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Abstract
In reinforcement-learning studies, the environment is typically object-based; that is, objects are predictive of a reward. 
Recently, studies also adopted rule-based environments in which stimulus dimensions are predictive of a reward. In the cur-
rent study, we investigated how people learned (1) in an object-based environment, (2) following a switch to a rule-based 
environment, (3) following a switch to a different rule-based environment, and (4) following a switch back to an object-
based environment. To do so, we administered a reinforcement-learning task comprising of four blocks with consecutively 
an object-based environment, a rule-based environment, another rule-based environment, and an object-based environment. 
Computational-modeling results suggest that people (1) initially adopt rule-based learning despite its suboptimal nature in 
an object-based environment, (2) learn rules after a switch to a rule-based environment, (3) experience interference from 
previously-learned rules following a switch to a different rule-based environment, and (4) learn objects after a final switch 
to an object-based environment. These results imply people have a hard time adjusting to switches between object-based 
and rule-based environments, although they do learn to do so.

Keywords Adaptivity · Hierarchical Bayesian modeling · Reinforcement learning · Strategy use

Introduction

In reinforcement-learning studies, the environment is usually 
object-based (also called non-generalizable). That is, people 
have to choose between pictures of objects, and these objects 
themselves are predictive of a reward. For example, choosing 
the picture of the cat generally leads to a reward whereas 
choosing the picture of the house does not. In a rule-based 
environment  (also called generalizable), people have to 

choose between pictures that comprise multiple dimen-
sions (e.g., color, pattern, and shape), and these dimensions 
are predictive of a reward. For example, choosing squared 
stimuli generally leads to a reward whereas choosing round 
stimuli does not. So in this example, the rule is “all squared 
stimuli are correct”, irrespective of their color and pattern. 
Learning in object-based environments has often been 
studied in the reinforcement-learning literature (Rescorla 
& Wagner, 1972; Sutton & Barto, 2018); learning in rule-
based environments has recently received more attention 
(Balcarras & Womelsdorf, 2016; Ballard et al., 2018; Col-
lins et al., 2014; Farashahi et al., 2017, 2020; Geana & Niv, 
2014; Leong et al., 2017; Niv et al., 2015; Radulescu et al., 
2016; Wilson & Niv, 2012; Wunderlich et al., 2011). In the 
current study, we build on these two literatures by examining 
how people learn (1) in an object-based environment, and 
how they adapt their behavior (2) following a switch from 
an object-based environment to a rule-based environment, 
(3) following a switch from a rule-based environment to a 
rule-based environment governed by another rule (e.g., from 
“all squared stimuli are correct” to “all striped stimuli are 
correct”), and (4) following a switch back from a rule-based 
environment to an object-based environment. We investigate 
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these questions by inspecting choice accuracy and by com-
paring object-based and rule-based computational reinforce-
ment-learning models and parameter estimates governing 
the best-fitting models.

In object-based models, the value of an object is updated 
when this object is chosen. For example, the value of the 
picture of the cat increases when choosing this picture led 
to a reward. In contrast, in rule-based models, the values 
of stimulus features are updated. For example, the values 
of “red”, “striped”, and “square” increase when choosing 
the red striped square led to a reward. Because of this fea-
ture-value updating, learning about the red striped square 
also informs learning about other red, striped, and squared 
stimuli. This aspect of rule-based learning makes learning 
faster in rule-based environments.

With respect to our first question, Farashahi and col-
leagues (Farashahi et al. 2017, 2020) investigated how peo-
ple learn in an environment in which stimuli comprise mul-
tiple dimensions but no single dimension is predictive of a 
reward, that is, an object-based environment. These studies 
showed that people tend to learn rules in the beginning of 
the task, but adopt object-based learning at the end of the 
task. However, these tasks were complex as pairs changed 
across trials within a block and some options were thus cor-
rect in one pairing, but incorrect in another pairing. Outside 
the reinforcement-learning literature, it is known that com-
plex tasks promote the use of simple rules (e.g., Gigerenzer 
et al., 1999); therefore, task complexity may have induced 
this rule-based learning. In the current study, we build on 
these studies by adopting a novel, simpler, task in which 
pairs were fixed within a block. We hypothesized that in this 
simpler task, participants would be able to learn that objects 
were predictive of reward and thus to adopt object-based 
learning throughout the block.

Concerning our second question, several reinforcement-
learning studies showed that people learn rules in a rule-
based environment not preceded by an object-based envi-
ronment (Ballard et al., 2018; Collins et al., 2014; Geana & 
Niv, 2014; Leong et al., 2017; Niv et al., 2015; Radulescu 
et al., 2016). In the current study, we build on this literature 
by investigating whether and how people adapt their behav-
ior following a switch from an object-based to a rule-based 
environment.1 Given this previous literature, we hypothe-
sized that people would be able to adopt rule-based learning 
in a rule-based environment preceded by an object-based 
environment. Also, we hypothesized that accuracy would 
be higher in this rule-based environment compared to the 

preceding object-based environment because rule-based 
learning is faster compared to object-based learning.

Regarding our third question, three reinforcement-learn-
ing studies investigated how people learn in a rule-based 
environment in which the rewarding dimension changes 
across trials (Marković et al., 2015; Wilson & Niv, 2012; 
Wunderlich et al., 2011). Computational modeling showed 
that people adopt rule-based instead of object-based learn-
ing. In the current study, we extend this literature by testing 
whether people experience interference from the previously-
learned rule. We do this by inspecting the learning param-
eters in the best-fitting models. We hypothesized that people 
adopt rule-based learning in the new rule-based environ-
ment, but that they would experience interference from the 
previously-learned rule as previously shown outside the rein-
forcement-learning literature (Best et al., 2013; Bröder & 
Schiffer, 2006; Hoffmann et al., 2019; Kämmer et al., 2013). 
We thus expected that people would initially apply the previ-
ous rule and only later would apply the current rule. Also, 
because of this interference, we hypothesized that accuracy 
would be lower in the new rule-based environment.

