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1   |   INTRODUCTION

Scientific work rests fundamentally upon data, their measure-
ment, processing, analysis, illustration, and interpretation. Raw 

data are typically required to be processed to be ready for sta-
tistical analyses and interpretation. Although these processing 
pipelines can be well defined and standardized, they are often 
characterized by substantial heterogeneity, particularly in 

Received: 3 December 2021  |  Revised: 21 February 2022  |  Accepted: 8 March 2022

DOI: 10.1111/psyp.14058  

O R I G I N A L  A R T I C L E

Navigating the manyverse of skin conductance response 
quantification approaches – A direct comparison of   
trough-to-peak, baseline correction, and model-based 
approaches in Ledalab and PsPM

Manuel Kuhn1,2  |   Anna M. V. Gerlicher3,4   |   Tina B. Lonsdorf1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2022 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.

1Institute for Systems Neuroscience, 
University Medical Center Hamburg-
Eppendorf, Hamburg, Germany
2Department of Psychiatry, Harvard 
Medical School, and Center for 
Depression, Anxiety and Stress 
Research, McLean Hospital, Belmont, 
Massachusetts, USA
3Department of Clinical Psychology, 
University of Amsterdam, Amsterdam, 
The Netherlands
4Department of Experimental 
Psychology, Utrecht University, 
Utrecht, The Netherlands

Correspondence
Tina B. Lonsdorf, Institute for 
Systems Neuroscience, University 
Medical Center Hamburg-Eppendorf, 
Martinistrasse 52, Hamburg, Germany.
Email: t.lonsdorf@uke.de

Funding information
This work was funded by grants from 
the German Research Foundation 
(DFG) to TBL (DFG LO1980/7-1, LO 
1980/4-1, and CRC58; subproject B07, 
INST 211/633-1)

Abstract
Raw data are typically required to be processed to be ready for statistical analy-
ses, and processing pipelines are often characterized by substantial heterogene-
ity. Here, we applied seven different approaches (trough-to-peak scoring by two 
different raters, script-based baseline correction, Ledalab as well as four differ-
ent models implemented in the software PsPM) to two fear conditioning data 
sets. Selection of the approaches included was guided by a systematic literature 
search by using fear conditioning research as a case example. Our approach can 
be viewed as a set of robustness analyses (i.e., same data subjected to different 
processing pipelines) aiming to investigate if and to what extent these different 
quantification approaches yield comparable results given the same data. To our 
knowledge, no formal framework for the evaluation of robustness analyses ex-
ists to date, but we may borrow some criteria from a framework suggested for 
the evaluation of “replicability” in general. Our results from seven different SCR 
quantification approaches applied to two data sets with different paradigms sug-
gest that there may be no single approach that consistently yields larger effect 
sizes and could be universally considered “best.” Yet, at least some of the ap-
proaches employed show consistent effect sizes within each data set indicating 
comparability. Finally, we highlight substantial heterogeneity also within most 
quantification approaches and discuss implications and potential remedies.
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Biological Psychology and Cognitive Neuroscience (Botvinik-
Nezer et al.,  2020; Lonsdorf, Klingelhöfer-Jens, et al.,  2019; 
Sandre et al., 2020). A commonly used measure in these sci-
entific disciplines is skin conductance that is sensitive to emo-
tional arousal, novelty, and salience (Dawson et al., 2007) and 
thought to provide insight into sympathetic activation levels. 
Skin conductance is characterized by slowly changing tonic 
activity (skin conductance level, SCL) and faster changing 
phasic activity with a rather steep incline and slower return to 
baseline (skin conductance response, SCR). SCRs can occur 
as spontaneous nonspecific fluctuations or stimulus-evoked 
(Boucsein et al., 2012) with the strength of the latter being the 
focus of this work. SCRs are typically recorded continuously 
and subsequently quantified off-line. This can be done with 
a multitude of different response quantification approaches, 
with any given study typically choosing only one of these op-
tions. Already in 1971, Lykken and Venables raised attention 
to the “[…] disconcerting diversity of electrodermal measure-
ment technique which, at best, make it difficult to compare 
one set of results with another and sometimes even casts 
real doubt on the interpretation of the findings.” (Lykken & 
Venables, 1971, p. 656). Now, nearly half a century later, basi-
cally, everything has changed with respect to the equipment 
and techniques used to record SCRs, while on the other hand, 
the problem of disconcerting methodological diversity identi-
fied in 1971 still persists.

As a consequence, the interpretation of any single set 
of SCR results is difficult because it may hinge on the spe-
cific choices made—as already argued by Lykken half a 
century ago (Lykken & Venables, 1971, p. 656). As a poten-
tial solution to the problem of data processing and statisti-
cal heterogeneity, the “multiverse approach” has recently 
been suggested (Steegen et al.,  2016): In data multiverse 
analyses, the same raw data are processed into a multiverse 
of processed data sets (referred to as “universes”) depend-
ing on different processing choices—all potentially equally 
reasonable in light of the absence of empirical and/or theo-
retical criteria to guide the researchers’ decisions. This data 
(i.e., the sum of all universes) inevitably imply a multiverse 
of statistical results, given a single set of identical raw 
data and applied statistical models (Lonsdorf et al., 2021; 
Lonsdorf, Klingelhöfer-Jens, et al., 2019; Lonsdorf, Merz, 
& Fullana,  2019; Silberzahn et al.,  2018; Sjouwerman 
et al.,  2021; Steegen et al.,  2016), and can inform on the 
stability or robustness of the effect of interest against dif-
ferent processing pathways. To this end, multiverse-type of 
studies have been proposed to explicitly facilitate debates 
on what (processing or analytical) specifications should 
be used (Del Giudice & Gangestad,  2021; Simonsohn 
et al., 2020). Of note, the “full” multiverse consists of an 
infinite number of options and hence, it has been recog-
nized that many other decisions could be considered than 
what is typically referred to as “full multiverse” in these 

types of studies (Del Giudice & Gangestad, 2021). Often, 
it can be advantageous to focus on a more limited set of 
decision nodes and investigate these in more depth. Here, 
we focus on a small-scale multiverse-type of approach (re-
ferred to as “manyverse”) by comparing SCR quantifica-
tion approaches derived from a systematic literature search 
in two data sets and by using fear conditioning research as 
a case example. As (systematic) robustness analyses such 
as multiverse-type of studies are per definition applied to 
the same set of data, we acknowledge that we do not aim 
for a direct comparison between both data sets as these 
differ in key experimental specifications. Hence, we pro-
vide an SCR response quantification manyverse approach 
within each data set.

1.1  |  Different response quantification 
approaches for skin conductance responses

The different currently employed approaches for SCR 
quantification can be roughly grouped into (i) trough-to-
peak (TTP) scoring, (ii) computational model-based ap-
proaches such as Ledalab (Benedek & Kaernbach, 2010a; 
Lim et al., 1997) and Psycho-Physiological Modelling 
(PsPM; Bach et al., 2009, 2013; Bach & Friston, 2013), 
and (iii) what we here refer to as “baseline correction” 
approaches. Of note, however, these approach categories 
are by no means homogeneous and different specifica-
tions and settings can be applied. We refer, for instance, 
to our related work that focuses on an in-depth investi-
gation of within-approach heterogeneity of specifications 
used in the baseline correction approach (Sjouwerman 
et al.,  2021). In the literature, these different approach 
categories are generally treated interchangeably despite 
the lack of empirical support for their equivalence in 
capturing the same underlying construct and biologi-
cal process (jingle fallacy)—a problem that has been 
discussed, for instance, in fear conditioning research 
(Lonsdorf, Klingelhöfer-Jens, et al.,  2019; Lonsdorf, 
Merz, & Fullana, 2019; Ojala & Bach, 2019; Sjouwerman 
et al., 2021) as well as for related fields in psychology and 
the neurosciences (Botvinik-Nezer et al.,  2020; Garrett-
Ruffin et al., 2021; Sandre et al., 2020). In the following, 
we briefly introduce these three different SCR quantifi-
cation approach categories: trough-to-peak, model-based 
approaches, and baseline correction approaches (as well 
as their subcategories).

1.1.1  |  Trough-to-peak (TTP)

“Trough-to-peak” (TTP) scoring of SCRs quantifies the 
difference between the skin conductance at the peak of 
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a response and its preceding trough in prespecified time 
windows according to a published set of criteria and 
publication recommendations (Boucsein et al.,  2012): 
The onset latency, that is, the footpoint of the SCR, 
is typically required to occur in an onset latency time 
window (OLW) of 1–3  s (Levinson & Edelberg, 1985), 
1–3.5  s (although stimulus-specific response windows 
were suggested, Sjouwerman & Lonsdorf,  2019), or 
1–4 s (Boucsein et al., 2012) after stimulus onset. The 
SCR peak value is then required to occur in a peak de-
tection time window (PDW) of 0.5–5 s after SCR onset 
(i.e., footpoint; Boucsein et al., 2012). More precisely, if 
the footpoint occurs 2 s after the stimulus presentation, 
the peak must occur in a time window of 2.5–7 s after 
stimulus onset. Some authors have also used the full 
stimulus duration (or even longer) as the PDW with-
out explicitly distinguishing between OLW and PDW. 
In addition, a minimum response—typically varying 
between 0.05 and 0.01 μs—is often applied (Boucsein 
et al.,  2012; Lonsdorf, Klingelhöfer-Jens, et al.,  2019). 
SCRs smaller than this minimum response are not con-
sidered as a valid response and included as nonresponse 
with a value of zero (Lonsdorf et al., 2017; i.e., “magni-
tude,” Venables & Christie, 1980). Consequently, TTP 
scoring can only yield SCR values with a zero or a posi-
tive value.

TTP scoring employing the above-described criteria 
can be performed as follows: (a) manually in most re-
cording software, (b) computer-assisted with the help 
of graphical user interfaces (commonly custom-made) 
which provide editable suggestions for each SCRs foot-
point and peak, or (c) supervised, but fully automatized 
(“Autonomate,” Green et al.,  2014)—even though the 
latter can also be used as a graphical user interface for 
visual inspection and/or computer-assisted scoring. 
Furthermore, (d) also fully automatized custom-made 
scripts are employed. Automatized approaches iteratively 
apply the published TTP criteria (Boucsein et al.,  2012) 
while systematically dealing with the challenge of over-
lapping SCRs by searching for patterns in inflection 
points (Green et al., 2014). Fully automatized TTP scoring 
consequently reduces some of the drawbacks inherent to 
manual or computer-assisted (semi-manual) TTP scoring: 
being time-consuming, sensitive to the scale invariance 
problem (i.e., depending on the scale used to view the 
data different inflection points may be detected through 
visual inspection), requiring long interstimulus intervals 
to avoid overlapping responses, and being susceptible to 
human bias. We highlight that most of the work on skin 
conductance response dates back to early research in the 
70 s and new work has not reinvestigated assumptions re-
garding an SCRs shape and temporal profile with newer 
technical equipment in detail.

1.1.2  |  Baseline correction (BLC) approach

In addition, an approach that we here refer to as the 
“baseline correction approach” has been suggested that 
“does not require undertaking the complex process 
of mathematically modeling [skin conductance] data 
curves, identifying points of inflection that define a re-
sponse onset and creating, or learning to use, software 
that accomplishes this process”(cf. Pineles et al.,  2009, 
p. 993). Pineles suggested the use of an “entire-interval 
response” that scores the highest SCR peak in the entire 
stimulus presentation time window (Pineles et al., 2009). 
The BLC approach suggested by Pineles employs an algo-
rithm that identifies a response onset by stepping forward 
(or backward) until the slope changes from negative to 
positive (or from positive to negative). A response peak 
is found by locating the highest SC value after the identi-
fied onset and within the window specified for the peak 
(Pineles et al., 2009). Importantly, neither the onset nor 
the peak may be located at the first or last data point of 
their respective windows and if this happens, the algo-
rithm will look for new onset and peak in a shrunk win-
dow. If the window is iteratively shrunk to a zero width, 
no response is calculated (i.e., zero). The entire-interval 
response suggested by Pineles is accordingly calculated 
by subtracting the mean skin conductance level for the 
2 s immediately preceding stimulus onset from the high-
est SC level value during the entire stimulus presentation 
period (i.e., 8 s; Pineles et al., 2009). Of note, this proce-
dure can yield negative values when no stimulus-bound 
SCR is observed or when it is comparably smaller than 
the (habituation) drift in SCRs. Some authors set these 
negative responses to “zero” during postprocessing (e.g., 
Vogel et al., 2015). Today, BLC approaches are most often 
performed with custom-made scripts that do not follow 
iterative algorithms, calculate the baseline in a pre-CS 
time window, and subtract this baseline from the post-
CS peak identified during a post-CS time window (for a 
discussion, see Sjouwerman et al., 2021).

1.1.3  |  Computational model-based  	
approaches

Last, computational or model-based approaches are avail-
able in different software packages, for instance, Ledalab 
(Benedek & Kaernbach, 2010a; Lim et al., 1997) and PsPM 
(Bach et al.,  2009, 2013; Bach & Friston,  2013) (formerly 
labeled SCRalyze; Bach et al.,  2009) or cvxEDA (Greco 
et al.,  2016). These approaches rely on (generative or for-
ward) models that specify how a physiological or psycho-
logical state generates an observable skin conductance 
response and use model inversion to estimate these states 
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from the data. The different model-based approaches dif-
fer in respect to the exact properties of the employed SCR 
function, the treatment of slowdrifts in SCR data, the treat-
ment of observation noise, and the applied model inversion. 
However, they all generally offer the advantage of automa-
ticity and computational reproducibility. Furthermore, they 
are thought to improve discriminability of overlapping SCRs 
in paradigms with short interstimulus intervals as SCRs are 
slow responses and rapidly spaced stimuli with an interstim-
ulus interval (ISI) of 2–3 s do not elicit visually distinguish-
able SCR peaks and generally appear as a single response 
(Benedek & Kaernbach, 2010a)—commonly referred to as 
overlapping responses.

Specifically, deconvolution-based approaches, such 
as Ledalab, decompose skin conductance data into 
slowly varying tonic and fast-varying phasic activity 
(Benedek & Kaernbach,  2010a; Lim et al.,  1997). The 
phasic component is suggested to reflect the time course 
of sudomotor or sympathetic nerve activity. The latter 
is characterized by a zero baseline and shorter time 
constant than the resulting SCR, making it possible to 
discern closely succeeding responses in rapid, quickly 
spaced events with an ISI <3 s. Ledalab offers a variety 
of different measures to quantify skin conductance re-
sponses within a defined response window, among them 
the estimated amplitude (which may differ from a TTP 
approach), the sum of all SCRs detected, the average, 
the peak, and the area under the curve of the phasic 
driver response.

