darker

gray region is the Agresti–Coull 95% CI around α = .05, values inside of which are not

statistically significantly different from the nominal level. When h = 0 (common-factor

homoskedasticity), Type I error rates were comparable across the three methods and

decreased with sample size. In general, Type I error rates in these conditions were only

substantially inflated when N = 100. Residual heteroskedasticity hardly affected the

Type I error rates of any of the methods in conditions where h = 0.

In conditions with common-factor heteroskedasticity (i.e., h = −0.25 or 0.25), the

Type I error rates were substantially different across the methods. In almost all conditions,

the RFA/LMS method obtained the most inflated Type I error rates compared to the

other methods. Especially when the effects of V on the common-factor variance and

residual variances were in similar directions (e.g., h = 0.25 and d = 0.25), large inflation

of the error rates of RFA/LMS was observed, and the inflation was exacerbated in larger
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Figure 4.6: The Type I error rates for Indicator 1 of each method across all conditions
with a continuous V . Note that h is the effect of V on the common-factor variance, and
d is the effect of V on the indicator’s residual variance.

samples. In contrast, when the effects on the variances were in opposite directions (e.g.,

h = −0.25 and d = 0.25), the Type I error rates of RFA/LMS were less inflated, but

almost always remained higher than for other methods. The RFA/PI and MNLFA Type

I error rates were not substantially affected by combined common-factor and residual

heteroskedasticity. Overall, MNLFA obtained error rates closer to .05 than other methods.

Relative Bias of DIF Estimates

Figures of the relative bias of the b and c parameter estimates across all conditions with a

continuous V can be found in Appendix III. The relative bias of the parameter estimate

b was negligible for RFA/PI and generally acceptable (i.e., smaller than 5%) for RFA/LMS

and MNLFA. Larger differences between the methods were observed for the relative bias of

the c parameter estimates. Overall, MNLFA obtained the least biased parameter estimates

c. The relative bias of this method was always below 5%, except in some conditions

where N = 100. The RFA/PI and RFA/LMS methods substantially overestimated c in

all conditions. The relative bias in c produced by RFA/PI ranged from 23.66% to 26.67%

and seemed unaffected by sample size and common-factor and residual heteroskedasticity.

The RFA/LMS method obtained the most biased parameter estimates c, with relative

bias ranging from 21.93% to 59.56%. The relative bias of this method was largest when
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h was positive.

RMSE of DIF Estimates

Figures of the RMSE of the b and c parameter estimates across all conditions with a

continuous V can be found in Appendix III. The differences between the methods

with respect to RMSE of the parameter estimate b were relatively small in all conditions

with a continuous V . Overall, the RMSE of the parameter estimate b decreased with

sample size but seemed unaffected by common-factor and residual heteroskedasticity. The

only conditions in which MNLFA produced a substantially higher RMSE than the other

methods were conditions in which h = −0.25 and N = 100. With respect to parameter

estimate c, differences in the RMSE across the methods were observed more frequently.

In general, MNLFA obtained the lowest RMSE of the parameter estimate c, followed

by RFA/PI. In almost all conditions, RFA/LMS obtained the highest RMSE for the

parameter estimate c.

Coverage Rates of DIF Estimates

Figures of the coverage rates of the b and c parameter estimates across all conditions with

a continuous V can be found in Appendix III. Overall, all methods showed acceptable

coverage rates (always > .90) for the parameter estimate b. The RFA/PI method obtained

coverage rates closest to .95 for b, followed by MNLFA. The coverage rates of RFA/LMS

for b were slightly smaller compared to other methods. Different patterns were observed

for the coverage rates of the parameter estimate c. Whereas MNLFA frequently obtained

coverage rates above .90 for c, RFA/PI and RFA/LMS frequently obtained unacceptable

coverage rates. For both methods, the coverage rates for c decreased with N and h. The

RFA/LMS method obtained the lowest coverage rates for the parameter estimate c. The

lowest coverage rate of .07 was obtained when h = 0.25, d = −0.25, and N = 1000.

4.4.2 Categorical Background Variable

Power and Type I Error Rates

Again, power showed nearly no difference between methods for detecting violations of

scalar invariance with respect to a categorical V , so a figure is included only in Appendix

III. For each of the methods, the power to detect violations of measurement invariance

increased as a function of sample size. The power to detect violations of scalar invariance

when N = 100 ranged from .83 to .98, where a negative effect on the residual variance

led to higher power and a positive effect on the residual variance led to lower power for

each of the methods. In the other sample-size conditions, the power to detect violations

of scalar invariance was generally 1.00. Hence, the methods performed similarly well with

respect to detecting violations of scalar invariance.
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Figure 4.7: The power to detect a violation of metric invariance of Indicator 4 (i.e., c4 ̸= 0)
of each method across all conditions with a categorical V . Note that h is the effect of V on
the common-factor variance, and d is the effect of V on the indicator’s residual variance.

Figure 4.7 shows the power of methods to detect violations of metric invariance. In

conditions with equal common-factor variances across groups (i.e., h = 0), RFA/LMS and

RFA/PI obtained slightly higher power than MNLFA. Moreover, RFA/LMS outperformed

RFA/PI and MNLFA when the focal group had a larger common-factor variance than the

reference group (i.e., h = ln(1.5) or h = ln(2)), but performed substantially worse when

the focal group’s common-factor variance was smaller (i.e., h = ln(0.5)).

The Type I error rates across all conditions with a categorical V are illustrated in

Figure 4.8. Note that we specified y-axis limits of 0 and .15 in order to make details more

visible, at the expense of plotting a few extremely inflated values for RFA/LMS outside

the plot range. Type I error rates of all methods under common-factor homoskedasticity

were close to the nominal .05, within the ROPE [.01–.10]. The majority of MNLFA’s

Type I error rates were not significantly inflated, whereas RFA/LMS and RFA/PI had

statistically significant error, particularly under residual heteroskedasticity. However,

RFA/PI’s error rates were not substantially inflated under any conditions (i.e., the Type

I error rates were almost always < .10).

In contrast, the RFA/LMS method obtained severely inflated Type I error rates under

common-factor heteroskedasticity, so severe that many conditions have error rates beyond

the y-axis limits (see Appendix II for exact error rates). This inflation was smallest

68



The Impact of Heteroskedasticity on Assessing Measurement Invariance

Figure 4.8: The Type I error rates for Indicator 1 of each method across all conditions
with a categorical V . Note that h is the effect of V on the common-factor variance,
and d is the effect of V on the indicator’s residual variance. The y axis stops at .15 in
order to allow for a detailed comparison of methods with (nearly) nominal error rates, but
note that it prevents plotting some extremely inflated error rates in certain conditions of
RFA/LMS.

when the effects of V on the common-factor and residual variances were in opposite

directions and was largest when these effects were in similar directions. For example,

when h = ln(0.5), d = ln(0.15/0.3), and N = 1000, RFA/LMS obtained a Type I error

rate of .87. Though not practically significant, inflation of the Type I error rates of

RFA/PI was observed mainly when h and d were both nonzero. The Type I error rates of

MNLFA were not substantially affected by common-factor or residual heteroskedasticity.

Relative Bias of DIF Estimates

Figures of the relative bias of the b and c parameter estimates across all conditions with a

categorical V can be found in Appendix III. The observed patterns were similar to those

in conditions with a continuous V . Each method obtained negligible relative bias (i.e.,

smaller than 5%) of the parameter estimate b, whereas only MNLFA obtained negligible

relative bias of the parameter estimate c. Again, the parameter estimates c obtained

by RFA/PI and RFA/LMS were substantially biased. The RFA/PI method consistently

overestimated c, while RFA/LMS underestimated c in conditions with a negative effect
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on the common-factor variance and overestimated c in conditions with a positive effect on

the common-factor variance. The relative bias obtained by RFA/LMS was largest when

h and d were in similar directions. In contrast, this method generally obtained acceptable

relative bias (i.e., smaller than 5%) in homoskedastic conditions.

RMSE of DIF Estimates

Figures of the RMSE of the b and c parameter estimates across all conditions with a

categorical V can be found in Appendix III. The differences across the methods with

respect to RMSE of the parameter estimate b were negligible in all conditions with a

categorical V . The differences in RMSE were more apparent for the parameter estimate

c. MNLFA obtained the lowest RMSE of the parameter estimate c in almost all het-

eroskedastic conditions (i.e., h ̸= 0 or d ̸= 0). The RFA/PI method generally obtained

the second-lowest RMSE of the parameter estimate c when h was positive, but obtained

the highest RMSE when h was negative and d was positive. In the conditions with

common-factor homoskedasticity (i.e., h = 0), MNLFA and RFA/LMS obtained slightly

lower RMSE for the parameter estimate c than RFA/PI.

Coverage Rates of DIF Estimates

Figures of the coverage rates of the b and c parameter estimates across all conditions with

a categorical V can be found in Appendix III. Similar to conditions with a continuous

V , all methods obtained acceptable coverage rates for the parameter estimate b (always

> .90), and only MNLFA obtained acceptable coverage rates for the parameter estimate

c in all conditions. The RFA/PI and RFA/LMS methods performed substantially worse

than MNLFA with respect to the coverage rates of parameter estimate c. For RFA/PI,

the coverage rates for c where acceptable (i.e., larger than .80) in smaller sample-size

conditions, but were frequently unacceptable (i.e., smaller than .80) when N = 500 or

1000. The RFA/LMS performed worst with respect to the coverage rates for the param-

eter estimate c, especially in conditions with common-factor heteroskedasticity. In these

conditions, the coverage rate of RFA/LMS was .01 at its lowest.

4.4.3 Supplemental Simulation Study

To further investigate the relative robustness of MNLFA and RFA/PI to heteroskedas-

ticity across a wider array of conditions, we conducted additional simulations within the

following condition from the original simulation study: a grouping variable V , a total

sample size of 200, a factor variance in the focal group of 1.5 (representing common-

factor heteroskedasticity), and residual variances of the indicators with unequal residual

variances in the focal group of 0.15 (representing residual heteroskedasticity). Within this

condition, we fully crossed three additional factors: the total number of indicators (10 or

20), the percentage of indicators violating measurement invariance (40% or 80%), and the

percentage of indicators violating residual homoskedasticity (30% or 90%). We generated
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data using the same procedure as in the first simulation, and we recorded the effect of

these new factors on power and Type I error rates.

The results of the supplemental simulations can be found in Appendix II. With all

other conditions of the simulation study being equal, the results are comparable to the

results of the original simulation study: (a) RFA/LMS is not robust against violations

of common-factor and residual homoskedasticity, (b) MNLFA maintains Type I error

rates quite well across all conditions, and (c) so does RFA/PI, although not quite so well

as MNLFA. Moreover, none of the additional manipulated factors substantially affected

the power or Type I error rates. The total number of indicators and the percentage

of indicators that violate residual homoskedasticity only led to a minor difference in

power and Type I error. Moreover, the percentage of indicators that violate measurement

invariance did not seem to affect the power and Type I error at all.

4.5 Discussion

This study addressed the impact of heteroskedasticity on assessing measurement invari-

ance with respect to categorical and continuous observed background variables in single-

group models. A common single-group method to assess measurement invariance is RFA

(or MIMIC). Previous studies showed that RFA has high power to detect violations of

measurement invariance, but severely inflated Type I error rates have also been observed

(Woods & Grimm, 2011; Barendse et al., 2010, 2012; Kolbe & Jorgensen, 2019). Most

recently, MNLFA was introduced as a single-group method to assess measurement invari-

ance (Bauer, 2017). MNLFA is more flexible than RFA because the former can allow

common-factor and residual variances to differ across V . In this study, we examined how

the power and Type I error rates of RFA and MNLFA varied as a function of differ-

ences in common-factor variances and residual variances with respect to V . Specifically,

we compared the performance of RFA/LMS, RFA/PI, and MNLFA under conditions of

common-factor and residual homoskedasticity and heteroskedasticity, providing the first

empirical evaluation of MNLFA since it was proposed for testing measurement invariance

(Bauer, 2017).

In accordance with previous research (Chun et al., 2016; Harpole, 2015), we found

that the Type I error rates obtained by RFA/LMS substantially increased as a function of

common-factor heteroskedasticity with respect to a categorical V . Whereas in conditions

with equal common-factor variances the Type I error rates were only occasionally and

slightly inflated, the error rates were severely inflated when common-factor variances

differed across groups. The inflation of the Type I error rates obtained by RFA/LMS was

largest when the effect of the categorical V on the common-factor variance and residual

variances was in similar directions. We observed comparable patterns but less severely

inflated Type I error rates of RFA/LMS in conditions with a continuous V . Although the

range of differences in variances was comparable between categorical- and continuous-V

conditions, differences can be considered more severe in the categorical conditions because
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all cases are drawn from distributions with variances at one extreme or another, rather

than variances along a continuum between those extremes.

Overall, the results of the present study suggest that RFA/LMS is not robust to

common-factor or residual heteroskedasticity. As in previous research (Kolbe & Jorgensen,

2019), we observed a large percentage of nonconvergence for RFA/LMS, especially when

V is a categorical variable. This is an important practical limitation of LMS because

it may prevent researchers from being able to infer whether indicators are measurement

invariant with respect to V .

Following previous research findings (Kolbe & Jorgensen, 2019), we expected no im-

pact of common-factor heteroskedasticity for RFA/PI. The results of this study indeed

suggest that RFA/PI is robust against violations of the common-factor homoskedastic-

ity assumption. This observation coincides with the mathematical proof in Appendix

I, showing that the covariance between the common factor T and the interaction factor

T × V—which is estimable with RFA/PI but not with RFA/LMS—indirectly captures

information about the difference in common-factor variances across different levels of V .

Similar to the RFA/LMS model, the RFA/PI model does assume residual homoskedastic-

ity. The Type I error rates of RFA/PI were slightly inflated by residual heteroskedasticity

across a categorical V . When V was a continuous variable, similar patterns were observed

but the Type I error rates were less severely inflated.

In contrast to RFA, the MNLFA method does not need to assume homoskedastic

common factors or residuals across V . This is because in MNLFA models each param-

eter including common-factor variances and residual variances of the indicators may be

moderated by V . We therefore expected that the Type I error rates were unaffected by

heteroskedasticity. In accordance with our expectations, the magnitude of the difference

in common-factor and residual variances did not seem to have any impact on the Type I

error rates of MNLFA. Both in conditions with a categorical and continuous V , the Type

I error rates of this method were rarely inflated. Hence, the results of this study suggest

that MNLFA can better minimize Type I error rates than RFA when residual variances

differ with respect to V . The present study only investigated a limited number of con-

ditions that varied with the magnitude of heteroskedasticity and sample size. It would

be valuable to further investigate the performance of MNLFA as a tool for measurement

invariance assessment under other conditions, such as different numbers of indicators,

multiple variables V (including multiple dummy codes for a single categorical variable),

unbalanced samples, or nonlinear moderating effects.

It is worth noting that despite the advantages of MNLFA, it is only implemented in

Mplus (L. K. Muthén & Muthén, 2012) and OpenMx (Boker et al., 2011); although it

could easily be implemented in general Bayesian software, it is not yet available in other

dedicated SEM software packages. Of the methods considered in this study, only RFA/PI

can be implemented in any SEM program. Because we have shown RFA/PI to be practi-

cally robust to heteroskedasticity (i.e., minimally inflated error rates), we can recommend

its use to researchers without access to Mplus or when MGCFA is underpowered (due to
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small N) or inappropriate (continuous V ).

In addition to the Type I error rates, we examined the power of each method to detect

violations of measurement invariance. Because the Type I error rates of RFA/LMS were

severely inflated in conditions with heteroskedasticity, we advise against comparing its

power to the other methods. However, a valid comparison between MNLFA and RFA/PI

can be made. In each of the conditions, the power to detect violations of scalar invariance

was generally comparable across these two methods. A larger difference between the

methods occurred for the power to detect violations of metric invariance. These differences

were most apparent in smaller samples, where RFA/PI was generally more powerful than

MNLFA. This method could therefore be preferred over MNLFA in small samples.

An examination of the accuracy and efficiency of DIF parameter estimates revealed

large differences between the methods. MNLFA performed substantially better than

RFA/PI and RFA/LMS with respect to relative bias, RMSE, and coverage rates of nonuni-

form DIF estimations (i.e., ĉ). Both RFA/PI and RFA/LMS yielded biased estimates and

low coverage rates for the effects that reflect a violation of metric invariance. The prac-

tical impact seems especially problematic for RFA/LMS because of its severely inflated

Type I error rates.

In addition to RFA and MNLFA, many other methods for assessing measurement

invariance have recently been proposed, including SEM trees (Brandmaier et al., 2013).

SEM trees allow for the detection of heterogeneity with respect to continuous or categor-

ical variables by recursively partitioning the data into subsets with significantly different

SEM-parameter estimates. Although simulation studies showed that SEM trees are gen-

erally able to correctly partition the data into subsets with different parameter estimates

(Usami et al., 2017, 2019) and detect uniform DIF in an IRT framework (Tutz & Berger,

2016; Strobl et al., 2015), these methods have only been shown to be effective in large

samples, which is a common result for machine-learning algorithms in general. Other

methods for the assessment of measurement invariance worth investigating are local SEM

(LSEM; Hildebrandt et al., 2016), heteroskedastic latent trait models (Molenaar et al.,

2012; Molenaar, 2015; Molenaar et al., 2011; Molenaar, Dolan, & Verhelst, 2010), and

stochastic process-based testing (Merkle & Zeileis, 2013; Merkle et al., 2014). An advan-

tage of LSEM and heteroskedastic latent trait models is that these methods can easily be

adapted for binary and ordinal indicators; stochastic process-based testing can too, but

it is more suitable for ordinal background variables V .

Although indicators in the present study are assumed to be continuous, MNLFA and

RFA/LMS can also handle binary and ordinal indicators (see Bauer, 2017; Woods &

Grimm, 2011). A generalization of RFA/PI for binary and ordinal indicators is less

straightforward. For example, if both the indicators of T and the background variable V

are ordinal, the indicators of the latent interaction factor T × V are products of ordinal

indicators. This brings up the question of how products of ordinal indicators can be

interpreted (e.g., what is the measurement level of such indicators?). In a recent simulation

study, Lodder et al. (2019) evaluated the performance of the PI method in conditions with
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ordinal data in a more general context of latent interactions among common factors. The

results of their simulation study showed that treating the product indicators as continuous

performs at least as well as treating them as ordinal in terms of power, Type I error,

and estimation bias. Given that the use of product indicators for the specific purpose

of measurement invariance assessment with ordinal data is yet unexplored, much more

research is needed to evaluate its performance.

The present study illuminated the impact of unmodeled heteroskedasticity on assessing

measurement invariance using single-group models. In the presence of heteroskedastic

common factors or residuals, we advise against using the LMS method in RFA models

because of severely inflated Type I error rates. RFA/PI and MNLFA are quite robust

to heteroskedasticity because these models (at least partially) account for it. Further

evaluation of MNLFA for assessing measurement invariance is warranted.
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Assessing Measurement Invariance

with Moderated Nonlinear Factor

Analysis

Abstract

Assessing measurement invariance is an important step in establishing a meaningful com-

parison of measurements of a latent construct across individuals or groups. Most recently,

moderated nonlinear factor analysis (MNLFA) has been proposed as a method to assess

measurement invariance. In MNLFA models, measurement invariance is examined in a

single-group confirmatory factor analysis model by means of parameter moderation. The

advantages of MNLFA over other methods are that it (1) accommodates the assessment of

measurement invariance across multiple continuous and categorical background variables

and (2) accounts for heteroskedasticity by allowing the factor and residual variances to

differ as a function of the background variables. In this chapter, we aim to make MNLFA

more accessible to researchers without access to commercial structural equation model-

ing software by demonstrating how this method can be applied with the open-source R

package OpenMx.

Based on: Kolbe, L., Molenaar, D., Jak, S., & Jorgensen, T. D. (2022). Assessing Mea-

surement Invariance with Moderated Nonlinear Factor Analysis Using the R Package

OpenMx. Psychological Methods. doi: 10.1037/met0000501
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5.1 Introduction

The field of psychology is dominated by the use of questionnaires or tests that measure

latent constructs like cognition, attitude, and personality. The observed scores derived

from these measurement instruments are often used for decisions about, for example,

which applicant is best suited for a position, whether a child is suffering from an anxiety

disorder, or to what extent an intervention has improved a patient’s well-being. Given

the importance of these decisions, it is crucial that the construct is measured equivalently

across individuals, groups, or over time. This condition is often referred to as measure-

ment invariance (Meredith, 1993). If measurement invariance does not hold, observed

differences between individuals or groups may reflect differential measurement and not

true differences on the latent construct of interest. Assessing measurement invariance has

thus become an important step in psychometric research and applications. Measurement

invariance is commonly assessed by fitting a latent variable model to the data obtained

from questionnaires or tests with multiple items. A measurement instrument is invariant

if for each item the observed score at any given level of the latent construct is not affected

by any background variables. For example, the expected observed score of an item on a

social anxiety questionnaire should be the same across boys and girls who have the same

level of social anxiety. An item that fails to meet this condition of measurement invariance

indicates differential item (or indicator) functioning (DIF; Mellenbergh, 1989).

