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Abstract

Both the increasing number and diversity of illicit-drug seizures complicate forensic

drug identification. Traditionally, colorimetric tests are performed on-site, followed

by transport to a laboratory for confirmatory analysis. Higher caseloads increase lab-

oratory workload and associated transport and chain-of-evidence assurance per-

formed by police officers. Colorimetric tests are specific only for a small set of drugs.

The rise of new psychoactive substances therefore introduces risks for erroneous

results. Near-infrared (NIR)-based analyzers may overcome these encumbrances by

their compound-specific spectral selectivity and broad applicability. This work intro-

duces a portable NIR analyzer that combines a broad wavelength range (1300–

2600 nm) with a chemometric model developed specifically for forensic samples. The

application requires only a limited set of reference spectra for time-efficient model

training. This calibration-light approach thus eliminates the need of extensive training

sets including mixtures. Performance was demonstrated with 520 casework samples

resulting in a 99.6% true negative and 97.6% true positive rate for cocaine. Similar

results were obtained for MDMA, methamphetamine, ketamine, and heroin. Addi-

tionally, 236 samples were analyzed by scanning directly through their plastic packag-

ing. Also here, a >97% true positive rate was obtained. This allows for non-invasive,

operator-safe chemical identification of potentially potent drugs of abuse. Our results

demonstrate the applicability for multiple drug-related substances. Ideally, the combi-

nation of this NIR approach with other portable techniques, such as Raman and IR

spectroscopy and electrochemical tests, may eventually eliminate the need for subse-

quent laboratory analysis; therefore, saving tremendous resources in the overall

forensic process of confirmatory illicit drug identification.
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1 | INTRODUCTION

Cocaine is one of the most consumed drugs-of-abuse worldwide with

an estimated 19 million users in 2018. A rising trend of cocaine use

has been observed in Western and Central Europe in recent years.1,2

The United Nations Office on Drugs and Crime (UNODC) reported

that international border security and police forces in total seized an

amount of 4429 metric tons of various cocaine-containing materials

in 2019. Also here, an increasing trend was observed in the total sei-

zed amounts.1 Cocaine-containing samples often are relatively pure or

mixed with a limited amount of cutting-agents or adulterants to

increase profit. Typical amounts of cocaine in seized powders range

from relatively pure samples to �40 wt%. The diluted samples are

more likely to be encountered at the local street level 2,3 while the

pure samples are more likely to be encountered at airports or harbors.

The amount of cocaine in street samples is almost never below 30 wt

% since the user will then likely perceive the material as low quality

with respect to its psychoactive effects. Substances that are used for

the dilution of cocaine are reported to be relatively constant and com-

prises of a small group of sugars and pharmaceuticals. Typically, in

Dutch cocaine casework samples, cutting-agents and adulterants

include levamisole, lidocaine, phenacetin, caffeine, paracetamol, pro-

caine, inositol, and mannitol.3–5

In addition to cocaine, many other illicit-drugs and drug-related

substances exist and can thus be encountered in a forensic seizure.

Especially the rise of hundreds of new synthetic drug compounds, the

so-called new psychoactive substances (NPS), have diversified and

complicated the forensic drug testing field.6,7 Traditionally, colorimet-

ric spot tests were performed on-site by investigative officers to

obtain a first indication whether controlled substances were encoun-

tered. For cocaine, the Scott test is most commonly used for this pur-

pose yielding a blue colored cobalt (II)thiocyanate complex with the

cocaine molecule. Although cheap, rapid, and easy to perform on-site,

color tests do face several drawbacks. First, these tests are non-

specific and may yield false positive results on common substances.

Well-known false positives on the Scott test are caused by the com-

monly encountered adulterants levamisole and lidocaine, that both

also produce a blue color.8–10 Second, color tests can only be used for

presumptive testing on a limited set of illicit-substances. For example,

two separate tests are required to test for both cocaine and amphet-

amine. Furthermore, for many synthetic drugs including NPS, no reli-

able color test is available at all.10,11 The increasingly diversified drugs

market therefore leads to an increase in false negative results. Third,

color tests require manual sample handling posing a risk to investiga-

tive officers being exposed to hazardous substances. Finally, color

tests are subjective since color must be interpreted by an officer often

under variable lighting conditions. This results in uncertainty and vari-

ation in the identification of drugs and also hampers the automation

of the process.

Therefore, the forensic drug testing field is demanding and

requires techniques with broad but still selective detection capabilities

for the presumptive on-site testing of seized materials.12,13 In the

ideal situation, samples can be analyzed directly through the original

packaging material. Spectroscopic techniques such as Raman14–16 and

diffuse reflectance near-infrared (NIR)17–20 spectroscopy have suc-

cessfully been applied to detect drugs-of-abuse in forensic casework

materials. Raman spectra are highly diagnostic for organic compounds,

although limitations arise for samples in which fluorescent compo-

nents are present that may obscure the Raman signal. Examples of

fluorescent compounds include paracetamol and MDMA. Especially

when mixed with other compounds (e.g., cocaine adulterated with

paracetamol), this may limit the analysis of mixtures.16,21,22 Several

commercially available handheld Raman spectrometers can currently

be used for presumptive testing of forensic samples, although the rel-

atively high instrument price (30–80 k€) will limit their broad applica-

bility in a law enforcement and crime scene setting. NIR sensors have

the potential to be produced at lower unit costs and may thus eventu-

ally become useful for presumptive testing approaches by police offi-

cers (e.g., implemented in police cars). Recently, various studies have

been published on NIR-based detection of common illicit substances

in seized samples. In an earlier study, our group presented a cocaine-

sensor using a small wavelength range (740–1070 nm), handheld NIR

scanner.20 Although robust, limitations arose for the spectral selectiv-

ity of especially mixtures requiring an extensive multi-stage model in

combination with a large set of model-spectra for optimal perfor-

mance. Another NIR-based approach for illicit-drug detection was

introduced in 2020 by Coppey et al.19 They launched an interesting

forensic data platform with centralized cloud-based data processing

and local NIR detectors that communicate with the cloud solution via

an in-house developed app. Their approach incorporated the 950–

1650 nm wavelength range MicroNIR from Viavi Solutions Inc.