With respect to our fourth question, to our knowledge, 
no reinforcement-learning studies have yet investigated how 
people learn following a switch from a rule-based environ-
ment back to an object-based environment. Again, in our 
simple task, we hypothesized that people would adopt 
object-based learning after a switch to this environment, 
and that accuracy in this object-based environment would 
be lower than that in the preceding rule-based environment 
because object-based learning is slower as compared to rule-
based learning.

In the current preregistered study, we investigated these 
four questions by administering a two-armed probabilistic 
reinforcement-learning task with three-dimensional stimuli, 
characterized by one feature on each dimension (e.g., a red 
(color dimension) striped (pattern dimension) square (shape 
dimension)). In each of four blocks, either objects or fea-
tures were probabilistically related to a reward. In the first, 
object-based, block, objects (hence no single dimension) 
were predictive of reward. In the second, rule-based, block, a 
single dimension was predictive of reward. In the third, rule-
based, block, another dimension was predictive of reward. 
And in the fourth, object-based, block, again objects were 
predictive of reward. This enabled us to investigate how peo-
ple learned in an object-based environment (block 1), how 
they adjusted their behavior following a switch to a rule-
based environment (block 2 versus 1), how they adjusted 
their behavior following a switch to a different rule-based 
environment (block 3 versus 2), and how they adjusted their 
behavior following a switch back to an object-based environ-
ment (block 4 versus 3). We analyzed these data with both 
regression analyses on accuracy and by fitting computational 
models (Leong et al., 2017; Niv et al., 2015; Rescorla & 

1 Note Farashahi and colleagues (Farashahi et  al., 2017, 2020) did 
investigate learning in object-based and rule-based environments, but 
did not test whether people adaptively switched between these envi-
ronments.
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Wagner, 1972; Sutton & Barto, 2018); the latter allowed us 
to uncover whether participants used object-based or rule-
based learning and to investigate learning parameters gov-
erning the best-fitting models.

Method

This study was preregistered as Reinforcement Learning 
of Rules on https:// osf. io/ a2zmp. We followed all preregis-
tered procedures, except for some small deviations which are 
addressed in Online Resource A. Non-preregistered analyses 
are considered exploratory and reported as such.

Participants A total of 43 participants were recruited via 
the University of Amsterdam. According to preregistered 
criteria, data from one participant were removed because 
this participant did not finish the task. In addition, data from 
six participants were removed because they indicated they 
had used alcohol or recreational drugs on the day of testing 
or indicated a lack of understanding of the task. The final 
sample thus consisted of 36 adults (22 female; Mage = 22.3 
(3.36), range: 18–31 years). No included participants had 
diagnosed psychological or neurological problems, or color 
blindness. All participants actively consented and received 
€5 or research credits plus a variable bonus between €0 and 
€2 (Mbonus = €0.52) depending on their performance on the 
task.

Experimental Design Participants performed a two-armed 
probabilistic reinforcement-learning task. The task com-
prised two types of blocks. In object-based blocks, the 
correct option in each pair could be predicted neither by a 
single dimension nor by a combination of two dimensions; 
that is, all three dimensions in combination were required to 
choose the correct option. In rule-based blocks, the correct 
option in each pair could be predicted by a single dimension. 

Participants were randomly assigned to one of two task ver-
sions: The pattern-to-shape version or the shape-to-pattern 
version. All participants started with an object-based block. 
Hereafter, two rule-based blocks followed. Participants in 
the pattern-to-shape version were presented with a pattern-
rule in the second block and a shape-rule in the third block. 
In contrast, participants in the shape-to-pattern version were 
presented with a shape-rule in the second block and a pat-
tern-rule in the third block. In the fourth block, all partici-
pants again completed an object-based block.

Reinforcement‑Learning Task On each trial, participants 
were presented with two options; each was characterized by 
one feature (e.g., “red” or “striped” or “square”) on each of 
three dimensions (i.e., color, pattern, and shape; Fig. 1; Niv 
et al., 2015). The same dimensions were used across blocks, 
but features differed between blocks. The two options in each 
pair differed in all three dimensions. In each block, four pairs 
were presented, 20 times each (i.e., the average number of 
trials per game used by Niv et al., 2015; 80 trials in total). 
The order of the four pairs within a block was determined 
randomly per four trials to ensure that pairs were presented 
a maximum of twice in a row. The options were presented 
on the left and right side of the screen in a counterbalanced 
order. Which option was correct was determined randomly 
for each participant and did not change across the trials of 
a block.

To get acquainted with the task, participants first com-
pleted a practice block with 4 pairs, each presented 6 times 
(24 trials in total). This practice block was an object-based 
block to prevent biasing participants toward learning rules. 
The practice block was performed without time limitations 
to promote accuracy over speed. Participants were instructed 
that they would play “four game rounds” and that each game 
round would “last approximately 8 min”, but they were 
unaware of the exact trial numbers. Furthermore, they were 
told that one of the options in each pair yielded the highest 

Fig. 1  Example of four pairs 
presented in each block to a 
fictive participant. On top of 
each panel, the block type is 
indicated. In each panel, the 
rows represent the pairs; the 
options on the left of the verti-
cal line are the correct options; 
the options on the right the 
incorrect options. Stimuli were 
inspired by Niv et al. (2015)
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reward (i.e., “Choices for one stimulus lead to more points 
(‘right’ choice) than choices for the other stimulus (‘wrong’ 
choice)”), and were instructed “to win as many points as 
possible”. As in most reinforcement-learning studies, we 
used probabilistic feedback. Congruency of the feedback 
was 75%; that is, in 75% of the cases, participants gained 
points (+ 10) after a correct choice and lost points (− 10) 
after an incorrect choice, and in 25% of the cases they lost 
points after a correct choice and gained points after an incor-
rect choice. Participants were instructed that “the feedback 
was usually correct, but not always”. We fixed the order of 
congruent versus incongruent feedback across participants 
to rule out individual differences in task difficulty due to 
congruency.