Measurement invariance is often examined with respect to a grouping variable us-

ing multiple-group confirmatory factor analysis (MGCFA; Vandenberg & Lance, 2000).

In MGCFA, a confirmatory factor analysis (CFA) model is estimated for each group

and invariance constraints are imposed on the parameter estimates (i.e., factor loadings,

intercepts, and residual variances) in order to assess increasingly restrictive levels of mea-

surement invariance. If an omnibus null hypothesis (H0) of a specific level of measurement

invariance is rejected, follow-up tests can be performed in order to explore which items

function differently across the groups. One strength of MGCFA is that all parameters,

such as common-factor means and variances, can differ between groups. However, the ac-

companying limitation is that MGCFA is only designed to assess measurement invariance

across a single categorical background variable. In light of this limitation, Bauer (2017)

proposed moderated nonlinear factor analysis (MNLFA) as a more flexible alternative to

MGCFA. The MNLFA approach examines measurement invariance in a single-group CFA

model by means of parameter moderation. In contrast to MGCFA, the MNLFA approach

accommodates the assessment of measurement invariance across multiple continuous and

categorical background variables simultaneously.

Several empirical validation and simulation studies have examined the performance of

MNLFA as a measurement invariance assessment tool (Bauer, 2017; Bauer et al., 2020;

Kolbe et al., 2021). These studies showed that the method performs well both in small

and large samples and with categorical and continuous data. Specifically, the results of

the studies indicated that MNLFA yields unbiased parameter estimates, minimizes Type
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I error rates, and has acceptable to high power. This method effectively detects true vio-

lations of measurement invariance and avoids detecting negligible violations, particularly

when using regularization (Bauer et al., 2020). Given its flexibility and good perfor-

mance, MNLFA seems to be a promising method for evaluating measurement invariance

for a great variety of researchers. But until now, the majority of available guidelines on

how to perform this method involve commercial structural equation modeling (SEM) soft-

ware (i.e., Mplus and SAS; see Bauer, 2017). There seems to be a lack of documentation

on applying this method in open-source SEM software, which is more widely available

for the global community of researchers. Performing MNLFA for measurement invariance

assessment may therefore not be straightforward for researchers without access to Mplus

or SAS.

This chapter presents a tutorial on assessing measurement invariance through MNLFA

with the R (R Core Team, 2021) package OpenMx (Boker et al., 2011)1. Our aim is to

make MNLFA more accessible for any researcher by providing a detailed guideline on

performing the method in this open-source SEM software. We will demonstrate MNLFA

with a two-factor model and two background variables (categorical and continuous), but

it can easily be applied to single-factor models, structural models, or models with fewer or

more background variables. In the next section, we introduce the concept of measurement

invariance. We then provide a brief explanation of the MNLFA approach, followed by a

step-by-step guide for assessing measurement invariance with this method using OpenMx.

Lastly, we offer concluding remarks regarding the use of MNLFA and address latest de-

velopments for measurement invariance assessment with open-source software packages.

5.2 Background

5.2.1 Measurement Invariance

In this section, we give a formal definition of measurement invariance that will be useful

for understanding how it can be assessed with the MNLFA approach. Measurement

invariance is said to hold if the distribution of observed item responses is not affected by

any variables other than the latent constructs of interest (Mellenbergh, 1989). Given that

the latent constructs are known, the definition can be mathematically expressed as

f1(X|T, V ) = f2(X|T ) (5.1)

where f1(·) and f2(·) denote the probability distributions of a set of observed variables X

(e.g., items) measuring the latent construct T and V is a set of one or more background

1The open-source R packages mnlfa (Robitzsch, 2019), GPCMlasso (Schauberger, 2021), and regDIF

(Belzak, 2021) can be used to estimate MNLFA models as well, but their implementations are currently
limited to unidimensional item response theory (IRT) models. Note that MNLFA can also be estimated
with open-source Bayesian software like Stan (Stan Development Team, 2021). An R script demonstrating
how to estimate MNLFA with Stan is available on our Open Science Framework project https://osf.io/
6cyxt/.
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variables such as age or gender. This mathematical expression states that measurement

invariance holds if the distribution of X depends only on the latent construct T and is

invariant with respect to background variable(s) V . Note that the condition of measure-

ment invariance still allows for a relationship between X and V , but it does preclude a

direct effect of V on the distribution of X other than through its influence on T .

If measurement invariance does not hold, the observed item responses depend not only

on the latent construct but also directly on the background variable(s). In other words, a

violation of measurement invariance indicates that the relationship between the observed

item responses and the latent construct differs as a function of the background variable(s).

An item that violates measurement invariance is said to show DIF. A distinction can be

made between full and partial invariance, where full invariance implies that all items

of a test or questionnaire are measurement invariant and partial invariance implies that

measurement invariance only holds for a subset of items and some items show DIF. Under

partial invariance, groups or individuals can still be validly compared on the measurement

of the latent construct as long as DIF is correctly detected and modeled.

Different levels of measurement invariance for CFA models have been defined (Mered-

ith, 1993; Steenkamp & Baumgartner, 1998; Horn & McArdle, 1992). Consider a multi-

dimensional factor model in which the item responses X serve as indicators for multiple

common factors T . This model can be specified as

xi = τ +Λti + εi. (5.2)

Here xi is a P × 1 vector of P observed indicator scores, τ is a P × 1 vector of indicator

intercepts, and Λ is a P ×R matrix containing factor loadings of R common factors with

means α and covariance matrix Ψ. Moreover, ti is a R × 1 vector of common-factor

scores for individual i and εi is a P × 1 vector of residual scores with variances of θ. The

different levels of measurement invariance with respect to V ordered from least to most

restrictive are

1 Configural invariance: implies equal factor structures across V ,

2 Metric invariance: additionally implies equal factor loadings across V ,

3 Scalar invariance: additionally implies equal indicator intercepts across V ,

4 Strict invariance: additionally implies equal residual variances across V .

The model for the observed indicator scores and the measurement-invariance conditions

easily generalize to cases with a unidimensional factor model.

One of the traditional methods to evaluate measurement invariance with respect to

a categorical background variable (e.g., group membership) is MGCFA (Vandenberg &

Lance, 2000). In MGCFA, the data are divided into two independent groups and a CFA

model as shown in Equation 5.2 is estimated for each group. Each group thus has its

own set of model parameters, which can be denoted as τ (1), Λ(1), and θ(1) for Group 1
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and τ (2), Λ(2), and θ(2) for Group 2. Measurement invariance can then be assessed by

comparing the fit of models with and without increasingly restrictive equality constraints

on the parameters across the grouping variable. Because this method relies on splitting

the data into two groups, it is best suited to a single categorical background variable.

Alternative methods for assessing measurement invariance have been proposed that allow

for including multiple categorical and continuous background variables simultaneously.

Among these alternatives are restricted factor analysis (RFA; Oort, 1992), multiple in-

dicator multiple cause (MIMIC; Jöreskog & Goldberger, 1975), and MNLFA (Bauer &

Hussong, 2009) models. The difference between these methods and MGCFA is that the

data are aggregated over the groups. We therefore refer to these methods as single-group

methods (Kolbe et al., 2021), the most flexible of which is MNLFA, described below.

For details about the differences between the single-group methods see Bauer (2017) and

Kolbe et al. (2021).

5.2.2 Moderated Nonlinear Factor Analysis

In the MNLFA approach, a CFA model is estimated in which background variables are

included as moderator variables. Figure 5.1 illustrates an example of a multidimensional

MNLFA model containing two common factors, T1 and T2, measured by five indicators

each. The idea of parameter moderation is demonstrated conceptually with the arrow

pointing from V to the measurement model. In the following paragraphs, we consider a

single background variable for ease of understanding, but MNLFA also allows for a set of

multiple background variables.

More formally, the MNLFA model for continuous indicators X can be expressed as

xi = τ i +Λiti + εi, (5.3)

where all parameters and notation remain defined as before in Equation 5.2, with the ex-

ception that all model parameters now have subscripts i. These subscripts are of special

interest, because they indicate that the values of the parameters can differ over individ-

uals as a function of the background variable V . In fact, all parameters of the MNLFA

model can be allowed to differ across values of any observed variable, including residual

(co)variances Θi, common-factor means αi, and common-factor (co)variances Ψi. Note

that in this tutorial, we only consider linear relationships between the parameters and

background variables, but other functional forms (e.g., quadratic, interaction) can be

modeled as well (Bauer, 2017; Bauer et al., 2020).

The MNLFA model presumes configural invariance, but other levels of measurement

invariance can be evaluated by testing whether V moderates any intercepts, factor load-

ings, or residual variances. More specifically, to accommodate any violations of scalar

invariance, the vector of indicator intercepts τ i can be modeled as

τ i = τ 0 + bvi, (5.4)
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V

Figure 5.1: An example MNLFA model for assessing measurement invariance. The vari-
able V may have an effect on all parameters in the model that is represented in the dashed
border.

where τ 0 is a P ×1 vector of baseline intercepts, b is a P ×1 vector of linear effects of the

background variable on the intercepts, and vi is individual i’s score on the background

variable. A nonzero element in b reflects a linear change in the intercept associated with

vi, indicating a violation of scalar invariance (i.e., uniform DIF).

Similarly, to accommodate violations of metric invariance, each column of the matrix

of factor loadings Λi can be modeled as a function of vi

Λi = Λ0 +Cvi, (5.5)

where Λ0 is a P ×R matrix of baseline factor loadings and C is a P ×R matrix of linear

effects of V on the factor loadings. A nonzero element in C reflects a linear change in

the factor loadings associated with vi, indicating a violation of metric invariance (i.e.,

nonuniform DIF).

The same idea can be adopted to accommodate violations of strict invariance. In order

to prevent negative values of the residual variances, the indicators’ residual variances θi

can be expressed as exponential functions of vi

θi = θ0exp(dvi), (5.6)

where θ0 is a P ×1 vector of baseline residual variances and d is a P ×1 vector containing

the effects of vi on the residual variances. A nonzero element in d indicates a violation of

strict invariance.

In addition to measurement parameters, common-factor means, variances, and covari-
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ances may also be moderated by the background variable V . The vector of means of the

common factors αi may be written as a linear function of vi

αi = α0 + gvi, (5.7)

where α0 is a R × 1 vector containing the baseline common-factor means and g is a

R × 1 vector containing the linear effects of vi on the common-factor means. Moreover,

the variances of the common factors may be moderated by the background variable. For

example, the common-factor variance ψ(T1T1)i of common factor T1 may be written as a

log-linear function of vi
ψ(T1T1)i = ψ(T1T1)0exp(h(T1T1)vi). (5.8)

Here, ψ(T1T1)0 is the baseline common-factor variance and h(T1T1) reflects the direct effect

of the background variable on the common-factor variance. A nonzero h indicates that

the common-factor variance differs across different levels of the background variable (i.e.,

common-factor heteroskedasticity). Similar to the model for the residual variances, a log-

linear function is considered for the common-factor variances in order to prevent obtaining

negative values. The baseline common-factor means and variances are commonly fixed

at zero and one, respectively, in order to establish the origin and scale of the common

factors.

Bauer (2017) suggested to model the covariance between common factors indirectly

through a Fisher’s z transformation to impose bounds of −1 and 1 on the corresponding

correlation. So, in order to obtain the effect of the background variable on the covariance

between common factors T1 and T2, the Fisher-transformed correlation between the factors

ζ(T1T2)i can be written as a linear function of vi

ζ(T1T2)i = ζ(T1T2)0 + h(T1T2)vi, (5.9)

where ζ(T1T2)0 is the baseline Fisher-transformed correlation between T1 and T2 and h(T1T2)

reflects the direct effect of the background variable on the Fisher-transformed correlation.

This Fisher-transformation can be inverted in order to obtain the correlation ρ(T1T2)i with

bounds of −1 and 1

ρ(T1T2)i =
exp(2ζ(T1T2)i)− 1

exp(2ζ(T1T2)i) + 1
(5.10)

and transformed to the covariance ψ(T1T2)i between the two common factors

ψ(T1T2)i = ψ
1/2
(T1T1)i

ρ(T1T2)iψ
1/2
(T2T2)i

. (5.11)

The same approach could be applied to covariances between the residual factors of the

indicators if present in the model.

Whereas RFA and MIMIC can only model specific parameters as functions of the back-

ground variable (i.e., common-factor means, indicators’ intercepts, and factor loadings),

MNLFA also allows for unique- and common-factor (co)variances to vary as functions
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of the background variable. The MNLFA approach can thus be conceptualized as an

extended RFA or MIMIC model in which (co)variances are not necessarily homoskedas-

tic across different levels of the background variable. This makes MNLFA as flexible as

MGCFA when the background variable is dichotomous, yet more flexible because MNLFA

also allows for multiple categorical and continuous background variables to be included

in a single model. For more details on the MNLFA model (e.g., parameter equations for

situations with multiple background variables), see Bauer (2017).

5.3 Tutorial

The empirical data that we used for this tutorial were gathered by Denollet et al. (2013).

The data contain observed scores on the DS14 (Denollet, 2005) in a sample of 541 patients

with coronary artery disease. The DS14 is a widely used instrument for the assessment

of the Type D personality and consists of 14 items, of which seven measure negative

affectivity and seven measure social inhibition. All items have five ordered response

categories (0 = false, 1 = rather false, 2 = neutral, 3 = rather true, 4 = true). In addition

to the observed scores on the DS14, the data also contain the dichotomous variable gender

and the continuous variable age measured in years. These two variables were used as

background variables in this tutorial.

The MNLFA model considered in this tutorial is shown in Figure 5.2. The model

includes two common factors, social inhibition (SI) and negative affectivity (NA), each

measured by seven indicators. The two common factors are allowed to covary and their

means and variances are fixed at zero and one, respectively, in order for the model to be

identified. The background variables gender and age are included in the model as moder-

ators, and depending on the level of measurement invariance may or may not moderate

the indicators’ intercepts and factor loadings. In almost all MNLFA models in this tuto-

rial, the common-factor means, common-factor variances, common-factor covariance, and

indicators’ residual variances are allowed to vary as a function of gender and age2. Such

models are also referred to as heteroskedastic MNLFA models (see Kolbe et al., 2021).

In the next section of the chapter, we demonstrate how to evaluate whether the DS14 is

measurement invariant with respect to gender and age using MNLFA. We provide a step-

by-step tutorial for assessing full measurement invariance (i.e., assessing measurement

invariance of all indicators simultaneously), selecting anchor indicators, and evaluating

partial invariance (i.e., testing each indicator separately for measurement invariance).

We focus on how to detect violations of scalar and metric invariance (i.e., uniform and

nonuniform DIF, respectively). Such violations are commonly examined with separate

omnibus tests of scalar and metric invariance, but can also be assessed simultaneously

rather than separately with a single omnibus test (Putnick & Bornstein, 2016; B. Muthén

& Asparouhov, 2002; Stark et al., 2006). In this single omnibus test, the violations

2An exception is the configural model, which requires additional identification constraints. This will
be explained in Step 3a of the tutorial.
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Figure 5.2: The MNLFA model for the DS14 dataset.

of scalar and metric invariance are examined simultaneously by comparing the fit of a

configural model (that allows for uniform and nonuniform DIF in all indicators) to the fit

of a scalar model (that does not allow for uniform or nonuniform DIF in any indicators).

Full R scripts for replicating the results of this tutorial can also be found on our Open

Science Framework project https://osf.io/6cyxt/.

Before we present all of the steps of the tutorial, we would like to make two important

comments. First, although the measurement level of the DS14 items is ordinal, we treat

the items as continuous in the present tutorial because our aim is merely to illustrate

MNLFA and not to draw substantive conclusions. Please note that if MNLFA were to

be used for drawing substantive conclusions with respect to ordinal data, an ordinal

MNLFA model may be more suitable (see section Extensions). For more details on

treating ordinal items as continuous, see Rhemtulla et al. (2012) and Robitzsch (2020b).

Rhemtulla et al. (2012) discussed conditions under which 5-point scales might be treated

as continuous, and Robitzsch (2020b) elucidated why it might always be defensible to

do so. Second, there is no straightforward way of assessing configural invariance (nor

overall data–model fit in general) with MNLFA yet, because MNLFA does not allow for

distinct factor structures with respect to the background variable(s). We will therefore

assume in this tutorial that the configural-invariance condition holds. In practice, it is

important to evaluate configural invariance prior to the assessment of metric, scalar, and

strict invariance, because the assessment of other levels of measurement invariance may

lead to false conclusions if configural invariance does not hold (Jorgensen, 2017).

5.3.1 Step 1: Install and Load OpenMx

This tutorial illustrates how measurement invariance can be examined with MNLFA using

OpenMx (version 2.19.5; Neale et al., 2016). This package can be used for matrix algebra

optimization, SEM, and other statistical estimation methods. The user needs to install

the package on the computer once, then load it into the workspace each time a new R

session is started:
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> install.packages("OpenMx")

> library(OpenMx)

Any dependencies are automatically installed when running the syntax above. Note that

R version 3.5 or higher is required3 for the latest version of this package to work. The

core function of the OpenMx package necessary to create an MNLFA model is the mxModel()

function. This function builds an object for a statistical model containing (among other

information) the data, matrices, algebraic expressions, fit functions, and expectations for

the model.

5.3.2 Step 2: Load and Prepare Data

The data gathered by Denollet et al. (2013) is available in the mokken package (Van der

Ark, 2007). This R package can be installed and loaded as follows:

> install.packages("mokken")

> library(mokken)

In order to load the DS14 data and convert it to a data frame, the user can run the

following lines of R code:

> data("DS14", package="mokken")

> DS14 <- data.frame(DS14)

The dataset DS14 is now loaded into the user’s workspace. The head() function can be

used to inspect the first six rows of the data. The data contain gender (Male), age (Age),

and item scores on the DS14 questionnaire (Si1., Na2, Si3., Na4, Na5, Si6, Na7, Si8, Na9,

Si10, Si11, Na12, Na13, Si14).

For ease of interpretation, the two negatively worded items (Si1. and Si3.) can be

re-coded prior to the measurement invariance assessment:

> DS14$Si1 <- 4 - DS14$Si1.
> DS14$Si3 <- 4 - DS14$Si3.

After running the above syntax, the DS14 data frame now also contains the re-coded

versions of these two items, named Si1 and Si3. Similar to the other SI items, a higher

score on these re-coded items now indicates a higher level of social inhibition. In addition

to the item scores, the data contain scores on the variables gender (Male) and age (Age). A

score of Male = 1 represents a male patient and Male = 0 a female patient. The Age variable

is measured in years and can be standardized in order for an easier interpretation of its

effects on the model parameters:

> DS14$Age <- (DS14$Age - mean(DS14$Age))/sd(DS14$Age)

For convenience, the item scores are re-ordered such that the first seven items reflect social

inhibition and the second seven items reflect negative affectivity:

> DS14 <- DS14[,c("Male","Age","Si1","Si3","Si6","Si8","Si10","Si11","Si14",

> "Na2","Na4","Na5","Na7","Na9","Na12", "Na13")]

3This may have changed since the time of this writing. Check https://CRAN.R-project.org/

package=OpenMx for the current requirements.
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After the dataset has been prepared for the measurement invariance assessment, the

user should convert the data to an MxData object:

> mxdata1 <- mxData(observed=DS14 , type="raw")

The mxData() function constructs an object with additional information allowing it to

be processed in the mxModel() function. By specifying observed=DS14 and type="raw", the

function reads in the raw data stored in DS14. Alternatively, summary statistics could be

analyzed.

Finally, the user can save the number and names of the observed variables serving as

indicators of the factors in the MNLFA model:

> manVars <- colnames(DS14[,-c(1 ,2)])

> nv <- length(manVars)

The names of the indicators stored in manVars are required for one of the arguments of the

mxModel() function, which will be shown later in this section.

5.3.3 Step 3: Assess Full Measurement Invariance

After preparing the data, the user can start with performing an omnibus test of full

measurement invariance with respect to the background variables. That is, the user can

test the H0 that none of the indicators function differently with respect to Male and Age.

Full measurement invariance can be assessed with MNLFA on metric, scalar, or strict

levels. In this step of the tutorial, we will focus only on simultaneously assessing full

scalar-and-metric invariance. In the omnibus test of scalar-and-metric invariance, the fit

of an unconstrained configural model is compared to the fit of a constrained scalar model.

