
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Phase-resolved spectroscopy of a quasi-periodic oscillation in the black hole X-
ray binary GRS 1915+105 with NICER and NuSTAR

Nathan, E.; Ingram, A.; Homan, J.; Huppenkothen, D.; Uttley, P.; van der Klis, M.; Motta, S.;
Altamirano, D.; Middleton, M.
DOI
10.1093/mnras/stab3803
Publication date
2022
Document Version
Final published version
Published in
Monthly Notices of the Royal Astronomical Society

Link to publication

Citation for published version (APA):
Nathan, E., Ingram, A., Homan, J., Huppenkothen, D., Uttley, P., van der Klis, M., Motta, S.,
Altamirano, D., & Middleton, M. (2022). Phase-resolved spectroscopy of a quasi-periodic
oscillation in the black hole X-ray binary GRS 1915+105 with NICER and NuSTAR. Monthly
Notices of the Royal Astronomical Society, 511(1), 255-279.
https://doi.org/10.1093/mnras/stab3803

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://doi.org/10.1093/mnras/stab3803
https://dare.uva.nl/personal/pure/en/publications/phaseresolved-spectroscopy-of-a-quasiperiodic-oscillation-in-the-black-hole-xray-binary-grs-1915105-with-nicer-and-nustar(f77a12a0-f789-4e88-b106-6143a39d9d8d).html
https://doi.org/10.1093/mnras/stab3803


MNRAS 511, 255–279 (2022) https://doi.org/10.1093/mnras/stab3803 
Advance Access publication 2022 January 4 

Phase-r esolved spectr oscopy of a quasi-periodic oscillation in the black 

hole X-ray binary GRS 1915 + 105 with NICER and NuSTAR 

Edward Nathan , 1 ‹ Adam Ingram , 1 , 2 Jeroen Homan, 3 Daniela Huppenkothen , 4 Phil Uttley, 5 

Michiel van der Klis, 5 Sara Motta , 2 , 6 Diego Altamirano 

7 and Matthew Middleton 

7 

1 Department of Physics, Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 

2 School of Mathematics, Statistics and Physics, Newcastle University, Herschel Building, Newcastle upon Tyne NE1 7RU, UK 

3 Eureka Scientific, Inc., 2452 Delmer Street, Oakland, CA 94602, USA 

4 SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, NL-3584 CA Utrecht, the Netherlands 
5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands 
6 Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (LC), Italy 
7 Department of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK 

Accepted 2021 December 20. Received 2021 December 8; in original form 2021 August 10 

A B S T R A C T 

Quasi-periodic oscillations (QPOs) are often present in the X-ray flux from accreting stellar-mass black holes (BHs). If they are 
due to relativistic (Lense–Thirring) precession of an inner accretion flow which is misaligned with the disc, the iron emission line 
caused by irradiation of the disc by the inner flow will rock systematically between red and blue shifted during each QPO cycle. 
Here, we conduct phase-resolved spectroscopy of an ∼2.2 Hz type-C QPO from the BH X-ray binary GRS 1915 + 105, observed 

simultaneously with NICER and NuSTAR . We apply a tomographic model in order to constrain the QPO phase-dependent 
illumination profile of the disc. We detect the predicted QPO phase-dependent shifts of the iron line centroid energy, with our 
best fit featuring an asymmetric illumination profile ( > 2 σ confidence). The observed line energy shifts can alternatively be 
explained by the spiral density waves of the accretion-ejection instability model. Ho we ver, we additionally measure a significant 
( > 3 σ ) modulation in reflection fraction, strongly fa v ouring a geometric QPO origin. We infer that the disc is misaligned with 

previously observed jet ejections, which is consistent with the model of a truncated disc with an inner precessing hot flow. 
Ho we ver, our inferred disc inner radius is small ( r in ∼ 1.4 GM / c 2 ). For this disc inner radius, Lense–Thirring precession cannot 
reproduce the observed QPO frequency. In fact, this disc inner radius is incompatible with the predictions of all well-studied 

QPO models in the literature. 

Key words: accretion, accretion discs – black hole physics – methods: data analysis – X-rays: binaries – X-rays: individual: GRS 

1915 + 105. 

1

I  

m
t  

1
a  

u  

(  

t  

c
e
c
a  

r
s
b

�

R  

t  

2  

a
a  

a  

t  

f  

t  

o
 

o
t  

o  

c
q  

s

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/1/255/6496045 by U
niversiteit van Am

sterdam
 user on 08 August 2022
 I N T RO D U C T I O N  

n a black hole (BH) X-ray binary system (XRB), the BH accretes
atter from its stellar companion via a geometrically thin, optically 

hick accretion disc (No viko v & Thorne 1973 ; Shakura & Sunyaev
973 ) which radiates a multitemperature blackbody spectrum. We 
lso see a power-law component as a result of photons being Compton
p-scattered by a population of hot electrons near the central BH
Thorne & Price 1975 ; Sunyaev & Tr ̈umper 1979 ), typically referred
o as the corona . This power-law component has lower and upper
utoffs determined by the temperature of the seed photons and 
lectrons, respectively. The third and final major spectral component 
omes from a fraction of the coronal photons irradiating the disc 
nd being scattered into our line of sight. As a result of being
eprocessed in the disc’s atmosphere, these photons have a reflection 
pectrum with characteristic features. The scattering produces a 
road Compton hump peaking at ∼20–30 keV (e.g. Lightman & 
 E-mail: edward.nathan@physics.ox.ac.uk 
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ybicki 1980 ); and there are many spectral lines, the strongest being
he Fe K α line at ∼6.4 keV (George & Fabian 1991 ; Ross & Fabian
005 ; Garc ́ıa et al. 2013a ). These reflection features are distorted
nd broadened from their rest-frame energies by Doppler shifting 
nd boosting due to the relativistic orbital speed of the disc material,
nd general relativistic effects due to the strong field gravity around
he compact object (Fabian et al. 1989 ). Modelling of these reflection
eatures has been used to trace the inner disc radius, which leads to
he BH spin if the disc extends down to the innermost circular stable
rbit (ISCO; e.g. Plant et al. 2014 ; Garc ́ıa et al. 2015 ). 
XRBs are usually disco v ered as transient ev ents, as the y undergo

utbursts typically lasting weeks to months. During these outbursts 
hey increase in X-ray flux from the quiescent level by multiple
rders of magnitude, but are also seen to transition between different
anonical X-ray spectral-timing accretion states. After rising from 

uiescence, the source is initially in the hard state , where the X-ray
pectrum is dominated by the power-law component. After rising to 
he peak of the hard state, the source transitions to the disc-dominated
oft state via the intermediate state . Eventually, the source transitions
ack to the hard state, al w ays at a lower flux than the hard-to-soft

http://orcid.org/0000-0002-9633-9193
http://orcid.org/0000-0002-5311-9078
http://orcid.org/0000-0002-1169-7486
http://orcid.org/0000-0002-6154-5843
mailto:edward.nathan@physics.ox.ac.uk


256 E. Nathan et al. 

t  

a  

h  

t  

K
 

d  

m  

1  

i  

t  

g  

I  

t  

b  

O  

n  

a  

K  

 

c  

fi  

h  

w  

a  

a  

(  

 

M  

t  

fl  

i  

c
 

t  

t  

e  

d  

C  

s  

e
 

p  

a  

T  

V  

m  

s  

s  

r  

S  

r  

t  

s  

d  

2  

o  

f  

j  

R  

e  

i  

a  

A
 

t  

p  

s  

d  

Q  

Q  

w  

i  

&  

n  

p  

c  

c  

b  

d  

v  

d  

p  

s  

e  

2
 

s  

Q  

a  

I  

i  

f  

a  

p  

c  

t  

t  

o  

t  

t  

m  

d

2

T  

d  

(  

s  

v  

d  

p  

H  

R

2

W  

H  

l  

1 MJD 58277 −58278. 

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/1/255/6496045 by U
niversiteit van Am

sterdam
 user on 08 August 2022
ransition, and then finally back to quiescence. The radio properties
re correlated with the X-ray state, with a steady jet observed in the
ard state and a discrete ejection observed during the hard-to-soft
ransition (e.g. Fender, Belloni & Gallo 2004 ; Done, Gierli ́nski &
ubota 2007 ; Belloni 2010 ; Fender & Belloni 2012 ). 
While the physics of the accretion disc is relatively well un-

erstood, the structure of the corona is still debated. One popular
odel is the truncated disc model (Eardley, Lightman & Shapiro

975 ; Ichimaru 1977 ; Done et al. 2007 ) whereby, in the hard and
ntermediate states, the disc is truncated at some radius greater than
he ISCO of the BH; inside of this truncation radius the flow becomes
eometrically thick and optically thin, which is the observed corona.
n this model, the truncation radius of the thin disc decreases during
he rise from quiescence until it reaches the ISCO in the soft state,
efore it mo v es out once again during the decay back to quiescence.
ther models suggest that the corona sits abo v e the disc (Galeev, Ros-
er & Vaiana 1979 ; Haardt & Maraschi 1991 ), or that the corona is
ctually outflowing in such a way that is the base of a jet (Miyamoto &
itamoto 1991 ; Fender et al. 1999 ; Markof f, No wak & Wilms 2005 ).
Quasi-periodic oscillations (QPOs) are often seen in the light

urves of XRBs. These are characterized by a narrow peak with
nite width in their power spectra, and are often accompanied by
igher harmonics (see e.g. for a re vie w Ingram & Motta 2019 ). Here
e focus on a ‘type-C’ low-frequency QPO in a BH XRB. These

re seen with fundamental frequency evolving from ∼0.1 to 10 Hz
s the spectral state evolves through the hard and intermediate states
Wijnands & van der Klis 1999 ; Van der Klis 2006 ; Motta et al. 2011 ).

Models of low-frequency QPOs in the literature (see Ingram &
otta 2019 for a discussion) can generally be classified into two

ypes: intrinsic – whereby the intrinsic luminosity of the accretion
ow oscillates – or geometric – whereby the observed oscillation

n flux is instead caused by a variation of the beaming pattern of the
orona. 

Intrinsic models include resonant oscillations in a property of
he accretion flow such as accretion rate, pressure, or electron
emperature (e.g. Cabanac et al. 2010 ; O’Neill et al. 2011 ; Karpouzas
t al. 2021 ). For instance, an oscillating shock at the interface between
isc and corona (the propagating oscillatory shock – POS – model:
hakrabarti & Molteni 1993 ), or spiral density waves in the disc

et-up by instabilities in the vertical magnetic field (the accretion
jection instability – AEI – model: Tagger & Pellat 1999 ). 

Geometric models mostly focus on relativistic (Lense–Thirring)
recession (Lense & Thirring 1918 ), which is induced in orbits that
re not aligned with the BH spin axis by the frame dragging effect.
he r elativistic pr ecession model (RPM: Stella & Vietri 1998 ; Stella,
ietri & Morsink 1999 ) considers precession frequencies of a test
ass in the accretion flow (representing e.g. a hotspot or o v erden-

ity. Another example is corrugation modes ( c modes): transverse
tanding waves in the disc height with resonant angular frequency
elated to the Lense–Thirring precession frequency (Wagoner 1999 ).
chnittman, Homan & Miller ( 2006 ) instead considered a precessing
ing in the disc. Ingram, Done & Fragile ( 2009 ) proposed that within
he truncated disc model the entire corona precesses (as seen in
imulations by Fragile et al. 2007 ) whereas the disc stays stationary
ue to viscous diffusion (Bardeen & Petterson 1975 ; Liska et al.
019 ). The precession frequency of the corona is a weighted average
 v er all radii in the corona of the test mass Lense–Thirring precession
requency (Motta et al. 2018 ). Alternatively, or additionally, the
et base could be precessing, as has recently been seen in General
elativistic Magneto-hydrodynamic (GRMHD) simulations (Liska
t al. 2018 ). We note that some of the models classed here as
ntrinsic also include some geometrical aspect; e.g. an expanding
NRAS 511, 255–279 (2022) 
nd contracting corona in the POS model and the spiral arms in the
EI model. 
Motta et al. ( 2015 ) and Heil, Uttley & Klein-Wolt ( 2015 ) showed

hat higher inclination sources appear to display stronger QPOs,
roviding strong evidence in fa v our of a geometrical effect rather than
ome intrinsic fluctuation in the X-ray luminosity. Further to this, van
en Eijnden et al. ( 2017 ) found a possible inclination dependence of
PO phase lags, which also supports a geometrical origin for type-C
POs. It is also known that the power law spectral component varies
ith much larger RMS than the disc component, indicating an origin

n the corona (Sobolewska & Życki 2006 ; Axelsson, Hjalmarsdotter
 Done 2013 ) as opposed to the disc. The precessing corona model

aturally reproduces these observational properties, and additionally
redicts that the reflection spectrum is modulated, as the precessing
orona illuminates the disc asymmetrically. The observer sees light
oming from different patches of the disc undergoing different
oosting and shifting due to differing line-of-sight velocities of the
isc material. Therefore an asymmetric illumination profile which
aries with QPO phase will highlight different patches of the disc at
ifferent phases of the QPO cycle, and hence cause the broadening
rofile of the reflection spectrum to change. This effect would be
een as a ‘rocking’ of the Fe K α line, where the profile and centroid
nergy change o v er the course of each QPO cycle (Ingram & Done
012 ; You et al. 2020 ). 
In this paper, we study the QPO phase dependence of the reflection

pectrum by performing phase-resolved spectroscopy of an ∼2.2 Hz
PO from the BH XRB GRS 1915 + 105, using the technique first

pplied to the same source by Ingram & van der Klis ( 2015 ).
ngram et al. ( 2016 ) made further impro v ements to the technique
n order to constrain a modulation in the Fe line centroid energy
rom the BH XRB H 1743-332, and Ingram et al. ( 2017 ) introduced
 tomographic model. Like wise, Ste v ens & Uttle y ( 2016 ) presented
hase-resolved spectroscopy of GX 339-4, introducing the use of the
ross-correlation function. Here, we present further sophistication to
he Ingram & van der Klis ( 2015 ) phase-resolving technique, and
o the tomographic model. In Section 2, we present details of our
bservations and data reduction procedure. In Section 3, we lay out
he steps of our impro v ed phase-resolving method. Section 4 contains
he details of our tomographic model, and the results of fitting this
odel to the phase-resolved spectra are presented in Section 5. We

iscuss our results in Section 6. 