Because of the extended and higher wavelength range, more diagnos-

tic spectral features were observed and the solution was found suit-

able for the detection and quantification of multiple common drugs-

of-abuse (i.e., cocaine, heroin, and THC).

Various other studies applied NIR spectrometers of different

wavelength ranges for illicit-drug detection, such as the 900–

1700 nm NanoNIR from Texas Instruments,18 the 1600–2400 nm

Thermo microPhazir RX NIR,23 the 800–2500 nm Bruker MPA FT-

NIR spectrometer24 and the 1000–2500 nm PerkinElmer NIR.25 As a

general rule, more distinguishable and selective spectra were obtained

at the higher wavelength ranges indicating a better performance for

forensic samples. However, it must be noted that both instruments

with a wavelength range up to 2500 nm were benchtop instruments

that required a 110- or 230-V connection to the power grid and are

expected to be operated in a laboratory environment.

In this study, we present a portable analytical platform based on

NIR spectroscopy (NIRS) technology. This platform is developed with

the forensic process kept in mind. The NIRS analyzer, called the

Powder Puck, is equipped with a miniaturized NIR sensor from Si-

Ware26 systems that covers a wavelength of 1300–2600 nm. This

NIR sensor is unique in its kind because of a miniaturized Michelson

interferometer that was designed through Micro Electro Mechanical

Systems (MEMS) technology. As a result, the Powder Puck provides

spectral data with a high signal to noise ratio (SNR), good repeatabil-

ity, and valuable specificity. Analysis of spectral data is supported by a
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customized identification model based on machine-learning tech-

niques. It is common to train drug identification models using large

amounts of training data. This is a time-consuming approach and

requires significant resources to accomplish. The analytical effort to

calibrate a single Powder Puck instrument is kept to a minimum by

using modeling techniques especially suited for this purpose. Only

spectral fingerprints of pure substances are required to identify the

composition of illicit drug mixtures. Taking cocaine as an example, this

amounts to approximately 15 pure powder components that are likely

to be encountered in forensic samples. These powders form the basis

of all possible practical combinations of cocaine, cutting agents, and

adulterants. A simple software-interface and easy sample handling

enables non-experts to operate the analyzer.

The performance of the Powder Puck was assessed using an elab-

orative test protocol. This test aims to quantify the false positive and

false negative rate. For this purpose, a large number of laboratory mix-

tures and seized case samples were used. These samples were ana-

lyzed in different glass vials or scanned directly through their plastic

packaging. The identification model based on dedicated pure spectral

library components proved not only to be successful in identification

of cocaine present in mixtures but also enables quantification and

thus composition analysis.

2 | MATERIALS AND METHODS

2.1 | Materials

For the performance evaluation of the Powder Puck the following

sample sets were used:

Set A: Spectral library components

The purpose of this set is to train the identification model using pure

component spectra only. All pure substances used for the reference

spectral database mentioned in Section 2.4 were provided by either

the forensic laboratory of the Amsterdam Police or the Dutch Cus-

toms Laboratory and were originally obtained from the sources

reported in earlier work.16,20 All samples were white powders ana-

lyzed through glass vials.

Set B: Selectivity

The goal of this set is to assess the false positive rate. This set

comprises 251 samples containing a large variety of controlled

substances, uncontrolled designer drugs (i.e., NPS), pharmaceuticals,

cutting agents, adulterants, and common household chemicals that all

may possibly be encountered in a forensic setting. All samples were

powders ranging in color from (off-)white to cream, stored and

analyzed in glass vials. Full details of the samples are shown in

Tables S1–S4.

Set C: White powder mixtures

The goal of this set is to assess the quantification limit of cocaine HCL

within mixtures. A total of 88 binary mixtures of cocaine HCl were

prepared with eight common adulterants, mixed from 0 wt% cocaine

to 100 wt% cocaine in steps of 10 wt%. Mixtures were prepared with

the following adulterants: levamisole HCl, lidocaine HCl, phenacetin,

paracetamol, procaine HCl, caffeine, mannitol, and myo-inositol. All

samples were homogenized powders contained in glass vials.

Individual samples are reported in Table S5. Details on origins and

preparation have been reported elsewhere.16

Set D: Case samples

The goal of this set is to investigate the robustness of the method

when real-life street samples are analyzed. A total of 181 case sam-

ples with a light (i.e., white, off-white, and cream) color and a powder

or chunk-like appearance were randomly selected from forensic

casework seized in 2020. Gas chromatography–mass spectrometry

(GC–MS) and FTIR analysis revealed their identities as containing

cocaine (109 times), ketamine (15 times), amphetamine (14 times),

MDMA (13 times), methamphetamine (2 times), or various other sub-

stances (28 times). Samples were stored in glass vials and analyzed in

its original form without additional sample preparation such as milling

or crushing. Details on individual sample identity can be found in

Tables S6 and S7.