In the configural model, the direct effects of the background variables on the indicators’

intercepts and factor loadings are all freely estimated, whereas in the scalar model these

effects are all fixed to zero. If the scalar model fits the data significantly worse than

the configural model at a chosen α level, the H0 of full scalar-and-metric invariance is

rejected and follow-up tests can be performed to evaluate which specific indicators exhibit

(non)uniform DIF with respect to the background variables (Steps 4 and 5).

Step 3a: Specify and Fit the Configural Model

In order to fit this model to the empirical data with OpenMx, we put all model parameters

into matrices using the mxMatrix() function. Most often, the following six arguments will

be specified for each matrix:

type: requires a character string indicating the matrix type. In this tutorial, we use

"Diag", "Full", and, "Symm" matrices.

nrow: refers to the number of rows of the matrix.

ncol: refers to the number of columns of the matrix.
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free: indicates which elements of the matrix can be freely estimated (TRUE or T) or

are fixed parameters (FALSE or F).

values: reflects the values of the elements in the matrix. If an element is freely

estimated, it reflects the starting value. If an element is not freely estimated, it

reflects the fixed value.

name: refers to the user-specified name of the matrix which is used within OpenMx

when performing an operation on this matrix.

The syntax below creates three MxMatrix objects for the indicator intercepts of the config-

ural model:

> matT0 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=TRUE ,

> values=1,

> name="matT0")

> matB1 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=TRUE ,

> values=0,

> name="matB1",

> matB2 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=TRUE ,

> values=0,

> name="matB2"

The matrix matT0 is a full matrix containing the baseline intercepts τ 0. All baseline inter-

cepts are freely estimated with starting values of one by setting free=TRUE and values=1.

Matrix matB1 and matB2 are full matrices containing the direct effects of the background

variables Male and Age, respectively, on the intercepts. These direct effects reflect uniform

DIF, represented by b. In the configural model, the effects of Male and Age on the inter-

cepts are freely estimated with starting values of zero by setting free=TRUE and values=0.

By giving the matrices names using the name argument, we can refer to these matrices in

upcoming syntax.

Similar lines of R code can be used for creating the matrices of factor loadings:

> matL0 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=c(rep(c(TRUE ,FALSE),7), rep(c(FALSE ,TRUE),7)),

> values=c(rep(c(1,0),7), rep(c(0,1),7)),

> byrow=TRUE ,

> name="matL0")

> matC1 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=c(rep(c(TRUE ,FALSE),7), rep(c(FALSE ,TRUE),7)),

> values=0,

> byrow=TRUE ,

> name="matC1")

> matC2 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=c(rep(c(TRUE ,FALSE),7), rep(c(FALSE ,TRUE),7)),

> values=0,

> byrow=TRUE ,

> name="matC2")

Here, matL0 is a full matrix containing the baseline factor loadings Λ0. The first col-

umn of the matrix contains the factor loadings of the social inhibition factor, and the

second column contains the factor loadings of the negative affectivity factor. By setting
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free=c(rep(c(TRUE,FALSE),7), rep(c(FALSE,TRUE),7)), values=c(rep(c(1,0),7), rep(c(0,1),7)),

and byrow=TRUE, the factor loadings of the social inhibition factor on the first seven items

and the factor loadings of the negative affectivity factor on the second seven items are

freely estimated (with starting values = 1). For the other factor-indicator combinations,

the factor loadings are fixed at zero. Matrices matC1 and matC2 are full matrices containing

the direct effects of Male and Age, respectively, on the factor loadings (i.e., nonuniform DIF

represented by c). These effects are freely estimated in the configural model with start-

ing values of zero by setting free=c(rep(c(TRUE,FALSE),7), rep(c(FALSE,TRUE),7)), values=0,

and byrow=TRUE.

The matrices for the residual variances of the indicators can then be specified as

symmetric (type="Symm") if there are any nonzero residual covariances, or more simply

diagonal (type="Diag") if only residual variances are nonzero (which is the case here):

> matE0 <- mxMatrix(type="Diag", nrow=nv, ncol=nv,

> free=TRUE ,

> values=1,

> name="matE0")

> matD1 <- mxMatrix(type="Diag", nrow=nv, ncol=nv,

> free=TRUE ,

> values=0,

> name="matD1")

> matD2 <- mxMatrix(type="Diag", nrow=nv, ncol=nv,

> free=TRUE ,

> values=0,

> name="matD2")

where matE0 is a diagonal matrix containing the baseline residual variances θ0, matD1 is

a diagonal matrix containing the effects of Male on the residual variances, and matD2 is a

diagonal matrix containing the effects of Age on the residual variances (also represented

as d). These model parameters are all freely estimated with the free=TRUE argument.

After specifying the matrices of measurement parameters, matrices can be specified for

the common-factor variances and correlation. These matrices can be specified as follows:

> matP0 <- mxMatrix(type="Symm", nrow=2, ncol=2,

> free=c(FALSE ,TRUE ,TRUE ,FALSE),

> values=c(1,0,0,1),

> name="matP0")

> matH1 <- mxMatrix(type="Symm", nrow=2, ncol=2,

> free=c(FALSE ,TRUE ,TRUE ,FALSE),

> values=0,

> name="matH1")

> matH2 <- mxMatrix(type="Symm", nrow=2, ncol=2,

> free=c(FALSE ,TRUE ,TRUE ,FALSE),

> values=0,

> name="matH2")

where matP0 is a symmetric matrix containing the baseline common-factor variances and

the baseline correlation4 between the two common factors. We freely estimate the baseline

common-factor correlation and fix the baseline common-factor variances to unity in order

4Combining the common-factor variances and correlations in a single matrix may seem odd, but allows
us to specify different moderation functions for variance parameters versus correlations (see Bauer, 2017).
This is shown in a later paragraph of Step 3a.
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for the scales of the common factors to be identified. Matrices matH1 and matH2 contain the

direct effects of Male and Age, respectively, on the common-factor variances and correlation

(also denoted by h). In the configural model we set free=c(FALSE,TRUE,TRUE,FALSE) and

values=0 in matH1 and matH2, so the direct effects of the background variables on the

common-factor correlation are freely estimated, but the direct effects on the common-

factor variances are fixed to zero.

The matrices required for the common-factor means can be specified with the following

R syntax:

> matA0 <- mxMatrix(type="Full", nrow=2, ncol=1,

> free=FALSE ,

> values=0,

> name="matA0")

> matG1 <- mxMatrix(type="Full", nrow=2, ncol=1,

> free=FALSE ,

> values=0,

> name="matG1")

> matG2 <- mxMatrix(type="Full", nrow=2, ncol=1,

> free=FALSE ,

> values=0,

> name="matG2")

Here, matA0 is a matrix containing the baseline common-factor means, which are fixed at

zero for the origins of the common factors to be identified. The matG1 and matG2 matrices

contain the direct effects of Male and Age, respectively, on the common-factor means (also

represented by g). These direct effects are fixed at zero in the configural model. So,

in addition to fixing the baseline common-factor variances and means to one and zero,

respectively, the direct effects of the background variables on the common-factor variances

and means are also fixed at zero in the configural model. These additional identification

constraints are necessary because the configural model includes all possible direct effects

of the background variables on the indicators’ intercepts, factor loadings, and residual

variances (analogous to measurement parameters differing across groups in a configural

MGCFA model).

Now that all the matrices with baseline parameters and direct effects of the background

variables on the parameters have been created, the user can specify the matrices required

for the matrix algebra in the next paragraphs. First, to allow for moderating effects, the

background variables are modeled as definition variables with the following matrices:

> matV1 <- mxMatrix(type="Full", nrow=1, ncol=1,

> free=FALSE ,

> labels="data.Male",

> name="Male")

> matV2 <- mxMatrix(type="Full", nrow=1, ncol=1,

> free=FALSE ,

> labels="data.Age",

> name="Age")

The matrices matV1 and matV2 contain the observed scores on the background variables

Male and Age, respectively. The observed scores on the background variables stored in the

mxdata1 dataset are referred to in the matrix label as "data.Male" and "data.Age". Modeling

the background variables as definition variables allows us to let model parameters differ
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across different levels of Male and Age.

Then, the matrices for all parameters predicted by Male and Age are created using the

mxAlgebra() function. The mxAlgebra() function can be used to define a matrix of model

parameters as a function of background variables. The first argument of this function,

expression, should be used for specifying an R expression of one or more MxMatrix objects.

Most R operators like +, *, and %*%, an general R functions like mean(), log(), and exp() are

supported in this argument of the mxAlgebra() function. A name for the defined matrix

can be assigned with the name argument. The matrices of intercepts, factor loadings, and

residual variances (respectively) can be specified as:

> matT <- mxAlgebra(expression = matT0 + matB1*Male + matB2*Age ,

> name="matT")

> matL <- mxAlgebra(expression = matL0 + matC1*Male + matC2*Age ,

> name="matL")

> matE <- mxAlgebra(expression = matE0*exp(matD1*Male + matD2*Age),

> name="matE")

The object matT contains a linear moderation function for the indicator intercepts τ of

patient i (as in Equation 5.4):

τ i = τ 0 + b1 ×Malei + b2 × Agei, (5.12)

and matL contains a linear moderation function for the factor loadings Λ of patient i (as

in Equation 5.5):

Λi = Λ0 +C1 ×Malei +C2 × Agei. (5.13)

The object matE contains a log-linear function for the residual variances θ of patient i (as

in Equation 5.6):

θi = θ0 × exp(d1 ×Malei + d2 × Agei). (5.14)

Similarly, the matrix of common-factor means can be created with the mxAlgebra()

function:

> matA <- mxAlgebra(expression = matA0 + matG1*Male + matG2*Age ,

> name="matA")

where matA contains the common-factor means α being modeled as a linear function of

the background variables:

αi = α0 + g1 ×Malei + g2 × Agei. (5.15)

Finally, the covariance matrix for the common factors requires different moderation

functions for variances and covariance(s). First, we model the common-factor variances

as a log-linear function of Male and Age:

> matVar <- mxAlgebra(expression = matP0*exp(matH1*Male + matH2*Age),

> name="matVar")

The object matVar thus contains a matrix with the common-factor variances on the diag-
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onal. For example, the variance of the social inhibition factor is modeled as

ψ(SISI)i = ψ(SISI)0 × exp(h(SISI)1 ×Malei + h(SISI)2 × Agei). (5.16)

After we have specified the common-factor variances, we can obtain the common-factor

covariance via the common-factor correlation. To respect a correlation’s natural bounds

between −1 and 1, we apply a Fisher’s z transformation to the correlation, making it a

linear function of the background variables (see Equation 5.10):

> matR <- mxAlgebra(expression =(exp(2*(matP0 + matH1*Male + matH2*Age)) - 1)/

> (exp(2*(matP0 + matH1*Male + matH2*Age)) + 1),

> name="matR")

The object matR includes a matrix with the common-factor correlation bound between −1

and 1 on the off-diagonal. Before converting factor correlations to covariances, the user

must first make a 2 × 2 identity matrix (matIa), as well as a 2 × 2 matrix with zeros on

the diagonal and ones on the off-diagonal (matIb).

> matIa <- mxMatrix(type="Diag", nrow=2, ncol=2,

> free=FALSE ,

> values=1,

> name="matIa")

> matIb <- mxMatrix(type="Full", nrow=2, ncol=2,

> free=FALSE ,

> values=c(0,1,1,0),

> name="matIb")

We need these matrices to set diagonal and off-diagonal elements of upcoming matrices

to zero. Now, the correlation can be converted to a covariance as follows:

> matCov <- mxAlgebra(expression =(matIa*sqrt(matVar )) %*% matR %*%

> (matIa*sqrt(matVar)), name="matCov")

Here, we take the square root of the matrix matVar to obtain SDs on the diagonal, then

premultiply this matrix by matIa to set all off-diagonal elements to zero. The matCov matrix

contains the common-factor covariance on the off-diagonal.

Now we can add matIa*matVar (i.e., a matrix with common-factor variances on the

diagonal and zeros on the off-diagonal) to matIb*matCov (i.e., a matrix with zeros on the

diagonal and the common-factor covariance on the off-diagonal) to obtain the covariance

matrix for the common factors:

> matP <- mxAlgebra(expression = matIa*matVar + matIb*matCov ,

> name="matP")

With all of the matrices specified above (i.e., matT, matL, matE, matA, and matP), the

model-implied moments (means and covariance matrix) of the configural model can be

specified, again by using the mxAlgebra() function:

> matM <- mxAlgebra(expression = matT + t(matL)*matA ,

> name="matM")

> matC <- mxAlgebra(expression = matL %*% matP %*% t(matL) + matE ,

> name="matC")

The matM matrix contains the model-implied means, and the matC matrix contains the

model-implied variances and covariances of the indicators.
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In order to fit the configural model with the specified model-implied matrices, the user

needs to specify the model expectation and fit function:

> expF <- mxExpectationNormal(covariance="matC",

> means="matM",

> dimnames=manVars)

> fitF <- mxFitFunctionML ()

The expectation function stored in expF defines the way in which the model expectations

are calculated. The mxExpectationNormal() function uses the algebra defined in matC and

matM to obtain the model-implied variances, covariances, and means of the indicators under

multivariate normality. The dimnames argument of the function takes the character vector

manVars containing the names of the indicators. The mxFitFunctionML() function stored

in fitF is used to indicate that the free parameters of the configural model should be

estimated using full-information maximum likelihood. Alternatively, a user-defined fit

function can be treated as an mxFitFunction by using the mxFitFunctionR() function.

All of the separate objects for each part of the configural model can now be combined

using the mxModel() function. The model argument of this function can be used to specify a

name for the new model. The following arguments are a number of MxMatrix and MxAlgebra

objects, as well as the expectation function, fit function, and MxData objects. All of these

objects can be added to the model as follows:

> modConfig <- mxModel(model="Configural",

> matT , matT0 , matB1 , matB2 ,

> matL , matL0 , matC1 , matC2 ,

> matE , matE0 , matD1 , matD2 ,

> matP , matP0 , matH1 , matH2 ,

> matA , matA0 , matG1 , matG2 ,

> matIa , matIb , matV1 , matV2 ,

> matVar , matR , matCov , matM , matC ,

> expF , fitF , mxdata1)

The object modConfig now includes the data, model matrices, expectation function, and

fit function. These objects are all the required elements to optimize the free parameters

in the model. The model can be fitted to the data using the mxRun() function. This

function sends the MxModel object specified in the first argument to the optimizer and

returns the optimized model. Additional information on the parameters estimates can

be requested by including arguments like intervals = TRUE for confidence intervals. The

configural model can be fitted to the DS14 data as follows:

> fitConfig <- mxRun(modConfig)

The output can be printed using the summary() function. The summary output of the

model contains the estimates of all free parameters, their standard errors, and model

statistics including the number of parameters and goodness-of-fit reported in units of −2

times the log-likelihood (-2lnL). In Step 3c, this fit statistic will be compared to the fit

of the scalar model (Step 3b).
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Step 3b: Specify and Fit the Scalar Model

In this step, we show how to specify and fit the scalar model in which all direct effects of

Male and Age on the indicators’ intercepts and factor loadings are fixed at zero. The user

should first re-specify matrices matB1, matB2, matC1, and matC2:

> matB1 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=FALSE ,

> values=0,

> name="matB1")

> matB2 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=FALSE ,

> values=0,

> name="matB2")

> matC1 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=FALSE ,

> values=0,

> name="matC1")

> matC2 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=FALSE ,

> values=0,

> name="matC2")

These new matrices for the direct effects on the intercepts and factor loadings indicate

that none of the direct effects of the background variables on the indicator’s intercept

and factor loading should be freely estimated by using the free=FALSE argument in each

of these matrices.

Next, we release the additional identification constraints that were necessary for the

configural model in Step 3a. That is, in the scalar model we freely estimate the direct

effects of Male and Age on the common-factor means and variances by re-specifying matrices

matH1, matH2, matG1, and matG2:

> matH1 <- mxMatrix(type="Symm", nrow=2, ncol=2,

> free=TRUE ,

> values=0,

> name="matH1")

> matH2 <- mxMatrix(type="Symm", nrow=2, ncol=2,

> free=TRUE ,

> values=0,

> name="matH2")

> matG1 <- mxMatrix(type="Full", nrow=2, ncol=1,

> free=TRUE ,

> values=0,

> name="matG1")

> matG2 <- mxMatrix(type="Full", nrow=2, ncol=1,

> free=TRUE ,

> values=0,

> name="matG2")

These matrices now indicate that the common-factor variances and means are allowed to

differ across all values of Male and Age. All other elements of the scalar model are similar

to the configural model specified in Step 3a. So, after re-specifying objects matB1, matB2,

matC1, matC2, matH1, matH2, matG1, and matG2 we can combine the elements required to run

the scalar model and fit the model to the data:

> modScalar <- mxModel(model="Scalar",

> matT , matT0 , matB1 , matB2 ,
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> matL , matL0 , matC1 , matC2 ,

> matE , matE0 , matD1 , matD2 ,

> matP , matP0 , matH1 , matH2 ,

> matA , matA0 , matG1 , matG2 ,

> matIa , matIb , matV1 , matV2 ,

> matVar , matR , matCov , matM , matC ,

> expF , fitF , mxdata1)

> fitScalar <- mxRun(modScalar)

Again, the summary() function can be used to obtain the model fit and parameter estimates.

Step 3c: Conduct Likelihood-Ratio Test

Now that both the configural and scalar model have been fitted to the data, a likelihood-

ratio test (LRT) can be performed using the mxCompare() function:

> miTest <- mxCompare(fitConfig , fitScalar)

> miTest

base comparison ep minus2LL df AIC diffLL diffdf p

1 Configural <NA> 129 20762.42 7435 21020.42 NA NA NA

2 Configural Scalar 81 20874.94 7483 21036.94 112.5204 48 4.253424e-07

Using α = .05 as significance level, the output shows that the constraints on the intercepts

and factor loadings significantly deteriorate model fit, ∆χ2(48) = 112.52, p < .001. This

indicates that the H0 of full scalar-and-metric invariance can be rejected. In the following

steps, we will illustrate how follow-up tests can be performed to evaluate which indicators

function differently with respect to the background variables.

5.3.4 Step 4: Select Anchor Indicators

In the previous step, we have rejected the H0 of full scalar-and-metric invariance with

respect to Male and Age. Partial invariance can be established by detecting which spe-

cific indicators exhibit (non)uniform DIF. Each indicator can be tested individually for

DIF while holding a subset of other indicators invariant across the background variables.

These latter indicators are also called anchor indicators and are used to link the metric

of the common factors across the background variables. When anchor indicators are not

known a priori, they can be explicitly selected using an anchor-selection strategy. In this

step of the tutorial, we show how to apply the rank-based strategy (Woods, 2009) for the

selection of anchor indicators. This is an easily implemented selection strategy in which

a limited number of indicators that show the weakest evidence of DIF are selected as

anchor indicators. More complicated empirical methods for selecting anchors can slightly

improve accuracy (Kopf et al., 2015b,a), and regularized estimation can avoid the need for

anchors altogether (Bauer et al., 2020). The potential danger of selecting anchor indica-

tors is that one or more indicators with DIF may be selected as anchors, which can cause

problems such as biased parameter estimates and an overestimation of the amount of DIF

(W.-C. Wang, 2004). However, the risk of bias can be minimal if positive and negative

DIF are relatively balanced. When DIF is unbalanced, the risk of such a contamination

of the subset of anchor indicators can be decreased by selecting a relatively small anchor
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set. Accordingly, Woods’ (2009) recommended to select approximately 20% of indicators

to serve as anchor indicators. We follow this recommendation by selecting two out of

seven indicators per common factor to serve as anchor indicators across both background

variables5. One could also argue to select anchor indicators for each background vari-

able separately, but to keep the following steps of the tutorial as concise as possible we

demonstrate how to select the same anchor indicators for Male and Age.

Step 4a: Specify and Fit All-But-One Models

The first step of the rank-based strategy is to fit a less-constrained all-but-one model for

each indicator. In an indicator’s all-but-one model, only that indicator’s intercept and

factor loading are predicted by the background variables (i.e., all but one of the indicators

are assumed to be scalar-and-metric invariant). For example, the all-but-one model for

Indicator 1 (si1) includes freely estimated direct effects of Male and Age on the intercept

and factor loading of Indicator 1, and the direct effects of the background variables on

all other indicators’ intercepts and factor loadings are fixed at zero. So, almost all of

the matrices specified in Step 3a can be used for these models, except for matrices matB1,

matB2, matC1, and matC2.