The software package PsPM (formerly SCRalyze) 
offers two different approaches: a general linear model 
(GLM) approach (Bach et al.,  2009) and a nonlin-
ear dynamic causal modeling (DCM) approach (Bach 
et al., 2010). The GLM approach models event onsets as 
delta functions, convolves the onset regressor with a ca-
nonical (or data-based) skin conductance response func-
tion, and fits the data to the resulting time series (Bach 
et al., 2009). Depending on whether the GLM onset re-
gressors comprise all trials of one condition (“condition-
wise”) or only one individual trial (“trial-wise”), the 
resulting parameter estimates reflect condition-specific 
(e.g., CS+, CS−) or trial-specific SCR magnitudes (e.g., 
CS+ trial 1, CS+ trial 2, …, CS− trial 1). The nonlinear 
DCM approach provides a causal model that describes 
how different inputs to sudomotor activity (e.g., spon-
taneous, evoked, anticipatory responses) map onto 
skin conductance data. Via model inversion, the most 
likely contribution of each of these components to the 
observed data is estimated. For discussion and empiri-
cal evaluation of differences between Ledalab and the 
GLM or DCM approach implemented in PsPM, we refer 
to other sources (Bach,  2014; Bach et al.,  2013; Staib 
et al., 2015).

1.1.4  |  Comparison between different SCR 
quantification approaches

To date, few comparative studies addressing different SCR 
quantification approaches exist—and those that we are 
aware of (see Table 1 for a detailed summary of the sta-
tus quo) all come from authors that have developed one 
of the approaches and performed comparisons for means 
of validation. What is striking from Table 1 is that even 
those comparative attempts are characterized by substan-
tial heterogeneity with respect to the used SCR quantifi-
cation approaches and it is noteworthy that conclusions 
derived from these studies are similarly heterogeneous. 
While Green and colleagues concluded that all methods 
produced comparable effect sizes and hence suggest that 
a number of suitable methods and software tools exist for 
SCR quantification analysis of SCRs (Green et al., 2014), 
Bach and colleagues in contrast concluded that all model-
based methods as implemented in SCRalyze are more 
sensitive than the “peak-scoring” approach and provide 
significantly higher predictive validity than any Ledalab 
measure in most of the tested contrasts (Bach, 2014).

Speculations on potential explanations for these con-
flicting results and conclusions may be derived from 
Table  1. As this is, however, beyond the main aim of 
the present work, we refer the interested reader to the 
Supplementary Material for an in-depth discussion.

1.2  |  Overarching aim

Our work departs from the lack of conclusive and compre-
hensive comparative work addressing the question if and 
to what extent different SCR quantification approaches 
(when applied to an identical data set) can be used in-
terchangeably (jingle fallacy). Particularly, in light of re-
cent discussions on measurement challenges and their 
potential contributions to (non-) replicability (Flake & 
Fried, 2020), it is particularly timely to investigate to what 
extent a given effect can be formally “replicated” by sub-
jecting single data sets to multiple theoretically equally 
justifiable SCR response quantification approaches (i.e., 
robustness analyses).

First, we need a synopsis of the different approaches 
employed in the literature as well as their abundance to 
guide the decision on approaches to compare. Here, we 
provide an exemplary systematic literature search focus-
ing on different SCR quantification approaches by using 
fear conditioning research as a case example.

Second, we provide an independent evaluation of seven 
commonly used and equally justifiable SCR response 
quantification approaches applied to two data sets. Note 
that we do not aim for a direct comparison between both 
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data sets as these differ in more than a single specifica-
tion (e.g., CS and ITI duration, reinforcement rate, sample 
size) but provide a manyverse analysis within each data 
set. Note that the multiverse approach focuses on apply-
ing different pipelines to the same underlying data. To our 
knowledge, no formal framework for the evaluation of ro-
bustness analyses exists to date, but we may borrow some 
criteria from a framework suggested for the evaluation of 
replicability in general (LeBel et al., 2018), as robustness 
can be viewed as a subaspect of replicability. While multi-
verse analyses often focus on the distribution of p values 
across the multiverse (e.g., Steegen et al., 2016), we extend 
this somewhat limited focus by also considering effect 
sizes and precision of the estimates.

Third and finally, we include TTP scoring from two 
independent raters per data set (one experienced and 
one first-time rater) to address the question if computer-
assisted TTP scoring is reproducible (i.e., obtaining “the 
same” result when applying the same method to the same 
data).

If we find evidence for the robustness of the results 
across the different SCR quantification approaches, this 
would argue in favor of the interchangeable use of differ-
ent SCR quantification approaches. This would be really 
good news for the field. If we, in turn, observe a lack of 
robustness as defined by the above criteria, we have iden-
tified a challenge that we can then take into account when 
making analysis decisions and comparing SCR results.

2   |   METHOD

2.1  |  Systematic literature search

A systematic literature search was performed according 
to PRISMA guidelines (Moher et al.,  2009) covering all 
publications (including e-pubs ahead of print) in PubMed 
during the 6 months prior to March 22, 2019. This sys-
tematic literature search was performed to derive data in-
tended to serve as case examples for a number of research 
projects such as our recently published work (Lonsdorf, 
Klingelhöfer-Jens, et al., 2019) and the present work. As 
described in Lonsdorf, Klingelhöfer-Jens, et al. (2019), 
the following search terms were used: threat condition-
ing OR fear conditioning OR threat acquisition OR fear 
acquisition OR threat learning OR fear learning OR threat 
memory OR fear memory OR return of fear OR threat 
extinction OR fear extinction. The original study was in-
cluded in case author corrections were published within 
the search period, unless the study itself was already in-
cluded. From the identified 854 records listed in PubMed, 
Stage 2 screening (abstract) included 152 records. For 
Stage 3 screening (full text), 86 were retained. Screening 

served the aim that the final set of studies consisted of 50 
records that reported results for (1) SCRs as an outcome 
measure from (2) the fear acquisition training phase (3) 
in human participants (a flow chart with details has been 
published in Lonsdorf, Klingelhöfer-Jens, et al., 2019). A 
subset of the identified SCR quantification approaches 
was subsequently applied to two independent data sets 
(see below for details). The literature search here served 
the purpose to guide our decision on which approaches to 
apply here and to obtain an overview of what is commonly 
used in the literature. Hence, the literature search can be 
considered a tool rather than an aim in its own right.

2.2  |  Participants and 
experimental paradigms

2.2.1  |  Data set 1: Hamburg

Participants
Data set 1 consisted of the acquisition phase (i.e., Day 1) 
from the baseline (T0) measurement of a longitudinal fear 
conditioning study in 120 participants. Data from two par-
ticipants were excluded due to protocol deviations leav-
ing 118 participants for analyses (78 females, mean ± SD 
age of 24.38  ±  3.7  years). All participants gave written 
informed consent to the protocol which was approved by 
the local ethics committee (PV 5157, Ethics Committee of 
the General Medical Council Hamburg). Data set 1 has 
been included as a case example in a previous publica-
tion (Lonsdorf, Klingelhöfer-Jens, et al., 2019) focusing on 
methodological questions (i.e., exclusion of “nonlearner” 
and “nonresponder” in fear conditioning research).

Paradigm and stimuli
The paradigm (for details, see Lonsdorf, Klingelhöfer-
Jens, et al.,  2019) consisted of a 2-day uninstructed fear 
conditioning paradigm with habituation and acquisition 
training taking place on Day 1 and extinction training 
and recall test taking place on Day 2. The study included 
a baseline measurement (T0) and a follow-up measure-
ment (T1) 6 months later when the identical paradigm was 
conducted again. During all experimental phases, BOLD 
fMRI, fear ratings (after each experimental phase), and 
skin conductance responses were acquired. BOLD fMRI 
as well as fear ratings are, however, not included in the 
present work, as it focuses exclusively on the methodo-
logical question of different approaches to SCR quantifi-
cation, and only data from the fear acquisition training 
phase at T0 were included. All data sets were trimmed to 
this period of interest starting 2 s prior to the first event 
of interest (i.e., first CS presentation during acquisition 
training) and ending between 10 and 20 s (20 s trim cutoff 
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value) after the last event of interest (i.e., last CS or US 
presentation during acquisition training). Two light gray 
fractals served as conditioned stimuli that were presented 
14 times in a pseudo-randomized order for 6–8 s (mean: 
7 s). Trial order was randomized in such a way that not 
more than two trials of the same type (i.e., CS +, CS−) suc-
ceeded each other. Allocation of the two visual stimuli to 
CS+ and CS– was counterbalanced between participants 
and the CS+ was followed by the US in all cases during 
fear acquisition training (100% reinforcement rate). A 
white fixation cross was shown for 10–16 s (mean: 13 s) 
which served as the intertrial intervals (ITIs). All stimuli 
were presented on a dark gray background and controlled 
by Presentation software (Version 14.8, Neurobehavioral 
Systems, Inc, Albany California, USA).

The US was an electrotactile stimulus consisting of 
three 2  ms rectangular pulses with an interpulse inter-
val of 50  ms (onset: 200  ms before CS+ offset) and was 
administered to the back of the right hand of the partic-
ipants. It was generated by a Digitimer DS7A constant 
current stimulator (Welwyn Garden City, Hertfordshire, 
UK) and delivered through a 1 cm diameter platinum pin 
surface electrode (Speciality Developments, Bexley, UK). 
The electrode was attached between the metacarpal bones 
of the index and the middle finger. US intensity was indi-
vidually calibrated in a standardized step-wise procedure 
aiming at an unpleasant, but still tolerable level.

2.2.2  |  Data set 2: Mainz

Participants
Forty male participants (mean ± SD age of 28.1 ± 2.7 years) 
were included in the data set that was published previ-
ously (Gerlicher et al.,  2018). All participants provided 
written informed consent and the protocol was approved 
by the local ethics committee (Ethikkommission der 
Landesärztekammer, Rheinland-Pfalz). Data of 2 partici-
pants on day 1 (fear acquisition) were excluded from the 
analyses of SCR data presented in this work due to record-
ing artifacts, leaving data of n = 38 participants for statisti-
cal analysis of each phase.

Paradigm and stimuli
Data set 2 consists of a 3-day paradigm comprising fear 
acquisition on Day 1, extinction and subsequent drug 
administration on Day 2, and a test of the effect of the 
drug manipulation on Day 3 (for details, see Gerlicher 
et al., 2018) with only the fear acquisition training phase 
used for the present work. During all experimental phases, 
BOLD fMRI, expectancy ratings (before and after each 
experimental phase), and skin conductance data were 
acquired. BOLD fMRI as well as expectancy ratings are, 

however, not included in the present work, as it focuses 
exclusively on the methodological question of different 
approaches to SCR quantification. Two black geometric 
symbols (square and rhombus) served as CS+ and CS− 
and were presented in the center of a computer screen. 
The CSs were superimposed on background pictures of 
either a kitchen or a living room. Assignment of symbols 
to CS+ or CS− and rooms to background pictures were 
randomized between participants. CSs were presented for 
4.5  s. US delivery started at 4400  ms after CS onset and 
terminated with CS presentation. Intertrial intervals lasted 
17, 18, or 19 s (mean of 18.5 s). The trial order was rand-
omized in such a way that not more than two trials of the 
same type (i.e., CS+, CS−) succeeded each other. During 
fear acquisition training on Day 1, participants were pre-
sented with 10 CS+ and 10 CS− trials in context A. Five 
out of 10 CS+ presentations (i.e., 50% reinforcement) were 
reinforced with an electric stimulus. Stimulus presenta-
tion was controlled by Presentation software (Version 14.8, 
Neurobehavioral Systems, Inc, Albany California, USA).

Electrical stimuli consisting of three square-wave 
pulses of 2  ms (50  ms interstimulus interval) were em-
ployed as the US. The electrical stimuli were generated by 
a Digitimer DS7A constant current stimulator (Welwyn 
Garden City, Hertfordshire, UK) and delivered on the 
right dorsal hand through a surface electrode with a plat-
inum pin (Specialty Developments, Bexley, UK). Before 
the start of the experiment, the intensity of the US was 
calibrated to a level described as painful, but still tolerable 
by the participant.

2.3  |  SCR recording and response 
quantification

2.3.1  |  SCR recording

Data set 1 (Hamburg)
Skin conductance response was measured via self-
adhesive Ag/AgCl electrodes placed on the palmar side of 
the left hand on the distal and proximal hypothenar. Data 
were recorded with a skin conductance unit together with 
a Biopac MP150-amplifier system (BIOPAC® Systems Inc., 
Goleta, CA, USA) and converted from analog to digital 
using a CED2502-SA with Spike 2 software (Cambridge 
Electronic Design, Cambridge, UK). Data were recorded 
continuously at 1000  Hz with a gain of 5 μΩ/V and a 
1.0 Hz hardware filter.

Data set 2 (Mainz)
Electrodermal activity was recorded from the thenar 
and hypothenar of the nondominant hand using self-
adhesive Ag/AgACl electrodes (EL-509, BIOPAC® 
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Systems Inc., Goleta, CA, USA) filled with an iso-
tonic electrolyte medium and the Biopac MP150 with 
EDA100C. All data sets were trimmed to 5 s prior to the 
first event of interest (i.e., first CS presentation during 
acquisition training) and 22 s after the last event of in-
terest (i.e., last CS or US presentation during acquisi-
tion training). The signal was low-pass filtered with a 
second-order Butterworth filter with a cutoff frequency 
of 1  Hz using Matlab 2019a (Mathworks®, Natick, 
Massachusetts, USA).

2.3.2  |  SCR quantification 
approaches employed

We applied three different response quantification ap-
proaches including their subcategories to both data sets: 
TTP was employed by two different raters for each data 
set, one representative BLC approach (i.e., most com-
monly used specifications according to the literature 
search; Sjouwerman et al., 2021) as well as computational 
approaches as implemented in Ledalab (one representa-
tive setting) and PsPM (GLM-based as well as three differ-
ent DCM-based settings). This was done for the full fear 
acquisition training phase for both data sets as well as (i) 
for the first and (ii) second half of this phase separately 
and by using (iii) the last two trials of fear acquisition 
training only (results are presented in the Supplementary 
Material). For Ledalab and PsPM, data used for (i), (ii), 
and (iii) were derived from the same model as the full 
phase. The decision to include these additional phases 
was guided by the fact that the specific number of trials 
included in the statistical models to analyze the success of 
fear acquisition training is heterogeneous in the literature 
as revealed by the systematic literature search (Lonsdorf 
et al., 2021) and as illustrated for fear extinction (Lonsdorf 
et al., 2021; Ney et al., 2020).

Here, we do neither employ an unsupervised fully 
automated script-based TTP approach nor include 
Autonomate because the supervised TTP approach offered 
through Autonomate’s graphical user interface is reported 
(Green et al., 2014) to be procedurally nearly identical to 
the computer-assisted TTP approach employed here with 
identical OLW and PDWs. The choice of approaches was 
guided by the results of our systematic literature search 
described in Section 3.1.

