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Abstract
The origin of the friction between sliding bodies establishes an outstanding scientific problem. In this article, we demonstrate 
that the energy loss in each microscopic slip event between the bodies readily follows from the dephasing of phonons that 
are generated in the slip process. The dephasing mechanism directly links the typical timescales of the lattice vibrations with 
those of the experienced energy ‘dissipation’ and manifests itself as if the slip-induced motion were close to critically damped.

Graphical abstract
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1  Introduction

Friction continues to fascinate engineers and scientists in 
spite of its seeming simplicity. We are taught that sliding 
friction involves the conversion of mechanical energy into 
heat [1, 2] and that this conversion necessarily is irrevers-
ible [3]. The microscopic picture that is usually associated 

with this conversion involves phonons [4–6] that are excited 
within the sliding bodies, typically through mechanical 
instabilities, such as stick–slip events. Due to phonon cou-
pling and the associated, finite phonon lifetimes [7–10], the 
energy that specific phonon modes acquire from these insta-
bilities is thought to be quickly redistributed over the full 
spectrum of possible phonons.

The coupling between a specific degree of freedom, e.g., 
associated with the motion of a sliding body, and the other 
degrees of freedom of a system, such as the amplitudes and 
phases of all vibrational eigenmodes of the body itself and 
those of the solid over which the body is forced to move, can 
be treated theoretically as the coupling to a bath of harmonic 
oscillators. This formulation introduces the combination of 
all other degrees of freedom as a thermal or harmonic bath. 
From this description, one readily derives the generalized 
Langevin equation and the fluctuation–dissipation theorem 
that relates the strength of thermal fluctuations to the dis-
sipation rate [11, 12].
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In this article, we concentrate on the bath of harmonic 
oscillators, i.e., on the full spectrum of vibrational modes in 
either of the two bodies that are sliding over each other, and 
ask the question which modes are really coupled directly to 
a specific slip event and how they manage to carry away the 
energy invested in them in such an event so efficiently that 
it becomes effectively irretrievable for re-use in later slip 
events. The tempting answer to the latter question seems 
that again coupling between phonons, i.e., finite phonon life-
times, would be at play, which would re-establish thermal 
equilibrium after each slip event. Instead, we will demon-
strate that there is a more natural explanation.

Finite phonon lifetimes derive from the anharmonicity of 
the interaction between atoms in solids and from the pres-
ence of impurities and other structural defects. Whereas 
anharmonicity is an intrinsic material property, defect den-
sities and impurity concentrations often vary over orders of 
magnitude, usually without a strong influence on friction. 
This should be taken as a serious indication that the internal 
redistribution of mechanical energy is not primarily due to 
the thermalization of phonons. Energy line widths meas-
ured by inelastic neutron scattering on bulk phonons [7–10] 
and by inelastic helium atom or electron scattering on sur-
face phonons [13] show that in spite of all anharmonicities 
and structural non-idealities, these mechanical eigenmodes 
‘live’ for tens of vibrational periods or more. In order to 
redistribute the energy rapidly enough to cause significant 
friction, however, phonons would have to be close to criti-
cally damped, i.e., convert their energy into other phonons 
on a timescale of one or just a few vibrational periods. Such 
strong damping is predicted theoretically only for the vibra-
tions of isolated adsorbate atoms on a semi-infinite solid [2], 
but is not characteristic for the surface or interior of the solid 
itself. Near-critical damping [14–16] also forms an essential 
ingredient in the interpretation of friction force microscopy 
(FFM) images, in which atomic stick–slip patterns are rou-
tinely observed [15–17], with occasional slips of the FFM 
tip over two or more lattice spacings [17–19]. Again, details 
of the materials and their structural perfection, both for the 
tip and the substrate, seem not to be of critical importance.

In the following, we present an alternative non-thermody-
namic view on the redistribution of energy within a sliding 
body, accompanying a slip event. We treat the dynamics in 
terms of the dephasing of phonons that are excited in the slip 
event. While being consistent with the formulation of damp-
ing due to the coupling to a thermal bath, our description 
leaves out phonon coupling altogether. In the calculations 
presented in this article, near-critically damped motion nev-
ertheless emerges and we show that this is a natural conse-
quence of our description of slip events as the simultaneous 
excitation of a large number of vibrational eigenmodes. This 
result invites us to speculate about new methods to modify 

friction, simply by manipulating the spectrum of available, 
vibrational eigenmodes.

2 � Model System: Harmonium

In order to reduce frictional contact dynamics to its very 
essence, we performed a combined theoretical and numeri-
cal study of the simplest possible model system in which 
friction might arise, namely that of two initially static slabs 
of an idealized, completely regular solid material, made of 
atoms that interact with each other through short-ranged, 
exclusively harmonic forces. By construction, our system 
contains neither anharmonicities, nor defects, impurities, 
or adsorbate layers. This renders the lifetime of all phon-
ons infinite. Our calculations nevertheless indicate that slip 
events are followed by behavior that is best described as 
very rapid, near-critical damping. We show that this damp-
ing originates from the progressive destructive interference 
of the phonons that are excited in the slabs by the slip events.