 OBSERVATI ONS  

he Neutron star Interior Composition ExploreR ( NICER ; Gen-
reau et al. 2016 ) and the Nuclear Spectroscopic Telescope ARray
 NuSTAR ; Harrison et al. 2013 ) observed GRS 1915 + 105 quasi-
imultaneously on 8th–9th June 2018. 1 The details of the obser-
ations are summarized in Table 1 . In this section, we detail our
ata reduction procedure and present the basic spectral and timing
roperties of the data. When analysing the data we make use of
EASARC ( 2014 ), and custom code written in PYTHON 3 (Van
ossum & Drake 2009 ). 

.1 NuSTAR data reduction 

e used the NuSTAR analysis software, NuSTAR DAS v1.8.0 with
EASOFT v6.22. We generated a cleaned event list with associated

ist of good time intervals (GTIs) for both focal plane modules
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Table 1. Details of the simultaneous observations from NICER and NuSTAR 

on the 8th–9th June 2018 (MJD 58277-58278). The NICER observation was 
split into two, ho we ver, these are merged for our analysis. The net count-rate 
is reported for the background-subtracted spectra used for the flux-energy 
fits: 3.5–75, 3–75 keV for NuSTAR ; 2.7–10 keV for NICER . 

Mission NuSTAR NICER 

FPM A FPM B 

ObsID 80401312002 1103010157 1103010158 
Start time 12:01:09 11:42:40 23:49:26 
End time 05:31:09 22:55:20 05:05:40 
Net count rate/s −1 60.2 59.6 196.8 
Exposure time/s 261 66 265 12 15386 5033 
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Figure 1. Ratio of the NICER 0.24–10 keV, and the NuSTAR FPMA and 
FMPB 3–75 keV spectra in black, red, and blue, respectively, to an absorbed 
power-law model with photon index 2.01, and absorption with hydrogen 
column density 6.2 × 10 22 cm 

−2 . 

Figure 2. The 3–10 keV power spectra of the NICER (blue) and NuSTAR 

(orange) observations. The NICER spectrum is Poisson-noise subtracted, 
while the NuSTAR spectrum is estimated from the co-spectrum between 
FPMA and FMPB. The power spectra have been ensemble-averaged and 
geometrically re-binned to reduce the number of bins by a factor of 25. 
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FPMs) – FPMA and FPMB – using nupipeline . From this we 
sed nuproducts to extract source and background spectra from 

9.2 arcsec circular regions and generate spectral response files. We 
nd that the source contributes > 99.9 per cent of the total counts
easured by NuSTAR . We did not perform a background subtraction 
hen extracting light curves we use for the timing analysis, as the
ackground is not expected to be variable on the QPO period. We
se our own custom code to extract FPMA and FPMB source region
ight curves from the cleaned event list in 11 broad energy channels
n the energy range 3–78 keV. We used the FTOOL rbnrmf to re-bin
he spectral response files into these 11 energy bands. 

.2 NICER data reduction 

e used the NICER analysis software, NICER DAS v2018-04- 
3 V004 with HEASOFT v6.24. We extracted the MPU-merged, 
ncleaned event lists with the FTOOL NICER l2 for each of the
wo NICER observations, which we then merged together using 
impumerge and cleaned with NICER clean . We used filter and 
TI files which were combined from those of the separate obs IDS
sing FTOOL s ftmerge and nimaketime . This results in a single
leaned event list for the two obs IDs combined. 

We extracted a flux-energy spectrum from the resulting merged 
vent list using XSELECT , and estimated the instrumental background 
ith the NICER gof.bkg version 0.5 PYTHON script (Remillard 

t al. 2021 ). We find that the source contributes 98.6 per cent of
he total counts measured by NICER . Again, we did not perform
 background subtraction when extracting light curves we use 
or the timing analysis, as the background is not expected to be
ariable on the QPO period. We used the spectral response files
nixtiref20170601v002.rmf’ and ‘nixtiaveonaxis20170601v004.arf’ 
rom CALDB . We extracted light curves from the merged event list in
0 broad energy channels in the energy range 0.3–10 keV using our
wn custom code. We used the FTOOL rbnrmf to re-bin the spectral
esponse files into these 40 energy bands. 

.3 Energy spectrum 

ig. 1 shows the NICER (black) and NuSTAR (red: FPMA; blue: 
PMB) background subtracted flux-energy spectrum plotted as a 
atio to a folded absorbed power-law model. We set the hydrogen 
olumn density to N H = 6.2 × 10 22 cm 

−2 (the absorption model is
BABS with the abundances of Wilms, Allen & McCray 2000 ) and
he power-la w inde x to � = 2.01 for all three spectra, but allow the
hree spectra to each have their own normalization. We see strong
eflection features including an iron line at ∼6.4 keV and a broad
ompton hump peaking at ∼30 keV. We also see that the cross-
alibration between NICER and NuSTAR is excellent in the ∼3–
0 keV energy range in which their band passes o v erlap. At energies
elow ∼2.7 keV, the NICER spectrum includes features that are 
ikely due to calibration uncertainties, and the ‘shelf’ of the response
rom higher energy photons (NASA 2021 ) which is dominant below
1 keV due to the astrophysical absorption leaving very few source

hotons at low energies. We therefore only consider energy channels 
 2.7 keV in our spectral analysis. We note there is a cross-calibration

iscrepancy between NuSTAR FMPA and FMPB in the energy range 
3–3.5 keV due to a tear in the Multi Layer Insulation around
uSTAR ’s FMPA (Madsen et al. 2020 ), so we also ignore the FMA
nergy channels < 3.48 keV. 

.4 Power spectrum 

ig. 2 shows the 3–10 keV power spectrum calculated for the merged
ICER observation (blue) and the NuSTAR observation (orange). For 
oth observatories, we extract light curves with time-step δt from the
leaned event list. For the purposes of ensemble averaging (e.g. van
er Klis 1989 ), we split the light curves into M segments labelled
 ≤ m ≤ M , each having N time bins and therefore a length T =
 δt . Except for when otherwise stated we use N = 8192 and δt
MNRAS 511, 255–279 (2022) 
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 1/128 s throughout this paper, so our segments are T = 64 s
ong. The NICER power spectrum is calculated in the standard way
the magnitude-squared of the fast Fourier transform (FFT) of the
ight curve], with a constant Poisson noise level subtracted (van der
lis 1989 ; Uttley et al. 2014 ). For NuSTAR , we instead calculate

he co-spectrum between the FPMA and FPMB (Bachetti et al.
015 ) in order to a v oid instrumental features caused by the fairly
arge NuSTAR deadtime of t D ≈ 2.5 ms. We also correct for the
uppression of variability caused by the NuSTAR dead time using the
imple formula (RMS det /RMS intr ) ≈ 1/(1 + t D r intr ) = ( r det / r intr ), where
MS det and RMS intr are, respectively, the detected and intrinsic RMS
ariability amplitudes and r det and r intr are the detected and intrinsic
ount rates (Bachetti et al. 2015 ). For this observation, the ratio of
etected to intrinsic variability is RMS det /RMS intr = 0.754 (recorded
n the NuSTAR spectral files as the k eyw ord ‘ DEADC ’). We see that the
uSTAR co-spectrum is very similar to the NICER power spectrum.

n both, we see a strong low-frequency QPO with a fundamental
requency of ∼2.2 Hz and a 2nd harmonic at twice that frequency.

e can classify this low-frequency QPO as ‘type-C’ based upon
ts frequency, RMS � 15 per cent , and the presence of the ‘flat-top’
road-band noise (see e.g. Ingram & Motta 2019 for a summary
f the characteristic features of type-A, B, and C low-frequency
POS). 

.5 Spectral timing state 

elloni et al. ( 2000 ) identified 15 different states from spectral and
ariability patterns that GRS 1915 + 105 transitions between (also
ee Huppenkothen et al. 2017 ), most of which have only to date been
bserved in one other XRB (Altamirano et al. 2011 ). From the flux-
nergy spectrum and power spectrum, it is clear that GRS 1915 + 105
as in the designated χ -state during this observation. The χ -state is
ne of the few that behaves similarly to one of the canonical states,
nd corresponds to the hard state. The χ -state can either be radio
oud or quiet; during our X-ray observations the source was radio
uiet (Motta et al. 2021 ). This happens to be the dimmest χ -state
v er observ ed, preceding the transition of the source into its current
eavily obscured state (Motta et al. 2021 ). The QPO frequency of
2.2 Hz is also somewhat special, since it is at around this QPO

requency when the QPO phase lags transition from positive (hard
hotons lag soft photons) to ne gativ e (soft photons lag hard photons):
he phase lag reduces approximately linearly with the log of QPO
requency, passing through zero at νqpo ∼ 2 Hz (Reig et al. 2000 ; Qu
t al. 2010 ; van den Eijnden et al. 2017 ; Zhang et al. 2020 ). 

 PHASE  RESOLV ED  SPECTROSCOPY  

he aim of phase resolved spectroscopy is to investigate how the
nergy spectrum of the source varies with QPO phase, a task
omplicated by the ‘quasi-’ nature of the oscillation which prevents
ore direct approaches such as phase-folding. We therefore employ

he techniques pioneered by Ingram & van der Klis ( 2015 ) to consider
he QPO waveform in different energy bands, considering its phase-
verage and first two harmonics. To do this, we extract three key
ieces of information: 

(i) The amplitude (RMS) of each harmonic in each energy band
j ( E ). We find this by fitting an estimate of the power spectrum with
 multi-Lorentzian model, as described in Section 3.3. 

(ii) The phase lag of each harmonic in each energy band 	 j ( E ),
elative to the phase of the corresponding harmonic in a reference
and. This comes from using the cross spectrum between the light
NRAS 511, 255–279 (2022) 
urve of the subject energy band, and the reference band, as described
n Section 3.2. 

(iii) The phase difference ψ between the first two harmonics
easured within the reference band. Using the FFT of the reference

ight curve, this is the difference between the phases in frequency bins
ontaining the two harmonics. We use the bi-spectrum to calculate
his, which is described in Section 3.4. 

Following Ingram & van der Klis ( 2015 ) and Ingram et al. ( 2016 ),
e consider that the count rate w( E , γ ) in each energy bin denoted
y E varies with QPO phase γ as 

( E, γ ) = μ( E) 

⎡ 

⎣ 1 + 

J ∑ 

j= 1 

σj ( E) cos 
(
jγ − � j ( E) 

)⎤ 

⎦ , (1) 

here μ( E ) is the average count rate in the energy band, σ j ( E )
s the average RMS of the j th QPO harmonic, 2 and � j ( E ) is the
hase offset of the j th QPO harmonic. The phase-offset is split into
n energy-dependent phase-lag 	 j ( E ), which is the phase lag of a
armonic compared to the same harmonic in the reference band
ight curve, and the phase difference ψ between the two harmon-
cs in the same reference band light curve. These are combined
o that 

 1 ( E) = � 1 + 	 1 ( E) 

 2 ( E) = 2( � 1 + ψ) + 	 2 ( E) , (2) 

here, following Ingram & van der Klis ( 2015 ), we choose to set the
rbitrary phase of the first harmonic to � 1 = π /2. 

Putting this together, for j ≥ 1 we get the Fourier transformed (FT)
pectra (Ingram et al. 2016 ) 

 j ( E) = μ( E) σj ( E) e i � j ( E) , (3) 

lus the phase-average W 0 ( E ) = μ( E ), which is trivially the flux-
nergy spectrum. We fit the theoretical model described in the
ollowing section simultaneously to the real and imaginary parts
f the j = 1 and j = 2 FT spectra, and the flux-energy spectrum ( j
 0). We use the full spectral resolution of the instrument for the
ux-energy spectrum (grouped to have ≥30 counts in each energy
hannel) and subtract background. For the j ≥ 1 QPO harmonics, we
nstead use the broader energy bands defined in Sections 2.1 and 2.2
nd do not perform a background subtraction. This treatment of the
ackground is appropriate because the background is not expected
o be variable on the QPO period. 

The following subsections which describe these parts of the
nalysis are each further split into two sub-subsections, with the first
escribing the method used, and the second presenting the results
btained from the observations analysed in this paper. 

.1 QPO frequency tracking 

uring the observations, the frequency of the QPO drifts o v er time
y ∼ ±5 per cent . To account for this, we identify the frequency
f the QPO during each of the M segments so that we can later
v erage F ourier products o v er the frequenc y range containing the
nstantaneous QPO frequency. 
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.1.1 Method 

e determine the QPO frequency for each segment by fitting a 
odel to the power spectrum of each segment of the NICER and
uSTAR (we sum the FPMA and FPMB counts) light curves. Our 
odel comprises of four Lorentzian functions (van Straaten et al. 

002 ), two of which are harmonically locked to represent the two
PO harmonics, and a Poisson noise component. The Poisson noise 

omponent is very simple for NICER , taking a constant value of
/ μ where μ is the mean count rate (van der Klis 1989 ). The Poisson
oise is much more complicated for NuSTAR , due to the large detector
eadtime, t D . Since there is currently no accurate deadtime model for
uSTAR , we model the Poisson noise with the function (Bult 2017 ) 

 ( ν| A, B, t D 

) = A − 2 Bt D 

sinc ( 2 πνt D 

) , (4) 

nd determine the parameters A , B , and t D by fitting the abo v e
unction to the power spectrum averaged over the entire observation. 

e only consider ν > 20 Hz since this frequency range is Poisson
oise dominated. This fit yields A = (1.783 ± 0.006) × 10 −2 , B =
.15 ± 0.01, and t D = 3.3 ± 0.2 ms. We then freeze A , B , and t D to
hese best-fitting values for the remainder of the analysis. 