As can be seen in Fig. 2, each trial started with a fixa-
tion cross (1000 ms), followed by presentation of a pair 
(RT to max. 2500 ms). Participants chose between the two 
options by pressing the “z” or “/” key, for the left and the 
right option respectively, on a qwerty keyboard. After a 
choice was made, a black arrow was presented below the 
chosen option (500 ms), followed by the points gained or 
lost (1500 ms). If a choice was not made within 2.5 s, “Too 
late!” appeared on the screen (1500 ms) and participants 
lost 10 points. The next trial was again signaled by a fixation 
cross. At the top of the screen, the current game round was 
indicated; at the bottom of the screen, a progress bar kept 
track of the proportion already-administered trials (Fig. 2).

Procedure All participants were tested individually in 
a lab cubicle. After signing an informed consent form, 

the participant took place behind a computer screen and 
received on-screen instructions. Then they performed the 
reinforcement-learning task. At the end of the experiment, 
(bonus) money or research credits were paid out.

Computational Models

To assess whether people applied object-based or rule-based 
learning, we fitted computational reinforcement-learning 
models to participants’ choice data in each block sepa-
rately (all data and code are freely available on https:// osf. 
io/ rvcx5/). We considered 5 object-based and 5 rule-based 
models. The models differed in whether learning rates were 
dynamic or static across trials, and in whether learning rates 
were equal or unequal across pairs (for object-based models) 
or across dimensions (for rule-based models). From these 
10 models, we selected the best-fitting model and inspected 
the parameter estimates in this best-fitting model. Below we 
only discuss the most-complicated versions of the models. 
Details on all models, the estimation procedure, and full 
results are presented in Online Resource B.

Object‑Based Versus Rule‑Based Learning

In object-based models, people update the value of objects. 
On each trial t ( T = {1,… , 80} ) a pair p ( P = {1,… , 4} ) is 
presented, people update the value Q of the chosen option s 
( S = {1, 2} ). They do so with a proportion (i.e., learning rate 
(LR)) of the prediction error (PE), the difference between the 
observed outcome and the value of the chosen option. In the 

Fig. 2  Example trial of the 
reinforcement-learning task
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most-complicated object-based model, we modeled dynamic 
learning rates (through initial learning rate LR1 and decay 
parameter α) that were allowed to be unequal across pairs:

with

and

These object-based models thus implement that people 
update the value of each chosen object. As a result, object 
values are updated on a maximum of 20 out of the 80 tri-
als. In rule-based environments, this aspect of object-based 
learning results in slow learning.

In rule-based models (Leong et al., 2017; Niv et al., 
2015), people update the value of features, instead of 
the value of objects. On each trial, people update the 
value V of each feature f ( F = {1, 2} ) on dimension d 
( D = {color, pattern, shape} ) present in the chosen option. 
Again, this updating is done with a proportion of the predic-
tion error. In the most-complicated rule-based model, we 
modeled dynamic learning rates in a similar way as in the 
most-complicated object-based model, allowing them to be 
unequal across dimensions:

with

and

The value Q of the chosen option s is computed by adding 
the values V of the features f present in that option; equally 
weighing each dimension (i.e., 1/32):

These rule-based models thus implement that people 
update the value of all features present in the chosen option. 
As a result, learning for one pair contributes to learn-
ing of other pairs on each of the 80 trials. In rule-based 

(1)
Q(p, s = chosen, t + 1) = Q(p, s = chosen, t) + LR(p, t) × PE(t)

(2)LR(p, t) = LR1(p) × t−�(p)

(3)PE(t) = Outcome(t) − Q(p, s = chosen, t)

(4)
V(d, f (s = chosen), t + 1) = V(d, f (s = chosen), t) + LR(d, t) × PE(t)

(5)LR(d, t) = LR1(d) × t−�(d)

(6)PE(t) = Outcome(t) − Q(p, s = chosen, t)

(7)
Q(p, s = chosen, t + 1) =

∑

D = {color,

pattern, shape}

1
/

3
× V(d, f (s = chosen), t + 1)

environments, this aspect of rule-based learning results in 
faster learning compared to object-based learning.

Model Selection Procedure

Model selection was done by means of the Deviance Infor-
mation Criterion (DIC; Spiegelhalter et al., 2002), which 
was transformed into a model weight (Wagenmakers & Far-
rell, 2004) indicating the probability of each model being 
the best-fitting model given the model set. The model with 
the highest weight above 0.9 was referred to as “best-fit-
ting”. In case none of the weights exceeded 0.9, and thus no 
model clearly fitted the data best, we ordered the weights 
from highest to lowest and coined all models for which the 
cumulative sum of the weights was above 0.9 as “similar-
fitting”. We interpreted learning parameters of best-fitting 
and similar-fitting models.

Regression Models

To test whether people adapted their behavior following switches 
in learning environments, we preregistered to perform a multilevel 
logistic regression analysis on participants’ choice accuracy and 
to perform a multilevel linear regression on participants’ response 
times (cf. Online Resource C). However, the multilevel logistic 
regression analysis failed to converge, and therefore we omitted 
random effects, thereby yielding a regular logistic regression anal-
ysis. For this logistic regression, we included learning condition 
(within; blocks 1 to 4; treated as factor), trial (within; linear effect; 
coded backwards to estimate main effects at the final trial), version 
(between; pattern-to-shape or shape-to-pattern), and their interac-
tions as predictors. We ran three contrasts to assess behavior adap-
tation from an object-based to a rule-based environment (block 
2 versus block 1), from a rule-based environment to a different 
rule-based environment (block 3 versus block 2), and from a rule-
based environment back to an object-based environment (block 
4 versus block 3). Details on the preregistered multilevel regres-
sion analysis on response times and the results of this analysis are 
reported in Online Resource C and D.