Set E: Plastic bagged samples

The goal of this set is to investigate the possibility to directly charac-

terize materials contained in plastic bags. A total of 236 case samples

stored in plastic re-closable low-density polyethylene (LDPE) bags

were analyzed by scanning through the plastic packaging. These LDPE

bags were applied by forensic investigators during (on-scene) sampling

of seizures. For all case samples, information on their identity and

presence of controlled substances was available from GC–MS or FTIR

analyses performed by the Police Laboratory as part of their routine

validated analytical scheme. The samples were identified as containing

cocaine (169 times), heroin (22 times), methamphetamine (5 times),

MDMA (3 times), or various other substances (37 times), and all origi-

nated from different bulk (≥1 kg) drug seizures. Details can be found

in Table S8.

2.2 | Analytical platform

The portable Powder Puck analyzer (Figure 1a) was developed with

the forensic process in mind. The Powder Puck itself is part of an ana-

lytical platform to ensure robustness, accuracy, and scalability. These

functional demands are vital for acceptance within the demanding

and versatile field of forensics. The near-infrared sensor was specifi-

cally selected by its design, repeatability, and specificity of common

drugs-of-abuse in the selected wavelength range. Individual devices

can easily be calibrated. Only the spectral fingerprints of a small set of

pure substances are required as input for the chemometric model
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(2.5) for identification purposes. Forensic experts from the Dutch

Police were consulted to identify these substances that are likely to

be present in pure or as constituent of a mixture in forensic case sam-

ples commonly encountered in the Netherlands. A simple software-

interface and easy sample handling enables non-experts to operate

the analyzer by a single button-click (Figure 1b). Analysis results can

be stored and are ready-to-use for documentation, reporting, and/or

database storage.

2.3 | Near-infrared sensor

The Powder Puck analytical platform is based on sensor technology

from Si-WARE (Cairo, Egypt). The NeoSpecta sensor covers a wave-

length range of 1300–2600 nm. A spectral measurement consists of

160 datapoints representing a resolution of 16 nm at 1550 nm. A dis-

tinctive feature of the NeoSpectra sensor is the use of Fourier

transform–infrared (FT-IR) technology using a monolithic miniaturized

Michelson interferometer chip that was produced using MEMS tech-

nology. This feature is unique compared to competitive dispersive

miniature spectrometers (such as the microNIR form ViaVi or NirScan

Nano from Texas Instruments). The design of the sensor allows for

the use of a single uncooled InGaAs photodetector. The optical head

of the sensor is equipped with three miniature halogen light bulbs.

The Powder Puck collects spectra in remission (viz., diffuse reflec-

tance) mode at the surface of the cover plate. The cover plate is made

of optical glass to maximize the signal-to-noise ratio. Due to the con-

figuration of the optical head, the area illuminated at the surface of a

glass vial is roughly 2.5 mm in diameter. The sensor requires a 3.3-V

power supply which was provided via the USB controller. Sensor con-

trol software, algorithms, and applications were created in Matlab

2020b update 5. Executables were created in Matlab compiler version

8.1 (R2020b). Samples were analyzed by simply placing them on top

of the scanner as depicted in Figure S1. Sets B–D samples in glass

vials were analyzed in triplicate and shaken between each replicate

scan. Single scans were conducted for Set E samples in plastic bags.

Background scans of a Fluorilon reflectance standard were recorded

before the first analysis and subsequently every 15 min for instrument

calibration.

2.4 | Spectral database of pure components

Within the context of the analytical platform, it is important to distin-

guish by (i) a spectral database of pure components and (ii) matrix

library subsets with typical compounds encountered in casework sam-

ples for a given drug of abuse. The spectral database represents NIR

spectra of all pure components. Pure components contained in glass

vials (Set A) are measured in 10-fold in remission mode, and all the

resulting absorbance spectra were stored in the spectral database of

pure components.

A matrix library is defined by its collection of pure components

from this spectral database. Consider for example the cocaine matrix.

This library consists of the illicit drug components itself, namely,

cocaine HCL and cocaine base. Cocaine is commonly found in a mix-

ture of cutting agents. Therefore, cutting agents are added to the

cocaine matrix as well. For “party pills,” another matrix could be cre-

ated, namely, the party pill matrix. The pure components in this matrix

F IGURE 1 The Powder Puck NIR analyzer scanning a sample directly through plastic packaging (a) and the software interface showing the
recorded spectrum and the identification results (b) [Colour figure can be viewed at wileyonlinelibrary.com]
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represent illicit drug components such as MDMA or 2C-B. Party pills

are produced using colorants and excipients as well, such as lactose or

magnesium stearate. Thus, pure component spectra for these sub-

stances are added to complement the party pill matrix. Like this, sev-

eral dedicated matrix libraries can be constructed aimed to analyze

specific categories of illicit drugs on the basis of known formulations.

The matrix library to identify unknowns can be selected in the

software. Based on pre-knowledge, a certain matrix library is selected

for identification. If this matrix library produces inconclusive results

(i.e., sample is not part of the model population or is outside of the

design space) another matrix library can easily be selected.

In this study, a single matrix library is constructed to identify com-

mon drugs of abuse that are encountered in lightly colored powders,

presumably containing cocaine. The white powder matrix consists of

the 17 pure components listed in Table 1.