In order to efficiently execute this step, we specify and fit an all-but-one model for

each indicator in a for loop. First, we create an empty list to which we can add each

model’s output:

> fitAbo <- list()

Next, we run the following for loop:

> for (i in 1:nv){

> freeparT <- matrix(data=FALSE , nrow=1, ncol=nv)

> freeparT[i] <- TRUE

> freeparL <- matrix(data=FALSE , nrow=nv, ncol =2)

> freeparL[i, ifelse(i < 8, yes=1, no=2)] <- TRUE

> matB1 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparT ,

> values=0,

> name="matB1")

> matB2 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparT ,

> values=0,

> name="matB2")

> matC1 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=freeparL ,

> values=0,

> byrow=TRUE ,

> name="matC1")

> matC2 <- mxMatrix(type="Full", nrow=nv, ncol=2,

5Note that if only one anchor indicator per common factor is used for identification, the model would
simply be a configural model, equivalent to the one specified in Step 3a. Such a model is incapable of
distinguishing between differences in common-factor means and variances from differences in the reference-
indicator’s intercept and loading across the background variables. That is why at least two anchor
indicators are required per common factor for differences in common-factor means and variances to be
attributed to differences in the common-factor distribution, rather than being due to differences in a
single indicator.
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> free=freeparL ,

> values=0,

> byrow=TRUE ,

> name="matC2")

> modAbo <- mxModel(model=paste0("All_but_", i),

> matT , matT0 , matB1 , matB2 ,

> matL , matL0 , matC1 , matC2 ,

> matE , matE0 , matD1 , matD2 ,

> matP , matP0 , matH1 , matH2 ,

> matA , matA0 , matG1 , matG2 ,

> matIa , matIb , matV1 , matV2 ,

> matVar , matR , matCov , matM , matC ,

> expF , fitF , mxdata1)

> fitAbo [[i]] <- mxRun(modAbo)

> }

In this for loop, the syntax will run for each of the 14 indicators represented by i. First,

we specify which elements in matB1, matB2, matC1, and matC2 should be freely estimated by

creating matrices with true and false entries, named freeparT and freeparL. These matrices

are used for the free argument of the mxMatrix() function to indicate that the direct effects

of the background variables on indicator i’s intercept and factor loading should be freely

estimated. The effects of the background variables on all intercepts and factor loadings

of indicators other than i are fixed to zero (implying no DIF). After re-specifying the

matrices matB1, matB2, matC1, and matC2, all elements required to fit the all-but-one model

of indicator i are combined using the mxModel() function. The model is then optimized

using mxRun() and added to the ith component of the list fitAbo.

Step 4b: Conduct Likelihood-Ratio Tests and Select Anchors

After specifying and fitting the less-constrained all-but-one models, each one’s fit can be

compared to the fit of the constrained scalar-invariance model (fitScalar). A comparison

of the fit of these models with an LRT indicates whether additionally fixing the current

indicator’s intercept and factor loading to be unaffected by the background variables leads

to a significantly worse model fit. Note that these LRTs should not be trusted as tests

of DIF because unmodeled DIF biases other parameters, inflating Type I error rates for

DIF-free indicators; however, these tests can serve as a reliable empirical basis for selecting

anchors (Woods, 2009; Kolbe & Jorgensen, 2019; Kopf et al., 2015a). Because fitAbo is a

list of fitted models, each of them will be compared to fitScalar, and we store the LRT

results in a readable table anchorOut:

> anchorTest <- mxCompare(fitAbo , fitScalar)

> anchorOut <- data.frame(Name = paste0("Indicator", 1:nv),

> X2 = anchorTest$diffLL[seq(2,28,2)],
> df = anchorTest$diffdf[seq(2,28,2)],
> p = anchorTest$p[seq (2 ,28 ,2)])

Differences in -2lnL values from the scalar-invariance and all-but-one models follow a χ2

distribution with df = 4. The results stored in piOut are presented in Table 5.1.

Indicators 1–7 of social inhibition and 8–14 of negative affectivity can now be ranked

in ascending order based on their LRT statistics:
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Table 5.1: Likelihood-ratio tests for the
purpose of selecting anchor indicators.

Indicator Name ∆χ2(4) p Rank
1 Si1 16.36 .003 6
2 Si3 8.78 .067 5
3 Si6 5.44 .245 3
4 Si8 7.42 .115 4
5 Si10 4.30 .367 2
6 Si11 3.05 .550 1
7 Si14 16.72 .002 7
8 Na2 2.43 .658 2
9 Na4 1.15 .886 1
10 Na5 11.02 .026 5
11 Na7 5.36 .252 4
12 Na9 3.90 .420 3
13 Na12 22.54 .000 7
14 Na13 19.38 .001 6

Note. The rank score is based on the LRT
statistic (i.e., ∆χ2(4)) of each indicator per
common factor. The indicators are ranked in
ascending order, that is, a higher rank score
indicates a smaller LRT statistic and thus a
weaker evidence of DIF.

> anchorOut[order(anchorOut$X2[1:7]) ,]
> anchorOut [7+ order(anchorOut$X2[8:14]) ,]

The smaller the test statistic, the weaker the evidence of DIF. So, for each common factor,

the two indicators with the smallest test statistics are selected as anchor indicators:

> anchors1 <- c(5, 6)

> anchors2 <- c(8, 9)

In this dataset, Indicators 5 and 6 are selected as anchor indicators for social inhibition,

and Indicators 8 and 9 are selected as anchor indicators for negative affectivity. The

indicator indices are stored in anchors1 and anchors2 to use as anchors in Step 5, when we

test all other studied indicators (i.e., Indicators 1, 2, 3, 4, 7, 10, 11, 12, 13, 14) for DIF.

5.3.5 Step 5: Assess Partial Invariance

Previously in Step 3, we found evidence against full scalar-and-metric invariance with

respect to the background variables Male and Age. We can now perform follow-up tests in

order to evaluate partial scalar-and-metric invariance. We will show how to use MNLFA

to test the H0 of invariance for each indicator by comparing the fit of a less-constrained

anchors-only model to several more-constrained anchors-plus-one models. In the anchors-

only model, the direct effects of the background variables on all studied indicators’ in-

tercepts and factor loadings are freely estimated to allow for (non)uniform DIF, so only
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the anchor indicators have scalar- and metric-invariance constraints. For each studied in-

dicator, its anchors-plus-one model additionally constrains that indicator to be invariant

by removing the background variables’ (non)uniform DIF estimates. Because background

variables continue to affect remaining studied indicators, parameter estimates in these

anchors-plus-one models are not biased by DIF (unless selected anchors have DIF, which

is a small risk; Woods, 2009; Kolbe & Jorgensen, 2019; Kopf et al., 2015b).

Step 5a: Specify and Fit the Anchors-Only Model

We first create an object containing the studied indicators, by removing anchors:

> testIn <- c(1:nv)[ -c(anchors1 , anchors2) ]

Then, we create two matrices that indicate which direct effects of the background variables

are freely estimated in the anchors-only model:

> freeparT <- matrix(TRUE , nrow=1, ncol =14)

> freeparT[1, c(anchors1 , anchors2 )] <- FALSE

> freeparL <- matrix(c(rep(c(TRUE ,FALSE),7), rep(c(FALSE ,TRUE),7)),

> nrow=nv, ncol=2, byrow=TRUE)

> freeparL[anchors1 , 1] <- FALSE

> freeparL[anchors2 , 2] <- FALSE

After running these lines of syntax, freeparT and freeparL are matrices with TRUE and

FALSE entries indicating which intercepts and factor loadings, respectively, are allowed to

differ as a function of the background variables.

In the anchors-only model, all studied indicators’ intercepts and factor loadings are

now allowed to differ as a function of the background variables. In order to specify the

anchors-only model, the user should indicate which elements in MxMatrix objects matB1,

matB2, matC1, and matC2 can be freely estimated:

> matB1 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparT ,

> values=0,

> name="matB1")

> matB2 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparT ,

> values=0,

> name="matB2")

> matC1 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=freeparL ,

> values=0,

> name="matC1")

> matC2 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=freeparL ,

> values=0,

> name="matC2")

All other elements of the anchors-only model are similar to the all-but-one models specified

in Step 4a. So after re-specifying matB1, matB2, matC1, and matC2, the anchors-only model

can be fitted to the DS14 data:

> modAnchors <- mxModel(model="AnchorsOnly",

> matT , matT0 , matB1 , matB2 ,

> matL , matL0 , matC1 , matC2 ,

> matE , matE0 , matD1 , matD2 ,
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> matP , matP0 , matH1 , matH2 ,

> matA , matA0 , matG1 , matG2 ,

> matIa , matIb , matV1 , matV2 ,

> matVar , matR , matCov , matM , matC ,

> expF , fitF , mxdata1)

> fitAnchors <- mxRun(modAnchors)

The object fitAnchors contains the model fit and parameter estimates of the unconstrained

model, which can be printed using the summary() function.

Step 5b: Specify and Fit Anchors-Plus-One Models

In each anchors-plus-one model, the studied indicator is additionally constrained to exhibit

no DIF. That is, all intercepts and factor loadings are allowed to differ as a function of

the background variables, except for the current studied indicator and the anchors. First,

an empty list can be created for the output of all constrained models:

> fitApo <- list()

The anchors-plus-one model for each studied indicator can be specified and fit within this

for() loop:

> for (i in testIn ){

> freeparTa <- freeparT

> freeparLa <- freeparL

> freeparTa[i] <- FALSE

> freeparLa[i, ifelse(i < 8, yes=1, no=2)] <- FALSE

> matB1 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparTa ,

> values=0,

> name="matB1")

> matB2 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparTa ,

> values=0,

> name="matB2")

> matC1 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=freeparLa ,

> values=0,

> name="matC1")

> matC2 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=freeparLa ,

> values=0,

> name="matC2")

> modApo <- mxModel(model=paste0("Anchors_plus_", i),

> matT , matT0 , matB1 , matB2 ,

> matL , matL0 , matC1 , matC2 ,

> matE , matE0 , matD1 , matD2 ,

> matP , matP0 , matH1 , matH2 ,

> matA , matA0 , matG1 , matG2 ,

> matIa , matIb , matV1 , matV2 ,

> matVar , matR , matCov , matM , matC ,

> expF , fitF , mxdata1)

> fitApo [[i]] <- mxRun(modApo)

> }

So for each studied indicator, the matrices of freely estimated (non)uniform DIF (freeparT

and freeparL) are copied in the first two lines of the for() loop, in order to additionally

fix the DIF parameters of the current studied indicator i to zero in the following two
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lines. After completing the for() loop, the object fitApo is a list containing the fit and

parameter estimates of each studied indicators’ anchors-plus-one model.

Step 5c: Conduct Likelihood-Ratio Tests

Partial scalar-and-metric invariance can now be assessed by performing a LRT for all

studied indicators using the mxCompare() function:

> piTest <- mxCompare(fitAnchors , fitApo)

> piOut <- data.frame(Name = paste0("Indicator", testIn),

> X2 = piTest$diffLL [2:11] ,
> df = piTest$diffdf [2:11] ,
> p = piTest$p[2:11] ,
> p.bon = p.adjust(p=piTest$p[2:11] , method="bonferroni"),

> p.BH = p.adjust(p=piTest$p[2:11] , method="BH"))

The object piOut contains the LRT statistic, df , and p value for each studied indicator,

presented in Table 5.2. To account for multiple testing, we also included Bonferroni-

adjusted p values to control the familywise Type I error rate, as well as more-powerful

Benjamini–Hochberg adjustments to maintain a false discovery rate no larger than the α

level. Without accounting for multiple testing, the LRTs indicate that constraining the

intercepts and factor loadings of Indicators 1, 2, 7, and 13 to be unaffected by Male or

Age leads to a significantly worse model fit. Using α = .05 as significance level, the H0

of measurement invariance with respect to Male and Age for these indicators can thus be

rejected. However, other conclusions can be made when accounting for multiple testing.

The Bonferroni-adjusted p values indicate that only Indicator 13 significantly violates

scalar-and-metric invariance, whereas the Benjamini–Hochberg-adjusted p values addi-

tionally indicate a significant violation of Indicator 7. Follow-up Wald tests of specific

(non)uniform DIF can be conducted by consulting the Wald z statistics in the summary()

output of the models with significant DIF. This may be warranted if more information

about the nature of DIF is desired (e.g., to attempt revising indicators to remove such

DIF). Our Open Science Framework project https://osf.io/6cyxt/ also includes R

code to inspect tracelines of the DIF indicators which may help with interpreting the DIF

effects. In addition, R code for plots of moderated common-factor means, variances, and

correlations can be found here along with image files for the plots themselves.

5.3.6 Final Model: Comparison with Mplus

In this section of the tutorial, we fit the final partial-invariance model to the DS14 data,

using both OpenMx (Neale et al., 2016) and Mplus (L. K. Muthén & Muthén, 2012). The

purpose of this section is to show that the parameter estimates obtained by these two

software packages are identical. In the final partial-invariance model, we assume scalar

and metric invariance of all indicators except for Indicators 7 and 13. These indicators

functioned differently with respect to the background variables, which is taken into ac-

count in the final partial-invariance model by freely estimating the effects of Male and Age

on the intercept and factor loading of this indicator.
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Table 5.2: Likelihood-ratio tests for assessing partial
invariance.

Indicator Name ∆χ2(4) p pbon pben−hoc

1 Si1 10.67 .031 .305 .089
2 Si3 10.30 .036 .357 .089
3 Si6 5.69 .224 1.000 .287
4 Si8 5.61 .230 1.000 .287
7 Si14 14.44 .006 .060 .030
10 Na5 8.50 .075 .748 .150
11 Na7 1.64 .802 1.000 .802
12 Na9 3.03 .554 1.000 .615
13 Na12 15.27 .004 .042 .030
14 Na13 5.91 .206 1.000 .287

Note. Indicators 5 and 6 are the anchors for so-
cial inhibition and Indicators 8 and 9 are the anchors
for negative affectivity. The bold cells indicate signif-
icant (non)uniform DIF based on the original p value,
the Bonferroni-adjusted p value denoted pbon, and the
Benjamini–Hochberg-adjusted p value denoted pben−hoc.

First, we can specify which indicators are scalar and metric invariant:

> finalIn <- c(1,2,3,4,5,6,8,9,10,11,12,14)

We can then use this finalIn object to indicate which effects of the background variables

Male and Age on the intercepts and factor loadings should be freely estimated:

> freeparTb <- freeparT

> freeparLb <- freeparL

> for(i in finalIn ){

> freeparTb [1, i] <- FALSE

> freeparLb[i, ifelse(i < 8, yes=1, no=2)] <- FALSE

> }

The matrices freeparTb and freeparLb indicate which DIF parameters should be estimated

in the partial-invariance model. The matrices matB1, matB2, matC1, and matC2 can now be

re-specified:

> matB1 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparTb ,

> values=0,

> name="matB1")

> matB2 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparTb ,

> values=0,

> name="matB2")

> matC1 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=freeparLb ,

> values=0,

> name="matL1")

> matC2 <- mxMatrix(type="Full", nrow=nv, ncol=2,

> free=freeparLb ,

> values=0,

> name="matC2")
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and added to a new MxModel object modOpenmxPartial, which can then be fitted to data

using the mxRun() function:

> modOpenmxPartial <- mxModel(model="PartialInvariance",

> matT , matT0 , matB1 , matB2 ,

> matL , matL0 , matC1 , matC2 ,

> matE , matE0 , matD1 , matD2 ,

> matP , matP0 , matH1 , matH2 ,

> matA , matA0 , matG1 , matG2 ,

> matIa , matIb , matV1 , matV2 ,

> matVar , matR , matCov , matM , matC ,

> expF , fitF , mxdata1)

> fitOpenmxPartial <- mxRun(modOpenmxPartial)

Again, the summary() function can be used to evaluate the fit of this model. The parameter

estimates of this model are shown in the summary output and can be extracted with

summary(fitOpenmxPartial)$parameters.

The same partial-invariance model can also be fitted to the data in Mplus via the R

package MplusAutomation (Hallquist & Wiley, 2018). Note that the R syntax below can

only be executed if Mplus is installed on the user’s computer. The first step of fitting the

partial-invariance model in Mplus is to create a folder in which the empirical data and

models can be stored:

> pathfix <- "~/FinalModel"

> dir.create(pathfix)

The DS14 data can then be saved in this directory using the prepareMplusData() function:

> prepareMplusData(df=DS14 , filename=paste0(pathfix , "/DS14dat.dat"))

Now that the "~/FinalModel" folder contains the empirical data, the partial-invariance

model can be specified and added to the directory:

> modMplusPartial <- ’

> DATA:

> FILE = "DS14dat.dat";

>

> VARIABLE:

> NAMES = Male Age x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14;

> CONSTRAINT = Male Age;

> MISSING = .;

>

> ANALYSIS:

> estimator is ML;

>

> MODEL:

> SI by x1-x7* (l1-l7);

> NA by x8-x14* (l8 -l14);

> SI (SIvar);

> NA (NAvar);

> SI with NA (cov);

> [SI] (SImean );

> [NA] (NAmean );

> [x1 -x14] (t1-t14);

> x1-x14 (e1-e14);

> Male @1;

> Age @1;

> [Male @0];

> [Age @0];

>
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> MODEL CONSTRAINT:

> NEW (

> h1_SI h1_NA g1_SI g1_NA

> h2_SI h2_NA g2_SI g2_NA

> p0 h1_cov h2_cov

> t7_0 b7_1 b7_2 t13_0 b13_1 b13_2

> l7_0 c7_1 c7_2 l13_0 c13_1 c13_2

> e1_0 e2_0 e3_0 e4_0 e5_0 e6_0 e7_0 e8_0 e9_0 e10_0 e11_0 e12_0 e13_0 e14_0

> d1_1 d2_1 d3_1 d4_1 d5_1 d6_1 d7_1 d8_1 d9_1 d10_1 d11_1 d12_1 d13_1 d14_1

> d1_2 d2_2 d3_2 d4_2 d5_2 d6_2 d7_2 d8_2 d9_2 d10_2 d11_2 d12_2 d13_2 d14_2);

>

> SIvar = 1 * EXP(h1_SI*Male + h2_SI*Age);

> NAvar = 1 * EXP(h1_NA*Male + h2_NA*Age);

> SImean = 0 + g1_SI*Male + g2_SI*Age;

> NAmean = 0 + g1_NA*Male + g2_NA*Age;

> cov = SQRT(EXP(h1_SI*Male + h2_SI*Age))*

> SQRT(EXP(h1_NA*Male + h2_NA*Age))*

> (EXP(2*(p0 + h1_cov*Male + h2_cov*Age))-1)/

> (EXP(2*(p0 + h1_cov*Male + h2_cov*Age ))+1);

> e1 = e1_0 * EXP(d1_1*Male + d1_2*Age);

> e2 = e2_0 * EXP(d2_1*Male + d2_2*Age);

> e3 = e3_0 * EXP(d3_1*Male + d3_2*Age);

> e4 = e4_0 * EXP(d4_1*Male + d4_2*Age);

> e5 = e5_0 * EXP(d5_1*Male + d5_2*Age);

> e6 = e6_0 * EXP(d6_1*Male + d6_2*Age);

> e7 = e7_0 * EXP(d7_1*Male + d7_2*Age);

> e8 = e8_0 * EXP(d8_1*Male + d8_2*Age);

> e9 = e9_0 * EXP(d9_1*Male + d9_2*Age);

> e10 = e10_0 * EXP(d10_1*Male + d10_2*Age);

> e11 = e11_0 * EXP(d11_1*Male + d11_2*Age);

> e12 = e12_0 * EXP(d12_1*Male + d12_2*Age);

> e13 = e13_0 * EXP(d13_1*Male + d13_2*Age);

> e14 = e14_0 * EXP(d14_1*Male + d14_2*Age);

> t7 = t7_0 + b7_1*Male + b7_2*Age;

> l7 = l7_0 + c7_1*Male + c7_2*Age;

> t13 = t13_0 + b13_1*Male + b13_2*Age;

> l13 = l13_0 + c13_1*Male + c13_2*Age;’

> cat(modMplusPartial , file = paste0(pathfix , "/modPartial.inp", sep = ""))

For a more detailed explanation of the Mplus syntax, see Bauer’s (2017) supplementary

materials. For the sake of simplifying the comparison of results, we use MplusAutomation

so that results can be imported into R, although R is not necessary to use Mplus for

MNLFA estimation. If one prefers to run the models in Mplus directly instead of indirectly

via MplusAutomation, the Mplus script can be found on our Open Science Framework

project https://osf.io/6cyxt/.

The "/modPartial.inp" file can be run and the corresponding results can be imported

into R as follows:

> runModels(pathfix)

> fitMplusPartial <- readModels(pathfix)

The parameter estimates of this model stored in fitMplusPartial$parameters are identical

to those obtained by OpenMx, as seen with summary(fitOpenmxPartial)$parameters. This

provides a valuable cross-validation that the model is specified equivalently in both soft-

ware packages and that both optimizers converge on the same full-information maximum

likelihood estimates. Further research is needed to cross-validate across a wider variety of

SEMs (e.g., categorical indicators; Bauer, 2017), but the current results imply that any
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researcher can utilize MNLFA with the freely available OpenMx package, even if they do

not have access to commercial software such as Mplus or SAS.