As each frequency bin of a single power spectrum (without 
ny ensemble or frequency averaging) follows a χ2 probability 
istribution with two degrees of freedom 

3 (van der Klis 1989 ), 
e are unable to use χ2 minimization for the model fit as this
epends on each frequency bin following a Gaussian distribution. We 
herefore use the maximum likelihood estimation method described 
n Barret & Vaughan ( 2012 ). This method does not require the
robability distribution to be Gaussian, it only requires it to be known
nalytically. We find best-fitting model parameters, including the 
requency of the QPO fundamental, by maximizing the likelihood 
unction calculated assuming a χ2 probability distribution with two 
egrees of freedom. 
It is important to note that the probability distribution underlying 

ach frequency bin of a un-averaged co-spectrum is not known 
nalytically (Huppenkothen & Bachetti 2018 ). We are therefore 
nable to use the maximum likelihood method on the co-spectrum 

etween FPMA and FPMB, which is why we resort to modelling 
he Poisson noise of the power spectrum, which does have well- 
nderstood statistics. 

.1.2 Results 

ig. 3 shows the resulting measurements of QPO frequency (black 
rosses) as a function of time for NuSTAR (top) and NICER (bottom).
ather than uncertainties, the error bars shown are the measured 

ull width at half maximum (FWHM) of the Lorentzian function 
epresenting the QPO fundamental. In our fits, we restricted the 
PO frequency to a range given by the running average of the
PO frequencies of the previous 5 segments ±3/2 times the running 

verage FWHM of the previous 5 segments, starting with the QPO 

requency and FWHM from the average power spectrum. This range 
s represented by the grey = dashed lines. To smooth out the results
f our tracking algorithm 

4 we use a degree-15 polynomial to model 
PO frequency with time, that we fit simultaneously to the NICER
 Apart from the bin at the Nyquist frequency which is a χ2 distribution with 
nly a single degree of freedom, but this bin was ignored in our calculations 
or simplicity. 
 The difference in the scatter of QPO frequencies between the lower count 
ate NuSTAR and higher count rate NICER data suggests that this is noise in 
he measurement rather than intrinsic short time-scale changes. 

b  

t  

s  

i  

o

5

nd NuSTAR data (the solid red line in Fig. 3 ). It is encouraging that
he instantaneous QPO frequencies we measure here are very similar 
o those inferred by Huppenkothen & Bachetti ( 2022 ) using a more
ophisticated method (see their fig. 23) 

.2 Phase lag spectrum 

.2.1 Method 

n order to calculate the energy-dependent phase lag of the j th
armonic 	 j ( E ), we first calculate the cross-spectrum between the
ight curve of the energy band centred on energy E (the subject band)
nd the light curve summed over all energy channels (the reference
and) for each of the M se gments. F or the m th segment, the cross-
pectrum as a function of frequency is 

 m 

( ν, E) ∝ S m 

( ν, E) R 

∗
m 

( ν) , (5) 

here R m ( ν) and S m ( ν, E ) are the Fourier transforms 5 of the m th
egment of the reference and subject band light curv es, respectiv ely,
nd the constant of proportionality is a normalization into fractional 
MS. For NICER , the photons in the subject band light curve are also

n the reference band light curve (since the reference band consists of
ll the photons detected by NICER ). This contributes Poisson noise,
hich we subtract off following Ingram ( 2019 ). 
For NuSTAR , we instead extract the subject band light curves

rom the FPMB and the reference band light curve from the
PMA to ensure that the subject and reference band signals are
tatistically independent of one another, and therefore the cross- 
pectrum contains no contribution from deadtime affected Poisson 
oise. 
We consider the ‘shifted-and-added’ cross-spectrum of the j th 

PO harmonic by first averaging over the QPO harmonic in each time 
egment based upon the tracked QPO frequenc y. F or the m th segment
e av erage o v er the frequenc y range ν = j νqpo ( m )[1 ± 1/(2 Q )], where
e assume Q = 8 for the quality factor (a typical value for a type-C
PO; Ingram & Motta 2019 ), using the smoothed estimate from our
PO tracking algorithm for νqpo ( m ). We then average over the time

egments to find the overall average value for cross-spectrum for 
ach of the QPO harmonics. 

The phase lag for the j th harmonic, 	 j ( E ), is the argument of the
veraged cross-spectrum of the corresponding harmonic, of which 
e estimate the uncertainties using the formula from Ingram ( 2019 ,

quation 19). 

.2.2 Results 

e display the measured phase lag spectrum in Fig. 4 (bottom)
or NICER (blue) and NuSTAR (orange). We see that the phase lag
f the QPO fundamental is almost constant with energy, which is
onsistent with previous RXTE observations showing that the phase 
ag monotonically reduces from hard lags (a positive lag versus 
nergy gradient) to soft lags (a ne gativ e lag versus energy gradient)
s the QPO frequency increases, with the cross over occurring for
qpo ∼ 2 Hz (e.g. van den Eijnden et al. 2017 ). Note that a slight offset
etween NICER and NuSTAR lags results from a phase lag between
he NICER and NuSTAR reference bands. Although the offset is very
mall for this observation because the energy dependence of the lag
s subtle, we account for it in our modelling with a floating phase

ffset. 

 As we are using the FFT, we actually use discrete frequency bins νk = k / T . 

MNRAS 511, 255–279 (2022) 
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Figure 3. The estimated value of the QPO frequency νmax measured in each 64 s long segment of the two light curves, with the error bars denoting the estimated 
FWHM. The grey-dashed line show the dynamic bounds for the QPO tracking algorithm. The red line is a 15 deg polynomial simultaneously fit to the estimated 
QPO frequencies, which we then use to get the QPO frequency at arbitrary time. 
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6 We note this method can find the phase-difference between any doublet 
harmonics, e.g. also between the 2nd and 4th harmonics. In much the same 
way, higher order polyspectra could be used to find the phase difference 
between other harmonics, e.g. the trispectrum could be used to find the phase 
difference between the 1st and 3rd harmonics. 
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.3 Fractional RMS spectrum 

.3.1 Method 

o calculate the fractional RMS of the QPO harmonics in each
nergy band, instead of the power spectrum in that energy band, we
oost signal to noise by using the shift-and-added cross-spectrum
 ( ν, E) = 

1 
M 

∑ M 

m 

G m 

( ν + δνm 

, E) , where δνm is the difference
etween the QPO frequency in that segment (from our smoothed
racking) and the average QPO frequency. 

Since the QPO harmonics are well correlated between energy
ands, we assume unity coherence between the subject bands and the
eference band, in which case the shifted-and-added power spectrum
f the subject band can be written as (Wilkinson & Uttley 2009 ;
ngram et al. 2016 ) 

 s ( ν, E) = 

| G ( ν, E) | 2 − ˆ b 2 ( ν, E) 

P r ( ν) 
, (6) 

here ˆ b 2 ( ν, E) results from a positive-bias in the calculation of
 G ( ν, E ) | 2 (see Ingram 2019 for details, where b is used in-
tead of ˆ b ) and P r ( ν) is the Poisson noise subtracted shift-and-
dded power spectrum of the reference band for NICER and the
hift-and-added co-spectrum between the FPMA and FPMB for
uSTAR . 
We fit a multi-Lorentzian model to the resulting power spectral

stimate for each energy band. We use three Lorentzian functions:
ne with Q = 0 to represent the broad-band noise; and the other
wo with centroid frequencies and Q tied (such that the centroid
requencies are harmonically related) in order to represent the two
PO harmonics. We normalize our power spectral estimate (Belloni
 Hasinger 1990 ) and Lorentzian functions (van Straaten et al.

002 ) such that the best-fitting normalization of the two Lorentzian
omponents representing the QPO harmonics gives their fractional
NRAS 511, 255–279 (2022) 
MS. We calculate 1 σ uncertainties on the RMS by searching
arameter space for a marginalized 	χ2 = 1. 

.3.2 Results 

e display the measured RMS spectrum in Fig. 4 (top). Error bars
ithout a lower cap correspond to points consistent with zero within
 σ . We see that, as is typically the case for type-C QPOs, the
ractional RMS increases with energy for E � 10 keV before levelling
ff. We note good agreement between NICER and NuSTAR . 

.4 Phase difference between harmonics 

.4.1 Method 

s we have the phase lag of each QPO harmonic in the energy bands
ompared to their counterpart in the reference band, we now need to
nd the phase lag between the harmonics in the reference band ψ .
or this, we use the bispectrum 

6 as suggested by Arur & Maccarone
 2019 ). This yields similar results to the method of Ingram & van
er Klis ( 2015 ) used in Ingram et al. ( 2016 , 2017 ) and de Ruiter
t al. ( 2019 ), but is more statistically robust. In particular there is no
oisson noise correction in the Ingram & van der Klis ( 2015 ) method,
hereas the effect of Poisson noise on the bispectrum is well co v ered

n the literature (e.g. Wirnitzer 1985 ; van der Klis 1989 ; Kovach, Oya
 Kawasaki 2018 ). The bispectrum method should therefore be more

art/stab3803_f3.eps
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Figure 4. Top: The fractional RMS of the first and second harmonics of the QPO in both the NICER and NuSTAR observations in different energy bands, found 
by fitting lorenztian functions to the power spectrum of each energy band, which was estimated from a cross-spectrum between a broad reference energy band 
and a specific energy band, as described in the text. As the fractional RMS must be positive points that have 	χ2 < 1 at zero are shown without an errorbar cap. 
The fractional RMS is slightly diluted by background photons in the very highest NICER energy bands. Bottom: The phase lag of the first and second harmonics 
of the QPO, measured against a reference band. For NICER this reference band is the full energy light curve, while for NuSTAR it is the full energy light curve 
of FMPB. 
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obust to low count rate observations. The bispectrum is defined as a
unction of two frequencies, ν1 and ν2 , such that the bispectrum of
he reference band light curve in the absence of Poisson noise is 

( ν1 , ν2 ) = 

1 

M 

M ∑ 

m = 1 

R m 

( ν1 ) R m 

( ν2 ) R 

∗
m 

( ν1 + ν1 ) . (7) 

he phase-difference between harmonics can be retrieved from the 
auto-bispectrum’, B( ν) = B( ν1 = ν, ν2 = ν), which is 

( ν) = 

1 

M 

M ∑ 

m = 1 

B m 

( ν) = 

1 

M 

M ∑ 

m = 1 

R m 

( ν) R m 

( ν) R 

∗
m 

(2 ν) . (8) 

ince R m 

( ν) = | R m 

( ν) | e i � m ( ν) , we see that 

( ν) = 

1 

M 

M ∑ 

m = 1 

| R m 

( ν) | 2 | R m 

(2 ν) | e i [2 � m ( ν) −� m (2 ν)] . (9) 

herefore, the bi-phase ≡ arg[ B ( ν)] = 2 � ( ν) − � (2 ν) = −2 ψ( ν),
here we take the phase difference between frequency ν and 

requency 2 ν to be ψ( ν) = 

1 
2 � (2 ν) − � ( ν) following Ingram &

an der Klis ( 2015 ). The phase difference between the two QPO
armonics is therefore ψ = − 1 

2 arg [ B( νqpo )]. 
In order to calculate B ( νqpo ), we adopt the same shift-and-add

echnique for the auto-bispectrum as described in the previous section 
or the cross-spectrum, again employing our smoothed estimate for 
he instantaneous QPO frequency from Fig. 3 . The QPO is only
oherent on time-scales of ∼Q cycles (e.g. van den Eijnden, Ingram 
 Uttley 2016 ), and so it is reasonable to use segments of duration
 ∼ Q / νqpo (Ingram & van der Klis 2015 ). As the QPO frequency in
ur observations is ∼2.2 Hz, and with an assumed quality factor Q =
, we use 4 s long segments. Using δt = 1/128 s, this gives segments
ith N = 512 time bins. We correct the NICER auto-bispectrum for
oisson noise as described in Appendix A1. For NuSTAR , we a v oid
eadtime effects by using FPMA data for R ( ν) and FPMB data for
 (2 ν). 

.4.2 Results 

sing the bi-spectrum method described abo v e, we measure ψ / π =
.20 ± 0.02 for NuSTAR and ψ / π = 0.125 ± 0.006 for NICER .
he slight difference in ψ between observatories is statistically 
ignificant, and indicates that the QPO waveform depends on photon 
nergy. 

We compare the results using this method to the method used in
he literature (e.g. Ingram et al. 2016 ) where � ( ν) and � (2 ν) are
aken directly from the FFT, and a minimization is used to find ψ .
 or NuSTAR this giv es ψ / π = 0.21 ± 0.04, and for NICER this gives
/ π = 0.12 ± 0.01, which are consistent with the values from our

pdated method. Here, we again a v oid the deadtime affected NuSTAR
oisson noise by taking � ( ν) from the FFT of the FMPA light curve,
ut � (2 ν) from the FFT of the FMPB light curve. 

As discussed in Ingram & van der Klis ( 2015 ), it only makes sense
o measure the phase difference between harmonics if the phases 
f those two harmonics are correlated. In such a case, the QPO has
MNRAS 511, 255–279 (2022) 
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Figure 5. The random walk of the auto-bispectrum B ( νk ) for frequency bins νk which co v er the frequency range νk < 10 Hz. Between 6 and 10 Hz the frequency 
bins are geometrically re-binned to reduce the number of bins by a factor of 4 between 6 and 10 Hz. Each grey chain has steps B m ( νk ), but the segments that 
correspond to the instantaneous QPO frequency are highlighted in orange. All the segments that contain the QPO are summed into a purple chain. On the lower 
panel, the auto-bicoherence b 2 ( νk ) of each chain is given for each frequency. The grey uncertainties, and also the vertical 1 σ uncertainty of the tracked QPO 

auto-bicoherence, are calculated from percentiles of a bootstrapped population. 
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ome well-defined underlying waveform, and it makes sense to do
hase-resolved spectroscopy. Otherwise, the spectrum does not vary
n shape in a systematic way with QPO phase, and a QPO phase-
esolved analysis would thus be meaningless. It is therefore important
o measure how well correlated the two dominant QPO harmonics
re before continuing. We explore this in the following section. 