Trough-to-peak (TTP)
SCRs were scored computer-assisted by using a custom-
made computer program according to published guide-
lines (Boucsein et al.,  2012) and while being blind to 
stimulus type associated with a given SCR. More pre-
cisely, the trough was identified in an onset latency 

window (OLW) of 0.9–4 s (Boucsein et al., 2012) poststim-
ulus onset and the peak was identified in a peak detection 
window (PDW) of maximally 5 s post-SCR onset. In case 
of multiple peaks in the PDW, the first peak was consid-
ered. This approach corresponds to what has been recom-
mended by the Society for Psychophysiological Research 
(see Boucsein et al.,  2012) and corresponds to what has 
been referred to as the so-called “first-interval response” 
in fear conditioning research. Provided the CS–US inter-
val is sufficiently long (i.e., 6–10 s; Stewart et al.,  1961) 
three SCR components that map onto different underlying 
processes can be distinguished in fear conditioning stud-
ies which have been referred to as the first-interval (FIR), 
second-interval (SIR), and third-interval responses (TIR). 
More precisely, the FIR (SCR onset: 1–4 s post-CS onset) 
is considered an orienting response while the SIR (SCR 
onset: 4 s post-CS onset to 1 s after CS onset) is thought to 
reflect anticipatory responding to the soon to be presented 
US and typically occurs only after contingency learning 
(Ohman, 1972). Finally, the TIR is the response to the US 
itself. This work on the three different components dates 
back to the 70s (Ohman,  1972; Prokasy & Ebel,  1967; 
Rescorla & Wagner,  1972) but the distinction between 
these three intervals has not been universally adopted (for 
a summary and critique, see Pineles et al., 2009). In fact, 
“Of the two anticipatory response components, the first 
is usually larger than the second and, because it is highly 
sensitive to conditioning manipulations, it is frequently 
the only one reported” (Lipp, 2006), possibly also because 
the FIR has been shown to have higher reliability than the 
SIR (Fredrikson et al., 1993). It is also important to note 
that the assessment of the SIR is often not possible when 
the CS–US interval is too short or when startle probes are 
included in the experimental design (i.e., the SCR to the 
probe confounds the SIR).

Raters 1 (TTP1) were experienced raters and Raters 2 
(TTP2) were first-time raters for both data sets but differ-
ent individuals for these data sets resulting in a total of 
4 raters. For TTP1, in the Hamburg sample, a stimulus-
specific time window was used with the OLW defined 
for SCRs to the CS as 0.9 to 3.5 s and the US as 0.9–2.5 s 
post-US onset, as suggested recently based on an empiri-
cal evaluation of SCR onset latencies across stimulus types 
(Sjouwerman & Lonsdorf, 2019). This was done to have a 
direct empirical comparison between these recently sug-
gested time windows and the time windows suggested in 
the published recommendations by Boucsein et al. (2012), 
which were applied for TTP2 (Hamburg) and both Mainz 
rater.

Both raters for the Hamburg sample were trained by 
the senior author and so was the experienced rater in the 
Mainz data set (AMG) who then trained the first-time 
rater in the Mainz data set.
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Data were downsampled to 10 Hz. Each scored SCR 
was checked visually, and the scoring suggested by the 
custom-made computer program was corrected if neces-
sary (e.g., the foot or trough when misclassified by the 
algorithm was manually corrected, see Supplementary 
Material for examples). Data with recording artifacts 
(i.e., in more than half of the trials) were treated as 
missing data points and excluded from the analyses. 
For the Hamburg data sets, SCRs below 0.01 μS or the 
absence of any SCR (i.e., flat line or habituation drift) 
within the defined time window were classified as non-
responses and set to 0. The threshold of 0.01 μS for this 
data set was determined empirically by visually inspect-
ing response specifically above and below this cutoff 
(Lonsdorf, Klingelhöfer-Jens, et al.,  2019), which sug-
gested that in this data sets, responses >0.01 μS can be 
reliably identified. For the Mainz data sets, a minimum 
amplitude criterion of 0.02 μS was used.

Baseline correction (BLC)
A custom-made script in Matlab version R2019b 
(Mathworks®, Natick, Massachusetts, USA) imple-
mented the BLC response quantification approach by 
subtracting the mean of the 2  s time window prior to 
stimulus onset from the subsequent highest value iden-
tified in a peak detection window (PDW). The PDW 
spanned the minimal CS duration (6  s; as CS dura-
tion was jittered between 6 and 8 s) for the Hamburg 
sample and the full CS duration (4.5 s) for the Mainz 
sample for both, CS and US, stimuli. In light of a sub-
stantial degree of heterogeneity in the specification of 
the duration of the baseline time window and the PDW 
as revealed by the systematic literature search, these 
specifications were decided on because they were the 
most abundant ones in the literature search (n = 3, see 
results and our related work for details on heterogene-
ity within the BLC approach, Sjouwerman et al., 2021) 
and matched rather closely the criteria initially pro-
posed by Pineles (BWL: −2 s, PDW: full CS duration; 
Pineles et al.,  2009) (as described in the Introduction 
and in Table 1). Note, however, that Pineles employed 
an iterative algorithm in the program Mathematica 
for peak detection that prevents the identification of a 
peak despite the absence of a response (e.g., detection 
of the peak at the first data point in the PDW when 
no reaction is present but only a habituation drift). 
Here, however, we did not use such an iterative algo-
rithm for the representative BLC approach as no pub-
lication identified through the systematic literature 
search used an iterative algorithm. A comprehensive 
discussion and evaluation of the different implementa-
tions of the BLC approach will be discussed elsewhere 
(Sjouwerman et al., 2021).

Ledalab
A continuous decomposition analysis (CDA) 
was conducted using Ledalab V3.4.9 (Benedek & 
Kaernbach, 2010a) running in Matlab 2019b (Mathworks®, 
Natick, Massachusetts, USA). CDA extracts phasic infor-
mation underlying the EDA signal. SCRs are deconvolved 
by the general response shape and are then decomposed 
into continuous phasic and tonic components. For data 
preprocessing, a second-order low-pass Butterworth filter 
was applied and data were downsampled to 10 Hz. The 
“optimize” function, as implemented in Ledalab, was used 
using default settings. The response window was defined 
as 0.9–4.0  s after stimulus onset. The minimum thresh-
olds of SCRs were 0.01 and 0.02 μS for the Hamburg and 
the Mainz data sets, respectively. For statistics, the “CDA.
SCR” value was extracted, representing the phasic SCR ac-
tivity most accurately without falling back on classic SCR 
amplitude, which may, however, differ from TTP ampli-
tude (www.ledal​ab.de). According to the developers, the 
CDA approach is the recommended approach in Ledalab 
and was, among the publications using Ledalab, also most 
frequently used according to our literature search.

PsPM
PsPM single-trial GLM.  All Psychophysiological 
Modeling analyses (PsPM 4.3.0 [Bach et al.,  2018]) 
were conducted in Matlab 2019b. To capture the nature 
of increasing SCRs over time in the fear conditioning 
paradigm due to learning, single-trial modeling was 
conducted. To estimate single-trial SCR, we employed a 
general linear model (Bach et al., 2009, 2013) comprising 
one regressor for each CS onset and one regressor for 
each US delivery and used a canonical skin conductance 
response function with time-derivative (Bach et al., 2010) 
and fixed response latency.

PsPM DCM fixed and flexible onset.  Nonlinear modeling 
(dynamic causal, DCM) in PsPM employs a nonlinear 
inversion algorithm to infer single-trial estimates of 
sudomotor impulse response magnitude (Bach et 
al., 2010). Following the PsPM manual, in the first model, 
we applied a “full interval” model in which the SCR 
onset, and its onset latency as implemented in PsPM, can 
be modeled within a time window that spans the entire 
CS duration (i.e., until US onset). In a second model, we 
defined a time window of 0–4 s (“restricted interval”) to 
resemble the TTP (see 2.3.2.1) and Ledalab (see 2.3.2.3) 
approaches. In a third model, a fixed latency response 
at CS onset (i.e., DCM fixed onset) was defined. These 
different models were specified to elaborate on the most 
appropriate model and most appropriate time window in 
light of the PsPM manual indicating that DCM models 
that allow for a flexible response onset come with the risk 

http://www.ledalab.de
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of absorbing SCR elicited by the US and US omission and 
erroneously assigning it to the CS+. Thus, these models 
are not recommended for analyzing reinforced SCR trials 
that are particularly problematic for experimental designs 
with 100% or high reinforcement rates. More precisely, 
PsPM’s manual states for the nonlinear model, “for 
fear conditioning paradigms, the best way of modelling 
anticipatory SCR is currently under investigation. It is 
possibly suboptimal to model one anticipatory “flexible” 
response, in particular at longer CS/US SOAs when this 
flexible response may absorb SCR elicited by US or US 
omission” (cf. page 22, manual for PsPM 4.3.0, http://
pspm.sourc​eforge.net/). In all three DCM models (i.e., 
fixed, full interval, and restricted interval), the response 
latency was fixed at US onset and US omission for each 
trial.

2.4  |  Statistical analyses

All analyses were conducted in R version 4.0.2.

2.4.1  |  Within SCR quantification 
approach analyses

For all subject-specific mean stimulus SCRs, as quanti-
fied by all here employed approaches, Bayesian paired 
two-sample t tests as implemented in the “BayesFactor” 
(https://CRAN.R-proje​ct.org/packa​ge=Bayes​Factor, ver-
sion 0.9.12-4.2) package (Morey & Rouder, 2015) were 
conducted in R to assess CS+/CS− discrimination. The 
package’s t test BF function was used with 1000,000 it-
erations to extract the posterior of the effect size for CS 
discrimination for each iteration per subject. The median 
effect size and its 95% credible intervals (CrIs) were cal-
culated and the Bayes factor was extracted using the ex-
tractBF function. To provide complementary analyses that 
provide results based on most commonly employed fre-
quentist statistics to assess mean differences between CS+ 
and CS− (CS+/CS− discrimination), parallel analyses 
employed paired t tests for all approaches using R’s t test 
function yielding p values and 95% confidence intervals.

2.4.2  |  Evaluation of 
robustness of the effect against and 
consistency of the effect between different 
SCR quantification approaches

Here, we adopted criteria for the evaluation of a set of 
robustness analyses from criteria suggested for the eval-
uation of outcomes from replication attempts (LeBel 

et al., 2018). The robustness analyses presented here test 
whether different SCR quantification approaches ap-
plied to an identical data set to yield results that justify 
interpreting and using the different approaches inter-
changeably. More precisely, we aim to empirically eval-
uate whether different approaches can be considered 
exact/very close replications or should be considered far 
(or conceptual) replications in the data sets used here. 
Even though LeBel et al. used a frequentist framework 
to evaluate replicability, while we use a Bayesian ap-
proach to evaluate robustness, we consider the criteria 
to be generally applicable to our purposes. More pre-
cisely, we adopt the following criteria that we will apply 
to our data:

a.	 Is a signal detected within each approach? A signal 
is considered detected when the 95% CrI around the 
effect size point estimate does not include zero.

b.	 How precise is the effect size estimate within each ap-
proach? How wide are the CrI’s within the different 
SCR quantification approaches?

c.	 Are the effect size estimates consistent across ap-
proaches? Consistency between two effects is consid-
ered given when the effect size point estimate of one 
approach is included in the other effect size’s CrIs.

2.4.3  |  Measures of agreement across SCR 
quantification approaches

Most commonly the intraclass correlation coefficient 
(ICC) has been used in comparative research. The ICC 
is a “measure of agreement, corrected for the agree-
ment expected by chance” (cf. Bland & Altman,  1990) 
and is based on data that are centered and scaled using 
a pooled mean and standard deviation (in “traditional,” 
Pearson’s correlation, each variable is centered and 
scaled by its individual mean and standard deviation). 
The ICC is commonly used to assess the consistency of 
measurements made by multiple observers (Shrout & 
Fleiss, 1979), in this case, multiple response quantifica-
tion approaches. However, the use of the ICC has been 
criticized (Bland & Altman, 1990) and problematically, 
in case of systematic differences across approaches, 
which likely do exist here, the ICC is a composite of in-
traobserver and interobserver variability (with observer 
here being approach) and may yield implausible results. 
In light of these criticisms which will not be reiterated 
in full detail (Shrout & Fleiss, 1979), the ICC is not con-
sidered the optimal tool for the assessment of interrater 
or intermethod agreement. Thus, we use an alternative 
measure that has the advantage of “high flexibility re-
garding the measurement scale, the number of raters, 

http://pspm.sourceforge.net/
http://pspm.sourceforge.net/
https://cran.r-project.org/package=BayesFactor
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[and] can handle missing data” (cf. Zapf et al.,  2016): 
the alpha coefficient suggested by Krippendorff 
(Krippendorff,  1970) as comprehensively described by 
Zapf and colleagues  (2016). We use Krippendorff’s α 
to investigate the agreement between two raters using 
the TTP approach (a) across all trials, (b) trial-by-trial, 
and (c) per CS type. Furthermore, we assess the agree-
ment across all approaches investigated here including 
both TTP raters (n = 8 approaches) (a) across all trials, 
(b) trial-by-trial, and (c) per CS type. We also provide a 
trial-by-trial pairwise agreement between the different 
approaches (n = 8) across all CS types and per CS type, re-
spectively. Finally, we assessed trial-by-trial agreement 
between all possible pairs of quantification approaches. 
Krippendorff’s α is a reliability coefficient with values 
ranging from −1 to 1, where −1 is perfect disagreement 
and 1 is perfect agreement. According to Krippendorff, 
α of ≥0.8 is required for agreement (Krippendorff, 2004). 
Benchmark values have been suggested (Landis & 
Koch, 1977) for interpretation of the strength of agree-
ment as substantial (0.61–0.8), moderate (0.41–0.6), and 
fair (0.21–0.40). All analyses were conducted in R 4.0.2 
using the script provided by Zapf et al. (2016) selecting 
ordinal measurement scaling, a two-sided type one error 
of 5%, and 1000 bootstrap samples.

3   |   RESULTS

3.1  |  Systematic literature search

The systematic literature search revealed that trough-
to-peak (TTP) scoring (n  =  24) and baseline correction 

(BLC) approaches (n  =  18 including two that used SCL 
rather than SCR but applied a baseline correction ap-
proach) were most abundant in the publications exempla-
rily screened (published between 06/2018 and 02/2019), 
whereas model-based approaches (n  =  5) were less fre-
quently employed (see Figure 1a). Of the model-based ap-
proaches, n = 4 used Ledalab (n = 3 CDA with varying 
time windows, n = 1 DDA) and n = 1 study used the GLM 
approach as implemented in PsPM/SCRalyze. Within the 
TTP approach category, manual or computer-assisted TTP 
scoring are subsumed under the term “computer-assisted” 
and was most commonly applied (n = 19) and the software 
Autonomate was applied in three studies (n = 3) while a 
custom-made script was used in two (n = 2) studies. Of 
note, it was oftentimes unclear which software program 
(e.g., Matlab, Acknowledge, custom-made) was used for 
TTP scoring and procedures were often described as very 
rudimentary to an extent that it is possible that some 
studies actually used custom-made scripts rather than 
computer-assisted TTP scoring. Furthermore, it was often 
not clear if the time window described referred to the time 
window in which the onset (OLW) or the peak (PDW) had 
to occur. In light of the slow-responding SCR, this is a cru-
cial difference. Three studies were excluded: two studies 
reported skin conductance level rather than SCR which 
was quantified through other means than BLC and one 
did record SCR but did not report methods for response 
quantification or SCR results as they did fail to observe 
differential responding (i.e., CS+ > CS−) in SCRs. Thus, 
from the 50 publications included 47 reported methods for 
SCR quantification.

Of note, these categories of approaches (TTP, BLC, 
model-based) were not homogeneous in themselves as 

F I G U R E  1   (a) Frequency of different SCR quantification approaches exemplified from the systematic literature search which included 
47 publications, published between 06/2018 and 02/2019. (b) Illustration of the different SCR quantification approaches employed to the two 
independent data sets in the current work: trough-to-peak (TTP), baseline correction (BLC), Ledalab, as well as PsPM (formerly SCRalyze) 
with four different specifications
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across studies different criteria were applied to define a valid 
response, which is—at least in part—attributable to different 
procedural specifications (e.g., CS and ITI durations). For 
conciseness, we here selected one representative set of crite-
ria for each approach (i.e., TTP, Ledalab, BLC, see Methods 
for justification for the choice of specifications for each ap-
proach) and included four different implementations of-
fered by PsPM (see Figure 1b). The latter decision was based 
on a look into the future for which we envision enhanced 
reproducibility of SCR response quantification which can be 
achieved optimally through model-based approaches.