5.4 Extensions

5.4.1 Nonlinear Effects Among Background Variables

One may want to add quadratic effects of a background variable, or in the case of MNLFA

with multiple background variables, it may be desirable to account for the interactions

between the background variables in their effects on factor-model parameters. Incorpo-

rating quadratic effects or interactions between background variables is straightforward.

We simply need to calculate the quadratic or interaction variable in R and treat it as

an additional moderator in OpenMx. For instance, if we are interested in the interaction

between Age and Male in the real data example above, we can use:

> DS14$Int <- DS14$Age * DS14$Male
> mxdata_int <- mxData(observed=DS14 , type="raw")

> matV2 <- mxMatrix(type="Full", nrow=1, ncol=1,

> free=FALSE ,

> labels="data.Int",

> name="Int")

Now we can specify effects of this additional moderator along with the other effects on

factor-model parameters—for example, the factor loadings:

> matB3 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=freeparT ,

> values=0,

> name="matB3")

> matT <- mxAlgebra(expression = matT0 + matB1*Male + matB2*Age + matB3*Int ,

> name="matT")

That is, an additional parameter matrix, matB3, specifies the Age × Male interaction effects

on factor loadings. We add these effects to the expression for the moderation of the factor

loadings. For all other moderated parameters (intercepts, residual variances, factor means,

and factor variances), the procedure is the same: an extra parameter matrix needs to be

specified, and the interaction between the background variables needs to be added to the

moderation function. Likewise, the quadratic effect of Age could be added by calculating

a new variable that is the square of Age, then specifying additional parameter matrices

for its effects.

5.4.2 Ordinal Data

If the indicators in the MNLFA model are ordinal, it may be advisable to explicitly

treat them as ordinal (particularly with less than five categories) to prevent detection of

spurious nonlinear effects. To do so, we must first specify that the data are ordinal. This

can be done using the mxFactor() function:

> DS14 [ ,3:16] <- mxFactor(DS14 [,3:16], levels =0:4)

> mxdata_ord <- mxData(observed=DS14 , type="raw")
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> nc <- 5

Thus, we specified the indicators (i.e., the data in columns 3 to 16 of the DS14 matrix) to

be ordinal with levels 0 to 4. Additionally, we assigned the data to object mxdata_ord and

we specified an object (nc) to denote the number of categories per variable (five), which

we use below to specify the model.

Next, to enable MNLFA of ordered categorical data, a discrete factor model is adopted

for the data (for a formal description of such models, see B. Muthén, 1984; Takane &

De Leeuw, 1987; Wirth & Edwards, 2007). In the discrete factor model, each observed

ordinal indicator is assumed to have a corresponding normally distributed latent response

variable (LRV) that is discretized by thresholds to yield the ordered categories. Therefore,

to extend the code for the unconstrained model above, we specify a matrix containing

the threshold parameters. If the ordinal indicators contain K categories, there are K − 1

threshold parameters per indicator. We therefore need a (K − 1) × P matrix in which

rows represent thresholds and columns represent indicators:

> matThres <- mxMatrix(type="Full", nrow=nc -1, ncol=nv,

> free=TRUE ,

> values=rep(seq(-2,2,length.out=nc -1),times=nv),

> byrow=FALSE ,

> name="matThres")

Recall nc denotes a constant6 number of categories per indicator (see above). The values

for the thresholds can be negative, but should always be increasing for a given indicator.

Therefore, as starting values, we specified increasing, equally spaced values between −2

and 2.

In the discrete factor model, the origin and scale of each LRV must be set, just as for

latent common factors (Wu & Estabrook, 2016). In the code below, we fix the baseline

intercepts to zero and baseline residual variances to one for all ordinal indicators, allowing

us to freely estimate all7 their thresholds.

> matT0 <- mxMatrix(type="Full", nrow=1, ncol=nv,

> free=FALSE ,

> values=0,

> name="matT0")

> matE0 <- mxMatrix(type="Diag", nrow=nv, ncol=nv,

> free=FALSE ,

> values=1,

> name="matE0")

Using the same matThres across all values of the background variables implies invariance of

thresholds across the background variables, in which case the configuration of background-

variable effects on all other model parameters need not change from those shown in Steps

4 and 5. We discuss this assumption of equal thresholds after fitting the model.

6In the case of an unequal number of categories across indicators, nc should be set to the maximum
number of thresholds across all indicators. Thresholds that do not exist can be dropped from the model
by specifying the values= argument to be NA (missing) and the free= argument as FALSE for nonexisting
thresholds.

7Alternatively, we could fix two thresholds per indicator (e.g., to zero and one) to freely estimate
the baseline intercepts and residual variances (see Mehta et al., 2004; Wu & Estabrook, 2016), which is
consistent with the LISREL approach (Millsap & Tein, 2004).

106



Assessing Measurement Invariance with Moderated Nonlinear Factor Analysis

Then we need to re-specify the expectation function to indicate the presence of thresh-

olds in the model:

> expF <- mxExpectationNormal(covariance="matC",

> means="matM",

> thresholds="matThres",

> dimnames=manVars)

Finally, we can combine all objects into an OpenMx object and add the restriction that

the thresholds are strictly increasing for a given indicator:

> modUn_thres <- mxModel(model="ThresholdInvariance",

> matT , matT0 , matB1 , matB2 ,

> matL , matL0 , matC1 , matC2 ,

> matE , matE0 , matD1 , matD2 ,

> matP , matP0 , matH1 , matH2 ,

> matA , matA0 , matG1 , matG2 ,

> matIa , matIb , matV1 , matV2 ,

> matVar , matR , matCov , matM ,

> matC , matThres , expF , fitF , mxdata_ord)

> modUn_thres_con <- mxConstrainMLThresholds(modUn_thres)

We can then fit the model

> fitUn_thres <- mxRun(modUn_thres_con)

Note that the threshold structure discussed above makes the model more complex as com-

pared to an MNLFA model for continuous indicators. Therefore, the computation time

for ordinal MNLFA models increases substantially, especially in the case of many indica-

tors. In addition, optimization of the likelihood function is numerically more challenging

which may cause the estimation to fail. For ordinal indicators, it is therefore advisable

to use different starting values using the mxTryHardOrdinal() function. As compared to

Mplus, OpenMx is slower in the case of ordinal indicators. Fitting the final model above

to the indicators of the SI factor only takes up to 70 minutes in OpenMx while it takes

about a minute in Mplus (on an Intel Core i5 with 8GB of RAM-memory). The advan-

tage of OpenMx is however, that it is more flexible for models with ordinal indicators. For

instance, residual variances can be moderated in OpenMx which is not possible in Mplus.

The analysis above assumes rather than tests invariance of thresholds. We could test

that assumption8 by comparing its fit to an MNLFA in which thresholds (but not in-

tercepts or residual variances) are functions of background variables. But when K = 3,

these models would be statistically equivalent because (effects on) two thresholds are

interchangeable with (effects on) the intercept and residual variance, so threshold invari-

ance can only be assumed and not tested (Wu & Estabrook, 2016). In the special case of

binary indicators, fixing effects on only one threshold cannot identify effects on both the

intercept and residual variance. Thus, threshold invariance still cannot be independently

tested, but neither can invariance of factor loadings and intercepts (Wu & Estabrook,

8Note that although it is popular to test invariance of ordinal indicators by leaving intercepts fixed
to zero and testing threshold invariance in place of intercept invariance (i.e., after testing invariance of
loadings; Millsap & Tein, 2004; Liu et al., 2017), Wu & Estabrook (2016) explained why this leads to
invalid comparisons (i.e., the response scales are not linked unless ≥ 2 thresholds are equivalent across
background variables).
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2016). So for binary indicators, one could compare the fit of a configural model (with

background-variable effects on factor loadings and intercepts, but not thresholds or resid-

ual variances) to a scalar-invariance model (with background-variable effects on residual

variances, but not on thresholds, factor loadings, or intercepts). If H0 can be rejected,

partial invariance can still be established, but the data could not distinguish the nature

of an indicator’s DIF.

5.5 Discussion

This chapter illustrated how to perform MNLFA for measurement invariance assessment

using the R package OpenMx. We considered a two-factor MNLFA model for the DS14 data

(Denollet et al., 2013) and showed how to evaluate full and partial measurement invariance

with respect to a dichotomous and continuous background variable simultaneously. This

is one of the first papers showing how to test for measurement invariance with MNLFA in

free and open-source SEM software, cross-validating its results with the Mplus package.

We therefore hope that with this tutorial we provide more researchers the opportunity to

perform MNLFA for assessing measurement invariance or other purposes.

There are multiple advantages of MNLFA over other methods for testing measure-

ment invariance. Unlike the MGCFA approach, MNLFA allows for the assessment of

measurement invariance with respect to multiple background variables simultaneously.

In addition, whereas MGCFA is only appropriate for categorical background variables,

MNLFA also permits the assessment of measurement invariance with respect to continuous

background variables. Whereas other single-group approaches (e.g., RFA and MIMIC)

share these advantages, MNLFA does not require assuming common-factor or residual

homoskedasticity with respect to the background variables. Although the use of product

indicators to model moderation of factor loadings in RFA or MIMIC can capture some

heteroskedasticity present in the data (Kolbe et al., 2021), it is not as flexible or inter-

pretable as with MNLFA. We aimed to highlight all of these advantages in this tutorial

by fitting an MNLFA model to empirical data that included all of these elements.

One of the steps included in this tutorial is selecting a set of anchor indicators. This

step is useful for almost all methods for evaluating measurement invariance. A traditional

strategy is to use all indicators other than the studied indicator as anchors, which leads

to a contaminated set of anchors when one or more indicators in the anchor set violate

measurement invariance. This can in turn lead to biased parameter estimates and in-

flated Type I error rates when assessing measurement invariance (W.-C. Wang, 2004).

It is therefore advisable to use an anchor-selection strategy to select a smaller subset

of anchor indicators (preferably 10–20% of the total number of indicators), such as the

rank-based strategy proposed by Woods (2009). Several simulation studies have shown

that this strategy frequently obtains uncontaminated sets of anchor indicators (Woods,

2009; M. Wang & Woods, 2017; Kolbe & Jorgensen, 2019; Kopf et al., 2015b). In this

tutorial, we provided a step-by-step explanation of how to select anchor indicators using
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the rank-based strategy. If the user wants to prevent making a decision about which in-

dicators should serve as anchors, combining MNLFA with a regularization approach may

be an appealing method to assess measurement invariance (see Bauer et al., 2020).

The key element of the MNLFA approach is that CFA parameters are predicted by

the background variables. As such, a functional form has to be assumed between the

parameters and background variables. The present tutorial illustrated how to model (log-

)linear relationships between the background variables and model parameters in MNLFA,

which might not always be an accurate representation of the data. In such situations,

a researcher could consider higher-order polynomial functions (Bauer & Hussong, 2009)

or semiparametric MNLFA approaches including the local SEM approach by Hildebrandt

et al. (2016), the mixture approach by Molenaar (2020), or the score based approach

by Merkle & Zeileis (2013). The advantage of these semiparametric MNLFA approaches

is that an assumption about the functional form between the background variables and

parameters is not required, making it a suitable approach for exploratory situations in

which there is no theory about the functional form of the relationship.

One of the limitations of the current chapter is that we only demonstrated one method

for assessing measurement invariance. Although this method seems to perform well across

various conditions, many other methods are available as well. Therefore, we close by

briefly mentioning the latest developments regarding methods for measurement invariance

assessment and (open-source) software packages. From the semiparametric approaches

discussed above, the local SEM approach can be applied using open-source R package

sirt (Robitzsch, 2020a) and the score-based approach can be applied in open-source R

package lavaan (Rosseel, 2012). The mixture approach is currently not implemented

in an open-source package yet, but it can be applied using OpenMx in principle and it

can readily be applied in Mplus (L. K. Muthén & Muthén, 2012). Examples of related

measurement-invariance tools available in open-source software packages include the au-

tomated multi-group tests from the R package semTools (Jorgensen et al., 2019) and

the multi-group DIF tests for categorical data from R packages difR (Magis et al., 2010)

and mirt (Chalmers, 2012). In addition, the cluster-based approach to identify anchor

items to test for measurement invariance with respect to a continuous variable (Schulze &

Pohl, 2021) can be applied within R using the MNLFA implementation from the present

chapter.
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6.1 General Remarks

The measurement of latent constructs such as cognitive ability, attitudes, and beliefs,

serves an important role in social and behavioral science research and applications. As

such constructs cannot be measured directly, observed measures function as indicators of

the latent construct. In order to meaningfully compare a latent construct across groups,

each observed indicator must relate to the latent construct in the same way for all individ-

uals or groups. This condition is also referred to as measurement invariance. Measurement

invariance is a prerequisite for meaningful comparisons across individuals or groups on la-

tent constructs. If measurement invariance with respect to a specific background variable

holds, the measurement of the latent construct is invariant across that background vari-

able. But if measurement invariance does not hold, differences in observed scores across

individuals or groups may arise from differences on the background variable instead of

differences on the latent construct. It is therefore important to assess measurement in-

variance before comparing individuals or groups on latent constructs.

A common class of methods for assessing measurement invariance within the structural

equation modeling (SEM) framework is confirmatory factor analysis (CFA). Measurement

invariance can be assessed in CFA models by means of a comparison of specific features

of the model across different levels of the background variable. One of the traditional

CFA methods to evaluate measurement invariance across a categorical background vari-

able (e.g., group membership) is multiple-group CFA (MGCFA; Vandenberg & Lance,

2000). In MGCFA, a CFA model is estimated for each group separately and measure-

ment invariance is assessed by comparing the fit of models with and without increasingly

restrictive equality constraints on the measurement parameters across the groups. Full

invariance can be examined with an omnibus test for a particular level of measurement

invariance for all indicators simultaneously (Drasgow & Kanfer, 1985; Horn & McArdle,

1992; Finch & French, 2018; Marsh, 1994). When the omnibus null hypothesis of full

invariance is rejected, partial invariance can be assessed with an omnibus test for each

indicator separately. Establishing partial invariance requires comparing the fit of a model

with and without equality constraints on the studied indicator’s parameters while holding

a subset of other indicators invariant across the groups. These latter indicators are also

called anchor indicators and can be selected using an anchor-selection strategy (see Kopf

et al., 2015a).

In addition to MGCFA, single-group methods have been proposed for the purpose of

assessing measurement invariance, including restricted factor analysis (RFA; Oort, 1992),

multiple indicator multiple cause (MIMIC; Jöreskog & Goldberger, 1975), and moderated

nonlinear factor analysis (MNLFA; Bauer & Hussong, 2009). These single-group methods

involve fitting a single CFA model to the data aggregated over all levels of the background

variable and are therefore more suitable for smaller samples sizes, continuous background

variables, more complex functional relationships between the background variables and the

observed indicators, and testing for measurement invariance across multiple continuous
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and categorical background variables simultaneously. Although research on single-group

methods to assess measurement invariance is increasing (see Barendse et al., 2010, 2012;

Bauer et al., 2020; Woods & Grimm, 2011), there are several unsolved issues and unstudied

topics of research. For example, it is unknown how different approaches to single-group

methods compare in certain situations. The performance of these methods thus remains

subject of ongoing research.

The current dissertation focused on the performance of novel ways of assessing mea-

surement invariance using single-group methods. In Chapter 1, the concept of measure-

ment invariance was introduced. Then, the use of product indicators (PI) in RFA models

was proposed and illustrated in Chapter 2. The performance of the PI method in RFA

models was investigated more extensively with a simulation study presented in Chapter

3 in which PI was compared to the more traditional latent moderated structural equations

(LMS) method. In Chapter 4, the impact of common-factor and residual heteroskedas-

ticity on the performance of RFA with LMS, RFA with PI, and the recently introduced

MNLFA method was examined. Finally, Chapter 5 included a demonstration of how

measurement invariance can be assessed with MNLFA using open-source statistical soft-

ware. In the next sections of the present chapter, the main findings of the abovementioned

chapters are summarized, and their implications for future research are discussed.

6.2 Summary of Main Findings

The single-group method RFA is readily suited to assess scalar invariance, but requires

an extended method to evaluate metric invariance. The extended method should enable

modeling the latent interaction between the latent construct and the background variable.

RFA is most commonly extended with LMS. Although LMS has shown to have high power

to detect violations of metric invariance, severely inflated Type I error rates have also been

observed when using this method in RFA (and statistically equivalent MIMIC) models

(see Barendse et al., 2010, 2012; Woods & Grimm, 2011). Therefore, PI was proposed as

an alternative to LMS in RFA models in Chapter 2. Using a single simulated dataset,

this chapter showed how the PI method can be used in RFA models to assess metric

invariance. We compared the conclusions with those reached using LMS in RFA models

and found comparable results, which indicates that the PI method is a viable alternative

to LMS. Because RFA with LMS can only be implemented in commercial software Mplus,

knowing that PI is a viable alternative to LMS provides more researchers the opportunity

to assess metric invariance with RFA using any SEM software package.

The performance of PI in RFA models was investigated more extensively with two

simulation studies presented in Chapter 3. The first simulation study focused on meth-

ods of empirically selecting anchor indicators for RFA models. Anchor indicators are

required for linking the metric of the common factors across the background variables

when assessing different levels of partial invariance and can be selected using any selec-

tion strategy. This simulation study compared two empirical anchor-selection strategies:
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the rank-based strategy proposed by Woods (2009) and an iterative selection procedure

proposed by Barendse et al. (2012). The results of the simulation revealed that the rank-

based strategy had the lowest risk and degree of contamination in the subset of anchor

indicators. This anchor-selection strategy outperformed the iterative selection procedure

across each sample-size and DIF-magnitude condition.

In the second simulation study of this chapter, the PI and LMS methods in RFA

models were extensively compared. Specifically, the Type I error rates and power of the

LMS and PI methods to detect violations of scalar and metric invariance were evaluated.

The performance of these methods was assessed in two scenarios: a best-case scenario and

an empirical-selection scenario. In the best-case scenario, two known DIF-free indicators

were used as anchor indicators and were not tested for DIF and in the empirical-selection

scenario, the rank-based strategy was used to select anchor indicators. The PI method

appeared to have similar power but lower Type I error rates compared to LMS in almost

all conditions of both scenarios. These results indicate that using PI in RFA models can

minimize the inflated Type I error rates obtained with LMS. Although it has been argued

that the inflated Type I error rates observed with LMS might be caused by a contaminated

set of anchor indicators (Woods, 2009), our results contradict this possible explanation.

The severely inflated error rates were not only observed in the empirical scenario, but also

in the best-case scenario with a DIF-free anchor set. This suggests that a contaminated

anchor set may not fully account for the frequently observed inflated error rates when

using LMS.

Another possible explanation for the inflated Type I error rates observed with LMS

in RFA models is a violation of the assumption of common-factor homoskedasticity and

residual homoskedasticity (Chun et al., 2016; Meredith & Teresi, 2006). In order to con-

firm or disconfirm this possible explanation, the impact of violations of these assumptions

on the performance of RFA combined with LMS and PI was investigated in Chapter 4.

In contrast to RFA, the recently proposed MNLFA (Bauer & Hussong, 2009; Bauer, 2017)

method for assessing measurement invariance does not require assuming common-factor

or residual homoskedasticity with respect to the background variable. Hence, a compar-

ison between RFA and MNLFA under each of the different simulation conditions was

included as well. The results of the simulation study presented in this chapter showed

that the Type I error rates obtained by RFA/LMS substantially increased as a func-

tion of common-factor heteroskedasticity, whereas MNLFA and RFA with PI appeared

to be robust against violations of common-factor homoskedasticity. These results were

as expected, because MNLFA explicitly accounts for common-factor heteroskedasticity

by allowing for an effect of the background variable on the common-factor variance and

RFA with PI includes a covariance between the common factor and the interaction factor

which indirectly captures information about the difference in common-factor variances

across the background variable. In conditions with residual heteroskedasticity, somewhat

different patterns of results were found. The Type I error rates were close to the nominal

level of significance for MNLFA, slightly inflated for RFA with PI, and severely inflated
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for RFA with LMS.

Given its flexibility and good performance shown in multiple simulation studies (see

Bauer et al., 2020; Kolbe et al., 2021), MNLFA seems to be a promising method for

assessing measurement invariance with respect to categorical and continuous background

variables. Performing MNLFA for measurement invariance assessment may, however, not

be straightforward for researchers without access to Mplus or SAS. In Chapter 5, the

accessibility of MNLFA was increased by providing a detailed guideline on performing

this method in the open-source R (R Core Team, 2021) package OpenMx (Boker et al.,

2011). The chapter included a demonstration of how MNLFA can be applied in R for

evaluating full and partial measurement invariance with respect to a dichotomous and

continuous background variable simultaneously, including a step-by-step explanation of

how to select anchor indicators using the rank-based strategy (Woods, 2009). In addition

to this demonstration, we compared the results with those obtained when using MNLFA in

Mplus and found identical parameter estimates. This provided a valuable cross-validation

that the model is implemented similarly in the two software packages and that both

optimizers converge on the same full-information maximum likelihood estimates.