We refer to our harmonic model substance as harmonium, 
(Hr). The Hr is organized in a body-centered cubic (bcc) lat-
tice, with a dimensionless cubic lattice constant of unity. In 
order to ensure stability of the bcc lattice, harmonic forces 
are introduced between nearest- and next-nearest-neighbor 
atom pairs with dimensionless spring coefficients of 2 and 1 
respectively (see Appendix 3). We imagine mechanical con-
tact to be established between the (001) surfaces of two iden-
tical, infinite slabs of this material, touching each other only 
via two individual Hr atoms, one on each of the two surfaces. 
In the calculation, each slab is represented by a periodically 
repeated rectangular block, containing N atoms. We keep 
the situation completely symmetric between the two con-
tacting slabs, so that we can concentrate fully on one of the 
two. One stick–slip cycle then corresponds to a sequence 
with a stick-phase, in which the slab is first deformed via 
an external force exerted on the contacting Hr atom at the 
surface, followed by a slip event in which the external force 
is suddenly reduced to zero. We follow the resulting motion 
of all Hr atoms in the slab, paying specific attention to the 
characteristic time scales of their response. Note, that our 
geometry also represents the situation in which an FFM tip 
is responsible for the initial surface deformation in the slab. 
In that case, our calculations describe the motion in the slab, 
following the slip event of the tip.

Figure 1a shows the configuration in the harmonium slab, 
prior to the slip event. In this example, a (dimensionless) 
lateral force of 0.1 (see Appendix 3) is exerted along the 
[100] surface direction on the central surface atom, which 
is displaced as a consequence. An accompanying deforma-
tion pattern is also visible within the slab that decays with 
distance to that atom. The configuration shown in Fig. 1a is 
the equilibrium displacement pattern for the specific lateral 
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force exerted on the central surface atom. This is a stationary 
pattern; the atoms are all standing still.

3 � Near‑Critical Damping in Harmonium

3.1 � Numerical Results

At t = 0, the external force is removed—the ‘slip’ event—
and we numerically evaluate the equations of motion of all 
atoms in the system. Our first observation is that the defor-
mation pattern rapidly accelerates back, as is illustrated 
by the movie (available online). The solid black curve in 
Fig. 1b shows the displacement of the central surface atom 
along the [100] direction as a function of time. We see that 
the atom overshoots the zero position and goes through 
a rapidly damped oscillation. The occurrence of a small 
number of zero-crossings shows that the motion is slightly 
underdamped.

As strong as the damping may seem in Fig. 1b, we have 
performed our calculation without any explicit damping on 
the motion of any of the atoms. In fact, the motion for each 
atom was obtained by simply integrating Newton’s equations 
along the x-, y-, and z-directions, i.e., along [100], [010] and 
[001], in response to the forces exerted on the atom by its 
direct and next-nearest neighbors. No velocity-related terms 
entered this description [14]. Also, we have left out all other 
‘hidden’ forms of damping, for example via a thermostat in 
the calculation or via absorbing boundary conditions [20, 
21] (see Appendix 3 for more details). We observe near-
critical damping, even in the complete absence of an explicit 
damping mechanism.

At this point we have to acknowledge that there is one 
mild, implicit form of anharmonicity, which we cannot avoid 
in our calculations. It reflects the simple fact that a displace-
ment of an atom along one direction changes the directions 
of most of the nearest- and next-nearest-neighbor bonds that 
the atom is involved in. This leads to higher-order contri-
butions to the forces on the atoms that make the response 
of the lattice deviate increasingly from perfectly harmonic 
with increasing amplitudes of displacement. By repeating 
our calculations for various values of the initial displacement 
amplitude (or, equivalently, for various values of the initial 
external force), we could easily verify that this higher-order 
effect is not causing the damping observed in Fig. 1b.

3.2 � Lattice Dynamics Results

We now turn to the dashed blue curve in Fig. 1b, which 
indicates the result of an alternative computation of the 
response of the distorted lattice to the removal of the exter-
nal force at t = 0. Underlying this curve is a calculation of 
the complete set of 3N − 6 ≈ 3N  phonons, the mechanical 
eigenmodes of our harmonium slab. The result of the pho-
non calculation is represented by the dispersion curves in 
Fig. 1c and in Fig. 3 in Appendix 3. They show the angular 
frequencies of the lattice vibrations �

(
kx, ky

)
 as a function 

of the parallel wave vector 
(
kx, ky

)
 along the three sym-

metry directions of the reciprocal surface unit cell. The 
curves display the typical combination of bulk phonon 
bands and a small number of surface modes, associated 
with the two free surfaces of the slab. This calculation 
is completely harmonic; also the subtle anharmonicity is 
absent that was present in the solid black curve in Fig. 1b. 

Fig. 1   Analysis of a single-atom slip event in a harmonium slab. 
a Perspective view of the starting configuration of our calculations. 
The displayed block of atoms has two free surfaces (upper and lower) 
and is periodically repeated along the [100]- and [010]-directions. In 
a, one quarter of the atoms are removed to provide a view into the 
material. The entire configuration is slightly distorted due to a force 
along the [100] direction, exerted on the central atom in the top sur-
face. The colors indicate the displacements of the atoms, |Δ�|, rela-
tive to that of the central (red) atom, ||Δ����

|| . b Displacement of the 
central atom along the [100] direction as a function of time. Two cal-

culations are shown, for the numerical integration of the equations of 
motion and for a fully phonon-based calculation. c Phonon dispersion 
curves, showing the frequencies of the mechanical eigenmodes of the 
periodically repeated block of panel (a) versus inverse wavelength. 
Symbols Γ, X and M refer to symmetry points in the Brillouin zone 
of the block (see Fig. 3 in Appendix 3). The blue circles indicate the 
amounts of potential energy invested in each eigenmode for the dis-
torted pattern of panel (a) (logarithmic scale). Only values are shown 
greater than 10−15 with respect to the maximum value
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For each vibrational mode �
(
kx, ky