3.2  |  Descriptive presentation of trial-by-
trial SCR trajectories and average values 
across SCR quantification approaches

Here, we present trial-by-trial SCR trajectories for the CS+, 
CS−, and US during fear acquisition training as derived 
from the different SCR quantification approaches employed 
for both data sets (see Figure 2a,b) as well as averaged SCR 

values across all trials per stimulus type (i.e., CS+, CS−, and 
US, see Figure  2c,d). On a descriptive level, in both data 
sets (Hamburg, Mainz), the trial-by-trial trajectories appear 
to follow a similar pattern when responses are quantified 
through the TTP, BLC, Ledalab approach, or the single-trial 
GLM approach implemented in PsPM. The trial-by-trial tra-
jectories based on the three different DCM approaches im-
plemented in PsPM (i.e., full interval [FI], fixed onset [FO], 
and restricted interval [RI]) deviate on a descriptive level 
from the trajectories derived from the above-mentioned ap-
proaches. More precisely, data derived from the DCM FI 
approach (for both the Hamburg and the Mainz data sets) 
and the RI approach (primarily Mainz data set) apparently 
yielded larger CS+ responses but substantially smaller US 
responses. This was particularly pronounced in the Mainz 
data sets in which the CS duration was shorter than in the 
Hamburg study (Mainz: 4 s, Hamburg: 6–8 s jittered) and 
the reinforcement ratio was partial (50%) while it was full 
(100%) in the Hamburg study. This might be indicative of an 
overestimation of CS+ responses at the cost of underestima-
tion of US responses. This is in line with the PsPM manual 

F I G U R E  2   Trial-by-trial trajectories for the CS+ (red), CS− (blue), and US (black) during fear acquisition training for the Hamburg 
(a) and Mainz (b) samples illustrated for all different SCR quantification approaches employed: TTP Rater 1 and TTP Rater 2, baseline 
correction (BLC), Ledalab, PsPM single-trial GLM, PsPM DCM with flexible response onset in full CS interval (FI), PsPM DCM with the 
fixed response at CS onset (FO), and PsPM DCM with flexible response onset in a restricted interval (RI). Furthermore, the averaged raw 
SCRs (plus standard error) for the CS+ (red), CS− (blue), and US (black) for each SCR quantification approach employed in the Hamburg 
(c) and Mainz (d) data sets are shown. Supplementary Figure S1 illustrates trial-by-trial average values derived from the different 
quantification approaches in a single figure, and supplementary Figure S2 shows the averaged raw SCRs split up for the first and second half 
of fear acquisition training. Note that in the Hamburg sample, a 100% reinforcement rate was employed, whereas a 50% reinforcement rate 
was employed in the Mainz sample resulting in a reduced number of US responses available. As indicated in the PsPM manual, PsPM DCM 
models that allow for a flexible response onset (here: FI and RI) come with the risk of absorbing SCRs elicited by the US and US omission 
and erroneously assigning it to the CS+ when the CS–US interval is short
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noting that PsPM DCM models that allow for a flexible re-
sponse onset come with the risk of absorbing SCRs elicited 
by the US and US omission and erroneously assigning it to 
the CS+. Indeed, in the Mainz data, the DCMs with flex-
ible response onset (FI, RI) and in the Hamburg data set, the 
DCM modeling the full interval (FI) seem to underestimate 
US responses and instead overestimate reinforced CS+ re-
sponses (note, order of CS+ responses differed between 
participants). Thus, these models do not seem suitable for 
analyzing reinforced SCR trials that are particularly prob-
lematic in paradigms with 100% or high reinforcement rate 
as all CS+ trials are reinforced. Yet, also when only analyz-
ing unreinforced CS+ trials, this results in a reduced num-
ber of CS+ trials which necessarily impacts on the variance 
of the data which may turn out to be different between the 
CS− and the CS+ due to the different number of trials in-
cluded in the analyses.

Furthermore, for the Mainz sample, the trajectories 
yielded by PsPM’s FI model (i.e., modeling the full CS 
duration of 4.5 s) and the restricted interval model (i.e., 
modeling 0–4  s post-CS onset) unsurprisingly result 
in near-identical results as the CS duration (4.5 s) was 
only 0.5  s longer than the definition of the restricted 
interval (i.e., 4 s post-CS onset). In the Hamburg data 

set in which the CS duration was longer (6–8 s jittered), 
however, both approaches differ substantially (i.e., full 
interval modeled 0–6, 0–7, or 0–8 s, restricted interval: 
0–4  s). It is striking that in the Hamburg sample, in 
which the CS–US interval is much longer than in the 
Mainz sample, the trajectory derived from the DCM 
RI model (i.e., CS modeled as 0–4  s post-CS onset) 
resembled the trajectories of the TTP, BLC, Ledalab, 
and PsPM GLM model approaches despite apparently 
smaller differences between the CS+ and the CS− (see 
also 3.3. for statistics). Yet, the US trajectory is rather 
comparable.

3.3  |  CS discrimination and 
effect sizes for the different SCR 
quantification approaches

Both frequentist (Figure  3a,b) and Bayesian 
(Figure 3c,d) paired two-sample t tests indicate signifi-
cant CS discrimination during fear acquisition training 
for data derived from all different SCR quantification 
approaches employed (all p’s  <  .003, BFs  >  7.16, see 
Figure  3a,b), even though CS discrimination values 

F I G U R E  3   CS discrimination (based on raw values per CS type during fear acquisition training) based on data derived through different 
SCR quantification approaches in the Hamburg (a, c) and Mainz (b, d) data sets. A and B show mean CS discrimination (±standard error) 
and results as a table (i.e., mean, p values, confidence intervals) from paired-sample t tests, whereas c and d show corresponding effect 
sizes (±credible intervals) as well as results as a table (i.e., Bayes factors and credible intervals) as derived from the Bayesian paired two-
sample t tests for the Hamburg (c) and Mainz (d) data sets. Supplementary Figure S3 shows this split up for the first and second half of fear 
acquisition training. Normalization (e.g., z scoring) can naturally increase effect sizes. In our data, z scoring does not change the general 
pattern of heterogeneous effect size point estimates between quantification methods (see supplementary Figure S4)
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differed numerically between approaches. Similarly, 
resulting effect size estimates derived from Bayesian 
paired two-sample t tests (Figure 3c,d) differed between 
response quantification approaches with marked vari-
ation in the Hamburg sample and lower variation be-
tween effect sizes but also wider credible intervals in 
the smaller Mainz sample.

It is striking that there is no clear pattern between both 
data sets that can be taken to identify a specific SCR re-
sponse quantification approach that results in generally 
higher or lower effect sizes across both paradigms which 
differ in CS duration (4.5 s vs. 6–8 s), a number of trials 
(10 vs. 14), and reinforcement rate (50% vs. 100%) as well 
as the sample size (38 vs. 118 participants).

3.4  |  Formal 
comparison of robustness of results across 
SCR quantification approaches

Here we evaluate the results of the sets of robustness anal-
yses based on three criteria borrowed from a framework 
suggested for the evaluation of “replicability”: (1) the ex-
istence of a signal, (2) its precision, and (3) the pairwise 
consistency of results.

First, as described above (see 3.3), a signal is defined 
here as larger SCRs to the CS+ compared with the CS- 
averaged across all trials of the fear acquisition training 
phase. A signal is obtained for SCRs quantified from any of 
the eight approaches employed here in both the Hamburg 
and the Mainz samples.

Second, effect sizes are more precise in the larger 
Hamburg data sets (CrI width [min–max]: 0.363–0.445) 
compared with the smaller Mainz data set (CrI width 
[max–min]: 0.702–0.843), t(7) = −16.12, p < .001, but are 

rather similar within different approaches applied to the 
data of one data set.

Third, the pairwise consistency of effect sizes as in-
dicated by the point estimate of one effect size falling 
within the 95% CrI of the other estimate is summarized in 
Table 2. For both the Hamburg (black) and Mainz (blue) 
data set, effect sizes derived from TTP1 and TTP2 as well 
as TTP1 and BLC and TTP2 and BLC were consistent with 
each other. For the Hamburg data set, effect sizes derived 
from these three approaches (TTP1, TTP2, and BLC) were 
consistent with those derived from Ledalab while they 
were inconsistent with those derived from Ledalab in the 
Mainz data set with Ledalab resulting in larger effect sizes 
than any of the other approaches.

For the Mainz data set, all pairwise comparisons be-
tween effect sizes derived from any of the four PsPM mod-
els and the four other approaches (TTP1, TTP2, BLC, and 
Ledalab) yielded consistent effect sizes with the excep-
tion of Ledalab yielding inconsistently larger effect sizes 
than the DCM fixed onset (FO), TTP1, TTP2, and BLC 
approaches. Yet, it has to be highlighted that the 95% CrI 
in the smaller Mainz data set are wide and larger sample 
sizes may result in a different conclusion.

In the Hamburg data set, in turn, effect sizes derived 
from PsPM’s single-trial models were inconsistent (i.e., 
smaller) with effect sizes derived with the aforementioned 
four approaches (TTP1, TTP2, BLC, and Ledalab). In fact, 
for the Hamburg sample, effect sizes derived from any of 
the PsPM-based approaches were smaller than these four 
approaches (TTP1, TTP2, BLC, and Ledalab) and have to 
be evaluated as inconsistent with these as their respec-
tive point estimates fall outside of the 95% CrI of any of 
these approaches. Within the different PsPM approaches, 
effect sizes derived from the single-trial GLM model and 
the DCM full interval (FI) model are consistent with each 

T A B L E  2   Pairwise consistency between different SCR quantification approaches with ✔ indicating consistency and ✘ indicating 
nonconsistency for the Hamburg sample (in black: ✘, ✔) and the Mainz sample (in blue: ) for trough-to-peak (TTP), baseline correction 
(BLC), Ledalab, as well as four different models in PsPM including the trial-wise general linear model (GLM) as well as three dynamic 
causal modeling (DCM) models with full interval (FI), flexible onset (FO), and restricted interval (RI)
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other while the effect size derived from the single-trial 
GLM model is inconsistent with the fixed onset (FO) and 
restricted interval (RI) models with larger effect sizes de-
rived from the GLM model compared with the FO and the 
RI models.

The fixed onset (FO) model’s effect sizes were con-
sistent with both the full (FI) and restricted interval (RI) 
models’ effect sizes but the effect sizes derived from the 
full interval (FI) model were inconsistently larger than 
those derived from the reduced interval (RI) model.

3.5  |  Agreement between different SCR 
quantification approaches

Across all SCR quantification approaches, trial-wise agree-
ment in the Hamburg sample (see Figure 4b) was mostly 
moderate to substantial but for some trials also fair. In the 
Mainz sample, it was poor to substantial (Figure 5b). In 
the Hamburg sample, substantial agreement was observed 
for the CS+ trials (average [range]: 0.618 [0.533 to 0.708]) 
as well as for the US trials (average [range]: 0.631 [0.577 to 
0.715]). Agreement for the CS-  trials, however, was only 
moderate (average [range]: 0.500 [0.311 to 0.673]) in the 
Hamburg sample. In the Mainz sample in turn, substan-
tial agreement was observed for the CS+ (average [range]: 
0.639 [0.449 to 0.769]) and the CS− (average [range]: 0.726 
[0.653 to 0.805]) while agreement was only fair for the US 
(average [range]: 0.226 [0.165 to 0.330]).

When excluding the three PsPM DCM models which 
may not be optimally suited for the analyses of fear con-
ditioning data derived from the experimental designs em-
ployed here (see above and see PsPM manual 4.3.0, page 
22), agreement in the Hamburg sample remained substan-
tial for the CS+ (average [range]: 0.778 [0.567 to 0.861]) 
and US (average [range]: 0.800 [0.734 to 0.845]) and re-
mained moderate for the CS-  ((average [range]: 0.578 
([0.376 to 0.720]). For the Mainz sample, agreement for 
the CS+ trials (average [range]: 0.808 [0.493 to 0.875]) and 
CS- (average [range]: 0.749 [0.619 to 0.842] also remained 
substantial when excluding the three PsPM DCM models 
while agreement for the US trials improved from fair to 
substantial (average [range]: 0.668 ([0.543 to 0.882]).

The trial-wise agreement between pairs of SCR quan-
tification approaches in the Hamburg sample (Figure 4a) 
and the Mainz sample (Figure  5a) differed substantially 
with some approaches showing consistent and near-
perfect agreement across stimulus types (e.g., TTP1 vs. 
TTP2) and data sets. Yet, the pattern of pairwise agree-
ment was often not consistent across both data sets. In the 
Hamburg data set, the agreement seems to be lowest for 
the CS-  trials, whereas in the Mainz sample, the agree-
ment seems to be lowest for the US trials.

3.6  |  Secondary question: Interrater 
comparisons for computer-assisted 
TTP scoring

For both data sets (Hamburg and Mainz), two independ-
ent raters quantified SCRs through computer-assisted 
TTP scoring whereof Rater 1 at both sites was experi-
enced and Rater 2 at both sites was the first-time rater 
(note that Raters 1 and 2 were different individuals for 
both sites, i.e., there were a total of 4 raters). Note, how-
ever, that Hamburg Rater 1 and Rater 2 used slightly 
different scoring criteria (i.e., 0.9–3.5 and 0.9–4.5  s 
OLWs). Formal interrater reliability coefficients using 
Krippendorff’s alpha indicate near-perfect agreement 
across all trials and CS types (Hamburg sample: aver-
age Krippendorff’s alpha [lower/upper bounds of CIs]: 
0.962 [0.955, 0.969]; Mainz sample: 0.973 [0.954, 0.991]). 
Reliability coefficients calculated separately for the 
stimulus types also revealed near-perfect agreement for 
the CS+ (Hamburg sample: 0.961 [0.948, 0.974]; Mainz 
sample: 0.990 [0.977, 0.998]), the CS- (Hamburg sample: 
0.948 [0.934, 0.962]; Mainz sample: 0.992 [0.984,0.997]), 
and the US (Hamburg sample: 0.961 [0.946, 0.975]; 
Mainz sample: 0.919 [0.823, 0.986]).

Finally, the range of trial-wise agreement (see 
Supplementary Table S1) revealed near-perfect agreement 
across trials for the Hamburg sample [0.845, 0.996] and 
the Mainz sample alike [0.860, 1].

Figure 6 illustrates the excellent interrater reliability on 
a CS-type level (i.e., averaged SCR magnitude per stimulus 
type for Rater 1 and Rater 2) per individual. Note that the 
figure illustrates this descriptively on an individual level 
(i.e., connects the average SCR magnitude value as scored 
by Rater 1 and Rater 2 for data from the same participant, 
while the analyses described above (i.e., Krippendorff’s 
alpha) do not include the individual subject level.