It can be seen from Table 1 that besides cocaine HCL and cocaine

base, other illicit drug components are present as well. This choice is

justified by the fact that cocaine suspected street samples are often

identified in a later phase as, for example, MDMA, amphetamine or

ketamine. Although these illicit drug components are not part of a

cocaine-based matrix in a strict sense, it is for practical reasons that

the cocaine matrix is complemented with MDMA, amphetamine,

methamphetamine, ketamine, and heroin. Care must be taken not to

include too many unfamiliar components in the cocaine matrix since

this can hamper the model performance.

2.5 | Data analysis method

2.5.1 | Chemometric identification model

The Powder Puck analyzer incorporates a multi-stage chemometric

model for compound identification and quantification. This model is

designed for forensic samples characterized by the following specifics:

i. Concentration of target components is well beyond the common

quantification limit of NIRS which is roughly 5 wt%

(e.g., relatively pure compounds or mixtures with high abundance

of the active ingredient).

ii. Complexity of mixtures is relatively limited (e.g., mixtures nor-

mally represent no more than three different substances).

iii. Variety is limited and predictable (e.g., the vast majority of sam-

ples will contain a limited set of �15 commonly encountered

substances).

The model is tuned to minimize the false positive rate for unknown

powders while at the same time maximizing successful identification

of drugs-of-abuse samples. Especially the false positive rate is of

utmost importance. False positive identifications may have serious

adverse consequences such as unjustly arrest and detention. There-

fore, the design space of the cocaine library is well protected. In the

first stage of modeling, samples are rejected for further analysis if they

do not fit with the cocaine library.

The chemometric identification model is illustrated in Figure 2

and consists of three main stages: input, model, and result phase. The

input for the model consists of the matrix library and the unknown

sample spectrum. The matrix library spectra are pre-processed to

leverage spectral variations suited for identification purposes. At the

same time, pre-processing is kept to a minimum to assure robustness

of the model. For this purpose, spectral wavelengths <1400 nm are

discarded because of poor SNR properties. To reduce the effects of

baseline drifts and/or shifts, second derivative spectra are calculated

from the raw absorbance spectra. The same pre-processing is applied

to the unknown spectrum. To assure the quality of the matrix library

spectra, an outlier detection based on principal component analysis

(PCA) residuals and distances was applied. In this way, erroneous

spectral measurements are excluded from the matrix library.

The model stage consists of two components. The first compo-

nent is a linear discriminant analysis (LDA) classification model based

on pre-processed matrix library spectra. Again, the complexity of the

classification model is kept to a minimum to assure model robustness.

The second component is a net analyte signal (NAS) model. Multivari-

ate calibration by NAS models was introduced by Lorber et al.27 and is

suitable for inverse spectral calibration without the requirement of

calibration standards.28,29 The NAS model is based on the same set of

pre-processed matrix library spectra.

The LDA model is intended to identify pure components while

the NAS model is used to specify mixtures. Both models are equipped

with their own design-space. These design-spaces are critical to

answer the following question: is the unknown spectral measurement

best described by the LDA model, the NAS model, or no model. If the

first condition applies, the sample represents a pure component from

the matrix library. In the second scenario, the unknown is believed to

be a potential mixture and therefore the NAS model is used. In the

third case, the unknown is considered to fall outside the experimental

subspace described by the library components. To avoid false posi-

tives, these samples are excluded from further analysis and receive

the label “inconclusive.”
If an unknown sample is passed to the NAS model, prior informa-

tion from the LDA step is transferred. This information represents a

shortlist of matrix library components for the NAS model. As a result,

not all matrix library components are utilized during the NAS modeling

TABLE 1 Overview of pure components representing the white
powder matrix library

Category Pure component

Illicit drug cocaine HCljcocaine basejMDMA

HCljamphetamine

sulfatejketaminejmethamphetamine HCljheroin
HCljheroin base

Adulterants/

others

levamisole HCljphenacetinejlidocaine HCljlidocaine
basejcaffeine
HCljparacetamoljinositoljmannitoljprocaine
HCljnoscapine HCljpapaverine HCl

Carriers LDPE plastic
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step. Reducing the NAS modeling space creates less possible mixture

combinations and, therefore, decreases the false positive rate. At the

same time, the reduced NAS modeling space can have a negative

impact on the true positive rate since possible candidates are filtered

out. Thus, the exact composition of the LDA shortlist is important to

find an optimum considering these effects.

Is it also possible to apply user defined rules at the NAS modeling

stage based on expert knowledge (e.g., certain components are not

allowed as mixtures of each other if it is highly unlikely to encounter

this combination in actual samples). For this study, the combination of

two illicit drug components in a mixture was excluded from further

analysis.

The outcome of the NAS model is twofold: (i) no mixture of

matrix library components could be constructed to properly fit the

measurement for the unknown sample or (ii) a combination of matrix

library components is found that fits the unknown measurement. In

the first instance, the sample receives the label “inconclusive.” For the
second outcome, the proper fit is described by a similarity score, com-

position and individual component contribution, for example, 78%

cocaine + 21% levamisole with a 0.95 similarity score. Model fits that

receive a similarity score >0.80 are accepted by the software as a valid

result. Model fits with a similarity score between 0.70 and 0.80 are

reported as a possible detection and are accompanied with a warning

in the software. Model fits with a similarity <0.70 receive the label

“inconclusive.”
Decision criteria to direct an unknown sample to the LDA model,

NAS model or out-of-design space are optimized using non-

parametric statistics and Monte Carlo simulations. When components

are added or removed from the matrix library, these decision criteria

are automatically re-calculated.