.4.3 Phase correlation between QPO harmonics 

he auto-bispectrum can also be used to measure the extent to which
he phases of the two harmonics are correlated. Specifically, the auto-
icoherence is the modulus of the auto-bispectrum, re-normalized in
ome useful way. We use the Kim & Powers ( 1979 ) normalization
or which the auto-bicoherence, b 2 ( ν), is unity if the phases of the

and 2 ν components are perfectly correlated. In the opposite case
f a completely uncorrelated signal, b 2 ( ν) → 0 as the number of
ight-curv e se gments used to calculate b 2 tends to M → ∞ , and it
ecomes meaningless to measure the phase difference between the
armonics at ν and 2 ν. 
In the absence of Poisson noise the auto-bicoherence is given by

Kim & Powers 1979 ) 

 

2 ( ν) = 

∣∣∣∑ M 

m = 1 B m 

( ν) 
∣∣∣2 ∑ M 

m = 1 | R m 

( ν) R m 

( ν) | 2 ∑ M 

m = 1 | R m 

(2 ν) | 2 . (10) 
NRAS 511, 255–279 (2022) 
e describe how we account for Poisson noise and deadtime effects
n the denominator of the abo v e equation in Appendix A1, and also
escribe a bootstrapping technique (following Stevens & Uttley
016 ) we use to calculate the errors on the auto-bicoherence in
ppendix A2. 
The auto-bicoherence as a function of frequency is shown in Fig. 5

bottom) for NuSTAR (left) and NICER (right). The black stepped
ines show the measured values and the shaded regions represent
he 1 σ and 3 σ confidence regions (calculated using a bootstrapping

ethod). We see that the auto-bicoherence is consistent with zero for
ll frequencies except for around the QPO fundamental frequency.
his indicates that the phase of the first harmonic is well correlated
ith that of the second harmonic, and that there is therefore an
nderlying QPO waveform (Ingram & van der Klis 2015 ; de Ruiter
t al. 2019 ). In contrast, all other pairs of frequencies are uncorrelated.

The width of the feature around the QPO frequency in these
lots of the bispectrum could be because the QPO frequency drifts
uring the observation, and therefore the frequency bin that contains
he QPO frequency may not be the same for each segment. We
herefore calculate b 2 ( νqpo ) using the same shift-and-add techniques
s described in the previous sections. The result is marked in magenta.
he vertical error bar is 1 σ and again calculated by bootstrapping

as discussed in Appendix A2), and the horizontal error bar shows
he frequency range covered by the QPO fundamental during the
bservation. We see that this new shifted-and-added bicoherence is

art/stab3803_f5.eps
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onsistent with the black stepped line, and therefore the shift-and- 
dd does not enhance the coherence of the QPO for this particular
bservation. While the coherence between the QPO harmonics 
s statistically non-zero, it is still not unity. This can be partly
xplained by the presence of uncorrelated broad-band noise at the 
PO frequency. Ho we ver, the QPO dominates over the broad-band 
oise in the power spectrum for ν ≈ νqpo . It is therefore likely that
 is not constant in time – as would be the case for a perfectly
eriodic oscillation – but instead varies around a well-defined mean 
alue. 

We visualize the autobispectrum in Fig. 5 with ‘jellyfish plots’ 
top panels). Here, for each Fourier frequency, we plot B ( ν) as a
ector sum on the complex plane. The vector sum for each frequency
s plotted as a grey line (and there are a total of 29 frequencies after
eometric re-binning abo v e 6 Hz). We see that this forms a random
alk on the complex plane. For most frequencies, this random walk 

orms a blob that never gets far from the origin, indicating that the
hase at ν is poorly correlated with that at 2 ν. For a narrow range of
requencies, the random walk instead forms a much straighter path 
hat extends far from the origin, indicating good correlation between 

and 2 ν. The autobicoherence is a measure of how far from the
rigin the vector sum ends up, and the biphase is a measure of the
rientation on the complex plane of the summed vector. The jellyfish 
lots therefore demonstrate that b 2 ( ν) is large for ν ≈ νqpo because 
ach segment has a similar bi-phase, and so the segments all line up
ell on the complex plane. 
We also demonstrate how the drifting of the QPO frequency during 

he observation leads to the frequency bin that contains the QPO 

hanging from one segment to another. To do this, we mark segments
n the jellyfish plots that contain the instantaneous QPO frequency 
y colouring them orange. We see that the QPO frequency does 
ndeed jump from one frequency bin to another. This is particularly 
oticeable in the NICER jellyfish plot. The magenta line instead 
hows the vector sum of B ( νqpo ) that we use to calculate b 2 ( νqpo );
.e. we take only the segments that contain the instantaneous QPO 

requency and add them on the complex plane. Consistent with the 
icoherence plots, we see that the magenta line reaches a comparable 
istance from the origin to the two grey lines around the QPO
requency. 

.5 Reconstructed Fourier transformed spectra 

e use the phase lag spectra 	 1 ( E ) and 	 2 ( E ) found in Section 3.2.2,
he RMS spectra σ 1 ( E ) and σ 2 ( E ) found in Section 3.3.2, and the
hase difference between harmonics φ found in Section 3.4.2 to 
alculate our Fourier Transformed spectra W 1 ( E ) and W 2 ( E ) using
quations (2) and (3). As W j ( E ) ( j = 1, 2) is a complex quantity, we
eparate these into real and imaginary parts R [ W j ( E )] and � [ W j ( E )].
herefore, for both of our NuSTAR and NICER observations we have 
alculated 4 spectra 

(i) R [ W 1 ( E )], the real part of the FT spectra of first QPO harmonic,
(ii) � [ W 1 ( E )], the imaginary part of the FT spectra of first QPO

armonic, 
(iii) R [ W 2 ( E )], the real part of the FT spectra of second QPO

armonic, 
(iv) � [ W 2 ( E )], the imaginary part of the FT spectra of second QPO

armonic, 

iving a total of 8 FT spectra. We also have the phase-average flux-
nergy spectra ‘ W 0 ( E )’ for each of NuSTAR ’s FMPA and FMPB,
lus NICER ’s, bringing our total to 11 spectra which we will
imultaneously fit with the model described in the following section. 
The resulting spectra are shown in Fig 6 . The left-hand panel
hows the phase-averaged flux-energy spectrum, W 0 ( E ), observed 
y NICER (black), FPMA (red), and FPMB (blue). The derived FT
pectra are plotted on the right-hand side as grey and black points.
he first and second harmonic (i.e. j = 1 and j = 2, or in other words

he fundamental and the first o v ertone) are plotted, respectively, in
he first and second panels from the top (as labelled), and grey and
lack points correspond, respectively, to the real ( R [ W j ( E )]) and
maginary ( � [ W j ( E )]) parts, respectively. Open circles correspond
o NuSTAR and the points with no marker to NICER . Note that
ach part of each harmonic has only one NuSTAR FT spectrum,
nd not one for the FPMA and another for the FPMB. This is
ecause the NuSTAR FT spectra are derived by extracting the subject
ands of the cross-spectrum from the FPMB and the reference 
and from the FPMA. Both FPMs are therefore used for this single
easurement. 

 T H E O R E T I C A L  M O D E L  

ur model for the QPO FT calculates the X-ray spectrum as a
unction of QPO phase, γ , before Fourier transforming to output 
he real and imaginary parts of the QPO FT for the zeroth, first,
nd second harmonics. The model is similar to the one described in
ngram et al. ( 2017 ), but with some extra features. As in Ingram et al.
 2017 ), we assume that the accretion flow has two components: a thin
ccretion disc and a corona. We assume that the disc is stationary
ith inner and outer radii r in and r out . We make no assumptions about

he shape of the corona, but we assume that its intrinsic bolometric
uminosity is constant in time, and variation in the observed flux is
aused by us viewing the corona from different directions at different
PO phases. 
The spectrum from the corona is described in Section 4.1. 

ection 4.2 describes the spectrum from the disc, which we split into
 thermal component (Section 4.2.2) and a non-thermal component 
Section 4.2.3). 

.1 Corona 

e represent the corona spectrum with the model NTHCOMP 

Zdziarski, Johnson & Magdziarz 1996 ), which is a power-law (index
 – such that the photons emitted per unit energy is ∝ E 

−� ) between
ow and high energy cut-offs that are, respectiv ely, go v erned by
he seed photon temperature T bb and the electron temperature T e .

e parametrize the QPO phase-dependent bolometric flux observed 
rom the corona as 

 c ( γ ) = N 0 + A 1 N sin [ γ − φ1 N ] + A 2 N sin [2( γ − φ2 N )] , (11) 

here N 0 , A 1 N , A 2 N , φ1 N , and φ2 N are left as free parameters. We
arametrize the photon index �( γ ) and electron temperature T e ( γ )
n a similar way (see e.g. equation 5 of Ingram et al. 2017 ). We tie
 bb to the peak disc temperature, which we discuss at the end of
ection 4.2.2. 

.2 Disc 

he corona irradiates the disc, and since the disc is very optically
hick, all of the irradiating flux is reprocessed in the disc atmosphere
nd re-emitted. The disc is also heated by viscous dissipation of
ravitational potential energy, generating intrinsic disc flux. The total 
adiated flux is the sum of intrinsic and reprocessed flux. We assume
hat all of the intrinsic flux plus some fraction of the reprocessed flux
s in thermal equilibrium with the disc, thus contributing a blackbody
MNRAS 511, 255–279 (2022) 
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omponent to the emitted spectrum. The total rest frame specific
ntensity emergent from the disc coordinate ( r , φ) at QPO phase γ is
herefore the sum of this blackbody component, and a non-thermal
omponent which includes well-known ‘reflection’ features such as
he iron line and Compton hump 

 ( E d , r, φ, γ ) = I bb ( E d , r, φ, γ ) + I nt ( E d , r, φ, γ ) , (12) 

here E d is photon energy in the rest frame of disc coordinate ( r , φ).
rom this, we calculate the observed specific disc flux by tracing rays
rom the disc to the observer following null-geodesics in the Kerr
etric (using the code YNOGK , which is based on GEOKERR : Dexter
 Agol 2009 ; Yang & Wang 2013 ). A summary of the ray-tracing

rocedure can be found in Appendix B1 (or see e.g. Ingram et al.
019 for a more detailed description.) 

.2.1 Illumination of the disc 

 precessing corona will preferentially illuminate different disc
zimuths at different phases of its precession cycle. Instead of making
ssumptions about the shape of the corona, we follow Ingram et al.
 2017 ) by parametrizing the QPO phase-dependent illuminating flux
NRAS 511, 255–279 (2022) 
s a function of disc radius and azimuth with the emissivity function,
( r , φ, γ ), such that 

I nt ( E d , r, φ, γ ) 

D 

2 
= f R ( γ ) N c ( γ ) ε( r, φ, γ ) R ( E d ) , (13) 

here D is the distance from the observer to the BH. Here,
e normalize ε( r , φ, γ ) and R ( E d ) (equations B3 and B2 in
ppendix B2) such that f R ( γ ) is the observer’s reflection fraction .
his is defined by Ingram et al. ( 2019 ) as the observed bolometric

eflected flux divided by the directly observed bolometric coronal
ux in the simplified case in which the disc re-emits the incident
adiation isotropically. In this case, since N c ( γ ) is defined as the
irectly observed bolometric coronal flux, the observed bolometric
eflected flux is simply f R ( γ ) N c ( γ ). In reality, the reflected flux is not
mitted isotropically. The function R ( E d ), which we discuss below,
ncludes this subtlety. 

We employ the following form for the emissivity function 

( r, φ, γ ) = N εε( r) 

{
1 + A 1 cos 2 

[
1 

2 
( γ − φ + φ1 ) 

]

+ A 2 cos 2 [ γ − φ + φ2 ] 

}
, (14) 

art/stab3803_f6.eps
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here the radial dependence is given by a twice broken power law
Wilkins & Fabian 2011 , 2012 ) 

( r) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

( r/r br,1 ) −q 1 if r ≤ r br,1 

( r/r br,1 ) −q 2 if r br,1 < r ≤ r br,2 

( r br,2 /r br,1 ) −q 2 ( r/r br,2 ) −3 if r > r br,2 . 

(15) 

his way, if A 1 = A 2 = 0, the reflection spectrum will not depend at
ll on QPO phase, since the illumination pattern on the disc becomes
xisymmetric. When the asymmetric illumination (‘asymmetry’) 
arameters A 1 and A 2 are non-zero, there are instead bright patches 
n the disc that rotate around the disc rotation axis once per QPO
ycle, with the location on the disc of the peak brightness set by the
hase parameters φ1 and φ2 . Specifically, A 1 > 0 and A 2 = 0 will lead
o one bright patch rotating about the disc surface normal, and A 1 =
 and A 2 > 0 will lead to two identical bright patches (see Ingram
t al. 2017 for more details). The normalization constant, N ε , is set
y equation (B3). We also parametrize the reflection fraction as a 
um of sinusoids in the form of equation (11). 