4   |   DISCUSSION

Here, we provide a comparison between seven different 
SCR quantification approaches in two data sets. The over-
arching aim of this work was to (a) evaluate if and to what 
extent seven different approaches lead to comparable results 
as well as (b) investigate the interrater agreement between 
two individuals performing TTP scoring in two data sets.

4.1  |  Take-home message from the 
systematic literature search

Our work departs from a systematic literature search that 
was intended to guide our selection of the to be included 
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F I G U R E  4   Krippendorff’s alpha (and CIs) as a measure of agreement between SCR quantification approaches, as calculated in the 
Hamburg sample (a) across all eight approaches employed for each trial during fear acquisition training. And as calculated (b) for pairwise 
comparisons between the eight different approaches employed here (including the three DCM models). Different stimulus types are color 
coded with the CS+ in red, CS− in blue, and the US in black. Vertical lines are positioned at 0.8 and 0.4 highlighting benchmarks for 
near-perfect agreement (>0.80) and fair to poor (<0.41) according to the benchmarks suggested by Landis and Koch (1977). According to 
the benchmarks by Landis and Koch (1977), values can be interpreted using the following benchmarks for Krippendorff’s a < 0 “poor” 
agreement, 0 to 0.2 “slight,” 0.21 to 0.40 “fair,” 0.41 to 0.60 “moderate,” 0.61–0.80 “substantial,” and 0.81 to 1 “near perfect.” Note that trial 
sequences on the y axis in the smaller tiles in panel B are identical to the trial sequence on the y axis in B
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F I G U R E  5   Krippendorff’s alpha (and CIs) as a measure of agreement between SCR quantification approaches as calculated in the 
Mainz sample (a) across all eight approaches employed for each trial during fear acquisition training and as calculated (b) for pairwise 
comparisons between the eight different approaches employed here (including the four DCM models). Different stimulus types are color 
coded with the CS+ in red, CS− in blue, and the US in black. Vertical lines are positioned at 0.8 and 0.4 highlighting benchmarks for near-
perfect agreement (>0.80) and fair to poor (<0.41) according to the benchmarks suggested by Landis and Koch (1977). According to the 
benchmarks by Landis et al. (1977), values can be interpreted using the following benchmarks for Krippendorff’s a < 0 “poor” agreement,  	
0 to 0.2 “slight,” 0.21 to 0.40 “fair,” 0.41 to 0.60 “moderate,” 0.61–0.80 “substantial,” and 0.81 to 1 “near perfect.” Note that trial sequences on 
the y axis in the smaller tiles in panels C and D are identical to the trial sequence on the y axis in A and B
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SCR quantification approaches. Even though the litera-
ture search hence mainly served as a tool, some important 
take-home messages can be derived: First (computer-
assisted) TTP scoring and BLC through custom-made 
scripts seem to be the prevailing approaches for SCR 
quantification in fear conditioning research to date. Our 
literature search, however, covers only articles published 
in a 6-month period until early 2019 and we anticipate that 
the model-based approaches may become increasingly at-
tractive with increasing appreciation of the value and im-
portance of computational reproducibility. Yet, a recently 
published study that focuses on different filter settings in 
SCR quantification also included a systematic literature 
search of fear conditioning studies covering 2019 and 2020 
(Privratsky et al., 2020) and the frequencies that can be de-
rived from the Supplementary Material seem comparable 
to what we found.

Second, the SCR quantification approaches identified 
(i.e., TTP, BLC, Ledlab, and PsPM) do not represent uni-
tary methods but come in heterogeneous specifications 

(see, e.g., Table 1). This likely originates—at least partly—
from differences in experimental paradigms, particularly 
timing and duration of stimulus presentation. This, how-
ever, is unlikely to be obvious for novices or researchers 
outside the field and we thus recommend explicitly and 
clearly justify specific choices for response quantification 
criteria including appropriate references. More precisely, 
TTP and BLC approaches differ in the definition of onset 
latency, baseline, and peak detection time window, and 
a comprehensive overview has been provided by Pineles 
et al. (2009). Similarly, a number of different settings and 
approaches are offered by software programs that imple-
ment model-based approaches such as Ledalab (http://
www.ledal​ab.de/docum​entat​ion.htm) and PsPM (e.g., 
GLM-based, DCM-based with different possible settings 
each, http://pspm.sourc​eforge.net/docum​entat​ion/). The 
specific model, the chosen settings, and, if applicable, the 
selected output measure (e.g., parameter estimate, recon-
structed response, the area under the curve, etc.) need to 
be reported in enough detail to allow for computational 

F I G U R E  6   Interrater comparisons between TTP Rater 1 and TTP Rater 2 for the Hamburg sample (upper row) and the Mainz sample 
(lower row) for single-trial discrimination (light gray) as well as single-trial SCRs for the CS+ (red), CS− (blue), and the US (dark gray) 
during fear acquisition training. Subplots show single-trial or pairwise discrimination values as well as box plots and densities for both raters 
with identical trials connected through lines. Note that densities are nearly completely overlapping. Note that Raters 1 and 2 were different 
individuals in the Hamburg and Mainz samples. Also note that both raters used the same criteria in the Mainz sample, whereas in the 
Hamburg sample, both raters used slightly different criteria to allow for a direct comparison of two previously suggested sets of criteria (see 
Methods for details)

http://www.ledalab.de/documentation.htm
http://www.ledalab.de/documentation.htm
http://pspm.sourceforge.net/documentation/
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reproducibility, which is often not the case as revealed 
by our literature search. We refer to our related work 
(Sjouwerman et al.,  2021) for an investigation of within-
approach heterogeneity with a focus on the BLC method as 
an in-depth discussion is beyond the scope of the present 
work.

Third, we noticed that navigating among the different 
SCR quantification approaches and terminology employed 
in the literature can be rather challenging even for re-
searchers familiar with the field. For instance, TTP scoring 
has sometimes been referred to as (standard) “peak scor-
ing,” a term that has also been used to subsume TTP and 
BLC approaches (Privratsky et al., 2020). This distinction 
is, however, important as the onset latency window (OLW) 
for TTP scoring cannot be employed as a peak detection 
window (PDW) in BLC approaches (as done in Privratsky 
et al., 2020) simply as the onset of a stimulus induced SCR 
(i.e., OLW) occurs with a different timing from CS onset 
as the peak (i.e., PDW) and hence the peak may be missed. 
This is rather likely when employing windows as short 
as 0–3 s (Privratsky et al., 2020) taken from the OLW as 
PDW. To avoid this jingle (i.e., assuming erroneously that 
two different things are the same because they bear the 
same name)-jangle (i.e., two identical things are errone-
ously considered to be different because they carry differ-
ent names) fallacy, we suggest using standard terminology 
and to describe methods and procedures as precisely and 
transparently as possible. This includes ensuring that 
references refer to the procedure employed in all details, 
which was not always true for the publications included in 
the systematic literature search. It was most striking that 
many publications employing the BLC approaches often-
times cited the study by Pineles et al. (2009) as a reference, 
which, however, used an iterative algorithm and often dif-
ferent time windows than the citing literature. The articles 
identified through the literature search, however, were ex-
clusively based on custom-made scripts that did not seem 
to include an iterative algorithm but were also not shared 
with the articles. In conclusion, we see an urgent need for 
more standardization in the field with respect to the defi-
nition of time windows, peak detection (first, largest), and 
reporting standards.

4.2  |  Comparison between 
different approaches

Here, we applied seven different SCR quantification ap-
proaches to two independent data sets in a manyverse 
approach: computer-assisted TTP scoring, a representa-
tive BLC approach, CDA as implemented in the software 
Ledalab as well as four different models offered by the 
software PsPM (GLM single trial, DCM full interval, DCM 

fixed onset, and DCM restricted interval). Furthermore, 
two independent raters performed TTP scoring in both 
data sets—whereof one first-time rater and one expe-
rienced rater to allow for the assessment of interrater 
reliability.

4.2.1  |  (Computational) reproducibility and 
concordance between TTP raters

From a computational reproducibility perspective (i.e., ob-
taining the same results when applying the same methods 
to the same data), fully unsupervised and fully automatized 
procedures offer practical and methodological advantages 
and are available for the TTP approach (i.e., Autonomate, 
Green et al., 2014), inherent in the model-based computa-
tional approaches (e.g., PsPM, Ledalab) and implemented 
in the script-based BLC approaches. Yet, reproducibility is 
limited as particularly the custom-made scripts were not 
publicly available. Computer-assisted or manual TTP scor-
ing approaches, in turn, require extensive training prior 
to performing the scoring, are never completely free from 
scorer bias and human errors, and require substantial time 
investments when a large number of trials and/or a large 
number of participants are included. From a reproducibil-
ity perspective, however, within-lab interrater concordance 
rates reported here are near perfect for both data sets even 
with a slight change in employed criteria (i.e., TTP1 and 
TTP2 in the Hamburg sample) and one rater being experi-
enced while one was the first-time rater. This matches high 
concordance rates as reported in previous reports (average 
ICC: .982; Green et al.,  2014) and together suggests that 
reliability and reproducibility may not be a major concern 
for computer-assisted TTP scoring, provided raters are well 
trained. Our results are reassuring and echo previous find-
ings that suggest that the reliability of TTP scoring is excel-
lent. Note, however, that all four raters were directly (both 
raters for the Hamburg data set, experienced rater for the 
Mainz data set) or indirectly (new rater for the Mainz data 
set) trained by the senior author (T.B.L.) and it cannot be 
excluded that agreement between raters trained in different 
research groups may yield less-consistent results. A future 
direction could be to have different labs using the TTP ap-
proach scoring the same data set and investigating the con-
vergence rates (i.e., many labs approach).

Relatedly, we note also substantial heterogeneity in the 
time windows and peak definitions (e.g., first peak, highest 
peak) used for TTP scoring in the literature. For instance, 
our literature search revealed that some authors use what 
corresponds to the First-interval response (FIR) in fear con-
ditioning research (i.e., onset latency window, 0.9–4  s or 
0.9–3.5 s) as used here, whereas others identify a peak in the 
entire CS duration (or entire CS duration +0.5 s) window 
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starting from CS onset, CS onset +0.5 s, or CS onset +1 s or 
in a time window that spans the full CS duration (or start-
ing from CS onset +1 s) to 2 s after CS offset (the latter of 
which likely partly captures the SCRs to the US as this also 
seems to be applied to reinforced CS+ trials). Hence, future 
work should also focus on the role of between-study hetero-
geneity in TTP scoring between different laboratories which 
could also be done in a many labs approach.

4.2.2  |  Robustness of the CS discrimination 
effect against different response 
quantification approaches

The application of different SCR quantification ap-
proaches to the same data sets can be viewed as a set of 
robustness analyses (i.e., applying different processing or 
analysis pipelines to the same data) with the overarching 
aim to investigate if and to what extent the different meth-
ods lead to comparable results within each data set. As we 
are not aware of a formal framework for the evaluation 
of the outcome of robustness analyses, we here borrowed 
some criteria from a framework suggested for the evalua-
tion of “replicability” in general (LeBel et al., 2018). More 
precisely, we evaluated whether there was (a) a signal. 
This is in the context of this work defined as significant 
CS discrimination. We furthermore evaluated (b) whether 
the effect size of this signal was consistent across the dif-
ferent approaches, and whether (c) the (relative) precision 
of the effect differed across the different SCR quantifica-
tion approaches.

In sum, a signal (i.e., significant CS discrimination) 
was universally observed in both data sets irrespective of 
the quantification approach. As we focused on the average 
responding during the full fear acquisition training phase 
in which strong CS discrimination is typically observed, it 
cannot be excluded that a focus on a subtler effect in dif-
ferent experimental phases such as a return of fear test or 
recall phase may lead to different results across SCR quan-
tification approaches. This would be important to address 
in future work.

Furthermore, the precision of the resulting estimates 
did not differ significantly between different SCR quan-
tification approaches applied within the data sets, which 
is novel and relevant information that has not been ad-
dressed before.

Yet, the effect sizes yielded by the different approaches 
were not universally consistent: In the Hamburg sample 
(N = 118, 100% reinforcement rate, CS duration: 6–8 s), 
both TTP raters (TTP1 and TTP2), the BLC approach, as 
well as the CDA approach implemented in Ledalab yielded 
consistent effect sizes while effect sizes generated through 
any of the PsPM models were smaller and inconsistent 

with all of the aforementioned approaches. In addition, 
the four PsPM models did not yield consistent effect sizes 
either when compared to each other in the Hamburg data 
set. In the smaller Mainz sample (N = 38, 50% reinforce-
ment rate, CS duration: 4.5 s), however, most approaches 
yielded consistent effect sizes even though it has to be 
noted that the CrIs were wider as in the larger Hamburg 
sample. Still, the CDA approach as implemented in 
Ledalab yielded an effect size that was inconsistent with 
and larger than those yielded by TTP1, TTP2, BLC as well 
as one of the PsPM models (i.e., DCM FO).

4.2.3  |  Comparable results yielded by the 
TTP and representative BLC approach

From this pattern of (in)consistency, we conclude that in 
the two data sets investigated here, only a few SCR quan-
tification approaches yielded comparable effect sizes in 
both data sets, despite numeric differences between the 
CS+ and the CS− (CS discrimination): TTP and the repre-
sentative BLC approach employed as well as some of the 
PsPM models (i.e., GLM and DCM FI; DCM FI and DCM 
FO; as well as DCM FO and DCM RI).

With respect to the TTP and BLC approach, the time 
window during which the peak SCR was to be identi-
fied were relatively similar in TTP (i.e., up to 5 s post-CS 
onset) and BLC (i.e., full CS duration which corresponds 
to 0–6 s in the Hamburg and 0–4.5 s post-CS onset in the 
Mainz sample). The trough of the response, however, is 
defined very differently (i.e., BLC: average SCL 2 s prior 
to CS onset; TTP: onset in an OLW of 0.9–4.5 s post-CS 
onset). This group-level comparability between both ap-
proaches is striking and surprising given the prominent 
differences between both approaches. For instance, the 
BLC approach can yield negative values as the highest 
value in the PDW which may be lower than the average 
baseline when there is a strong habituation drift in the 
data while such negative values are implausible in TTP 
scoring. Furthermore, as the BLC approach was em-
ployed in a script-based manner without visual inspection 
and without the implementation of adaptive algorithms 
(as in Pineles et al.,  2009), a value for a response is al-
ways identified while the TTP approach may score both 
missing (e.g., electrode artifacts) and zero responses. The 
latter is, for instance, the case, when there is only a habit-
uation trend but no response, which would correspond 
to a negative value in the BLC approach. We refer to our 
related work using a full multiverse approach covering 
150 combinations of time windows used in the BLC ap-
proach for an in-depth discussion about the differences 
between TTP and BLC approaches and the resulting 
problems (Sjouwerman et al., 2021). Note that the work 
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by Sjouwerman et al.  (2021) is complementary to the 
work presented here. While we here investigate whether 
seven different SCR response quantification approaches 
result in convergent results (i.e., comparison between dif-
ferent approaches), our related work focuses on within-
approach heterogeneity in parameter specification (e.g., 
time windows) in one of the approaches used here (i.e., 
the BLC approach).