2.5.2 | On-line and off-line processing

For convenient on-scene detection of samples, minimal processing is

advantageous since this both leads to rapid results and less battery

consumption on mobile devices. Therefore, the model uses a-priori

(off-line) computations as much as possible. Since matrix library spec-

tra are already off-line available in the database, preprocessing, opti-

mization, and the construction of the LDA classification model only

needed to be performed once. The data and model can then be stored

in the software. During analysis (viz., the on-line process), only the

unknown spectrum needs to be preprocessed and can be classified

using the stored LDA model. Naturally, the subselection of compo-

nents by the LDA model and the mixture analysis by the NAS-based

model always had to be performed on-line directly after scanning. On

average, scanning of a sample took �2 s and subsequent data-

processing took between 1 and 10 s using a laptop computer with an

i5 processor and 8 GB of internal memory, depending on whether the

detection originated from the Stage 1 (LDA) or Stage 2 (LDA followed

by NAS) part of the model.

3 | RESULTS AND DISCUSSION

In this section of the paper, false positive results are colored red and

false negative results are colored orange in the Tables S1 to S6. Identi-

fication results with a similarity score between 0.70 and 0.80 are col-

ored gray and highlighted with italic text formatting. Identification

results with similarity scores between 0.70 and 0.80 are only indica-

tive, therefore not contributing to the pool of false positives (but may

be a false negative in cases where an illicit drug is missed due to the

≤0.80 threshold). True negatives originate from the pool of identifica-

tion results that received a similarity score ≤0.80 for the particular

illicit-drug compound.

3.1 | Spectral selectivity and true negative/false
positive assessment

A total of 251 forensic samples containing different substances (Set

B) were analyzed in triplicate. These samples consisted of various con-

trolled substances, NPS, adulterants, pharmaceuticals, and common

household chemicals as well as several mixtures of them. Full details

F IGURE 2 Schematic overview of the chemometric model incorporated in the Powder Puck analytical platform [Colour figure can be viewed
at wileyonlinelibrary.com]
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and results can be found in Tables S1–S4. Among these samples, only

one single scan returned false positive. This scan originated from a

levamisole HCl, phenacetin, and procaine HCl mixture (ratio 1:1:1 by

weight) that was predicted as a being cocaine HCl (16%), phenacetin

(17%), and procaine HCl (34%) by the Powder Puck. Both other repli-

cate scans of the same sample were correctly predicted as an adulter-

ant mixture not containing any controlled substance. For one of these

scans, all three adulterants present were detected. For the other scan,

a phenacetin and procaine HCl mixture was reported, thus excluding

levamisole. The high selectivity and very low false positive rate can be

explained by both the spectral range of the embedded NIR sensor and

the strict decision criteria incorporated in the model. Figure 3 shows

the raw NIR spectra as obtained for both cocaine HCl and cocaine

base compared with a selection of commonly encountered drugs and

cutting agents. Already in the raw spectral data, it is clearly visible that

each substance yields at least several unique diagnostic peaks. It must

be noted that the chemometric model uses the derivative spectral sig-

nal; therefore, even minor yet consistent peaks not readily visible in

the raw spectra in Figure 3 will also contribute to the identification

process. A notable observation is that NIR spectra are different for

the free base and salt forms of a molecule as shown in Figure S2. This

is in line with FTIR spectra of illicit drug compounds.30 This phenome-

non is important for library design. In this study, brown heroin samples

initially returned inconclusive in preliminary experiments whereas

white heroin samples were correctly identified. At that initial stage of

constructing the matrix library only the spectrum of a heroine HCl ref-

erence was included in the library. Since white heroin samples typi-

cally contain the HCl form, these were correctly identified, but the

brown heroin samples that usually consist of the heroin base form

were therefore missed. After including the heroin base spectrum

(Figure S2B) to the library, these samples were correctly detected. It is

important to mention that this aspect is also relevant for adulterants.

For example, lidocaine does also exist in its freebase and HCl form

(spectra in Figure S2C) and including only one in the library can lead

to inconclusive results as the model is unable to assign a major pro-

portion of the observed unknown spectrum to a certain compound.

F IGURE 3 The 1300–2600 nm NIR spectra of cocaine HCl (red) and cocaine base (green) in overlay with common drugs heroin (orange),
MDMA (purple) and ketamine (blue) in Panel (a); amphetamine (orange), methamphetamine (purple) and GHB (blue) in Panel (b); common cutting
agents lidocaine (orange), phenacetin (purple), levamisole (light blue), and caffeine (dark blue) in Panel (c); procaine (orange), mannitol (purple),
inositol (light blue) and paracetamol (dark blue) in Panel (d) [Colour figure can be viewed at wileyonlinelibrary.com]
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3.2 | Mixture analysis and true positive/false
negative assessment

The 0–100 wt% binary mixtures of cocaine HCl (Set C) provided

insight in the limit of quantification. It is shown that cocaine was cor-

rectly detected in all samples in which 20 wt% or more cocaine was

present. For the eight various adulterants mixed with only 10 wt% of

cocaine HCl, in 20 out of the 24 scans cocaine was correctly detected.

In the remaining four scans only the adulterant (accounting for 90 wt

% of the sample) was detected and the presence of cocaine was not

reported. These were the only observed false negatives in this set.

It must be understood that each NIR spectrum measured at the

surface of the glass vial represents only a small portion of the total

sample volume (�2.5 mm ø detection window). When homogeneity

of a powder mixture is poor the chance to measure the minor compo-

nent at the surface of the vial might be low. Considering the fact that

other mixtures of cocaine and adulterants are well identified for

weight percentages of 10 wt%, it could be that the reported false neg-

ative samples suffered from poor sample homogeneity.