.2.2 Thermal flux 

e assume that the blackbody component of the disc specific 
ntensity is given by 

I bb ( E d , r, φ, γ ) 

D 

2 
= N d B( E d , T ( r, φ, γ )) , (16) 

here N d is a constant model parameter, B ( E , T ) is the Planck
unction, and 

 ( r, φ, γ ) = 

[
T 4 visc ( r) + T 4 irr ( r, φ, γ ) 

]1 / 4 

. (17) 

ere, T visc ( r ) is the ‘intrinsic’ disc temperature; i.e. the temperature
n the absence of irradiation. T irr ( r , φ, γ ) is the ‘irradiation’ disc tem-
erature; i.e. the temperature in the absence of viscous dissipation. 
We set the intrinsic disc temperature as 

 visc ( r ) ∝ 

T visc,max 

( r 2 d A/ d r ) 1 / 4 
, (18) 

here the constant of proportionality is set to ensure that the 
aximum temperature is T visc, max and the relativistic expression 

or d A /d r is given by e.g. equation (A1) in Ingram et al. ( 2019 ).
n Newtonian gravity, d A /d r = 2 πr , and so the familiar T visc ∝
 

−3/4 emissivity of a simple disc model is reco v ered. 7 Note that an y
olour–temperature correction factor accounting for the spectrum not 
eing strictly blackbody is simply swallowed up into the definition 
f T visc, max . 
The irradiation temperature is related to the thermalized portion of 

he illuminating flux via the Stefan–Boltzmann law. We parametrize 
t as 

 

4 
irr ( r, φ, γ ) ∝ f R ( γ − 	γ ) N c ( γ − 	γ ) ε( r, φ, γ − 	γ ) . (19) 

efining T irr, max ( γ ) as the maximum value of T irr ( r , φ, γ ) for a
iven QPO phase, we set the constant of proportionality in the 
bo v e equation to ensure that the QPO phase-averaged value of
 irr, max ( γ ) is proportional to the model parameter kT i . Note that kT i 

f fecti vely sets the fraction of the illuminating flux that thermalizes
n the disc atmosphere. The model parameter 	γ accounts for the 
 Note that we do not employ a stress free inner boundary condition, which is 
ppropriate if the corona is located inside of the disc, providing a torque. 

w
t
9

s

hermalization time-scale , which is the time it takes for the irradiating 
ux to thermalize in the disc. This time-scale is currently poorly
nderstood, but it should lead to the thermal component responding 
o changes in the illuminating flux with a delay compared to the non-
hermal component (e.g. emission lines: Garc ́ıa et al. 2013b ). Here,
e parametrize this thermalization time-scale such that the current 
isc temperature depends on what the irradiating flux was some 
ime 	γ /(2 πνqpo ) ago. This is an extremely simplified formalism. In
eality, we may expect T irr ( γ ) to be smeared as well as delayed, and
e may also expect the delay itself to depend on e.g. disc radius. 
Finally, we set the seed photon temperature in NTHCOMP to 

 bb ( γ ) = 

[
T 4 visc,max + T 4 irr,max ( γ ) 

]1 / 4 
. (20) 

.2.3 Non-thermal flux 

e use the model XILLVERCP to calculate the non-thermal component 
f the rest-frame emergent disc spectrum, R ( E d ). XILLVERCP calcu-
ates the emergent spectrum from a passive ( T visc = 0), constant den-
ity slab (electron number density n e = 10 15 cm 

−3 ) being irradiated
y an NTHCOMP spectrum. 8 The output spectrum includes emission 
ines (most prominently the iron K α line), absorption edges (most 
rominently the iron K edge) and the Compton hump. It also includes
 quasi-thermal component caused by some fraction of the irradiating 
hotons thermalizing in the disc, which we must ignore because we
ave already accounted for the thermalized illuminating flux in our 
lackbody component (see previous section). For XILLVERCP , this 
omponent peaks in the UV and is entirely below our bandpass, and
o is simple to ignore. 

An important input parameter of XILLVERCP is the ionization 
arameter ξ = 4 πF x / n e , where F x is the illuminating X-ray flux.
e set the ionization parameter from our existing parametrization of 

he illuminating flux such that 9 

( r, φ, γ ) ∝ f R ( γ ) N c ( γ ) ε( r, φ, γ ) /n e ( r) . (21) 

efining ξmax ( γ ) as the maximum value of ξ ( r , φ, γ ) for a given QPO
hase, we set the constant of proportionality in the abo v e equation
o ensure that the QPO phase-averaged value of ξmax ( γ ) is equal to
he model parameter ξ 0 . For n e ( r ) we adopt the form corresponding
o Zone A of the Shakura & Sunyaev ( 1973 ) disc model, following
.g. Ingram et al. ( 2019 ), Mastroserio, Ingram & van der Klis ( 2019 ),
nd Shreeram & Ingram ( 2020 ): n e ( r) ∝ r 3 / 2 [1 − √ 

r in /r ] −2 . 

.2.4 Approximations 

ur treatment of the rest-frame spectrum emergent from a given disc
atch is very approximate. First of all, the XILLVERCP model that we
se has n e = 10 15 cm 

−3 hardwired, whereas we would theoretically
xpect the density of the disc in GRS 1915 + 105 to be closer to n e 

10 20 cm 

−3 (Shakura & Sunyaev 1973 ). Secondly, the emergent 
pectrum is not strictly the sum of a thermal and a non-thermal
omponent. In reality, the disc atmosphere is being irradiated from 

elow by the intrinsic disc emission and from abo v e by the corona,
nd the true emergent spectrum would need to be calculated by
bb 

hereas we allow our continuum spectrum to have a seed photon temperature 
hat is free to vary with QPO phase. 
 Computing the ionization in this way does mean the rest-frame reflection 
pectrum is non-uniform across the disc, thus is formally R ( E d , r, φ, γ ). 

MNRAS 511, 255–279 (2022) 
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Table 2. The mean and ±1 σ credible interval of the posterior distributions 
of each parameter, calculated with a MCMC. The tw o parameters mark ed 
with † are those solely relating to the phase-constant reflected component 
assumed to come from a distant reflector. The ‘Asym.’ parameters are those 
that go v ern the asymmetric illumination profile. The FPMA and FPMB norm 

parameters are floating calibration constants. 

Parameter Unit Chain mean Description 

N H 10 22 6.8 ± 0.3 TBABS col. density 

�( γ ) A 1 � 0.04 ± 0.01 Photon index 
A 2 � 0.05 ± 0.02 
φ1 � cyc 0.42 ± 0.04 
φ2 � cyc 0.13 ± 0.03 
� 1.93 ± 0.01 

kT e ( γ ) A 1 e keV 38. ± 13. Electron temp. 
A 2 e keV 19 . + 8 . −9 . 
φ1 e cyc 0.44 ± 0.04 
φ2 e cyc 0.97 ± 0.03 
kT e keV 57 . + 9 . −10 . 

log ξ† 2.5 ± 0.2 Ionization of dist. refl. 
norm 

† 10 −3 0.7 ± 0.2 Normalization of dist. refl. 
A Fe A Fe � 7. ± 1. Accreting Fe abundance 
Incl. deg 75 . 1 + 0 . 5 −0 . 3 Inclination of source 
r in r g 1 . 43 + 0 . 01 

−0 . 02 Inner truncation radius 
q 1 13 . 6 + 0 . 8 −0 . 7 Inner emissivity index 

r br, 1 r in 2.4 ± 0.5 1 st break radius 
q 2 4 . + 5 . −4 . Outer emissivity index 

r br, 2 r br, 1 14 . + 11 . 
−10 . 2 nd break radius 

Asym. A 1 0.5 ± 0.3 Asymmetric illumination 
A 2 1.3 ± 0.7 
� 1 cyc 0.9 ± 0.1 
� 2 cyc 0 . 99 + 0 . 06 

−0 . 05 

f R ( γ ) A 1 f 0.3 ± 0.1 Reflection fraction 
A 2 f 0.3 ± 0.1 
φ1 f cyc 0.45 ± 0.05 
φ2 f cyc 0.94 ± 0.05 
f R 0 . 96 + 0 . 08 

−0 . 09 

log ξmax 4 . 26 + 0 . 08 
−0 . 09 Max radial ionization 

	γ cyc 0.17 ± 0.07 Thermalization phase lag 
kT v, max keV 0.24 ± 0.05 Max radial viscous heating 

kT i keV 0.64 ± 0.04 Heating from irradiation 
N d 25. ± 11. Disc normalization 

N c ( γ ) A 1 N 1.2 ± 0.2 Coronal normalization 
A 2 N 0.8 ± 0.3 
φ1 N cyc 0.96 ± 0.03 
φ2 N cyc 0.70 ± 0.03 
N c 5.8 ± 0.2 

FMPA 0.944 ± 0.001 NuSTAR FMPA norm. 
FMPB 0.951 ± 0.001 NuSTAR FMPB norm. 

φc cyc 0.018 ± 0.004 NuSTAR phase offset 
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olving the radiative transfer equation with these boundary conditions
Reis et al. 2008 ). Ho we ver, although high density XILLVER models
re now available (Garc ́ıa et al. 2016 ; Mastroserio et al. 2021 ), they
nly consider irradiation by the corona and ignore the intrinsic disc
mission. Moreo v er, the XILLVER solutions are calculated in steady-
tate, and so there is no thermalization time-scale. Our treatment is
herefore the best time-dependent approximation of a high density
rradiated disc with strong intrinsic emission currently available. 

.3 The complete model 

he total observed QPO phase-dependent specific flux, F ( E , γ ), is
he sum of the disc and coronal contributions. Our model calculates
 ( E , γ ) for 16 QPO phases and Fourier transforms to get the QPO
T for the zeroth (phase-average), first, and second harmonics. 
Additionally, on top of the phase-dependent model described

bo v e, we include an extra XILLVERCP component to account for
istant reflection. This component is fixed to be constant with QPO
hase, as variations on the timescale of the QPO period should be
trongly washed out by light-crossing delays for a distant reflector.
inally, we account for line-of-sight absorption with the model
BABS . The hydrogen absorption column N H is a free parameter, and
e adopt the abundances of all other elements relative to hydrogen
f Wilms et al. ( 2000 ). 

 M O D E L  FITS  

.1 Fitting pr ocedur e 

e fit our model simultaneously to 11 spectra o v erall. As described
n Section 3.5, these are: the flux-energy NICER , FPMA, and FPMB
uSTAR spectra, plus the first and second harmonics of the real and

maginary parts of the QPO FT measured separately by NICER and
uSTAR . Using XSPEC version 12.10.1f, we applied the same NICER

esponse matrix to all 5 NICER spectra, we used the FPMA response
or the flux-energy FPMA spectrum, and the FPMB response for
oth the FPMB flux-energy spectrum and the NuSTAR QPO FT.
his is because the NuSTAR QPO FT was calculated using FPMB
hannels as the subject bands, and the full band FPMA light curve
s the reference band. We see from Fig. 1 that the cross-calibration
etween NICER and the NuSTAR modules is good, except for the
ormalization. We account for this by multiplying our model by a
oating constant, which is fixed to unity for NICER and left free for

he NuSTAR FPMA and FPMB. 
As we used different reference bands for the calculation of the

ICER and NuSTAR QPO FTs (the full band NICER and NuSTAR
PMB light curves respectively), there is a phase difference between

hem caused by the phase lag between the two reference bands (see
ection 3.2). We account for this by setting a phase offset φc for the
rst harmonic (the phase offset for the second harmonic is exactly
 φc 

10 ). Similarly to floating calibration constants employed for flux-
nergy spectra, we set φc = 0 for NICER and leave φc as a free
arameter for NuSTAR . 
In our fits, we leave the truncation radius r in as a free parameter

nd fix the spin to a = 0.998. While we do not necessarily expect that
0 This follows as the phase of each harmonic in every energy band is measured 
n reference to the phase of the first harmonic in the reference band. φc is 
he phase offset between the first harmonics in the reference band between 
he two instruments, and the same offset is 2 φc when instead measured at 
requency of the second harmonic. See Appendix C for the deri v ation. 
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NRAS 511, 255–279 (2022) 
his choice reflects the true value of the spin (see e.g. Mills, Davis
 Middleton 2021 ), this value enables the widest possible range of

he r in parameter to be explored without it becoming smaller than the
SCO. Although the spin does affect the geodesics, this only has a
ery subtle effect on the spectrum compared with the location of the
isc inner radius. 
The full list of the free parameters in our model is included in

able 2 , with those modulated with QPO phase γ in the manner of
quation (11) grouped together, and are labeled in the manner of
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Figure 7. Curves produced from the parameters from steps in the MCMC. 
The iron-line centroid energy E c was calculated from the varying illumination 
profile, assuming a rest-frame δ −function profile (see text for details). The 
reflection fraction, �, kT e , and N c are the modulations straight from their 
parameters in the model, whereas log ξmax and kT irr are calculated from the 
irradiating flux, as described in the text. 
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 N c ( γ )’. We begin by finding a global best fit through minimizing
he χ2 fit statistic, before running a long Markov Chain Monte Carlo
MCMC) simulation around the best fit to explore the parameter 
pace and understand the significance of the best fitting parameter 
alues. 

.2 Results 

ur global best fit, which is shown in Fig. 6 , has χ2 = 3374.6
or 3179 degrees of freedom (DoF). The phase-average flux-energy 
pectrum in the upper-left of the figure shows the good fit, especially
o the Fe K α line. The right-hand side of the figure shows the real
nd imaginary parts of the FT spectra of the first two harmonics. The
eatures of these spectra are markedly less intuitive, and so we rely
n analysis of the parameter space to understand the model fit. As the
istant reflector is constant on the QPO timescale, the FT spectra do
ot include this component. Ho we v er, as the y are normalized to the
bserved flux (see equation 3), the absorption column does matter 
nd therefore is included. 