Despite a number of major problems with the 
BLC approach discussed in depth in our related work 
(Sjouwerman et al., 2021), our results are reassuring that 
TTP and the representative BLC approach to SCR quanti-
fication seem to yield comparable results—at least for the 
design specifications included here and average respond-
ing at the group level. As these are the currently two most 
abundantly used approaches to SCR quantification in the 
field of fear conditioning research, this is good news for 
the field even though we highlight stimulus (i.e., CS−)-
specific reduced agreement.

4.2.4  |  Different model-based approaches as 
implemented in PsPM

Furthermore, it is noteworthy that the four PsPM mod-
els yielded more consistent results not only in com-
parison with each other but also with any of the other 
approaches in the Mainz than the Hamburg data sets. 
We can only speculate on potential reasons beyond the 
generally wider CrI in the smaller Mainz sample. For 
instance, the stimulus durations in the studies included 
in previous PsPM comparative work (Bach, 2014; Bach 
et al.,  2010, 2013) were with 1–3.5  s rather short. The 
CS duration of 4.5  s in the Mainz data set is closer to 
this than the 6–8  s duration in the Hamburg data set. 
It remains to be investigated systematically whether 
the model-based approaches in PsPM are optimized for 
shorter duration CSs, and short ITIs or work equally well 
with longer duration stimuli that are more common in 
fear conditioning research. In addition, reinforced CS+ 
trials were excluded in the studies validating PsPM in 
fear conditioning data and also in the only study in-
cluded in our systematic literature search that used 
PsPM’s GLM model (Taylor et al., 2018). We did not ex-
clude reinforced trials in the Mainz sample and this was 
impossible to do for the Hamburg sample as all CS+ tri-
als were followed by the US—in fact, this may be a major 
reason why the PsPM models were inconsistent with any 
other models in the Hamburg data. Of note, two of the 
here employed DCM approaches seemed to erroneously 
assign SCRs elicited by the US to the CS in both sam-
ples. Thus, the DCM approaches may not be optimal for 
response quantification in paradigms with full or high 

reinforcement rates or when not excluding reinforced 
trials (see PsPM manual 4.3.0, page 22). Of note, exclud-
ing reinforced trials as modeling a flexible CS response 
onset may absorb SCR elicited by US or US omission 
leads to an unequal number of trials for the CS+ and 
the CS−. These unequal numbers of trials resulting from 
excluding reinforced trials may result in different vari-
ances, reliability estimates, and statistical power which 
may also be problematic. Another difference between 
previous comparative work focusing on SCRalyze/PsPM 
is that these previous studies included a (substantially) 
higher number of trials per condition (i.e., 16–90 trials) 
as our work (i.e., 10–15) which may result in differences 
in statistical power and a different impact of the fast ha-
bituation typically seen in skin conductance responding.

In sum, the software package PsPM offers a number 
of different model specifications that—likely depending 
on experimental specifications—can substantially impact 
the results. Thus, data processing and model specification 
need to be reported in detail to ensure computational re-
producibility, and the models need to be empirically eval-
uated against typical paradigm specification details such 
as reinforcement rate and stimulus duration (see, e.g., 
Bach et al., 2010).

4.3  |  Implications for postprocessing and 
data analyses

Here, we have illustrated that different commonly used 
SCR quantification approaches used in fear condition-
ing research do not necessarily yield converging and 
comparable effect sizes for group-level CS-  discrimi-
nation despite all yielding significant CS+/CS− dis-
crimination in the same direction. The different effect 
sizes and different numeric values for CS+ and CS− re-
sponses as well as CS+/CS− discrimination may also 
have implications for the application of commonly used 
postprocessing or data-cleaning procedures such as 
minimal response criteria as well as the identification 
of performance-based exclusion of SCR nonresponder 
and SCR nonlearner (for a critical evaluation and dis-
cussion, see Lonsdorf, Klingelhöfer-Jens, et al., 2019). 
For instance, responses quantified through the TTP 
approach cannot be smaller than zero while the BLC 
approach can yield negative values (for an empirical in-
vestigation, see Sjouwerman et al., 2021). Further, it is 
clear from the average CS+, CS-, and CS discrimination 
values (see Figure 2) yielded by the different response 
quantification approaches that identical cutoffs for 
nonlearning are likely to lead to different results across 
approaches. Yet, we did not investigate this empirically 
and hence can only speculate here.
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4.4  |  Is it realistic to assume the 
existence of a single and universally best 
approach for SCR quantification?

It has been proposed that we may identify the “best” ap-
proach for SCR quantification by means of “retrodictive 
validity,” formerly referred to as “predictive validity” 
(Bach et al.,  2020; Bach & Melinscak,  2020). More pre-
cisely, it has been proposed that the method with the high-
est retrodictive validity is the method that has the highest 
chance of recovering an unobservable (psychological) 
process from skin conductance data. It has further been 
suggested that this can be achieved by comparing two 
conditions that are known to induce strong differences in 
sympathetic arousal (Bach, 2014) such as viewing of aver-
sive (strong arousal) and neutral (weak arousal) pictures 
or a condition predictive of an aversive event (i.e., CS+) 
and a control condition (i.e., CS−). According to the retro-
dictive validity idea, the best method would be the method 
that best separates both conditions. In the context of this 
work, the method that produces the strongest CS discrimi-
nation or the largest effect size. Even though an in-depth 
discussion on the retrodictive validity idea is beyond the 
scope of this work, we would like to note that an exclusive 
focus on effect size falls short of appreciating measure-
ment precision as an important criterion.

When interpreting the results of our work in a “ret-
rodictive validity framework,” there is no evidence for a 
single, universally superior approach. More precisely, our 
results from two different data sets differing primarily in 
the number of participants (118 vs. 38), reinforcement 
rate (100% vs. 50%), and CS duration (6–8 s vs. 4.5 s) reveal 
no single method that yields a consistently higher effect 
size compared with other methods in both data sets.

Rather than suggesting a single universally superior 
approach, we echo the notion that assumptions about the 
shape and timing of an SCR across different quantifica-
tion approaches are mostly similar, but that “they are im-
plemented using different algorithms which may impact 
their performance and comparability across different par-
adigms or experimental contexts” (cf. Green et al., 2014, 
p. 192). Consequently, a single best or “superior” method 
may not exist as the most suitable method may depend 
on design and sample specifics. This is a complicated sce-
nario that does not allow for an easy solution. As a conse-
quence, we call for caution in light of the recent suggestion 
(e.g., Bach & Melinscak,  2020; Privratsky et al.,  2020) 
that PsPM-based SCR quantification generally leads to a 
massive reduction in required participants as opposed to 
other approaches due to substantially higher statistical 
power and retrodictive validity (as also discussed in Bach 
& Melinscak, 2020). More precisely, our data suggest that 
(sometimes) the opposite may be true: for instance, we 

observed smaller effect sizes for CS discrimination (i.e., 
retrodictive validity) for all PsPM-based approaches as op-
posed to the TTP, BLC, and Ledalab-based SCR quantifi-
cation in the Hamburg sample. Given that the evidence to 
date is limited, we echo the call (Bach & Melinscak, 2020) 
for more comparative (multiverse-type of) studies and 
thorough validation of new methods in different experi-
mental and design settings until a single method can be 
recommended, in particular as universally superior. This 
is particularly important as the authors note that the tool-
box PsPM has “been evaluated only in limited experimen-
tal circumstances and by a small group of researchers” 
(cf. Bach & Melinscak, 2020). We echo their call for more 
methodological research in order to establish “a clearer 
picture on what the best measurement approach is in dif-
ferent research scenarios” (cf. Bach & Melinscak,  2020) 
and with the present work provide the first step into this 
direction.

4.5  |  Limitations

Here, we compare seven different SCR quantification ap-
proaches as identified through a literature review. Yet, the 
“full” multiverse of possible SCR processing steps includes 
a number of additional steps not considered here in-depth 
such as transformations (see also Supplementary Material), 
cutoff criteria (Lonsdorf, Klingelhöfer-Jens, et al.,  2019), 
data exclusion (Lonsdorf, Klingelhöfer-Jens, et al.,  2019), 
and filtering (see, e.g., Privratsky et al.,  2020). Aiming to 
cover all potentially relevant decision nodes is infinite and 
a focus on “a” multiverse rather than “the” multiverse still 
provides valuable information. This can help to deflate the 
multiverse and leaves only the relevant specifications (i.e., 
those that have not been shown to be clearly inferior in the 
more focused investigations) for the construction of a larger 
and more comprehensive multiverse. Future work may 
systematically focus on these additional decision nodes or 
cover different parts of the full data multiverse systemati-
cally (see Sjouwerman et al., 2021 for a multiverse focusing 
on within-approach heterogeneity in the BLC method).

SCRs were relatively larger in the Mainz compared with 
the Hamburg sample. This difference may be explained by 
the usage of a more aversive US in the Mainz sample: US 
intensity was calibrated to a level perceived as “maximally 
painful, but still tolerable” compared with “maximally 
uncomfortable, but not painful” in the Hamburg sample. 
Empirical and theoretical work suggests that stronger US 
intensity is associated with larger conditioned responses 
(Morris & Bouton, 2006; Rescorla & Wagner, 1972). The 
difference could also be explained by the different rein-
forcement rates employed in both data sets as SCRs have 
been suggested to reflect the associability of a stimulus 
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(Li et al., 2011; Seymour et al., 2005; Tzovara et al., 2018; 
Zhang et al., 2016). Finally, differences in external condi-
tions, such as room temperature and differences in hard-
ware could also account for these differences.

Furthermore, our literature search covered only a lim-
ited time frame (6 months in 2019) and hence the results 
may not be fully representative. Yet, a different literature 
search (Privratsky et al., 2020; full details provided in the 
supplementary material) covering more than 90 articles in 
the field of fear conditioning from 2019 and 2020 shows a 
similar picture with BLC and TTP being most abundantly 
used (subsumed as “peak scoring” by the authors, which 
is a problematic term, however) and with substantially 
fewer studies using Ledalab, few studies using PsPM, or 
other approaches (e.g., “area under the curve”, cvxEDA). 
Even though the literature search provided here served 
primarily as a tool to guide the selection of the to-be in-
cluded SCR quantification approaches, the results by 
Privratsky are reassuring the frequencies reported here 
are representative despite the short time window.

Finally, our comparison of different SCR quantification 
approaches across two data sets focused on average group-
level responding and future work focusing on individual-
level responding would be a logical extension of our and 
previous work.

4.6  |  Prospects and challenges of a 
multiverse-type of approach

Multiverse-type of approaches (Del Giudice & 
Gangestad,  2021; Simonsohn et al.,  2020; Steegen 
et al., 2016) have recently gained momentum in the field 
of psychophysiology—for instance, in research using 
EEG (Clayson et al., 2021; Kołodziej et al., 2021; Nikolin 
et al., 2022; Sandre et al., 2020; Wacker, 2017) or in fear 
conditioning research with a focus on SCRs (Lonsdorf 
et al.,  2021; Lonsdorf, Klingelhöfer-Jens, et al.,  2019; 
Lonsdorf, Merz, & Fullana,  2019; Sjouwerman 
et al., 2021). Multiverse-type of approaches can be con-
sidered an attempt to empirically optimize processing 
pipelines and an intermediate step toward more stand-
ardization in fields that are characterized by substantial 
heterogeneity in data (recording) and processing steps. 
More precisely, multiverse-type of analyses examine 
the impact of a (large) set of different equally justifiable 
methodological decisions on the robustness of an effect 
of interest. By empirically identifying and subsequently 
deprioritizing unsuitable paths, they can help to deflate 
the multiverse of possible (equally justifiable) data analy-
sis paths. The most critical step in setting up a multiverse-
type of analysis is the selection of the to-be included 
decision nodes and their specifications. Specifically, 

it is inherently challenging to define which methodo-
logical decisions can be considered “equally justifiable” 
(for discussions, see Del Giudice & Gangestad,  2021; 
Lonsdorf et al., 2021) in particular in light of often un-
derspecified theories in psychology that leave much 
room for different definitions and hence operationaliza-
tion of (latent) constructs (discussed for fear condition-
ing research in Lonsdorf et al., 2021; Lonsdorf, Merz, & 
Fullana, 2019). In addition, it is important to note that 
not all equally justifiable paths necessarily belong to 
the (exact) same multiverse. For instance, a statistical 
model with an included covariate tests a different un-
derlying hypothesis than a model without that covariate 
and, hence, is—in a strict sense—not part of the same 
(model) multiverse (Del Giudice & Gangestad,  2021). 
Along the same lines, it may also be debatable whether 
model-based approaches and TTP/BLC approaches be-
long to the same multiverse as they may measure differ-
ent constructs (e.g, estimated sudomotor nerve activity 
vs. observable physiological response, respectively). As 
these approaches are, however, used interchangeably 
in the literature, we combined them in the same multi-
verse here. We have chosen to depart from a systematic 
literature search as a means to objectively decide on the 
to-be included paths by defining “equally justifiable” as 
approaches that are used interchangeably in the litera-
ture. Other approaches that have been used to guide the 
decision on which specifications to include are based on 
expert agreement (Wacker, 2017) and/or multiple ana-
lyst approaches (Silberzahn et al., 2018). An advantage 
of our approach is that the different quantification ap-
proaches included mirror the actual multitude of deci-
sions a researcher is presently faced in the field when 
aiming to quantify SCRs. Hence, our approach provides 
empirical evidence whether it can indeed be considered 
justifiable to use the different included approaches in-
terchangeably in the field.

4.7  |  Summary and outlook

Our results illustrate heterogeneity in the exact specifica-
tion and implementation of SCR response quantification 
approaches derived from a systematic literature search 
and a thorough summary of the available comparative 
studies. Empirically, we illustrate partly inconsistent out-
comes for effects sizes of CS discrimination when apply-
ing seven different SCR quantification approaches to the 
same data. Our results challenge the existence of a uni-
versally best or superior SCR quantification approach and 
call for more and systematic comparative (multiverse-type 
of) studies focusing on different decision nodes during 
data processing but also on different experimental design 
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specifications which, however, requires specifically tailed 
experimental designs. Finally, we call for more consid-
eration to measurement and reliability questions and for 
more systematic and collaborative efforts to solve these 
challenges as a research field and work toward more ex-
change, more homogenization in research methods, as 
well as detailed reporting.

ACKNOWLEDGMENTS
The authors thank Karita Ojala for their helpful com-
ments on the manuscript. The authors thank Claudia 
Immisch for data acquisition (Hamburg sample), Karoline 
Rosenkranz for TTP scoring of the Hamburg sample, and 
Maren Klingelhöfer-Jens for TTP scoring of the Hamburg 
sample as well as for data processing and preparation. We 
thank Raffael Kalisch and Oliver Tüscher for funding the 
acquisition of the Mainz data (CRC1193; subproject C01 to 
RK and subproject C04 to OT) and their support with data 
collection. Furthermore, we thank Anita Schick, Merve 
Ilhan, Julian Behr, Petra Seyfahrt, Kenneth Yuen, and 
Amgad Droby for support with data collection in Mainz 
and Danielle Stibbe for TTP scoring of the Mainz sample. 
We also thank Matthias Gamer for providing EDAview for 
computer-assisted TTP scoring. Open Access funding ena-
bled and organized by Projekt DEAL.

AUTHOR CONTRIBUTIONS
Manuel Kuhn: Conceptualization; data curation; for-
mal analysis; investigation; methodology; software; 
visualization; writing –  original draft. Anna Gerlicher: 
Conceptualization; funding acquisition; methodology; 
project administration; resources; supervision; visu-
alization; writing –  original draft. Tina B Lonsdorf: 
Conceptualization; funding acquisition; methodology; 
project administration; supervision; visualization; writing 
– original draft.