Results

We applied computational modeling and performed regres-
sion analyses to assess whether people used object-based or 
rule-based learning and whether they adapted their behav-
ior following switches in learning environments. Below, per 
question, we first discuss computational-modeling results, 

2 Because the inverse temperature (see below) scales to the range of 
Q-values, 1/3 instead of 1 is chosen, to ensure inverse-temperature 
estimates are comparable across models.
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then report exploratory regression analysis on accuracy per 
block, and finally report preregistered regression analyses 
comparing accuracy across blocks. In these latter regression 
analyses, we only report effects including block as we were 
interested in switching behavior and thus block comparisons. 
Accuracy data can be found in Fig. 3. Response-time data, 
and analyses on these data, can be found in Online Resource 
C and D.

We fitted the computational models aggregating data 
over both task versions, i.e., pattern-to-shape and shape-to-
pattern, except for block 2 because the regression analyses 
on accuracy revealed a difference between the two versions 
in this block (see the “Regression Analyses on Accuracy” 
section). The best-fitting models in each block are discussed 
below alongside interpretations of the parameter estimates in 
these models. Parameter estimates and parameter-compari-
son results can be found in Online Resource E.

Learning in an Object‑Based Environment

Computational Modeling

We expected participants to learn objects in the first object-
based block; however, our model-comparison results sug-
gested that they adopted rule-based learning. A rule-based 
model including a dynamic learning rate that was unequal 
across dimensions fitted the data best. The most-attended 
dimension, that is, the dimension with the highest learn-
ing rate, was “pattern”, followed by “color” (Fig. 4, Online 
Resource E).

Regression Analyses on Accuracy

In the first block, with respect to improvement across 
trials, accuracy results showed a main effect of trial 
(z =  − 2.51, p = 0.01), but no trial × version interaction 
(p = 0.72). This indicates that participants improved 
across trials and that this improvement was similar across 
versions. With respect to the endpoint of learning, accu-
racy results showed no main effect of version (p = 0.91), 
indicating the endpoint of learning was similar across 
versions. In an exploratory analysis, we tested whether 

participants performed above chance level in the final bin. 
This proved to be the case (t(35) = 2.97, p = 0.005), but 
only slightly so (M = 0.57 [0.52; 0.62]).

Together, these computational-modeling and accuracy 
results indicate that, regardless of its suboptimal nature, 
participants adopted rule-based learning in an object-based 
environment. In this rule-based learning, they had a pref-
erence for the pattern dimension. Suboptimality of rule-
based learning may have resulted in low final accuracy.

Learning Following a Switch from an Object‑Based 
to a Rule‑Based Environment

Computational Modeling

Participants adopted rule-based learning in the second 
rule-based block. In the pattern-to-shape version (that is, 
“pattern” is the relevant dimension in the second block), 
two rule-based models fitted the data similarly: a model 
with a dynamic learning rate that was equal across dimen-
sions and a model with a static learning rate that was 

Fig. 3  In each panel, black line 
segments represent binned (4 
blocks of 10 × 8 trials) observed 
data with 1 SEM; blue line 
segments represent predicted 
data for the best-fitting models. 
In the second block, triangles 
represent data from pps in the 
pattern-to-shape version and 
squares from pps in the shape-
to-pattern version

Fig. 4  Estimated learning rates of the best-fitting model in block 1
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unequal across dimensions. Parameter estimates from the 
latter model suggested participants mostly attended to the 
relevant dimension, i.e., “pattern” (Fig. 5, Online Resource 
E); note this was also the dimension they attended to in 
the previous block.

In the shape-to-pattern version (that is, “shape” is the 
relevant dimension in the second block), a rule-based 
model including a dynamic learning rate that was une-
qual across dimensions fitted the data best. More specifi-
cally, results suggested participants focused on “pattern” 
instead of the relevant dimension “shape” (Fig. 5, Online 
Resource E); note again that this was also the dimension 
they attended to in the previous block.

To further explore the result that in block 2 participants 
learned the pattern-rule, but not the shape-rule, we split 
the data in block 2 into four subsets of 20 trials (separately 
for each version) and inspected for each subset the fit of all 
computational models and parameter estimates of the best-
fitting models (cf. Online Resource F). Results indicated 
that, in the pattern-to-shape version, in the first 20 trials, 
participants paid similar attention to all three dimensions, 
and that they attended to “pattern” after 20 trials. In the 
shape-to-pattern version, in the first 20 trials, participants 
attended to “pattern” and “color”, in trials 20 to 40, they 
paid similar attention to all three dimensions, and only in 
the final 40 trials, they attended to “shape”.

Regression Analyses on Accuracy

In the second block, with respect to improvement across tri-
als, accuracy results showed a main effect of trial (z =  − 6.69, 
p < 0.001), and a trial × version interaction (z =  − 2.65, 
p = 0.008). This indicates that participants improved across 
trials and that this improvement differed between versions. 
Follow-up tests in each version showed that participants 

that learned the pattern-rule (i.e., pattern-to-shape version; 
z =  − 5.19, p < 0.001) improved faster across trials compared 
to participants that learned the shape-rule (i.e., shape-to-
pattern version; z =  − 3.82, p < 0.001). With respect to 
the endpoint of learning, accuracy results showed a main 
effect of version (z = 3.44, p = 0.001), indicating the end-
point of learning was higher for participants that learned 
the pattern-rule.

Comparing the second block to the first block, with 
respect to improvement across trials, accuracy results showed 
a block × trial interaction (z =  − 5.38, p < 0.001) and a 
block × trial × version interaction (z =  − 2.41, p = 0.02). This 
indicates that participants improved faster across trials in the 
second compared to the first block and that this block × trial 
interaction differed between versions. Follow-up tests in each 
version showed the block × trial interaction was stronger for 
participants that learned the pattern-rule in the second block 
(z =  − 5.02, p < 0.001) compared to participants that learned 
the shape-rule in the second block (z =  − 2.36, p = 0.02). With 
respect to the endpoint of learning, accuracy results showed 
a main effect of block (z = 11.5, p < 0.001); moreover, they 
showed a block × version interaction (z = 4.71, p < 0.001). This 
indicates that the endpoint of learning was higher in the second 
compared to the first block and that this block effect differed 
between versions. Follow-up tests in each version showed 
the block effect was stronger for participants that learned the 
pattern-rule in the second block (z = 10.3, p < 0.001) compared 
to participants that learned the shape-rule in the second block 
(z = 5.61, p < 0.001).