We explored parameter space by running a long MCMC simulation 
ith 120 w alk ers which each run for 250 000 steps from an initial
istribution based on the covariance matrix of the best fit. Every 
arameter had a uniform prior with bounds considerably far from 

he range required, except where parameters must be non-ne gativ e. 11 

e burn the first 50 000 steps of each w alk er, enough to ensure that
he Geweke convergence diagnostic (Geweke 1992 ) is within ±0.3 
or every parameter and we therefore only consider steps where 
he MCMC has converged. Finally, we thin the MCMC down, only 
aking every 100th step from each w alk er. We show the posterior
eans and 1 σ credible intervals from the MCMC in Table 2 . 
In Fig. 7 , we visualize our results by reconstructing parameter 
odulations from the thinned chain. For each step in the chain 

there are 240 000 steps altogether), we use the parameter values 
orresponding to that step in order to calculate each of the 7 quantities
lotted in Fig. 7 as a function of QPO phase. From these 240 000
unctions of QPO phase, we create a 2D histogram, which we plot
s a probability map (black represents the largest probability). 

Panels 2-5 in Fig. 7 show the parameters that are allowed to vary
ith QPO phase via a sum of sinusoids (e.g. equation 11); from

op to bottom: f R ( γ ), �( γ ), kT e ( γ ), and N c ( γ ). We consider the
osterior distributions in Fig. D2 , and we see that all the parameter
odulations are significant to at least 3 σ , with N c ( γ ) likely at a
uch higher significance. The bottom two panels in the figure are 

og ξmax ( γ ) and kT irr ( γ ). The modulations in these parameters are
ot free to vary in our fit, they are instead calculated from N c ( γ ) and
 R ( γ ) (see equations 19, and 21). These are remarkably constant with
PO phase, as they are both ∝ N c ( γ ) f R ( γ ) (neglecting the phase shift
γ ), whose modulations are approximately out of phase. 
The top panel is iron line centroid energy. In order to determine

his, we first calculate the observed QPO phase-dependent reflection 
pectrum (equation B1) assuming a δ −function iron line in the 
isc restframe (i.e. I ( E d ) = δ( E d − 6.4keV)) and then calculate the
entroid energy of the resulting QPO phase-dependent line profile 
using Equation 7 from Ingram et al. 2017 ). Any modulations of
his function with QPO phase are caused entirely by QPO phase 
ependence of the emissivity function ε( r , φ, γ ), which in turn is
riv en e xclusiv ely by the asymmetry parameters A 1 and A 2 . We see
hat the line centroid energy is strongly modulated with QPO phase, 
1 The amplitude ‘ A ’ parameters of phase-modulated quantities are such 
xamples, including the asymmetry parameters A 1 and A 2 . 

MNRAS 511, 255–279 (2022) 
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Figure 8. A 1 and A 2 contour based around the MCMC. The 1 σ , 2 σ , and 
3 σ credible intervals are shown as contours (purple, orange, and red), with 
the blue lines highlighting the values at the best fit. Within the 1 σ contour 
the density is shown as a grey-scale 2D-histogram. Outside the 3 σ contour 
individual points are shown as grey points. The marginalized histograms also 
show the ±1 σ credible interval with purple dashed lines. 
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Figure 9. The QPO phase dependent component of our best-fitting model; 
without line-of-sight absorption or the distant reflector component. This 
is comprised of the NTHCOMP cut-off power law; a ray-traced XILLVERCP 

reprocessed spectrum with relativistically smeared atomic features (5–8 keV) 
and Compton hump ( � 20 keV); plus a blackbody thermal spectrum at � 2 keV. 
This shows the model at 8 phases, although 16 phases are used for the 
calculation of the Fourier transformed components. 

Figure 10. Histogram of 	γ from the MCMC, with the corresponding time- 
lag for a frequency of 2.2 Hz. The ±1 σ credible interval is outlined with purple 
dashed lines. 

∼  

m  

t  

t

6

W  

Q  

a  

p  

a  

>  

p  

w  

i  

r

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/1/255/6496045 by U
niversiteit van Am

sterdam
 user on 08 August 2022
mplying that the emissivity function is required by the fit to vary
ith QPO phase. We show the posterior distribution of the asymmetry
arameters from the MCMC in Fig. 8 . The point A 1 = A 2 = 0 lies
utside of the 2 σ contour (in red), therefore we are able to reject the
xi-symmetric null-hypothesis of A 1 = A 2 = 0 at the 2 σ significance
evel. 

We show the QPO phase-dependent spectrum of the best-fitting
odel in Fig. 9 , without the line-of-sight absorption and distant

eflector. We see large changes in spectral shape o v er the course of
he 8 QPO phases pictured, most obviously the change in continuum
ormalization N c ( γ ) following the same trend as shown in Fig. 7 .
s the normalization of the reflection spectrum is broadly constant
ith phase, its key features of the Fe K α and Compton hump are less
ronounced when N c ( γ ) is larger. The temperature of the Compton
ump itself does change, most noticeably at its lowest value of γ ≈
/4 cycles. 

When we consider the covariance between the modulated variables
see Fig. D1 ), we see the strongest correlation is between the
eflection fraction f R and continuum normalization N c . Interestingly,
he phase-averaged values are ne gativ ely correlated, howev er, the
ize and phases of the modulations are positively correlated. We can
ee in Fig. 7 that these modulations are also in antiphase, and so their
odulations work against each other to keep the incident flux on to

he disc approximately constant, as can be seen in the waveforms of
og ξmax ( γ ) and kT irr ( γ ). 

We find that the posterior mean of the phase lag 	γ , intended
o represent the time it takes photons to thermalize in the disc
tmosphere, is 	γ ≈ 0.17 QPO cycles. Fig. 10 shows the posterior
istribution of 	γ from the MCMC, including a conversion from
PO cycles to time lag for a QPO frequency of νQPO = 2.2 Hz. This
hase lag can be seen in the bottom two panels of Fig. 7 , since the dip
n kT irr ( γ ) occurs ∼0.17 QPO cycles after the dip in log ξmax ( γ ). It
an also be seen in Fig. 9 : e.g. the orange line for QPO phase = 0.125
ycles corresponds to a peak in iron line centroid energy but not to
 peak in disc peak temperature. Converting 	γ to a time lag gives
NRAS 511, 255–279 (2022) 
75 ms, which is rather large. This large value is possibly due to
odel systematics, since if the thermalization time-scale really were

his long, then we would see much longer thermal reverberation lags
han have been observed (e.g. Uttley et al. 2011 ; Kara et al. 2019 ). 

 DI SCUSSI ON  

e have conducted a phase-resolved spectral analysis of an ∼2.2 Hz
PO from GRS 1915 + 105 observed simultaneously by NICER

nd NuSTAR . We found that the continuum normalization N c ( γ ),
hoton index �( γ ), reflection fraction f R ( γ ), and electron temper-
ture kT e ( γ ) are all required to be modulated with QPO phase to
 3 σ confidence, plus we rule out that the asymmetric illumination

arameters A 1 = A 2 = 0 at the 2 σ confidence level. Alongside this,
e found a small inner truncation radius r in , and a large thermal-

zation phase lag 	γ . We now discuss the implications of these
esults. 
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.1 Comparison with H1743 −322 

e compare our results with the previous similar study of an 
0.25 Hz type-C QPO in H 1713-322 by Ingram et al. ( 2017 )

hereafter I17 ). The first thing to note is the strikingly similar profiles
f the continuum normalization, N c ( γ ) (compare our Fig. 7 with
he fig. 5 in I17 ), which is a proxy for the X-ray flux. Whereas
he fractional amplitude of the N c ( γ ) modulation is larger here, the
rofiles – and therefore the QPO waveforms – are similar for the two 
bservations, despite the QPO frequencies being very different. This 
imilarity is confirmed by the measured phase difference between 
armonics, ψ , which defines the QPO waveform (Ingram & van der 
lis 2015 ). Here, we measure ψ / π ≈ 0.2 for the NuSTAR observation,
hereas the NuSTAR measurement for H 1743-332 was ψ / π ≈
.3 (Ingram et al. 2016 ). This indicates that the N c ( γ ) modulation
or H 1743-322 should be similar to what we measure here for
RS 1915 + 105 but with the peak slightly delayed, which can indeed
e seen in the N c ( γ ) profiles. It is perhaps surprising that the QPO
aveform of the two observations is so similar given that Ingram 

 van der Klis ( 2015 ) observed it to change dramatically between
wo RXTE observations of GRS 1915 + 105 with QPO frequencies 
f ∼0.5 Hz and ∼2.25 Hz. Fig. 5 (right-hand panel) in de Ruiter
t al. ( 2019 ) reveals that this is because ψ reduces more steeply with
PO frequency in GRS 1915 + 105 than it does in H 1743 −322,

uch that its value for GRS 1915 + 105 at νqpo ∼ 2 Hz is close
o the corresponding value for H 1743-322 at νqpo ∼ 0.2 Hz. The 
easurement of ψ presented here is therefore consistent with the 

rends found by de Ruiter et al. ( 2019 ). Beyond the o v erall shape,
e also see a much wider spread in our N c ( γ ) histogram than that
resented by I17 . This is because we are now using a much more
exible model than in previous work, including modulations in kT e , 
nd so it is better able to compensate when N c ( γ ) deviates from its
est-fitting functional form. 
As for the modulation in iron line centroid energy, E c ( γ ), we see a

trong second harmonic (evidenced by there being two maxima per 
PO phase as opposed to one) both in our observation and in the I17

nalysis of H 1743 −322. This property was also previously observed 
or GRS 1915 + 105 by Ingram & van der Klis ( 2015 ), albeit with
 low statistical significance. We however see that the phase of the
 c ( γ ) modulation is shifted here with respect to the H 1743 −322
bservation: here, the maxima in E c occur at QPO phase γ ∼ 0 and
.5 cycles, whereas for H 1743 −322 they occur at γ ∼ 0.2 and ∼0.7
ycles. A similar evolution in the E c ( γ ) waveform is seen between
he two GRS 1915 + 105 observations presented in Ingram & van
er Klis ( 2015 ): their E c ( γ ) waveforms for νqpo ∼ 0.5 Hz and νqpo 

2.25 Hz QPOs are respectively similar to the ∼0.2 Hz QPO in
 1743 −322 and the ∼2.2 Hz QPO in GRS 1915 + 105 presented
ere. This gives a potential hint that the phase of the line centroid
nergy modulation evolves systematically with QPO frequency, as 
s the case for the flux modulation (de Ruiter et al. 2019 ). We
dditionally see that the E c ( γ ) modulation presented here has a lower
ean and a higher amplitude than that presented by I17 . This is

onsistent with the disc inner radius reducing as the QPO frequency 
ncreases: the mean is reduced by increased gravitational redshift 
nd the amplitude is increased by faster orbital motion closer to 
he BH. 

I17 found modulations of the reflection fraction, f R , and power- 
a w inde x, �, to have 3.52 σ and 0.95 σ significance, respectively,
hereas here we find both modulations to have > 3 σ significance. As

he reflected spectrum is spectrally harder than the directly observed 
pectrum, an increase in spectral hardness can be caused either by 
 reduction in � or an increase in f R . Whereas the �( γ ) and f R ( γ )
odulations presented by I17 are broadly in phase, suggesting they 
omewhat compensate for each other. Here, we find they are broadly
n antiphase suggesting they are both contributing to the modulation 
f the spectral hardness. 

.2 Asymmetric illumination profile 

ur model requires an asymmetric illumination profile with A 1 = 

.5 ± 0.3 and A 2 = 1.3 ± 0.7 which is consistent with two, non-
dentical bright patches rotating around the disc with QPO phase. 
he QPO phase dependence of the iron line profile could, to some
xtent, be reproduced by changes in the ionization state of the disc
tmosphere, which would cause changes in the shape and centroid 
nergy of the iron line in the rest-frame reflection spectrum (since
.g. Compton broadening of the line increases with the number of
ree electrons and higher order ions are more tightly bound and
herefore produce higher energy fluorescence lines). The parameters 
hat affect the shape of the rest-frame reflection spectrum and are

odulated with QPO phase in our model are �, kT e , and log ξ . All
hree affect the ionization state of the disc, with lar ger kT e , lar ger
og ξ , and smaller � increasing the number of irradiating photons
ith a high enough energy to ionize neutral iron ( E > 7.1 keV). In

he model employed by I17 , only � was allowed to vary with QPO
hase, whereas here we also allow kT e and log ξ to vary, with log ξ
ied to the illuminating flux. We also note that here we employ a
adial log ξ profile, whereas only a single ionization parameter was 
sed for the entire disc in I17 . Given the flexibility of our model and
he conserv ati ve nature of our analysis, we find that the asymmetric
llumination parameters A 1 and A 2 are only required to be non-zero
t > 2 σ confidence level. 

Such an asymmetric, QPO phase-dependent illumination pattern 
s naturally expected if the corona illuminating the disc is precessing
Ingram & Done 2012 ). Alternatively, precession of the disc itself
i.e. precession of the reflector and not the illuminator) could 
otentially explain our data (Schnittman et al. 2006 ). Ho we ver, disc
recession is not expected theoretically (Bardeen & Petterson 1975 ; 
iska et al. 2019 ) unless the frame dragging effect is strong enough

o tear the disc into a number of discrete, independently precessing
ings (Nixon & King 2012 ; Liska et al. 2021 ). Such a configuration
ould in principle cause QPOs if the number of independent rings is
mall enough to produce a coherent oscillation. Ho we ver, disc tearing
equires a large misalignment between the binary and BH rotation 
x es, which is e xpected to be rare since the biggest natal kicks,
hich would produce the largest misalignments, are also the most 

ikely to completely disrupt the binary system (Fragos et al. 2010 ).
his is in contrast to the near-ubiquity of Type-C QPOs. Line profile
odulations could also result from c -mode disco-seismic waves (e.g. 
ato & Fukue 1980 ; Kato 2001 ). Ho we ver, this would not explain

he QPO being much stronger in the Comptonized spectrum than 
n the disc spectrum, and the line profile variations produced by c
odes are quite subtle compared with what we observe (see e.g.
g. 5 in Tsang & Butsky 2013 ), due to the c -mode oscillation only
ccurring in a narrow range of disc radii. The spiral waves of the AEI
odel are also consistent with the asymmetric illumination profile 
e measure here (Varniere, Rodriguez & Tagger 2002 ). Ho we ver, the
EI model is not consistent with a reflection fraction modulation, 
hich we measure with > 3 σ significance, whereas the precessing 

orona model is. 
A new QPO diagnostic will soon be available in the form of X-ray

olarization. Whereas the precession model predicts the polarization 
egree and angle to be modulated on the QPO period (Ingram et al.
015 ), alternative models such as the AEI do not. After its launch
ater this year, the Imaging X-ray Polarimetry Explorer ( IXPE ) should
MNRAS 511, 255–279 (2022) 
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e capable of detecting QPOs in the X-ray polarization properties
n a long exposure observation of a bright X-ray binary, as long as
igh inclination X-ray binaries turn out to be moderately polarized
 � 4 per cent ; Ingram & Maccarone 2017 ). 