CONFLICT OF INTEREST
The authors do not report any conflict of interest.

DATA AVAILABILITY STATEMENT
Data and code are available on the OSF https://osf.io/
ft86v/.

ORCID
Anna M. V. Gerlicher   https://orcid.
org/0000-0001-7364-9845 
Tina B. Lonsdorf   https://orcid.
org/0000-0003-1501-4846 

REFERENCES
Bach, D. R. (2014). A head-to-head comparison of SCRalyze and 

Ledalab, two model-based methods for skin conductance 

analysis. Biological Psychology, 103, 63–68. https://doi.
org/10.1016/j.biops​ycho.2014.08.006

Bach, D. R., Castegnetti, G., Korn, C. W., Gerster, S., Melinscak, F., & 
Moser, T. (2018). Psychophysiological modeling: Current state 
and future directions. Psychophysiology, 55(11), e13214. https://
doi.org/10.1111/psyp.13209

Bach, D. R., Daunizeau, J., Friston, K. J., & Dolan, R. J. (2010). 
Dynamic causal modelling of anticipatory skin conductance 
responses. Biological Psychology, 85(1), 163–170. https://doi.
org/10.1016/j.biops​ycho.2010.06.007

Bach, D. R., Flandin, G., Friston, K. J., & Dolan, R. J. (2009). Time-
series analysis for rapid event-related skin conductance re-
sponses. Journal of Neuroscience Methods, 184(2), 224–234. 
https://doi.org/10.1016/j.jneum​eth.2009.08.005

Bach, D. R., & Friston, K. J. (2013). Model-based analysis of skin 
conductance responses: Towards causal models in psy-
chophysiology. Psychophysiology, 50(1), 15–22. https://doi.
org/10.1111/j.1469-8986.2012.01483.x

Bach, D. R., Friston, K. J., & Dolan, R. J. (2013). An improved al-
gorithm for model-based analysis of evoked skin conductance 
responses. Biological Psychology, 94(3), 490–497. https://doi.
org/10.1016/j.biops​ycho.2013.09.010

Bach, D. R., & Melinscak, F. (2020). Psychophysiological model-
ling and the measurement of fear conditioning. Behaviour 
Research and Therapy, 127, 103576. https://doi.org/10.1016/j.
brat.2020.103576

Bach, D. R., Melinščak, F., Fleming, S. M., & Voelkle, M. C. (2020). 
Calibrating the experimental measurement of psychological at-
tributes. Nature Human Behaviour, 4(12), 1229–1235. https://
doi.org/10.1038/s4156​2-020-00976​-8

Benedek, M., & Kaernbach, C. (2010a). A continuous measure of 
phasic electrodermal activity. Journal of Neuroscience Methods, 
190(1–5), 80–91. https://doi.org/10.1016/j.jneum​eth.2010.04.028

Benedek, M., & Kaernbach, C. (2010b). Decomposition of 
skin conductance data by means of nonnegative decon-
volution. Psychophysiology, 47(4), 647–658. https://doi.
org/10.1111/j.1469-8986.2009.00972.x

Bland, J. M., & Altman, D. G. (1990). A note on the use of the in-
traclass correlation coefficient in the evaluation of agreement 
between two methods of measurement. Computers in Biology 
and Medicine, 20(5), 337–340. https://doi.org/10.1016/​0010-
4825(90)90013​-F

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., 
Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., Mumford, 
J. A., Adcock, R. A., Avesani, P., Baczkowski, B. M., Bajracharya, 
A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, 
J., … Schonberg, T. (2020). Variability in the analysis of a single 
neuroimaging dataset by many teams. Nature, 582(7810), 84–
88. https://doi.org/10.1038/s4158​6-020-2314-9

Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., 
Dawson, M. E., Filion, D. L., & Society for Psychophysiological 
Research Ad Hoc Committee on Electrodermal Measures. 
(2012). Publication recommendations for electrodermal mea-
surements. Psychophysiology, 49(8), 1017–1034. https://doi.
org/10.1111/j.1469-8986.2012.01384.x

Clayson, P. E., Baldwin, S. A., Rocha, H. A., & Larson, M. J. (2021). 
The data-processing multiverse of event-related potentials 
(ERPs): A roadmap for the optimization and standardization 
of ERP processing and reduction pipelines. NeuroImage, 245, 
118712. https://doi.org/10.1016/j.neuro​image.2021.118712

https://osf.io/ft86v/
https://osf.io/ft86v/
https://orcid.org/0000-0001-7364-9845
https://orcid.org/0000-0001-7364-9845
https://orcid.org/0000-0001-7364-9845
https://orcid.org/0000-0003-1501-4846
https://orcid.org/0000-0003-1501-4846
https://orcid.org/0000-0003-1501-4846
https://doi.org/10.1016/j.biopsycho.2014.08.006
https://doi.org/10.1016/j.biopsycho.2014.08.006
https://doi.org/10.1111/psyp.13209
https://doi.org/10.1111/psyp.13209
https://doi.org/10.1016/j.biopsycho.2010.06.007
https://doi.org/10.1016/j.biopsycho.2010.06.007
https://doi.org/10.1016/j.jneumeth.2009.08.005
https://doi.org/10.1111/j.1469-8986.2012.01483.x
https://doi.org/10.1111/j.1469-8986.2012.01483.x
https://doi.org/10.1016/j.biopsycho.2013.09.010
https://doi.org/10.1016/j.biopsycho.2013.09.010
https://doi.org/10.1016/j.brat.2020.103576
https://doi.org/10.1016/j.brat.2020.103576
https://doi.org/10.1038/s41562-020-00976-8
https://doi.org/10.1038/s41562-020-00976-8
https://doi.org/10.1016/j.jneumeth.2010.04.028
https://doi.org/10.1111/j.1469-8986.2009.00972.x
https://doi.org/10.1111/j.1469-8986.2009.00972.x
https://doi.org/10.1016/0010-4825(90)90013-F
https://doi.org/10.1016/0010-4825(90)90013-F
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1111/j.1469-8986.2012.01384.x
https://doi.org/10.1111/j.1469-8986.2012.01384.x
https://doi.org/10.1016/j.neuroimage.2021.118712


28 of 30  |      KUHN et al.

Dawson, M. E., Schell, A. M., Filion, D. L., & Berntson, G. G. (2007). 
The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, 
& G. Berntson (Eds.), Handbook of psychophysiology (3rd ed.). 
Cambridge University Press. https://doi.org/10.1017/CBO97​
80511​546396.007

Del Giudice, M., & Gangestad, S. W. (2021). A traveler’s guide to the 
multiverse: Promises, pitfalls, and a framework for the evalu-
ation of analytic decisions. Advances in Methods and Practices 
in Psychological Science, 4(1), 2515245920954925. https://doi.
org/10.1177/25152​45920​954925

Dunsmoor J. E., Mitroff S. R., & LaBar K. S. (2009). Generalization of 
conditioned fear along a dimension of increasing fear intensity. 
Learning & Memory, 16(7), 460–469. http://dx.doi.org/10.1101/
lm.1431609

Flake, J. K., & Fried, E. I. (2020). Measurement schmeasurement: 
Questionable measurement practices and how to avoid them. 
Advances in Methods and Practices in Psychological Science, 
3(4), 456–465. https://doi.org/10.1177/25152​45920​952393

Fredrikson, M., Annas, P., Georgiades, A., Hursti, T., & Tersman, Z. 
(1993). Internal consistency and temporal stability of classically 
conditioned skin conductance responses. Biological Psychology, 
35(2), 153–163.

Garrett-Ruffin, S., Hindash, A. C., Kaczkurkin, A. N., Mears, R. 
P., Morales, S., Paul, K., Pavlov, Y. G., & Keil, A. (2021). Open 
science in psychophysiology: An overview of challenges and 
emerging solutions. International Journal of Psychophysiology, 
162, 69–78. https://doi.org/10.1016/j.ijpsy​cho.2021.02.005

Gerlicher, A. M. V., Tüscher, O., & Kalisch, R. (2018). Dopamine-
dependent prefrontal reactivations explain long-term benefit of 
fear extinction. Nature Communications, 9(1), 1–9. https://doi.
org/10.1038/s4146​7-018-06785​-y

Greco, A., Valenza, G., Lanata, A., Scilingo, E. P., & Citi, L. (2016). 
cvxEDA: A convex optimization approach to electrodermal ac-
tivity processing. IEEE Transactions on Biomedical Engineering, 
63(4), 797–804. https://doi.org/10.1109/TBME.2015.2474131

Green, S. R., Kragel, P. A., Fecteau, M. E., & LaBar, K. S. (2014). 
Development and validation of an unsupervised scoring sys-
tem (Autonomate) for skin conductance response analysis. 
International Journal of Psychophysiology, 91(3), 186–193. 
https://doi.org/10.1016/j.ijpsy​cho.2013.10.015

Huff N. C., Hernandez J. A., Blanding N. Q., & LaBar K. S. (2009). 
Delayed extinction attenuates conditioned fear renewal and 
spontaneous recovery in humans. Behavioral Neuroscience, 
123(4), 834–843. http://dx.doi.org/10.1037/a0016511

Kołodziej, A., Magnuski, M., Ruban, A., & Brzezicka, A. (2021). No 
relationship between frontal alpha asymmetry and depressive 
disorders in a multiverse analysis of five studies. eLife, 10, 
e60595. https://doi.org/10.7554/eLife.60595

Kragel P. A., & LaBar K. S. (2013). Multivariate pattern classification 
reveals autonomic and experiential representations of discrete 
emotions.. Emotion, 13(4), 681–690. http://dx.doi.org/10.1037/
a0031820

Krippendorff, K. (1970). Estimating the reliability, system-
atic error and random error of interval data. Educational 
and Psychological Measurement, 30(1), 61–70. https://doi.
org/10.1177/00131​64470​03000105

Krippendorff, K. (2004). Reliability in content analysis. Human 
Communication Research, 30(3), 411–433. https://doi.
org/10.1111/j.1468-2958.2004.tb007​38.x

Kuhn, M., Gerlicher, A. M. V., & Lonsdorf, T. B. (2022). Navigating 
the manyverse of skin conductance response quantifi-
cation approaches –  a direct comparison of Trough-to-
Peak, Baseline-correction and model-based approaches in 
Ledalab and PsP. Psychophysiology. https://doi.org/10.1111/
psyp.14058

Landis, J. R., & Koch, G. G. (1977). The measurement of observer 
agreement for categorical data. Biometrics, 33(1), 159–174. 
JSTOR. https://doi.org/10.2307/2529310

LeBel, E. P., McCarthy, R. J., Earp, B. D., Elson, M., & Vanpaemel, W. 
(2018). A unified framework to quantify the credibility of scien-
tific findings. Advances in Methods and Practices in Psychological 
Science, 1(3), 389–402. https://doi.org/10.1177/25152​45918​
787489

Levinson, D. F., & Edelberg, R. (1985). Scoring criteria for response 
latency and habituation in electrodermal research: A critique. 
Psychophysiology, 22(4), 417–426. https://doi.org/10.1111/
j.1469-8986.1985.tb016​26.x

Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. 
(2011). Differential roles of human striatum and amygdala in 
associative learning. Nature Neuroscience, 14(10), 1250–1252. 
https://doi.org/10.1038/nn.2904

Lim, C. L., Rennie, C., Barry, R. J., Bahramali, H., Lazzaro, I., Manor, 
B., & Gordon, E. (1997). Decomposing skin conductance 
into tonic and phasic components. International Journal of 
Psychophysiology, 25(2), 97–109. https://doi.org/10.1016/s0167​
-8760(96)00713​-1

Lipp, O. V. (2006). Human fear learning: Contemporary proce-
dures and measurement. In M. G. Craske, D. Hermans, & D. 
Vansteenwegen (Eds.), Fear and learning: From basic processes 
to clinical implications (pp. 37–51). American Psychological 
Association. https://doi.org/10.1037/11474​-002

Lonsdorf, T. B., Klingelhöfer-Jens, M., Andreatta, M., Beckers, 
T., Chalkia, A., Gerlicher, A., Jentsch, V. L., Meir Drexler, S., 
Mertens, G., Richter, J., Sjouwerman, R., Wendt, J., & Merz, C. 
J. (2019). Navigating the garden of forking paths for data exclu-
sions in fear conditioning research. eLife, 8, e52465. https://doi.
org/10.7554/eLife.52465

Lonsdorf, T. B., Menz, M. M., Andreatta, M., Fullana, M. A., Golkar, 
A., Haaker, J., Heitland, I., Hermann, A., Kuhn, M., Kruse, O., 
Meir Drexler, S., Meulders, A., Nees, F., Pittig, A., Richter, J., 
Römer, S., Shiban, Y., Schmitz, A., Straube, B., … Merz, C. J. 
(2017). Don’t fear “fear conditioning”: Methodological consid-
erations for the design and analysis of studies on human fear 
acquisition, extinction, and return of fear. Neuroscience and 
Biobehavioral Reviews, 77, 247–285. https://doi.org/10.1016/j.
neubi​orev.2017.02.026

Lonsdorf, T. B., Merz, C. J., & Fullana, M. A. (2019). Fear extinction 
retention: Is it what we think it is? Biological Psychiatry, 85(12), 
1074–1082. https://doi.org/10.1016/j.biops​ych.2019.02.011

Lonsdorf T., Gerlicher A., Klingelhöfer-Jens M., & Krypotos A.-
M. (2022). Multiverse analyses in fear conditioning research. 
Behaviour Research and Therapy, 104072. http://dx.doi.
org/10.1016/j.brat.2022.104072

Lykken, D., & Venables, P. (1971). Direct measurement of skin con-
ductance: A proposal for standardization. Psychophysiology, 8, 
656–672. https://doi.org/10.1111/j.1469-8986.1971.tb005​01.x

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. 
(2009). Preferred reporting items for systematic reviews and 

https://doi.org/10.1017/CBO9780511546396.007
https://doi.org/10.1017/CBO9780511546396.007
https://doi.org/10.1177/2515245920954925
https://doi.org/10.1177/2515245920954925
http://dx.doi.org/10.1101/lm.1431609
http://dx.doi.org/10.1101/lm.1431609
https://doi.org/10.1177/2515245920952393
https://doi.org/10.1016/j.ijpsycho.2021.02.005
https://doi.org/10.1038/s41467-018-06785-y
https://doi.org/10.1038/s41467-018-06785-y
https://doi.org/10.1109/TBME.2015.2474131
https://doi.org/10.1016/j.ijpsycho.2013.10.015
http://dx.doi.org/10.1037/a0016511
https://doi.org/10.7554/eLife.60595
http://dx.doi.org/10.1037/a0031820
http://dx.doi.org/10.1037/a0031820
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1111/j.1468-2958.2004.tb00738.x
https://doi.org/10.1111/j.1468-2958.2004.tb00738.x
https://doi.org/10.1111/psyp.14058
https://doi.org/10.1111/psyp.14058
https://doi.org/10.2307/2529310
https://doi.org/10.1177/2515245918787489
https://doi.org/10.1177/2515245918787489
https://doi.org/10.1111/j.1469-8986.1985.tb01626.x
https://doi.org/10.1111/j.1469-8986.1985.tb01626.x
https://doi.org/10.1038/nn.2904
https://doi.org/10.1016/s0167-8760(96)00713-1
https://doi.org/10.1016/s0167-8760(96)00713-1
https://doi.org/10.1037/11474-002
https://doi.org/10.7554/eLife.52465
https://doi.org/10.7554/eLife.52465
https://doi.org/10.1016/j.neubiorev.2017.02.026
https://doi.org/10.1016/j.neubiorev.2017.02.026
https://doi.org/10.1016/j.biopsych.2019.02.011
http://dx.doi.org/10.1016/j.brat.2022.104072
http://dx.doi.org/10.1016/j.brat.2022.104072
https://doi.org/10.1111/j.1469-8986.1971.tb00501.x


      |  29 of 30KUHN et al.

meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), 
e1000097. https://doi.org/10.1371/journ​al.pmed.1000097

Morey, R. D., & Rouder, J. N. (2015). BayesFactor 0.9.11-1. 
Comprehensive R Archive Network.