)
 , our calculation also 

provides the polarization vector that contains the relative 
amplitudes, directions and phases with which all atoms in 
the slab participate in that vibration. Since the eigenmodes 
form a complete set, each configuration of the slab can 
be expressed as a unique combination of amplitudes and 
phases of the 3N phonons. If we perform this projection 
operation on the initial configuration of Fig. 1a, we obtain 
a complete picture of the phonons that are excited by the 
external, lateral force on the central atom. This is indicated 
in Fig. 1c, which displays the same dispersion curves as 
Fig. 3, but also shows their relative amplitudes. From the 
perspective of the phonons, the only change at t = 0, when 
the external force is removed, is that they all commence 
their periodic time evolution. This fully harmonic time 
evolution is nearly indistinguishable from the result of the 
integrated Newton equations of motion, as is illustrated by 
the close match between the dashed blue curve in Fig. 1b 
and the solid black curve. Again, we observe near-critical 
damping of the motion of the central surface atom, this 
time for a rigorously harmonic system.

We should stress that the outcome of our calculations 
does not depend on the strength of the springs or the value 
of the atomic mass. When these parameters are changed 
by arbitrary factors, the horizontal and vertical axes of 
Fig. 1b and the vertical axis of Fig. 1c are rescaled, but 
apart from this, both figures remain completely unchanged 
and the near-critically damped character of the motion is 
not affected.

3.3 � Phonon Dephasing

There is a natural reason for the observed damping, which 
should be regarded as an inherent property of solids. The 
spatial localization of the initial deformation pattern, i.e., 
the mere fact that the frictional contact is local, necessar-
ily makes that the pattern is composed of contributions 
from a variety of phonons with different wavelengths. Each 
individual phonon is a collective vibrational mode of the 
entire slab and is fully delocalized over the slab. It is only 
by combining a large number of phonons that a localized 
deformation can emerge at all. This local concentration of 
displacement occurs exclusively at the place and time where 
the phonons are largely in phase, so that their displacements 
add up constructively. Everywhere else the phase relation 
between the phonons is ‘random’ or sufficiently close to ran-
dom that no significant displacement results. This special 
combination of place and time is that of the central surface 
atom that is exposed to the external force and the time origin 
t = 0, at which the displacement is at its maximum and slip 
starts. At this point all phonons start to evolve in time, each 
one with its own angular frequency �

(
kx, ky

)
 . Because these 

frequencies are all different, the phonons rapidly run out of 
phase with each other, thus quickly reducing the displace-
ment amplitude of the central atom. The observed damping 
is the direct result of the dephasing of the excited phon-
ons with respect to each other. If all frequencies between 
0 and the maximum phonon frequency �max were repre-
sented equally strongly in this process, we should expect the 
central atom to oscillate effectively with a frequency in the 
order of 1∕2�max and a dephasing rate in the same order 
of magnitude, which would render the oscillation critically 
damped. Figure 1c shows that the excited phonons are not 

Fig. 2   ‘Wave front’ of atomic motion after a single-atom slip event. a 
Three snapshots of the ‘wave front’, defined by the outermost atoms 
with kinetic energies above 10−14. In the third snapshot, at t = 6, the 
front has already reached the sides of the 30 × 20 × 20 atom supercell, 
which marks the stage where finite-size effects should be expected 
to progressively affect the results. b Radius of gyration of the ‘wave 
front’ in snapshots as those in panel (a), plotted as a function of time. 

The red and black data are for two different threshold levels of the 
kinetic energy, namely the value of 10−14 (red), illustrated in panel 
(a), and a significantly higher value of 10−10 (black). The differences 
are minor. The blue line is a linear fit to the red data points for times 
above t = 2. It shows that the wave front expands radially at a constant 
speed of 1.2
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distributed completely evenly over all available frequencies, 
which explains why the observed oscillation is somewhat 
underdamped.

Since the phonons are all completely delocalized over the 
entire system, one might expect that the potential energy that 
is invested by the external force would also be delocalized. 
This is certainly not the case. It is the region directly around 
the central surface atom that carries the largest distortions 
and hence the highest potential energy per deformed bond. 
After t = 0, it is the same region where the atoms develop 
the highest velocities, i.e., the highest kinetic energies. When 
the phase matching is lost progressively for the central sur-
face atom, a wave front travels outwards. Figure 2a shows 
snapshots of the surface of this front, obtained from our 
calculations as the outer contour of atoms with kinetic ener-
gies above a certain, low threshold value, in this case 10−14 
(see Appendix 4). At each point in time, the maximum of 
the outgoing wave resides somewhat inside this shell and 
corresponds to the surface at which the phases match best. 
The wave travels out at a group velocity that is, like the 
dephasing rate of the central surface atom, determined by 
the frequency differences between the excited phonons 
and, in addition, also by their wavelength differences. One 
should expect polarization effects to be visible in the form 
of anisotropy of the wave velocity, for example with the 
wave running out faster along the [100] axis of the initial 
surface displacement, due to the stronger longitudinal char-
acter of the wave in that direction, and slower along the two 
perpendicular directions, [010] and [001], due to the more 
transverse character along those. However, the size of our 
periodically repeated block was too modest to measure this 
anisotropy sufficiently accurately. Therefore, we have only 
determined the orientational average of the velocity of the 
outgoing wave, as is illustrated in Fig. 2b. We find that the 
front expands radially with a constant velocity of 1.2. This 
velocity is in the order of the average value of �∕|k| for the 
excited phonons, which should be regarded as the appropri-
ate, effective speed of sound for this wave.