Together, these computational-modeling and accuracy 
results suggest participants applied the pattern-rule rather 
quickly, whereas it took participants some time to overcome 
their preference to rely on the pattern dimension and apply 
the shape-rule in block 2. This difference between rules may 
have resulted in a smaller difference in accuracy between 

Fig. 5  Estimated learning rates 
of the best-fitting models in 
block 2 in the pattern-to-shape 
(left) and shape-to-pattern 
(right) version. In the left panel, 
the colored lines represent the 
estimates of the static learning-
rate model; the black line of the 
dynamic learning-rate model
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blocks 2 and 1 in the shape-to-pattern version compared to 
the pattern-to-shape version.

Learning Following a Switch from a Rule‑Based 
Environment to a Different Rule‑Based Environment

Computational Modeling

Participants adopted rule-based learning in the third rule–based 
block. A rule-based model including a dynamic learning rate 
that was unequal across dimensions fitted the data best. Most 
importantly, participants mostly attended to the previously-
relevant dimension (Fig. 6, Online Resource E).

The result in block 3, that participants attended to the 
dimension that was relevant in block 2, suggests partici-
pants experienced interference from the previously-learned 
rule. To further explore this, we split the data in block 3 
into four subsets of 20 trials and inspected in each subset 
the fit of all computational models and parameter estimates 
of the best-fitting models (cf. Online Resource G). Results 
indicated that participants attended to the currently-rele-
vant dimension after 20 to 40 trials.

Regression Analyses on Accuracy

In the third block, with respect to improvement across 
trials, accuracy results showed a main effect of trial 
(z =  − 4.66, p < 0.001), but no trial × version interaction 
(p = 0.91). This indicates that participants improved across 

trials and that this improvement was similar across ver-
sions. With respect to the endpoint of learning, accu-
racy results showed no main effect of version (p = 0.83), 
indicating the endpoint of learning was similar across 
versions.

Comparing the third block to the second block, with 
respect to improvement across trials, accuracy results showed 
no block × trial interaction (p = 0.08), but a block × trial × ver-
sion interaction (z = 2.87, p = 0.004). This indicates that, in 
general, trial effects were similar in blocks 3 and 2, but that 
the block × trial interaction differed between versions. Fol-
low-up tests in each version showed a block × trial interac-
tion in the pattern-to-shape version (z = 2.98, p = 0.003), but 
not in the shape-to-pattern version (p = 0.38). In the pattern-
to-shape version, participants improved slower across trials 
in the third (z =  − 4.62, p < 0.001) compared to the second 
block (z =  − 5.19, p < 0.001). With respect to the endpoint 
of learning, accuracy results showed a main effect of block 
(z =  − 2.02, p = 0.04); moreover, they showed a block × ver-
sion interaction (z =  − 5.13, p < 0.001). This indicates that, in 
general, the endpoint of learning was lower in the third com-
pared to the second block and that this block effect differed 
between versions. Follow-up tests in each version showed a 
negative block effect (i.e., block 3 < block 2) in the pattern-
to-shape version (z =  − 4.56, p < 0.001), but a positive block 
effect (i.e., block 3 > block 2) in the shape-to-pattern version 
(z = 2.50, p = 0.01). Note that this means higher final accu-
racy when “pattern” was the relevant dimension compared to 
when “shape” was the relevant dimension.

Together, these computational-modeling and accuracy 
results suggest participants learned the currently-relevant 
rule when the rule changed but that they experienced inter-
ference from the previously-learned rule at the beginning 
of learning. Based on the accuracy results, this interfer-
ence seemed especially persistent for participants that 
switched from a pattern-rule to a shape-rule.

Learning Following a Switch from a Rule‑Based 
Environment Back to an Object‑Based Environment

Computational Modeling

Participants adopted object-based learning in the fourth 
object-based block. An object-based model including a 
dynamic learning rate that was unequal across pairs fitted 
the data best (Online Resource E).

Regression Analyses on Accuracy

In the fourth block, with respect to improvement across tri-
als, accuracy results showed a main effect of trial (z =  − 3.14, 
p = 0.002), but no trial × version interaction (p = 0.61). This 
indicates that participants improved across trials and that 

Fig. 6  Estimated learning rates of the best-fitting model in block 3. 
The previously-relevant and currently-relevant dimensions were “pat-
tern” and “shape” for the pattern-to-shape version respectively, and 
“shape” and “pattern” for the shape-to-pattern version respectively
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this improvement was similar across versions. With respect 
to the endpoint of learning, accuracy results showed no 
effect of version (p = 0.47), indicating the endpoint of learn-
ing was similar across versions. In an exploratory analysis, 
we tested whether participants performed above chance level 
in the final bin. This proved not to be the case (M = 0.55 
[0.48; 0.62]; t(35) = 1.47, p = 0.15).

Comparing the fourth block to the third block, with 
respect to improvement across trials, accuracy results 
showed a block × trial interaction (z = 3.28, p = 0.001), but 
no block × trial × version interaction (p = 0.49). This indi-
cates that participants improved slower across trials in the 
fourth compared to the third block and that this block × trial 
interaction was similar across versions. With respect to the 
endpoint of learning, accuracy results showed a main effect 
of block (z =  − 8.10, p < 0.001), but no block × version inter-
action (p = 0.24). This indicates the endpoint of learning was 
lower in block 4 compared to block 3 and that this block 
effect was similar across versions.

Together, these computational-modeling and accuracy 
results suggest that participants adopted object-based learn-
ing in an object-based environment at the end of the task. 
Although participants applied the optimal strategy, final 
accuracy was at chance level.