For the mixtures with high active ingredient content, the system

showed perfect performance with correct detection of the adulterant

in all scans, even for the 10 wt% adulterant: 90 wt% cocaine mixtures.

All individual results are listed in Table S5. Figure 4 shows the spectral

data of four different 0–100 wt% binary cocaine HCl mixtures, other

spectra can be found in Figure S3. These spectra show that peaks

diagnostic for either cocaine or the adulterant can be clearly observed

in the raw spectral data.

In addition to the accurate qualitative performance, a semi-

quantitative prediction is also generated for each component. These

results were surprisingly accurate as can be seen in both Figure 5 and

the individual results in Table S5. It must be emphasized that these

semi-quantitative results were predicted by the NAS model using only

the prerecorded library spectra of the pure compounds (Set A) as

input. No calibration standards were needed to obtain this result.

Some notable component specific deviations were observed, for

example, cocaine in procaine mixtures were dominantly predicted

below the actual concentration (�12% average) whereas inositol and

mannitol were in all cases predicted above their known level (+16%

and +15% average, respectively). An explanation for this phenomenon

lies in the signal intensity differences for the individual substances.

The overall balance in the model is demonstrated by the near-unity

slope of the regression line. Besides model- and spectrum-related ori-

gins, another possible explanation for both the false negatives and the

deviation in the prediction may be sample inhomogeneity. As dis-

cussed earlier, it is well known that mixtures of solid substances can

be inhomogeneous or even unmix when individual particle sizes differ.

Since the detection window on the sensor is 2.5 mm in diameter, only

a small portion of the sample is actually analyzed by the sensor. This

can be compensated for by taking multiple scans while moving or

redistributing the sample by, for example, shaking.

F IGURE 4 NIR spectra from binary mixtures of cocaine HCl with the common adulterants inositol (a), levamisole (b), lidocaine (c), and
phenacetin (d) at concentrations from 0 to 100 wt% cocaine HCl. Percentages reflect the cocaine content [Colour figure can be viewed at
wileyonlinelibrary.com]
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3.3 | Performance on seized casework material

To assess the performance of the Power Puck in an actual forensic

setting, a random selection of 182 lightly colored, solid casework sam-

ples (e.g., powders, coarse powders, crystals; Set D) were analyzed in

triplicate. The obtained results (Tables S6 and S7) were compared

with the known identities and compositions as determined through

GC–MS and FTIR analysis. Again, an excellent performance was

achieved with 320 out of the 330 scans from casework samples cor-

rectly reported positive for cocaine. For MDMA, ketamine and meth-

amphetamine, all sample replicates were correctly identified. Only

seven false positive results for cocaine were observed. These false

positives all originated from three individual amphetamine-containing

samples (�20% amphetamine in caffeine) that were erroneously

predicted as �20% cocaine in caffeine. The only other false positive

result was a multi-adulterant mixture containing (at least) phenacetin,

caffeine, and levamisole. In two of the three replicate scans, this sam-

ple was identified as a mixture of �15% amphetamine with caffeine

and inositol. Identification for amphetamine was found to be more

challenging with 13 out of the 42 scans of amphetamine-containing

case samples being inconclusive in addition to the 7 scans (from 3 indi-

vidual samples) that yielded a false positive result for cocaine.

When looking at the physical appearance of these three samples,

it was noticed that these materials all were light-brown, coarse chunks

instead of white powders. Compared with powders, regular reflection

from the external surface of these materials will be different. As a

result, unknown variations contribute to the spectrum of these

specific amphetamine samples. The NAS model tries to ascribe these

variations to the set of library components. Consequently, false posi-

tives are generated. There are two ways to deal with these specific

samples. First, to avoid the inclusion of unknown remission effects,

samples that represent coarse chunks must be prepared before analy-

sis. Therefore, samples PAM046, PAM148, and PAM182 were re-

analyzed after crushing the coarse chunks to powder and scanning

the material directly on top of the sensor plate. As a result, all false

positives for cocaine were prevented. Instead one true positive

(amphetamine–caffeine mixture) and eight false negative results (only

caffeine identified) were obtained. The second solution is to extend

the matrix library with coarse chunks of amphetamine. Like this, the

model becomes more capable to correctly ascribe variations that origi-

nate from the physical appearance of a sample.

The confusion matrix of the casework samples (Set D) as well as

all other individual sets can be found in Table S9. Since GC–MS

results were available for all samples, the accuracy of the total

predicted mixture composition could be validated for compounds

detectable by GC–MS. From the total 701 individual substances

predicted in the set D samples, 630 of them could be used for verifi-

cation by the GC–MS results. The remaining substances cannot be

analyzed by GC–MS (i.e., inositol, mannitol, and lactose). For the GC–

MS-detectable compounds in the NIR results, 610 (97%) were actually

confirmed by GC–MS and 20 (3%) were not confirmed. These errors

in all cases involved low compound levels (2%–23%), with the excep-

tion of a single scan of a cocaine sample that was predicted as 42%

ketamine (PAM078). The comparison of the NIR results with the GC–

MS data can be found in Table S7.

The combined results of all 520 Sets B–D samples (1560 scans) in

glass vials are shown in the confusion matrix in Table 2. Since the

majority of randomly selected casework samples consisted of cocaine,

most reliable insight in the performance is obtained for this drug. For

this psychoactive compound, a 0.5% (5 out of 1090 scans) false posi-

tive rate and a 2.4% (14 out of 588 scans) false negative rate was

obtained. Similar performance was observed for the other common

drugs-of-abuse, although the lower abundance of these compounds in

the sample sets restricts the insight in performance and limits the con-

clusions that can be drawn at this stage. All observed false positive

and false negative results are summarized in Table S10. In many cases,

the observed similarity score R already provided an indication for the

erroneous result. For 14 false negative scans, the correct active ingre-

dient was detected, but the similarity scores were between 0.70 and

0.80. These results were reported by the software with a warning, but

are considered inconclusive and thus are reported as a false negative

in this study.