.3 Inner radius 

ur best-fitting model also requires a small disc inner radius of
 in � 1 . 43 + 0 . 01 

−0 . 02 r g , where r g = GM / c 2 . While this is compatible with
revious reflection spectroscopy results (Miller et al. 2013 ; Zhang
t al. 2019 ; Shreeram & Ingram 2020 ), it does not leave much room
or a corona to precess within this truncation radius in order to give
ise to the best-fitting asymmetric illumination profile. Moreo v er, it
s very much incompatible with the precession being specifically at
he Lense–Thirring precession frequency, which requires r in ≈ 41 r g 
o reproduce a QPO frequency of ≈2.2 Hz. 12 

We therefore first consider if our analysis has returned an ar-
ificially small disc inner radius due to the use of an inadequate
ontinuum model. Including a second, softer power-law component
an yield a larger truncation radius in fits to the flux-energy spectrum,
ince the new component takes the place of the broad red wing
haracteristic of small r in (Yamada et al. 2013 ; Mahmoud & Done
018 ; Mahmoud, Done & De Marco 2019 ; Zdziarski et al. 2021a , b ).
uch a treatment could therefore yield a larger truncation radius in
ur analysis if our measured disc inner radius is driven primarily
y the time-averaged iron line profile. Ho we ver, our analysis is also
ensitive to the QPO phase-dependence of the iron line profile. For a
arge truncation radius, the red wing can dominate o v er the blue wing
hen the receding disc material is illuminated, whereas for a small

runcation radius the variability is entirely in the blue wing because
he red wing is al w ays suppressed by gravitational redshift (Ingram
 Done 2012 ; You et al. 2020 ). 
By excluding the iron line from the flux-energy spectrum, but

eaving in those bands for the Fourier transformed spectra, we are
ble to investigate whether this small r in is required by only the
hase-average spectrum or also by the QPO phase dependence of
he spectrum. We therefore run a new phase-resolved fit in which we
gnore the 5–8 keV data from the flux-energy spectrum b ut lea ve in
hose bands for the Fourier transformed spectra. For this new fit, the
easured r in value will not be driven by the time-averaged shape of

he iron line, but by how its shape changes throughout the course of
ach QPO cycle. This new fit also returns a small disc inner radius of
 in = 1 . 49 + 0 . 03 

−0 . 04 r g . It is still possible that including a more complex
ontinuum could allow for a slightly larger r in , but this would add
any more degrees of freedom to our already extremely flexible
odel. 
Our fits therefore indicate (although not definitively) asymmetric

llumination of a disc extending to a very small inner radius. It could
e that the corona is not radially extended but instead a vertically
xtended structure, such as a precessing jet (Kalamkar et al. 2015 ;
tev ens & Uttle y 2016 ; Kylafis, Reig & P apadakis 2020 ) (if the jet
ase is sufficiently X-ray bright; Fender et al. 1999 ; Markoff et al.
005 ). GRMHD simulations show that jet precession can be induced
y the frame dragging effect (Liska et al. 2018 ), but only so far in
he presence of a thick disc. Indeed, our best fitting model includes a
ery strongly peaked emissivity function, with q 1 = 13 . 6 + 0 . 8 

−0 . 7 for disc
adii r < 3.3 ± 0.6 r g . This emissivity profile is roughly compatible
2 Using equation (2) of Ingram et al. ( 2009 ) with ζ = 0, as seen in numerical 
imulations (Fragile et al. 2007 ), r in = r isco ( a ), a = 0.998, and M = 10.1 M �
Steeghs et al. 2013 ). 

b  

1

a

NRAS 511, 255–279 (2022) 
ith one created by a vertically extended corona raised slightly abo v e
he thin accretion disc (Wilkins & Fabian 2012 ). 

It is, ho we v er, unclear e xactly ho w the frame dragging ef fect
ould drive such slow precession for such a small disc inner radius.
erhaps the corona is vertically extended with the density increasing
ith distance from the BH. This weighting of the density to larger
istances from the BH will slow down precession compared with a
recessing ring at the same r in . The torque e x erted on the corona by
he outer disc, which is not currently considered in calculations of
he precession frequency, will also slow down precession. It is not,
o we ver, clear whether or not these two effects are sufficient to solve
he discrepancy we find here. Even if they are, and Lense–Thirring
recession really is the true type-C QPO mechanism, their presence
ill make it much more difficult to infer BH mass and spin from the
PO frequency than previously hoped. A clear counter-argument to

his point is provided by the QPO triplet in GRO J1655 −40, the
requencies of which can be explained very well by the relativistic
recession model, returning a precise mass prediction that agrees
ith the dynamical value (Motta et al. 2014 ; Fragile, Straub & Blaes
016 ). This result instead argues that our very small disc inner radius
s instead the result of modelling systematics such as employing an
 v erly simplified continuum, as discussed abo v e. 
It is important to note that all well-studied QPO models in the

iterature assume that the QPO frequency increases during the state
ransition primarily due to the disc inner radius moving inwards
Ingram & Motta 2019 ). There is therefore no published QPO model
hat can reproduce our observed QPO frequency for our measured
isc inner radius without significant modification. 

.4 Misalignment 

ur best-fitting disc inclination angle is i = 75 . 1 + 0 . 5 
−0 . 3 deg, whereas

he jet inclination angle, inferred from radio observations of super-
uminal ejections (Fender et al. 1999 ), is θ ≈ 60 ◦ (using the radio
arallax distance of D ≈ 8.6 kpc; Reid et al. 2014 ). We therefore
nfer a misaligned system, consistent with QPO models that invoke
ense–Thirring precession (Stella & Vietri 1998 ; Ingram et al. 2009 ).
ollowing I17 , we can estimate the misalignment angle β between

he disc and BH spin axes by taking the large-scale jet as a proxy for
he BH spin axis. 13 This is not necessarily simply given by β = i −
, since the azimuthal disc viewing angle, � , is unknown. Rather, it
an be found by solving the equation (Veledina, Poutanen & Ingram
013 ; Ingram et al. 2017 ) 

cos θ = sin i sin β cos � + cos i cos β. (22) 

ig. 11 shows all of the solutions for β for the full range of � and θ
alues (colour scale), and assuming i = 75 ◦. The red line represents
he solutions corresponding to θ = 60 ◦, which co v er the range 15.1 ◦

 β < 135.1 ◦ for | � | < 63.7 ◦ (i.e. for some values of � there
s no solution). The minimum misalginment compatible with our
esults is therefore β ≈ 15 ◦, which is a large enough misalignment
o produce the observed ∼ 15 per cent RMS QPO amplitude with a
orona precessing around the BH spin axis (Ingram et al. 2017 ). 

This misalignment will greatly influence the BH spin inferred
rom disc continuum fitting in the soft state. In the most recent such
nalysis of GRS 1915 + 105, Mills et al. ( 2021 ) report a best fit of
 ≈ 0.86 ( r isco ( a ) = r in ≈ 2.57 r g ), with the very high spin required
y reflection spectroscopy measurements (including our own) also
3 This of course might not be correct, as jets have been observed to precess 
s in e.g. Miller-Jones et al. ( 2019 ). 
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Figure 11. The BH spin axes inclination θ , for dif ferent v alues of misalign- 
ment between it and the disc, for the different values of disc azimuthal angle � 

of the misalignment. The red line highlights θ = 60 ◦, the observed inclination 
large-scale jet, which could be assumed to be aligned with the BH spin-axis. 

w  

s
e
d  

a
=  

i  

i  

s  

f  

r  

v  

t  

r
3  

1
 

a
1
t
t
6  

r  

a  

w
o

6

T
d
o  

a
F
b
r
a
w
m
s  

l
v
t

Figure 12. Top: The best-fitting flux-energy specturm (black); the same 
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ithin uncertainties. Ho we v er, the y assume a completely aligned
ystem, with the binary inclination δ equal to the disc inclination i 
qual to the jet inclination θ . Ignoring relativistic corrections, the 
isc inner radius inferred from disc fitting is r in ∝ D/ ( M 

√ 

cos i ) r g ,
nd so adopting i = 75 ◦ in place of i = θ = 60 ◦ (but still assuming δ
 θ and D = 8.6 kpc) would instead give r in ≈ 3.63 r g . The inferred

nner radius is pushed even further out if we set δ = i as is assumed
n the precession model (Ingram et al. 2009 ; Ingram et al. 2015 ),
ince the BH mass is related to the binary mass function f ( M ) as M ∝
 ( M )/sin 3 δ. For δ = i = 75 ◦ and still assuming D = 8.6 kpc, the inner
adius becomes r in ≈ 5 r g , which is incompatible with our measured
alue of r in ≈ 1.4 r g . If we instead assume that δ is unknown, we find
hat for i = 75 ◦ and D = 8.6 kpc the disc continuum fitting inner
adius is equal to our value if δ ≈ 39 ◦, implying a BH mass of M ≈
2 M � which is much greater than the dynamical measurement of
0.1 ± 0.6 M � (Steeghs et al. 2013 ). 
We note, ho we v er, that a thin misaligned disc is e xpected to form

 so-called Bardeen–Petterson configuration (Bardeen & Petterson 
975 ), whereby the outer and inner regions align, respectively, with 
he binary and BH spin axes. GRMHD simulations show that the 
ransition from misaligned to aligned can be close to the BH ( r ∼
 r g ; Liska et al. 2019 ), but still further out than our very small inner
adius of r in ∼ 1.4 r g . In contrast, our simplified model only considers
 planar disc. It could be that failing to account for a more realistic
arped disc geometry has introduced a bias into our measurement 
f i , or even of r in . 

.5 Biases in the phase-averaged spectrum 

he shape of our best-fitting phase-resolved spectrum changes 
ramatically with QPO phase (Fig. 9 ). These non-linear variations 
 v er each QPO c ycle may cause biases in analyses that only fit
 steady-state model to the time-averaged flux-energy spectrum. 
ollowing I17 , we investigate these potential biases in Fig. 12 
y plotting the phase-averaged spectrum of our best fitting phase- 
esolved model (black) alongside the spectrum calculated by setting 
ll modulated parameters to their phase-averaged values (red), as 
ell as the percentage difference with respect to the phase-averaged 
odel (bottom panel). We see that the difference between the two 

pectra is only ∼ 1 per cent in the ∼5–20 keV region, but is much
arger at lower and higher energies, indicating that ignoring spectral 
ariability does indeed cause a bias. We investigate further by fitting 
he observed flux-energy spectrum with a steady-state model (blue 
ines), which reproduces the phase-averaged model very well (except 
or a narrow feature at ∼6.7 keV, which NICER and NuSTAR cannot
esolve, but future missions such as ATHENA will be able to). The
arameters of the new fit are consistent with those of the phase-
esolv ed model e xcept kT irr , kT visc , and kT e are all cooler and the disc
ormalization is larger. We therefore conclude that these parameters 
re biased by spectral variability, but not other key parameters such
s i and r in . 

.6 Thermalization lags 

n our model we include a phase lag, 	γ , between variations in
he illuminating flux and corresponding variations in disc heating. 
his is to allow for the finite time it takes for incident radiation

o thermalize in the disc atmosphere. This time-scale is poorly 
nderstood theoretically, but is surely longer than the corresponding 
ime-scales for other processes such as fluorescence and scattering, 
hich are almost instantaneous (Garc ́ıa et al. 2013b ). Leaving 	γ as
 free parameter in principle enables us to empirically measure this
hermalization time-scale. Our best-fitting value of 	γ = 0 . 15 + 0 . 06 

−0 . 05 
ycles corresponds to a time-lag of ∼ 70 + 26 

−25 ms given that the QPO
requency is 2.2 Hz, which is much larger than expected. This very
ong thermalization time delay is incompatible with observations 
f � 1 ms soft lags in e.g. MAXI J 1820 + 070 (Kara et al. 2019 )
nd GX 339-4 (Uttley et al. 2011 ), and so it is very likely that the
MNRAS 511, 255–279 (2022) 
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γ parameter is accounting for some other o v ersimplification in
ur model. This is perhaps not surprising, since our prescription is
o simple. For instance, we assume a single thermalization delay,
hereas in reality it is likely dependent on disc radius (Frank

t al. 2002 ) and on ionization parameter (which varies with both
isc radius and azimuth in our model). Moreo v er, in reality there
ill be some smearing such that e.g. very fast fluctuations in the

rradiating flux will not be efficiently transferred into fluctuations in
isc temperature, which we currently completely ignore. 
In the context of the precessing corona model, there are a

umber of effects that we do not account for here which would
ead to modulations of the observed disc temperature. For instance
hadowing: the precessing corona and/or jet obscuring different disc
zimuths at different precession phases leading to a variation in the
hape of the o v erall observ ed disc spectrum. We also note that in
he precessing corona model, the misalignment between the disc
nd BH spin axes, β, remains constant but as the corona precesses
round the BH spin axis its misalignment with the disc axis varies
etween 0 and 2 β (e.g. Ingram et al. 2015 ). This would lead to
he illumination profile being axisymmetric once per QPO cycle,
hich is not accounted for by the illumination profile employed here.
here are also potential sources of systematic error in our spectral
odel. For instance in the XILLVERCP grids that we use, the seed

hoton temperature is hardwired to kT bb = 0.05 keV, whereas the
eed photon temperature of the NTHCOMP component in our model
aries with QPO phase. Finally, we ignore light crossing delays in
ur parametrization of the disc illumination profile, which can be
he order of milliseconds for reflection from r ∼ 10s of r g . This is
 1 per cent of the ∼0.45s QPO period, but will become increasingly

mportant for the study of QPOs with increasingly higher centroid
requency. 