Discussion

In this study, we examined how people learn in an object-
based environment, and how they adapt their behavior fol-
lowing a switch to a rule-based environment, following a 
switch to a different rule-based environment, and following 
a switch back to an object-based environment. To do so, 
we performed regression analyses and applied hierarchi-
cal Bayesian computational modeling to uncover whether 
participants used object-based or rule-based learning and 
to investigate learning parameters governing the best-fit-
ting models. First, our results showed that people initially 
adopt rule-based learning despite its suboptimal nature in 
an object-based environment. Second, they showed that 
people learn rules after a switch to a rule-based environ-
ment. Third, they showed that people experience interfer-
ence from previously-learned rules following a switch to a 
different rule-based environment. Fourth, they showed that 
people learn objects, although poorly, after a final switch to 
an object-based environment.

We argued that in our task with fixed pairs, people would 
be able to apply object-based learning in an object-based 
environment. Unexpectedly, our first main result showed that 
people adopted rule-based learning. Potentially, our task in 
which four pairs characterized by three dimensions needed 
to be learned was still too complex (Collins & Frank, 2012; 
Schaaf et al., 2019) to apply object-based learning in the 

beginning of the task. Future studies in which less pairs need 
to be learned or less dimensions are used are thus advised to 
test this explanation. Note that the finding that people tend 
to search for rules in an object-based environment questions 
the general assumption in reinforcement-learning studies 
that people learn objects. Therefore, it may be beneficial 
if reinforcement-learning studies carefully select stimuli to 
minimize the tendency to search for rules and preferably use 
computational modeling to test whether rule-based learning 
is applied.

Our second main result, that people learned rules in a 
rule-based environment, extends previous reinforcement-
learning findings (Ballard et al., 2018; Collins et al., 2014; 
Geana & Niv, 2014; Leong et al., 2017; Niv et al., 2015; 
Radulescu et al., 2016) by showing that people also learn 
rules when such a rule-based environment is preceded by 
an object-based environment.

Inspection of parameter estimates in best-fitting compu-
tational models allowed us to uncover our third main result, 
that people experience interference from previously-learned 
rules. This result is new in the reinforcement-leaning litera-
ture but in accordance with findings outside this literature, 
that is, on deterministic experience-based decision-making 
(Bröder & Schiffer, 2006; Hoffmann et al., 2019; Kämmer 
et al., 2013) and categorization (Best et al., 2013).

Our fourth main result, that people learned objects at the 
end of the task but that learning was minimal, suggests that 
learning in an object-based manner after learning in a rule-
based environment is challenging. In the current design, 
it is difficult to disentangle different explanations for this 
result. It may be that, even in the final block, the task was 
too complex to adequately apply object-based learning or 
that participants experienced interference from the preced-
ing rule-based block. Future studies adopting a mixed design 
could help disentangle these explanations, for example, by 
comparing behavior in a condition in which participants per-
form an object-based block followed by a rule-based block 
to a condition in which participants perform two consecutive 
object-based blocks.

Even though objects were predictive of a reward in the 
first as well as the fourth block, our main results suggest that 
participants employed different strategies in these blocks, 
that is, rule-based learning in the first block and object-based 
learning in the fourth block. Previous work in the reinforce-
ment-learning literature (Farashahi et al., 2017), but also 
outside this literature (e.g., Johansen & Palmeri, 2002; Rai-
jmakers et al., 2014), similarly showed that people tend to 
rely on rule-based strategies during early trials while they 
rely on object-based strategies during late trials. It may be 
that, in the first block, participants had too few trials to over-
come their rule-based tendency and to apply object-based 
learning. To test this explanation, future studies are advised 
to administer more trials in the object-based blocks.
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Next to the four main results, we found that people had 
a preference to rely on the pattern dimension. That is, (i) 
people incorrectly focused on “pattern” in the first, object-
based, block, and (ii) learning the pattern-rule was easier 
than learning the shape-rule in the second, rule-based, block. 
What may have induced this saliency of the pattern dimen-
sion? Maybe it was due to the fact that the color and shape 
dimension were intertwined, meaning “color” and “shape” 
could not be observed independently, whereas this was not 
the case for the pattern dimension. To test this explanation, 
we performed an additional free-categorization experiment 
(cf. Online Resource J) in which we tested whether the pat-
tern dimension was more salient (Schutte et al., 2017) than 
the other dimensions. We did not find evidence for this expla-
nation, and therefore future studies are needed to replicate 
and understand this preference for the pattern dimension.

Three potential limitations can be identified. First, we 
modeled the data by either object-based or rule-based learn-
ing. By doing so, computational-modeling results showed 
that in the first object-based block, participants adopted 
rule-based learning. However, regression results showed an 
improvement across trials in this block, something that was 
not predicted by the best-fitting rule-based model (Fig. 3). 
One solution is to add object-based models including for-
getting (Collins & Frank, 2012) as these models are better 
able to capture slight improvements across trials and might 
thus fit the data better. Another solution is to include hybrid 
models, combining object-based and rule-based learn-
ing (Niv et al., 2015), to further pinpoint the role of both 
approaches in multidimensional environments. It may be, 
for example, that participants start by applying rule-based 
learning but rely more on object-based learning as the block 
progresses (Farashahi et al., 2017).

Second, the computational models we considered, all 
assume a gradual learning process. However, in multidimen-
sional environments, people might sequentially test whether 
a dimension is predictive of a reward or not (Choung et al., 
2017; Radulescu et al., 2019; Wilson & Niv, 2012). Espe-
cially in real-world decision problems, the environment 
might be too complex to gradually learn the value of all 
features. Future studies on (mal)adaptive learning after 
switches between environments could investigate in which 
situations people adopt hypothesis-testing strategies and how 
application of these strategies is influenced by, for example, 
the dimensionality of the environment.