3.4 � Larger Contact Sizes

The single-atom contact that we have considered so far 
forms an extreme case that can be addressed experimentally 
only through special instruments such as an atomic force 
microscope or a friction force microscope. Importantly, 
our results carry a much more generic character and are 
also relevant for larger contacts. This is illustrated in Fig. 4 
(see Appendix 3), in which the central 3 × 3 surface atoms 
were subjected to an initial collective displacement along 
the [100] direction. Qualitatively, the time evolution of the 
displacement of the central surface atom is rather similar 
to the single-atom case (Fig. 1a), but the motion proceeds 
a factor ~ 2 more slowly. Also the dephasing is slower, by 

approximately the same factor, so that the motion is again 
somewhat underdamped. Figure 4 shows that the larger con-
tact is associated with a clear selection of the wavelengths 
of the phonons that are excited; these are concentrated near 
the Γ-point and correspond to wavelengths of approximately 
3 lattice spacings and larger. Again, the phonon-based time 
evolution is nearly identical to the result of the direct inte-
gration of the equations of motion.

The change from the single-atom contact to the 3 × 3-atom 
contact illustrates an element of inherent scaling that we 
expect to hold even up to typical tribological contacts with 
micrometer-size asperities and larger. The size of the contact 
is a measure for the spatial scale, both along and perpen-
dicular to the surface, of the elastic deformation patterns 
that result from forces on that contact. The motion induced 
by the slip event of a macroscopic contact can therefore be 
viewed as a coarse-grained version of the response that we 
have followed for the single-atom contact and the 3 × 3-atom 
contact. The coarse-graining involves the effective volume 
and mass of the regions in the solid that are set into rela-
tive motion, the effective spring coefficients that describe 
their interactions with each other and the resulting wave-
lengths and frequencies of the vibrational eigenmodes with 
which they predominantly move. Even though each of these 
quantities scales in its own way with the contact size, the 
qualitative feature remains unchanged, that the slip motion 
is composed of a superposition of eigenmodes; they result in 
a damped oscillation with a frequency that is some average 
over these eigenfrequencies and with a dephasing rate that is 
determined by the typical difference between these eigenfre-
quencies. As the 3 × 3-atom contact illustrates, the effective 
frequency is lower for larger contacts and the dephasing rate 
is lower in the same manner. As the effective frequency and 
the dephasing rate are intimately related, their ratio can-
not change much with contact size, which renders the slip 
motion close to critically damped for all contact sizes.

4 � Summary and Discussion

The main conclusion from this work is that the dephasing 
of excited phonons forms a natural ‘recipe’ for damping. 
The essentially new and non-trivial element is that this 
mechanism occurs in purely linear systems, even though 
its consequences may seem similar to those of the dynamic 
stochastization, well-known for nonlinear systems [22, 23]. 
Our observation has been made here in the context of fric-
tion, but it applies to all cases where the wave packet of 
phonons that is excited in a process contains a sufficiently 
large number of phonons with different frequencies. Other 
examples of surface phenomena that should be expected to 
obey similar ‘rules’ are surface diffusion, the adsorption 
of atoms and molecules on surfaces and surface chemical 
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reactions [24]. Damping of motion involved in phenomena 
inside three-dimensional materials, for example bulk dif-
fusion or internal structural changes, or the deposition of 
energy and momentum by an impinging ion, should behave 
similarly. In the examples presented in this article the result-
ing dephasing rate is close to the maximum of critical damp-
ing that is possible in this way. The dephasing takes place on 
the timescale of a small number of vibrational periods, i.e., 
well before the finite lifetime of the excited phonons would 
become noticeable. Due to this dephasing, the energy and 
momentum that are invested in the initial displacements are 
irretrievably ‘lost’ on a rapid timescale that is fully decou-
pled from the slow thermalization of the excess energy by 
conversion of the excited phonon wave packet in the appro-
priate thermal (Bose–Einstein) distribution of phonons. 
Interestingly, the thermalization depends on a multitude of 
subtle properties of the solids involved, such as the anhar-
monicity of the interatomic potentials and the character and 
density of defects and impurities that can act as scattering 
centers for the phonons. The inherent nature of the phonon 
dephasing makes the resulting damping mechanism quite 
robust with respect to these subtleties and therefore very 
similar even for widely different materials.

The dephasing mechanism invites us to speculate about 
approaches to modify friction, for example via the contact 
geometry. One possibility lies in the dimensionality of the 
materials, such as for graphene and other layered materials 
with the strongly two-dimensional nature of their phononic 
eigenstates. Another possibility is offered by the prospect 
of nanostructuring contacting surfaces into geometries that 
strongly confine those phonons that are excited during the 
stick–slip process. Both elements are explicitly present in 
the spectacular reduction in friction, recently observed by 
Wada et al. [25].
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Appendix 1

The Friction Force Microscope

The instrument that seems most suitable to search for the 
microscopic origin of friction is the so-called friction force 
microscope (FFM). In an FFM experiment, a sharp tip is 
forced to slide over a counter-surface. The normal force, with 
which the tip is pressed against the surface, is held constant 
at a pre-selected, adjustable value. The tip is made to perform 
a two-dimensional scanning motion, while the lateral forces 
are recorded, thus building up a two-dimensional lateral force 
map. In such experiments, one routinely obtains lateral force 
patterns with atomic periodicities [15–17, 26, 27]. Usually, 
these patterns display a saw-tooth character that is referred 
to as ‘stick–slip’ motion; the interaction with the counter-
surface holds the tip in a local (atomic-scale) potential energy 
minimum until the lateral force is high enough to make it 
slip into the next minimum. The mere fact that this process 
repeats itself from one potential energy minimum to the next 
seems to indicate that the energy that is released during the 
slip event is quickly dissipated, so that the tip has to start 
again at or near the bottom of the next potential energy mini-
mum. What is seen on the atomic-scale in the FFM also hap-
pens on longer length scales in macroscopic friction geom-
etries, as we are familiar with from the squeaking of hinges 
and the stick–slip motion in earthquake dynamics.