In addition, half of the false positive results had a similarity score

between 0.80 and 0.90. This indicates that up to 20% of the spectral

signal could not be described by the NAS model, likely the result of a

constituent whose spectral signature is not present in the matrix

library yet. In other words, the measurability of the matrix library is

partly insufficient. The consequence of this is important to realize. As

long as the NAS model is “blind” to the missing constituent, model fits

will never receive higher similarity scores than between 0.80 and

F IGURE 5 Plots of the actual composition vs. the predicted
composition of all binary cocaine HCl mixtures expressed as cocaine
HCl content (a) and adulterant content (b) in wt%
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0.90. Since the threshold value of acceptance is 0.80, these samples

will produce false positives as was found in this research. Only when

the missing constituent is added to the matrix library, the model will

be capable to present the user with a better model fit that might

reaches a similarity score of >0.95. This shows that the false positive

rate of the application and representativeness of the analytical matrix

is strongly connected. If the coverage of the matrix library is nearly

complete, it makes sense to increase the threshold value for the simi-

larity score to, for example, 0.90. This will both improve the false posi-

tive rate and true negative rate. This illustrates the importance of

library design, composition, and maintenance. When a substance is

likely to be present in a certain forensic setting, either as pure sub-

stance or as part of a mixture, this substance should be added to the

matrix library.

On the other hand, care must be taken not to overfill a matrix

library. This may increase the risk of false positive results from the

NAS-based mixture analysis model. The matrix library presented in

this study is optimized for common drugs-of-abuse found in lightly

colored powders. Since the re-analysis of an already analyzed spec-

trum on a different library is possible within seconds, it is advised to

create dedicated libraries. Selecting the most promising library can be

based on the physical appearance of a sample (i.e., sample color, tablet

yes/no, and plastic bagged) or forensic backgrounds of the user. Dedi-

cated libraries for heroin (including opium alkaloids papaverine,

noscapine, and codeine), ecstasy tablets (including tablet fillers, excipi-

ents and various synthetic drugs), and NPS are envisioned.

3.4 | Analysis directly through plastic packaging

As a next step towards implementation in the actual forensic process,

the influence of packaging material was investigated. Analyzing sam-

ples directly through the packaging can be (i) faster, because original

samples can directly be placed on top of the sensor; (ii) safer, since

unnecessary touching and handling of the potential hazardous sub-

stance is avoided; and (iii) of less forensic risk, as the additional

subsampling in a glass vial may increase the risk of accidental mix-ups.

Unlike glass, that is mainly inert for NIR absorption, most plastic

packaging materials do absorb in the NIR wavelength range. Re-

closable bags and Ziplock bags that are commonly used for the pack-

aging of drugs-of-abuse are often made of LDPE. To compensate for

this, an LDPE reference NIR spectrum was recorded. A dedicated but-

ton in the software (Figure 1b) was created to conveniently add this

reference spectrum to the library only in cases where a sample was

analyzed directly in its plastic packaging (Figure S1b). An LDPE refer-

ence spectrum is shown as the green plot in Figure 6. Spectral absorp-

tion bands were observed around 1750 nm and between 2200–

2500 nm. Spectra of four common drugs-of-abuse analyzed in glass

(red plots) and through a plastic bag (orange plots) are also shown in

Figure 6, the latter clearly being a combination of both the drug and

plastic material.

A total of 236 case samples stored in plastic bags were analyzed

by directly putting the sample on top of the sensor and including the

LDPE reference spectra in the library. All cocaine (169), MDMA

(3) and methamphetamine (5) samples were correctly identified as a

combination of the active ingredient and plastic. Only one out of the

22 heroin samples was missed. Unfortunately, 7 out of the 37 non-

drug-containing samples, mainly levamisole, were falsely predicted as

containing �20% of cocaine in a mixture. It is hypothesized that these

samples contained an unknown compound (e.g., levamisole base or a

compound undetectable by GC–MS) that was not present in the

library. The complex situation of an NIR spectrum consisting of LDPE

plastic, levamisole, and an unknown substance then resulted in the

highest match being �20% cocaine and �15% unexplained residual

signal as can be seen from the similarity scores around 0.85. It must

be noted that in the case of plastic bagged samples, all results were

logically produced by the NAS-based mixture analysis part of the

chemometric model (Figure 2) because all spectra were inevitably

mixtures.

The confusion matrix showing the results of the samples in plastic

bags is given in Table 3. All individual results can be found in Table S8.

A resume of the false positive and false negative results is shown in

Table S10.