Third, because of identifiability problems, we only con-
sidered rule-based models in which learning was allowed 
to differ between dimensions. It could also be, however, 
that people weigh the dimensions differently when mak-
ing a choice, e.g., choosing based on the most-informative 
dimension (Wilson & Niv, 2012; Wunderlich et al., 2011). 
To test whether interference in the third block is due to either 
differential learning or differential weighing in the beginning 

of this block, future studies could adopt different designs in 
order to test this distinction, for example, by including EEG 
measures to make a distinction between differential learning 
and differential weighing (Leong et al., 2017).

We were the first to assess adaptivity when switching 
between object-based and rule-based environments in a 
reinforcement-learning context. As such, we chose to assess 
how people learned in these environments on a group level. 
However, our within-subjects design lends itself for addi-
tional interesting comparisons. For example, do participants 
that tend to adopt rule-based learning in the first block also 
learn the rule quicker in the second block? And do these 
participants also tend to adopt rule-based learning in the 
fourth block? To answer these questions, we advise future 
studies to use mixture modeling in order to obtain individual 
learning models as opposed to learning models for the com-
plete sample.

Taken together, these results obtained by computational 
modeling of behavior in a probabilistic reinforcement-learn-
ing task indicate that people tend to search for rules, even 
if they are not present. They also indicate that if rules are 
present, people are able to learn them, but are impaired when 
the relevant rule changes. Finally, they indicate that people 
find switching from learning rules to learning objects chal-
lenging. People thus have a hard time adjusting to switches 
between object-based and rule-based environments, although 
they learn to do so.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42113- 022- 00134-5.

Acknowledgements We like to thank Wouter van den Bos for his com-
ments on a preliminary version of the manuscript.

Author Contribution JVS wrote the manuscript with input from all 
authors, implemented the models, and conducted all analyses. JVS and 
BX programmed the task. BX collected the data, supervised by JVS. 
HMH conceived the study idea. HMH, JVS, and BX came up with the 
study design. HMH, MJ, and IV provided insights in how to pose the 
question and checked analyses. All authors provided critical revisions 
of the manuscript. All authors discussed the results and reviewed the 
final manuscript.

Funding HMH, JVS, and MJ were supported by the Dutch National 
Science Foundation, NWO (VICI 453–12-005).

Data, Material, and Code Availability All data, material, and code are 
freely available (https:// osf. io/ rvcx5/).

Declarations 

Ethics Approval This research was approved by the Ethics Review 
Board of the Faculty of Behavioral and Social Sciences, University of 
Amsterdam (2019-DP-10313).

Consent to Participate Informed consent was obtained from all indi-
vidual participants included in this study.

166 Computational Brain & Behavior (2022) 5:157–167

https://doi.org/10.1007/s42113-022-00134-5
https://osf.io/rvcx5/


1 3

Consent to Publish The authors affirm that human research participants 
provided informed consent for publication of the images in all figures.

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Balcarras, M., & Womelsdorf, T. (2016). A flexible mechanism of rule 
selection enables rapid feature-based reinforcement learning. Fron-
tiers in Neuroscience, 10, 125. https:// doi. org/ 10. 3389/ fnins. 2016. 
00125

Ballard, I., Miller, E. M., Piantadosi, S. T., Goodman, N. D., & Mcclure, 
S. M. (2018). Beyond reward prediction errors: Human striatum 
updates rule values during learning. Cerebral Cortex, 28, 3965–
3975. https:// doi. org/ 10. 1093/ cercor/ bhx259

Best, C. A., Yim, H., & Sloutsky, V. M. (2013). The cost of selective 
attention in category learning: Developmental differences between 
adults and infants. Journal of Experimental Child Psychology, 
116(2), 105–119. https:// doi. org/ 10. 1016/j. jecp. 2013. 05. 002

Bröder, A., & Schiffer, S. (2006). Adaptive flexibility and maladaptive 
routines in selecting fast and frugal decision strategies. Journal of 
Experimental Psychology: Learning Memory and Cognition, 32(4), 
904–918.

Choung, O. H., Lee, S. W., & Jeong, Y. (2017). Exploring feature dimen-
sions to learn a new policy in an uninformed reinforcement learn-
ing task. Scientific Reports, 7(1), 1–12. https:// doi. org/ 10. 1038/ 
s41598- 017- 17687-2

Collins, A. G. E., & Frank, M. J. (2012). How much of reinforcement 
learning is working memory, not reinforcement learning? A behav-
ioral, computational, and neurogenetic analysis. European Journal 
of Neuroscience, 35(7), 1024–1035. https:// doi. org/ 10. 1111/j. 1460- 
9568. 2011. 07980.x

Collins, A. G. E., Cavanagh, J. F., & Frank, M. J. (2014). Human EEG 
uncovers latent generalizable rule structure during learning. The 
Journal of Neuroscience, 34(13), 4677–4685. https:// doi. org/ 10. 
1523/ JNEUR OSCI. 3900- 13. 2014

Farashahi, S., Rowe, K., Aslami, Z., Lee, D., & Soltani, A. (2017). Fea-
ture-based learning improves adaptability without compromising 
precision. Nature Communications, 8(1), 1768. https:// doi. org/ 10. 
1038/ s41467- 017- 01874-w

Farashahi, S., Xu, J., Wu, S. W., & Soltani, A. (2020). Learning arbi-
trary stimulus-reward associations for naturalistic stimuli involves 
transition from learning about features to learning about objects. 
Cognition, 205(September), 104425. https:// doi. org/ 10. 1016/j. cogni 
tion. 2020. 104425

Geana, A., & Niv, Y. (2014). Causal model comparison shows that human 
representation learning is not Bayesian. Cold Spring Harbor Sympo-
sia on Quantitative Biology, 79, 161–168. https:// doi. org/ 10. 1101/ 
sqb. 2014. 79. 024851

Gigerenzer, G., Todd, P. M., Group, T. A. R. (1999). Simple heuristics 
that make us smart. Oxford University Press.

Hoffmann, J. A., von Helversen, B., & Rieskamp, J. (2019). Testing learn-
ing mechanisms of rule-based judgment. Decision, 6(4), 305–334.