Morris, R. W., & Bouton, M. E. (2006). Effect of unconditioned stim-
ulus magnitude on the emergence of conditioned responding. 
Journal of Experimental Psychology. Animal Behavior Processes, 
32(4), 371–385. https://doi.org/10.1037/0097-7403.32.4.371

Ney, L. J., Laing, P. A. F., Steward, T., Zuj, D. V., Dymond, S., & 
Felmingham, K. L. (2020). Inconsistent analytic strategies 
reduce robustness in fear extinction via skin conductance 
response. Psychophysiology, 57(11), e13650. https://doi.
org/10.1111/psyp.13650

Nikolin, S., Chand, N., Martin, D., Rushby, J., Loo, C. K., & Boonstra, 
T. W. (2022). Little evidence for a reduced late positive po-
tential to unpleasant stimuli in major depressive disorder. 
Neuroimage: Reports, 2(1), 100077. https://doi.org/10.1016/j.
ynirp.2022.100077

Ohman, A. (1972). Factor analytically derived components of ori-
enting, defensive, and conditioned behavior in electrodermal 
conditioning. Psychophysiology, 9(2), 199–209. https://doi.
org/10.1111/j.1469-8986.1972.tb007​54.x

Ojala K. E., & Bach D. R. (2020). Measuring learning in human clas-
sical threat conditioning: Translational, cognitive and method-
ological considerations. Neuroscience & Biobehavioral Reviews, 
114, 96–112. http://dx.doi.org/10.1016/j.neubi​orev.2020.04.019

Pineles, S. L., Orr, M. R., & Orr, S. P. (2009). An alternative scor-
ing method for skin conductance responding in a differen-
tial fear conditioning paradigm with a long-duration condi-
tioned stimulus. Psychophysiology, 46(5), 984–995. https://doi.
org/10.1111/j.1469-8986.2009.00852.x

Privratsky, A. A., Bush, K. A., Bach, D. R., Hahn, E. M., & Cisler, 
J. M. (2020). Filtering and model-based analysis independently 
improve skin-conductance response measures in the fMRI 
environment: Validation in a sample of women with PTSD. 
International Journal of Psychophysiology, 158, 86–95. https://
doi.org/10.1016/j.ijpsy​cho.2020.09.015

Prokasy, W. F., & Ebel, H. C. (1967). Three components of the 
classically conditioned GSR in human subjects. Journal 
of Experimental Psychology, 73(2), 247–256. https://doi.
org/10.1037/h0024108

Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian condi-
tioning: Variations in the effectiveness of reinforcement and 
nonreinforcement. In A. Black & W. Prokasy (Eds.), Classical 
conditioning II: Current research and theory (pp. 64–99). 
Appleton-Century-Crofts.

Sandre, A., Banica, I., Riesel, A., Flake, J., Klawohn, J., & Weinberg, 
A. (2020). Comparing the effects of different methodologi-
cal decisions on the error-related negativity and its associ-
ation with behaviour and gender. International Journal of 
Psychophysiology, 156, 18–39. https://doi.org/10.1016/j.ijpsy​
cho.2020.06.016

Seymour, B., O’Doherty, J. P., Koltzenburg, M., Wiech, K., 
Frackowiak, R., Friston, K., & Dolan, R. (2005). Opponent 
appetitive-aversive neural processes underlie predictive learn-
ing of pain relief. Nature Neuroscience, 8(9), 1234–1240. https://
doi.org/10.1038/nn1527

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in 
assessing rater reliability. Psychological Bulletin, 86(2), 420–428.

Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, 
F., Awtrey, E., Bahník, Š., Bai, F., Bannard, C., Bonnier, E., 
Carlsson, R., Cheung, F., Christensen, G., Clay, R., Craig, M. 
A., Dalla Rosa, A., Dam, L., Evans, M. H., Flores Cervantes, 
I., … Nosek, B. A. (2018). Many analysts, one data set: Making 
transparent how variations in analytic choices affect results. 
Advances in Methods and Practices in Psychological Science, 
1(3), 337–356. https://doi.org/10.1177/25152​45917​747646

Simonsohn, U., Simmons, J. P., & Nelson, L. D. (2020). Specification 
curve analysis. Nature Human Behaviour, 4(11), 1208–1214. 
https://doi.org/10.1038/s4156​2-020-0912-z

Sjouwerman, R., Illius, S., Kuhn, M., & Lonsdorf, T. (2021). A data 
multiverse analysis investigating non-model based SCR quanti-
fication approaches. PsyArXiv. https://doi.org/10.31234/​osf.io/
q24t8

Sjouwerman, R., & Lonsdorf, T. B. (2019). Latency of skin conduc-
tance responses across stimulus modalities. Psychophysiology, 
56(4), e13307. https://doi.org/10.1111/psyp.13307

Staib, M., Castegnetti, G., & Bach, D. R. (2015). Optimising a model-
based approach to inferring fear learning from skin conduc-
tance responses. Journal of Neuroscience Methods, 255, 131–
138. https://doi.org/10.1016/j.jneum​eth.2015.08.009

Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). 
Increasing transparency through a multiverse analy-
sis. Perspectives on Psychological Science: A Journal of the 
Association for Psychological Science, 11(5), 702–712. https://
doi.org/10.1177/17456​91616​658637

Stewart, M. A., Stern, J. A., Winokur, G., & Fredman, S. (1961). An 
analysis of GSR conditioning. Psychological Review, 68(1), 60–
67. https://doi.org/10.1037/h0048816

Taylor, V. A., Roy, M., Chang, L., Gill, L.-N., Mueller, C., & Rainville, 
P. (2018). Reduced fear-conditioned pain modulation in ex-
perienced meditators: A preliminary study. Psychosomatic 
Medicine, 80(9), 799–806. https://doi.org/10.1097/PSY.00000​
00000​000634

Thomas L. A., & LaBar K. S. (2008). Fear relevancy, strategy use, and 
probabilistic learning of cue-outcome associations. Learning 
& Memory, 15(10), 777–784. http://dx.doi.org/10.1101/lm.​
1048808

Tzovara, A., Korn, C. W., & Bach, D. R. (2018). Human Pavlovian 
fear conditioning conforms to probabilistic learning. 
PLoS Computational Biology, 14(8), e1006243. https://doi.
org/10.1371/journ​al.pcbi.1006243

Venables, P. H., & Christie, M. J. (1980). Electrodermal activity. In 
I. Martin & P. H. Venables (Eds.), Thechniques in psychophys-
iology. Wiley.

Vogel S., Klumpers F., Kroes M. C.W., Oplaat K. T., Krugers H. J., 
Oitzl M. S., Joëls M., & Fernández G. (2015). A Stress-Induced 
Shift From Trace to Delay Conditioning Depends on the 
Mineralocorticoid Receptor. Biological Psychiatry, 78(12), 830–
839. http://dx.doi.org/10.1016/j.biops​ych.2015.02.014

Wacker J. (2017). Increasing the reproducibility of science through 
close cooperation and forking path analysis. Frontiers in 
Psychology, 8, 1–4. http://dx.doi.org/10.3389/fpsyg.2017.01332

Zapf, A., Castell, S., Morawietz, L., & Karch, A. (2016). Measuring 
inter-rater reliability for nominal data –  Which coefficients 
and confidence intervals are appropriate? BMC Medical 
Research Methodology, 16(1), 93. https://doi.org/10.1186/s1287​
4-016-0200-9

https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1037/0097-7403.32.4.371
https://doi.org/10.1111/psyp.13650
https://doi.org/10.1111/psyp.13650
https://doi.org/10.1016/j.ynirp.2022.100077
https://doi.org/10.1016/j.ynirp.2022.100077
https://doi.org/10.1111/j.1469-8986.1972.tb00754.x
https://doi.org/10.1111/j.1469-8986.1972.tb00754.x
http://dx.doi.org/10.1016/j.neubiorev.2020.04.019
https://doi.org/10.1111/j.1469-8986.2009.00852.x
https://doi.org/10.1111/j.1469-8986.2009.00852.x
https://doi.org/10.1016/j.ijpsycho.2020.09.015
https://doi.org/10.1016/j.ijpsycho.2020.09.015
https://doi.org/10.1037/h0024108
https://doi.org/10.1037/h0024108
https://doi.org/10.1016/j.ijpsycho.2020.06.016
https://doi.org/10.1016/j.ijpsycho.2020.06.016
https://doi.org/10.1038/nn1527
https://doi.org/10.1038/nn1527
https://doi.org/10.1177/2515245917747646
https://doi.org/10.1038/s41562-020-0912-z
https://doi.org/10.31234/osf.io/q24t8
https://doi.org/10.31234/osf.io/q24t8
https://doi.org/10.1111/psyp.13307
https://doi.org/10.1016/j.jneumeth.2015.08.009
https://doi.org/10.1177/1745691616658637
https://doi.org/10.1177/1745691616658637
https://doi.org/10.1037/h0048816
https://doi.org/10.1097/PSY.0000000000000634
https://doi.org/10.1097/PSY.0000000000000634
http://dx.doi.org/10.1101/lm.1048808
http://dx.doi.org/10.1101/lm.1048808
https://doi.org/10.1371/journal.pcbi.1006243
https://doi.org/10.1371/journal.pcbi.1006243
http://dx.doi.org/10.1016/j.biopsych.2015.02.014
http://dx.doi.org/10.3389/fpsyg.2017.01332
https://doi.org/10.1186/s12874-016-0200-9
https://doi.org/10.1186/s12874-016-0200-9


30 of 30  |      KUHN et al.

Zhang, S., Mano, H., Ganesh, G., Robbins, T., & Seymour, B. (2016). 
Dissociable learning processes underlie human pain condition-
ing. Current Biology: CB, 26(1), 52–58. https://doi.org/10.1016/j.
cub.2015.10.066

SUPPORTING INFORMATION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.
FIGURE S1 Trial-by-trial averages values (averaged across 
participants) for the CS+ (left), CS− (middle) and the US 
(right) in the Hamburg sample (upper row) and the Mainz 
sample (bottom row)
FIGURE S2 Averaged raw SCRs (plus standard error) for 
the CS+ (red), CS− (blue) and US (black) for each SCR 
quantification approach employed in the Hamburg and 
Mainz datasets split up for the first half of acquisition training 
(left) and the second half of acquisition training (right)
FIGURE S3 Average CS discrimination (±standard errors) 
based on raw values per CS type during fear acquisition 
training based on data derived through different SCR 
response quantification approaches in the Hamburg and 
Mainz datasets as corresponding effect sizes and credible 
intervals as derived from the Bayesian paired-sample 

T-tests for the first half of acquisition training (left) and 
the second half of acquisition training (right)
FIGURE S4 Effect sizes, Bayes Factors, and credible 
intervals as derived from the Bayesian paired two-sample 
t-tests for the Hamburg (A) and Mainz (B) datasets based 
on z-transformed data (based on a reviewer’s request)
TABLE S1 Trial-wise agreement (Krippendorff-alpha as 
well as lower and upper CI bounds) for Trough-to-peak 
(TTP) rater 1 and 2 in the Hamburg sample (left) and the 
Mainz sample (right). Note that there were fewer trials in 
general in the Mainz sample and that only 50% of the CS+ 
was followed by the US

How to cite this article: Kuhn, M., Gerlicher, A. 
M. & Lonsdorf, T. B. (2022). Navigating the 
manyverse of skin conductance response 
quantification approaches – A direct comparison of 
trough-to-peak, baseline correction, and model-
based approaches in Ledalab and PsPM. 
Psychophysiology, 59, e14058. https://doi.
org/10.1111/psyp.14058

https://doi.org/10.1016/j.cub.2015.10.066
https://doi.org/10.1016/j.cub.2015.10.066
https://doi.org/10.1111/psyp.14058
https://doi.org/10.1111/psyp.14058

	Navigating the manyverse of skin conductance response quantification approaches –­ A direct comparison of  trough-­to-­peak, baseline correction, and model-­based approaches in Ledalab and PsPM
	Abstract
	1|INTRODUCTION
	1.1|Different response quantification approaches for skin conductance responses
	1.1.1|Trough-­to-­peak (TTP)
	1.1.2|Baseline correction (BLC) approach
	1.1.3|Computational model-­based  approaches
	1.1.4|Comparison between different SCR quantification approaches

	1.2|Overarching aim

	2|METHOD
	2.1|Systematic literature search
	2.2|Participants and experimental paradigms
	2.2.1|Data set 1: Hamburg
	Participants
	Paradigm and stimuli

	2.2.2|Data set 2: Mainz
	Participants
	Paradigm and stimuli


	2.3|SCR recording and response quantification
	2.3.1|SCR recording
	Data set 1 (Hamburg)
	Data set 2 (Mainz)

	2.3.2|SCR quantification approaches employed
	Trough-­to-­peak (TTP)
	Baseline correction (BLC)
	Ledalab
	PsPM
	PsPM single-­trial GLM.
	PsPM DCM fixed and flexible onset.



	2.4|Statistical analyses
	2.4.1|Within SCR quantification approach analyses
	2.4.2|Evaluation of robustness of the effect against and consistency of the effect between different SCR quantification approaches
	2.4.3|Measures of agreement across SCR quantification approaches


	3|RESULTS
	3.1|Systematic literature search
	3.2|Descriptive presentation of trial-­by-­trial SCR trajectories and average values across SCR quantification approaches
	3.3|CS discrimination and effect sizes for the different SCR quantification approaches
	3.4|Formal comparison of robustness of results across SCR quantification approaches
	3.5|Agreement between different SCR quantification approaches
	3.6|Secondary question: Interrater comparisons for computer-­assisted TTP scoring

	4|DISCUSSION
	4.1|Take-­home message from the systematic literature search
	4.2|Comparison between different approaches
	4.2.1|(Computational) reproducibility and concordance between TTP raters
	4.2.2|Robustness of the CS discrimination effect against different response quantification approaches
	4.2.3|Comparable results yielded by the TTP and representative BLC approach
	4.2.4|Different model-­based approaches as implemented in PsPM

	4.3|Implications for postprocessing and data analyses
	4.4|Is it realistic to assume the existence of a single and universally best approach for SCR quantification?
	4.5|Limitations
	4.6|Prospects and challenges of a multiverse-­type of approach
	4.7|Summary and outlook

	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