The variation in thickness and appearance (e.g., multiple layers,

wrinkled, and colored) was not included in this experiment as most

plastic bags were of uniform origin. It is noteworthy that the reference

TABLE 2 Combined results of all forensic samples in Sets B, C, and D

Identity

Powder Puck NIR analyzer result

Cocaine MDMA Ketamine Methamp Amph Heroin Other Inconclusive

cocaine 98% (574) 0% (0) 0% (1) 0% (0) 0% (0) 0% (0) 1% (4) 2% (9)

MDMA 0% (0) 100% (48) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)

ketamine 0% (0) 0% (0) 94% (48) 0% (0) 0% (0) 0% (0) 0% (0) 6% (3)

methamphetamine 0% (0) 0% (0) 0% (0) 100% (15) 0% (0) 0% (0) 0% (0) 0% (0)

amphetamine 14% (7) 0% (0) 0% (0) 0% (0) 61% (31) 0% (0) 0% (0) 25% (13)

heroin 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 89% (8) 0% (0) 11% (1)

other 0% (1) 0% (0) 0% (0) 0% (0) 0% (2) 0% (0) 16% (136) 84% (704)

Note: All samples analyzed in triplicate, numbers indicate individual scans, results in red depict false positives, results in orange depict false negatives,

results in bold are true positives or true negatives. amph, amphetamine; methamp, methamphetamine.
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LDPE spectrum was recorded from a transparent plastic re-closable

bag whereas many casework samples were stored in slightly different

pink-colored antistatic LDPE bags. No spectral differences were

observed between these two types of LDPE bags, indicating that the

colorant used for the pink color does not significantly absorb in the

1300–2600 nm NIR range.

4 | CONCLUSIONS AND FUTURE
OUTLOOK

The NIR-based analytical platform proved to be successful for the

detection of frequently encountered drugs-of-abuse in seized case-

work samples with a light color and/or a powdery appearance. A 0.4%

F IGURE 6 Influence of packaging material on the NIR spectrum of the common drugs cocaine HCl (a), amphetamine sulfate (b), MDMA HCl
(c), and methamphetamine HCl (d). The red trace in each panel corresponds to the NIR spectrum for the substance analyzed in a glass vial, orange
traces relate to the substance analyzed in a LDPE plastic bag and the spectra plotted in green show the spectrum of a single layer of the LDPE
plastic bag [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Results of the forensic samples analyzed in plastic re-closable bags, set E

Identity

Powder Puck NIR analyzer result

Cocaine MDMA Methamp Heroin Other Inconclusive

Cocaine 100% (169) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)

MDMA 0% (0) 100% (3) 0% (0) 0% (0) 0% (0) 0% (0)

methamphetamine 0% (0) 0% (0) 100% (5) 0% (0) 0% (0) 0% (0)

heroin 0% (0) 0% (0) 0% (0) 95% (21) 5% (1) 0% (0)

other 16% (6) 0% (0) 3% (1) 0% (0) 43% (16) 38% (14)

Note: Single scan per sample, results in red depict false positive outcomes, results in orange depict false negative conclusions, results in bold are true

positives or true negatives. methamp, methamphetamine.
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false positive (5 out of 1090 scans) and a 2.4% false negative rate

(14 out of 588 scans) was obtained for cocaine in a large set of

520 unique forensic casework samples. MDMA, ketamine, metham-

phetamine, and heroin had a lower occurrence within this sample set;

however, their results indicate a similar performance for these com-

pounds. Only a relatively small set of training data based on pure

library components is required for the chemometric identification

model. This feature reduces the analytical calibration effort signifi-

cantly making it attractive for upscaling. This “calibration-light”
approach proved successful to identify cocaine in various amounts of

mixtures with its eight most commonly encountered adulterants, at all

levels exceeding 10 wt%.

In addition to samples analyzed in glass vials, case samples were

also scanned directly through plastic packaging. For these analyses, a

reference spectrum of LDPE was included in the library. Also with this

non-invasive protocol, common drugs-of-abuse were successfully

detected with a 99.6% true positive and 97.0% true negative rate in

236 plastic bagged casework samples.

Amphetamine, especially the darker colored coarse chunks,

appeared challenging by showing inconclusive results or

mispredictions. Grinding and analyzing the material directly on top of

the cover plate eliminates the false positives for these specific

amphetamine samples. The presence of unexplained spectral varia-

tions, indicated by lower similarity scores for these samples, also

reveal that the “white powder” matrix library does not fully cover the

composition and appearance of amphetamine casework samples.

Most likely because an adulterant or specific salt form is missing in

the library. The creation of a dedicated amphetamine matrix library is

therefore suggested as a future outlook. In a forensic setting, these

results can nonetheless be acceptable for on-site presumptive testing

as both inconclusive and false positive samples will be sent to the lab-

oratory for confirmatory analysis.

Unlike color tests that are only specific (e.g., yield a certain color)

for a limited set of compounds, the NIR sensor in the Powder Puck

provides a spectrum that is highly specific for individual drug sub-

stances. For pure substances, the use of dedicated libraries such as an

NPS library may advance the capabilities of the NIR based analytical

platform. For mixtures, it is important to create and optimize a library

in such a way that most of the spectral signal can be explained by the

model. This requires the incorporation of prior forensic knowledge on

adulterants, excipients, and salt forms of substances that may be

encountered. As such, the role of a forensic expert as part of the ana-

lytical platform is key also in keeping the library up to date when new

constituents are found in casework mixtures or when known adulter-

ants are no longer used. In addition to presumptive testing, the perfor-

mance of the Powder Puck also warrants an exploration of using the

NIR findings as admissible evidence in court. This can be achieved by

using the NIR result either in combination with traditional laboratory-

based techniques (GC–MS, FTIR) or in combination with another on-

scene portable technique such as Raman spectroscopy. For the latter,

intelligent data-fusion approaches to substantiate evidential value and

assess orthogonality of both techniques are envisioned. This way,

time-consuming transport, logistics, and laboratory analysis may

ultimately be avoided thus realizing a far more time and cost efficient

process for drugs-of-abuse identification.
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