6.3 Future Research Directions

The main findings of this dissertation have several implications for future studies. Al-

though the aim was to examine the performance of single-group methods for the assess-

ment of measurement invariance as extensively as possible, there are still several unan-

swered questions. Below, I elaborate on the future directions that are important in this

line of research. I explain why these matters would be interesting to investigate and how it

relates to the main findings of this dissertation as well as the findings of other researchers.

6.3.1 Other Simulation Conditions

One of the restrictions of this dissertation is the limited number of simulation conditions.

The aim was to include the majority of relevant varying factors in the simulation de-

signs, but there is a possibility that some other factors that may be relevant too have

been excluded. For example, this dissertation only investigated the performance of uni-

dimensional RFA and MNLFA models. Chapter 5 did include a demonstration of a

two-factor MNLFA with multidimensional data, but future simulation studies could in-

vestigate the behavior of multidimensional RFA and MNLFA models more extensively.

This is especially interesting given the increasing complexity of these models when three

or more common factors are present. A specific unanswered question is how to ensure

the positive definiteness of the common-factor covariance matrix for MNLFA models with

more than two common factors. Previous studies on MNLFA (Bauer, 2017; Bauer et al.,

2020; Kolbe et al., 2021) applied an elementwise approach to estimate the moderated

covariances between common factors. This approach imposes bounds of −1 and 1 on
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the common-factor correlations, but with more than two common factors there are no

restrictions ensuring a positive definite common-factor covariance matrix at all levels of

the background variables. Future research is warranted to examine and compare different

ways of ensuring positive definiteness of the common-factor covariance matrix of MNLFA

models with more than two common factors.

In line with other studies (e.g., see Barendse et al., 2010, 2012), this dissertation

has primarily focused on RFA and MNLFA for continuous indicators. Because tests

and questionnaires in the field of social and behavioral sciences also commonly include

binary and ordinal items, it would be interesting to study the performance of these single-

group methods with binary and ordinal indicators. The MNLFA method and the RFA

method combined with LMS can handle binary and ordinal indicators, but there are

only few studies on the performance of these methods for detecting DIF in binary and

ordinal indicators. Exceptions include studies by Woods & Grimm (2011) and Chun et al.

(2016) showing that RFA/LMS models for binary and ordinal indicators obtain severely

inflated Type I error rates when common-factor variances differ across the background

variable, which is in line with our findings (see Chapter 4). Another exception includes

a simulation study by Bauer et al. (2020) showing that a regularized MNLFA approach

for binary indicators performs well in larger samples (e.g., N = 2000). Future research

could focus on studying the performance of MNLFA models for DIF detection in ordinal

indicators and increasing the computational efficiency of open-source software packages

for estimating MNLFA models for ordinal indicators. An alternative single-group method

that is potentially less computationally intensive is RFA with PI. A generalization of

RFA/PI for binary and ordinal indicators is, however, less straightforward. Suppose the

indicators of the common factor and the background variable are both ordinal. In such

a situation, ideal indicators of the latent interaction factor are products of the latent

continuous responses that are assumed to underlie the ordinal indicators. Lodder et al.

(2019) investigated the performance of treating ordinal indicators as continuous to utilize

PI, which brings up the question of how such product indicators can be interpreted. The

use of product indicators for the specific purpose of measurement invariance assessment

with ordinal data is yet unexplored. Hence, much more research is needed in this area.

Another largely undeveloped area of research is the performance of single-group meth-

ods in conditions in which the assumption of multivariate normality of the observed

variables is violated. This dissertation already studied the impact of a violation of ho-

moskedasticity on assessing measurement invariance in single-group models like RFA, but

what is the impact of a violation of the assumption of multivariate normality? The prob-

lem of nonnormality is not unique to measurement invariance (see Curran et al., 1996;

Finney & DiStefano, 2006), but applies to many SEM applications because it is an as-

sumption of the maximum likelihood estimator. Although the impact of nonnormality

on measurement parameters in a factor model has been studied outside the context of

measurement invariance, it is unknown how such a violation affects the assessment of

measurement invariance with single-group methods. In a more general context, previous
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studies have shown that fitting factor models to nonnormal data can result in underes-

timated standard errors, which leads to null hypotheses of individual parameters being

rejected too often. Therefore, inflated Type I error rates may be observed when assessing

measurement invariance using RFA or MNLFA in nonnormal conditions. The impact of

nonnormality on the performance of the MGCFA method (Finch et al., 2018) and likeli-

hood ratio method in item response theory (IRT; Woods, 2008) has already been studied.

The findings of these studies were contradictory, as Finch et al. (2018) observed well-

controlled Type I error rates while Woods (2008) observed inflated Type I error rates.

Future research could focus on the effect of nonnormality on the performance of RFA and

MNLFA, including a wider range of skewness and kurtosis conditions.

6.3.2 Other Methods for Assessing Measurement Invariance

This dissertation includes studies on three different methods to assess measurement in-

variance, but measurement invariance can be evaluated in many other ways. To begin

with, this dissertation only considered one out of various PI approaches for estimating the

latent interaction between the common factor and background variable in RFA models.

We had a clear rationale for using the double-mean-centering strategy (Lin et al., 2010)

because it eliminates the need to estimate a mean structure and does not require using a

cumbersome multistage estimation procedure. An additional advantage of this approach

is its robustness to nonnormality, but other PI approaches such as the orthogonalizing

approach (see Little et al., 2006) may perform just as well or even better in the context

of measurement invariance. Several other aspects of the use of PI are yet unclear, for

example, which indicators should be used to build product indicators. There are multi-

ple possibilities regarding the formation of product indicators, among which is using all

indicators of the common factor and the background variable, as employed in this disser-

tation. But what would be a suitable strategy if, for example, both the common factor

and the background variable are measured with 10 indicators? Building all possible prod-

uct indicators may then no longer be a suitable strategy, as the latent interaction factor

would end up with 100 indicators. More research is needed to determine the optimal use

of PI in RFA models for the purpose of assessing measurement invariance.

With regards to MNLFA, a functional form has to be assumed between the model

parameters and background variables. This dissertation only included an illustration of

modeling linear and log-linear relationships between the background variable and param-

eters in MNLFA, but note that other functional forms may sometimes represent the data

more accurately. A researcher could, for example, also consider higher-order polynomial

functions or functions including interactions across multiple background variables (see

Bauer & Hussong, 2009; Bauer et al., 2020). An alternative is to apply a semiparametric

MNLFA like the mixture approach by Molenaar (2020). The advantage of this semipara-

metric MNLFA approach is that an assumption about the functional form between the

background variable and model parameters is not required. Such an approach is thus
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suitable for situations in which a researcher has little to no theory yet about the func-

tional form of the relationship. The mixture approach is currently not implemented in

open-source statistical software yet, but could be applied in OpenMx (Boker et al., 2011)

or Mplus (L. K. Muthén & Muthén, 2012).

In addition to the single-group methods investigated in this dissertation, there may be

other families of methods for assessing measurement invariance that are more powerful

or less sensitive to Type I error rates. One of these methods is SEM trees (Brandmaier

et al., 2013) which allows for the detection of differences in parameter estimates across

continuous or categorical background variables by recursively partitioning the data into

subsets with significantly different SEM-parameter estimates. Simulation studies showed

that SEM trees are capable of correctly partitioning the data into subsets with different

parameter estimates (Usami et al., 2017, 2019) and detecting violations of scalar invariance

in IRT models (Tutz & Berger, 2016; Strobl et al., 2015) in large samples. The performance

of SEM trees in smaller samples and its power to detect violations of metric invariance

has yet to be investigated.

Other methods for the assessment of measurement invariance worth mentioning are

local SEM (Hildebrandt et al., 2016), heteroskedastic latent trait models (Molenaar et

al., 2012; Molenaar, 2015; Molenaar et al., 2011; Molenaar, Dolan, & Verhelst, 2010), and

stochastic process-based testing (Merkle & Zeileis, 2013; Merkle et al., 2014). Similar to

RFA and MNLFA, these methods do not require splitting the data into groups before

the models to the data and may therefore be more suitable than the MGCFA method

for continuous background variables. Additional simulation studies could explore the

power and Type I error rates of these alternative methods in comparison to RFA and

MNLFA. From the methods discussed above, the local SEM method is available in the

open-source R package sirt (Robitzsch, 2020a) and the score-based method is available

in the open-source R package lavaan (Rosseel, 2012).

6.4 Concluding Remarks

This dissertation focused on novel approaches to assess measurement invariance using

SEM. In specific, the research of this dissertation was aimed at investigating methods

that are suitable for situations with continuous background variables and relatively small

sample sizes, both being factors that are commonly present in the field of social and

behavioral sciences (for examples, see Cheng & Watkins, 2000; Goodrich & Ercikan, 2019;

Sudarshan et al., 2016; de Frias & Dixon, 2005). The findings of this dissertation suggest

that MNLFA and RFA combined with PI are suitable methods for the assessment of

measurement invariance in such situations, while RFA combined with LMS comes with

convergence issues as well as a higher risk of falsely detecting violations of measurement

invariance. We therefore recommend the use of MNLFA and RFA with PI over RFA with

LMS in situations that are comparable with our simulation conditions. By showing how

the well-performing methods can be applied with open-source statistical software, the
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aim was to make these methods as accessible as possible to a wide range of researchers.

This dissertation contributes to information about how best to evaluate measurement

invariance, which may eventually lead to more valid research including latent constructs

and fairer comparisons or decisions based on the measurement of latent constructs in

practice. Because some issues still haunt the assessment of measurement invariance, we

hope to inspire other researchers to continue this line of research.
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Appendix I: The Covariance between T and T × V

Consider the one-factor model for the common factor T given by

xip = τp + λpti + εip, (A1)

where xip is the observed indicator score of person i = 1, . . . , N on indicator p = 1, . . . , P ,

τp is an intercept, λp is a factor loading, ti is a common-factor score and εip is a residual.

In addition, consider a background variable V to be a grouping variable dummy-coded

vi = 0, 1, representing membership in a reference or focal group, respectively. In this

proof V is a categorical variable, but the proof generalizes to a continuous V .

Below we demonstrate that group differences in Var(T ) can be captured by the interaction

between T and V .

Let σ2 denote the variance of the common factor T . First, we specify T as a scaled version

of T ′, which has unit-variance:

T = σT ′, (A2)

where

Var(T ′) = 1. (A3)

A traditional two-group factor model with unequal variances in T between the groups can

be written as

xip = τp + λpσt
′
i + εip, (A4)

where

σ = σ0 + σ1V. (A5)

In this model, Var(T |vi = 0) = σ2
0 and Var(T |vi = 1) = (σ0+σ1)

2 which is equivalent to a

two-group one-factor model with equal factor loadings, residual variances, and intercepts,

but with unequal variance of T across groups.

Substituting Equation A5 in Equation A4 and slightly rewriting, we obtain

xip = τp + λp(σ0t
′
i + σ1vit

′
i) + εip, (A6)

which is the one-factor measurement model from Equation A1, but with the common

factor T from Equation A1 regressed on V T ′ in the structural model.

The proof that a covariance between T and V T captures the information in σ1 is that

σ1 is the effect of V T ′ on T . In simple regression, a slope is a simple function of the
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analogous covariance and variance of the predictor:

βY,X =
Cov(Y,X)

Var(X)
. (A7)

Then it would follow from Equation A7 and Equation A8 treating T as Y and V T ′ as X

that

σ1 =
Cov(T, V T ′)

Var(V T ′)
. (A8)

However, because Equation A7 is not analogous to a simple regression model but a mul-

tiple regression, expressing σ1 as a function of Cov(T, V T ′) would be more complicated:

σ1 =
Cov(T, V T ′)Var(T ′)− Cov(T, T ′)Cov(T ′, V T ′)

Var(V T ′)Var(T ′)− Cov(V T ′, T ′))2

=
Cov(T, V T ′)− Cov(T, T ′)Cov(T ′, V T ′)

Var(V T ′)− Cov(V T ′, T ′))2
.

(A9)

Replacing T ′ by σ−1T , the expression of σ1 in Equation A9—which is the difference in

common-factor variances across groups—is a complex function of three model parameters:

the variances of the common factor and interaction terms and their covariance.

σ1 =
Cov(T, V σ−1T )− Cov(T, σ−1T )Cov(σ−1T, V σ−1T )

Var(V σ−1T )− Cov(V σ−1T, σ−1T ))2

=
σ−1Cov(T, V T )− σ−3Cov(T, V T )

σ−1Var(V T )− σ−4Cov(V T, T ))2
.

(A10)

Because a regression slope (or a correlation) between two variables is simply a ratio of their

covariance to the variance of the predictor (or to the product of their standard deviations),

it follows that by estimating the parameters Cov(T, V T ), Var(V T ), and Var(T ) = σ2, RFA

models with product indicators indirectly capture the same information about common-

factor heteroskedasticity that MNLFA can capture by directly estimating the slope σ1.
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Appendix II: Supplementary Tables

Table A1: The population parameter values for each of the indicators
across all conditions

Continuous V Categorical V
Indicator b c d b c d
1 0 0 -0.25/0/0.25 0 0 ln(0.15

0.3
)/0/ln(0.6

0.3
)

2 0.25 0 -0.25/0/0.25 0.50 0 ln(0.15
0.3

)/0/ln(0.6
0.3

)
3 0.25 0 0 0.50 0 0
4 0 0.10 -0.25/0/0.25 0 0.25 ln(0.15

0.3
)/0/ln(0.6

0.3
)

5 0 0.10 0 0 0.25 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0

Note. b is the effect of V on the indicator’s intercept, c is the effect of V
on the indicator’s factor loading, and d is the effect of V on the indicator’s
residual variance.
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Table A2: The nonconvergence of RFA/LMS across
all condition with a continuous V

h d N Percentage of nonconvergence
-0.25 -0.25 100 2.50

200 0.90
500 0.00
1000 0.00

0 100 2.50
200 0.70
500 0.00
1000 0.00

0.25 100 4.80
200 0.70
500 0.00
1000 0.00

0 -0.25 100 2.00
200 0.70
500 0.00
1000 0.00

0 100 2.90
200 0.60
500 0.00
1000 0.00

0.25 100 1.80
200 0.60
500 0.00
1000 0.00

0.25 -0.25 100 3.40
200 1.80
500 0.10
1000 0.00

0 100 3.10
200 1.30
500 0.20
1000 0.00

0.25 100 3.00
200 1.40
500 0.00
1000 0.00

Note. h = the effect of V on the common-factor variance,
d = the effect of V on the indicator’s residual variance, N
= total sample size.
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Table A3: The nonconvergence of RFA/LMS across all
condition with a categorical V

h d N Percentage of nonconvergence
ln(0.5) ln(0.15/0.3) 100 8.70

200 2.20
500 0.00
1000 0.00

0 100 12.10
200 4.50
500 0.70
1000 0.00

ln(0.6/0.3) 100 16.40
200 10.00
500 4.30
1000 0.50

0 ln(0.15/0.3) 100 12.40
200 5.00
500 0.50
1000 0.00

0 100 12.70
200 7.00
500 1.10
1000 0.00

ln(0.6/0.3) 100 20.50
200 15.70
500 6.30
1000 1.00

ln(1.5) ln(0.15/0.3) 100 25.00
200 19.60
500 17.90
1000 26.50

0 100 24.30
200 19.30
500 25.10
1000 38.90

ln(0.6/0.3) 100 27.30
200 26.50
500 33.40
1000 56.60

ln(2) ln(0.15/0.3) 100 29.60
200 24.50
500 20.80
1000 33.00

0 100 27.40
200 22.00
500 20.70
1000 35.40

ln(0.6/0.3) 100 26.00
200 22.70
500 19.20
1000 35.20

Note. h = the effect of V on the common-factor variance,
d = the effect of V on the indicator’s residual variance, N
= total sample size.
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Table A4: The power of each method across all condition with a con-
tinuous V

RFA/LMS RFA/PI MNLFA
h d N Scalar Metric Scalar Metric Scalar Metric

-0.25 -0.25 100 .710 .627 .693 .660 .687 .655
200 .925 .859 .920 .899 .921 .908
500 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

0 100 .707 .635 .694 .651 .694 .660
200 .916 .839 .904 .886 .900 .888
500 1.000 .998 1.000 1.000 1.000 .999
1000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 100 .703 .582 .686 .637 .682 .646
200 .924 .859 .910 .895 .907 .911
500 1.000 .998 1.000 .999 1.000 .999
1000 1.000 1.000 1.000 1.000 1.000 1.000

0 -0.25 100 .705 .704 .700 .644 .678 .647
200 .913 .906 .899 .888 .891 .887
500 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

0 100 .699 .654 .685 .623 .679 .635
200 .918 .914 .905 .885 .894 .904
500 1.000 1.000 1.000 .999 1.000 .999
1000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 100 .697 .697 .676 .650 .658 .655
200 .914 .900 .899 .883 .889 .898
500 .999 1.000 .999 .999 .999 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 -0.25 100 .703 .736 .682 .626 .667 .623
200 .921 .960 .909 .888 .893 .903
500 1.000 1.000 1.000 .999 1.000 .999
1000 1.000 1.000 1.000 1.000 1.000 1.000

0 100 .706 .781 .672 .663 .652 .643
200 .915 .947 .898 .880 .891 .890
500 1.000 1.000 .999 1.000 .999 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 100 .727 .758 .699 .658 .682 .631
200 .931 .959 .918 .888 .921 .902
500 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

Note. h = the effect of V on the common-factor variance, d = the effect of
V on the indicator’s residual variance, N = total sample size. Power was
calculated for Indicator 2 (violating scalar invariance, that is, b2 ̸= 0) and
Indicator 4 (violating metric invariance, that is, c4 ̸= 0).
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Table A5: The Type I error rates of each method
across all condition with a continuous V

h d N RFA/LMS RFA/PI MNLFA

-0.25 -0.25 100 .125 .093 .118
200 .111 .062 .075
500 .142 .067 .052
1000 .177 .064 .050

0 100 .114 .086 .130
200 .116 .078 .087
500 .101 .056 .058
1000 .138 .046 .054

0.25 100 .130 .103 .157
200 .109 .065 .080
500 .079 .057 .062
1000 .098 .062 .047

0 -0.25 100 .114 .095 .108
200 .089 .069 .081
500 .081 .073 .067
1000 .059 .052 .046

0 100 .116 .098 .109
200 .078 .070 .077
500 .061 .056 .054
1000 .060 .054 .057

0.25 100 .120 .114 .136
200 .105 .105 .095
500 .071 .067 .054
1000 .066 .067 .060

0.25 -0.25 100 .134 .109 .108
200 .109 .078 .077
500 .093 .057 .060
1000 .090 .052 .053

0 100 .118 .086 .097
200 .129 .084 .085
500 .110 .058 .061
1000 .148 .054 .055

0.25 100 .141 .090 .088
200 .126 .076 .070
500 .130 .057 .061
1000 .184 .061 .056

Note. h= the effect of V on the common-factor variance,
d = the effect of V on the indicator’s residual variance,
N = total sample size. Boldface cells indicate a signifi-
cant inflation. The Type I error rates were calculated for
Indicator 1.
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Table A6: The relative bias of each method across all condition with
a continuous V

RFA/LMS RFA/PI MNLFA
h d N Scalar Metric Scalar Metric Scalar Metric

-0.25 -0.25 100 5.518 26.259 0.764 26.048 7.902 17.142
200 3.019 26.211 -0.335 24.851 1.586 3.094
500 3.323 26.872 1.091 25.145 1.087 -0.453
1000 2.220 27.059 0.425 24.596 0.448 -0.321

0 100 3.987 23.352 -0.498 25.352 10.293 22.102
200 2.319 24.253 -1.085 24.766 0.025 0.833
500 2.260 28.041 -0.173 26.665 -0.173 0.811
1000 1.159 28.471 -0.808 26.420 -0.746 0.843

0.25 100 3.185 21.929 -0.788 24.988 9.530 24.442
200 3.817 25.765 -0.062 26.118 1.414 3.173
500 1.710 26.138 -0.845 25.055 -0.776 -0.343
1000 1.913 26.268 -0.040 24.469 -0.021 -0.431

0 -0.25 100 3.059 40.182 -0.732 26.023 2.227 2.868
200 1.430 40.368 -1.031 25.777 -0.784 -1.161
500 1.094 43.623 -0.151 26.527 -0.124 0.670
1000 0.418 43.651 -0.786 26.480 -0.749 0.796