 C O N C L U S I O N S  

e have conducted a phase-resolved spectral analysis of a Type-
 QPO in a simultaneous NICER and NuSTAR observation of
RS 1915 + 105. We used a QPO phase-resolving technique, follow-

ng Ingram et al. ( 2016 ) but significantly impro v ed on their work, by
ncluding a QPO frequency tracking algorithm that makes it possible
o analyse long observations o v er which the QPO frequency may
hange, and using the bispectrum to constrain the phase difference
etween QPO harmonics which has the advantage of enabling a
roper Poisson noise correction. We have also used a significantly
ore advanced version of the Ingram et al. ( 2017 ) tomographic
odel with which to fit the phase-resolved spectra in the Fourier

omain. Our new model allows more parameters to be simultaneously
odulated and includes self-consistent modulations to the ionization

arameter and disc heating due to irradiation. 
Our fit requires the asymmetric illumination parameters A 1 and

 2 to be > 0 with > 2 σ confidence. Similar to the results of I17 for
 1743 −322, this is consistent with that expected for precession of

he illuminator, but our measurement has only moderate statistical
ignificance. We also detect a > 3 σ significant modulation of the
eflection fraction, indicating that the geometry of the inner accretion
isc changes systematically with QPO phase. We inferred a high disc
nclination ( i ≈ 75 ◦), which implies that the disc is misaligned with
he previously observed jet ejections ( θ ≈ 60 ◦). This is consistent
ith the precessing corona model for the QPO (Ingram et al. 2009 ).
o we ver, our fit also fa v oured a small disc inner radius, which

equires the corona to be vertically rather than radially extended
nd is inconsistent with the precession frequency being set purely
y the frame dragging effect. We discussed some possible effects
NRAS 511, 255–279 (2022) 
hat could slo w do wn Lense–Thirring precession compared with the
implest prediction. We note that no QPO model currently in the
ublished literature can reproduce the observed QPO frequency for
ur measured disc inner radius (Ingram & Motta 2019 ). Therefore,
ither our measured radius is affected by modelling systematics –
uch as the continuum in reality being more complex than we assume
or new or modified theories must be developed to model the QPO

requencies. 
We also reco v ered a large thermalization delay, which implies that

rradiating photons take ∼70 ms to thermalize in the disc atmosphere.
e argued that this is infeasibly large and discussed potential sources

f systematic error that could be contributing to the measurement. 
We compared this analysis and the work of Ingram et al. ( 2016 ,

017 ) on H 1743-332, and in particular note they both show a
trong second harmonic in the modulation of the iron line centroid
nergy E c ( γ ). We found hints that the E c ( γ ) modulation evolves
ystematically with QPO frequency, as would be expected for
xample if the disc inner radius reduces as the QPO frequency
ncreases. Further work is required to test this hypothesis. 
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PPENDIX  A :  PHASE  DIFFERENCE  F RO M  

ISPECTRU M  

1 Treatment of Poisson noise in the bispectrum 

he ‘jellyfish plots’ in Fig. 5 are corrected for Poisson noise and
eadtime effects. Failing to correct for these effects introduces an
nstrumental component into the real part of the bispectrum, which
resents itself as a general ‘drift’ of the random walks along the
ositive real axis. In turn, this reduces the measured bi-phase from
he true value. 

There exists a Poisson-noise free estimate of the bispectrum, as
iscussed in Wirnitzer ( 1985 ), which we use in the form 

 m 

( ν) = R m 

( ν) R m 

( ν) R 

∗
m 

(2 ν) 

− 2 
∣∣R m 

( ν) R 

∗
m 

( ν) 
∣∣2 

− ∣∣R m 

(2 ν) R 

∗
m 

(2 ν) 
∣∣2 

+ 2 N, (A1) 

here R m ( ν) are the Fourier transforms of segments of the light curve,
nd N = 〈 R m (0) 〉 is the average number of photons per light-curve
egment. 14 Lik ewise, we w ant to use a Poisson-free estimate for
he normalization of b 2 ( ν). Considering the expectation of random
4 As here for normalization consistency, we consider light curve segments 
easured in photon counts, as opposed to the count-rate. 

1

w
1

c
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ariables X representing the Fourier transform of a series containing
 signal with power P s , but also noise P n 

 

[| X X | 2 ] = 2( P s + P n ) 
2 , (A2) 

nd clearly in the noiseless case it is 2 P 

2 
s . While we could use a

earrangement of equation (A2), we instead opt to to simply use a
oise-subtracted estimate of P s from the powerspecturm. Therefore,
e also replace the denominator of equation (10) with 

 

(〈| R m 

( ν) | 2 〉 − N 

)2 (〈| R m 

(2 ν) | 2 〉 − N 

)
. (A3) 

Ho we ver, the deadtime ef fects of NuSTAR are still more complex
han the base Poisson noise. Therefore we take inspiration from
achetti et al. ( 2015 ) and use the co-bispectrum between light-
urv e se gments from FPMA and FPMB ( R A, m ( ν) and R B, m ( ν),
espectively) 

 m 

( ν) = R A ,m 

( ν) X A ,m 

( ν) R 

∗
B ,m 

(2 ν) , (A4) 

nd also normalize b 2 using the denominator 

 

[〈 R A ,m 

( ν) R B ,m 

( ν) 〉 ]2 
R 

[〈 R A ,m 

(2 ν) R B ,m 

(2 ν) 〉 ] 〈 R A ,m 

(0) 〉 
〈 R B ,m 

(0) 〉 . (A5) 

2 Jellyfish bootstrapping 

e use a bootstrapping method to calculate the uncertainties in the
ispectrum for our determination of the phase-difference between
he QPO harmonics. 

Each observation has already been split up into M segments, so
e draw from this (with replacement) a sample of M segments,
000 times. 15 Therefore, each of these 1000 random draws is the
ame ‘length’ as the original observation. We then calculate the
ispectrum for each of these samples. When performing the QPO
racking, we ensure to use the QPO frequency corresponding to the
egment’s true time. 

As b 2 is restricted to be positive, 16 we show the range correspond-
ng to the ±1 σ and ±3 σ quantiles in Fig. 5 . 

To ensure we do not fall foul of any issues relating to the
yclic nature of the biphase, to calculate the error on the QPO
hase difference we take the measurement from each 1000-segment
ample. For these values, we phase-wrap them so each lies within

rad of the true measurement and then report the standard deviation
n these values as our uncertainty. 

PPENDI X  B:  M O D E L  DETA I LS  

1 Ray tracing 

 disc patch at coordinate ( r , φ) with radial and azimuthal extent
 r and d φ will subtend a solid angle d � = d αd β/ D 

2 on the image
lane, and will be centred at horizontal and vertical coordinates on
he image plane α and β. Here, D is the distance from observer to
ource, and α and β are the impact parameters at infinity, where the
ingularity occupies the position α = β = 0 on the image plane. The
otal QPO phase-dependent specific flux observed from the disc is
e.g. Ingram et al. 2019 ) 

 d ( E, γ ) = 

∫ 2 π

0 

∫ r out 

r 

g 3 ( r, φ) 
I ( E /g, r, φ, γ ) 

D 

2 
d αd β, (B1) 
5 As an example, if M = 5, with segments labelled ‘A’,‘B’,‘C’,‘D’, and ‘E’ 
e would use 1000 random draws such as ‘ABAAD’, ‘EECDC’, and so on. 

6 Ho we ver in the region of low signal/noise, the Poisson correction we make 
an push an estimate below 0, see Appendix A2 for details. 
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here g = E / E d is the energy shift experienced by a photon travelling
rom disc coordinate ( r , φ) to the observer (given by equation 4 in
ngram et al. 2017 ) and E is photon energy in the observer rest frame.

2 Model normalization 

e normalize the XILLVERCP spectrum, R ( E), such that the incident
pectrum that goes into the calculation has an integral over all 
nergies of unity. Due to the internal XILLVERCP normalization (see 
quation 16 of Ingram et al. 2019 ), this gives ∫ 2 π

0 

∫ 1 

0 

∫ ∞ 

0 
μe R ( E )d E d μe d φ = 1 , (B2) 

here μe is the cosine of the emission angle. We normalise the 
missivity function such that ∫ 
α,β

g 4 ( r , φ) ε( r , φ, γ )d αd β = 1 . (B3) 

hese two conditions together ensure that the observed bolometric 
eflected flux (in the case of N d = 0) would be f R ( γ ) N c ( γ ) if the
unction R ( E) was independent of emission angle. 

PPEN D IX  C :  PHASE  OFFSETS  WITH  

IFFER ENT  R EFERENCE  BA N D S  

ecalling equation (3), the FT of the j th QPO harmonic is 

 j ( E) = μ( E) σj ( E) e i � j ( E) , (C1) 

here (recalling equation 2) 

 1 ( E) = � 1 + 	 1 ( E) 

 2 ( E) = 2( � 1 + ψ) + 	 2 ( E) . (C2) 

Here, denoting the subject band as S j and reference band as R j , the
hase lags are (taking the argument of equation 5) 

 j ( E) = arg 
[
S j ( E) R 

∗
j 

]
. (C3) 

When we measure the same QPO FT but with a different instru-
ent, and therefore with a different reference band, we consider 
 different reference band T , where T j lags behind R j by a phase
ifference δj . The QPO FT we measure from our new instrument is
herefore 

 

T 
j ( E) = μT ( E ) σj ( E ) e � 

T 
j 

( E) 
, (C4) 

here � 

T 
j ( E) is 

 

T 
1 ( E) = � 1 + 	 1 ( E) − δ1 

 

T 
2 ( E) = 2( � 1 + ψ 

T ) + 	 2 ( E) − δ2 , (C5) 

nd where ψ 

T is the phase difference between harmonics in the T
and, which in principle can be different from ψ as the reference
ands come from instruments with different energy bands, and even 
ave different responses within overlapping bands. 
Combining equations (C2) and (C5), we find that 

 

T 
1 ( E) = � 1 ( E) − δ1 

 

T 
2 ( E) = � 2 ( E) + 2( ψ 

T − ψ) − δ2 . (C6) 

Considering the phase difference between the harmonics in any 
nergy band (Ingram et al. 2016 ) 

( E) = ψ − 	 1 ( E) + 

1 

2 
	 2 ( E) . (C7) 

e can similarly construct that 

 

T = ψ − δ1 + 

1 

2 
δ2 , (C8) 

nd therefore 

 

T 
1 ( E) = � 1 ( E) − δ1 

 

T 
2 ( E) = � 2 ( E) − 2 δ1 . (C9) 

Putting this together, the relation between the QPO FT when 
easured with the different reference bands is 

 

T 
j ( E) = Q j ( E) exp ( −i jδ1 ) , (C10) 

nd so the phase offset of the j th harmonic is 

c, j = −jδ1 , (C11) 

o finally we have 

c,1 ≡ φc 

c,2 = 2 φc . (C12) 

PPENDI X  D :  M C M C  C O R N E R  PLOTS  O F  

O D U L AT E D  PA R A M E T E R S  

his appendix contains corner plots of some of the parameters from
he MCMC. Fig. D1 shows the phase average, and the 1st harmonic
nd 2nd harmonic amplitudes of the modulated parameters compared 
ith each other. Fig. D2 shows the 1st and 2nd harmonic amplitudes

or each of the modulated parameters, from which we can see
ow significantly away from (0,0) the parameter is, which would 
orrespond to that parameter not being modulated. 

For the majority of the parameters, the posterior is mostly symmet-
ic and approximately Gaussian. Ho we ver, this is not true for some
f radially emissivity parameters q 1 , q 2 , r in , r br, 1 , and r br, 2 likely due
o their interdependence (see equation 15). For completeness they 
re shown as a corner plot in Fig. D3 ; all parameters whose posterior
istributions are not otherwise shown in this paper are included as
istograms in Fig. D4 with symbols matching those in Table 2 . 
MNRAS 511, 255–279 (2022) 

022



276 E. Nathan et al. 

Figure D1. Corner plots from the MCMC of the modulated parameters within the model. The purple, orange, and red lines show the 1 σ , 2 σ , 3 σ credible 
interv als, respecti v ely. The phase-av erage, and also the amplitudes of the first and second harmonics are shown separately. 
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GRS 1915 + 105 phase-resolved QPO 277 

Figure D2. Corner plots from the MCMC of the amplitudes of the modulations within the model. The purple, orange, and red lines show the 1 σ , 2 σ , 3 σ
credible intervals, respectively. In all cases, the (0,0) lies outside of the 3 σ contour showing that all four parameters are consistent with being modulated. 
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Figure D3. Corner plots from the MCMC of the radial emissivity parameters. The purple, orange, and red lines show the 1 σ , 2 σ , 3 σ credible intervals, 
respectively. It is important to note that the two break radii r br,1 and r br,2 have units of the disc truncation radius r in and r br,1 , respectively. As q 1 and q 2 are the 
power-law indices within there relevant break radii, the model becomes insensitive to them when r br,1 and r br,2 approach 1, respectively. 
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GRS 1915 + 105 phase-resolved QPO 279 

Figure D4. The posteriors of all the parameters not otherwise shown in this paper, with the ±1 σ credible interv al sho wn by the dashed purple vertical lines. 
For visual simplicity, the parameter values are not shown here, as the shape of the distribution is the key feature. The parameters marked with † relate solely to 
the distant reflector component of the model. 
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