Appendix 2

Dissipation

A popular model that captures the essence of this stick–slip 
behavior has been introduced independently by Tomlinson 
and Prandtl in the nineteen twenties [28, 29]. The Tom-
linson-Prandtl model assumes that the excess mechanical 
energy that is released during the slip phase in the stick–slip 
motion is removed from the system ‘instantaneously’. Inter-
estingly, this assumption works well on all length scales, 
which makes this a popular model also for the description 
of FFM experiments [16, 26].

A more general theoretical approach to motion with dis-
sipation is given by the familiar Langevin equation,

Here, the motion is described by the time-dependent coordi-
nate U(t), � is the position-dependent potential energy and � 
is the damping coefficient. Thermal fluctuations contribute a 
random force R(t) . In the simple form, given here, the equa-
tion contains a damping term that corresponds to a force that 
points against the direction of motion and is proportional to 

(1)mÜ(t) = −∇𝛷 − 𝜂U̇(t) + R(t)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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the instantaneous velocity. The Langevin equation is suc-
cessful in describing a wide variety of phenomena in which 
damping plays a role, such as atomic-scale friction [16, 
17], surface chemical reactions [30] and surface diffusion 
[31], provided that the damping rate is made sufficiently 
high. In fact, the damping rate has to be in the same order 
of magnitude as the relevant vibrational frequencies in the 
system, which makes the system close to critically damped 
[16, 17]. This rapid damping is consistent with the crude 
assumption of instantaneous dissipation in the Tomlinson-
Prandtl model, which should be read as ‘fast enough to look 
like instantaneous’. Various attempts have been made to 
provide a thermodynamic and atomistic foundation of the 
semi-phenomenological Langevin equation, leading to a 
Generalized Langevin equation with memory [32–35]. To 
our knowledge, this first-principle-based approach has not 
reached applications yet.

We have indicated that critical/nearly critical damping is 
needed in the interpretation of FFM experiments, but remark 
that this seems to also set the stage for friction on other 
length scales. On each length scale, the dissipation exhibits 
a rate that is consistent with the dephasing rate of the vibra-
tional modes that are relevant for that length scale.

Appendix 3

Methods

General Configuration and Setup

We have performed the calculations in this article for super-
cells of a body-centered-cubic (bcc) crystal of a hypothetical 
material, ‘harmonium (Hr)’, that we constructed from periodi-
cally repeated copies of a simple cubic unit cell with a two-
atom basis. The results shown here were for supercells with 
dimensions of 20 × 20 simple cubic unit cells along the x- and 
y-directions, i.e., the [100] and [010]-directions, parallel to the 
(001) surface, and a thickness of 15 of these unit cells along 
the z-direction ([001] direction), corresponding to a total of 
N = 12.000 Hr atoms. We have conducted our calculations 
also for other sizes, in order to verify that the reported results 
were not affected by the finite size of the 20 × 20 × 15 unit 
cell system. In order to give the supercell the character of an 
infinite slab, we applied periodic boundary conditions along 
the two surface directions x and y, while no periodicity was 
imposed along the z-direction; the top and bottom were free 
surfaces. The dimensionless lattice constant was set to a = 1.0. 
The dimensionless mass of the Hr atom was chosen to be 
m = 1.0 . The atomic interactions were modeled as harmonic 
bonds between nearest neighbor and next-nearest neighbor 
pairs of Hr atoms. As dimensionless spring coefficients for 
these bonds, we chose C1 = 2.0 and C2 = 1.0, respectively; this 

combination ensured the stability of the bcc structure under 
externally applied, linear and shear forces.

Identical initial configurations were chosen for two types of 
calculation of the dynamics (see below). We have used a variety 
of initial conditions. Those that were illustrated by Figs. 1 and 
2 were obtained for a situation in which an initial (dimension-
less) force of 0.1 parallel to the [100] surface axis was applied 
to a single surface atom. Below, we also present results for 
calculations in which the same force was equally distributed 
over a group of 3 × 3 atoms at the surface. In both cases, an 
equally large but oppositely oriented force was distributed over 
all atoms of the bottom surface, to keep the total external force 
zero and thus avoid acceleration of the supercell as a whole. We 
started by computing the distorted equilibrium configuration 
under the influence of these forces, which we obtained by mini-
mizing the potential energy stored in all bonds in the system. 
This was achieved by numerically integrating Newton’s equa-
tions of motion for all N Hr atoms in the harmonic system and 
applying an appropriate (high) damping force on each atom, 
proportional and opposed to the atom’s velocity:

In this equation, we define Uj(t) as the displacement vec-
tor of atom j with respect to the atom’s equilibrium posi-
tion at time t. The atom’s mass m carries no subscript, as all 
masses are chosen equal in our calculation. Fj is the initial, 
external force on atom j , which is zero for most atoms and 
0.1 along [100] for the central surface atom (or distributed 
over the central group of 3 × 3 atoms, depending on the spe-
cific starting conditions) and − 0.1 along [100] distributed 
over all atoms in the bottom surface. Cjj′ is the force constant 
of the interaction between atoms j and j′ , which is either C1 
or C2 , depending on whether the atoms are nearest or next-
nearest neighbors (see above) and ΔRjj� is the change in dis-
tance between atoms j and j′ from the equilibrium distance, 
due to their displacements Uj and Uj′ . The sum runs over all 
nearest and next-nearest neighbors j′ of atom j . The elastic 
forces are all oriented along the bonds, hence the bond unit 
vectors r̂jj′ in Eq. 2. The last term in Eq. 2 is the damp-
ing term, characterized by the damping constant �′, which 
we chose equal to 0.1 in order to obtain rapid convergence. 
The numerical integration was performed using the Verlet 
algorithm [36] with discrete time interval dt1 = 0.002 , and 
the calculation was continued until the total (dimensionless) 
kinetic energy of the entire supercell was less than 10−12. 
The resulting, distorted configuration was regarded as suffi-
ciently converged to serve as the static starting configuration 
for the two subsequent dynamic calculations.

(2)mÜj(t) = Fj −

∑

j�

(
Cjj�ΔRjj� r̂jj�

)
− 𝜂�U̇j(t).
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Slip Event

We used the distorted configurations, obtained by the pro-
cedure described above, as the starting configuration for the 
slip event. The slip event was introduced by the sudden 
removal of the external forces, both on the atom (or atoms) 
in the top surface and on the entire bottom layer of the super-
cell. We define the time of this sudden removal of the forces 
as t = 0 and the initial, distorted configuration, discussed in 
the previous section, is then given by the set of Uj(t)

|||t=0 . The 
dynamics evolving as a consequence of the removal of the 
forces were followed by computing Uj(t) for times t > 0 in 
two types of calculations in the complete absence of any 
damping. The first type is a direct numerical integration, 
while the second is completely analytical.

Calculation 1: Numerical Integration of Equations of Motion

The first type of calculation consisted of the integration of 
Newton’s equations of motion for all atoms in the supercell, 
starting with the distorted, initial configuration at t = 0. To 
this end, we numerically integrated the set of equations

Note that this set of equations is identical to that of Eq. 2, 
but without the damping terms and without the external 
force(s).

Using the Verlet algorithm, the accelerations, veloci-
ties and coordinates were updated with a time interval 
dt2 = 2 × 10−4 . Snapshots were generated every 100 time 
steps.

Calculation 2: Analytical Solution Via Lattice Dynamics

The coupled set of Eq. 3 can also be solved analytically. 
Due to the harmonic nature of the interactions and the 
periodicity of the lattice along the x- and y-directions, the 
free motion of the Hr lattice is composed of plane waves, 
with wave vectors in the xy-plane. They are the phonons 
of the Hr system and, here, we have ignored their quan-
tum–mechanical nature. Together, these 3N − 6 ≈ 3N  (in 
this case 36.000) so-called normal modes form a complete 
set, which means that linear combinations of these modes 
can be used to describe the complete vibrational response 
of the N-atom Hr supercell to any combination of initial 
positions and velocities of the atoms in the cell. Here, the 
initial conditions were taken according to the distorted con-
figuration described earlier, characteristic for the situation 
at the start of the slip event, and with all initial velocities 
equal to zero. The time-dependent displacement of atom j 
then takes the following form.

(3)mÜj(t) = −

∑

j�

(
Cjj�ΔRjj� r̂jj�

)
.

where we loosely follow the notation of Allen et al. [37–39]. 
Here, the label k runs over all 3N normal modes and each 
mode is characterized by a combination of a two-dimen-
sional wave vector qk and an angular frequency �k . The 
polarization vector �kj has the x-, y- and z-components of the 
(complex) amplitude, i.e., the amplitude and phase, with 
which atom j participates in mode k when the mode has a 
normalized amplitude of unity, while Ak denotes the com-
plex amplitude with which mode k is excited by the initial 
conditions (see below). The equilibrium position of atom j 
is denoted by r0

j
 . The normalization factor N′ is the number 

of wavevectors that enter the calculation as a result of the 
discrete Fourier transform over the supercell. In our calcula-
tion, a three-dimensional periodic supercell with N atoms, 
would result in N�

= N∕2 , due to the two-atom basis of the 
cubic unit cell. For two-dimensional periodic boundary con-
ditions, along the x- and y-axes, the wavevectors are 
restricted to two dimensions, q =

(
qx, qy

)
, and N�

= NqxNqy , 
where Nqx and Nqy are the numbers of allowed wavevectors 
along the x- and y-directions of the reciprocal supercell, cor-
responding to the numbers of cubic unit cells along these 
directions of a large, real-space supercell.

We started by finding the 3N normal modes, for which 
we used the traditional slab method [37–39] for surface 
phonons. Due to the geometry of our supercell, there were 
20 × 20 different choices for the wave vector qk and for each 
of them 3 × 2 × 15 solutions, i.e., combinations of �k and 
combined polarization vectors �k =

{
�k1, �k2,… , �kN

}
, the 

3 deriving from the dimensionality, the 2 from the two-atom 
basis of the bcc unit cell of the Hr lattice and the 15 from the 
thickness of our slab. All �k and �k were obtained as solu-
tions of the well-known eigenvalue equation

In this equation, D
(
qk
)
 is the dynamical matrix for wave 

vector qk [37, 38], defined as the (N × N) combination of 
(3 × 3) submatrices of the type1

Here, j and j′ denote two of the N atoms in the supercell. Cjj′ 
is the (3 × 3) matrix of force constants between the x-, y-, 
and z- displacements of these atoms, which is obtained read-
ily from the (scalar) force constant Cjj′ , introduced above, 
and the x-, y- and z-components of the vector 

(
r0
j
− r0

j�

)
 , con-

(4)Uj(t) =
(
mN�

)−1∕2 ∑

k

Ak�kjexp
[
i
(
qk ⋅ r

0
j
− �kt

)]
,

(5)D
(
qk
)
�k = �2

k
�k.