0 100 2.530 37.695 -1.034 23.821 3.821 8.835
200 2.433 42.449 -0.040 26.134 -0.182 -0.076
500 1.147 41.708 -0.695 24.994 -0.659 -0.370
1000 1.274 41.638 -0.022 24.962 0.009 -0.387

0.25 100 3.320 40.278 -0.092 25.718 4.735 9.396
200 2.105 38.274 -0.112 23.662 -0.191 -2.468
500 2.208 41.259 0.176 24.892 0.224 -0.469
1000 1.625 41.357 0.132 25.148 0.142 -0.414

0.25 -0.25 100 5.064 55.608 -1.028 24.135 1.105 2.216
200 5.581 59.562 -0.047 25.954 -0.131 -0.207
500 2.737 59.253 -0.854 25.072 -0.736 -0.450
1000 2.802 59.296 0.005 24.980 0.053 -0.298

0 100 6.407 57.640 0.053 24.838 2.297 2.418
200 5.479 56.229 0.015 24.104 -0.053 -2.364
500 4.377 58.755 0.131 24.970 0.099 -0.615
1000 3.392 59.171 0.125 25.138 0.151 -0.380

0.25 100 7.873 57.597 1.084 25.485 2.186 -0.097
200 5.374 57.639 -0.186 24.564 -0.213 -1.433
500 4.770 59.071 1.151 25.591 1.187 -0.402
1000 3.434 59.183 0.320 24.999 0.386 -0.308

Note. h = the effect of V on the common-factor variance, d = the effect of
V on the indicator’s residual variance, N = total sample size. The relative
bias was calculated for b2 (reflecting a violation of scalar invariance) and c4
(reflecting a violation of metric invariance).
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Table A7: The RMSE of each method across all condition with a
continuous V

RFA/LMS RFA/PI MNLFA
h d N Scalar Metric Scalar Metric Scalar Metric

-0.25 -0.25 100 0.106 0.066 0.092 0.063 0.139 0.114
200 0.075 0.047 0.067 0.043 0.089 0.055
500 0.047 0.036 0.044 0.034 0.044 0.017
1000 0.031 0.032 0.031 0.030 0.031 0.012

0 100 0.109 0.063 0.099 0.061 0.154 0.127
200 0.076 0.047 0.068 0.044 0.081 0.049
500 0.049 0.038 0.043 0.036 0.044 0.018
1000 0.032 0.033 0.031 0.031 0.031 0.012

0.25 100 0.104 0.065 0.097 0.061 0.157 0.138
200 0.081 0.048 0.070 0.045 0.086 0.053
500 0.048 0.036 0.042 0.034 0.042 0.018
1000 0.031 0.031 0.030 0.029 0.030 0.012

0 -0.25 100 0.111 0.071 0.099 0.063 0.114 0.068
200 0.073 0.057 0.069 0.046 0.073 0.033
500 0.045 0.050 0.044 0.035 0.044 0.018
1000 0.031 0.047 0.031 0.031 0.031 0.012

0 100 0.103 0.071 0.096 0.060 0.124 0.093
200 0.077 0.058 0.070 0.045 0.071 0.029
500 0.048 0.049 0.042 0.034 0.042 0.018
1000 0.030 0.045 0.030 0.030 0.030 0.012

0.25 100 0.108 0.069 0.101 0.059 0.131 0.090
200 0.074 0.055 0.070 0.044 0.070 0.028
500 0.049 0.048 0.044 0.033 0.044 0.017
1000 0.032 0.045 0.031 0.030 0.031 0.012

0.25 -0.25 100 0.110 0.082 0.096 0.061 0.109 0.068
200 0.086 0.072 0.070 0.045 0.071 0.029
500 0.049 0.064 0.042 0.034 0.042 0.018
1000 0.031 0.062 0.030 0.030 0.030 0.012

0 100 0.114 0.081 0.100 0.058 0.120 0.067
200 0.086 0.069 0.069 0.044 0.070 0.028
500 0.055 0.064 0.043 0.033 0.043 0.017
1000 0.035 0.062 0.031 0.030 0.031 0.012

0.25 100 0.109 0.083 0.093 0.062 0.099 0.052
200 0.081 0.070 0.067 0.044 0.067 0.028
500 0.050 0.064 0.044 0.034 0.044 0.018
1000 0.032 0.062 0.031 0.030 0.031 0.013

Note. h = the effect of V on the common-factor variance, d = the effect of
V on the indicator’s residual variance, N = total sample size. The RMSE
was calculated for b2 (reflecting a violation of scalar invariance) and c4
(reflecting a violation of metric invariance).
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Table A8: The coverage rates of each method across all condition with
a continuous V

RFA/LMS RFA/PI MNLFA
h d N Scalar Metric Scalar Metric Scalar Metric

-0.25 -0.25 100 .929 .855 .946 .875 .935 .865
200 .929 .840 .951 .886 .941 .922
500 .927 .779 .940 .802 .940 .936
1000 .934 .595 .946 .652 .945 .934

0 100 .920 .875 .933 .879 .907 .873
200 .932 .867 .942 .871 .933 .923
500 .931 .752 .949 .756 .943 .926
1000 .936 .570 .951 .616 .947 .938

0.25 100 .922 .869 .947 .889 .908 .871
200 .917 .866 .938 .872 .936 .916
500 .944 .783 .952 .799 .953 .917
1000 .936 .629 .952 .646 .952 .946

0 -0.25 100 .919 .835 .940 .877 .925 .899
200 .925 .759 .942 .866 .940 .923
500 .929 .520 .947 .766 .945 .937
1000 .941 .241 .943 .624 .939 .944

0 100 .925 .833 .934 .895 .921 .894
200 .928 .763 .940 .875 .939 .919
500 .944 .566 .954 .793 .955 .913
1000 .947 .299 .954 .635 .956 .942

0.25 100 .914 .842 .924 .890 .903 .903
200 .932 .782 .943 .881 .938 .937
500 .935 .554 .947 .812 .947 .940
1000 .916 .314 .936 .643 .935 .947

0.25 -0.25 100 .918 .760 .939 .892 .930 .902
200 .915 .621 .936 .873 .935 .929
500 .946 .291 .952 .792 .951 .931
1000 .934 .066 .959 .632 .949 .946

0 100 .902 .756 .929 .888 .920 .913
200 .919 .628 .942 .872 .936 .933
500 .923 .295 .940 .797 .939 .938
1000 .911 .075 .941 .639 .938 .948

0.25 100 .925 .735 .949 .870 .946 .900
200 .918 .623 .948 .880 .945 .936
500 .912 .293 .935 .793 .935 .938
1000 .921 .082 .943 .632 .939 .930

Note. h = the effect of V on the common-factor variance, d = the effect of
V on the indicator’s residual variance, N = total sample size. The coverage
rates were calculated for b2 (reflecting a violation of scalar invariance) and
c4 (reflecting a violation of metric invariance).
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Table A9: The power of each method across all condition with a categor-
ical V

RFA/LMS RFA/PI MNLFA
h d N Scalar Metric Scalar Metric Scalar Metric
ln(0.5) ln(0.15/0.3) 100 .966 .128 .959 .295 .954 .229

200 .999 .185 .999 .455 1.000 .453
500 1.000 .360 1.000 .847 1.000 .906
1000 1.000 .657 1.000 .990 1.000 .998

0 100 .936 .123 .916 .295 .909 .161
200 1.000 .202 .999 .462 .999 .379
500 1.000 .445 1.000 .888 1.000 .844
1000 1.000 .748 1.000 .996 1.000 .995

ln(0.6/0.3) 100 .865 .150 .837 .260 .826 .140
200 .991 .229 .984 .485 .985 .312
500 1.000 .484 1.000 .859 1.000 .721
1000 1.000 .789 1.000 .988 1.000 .956

0 ln(0.15/0.3) 100 .963 .401 .958 .379 .956 .328
200 1.000 .648 1.000 .599 1.000 .621
500 1.000 .980 1.000 .953 1.000 .973
1000 1.000 1.000 1.000 1.000 1.000 1.000

0 100 .926 .447 .917 .400 .913 .295
200 .999 .630 .999 .582 .999 .513
500 1.000 .977 1.000 .955 1.000 .943
1000 1.000 1.000 1.000 .999 1.000 .999

ln(0.6/0.3) 100 .845 .397 .835 .355 .836 .240
200 .987 .619 .988 .602 .981 .458
500 1.000 .951 1.000 .931 1.000 .852
1000 1.000 .999 1.000 .998 1.000 .997

ln(1.5) ln(0.15/0.3) 100 .972 .615 .964 .451 .963 .384
200 1.000 .884 1.000 .649 1.000 .658
500 1.000 .998 1.000 .973 1.000 .981
1000 1.000 1.000 1.000 1.000 1.000 1.000

0 100 .950 .638 .931 .447 .927 .350
200 1.000 .886 1.000 .697 1.000 .613
500 1.000 .997 1.000 .979 1.000 .976
1000 1.000 1.000 1.000 1.000 1.000 .999

ln(0.6/0.3) 100 .861 .563 .840 .398 .839 .289
200 .988 .872 .986 .695 .985 .560
500 1.000 .994 1.000 .970 1.000 .920
1000 1.000 1.000 1.000 1.000 1.000 1.000

ln(2) ln(0.15/0.3) 100 .976 .753 .960 .460 .961 .408
200 .999 .956 1.000 .719 1.000 .724
500 1.000 1.000 1.000 .985 1.000 .994
1000 1.000 1.000 1.000 1.000 1.000 1.000

0 100 .939 .733 .926 .501 .926 .406
200 1.000 .945 .999 .708 .999 .653
500 1.000 1.000 1.000 .981 1.000 .979
1000 1.000 1.000 1.000 1.000 1.000 1.000

ln(0.6/0.3) 100 .853 .691 .839 .448 .838 .325
200 .991 .942 .990 .737 .985 .602
500 1.000 1.000 1.000 .977 1.000 .943
1000 1.000 1.000 1.000 1.000 1.000 1.000

Note. h = the effect of V on the common-factor variance, d = the effect of V on
the indicator’s residual variance, N = total sample size. Power was calculated
for Indicator 2 (violating scalar invariance, that is, b2 ̸= 0) and Indicator 4
(violating metric invariance, that is, c4 ̸= 0).
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Table A10: The Type I error rates of each method across
all condition with a categorical V

h d N RFA/LMS RFA/PI MNLFA
ln(0.5) ln(0.15/0.3) 100 .181 .064 .052

200 .263 .065 .056
500 .582 .068 .052
1000 .865 .112 .073

0 100 .127 .091 .076
200 .155 .074 .069
500 .294 .061 .056
1000 .523 .047 .047

ln(0.6/0.3) 100 .100 .084 .070
200 .109 .069 .063
500 .126 .079 .060
1000 .198 .087 .055

0 ln(0.15/0.3) 100 .071 .069 .064
200 .071 .076 .062
500 .066 .069 .048
1000 .069 .069 .051

0 100 .077 .085 .081
200 .053 .054 .054
500 .054 .045 .042
1000 .057 .062 .058

ln(0.6/0.3) 100 .072 .076 .055
200 .076 .076 .063
500 .054 .057 .050
1000 .077 .085 .054

ln(1.5) ln(0.15/0.3) 100 .057 .062 .059
200 .073 .064 .060
500 .072 .055 .053
1000 .109 .094 .068

0 100 .083 .088 .083
200 .092 .069 .061
500 .121 .053 .054
1000 .152 .046 .044

ln(0.6/0.3) 100 .094 .081 .078
200 .113 .076 .066
500 .147 .066 .065
1000 .276 .084 .047

ln(2) ln(0.15/0.3) 100 .111 .073 .066
200 .121 .072 .067
500 .181 .060 .053
1000 .309 .061 .048

0 100 .123 .085 .080
200 .108 .060 .054
500 .241 .049 .045
1000 .481 .062 .064

ln(0.6/0.3) 100 .118 .067 .063
200 .151 .076 .064
500 .285 .060 .048
1000 .506 .088 .055

Note. h = the effect of V on the common-factor variance, d =
the effect of V on the indicator’s residual variance, N = total
sample size. Boldface cells indicate a significant inflation.
The Type I error rates were calculated for Indicator 1.
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Table A11: The relative bias of each method across all condition with a
categorical V

RFA/LMS RFA/PI MNLFA
h d N Scalar Metric Scalar Metric Scalar Metric
ln(0.5) ln(0.15/0.3) 100 0.868 -68.738 0.066 10.886 1.037 4.201

200 -0.103 -70.609 0.188 5.274 1.095 -1.100
500 -0.655 -70.100 -0.093 7.187 0.296 0.019
1000 -0.765 -69.776 -0.182 7.636 0.361 0.684

0 100 2.641 -58.143 1.373 25.330 2.057 2.841
200 -0.052 -57.377 0.362 26.409 0.475 2.502
500 -0.824 -57.515 -0.134 24.730 -0.141 0.852
1000 -0.920 -57.805 -0.151 24.002 -0.101 0.179

ln(0.6/0.3) 100 4.001 -40.961 2.881 49.767 2.543 5.449
200 0.384 -41.719 0.090 50.424 -0.170 5.100
500 -0.061 -42.833 0.364 44.790 -0.141 0.030
1000 -0.374 -43.515 0.484 43.372 0.079 -1.288

0 ln(0.15/0.3) 100 2.379 -4.801 0.206 15.917 0.404 2.686
200 1.894 -7.450 0.864 12.331 0.877 -0.422
500 1.357 -5.589 0.868 13.769 0.902 0.441
1000 0.596 -5.933 0.172 13.234 0.032 -0.099

0 100 3.354 7.627 1.552 30.115 2.269 4.395
200 1.823 0.293 0.850 21.750 0.880 -2.345
500 -0.048 4.465 -0.551 26.345 -0.286 1.698
1000 0.399 4.558 -0.008 26.491 0.138 1.013

ln(0.6/0.3) 100 3.681 17.723 0.678 39.848 1.175 -0.492
200 2.723 13.176 0.352 40.294 0.409 0.387
500 0.824 14.032 -0.108 38.154 0.079 -1.273
1000 0.559 16.281 0.034 40.892 0.195 0.458

ln(1.5) ln(0.15/0.3) 100 3.929 30.267 0.586 17.090 0.426 0.691
200 2.271 29.402 0.724 13.762 0.735 -1.968
500 0.978 30.060 0.580 15.888 0.238 -0.266
1000 1.147 29.527 0.479 15.714 0.285 -0.063

0 100 3.487 38.315 1.172 24.858 1.244 -1.078
200 1.298 39.273 0.355 27.437 0.250 0.755
500 0.934 39.249 -0.147 26.205 0.252 -0.088
1000 0.693 38.862 -0.181 25.840 0.188 -0.350

ln(0.6/0.3) 100 4.933 51.236 1.986 41.156 1.942 1.248
200 0.601 52.377 -0.846 42.140 -0.444 2.483
500 0.994 50.501 -0.413 38.580 0.139 -0.493
1000 0.827 49.117 -0.354 37.879 0.007 -1.030

ln(2) ln(0.15/0.3) 100 1.841 55.394 0.388 18.082 0.135 0.868
200 1.026 55.021 1.075 16.104 0.805 -0.660
500 0.921 55.738 1.071 17.343 0.781 0.083
1000 -0.181 56.190 0.407 17.003 0.016 -0.212

0 100 2.458 65.858 1.344 30.309 1.847 2.793
200 0.562 60.101 0.813 22.792 0.737 -2.950
500 -0.863 65.404 -0.590 27.281 -0.418 0.986
1000 0.063 64.689 -0.027 27.712 0.082 0.737

ln(0.6/0.3) 100 1.365 74.335 0.318 37.470 0.873 -1.440
200 0.671 73.332 0.058 38.794 0.387 0.212
500 -0.789 71.438 -0.453 37.128 0.003 -0.917
1000 -0.737 76.014 -0.304 39.122 0.140 0.336

Note. h = the effect of V on the common-factor variance, d = the effect of V on
the indicator’s residual variance, N = total sample size. The relative bias was
calculated for b2 (reflecting a violation of scalar invariance) and c4 (reflecting a
violation of metric invariance).
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Table A12: The RMSE of each method across all condition with a cate-
gorical V

RFA/LMS RFA/PI MNLFA
h d N Scalar Metric Scalar Metric Scalar Metric
ln(0.5) ln(0.15/0.3) 100 0.130 0.215 0.129 0.216 0.140 0.184

200 0.093 0.199 0.094 0.143 0.099 0.122
500 0.058 0.184 0.058 0.090 0.062 0.076
1000 0.042 0.179 0.041 0.065 0.043 0.055

0 100 0.144 0.205 0.144 0.244 0.157 0.201
200 0.102 0.177 0.102 0.173 0.112 0.138
500 0.061 0.157 0.062 0.117 0.067 0.086
1000 0.043 0.151 0.043 0.091 0.047 0.059

ln(0.6/0.3) 100 0.168 0.204 0.167 0.302 0.188 0.232
200 0.115 0.163 0.117 0.230 0.132 0.164
500 0.075 0.134 0.076 0.168 0.083 0.105
1000 0.050 0.122 0.051 0.138 0.056 0.072

0 ln(0.15/0.3) 100 0.128 0.132 0.124 0.182 0.128 0.151
200 0.091 0.092 0.090 0.126 0.092 0.104
500 0.058 0.058 0.058 0.081 0.058 0.063
1000 0.040 0.044 0.040 0.064 0.041 0.046

0 100 0.144 0.144 0.142 0.209 0.150 0.163
200 0.098 0.101 0.097 0.142 0.100 0.113
500 0.061 0.062 0.061 0.104 0.063 0.069
1000 0.045 0.046 0.045 0.088 0.047 0.050

ln(0.6/0.3) 100 0.164 0.180 0.161 0.243 0.171 0.182
200 0.115 0.122 0.115 0.183 0.121 0.126
500 0.071 0.080 0.071 0.133 0.075 0.079
1000 0.053 0.065 0.053 0.121 0.055 0.054

ln(1.5) ln(0.15/0.3) 100 0.128 0.156 0.127 0.170 0.128 0.137
200 0.093 0.119 0.092 0.117 0.093 0.093
500 0.058 0.096 0.058 0.080 0.058 0.058
1000 0.040 0.084 0.041 0.063 0.041 0.043

0 100 0.141 0.174 0.140 0.185 0.141 0.143
200 0.100 0.141 0.099 0.136 0.101 0.099
500 0.061 0.117 0.060 0.098 0.061 0.062
1000 0.043 0.106 0.042 0.082 0.043 0.043

ln(0.6/0.3) 100 0.165 0.211 0.161 0.217 0.166 0.154
200 0.113 0.175 0.112 0.170 0.117 0.111
500 0.073 0.147 0.074 0.130 0.076 0.072
1000 0.051 0.133 0.049 0.112 0.051 0.050

ln(2) ln(0.15/0.3) 100 0.129 0.198 0.124 0.167 0.124 0.134
200 0.092 0.168 0.090 0.117 0.089 0.092
500 0.057 0.151 0.058 0.078 0.057 0.056
1000 0.040 0.147 0.040 0.065 0.040 0.041

0 100 0.142 0.221 0.141 0.185 0.144 0.139
200 0.095 0.184 0.096 0.129 0.097 0.098
500 0.061 0.175 0.060 0.097 0.061 0.060
1000 0.045 0.168 0.044 0.086 0.045 0.044

ln(0.6/0.3) 100 0.165 0.251 0.160 0.205 0.163 0.150
200 0.113 0.214 0.114 0.160 0.116 0.105
500 0.071 0.191 0.070 0.121 0.072 0.066
1000 0.052 0.197 0.052 0.112 0.053 0.045

Note. h = the effect of V on the common-factor variance, d = the effect of V
on the indicator’s residual variance, N = total sample size. The RMSE was
calculated for b2 (reflecting a violation of scalar invariance) and c4 (reflecting
a violation of metric invariance).
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Table A13: The coverage rates of each method across all condition with
a categorical V

RFA/LMS RFA/PI MNLFA
h d N Scalar Metric Scalar Metric Scalar Metric
ln(0.5) ln(0.15/0.3) 100 .938 .706 .944 .930 .943 .941

200 .927 .470 .927 .939 .936 .945
500 .933 .112 .934 .947 .942 .958
1000 .946 .005 .945 .946 .943 .947

0 100 .944 .797 .946 .929 .952 .938
200 .945 .698 .945 .931 .939 .954
500 .953 .379 .953 .902 .952 .954
1000 .957 .099 .958 .869 .958 .958

ln(0.6/0.3) 100 .946 .891 .949 .925 .955 .950
200 .953 .850 .951 .909 .943 .940
500 .940 .715 .934 .856 .938 .937
1000 .956 .476 .955 .759 .954 .940