Johansen, M. K., & Palmeri, T. J. (2002). Are there representational shifts 
during category learning? Cognitive Psychology, 45(4), 482–553. 
https:// doi. org/ 10. 1016/ S0010- 0285(02) 00505-4

Kämmer, J. E., Gaissmaier, W., & Czienskowski, U. (2013). The environ-
ment matters: Comparing individuals and dyads in their adaptive use 
of decision strategies. Judgment and Decision Making, 8(3), 299–329.

Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V., & Niv, Y. (2017). 
Dynamic interaction between reinforcement learning and attention 
in multidimensional environments. Neuron, 93(2), 451–463. https:// 
doi. org/ 10. 1016/J. NEURON. 2016. 12. 040

Marković, D., Gläscher, J., Bossaerts, P., O’Doherty, J., & Kiebel, S. J. 
(2015). Modeling the evolution of beliefs using an attentional focus 
mechanism. PLoS Computational Biology, 11(10), 1–34. https:// doi. 
org/ 10. 1371/ journ al. pcbi. 10045 58

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C., Radulescu, 
A., & Wilson, R. C. (2015). Reinforcement learning in multidimen-
sional environments relies on attention mechanisms. Journal of 
Neuroscience, 35(21), 8145–8157. https:// doi. org/ 10. 1523/ JNEUR 
OSCI. 2978- 14. 2015

Radulescu, A., Daniel, R., & Niv, Y. (2016). The effects of aging on the 
interaction between reinforcement learning and attention. Psychol-
ogy and Aging. https:// doi. org/ 10. 1037/ pag00 00112. supp

Radulescu, A., Niv, Y., & Daw, N. D. (2019). A particle filtering account 
of selective attention during learning. 2019 Conference on Cognitive 
Computational Neuroscience.

Raijmakers, M. E. J., Schmittmann, V. D., & Visser, I. (2014). Costs and 
benefits of automatization in category learning of ill-defined rules. 
Cognitive Psychology, 69, 1–24. https:// doi. org/ 10. 1016/j. cogps ych. 
2013. 12. 002

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian con-
ditioning: Variations in the effectiveness of reinforcement and 
nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Clas-
sical conditioning II: Current research and theory (pp. 64–99). 
Appleton-Century-Crofts.

Schaaf, J. V., Jepma, M., Visser, I., & Huizenga, H. M. (2019). A hierar-
chical Bayesian approach to assess learning and guessing strategies 
in reinforcement learning. Journal of Mathematical Psychology, 93, 
102276. https:// doi. org/ 10. 1016/j. jmp. 2019. 102276

Schutte, I., Slagter, H. A., Collins, A. G. E., Frank, M. J., & Kenemans, 
J. L. (2017). Stimulus discriminability may bias value-based proba-
bilistic learning. PLoS ONE, 12(5), e0176205. https:// doi. org/ 10. 
1371/ journ al. pone. 01762 05

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. 
(2002). Bayesian measures of model complexity and fit. Journal 
of the Royal Statistical Society. Series B: Statistical Methodology, 
64(4), 583–616. https:// doi. org/ 10. 1111/ 1467- 9868. 00353

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. MIT Press.

Wagenmakers, E. J., & Farrell, S. (2004). AIC model selection using 
Akaike weights. Psychonomic Bulletin and Review, 11(1), 192–196. 
https:// doi. org/ 10. 3758/ BF032 06482

Wilson, R. C., & Niv, Y. (2012). Inferring relevance in a changing 
world. Frontiers in Human Neuroscience, 5, 1–14. https:// doi. org/ 
10. 3389/ fnhum. 2011. 00189

Wunderlich, K., Beierholm, U. R., Bossaerts, P., & O’Doherty, J. P. 
(2011). The human prefrontal cortex mediates integration of poten-
tial causes behind observed outcomes. Journal of Neurophysiology, 
106(3), 1558–1569. https:// doi. org/ 10. 1152/ jn. 01051. 2010

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

167Computational Brain & Behavior (2022) 5:157–167

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2016.00125
https://doi.org/10.3389/fnins.2016.00125
https://doi.org/10.1093/cercor/bhx259
https://doi.org/10.1016/j.jecp.2013.05.002
https://doi.org/10.1038/s41598-017-17687-2
https://doi.org/10.1038/s41598-017-17687-2
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1016/j.cognition.2020.104425
https://doi.org/10.1016/j.cognition.2020.104425
https://doi.org/10.1101/sqb.2014.79.024851
https://doi.org/10.1101/sqb.2014.79.024851
https://doi.org/10.1016/S0010-0285(02)00505-4
https://doi.org/10.1016/J.NEURON.2016.12.040
https://doi.org/10.1016/J.NEURON.2016.12.040
https://doi.org/10.1371/journal.pcbi.1004558
https://doi.org/10.1371/journal.pcbi.1004558
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1037/pag0000112.supp
https://doi.org/10.1016/j.cogpsych.2013.12.002
https://doi.org/10.1016/j.cogpsych.2013.12.002
https://doi.org/10.1016/j.jmp.2019.102276
https://doi.org/10.1371/journal.pone.0176205
https://doi.org/10.1371/journal.pone.0176205
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.3758/BF03206482
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.1152/jn.01051.2010

	(Mal)Adaptive Learning After Switches Between Object-Based and Rule-Based Environments
	Abstract
	Introduction
	Method
	Computational Models
	Object-Based Versus Rule-Based Learning
	Model Selection Procedure

	Regression Models

	Results
	Learning in an Object-Based Environment
	Computational Modeling
	Regression Analyses on Accuracy

	Learning Following a Switch from an Object-Based to a Rule-Based Environment
	Computational Modeling
	Regression Analyses on Accuracy

	Learning Following a Switch from a Rule-Based Environment to a Different Rule-Based Environment
	Computational Modeling
	Regression Analyses on Accuracy

	Learning Following a Switch from a Rule-Based Environment Back to an Object-Based Environment
	Computational Modeling
	Regression Analyses on Accuracy


	Discussion
	Acknowledgements 
	References