(6)Djj�

(
qk
)
= m−1Cjj�exp

[
−iqk ⋅

(
r0
j
− r0

j�

)]
.

1  For simplicity, Eq. 6 is displayed here in a form that ignores inter-
action between atoms in neighboring supercells. In our calculations, 
such interactions were properly accounted for.
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necting the equilibrium positions of atoms j and j′. For each 
of the 20 × 20 wave vectors qk, Eq. 5 is solved by finding the 
eigenvalues �2

k
 of the matrix D

(
qk
)
 and, for each eigenvalue, 

the corresponding eigenvector �k . The result of this calcula-
tion is shown as the phonon dispersion relations �2

k

(
qk
)
 in 

Fig. 3.
Once the 3N normal modes were known, we calculated 

the complex amplitude Ak with which each of them was 
excited/populated by the initial conditions of the static, dis-
torted starting configuration. To this end, we projected the 
set of initial displacements Uj(t)

|||t=0 on the displacement pat-
terns associated with each of the modes, according to

where �∗
kj

 is the complex conjugate of �kj . The total energy 
contributed by mode k is thus given by

Note that the specific choice of initial conditions, dis-
cussed so far, made the system start exclusively with poten-
tial energy,

(7)Ak =

∑

j

(
m∕N�

)1∕2
exp

[
−i
(
qk ⋅ r

0
j

)]
�∗
kj
⋅ Uj(t)

|||t=0.

(8)Ek =
1

2
�2
k
AkA

∗

k
.

(9)Vk(t)
||t=0 = Ek

Fig. 3   Phonon dispersion relations. Relations between the vibrational 
(angular) frequency and the inverse wavelength—along three high-
symmetry directions parallel to the surface of a harmonium slab. The 
slab consists of 30 layers of 20 by 20 Hr atoms. A top view of the first 
Brillouin zone is indicated, together with the Γ-point in the center 
and the M- and X-points on the zone boundary

Fig. 4   Completely analogous to 
Fig. 1, but this time for the case 
where an initial lateral displace-
ment along [100] was imposed 
on the central 3 × 3 atoms in the 
top surface
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As all initial velocities were zero (to within 10−12), so was 
the initial kinetic energy in each of the modes:

Finally, we have used Eq. 4 with the set of complex ampli-
tudes Ak to compute the displacements of all N atoms in the 
supercell at each point in time, t > 0, after the slip event. 
The result was compared in Fig. 1 and in Fig. 4 with the 
direct numerical integration of the equations of motion. As 
explained in Sect. 3.1, the modest differences between the 
calculation results derive from the small degree of anharmo-
nicity inherent in the integration results. The phonon-based 
analytical calculation should be considered as truly harmonic.

In cases where the initial conditions were not static, i.e., 
for which the initial velocities were non-zero (second case 
in next section), the projection operation of Eq. 7 was com-
plemented with an equivalent velocity-based contribution. 
Of course, in such cases, the kinetic energies of the modes 
(Eq. 10) were non-zero.

(10)Kk(t)
||t=0 = 0.

Appendix 4

Dependence on Initial Conditions

As explained before, the examples shown in Figs. 1 and 2 
were computed for two specific sets of starting conditions. In 
the first, an external, lateral force was exerted on the central 
atom in the top free surface. In the second case, an external, 
lateral force was shared by a group of 3 × 3 atoms in the 
top surface. In both cases, an equally large, but oppositely 
oriented force was evenly distributed over the entire bot-
tom surface of the supercell. In both cases the system was 
allowed to relax completely under the influence of these 
forces, which resulted in static starting configurations, char-
acteristic of the situation just prior to or at the very begin-
ning of a single slip event in a stick–slip sliding sequence. 
The results for the 3 × 3 atom case are shown in Figs. 4 and 
5. Even though the damping that emerged for the single-
atom and 3 × 3 atom cases was qualitatively the same, one 
might wonder to what extent these results depend critically 
on the initial conditions. This is why we explored two alter-
native sets of starting conditions.

Fig. 5   Completely analogous 
to Fig. 2, for a kinetic energy 
threshold of 10−10, but this time 
for the case where an initial 
lateral displacement along [100] 
was imposed on the central 3 × 3 
atoms in the top surface
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In the first alternative configuration, we simply displaced 
the central atom in the top surface laterally, along the [100] 
azimuth by 4% of a lattice spacing with respect to its equi-
librium position. None of the other atoms were given the 
freedom (or time) to relax their positions in response to this 
local distortion.

In the second alternative situation, we kept all atoms pre-
cisely in their equilibrium positions, but provided the central 
atom in the top surface with an initial velocity.

While the original starting configurations can be viewed 
as characteristic for the start of a slip event in case the slid-
ing velocity is so low that the system can relax completely 
between subsequent slip events, the first alternative configu-
ration captures some of the non-equilibrium character that 
should be expected at higher sliding velocities. The second 

alternative configuration can be viewed as more appropri-
ate for situations in which a sudden transfer of momentum 
occurs, as could be the case when an atom, molecule or ion 
hits a surface or when kinetic energy is released in a chemi-
cal reaction at a surface.