0 ln(0.15/0.3) 100 .946 .936 .944 .929 .950 .944
200 .938 .941 .938 .934 .940 .937
500 .938 .951 .942 .914 .944 .959
1000 .950 .929 .952 .894 .954 .944

0 100 .934 .930 .929 .918 .934 .933
200 .956 .943 .956 .924 .959 .934
500 .953 .964 .952 .864 .948 .954
1000 .951 .940 .950 .769 .948 .944

ln(0.6/0.3) 100 .952 .908 .939 .914 .935 .928
200 .941 .928 .940 .889 .945 .947
500 .947 .934 .951 .828 .954 .945
1000 .933 .883 .932 .682 .937 .961

ln(1.5) ln(0.15/0.3) 100 .939 .903 .940 .914 .942 .947
200 .933 .864 .932 .927 .933 .948
500 .932 .755 .936 .917 .940 .956
1000 .946 .566 .940 .879 .940 .950

0 100 .943 .881 .943 .921 .948 .938
200 .943 .838 .945 .911 .938 .951
500 .953 .653 .955 .853 .953 .959
1000 .944 .404 .956 .782 .959 .954

ln(0.6/0.3) 100 .952 .856 .952 .904 .952 .940
200 .951 .771 .952 .868 .951 .949
500 .947 .568 .938 .790 .941 .937
1000 .952 .316 .953 .643 .954 .944

ln(2) ln(0.15/0.3) 100 .940 .811 .941 .916 .951 .930
200 .928 .690 .941 .913 .944 .938
500 .937 .390 .940 .887 .944 .954
1000 .943 .097 .950 .845 .953 .944

0 100 .927 .758 .930 .900 .929 .935
200 .962 .683 .957 .902 .957 .934
500 .948 .257 .953 .835 .952 .951
1000 .943 .056 .952 .703 .945 .942

ln(0.6/0.3) 100 .936 .765 .940 .890 .936 .934
200 .950 .621 .940 .865 .946 .951
500 .948 .282 .950 .766 .954 .944
1000 .935 .039 .932 .583 .934 .953

Note. h = the effect of V on the common-factor variance, d = the effect
ofV on the indicator’s residual variance, N = total sample size. The coverage
rates were calculated for b2 (reflecting a violation of scalar invariance) and c4
(reflecting a violation of metric invariance).
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Table A14: The power and Type I error rates for new conditions with
a categorical V

Power
Method P Violations Heterogeneity Scalar Metric Type I error
RFA/LMS 10 40% 30% 1.000 .884 .073

90% 1.000 .922 .077
60% 30% 1.000 .891 .072

90% 1.000 .920 .081
20 40% 30% .996 .919 .083

90% .997 .936 .095
60% 30% .996 .911 .085

90% .994 .928 .100
RFA/PI 10 40% 30% 1.000 .649 .064

90% 1.000 .778 .070
60% 30% 1.000 .661 .064

90% 1.000 .788 .068
20 40% 30% 1.000 .709 .072

90% 1.000 .801 .069
60% 30% 1.000 .728 .070

90% 1.000 .787 .069
MNLFA 10 40% 30% 1.000 .658 .060

90% 1.000 .720 .070
60% 30% 1.000 .674 .059

90% 1.000 .729 .071
20 40% 30% 1.000 .696 .066

90% 1.000 .753 .065
60% 30% 1.000 .693 .063

90% 1.000 .745 .065

Note. P = the total number of indicators, violations = the percentage of
indicators that violate measurement invariance, heterogeneity = the per-
centage of indicators with unequal residual variances with respect to V .
Boldface cells indicate a significant inflation. Power was calculated for
Indicator 2 (violating scalar invariance, that is, b2 ̸= 0) and Indicator 4
(violating metric invariance, that is, c4 ̸= 0). The Type I error rates were
calculated for Indicator 1.
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Appendix III: Supplementary Figures

Figure A1: The power to detect a violation of scalar invariance of Indicator 2 (i.e., b2 ̸= 0)
across all conditions with a continuous V . Note that h is the effect of V on the common-
factor variance, and d is the effect of V on the indicator’s residual variance.
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Figure A2: The relative bias of the parameter estimate b2 (i.e., a violation of scalar
invariance of Indicator 2) across all conditions with a continuous V . Note that h is the
effect of V on the common-factor variance, and d is the effect of V on the indicator’s
residual variance.
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Figure A3: The relative bias of the parameter estimate c4 (i.e., a violation of metric
invariance of Indicator 4) across all conditions with a continuous V . Note that h is the
effect of V on the common-factor variance, and d is the effect of V on the indicator’s
residual variance.
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Figure A4: The RMSE of the parameter estimate b2 (i.e., a violation of scalar invariance
of Indicator 2) across all conditions with a continuous V . Note that h is the effect of V on
the common-factor variance, and d is the effect of V on the indicator’s residual variance.
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Figure A5: The RMSE of the parameter estimate c4 (i.e., a violation of metric invariance
of Indicator 4) across all conditions with a continuous V . Note that h is the effect of V on
the common-factor variance, and d is the effect of V on the indicator’s residual variance.
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Figure A6: The coverage rates of the parameter estimate b2 (i.e., a violation of scalar
invariance of Indicator 2) across all conditions with a continuous V . Note that h is the
effect of V on the common-factor variance, and d is the effect of V on the indicator’s
residual variance.
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Figure A7: The coverage rates of the parameter estimate c4 (i.e., a violation of metric
invariance of Indicator 4) across all conditions with a continuous V . Note that h is the
effect of V on the common-factor variance, and d is the effect of V on the indicator’s
residual variance.
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Figure A8: The power to detect a violation of scalar invariance of Indicator 2 (i.e., b2 ̸= 0)
across all conditions with a categorical V . Note that h is the effect of V on the common-
factor variance, and d is the effect of V on the indicator’s residual variance.
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Figure A9: The relative bias of the parameter estimate b2 (i.e., a violation of scalar
invariance of Indicator 2) across all conditions with a categorical V . Note that h is the
effect of V on the common-factor variance, and d is the effect of V on the indicator’s
residual variance.
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Figure A10: The relative bias of the parameter estimate c4 (i.e., a violation of metric
invariance of Indicator 4) across all conditions with a categorical V . Note that h is the
effect of V on the common-factor variance, and d is the effect of V on the indicator’s
residual variance.
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Figure A11: The RMSE of the parameter estimate b2 (i.e., a violation of scalar invariance
of Indicator 2) across all conditions with a categorical V . Note that h is the effect of V on
the common-factor variance, and d is the effect of V on the indicator’s residual variance.
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Figure A12: The RMSE of the parameter estimate c4 (i.e., a violation of metric invariance
of Indicator 4) across all conditions with a categorical V . Note that h is the effect of V on
the common-factor variance, and d is the effect of V on the indicator’s residual variance.
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Figure A13: The coverage rates of the parameter estimate b2 (i.e., a violation of scalar
invariance of Indicator 2) across all conditions with a categorical V . Note that h is the
effect of V on the common-factor variance, and d is the effect of V on the indicator’s
residual variance.
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Figure A14: The coverage rates of the parameter estimate c4 (i.e., a violation of metric
invariance of Indicator 4) across all conditions with a categorical V . Note that h is the
effect of V on the common-factor variance, and d is the effect of V on the indicator’s
residual variance.
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Jöreskog, K. G., & Yang-Wallentin, F. (1996). Nonlinear structural equation models: The

Kenny-Judd model with interaction effects. In G. A. Marcoulides & R. E. Schumacker

(Eds.), Advanced Structural Equation Modeling: Issues and Techniques (pp. 57–88).

Mahwah, NJ: Lawrence Erlbaum Associates.

Jorgensen, T. D. (2017). Applying permutation tests and multivariate modification indices

to configurally invariant models that need respecification. Frontiers in Psychology , 8 ,

1–9. doi: 10.3389/fpsyg.2017.01455

Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A., & Rosseel, Y. (2018). semTools:

Useful tools for structural equation modeling [Computer software manual]. Retrieved

from https://CRAN.R-project.org/package=semTools (R package version 0.5-0)

Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A., & Rosseel, Y. (2019). semTools:

Useful tools for structural equation modeling [Computer software manual]. Retrieved

from https://CRAN.R-project.org/package=semTools (R package version 0.5-

1.935)

157

https://CRAN.R-project.org/package=semTools
https://CRAN.R-project.org/package=semTools


References

Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of

latent variables. Psychological Bulletin, 96 (1), 201–210. doi: 10.1037/0033-2909.96.1

.201

Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent inter-

action effects with the LMS method. Psychometrika, 65 (4), 457–474. doi: 10.1007/

BF02296338

Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural

equation models with multiple interaction and quadratic effects. Multivariate Behavioral

Research, 42 (4), 647–673. doi: 10.1080/00273170701710205

Kline, R. (2011). Principles and practice of structural equation modeling (3rd ed.). New

York, NY: Guilford.

Kolbe, L., & Jorgensen, T. D. (2018). Using product indicators in restricted factor anal-

ysis models to detect nonuniform measurement bias. In M. Wiberg, S. A. Culpepper,
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Summary

Novel Approaches to Assess Measurement Invariance

The measurement of latent constructs like mathematical ability or social anxiety serves an

important role in social and behavioral sciences. Because such constructs cannot be mea-

sured directly, observed measures function as indicators of the latent construct. In order

to meaningfully compare a latent construct across individuals or groups, the relationship

between each observed indicator and the latent construct should be the same for each in-

dividual or group. This condition is also referred to as measurement invariance. In other

words, if measurement invariance with respect to a specific background variable holds,

the measurement of the latent construct is invariant across that background variable. If

measurement invariance does not hold, differences in observed scores across individuals

or groups may arise from differences on the background variable instead of differences on

the latent construct. It is therefore important to assess measurement invariance before

comparing individuals or groups on latent constructs.

A common class of methods to assess measurement invariance within the structural

equation modeling (SEM) framework is confirmatory factor analysis (CFA). One of the

traditional CFA methods to evaluate measurement invariance across a categorical back-

ground variable is multiple-group CFA (MGCFA; Vandenberg & Lance, 2000). In MGCFA,

a CFA model is estimated for each group and measurement invariance is assessed by

comparing the fit of models with and without equality constraints on the measurement

parameters across the background variable. In addition to MGCFA, single-group meth-

ods have been proposed for the purpose of assessing measurement invariance, including

restricted factor analysis (RFA; Oort, 1992) and moderated non-linear factor analysis

(MNLFA; Bauer & Hussong, 2009). These single-group methods involve fitting a sin-

gle CFA model to the data aggregated over the background variable and are therefore

more suitable for smaller samples sizes and for testing for measurement invariance across

multiple continuous and categorical background variables simultaneously.

The current dissertation focuses on the performance of novel ways of assessing mea-

surement invariance using single-group methods. The dissertation starts with a study

of the single-group method RFA, which is readily suited to assess scalar invariance, but

requires an extensive method to evaluate metric invariance. RFA is most commonly ex-

tended with latent moderated structural equations (LMS). Although LMS has shown to

obtain high power to detect violations of metric invariance, severely inflated Type I error

rates have also been observed when using this method in RFA models (see Barendse et

al., 2010, 2012; Woods & Grimm, 2011). Therefore, we propose PI as an alternative to

LMS in RFA models in Chapter 2. Using a single simulated dataset, we show how the

PI method can be used in RFA models to assess metric invariance. We find results that

are comparable to the results obtained with LMS, which indicates that the PI method is

a viable alternative.

The performance of PI in RFA models is investigated more extensively with a sim-

ulation study presented in Chapter 3. In specific, we evaluate its Type I error rates

and power to detect violations of scalar and metric invariance in comparison to the more
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traditional LMS method. The results of the simulation study show that the PI method

obtains similar power but lower Type I error rates compared to LMS in almost all simu-

lation conditions. The Type I error rates observed in conditions with PI are all close to

the nominal level of significance. This indicates that using PI in RFA models can mini-

mize the probability of false conclusions regarding which observed indicators violate the

assumption of scalar or metric invariance. In line with previous studies (see Barendse et

al., 2010, 2012; Woods & Grimm, 2011), severely inflated Type I error rates are observed

in conditions with LMS.

A possible explanation for the inflated Type I error rates observed with LMS in RFA

models is a violation of the assumption of homoskedasticity (i.e., equal common-factor

and residual variances; Chun et al., 2016; Meredith & Teresi, 2006). In order to confirm

or disconfirm this possible explanation, we investigate the impact of violations of this

assumption on the performance of RFA combined with LMS and PI in Chapter 4. In

contrast to RFA, the recently proposed MNLFA (Bauer & Hussong, 2009; Bauer, 2017)

method for assessing measurement invariance does not require assuming homoskedas-

ticity with respect to the background variable. Hence, we also include a comparison

between RFA and MNLFA under each of the different simulation conditions. The re-

sults of the simulation study presented in this chapter show that the Type I error rates

obtained by RFA/LMS substantially increase as a function of heteroskedasticity (i.e., un-

equal common-factor and residual variances), whereas MNLFA and RFA with PI appear

to be robust against violations of homoskedasticity.

Given its flexibility and good performance shown in multiple simulation studies (see

Bauer et al., 2020; Kolbe et al., 2021), MNLFA seems to be a promising method for as-

sessing measurement invariance with respect to categorical and continuous background

variables. Performing MNLFA for measurement invariance assessment may, however, not

be straightforward for researchers without access to Mplus or SAS. In Chapter 5, we

aim to make MNLFA more accessible by providing a detailed guideline on performing this

method in the open-source R (R Core Team, 2021) package OpenMx (Boker et al., 2011).

The chapter includes a demonstration of how MNLFA can be applied in R for evaluat-

ing measurement invariance with respect to a dichotomous and continuous background

variable simultaneously. In addition to this demonstration, we show that the parameter

estimates are identical to those obtained when using MNLFA in Mplus. This provides a

valuable cross-validation that both optimizers converge on the same parameter estimates.
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Nieuwe manieren om meetinvariantie te onderzoeken

De meting van latente constructen zoals rekenvaardigheid en sociale angst speelt een

belangrijke rol binnen de sociale en gedragswetenschappen. Omdat dergelijke constructen

niet direct kunnen worden gemeten, wordt er vaak gekeken naar observeerbare indicatoren.

Voor een zinvolle vergelijking tussen individuen of groepen, moet de relatie tussen elke

geobserveerde indicator en het latente construct hetzelfde zijn voor alle individuen of

groepen. Deze assumptie wordt ook wel meetinvariantie genoemd. Als er sprake is van

meetinvariantie met betrekking tot een specifieke achtergrondvariabele, heeft die achter-

grondvariabele geen invloed op de meting van het latente construct. Als de assumptie

van meetinvariantie geschonden wordt, kunnen verschillen in geobserveerde scores tussen

individuen of groepen het gevolg zijn van verschillen in de achtergrondvariabele in plaats

van verschillen in het latente construct wat gepoogd wordt te meten. Het is daarom

belangrijk om meetinvariantie te toetsen voordat individuen of groepen op latente

constructen worden vergeleken.

Een veel gebruikte klasse van methoden om meetinvariantie te toetsen binnen

structurele vergelijkingsmodellen is confirmatory factor analysis (CFA). Een van de

traditionele CFAmethoden ommeetinvariantie met betrekking tot een categorische achter-

grondvariabele te onderzoeken is multiple-group CFA (MGCFA; Vandenberg & Lance,

2000). Bij MGCFA wordt een CFA model voor elke groep geschat en wordt

meetinvariantie getoetst door modellen met en zonder gelijkheidsrestricties op de

parameters te vergelijken. Naast MGCFA zijn er ook single-group methoden voor het

onderzoeken van meetinvariantie, waaronder restricted factor analysis (RFA; Oort, 1992)

en moderated nonlinear factor analysis (MNLFA; Bauer & Hussong, 2009). Bij single-

group methoden wordt er slechts één CFA model geschat voor de gehele steekproef. Deze

methoden zijn dan ook geschikt voor kleinere steekproeven en voor het toetsen van meet-

invariantie met betrekking tot meerdere continue en categorische achtergrondvariabelen

tegelijk.

Dit proefschrift richt zich op nieuwe manieren om meetinvariantie te toetsen met

behulp van single-group methoden. Het proefschrift begint met een onderzoek over RFA,

een methode die geschikt is om uniforme meetinvariantie te toetsen, maar een aanvul-

lende statistische techniek vereist om niet-uniforme meetinvariantie te toetsen. De aan-

vullende statisische techniek is nodig om de interactie tussen het latente construct en

de achtergrondvariabele te modelleren. RFA wordt vaak toegepast in combinatie met

latent moderated structural equations (LMS). Hoewel gebleken is dat LMS hoge

statistische power heeft om schendingen van niet-uniforme meetinvariantie te detecteren,

zijn er ook zeer hoge percentages Type I fouten waargenomen bij het gebruik van deze

methode in RFA modellen (Barendse et al., 2010, 2012; Woods & Grimm, 2011). In

Hoofdstuk 2 stellen wij daarom voor om product indicators (PI) te gebruiken als

alternatief voor LMS in RFA modellen. Aan de hand van een enkele gesimuleerde dataset

laten we zien hoe de PI methode in RFA modellen kan worden gebruikt om niet-uniforme

meetinvariantie te toetsen. De verkregen resultaten zijn vergelijkbaar met die van LMS,
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wat aangeeft dat de PI methode een geschikt alternatief kan zijn.

Het gebruik van PI in RFA modellen wordt uitvoeriger onderzocht met een

simulatiestudie in Hoofdstuk 3. In dit hoofdstuk evalueren we de Type I fouten en

de statistische power van de LMS en PI methoden om schendingen van uniforme en

niet-uniforme meetinvariantie te detecteren. De resultaten van de simulatiestudie laten

zien dat de PI methode in bijna alle simulatiecondities een vergelijkbare statistische

power maar lagere percentages Type I fouten heeft dan LMS. De percentages Type I

fouten van PI liggen in alle condities dicht bij het nominale significantieniveau. Dit

suggereert dat het gebruik van PI in RFA modellen de kans op foute conclusies met be-

trekking tot welke geobserveerde indicatoren de assumptie van uniforme of niet-uniforme

meetinvariantie schenden kan minimaliseren. In overeenstemming met eerdere studies

(Barendse et al., 2010, 2012; Woods & Grimm, 2011), worden zeer hoge percentages Type

I fouten waargenomen bij het gebruik van LMS in RFA modellen.

Een mogelijke verklaring voor de te hoge Type I foutenpercentages van LMS, is een

schending van de assumptie van homoskedasticiteit (anders gezegd, gelijke factor en

residuele varianties; Chun et al., 2016; Meredith & Teresi, 2006). Om deze mogelijke

verklaring te bevestigen of te ontkrachten, onderzoeken wij in Hoofdstuk 4 het effect

van schendingen van deze assumptie op de prestaties van RFA in combinatie met LMS

en PI. In tegenstelling tot RFA is het voor de recent voorgestelde MNLFA methode

(Bauer & Hussong, 2009; Bauer, 2017) voor het toetsen van meetinvariantie niet nodig

om homoskedasticiteit ten opzichte van de achtergrondvariabele te veronderstellen. In dit

hoofdstuk wordt er daarom ook een vergelijking tussen RFA en MNLFA gemaakt onder

elk van de verschillende simulatiecondities. Uit de resultaten van de simulatiestudie blijkt

dat de percentages Type I fouten van RFA in combinatie met LMS aanzienlijk toenemen

als functie van heteroskedasticiteit, terwijl MNLFA en RFA in combinatie met PI robuust

blijken te zijn tegen schendingen van homoskedasticiteit.

Gezien de flexibiliteit en de goede prestaties die zijn aangetoond in eerdere onderzoeken

(Bauer et al., 2020; Kolbe et al., 2021), lijkt MNLFA een veelbelovende methode te zijn

voor het toetsen van meetinvariantie met betrekking tot categorische en continue achter-

grondvariabelen. Het uitvoeren van MNLFA is echter niet eenvoudig voor onderzoekers

zonder toegang tot Mplus of SAS. In Hoofdstuk 5 proberen we MNLFA toegankelijker

te maken door een gedetailleerd stappenplan te presenteren voor het uitvoeren van deze

methode in het open-source R (R Core Team, 2021) pakket OpenMx (Boker et al., 2011).

Het hoofdstuk bevat een illustratie van hoe MNLFA kan worden toegepast in R om meet-

invariantie ten opzichte van een dichotome en continue achtergrondvariabele tegelijk te

toetsen. Naast deze illustratie vergelijken we de resultaten verkregen in R met de resul-

taten verkregen in Mplus en vinden we identieke parameterschattingen. Dit levert een

waardevolle kruisvalidatie op, waarbij geconcludeerd kan worden dat beide manieren van

het uitvoeren van MNLFA convergeren naar dezelfde parameterschattingen.
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