Figure 6 compares the time dependence of the displace-
ment along the [100] direction of the central atom in the top 
surface for the two alternative starting configurations with 
the original one (the one with the initial force exerted only 
on a single surface atom). These results were obtained with 
the numerical integration method. What is evident from the 
comparison is that the damping behavior exhibited in these 
three strongly different cases is very similar. Even though 
the difference in the degree of localization of the initial 
distortion seems very large between the relaxed (original) 
and non-relaxed (first alternative) starting configurations, 
significant amplitudes are already required for the normal 
modes with the shortest wavelengths (at the X- and M-points 
in Fig. 1) to properly describe the relaxed case. As a result, 
the variation in the contributing normal mode frequencies 
is very similar for the relaxed and non-relaxed cases. This 
makes the average frequency of the excited modes, which 
dictates the effective frequency with which the central atom 
moves, and the dephasing rate, which determines the damp-
ing rate of the central atom’s motion, for the two cases also 
very similar. The qualitative difference between these two 
results and the second alternative, with an initial velocity for 
the central atom in the top surface, is a time shift by a quar-
ter of the period of the central atom’s damped oscillation. 
The frequency and damping rate are very similar to those 
for the first two cases.

This comparison between three extreme cases for the ini-
tial conditions, (i) locally distorted, fully relaxed and static, 
(ii) locally distorted, completely un-relaxed and static, and 
(iii) completely undistorted and locally dynamic, demon-
strates that the emerging oscillation frequency and damping 
rate are rather robust with respect to these characteristics. 

Fig. 6   Time  dependence of the displacement along the [100] direc-
tion of the central atom in the top surface for three different sets of 
initial conditions. (Red) Relaxed starting configuration with forced 
initial displacement of the central atom along [100] and with zero 
initial velocities. (Black) Un-relaxed starting configuration, with a 
forced initial displacement along [100] of the central atom only and 
with zero initial velocities. (Blue) Undistorted initial configuration 
with initial velocity of the central atom along [100]

Fig. 7   (Left) Phonon dis-
persion curves for the har-
monic, 30-layer Hr slab 
(20 × 20 × 15 unit cells) along 
the Γ–X symmetry axis of 
the surface Brillouin zone. 
(Right) Time dependence of the 
displacement along the [100] 
direction of the central atom in 
the top surface when only a sin-
gle vibrational mode, indicated 
by the blue dot in the left panel, 
is excited. The result is trivial, 
a simple, completely undamped 
oscillation in time
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The only feature of the starting conditions that has a direct 
influence is the shortest length scale of the initial excita-
tion pattern, irrespective of whether this pattern is defined 
by displacements or velocities. For the three cases that we 
compared in Fig. 6, this length scale is equal to that of a 
single atomic spacing. After all, we dictated either the dis-
placement or the velocity of a single atom. It is only when 
we change this, as we illustrate in Fig. 4, that we change the 
emerging oscillation period and damping rate. By increas-
ing the region of influence from a single surface atom to a 
3 × 3—atom area, we increased the minimum length scale 
in the excitation pattern by a factor 3, as is illustrated con-
vincingly by panel (c) of Fig. 4, which shows significant 
amplitudes only for normal modes with wavelengths of 3 
unit cell sizes and longer (wave numbers of 1/3 and less of 
the Brillouin zone size). When we compare panels (b) of 
Figs. 1 and 4, we recognize that this large change in excita-
tion pattern has reduced the emerging oscillation and damp-
ing rates by approximately a factor 2, while Fig. 5 shows 
that the ‘wave front’ moves out at the same speed as in the 
single-atom case (cf. Fig. 2).

Finally, we illustrate that the damping that we report in 
Fig. 1 and in Figs. 4 and 5 is not a hidden artifact of our 
calculations. We use our analytical phonon-based calcula-
tion for this purpose. The left panel of Fig. 7 repeats the 
Γ–X part of the phonon dispersion curves that were shown 
already in Fig. 3. As before, we use Eq. 4 to compute the 
time-dependent displacement along the [100] direction of 
the central atom in the top surface. In this case, we restrict 
the amplitudes of the excited normal modes to just a single 
one. In other words, only for a single mode k, the Ak-value 
is made non-zero. In the phonon dispersion plot of Fig. 7 
(left panel), we picked a ‘random’ mode, which is indicated 
by the blue dot. As Eq. 4 prescribes, the resulting motion is 
a single standing wave for the entire lattice, in which each 
atom performs a straightforward sinusoidal oscillation in 
time without any damping. The right panel of Fig. 7 shows 
that this is indeed the case. It is the destructive interference 
between simultaneously active modes with different frequen-
cies that is responsible for the emergent damping, reported 
in this article and illustrated in Figs. 1, 4 and 5.

Appendix 5

Description of the Supplementary Movie

The movie of the damped motion, obtained as described 
in Sects. 2 and 3, by the numerical integration of the equa-
tions of motion of the bcc slab of harmonically interacting 
atoms. The periodically repeated 20 × 20 × 30-atom supercell 

is viewed along one of the <110>-directions into the (001) 
surface, with the central surface atom colored in red.

The red atom has been displaced over a fixed distance 
along the x-direction and all atoms in the system have 
relaxed their positions in response, in order to minimize the 
total energy. The relaxed configuration serves as the starting 
point of the movie.

After the central atom is released from its displaced 
starting position, the movie demonstrates that the red atom 
effectively comes to rest within a small number of vibra-
tional periods, even though absolutely no explicit damping 
is present in the calculation. For the sake of better visibility, 
all displacements in this movie have been exaggerated by a 
factor 20 with respect to their actual values.
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