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1 	 | 	 INTRODUCTION

Scientific	work	rests	fundamentally	upon	data,	their	measure-
ment,	processing,	analysis,	illustration,	and	interpretation.	Raw	

data	are	typically	required	to	be	processed	to	be	ready	for	sta-
tistical	analyses	and	interpretation.	Although	these	processing	
pipelines	can	be	well	defined	and	standardized,	they	are	often	
characterized	 by	 substantial	 heterogeneity,	 particularly	 in	
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Abstract
Raw	data	are	typically	required	to	be	processed	to	be	ready	for	statistical	analy-
ses,	and	processing	pipelines	are	often	characterized	by	substantial	heterogene-
ity.	Here,	we	applied	seven	different	approaches	(trough-	to-	peak	scoring	by	two	
different	raters,	script-	based	baseline	correction,	Ledalab	as	well	as	 four	differ-
ent	 models	 implemented	 in	 the	 software	 PsPM)	 to	 two	 fear	 conditioning	 data	
sets.	Selection	of	the	approaches	included	was	guided	by	a	systematic	literature	
search	by	using	fear	conditioning	research	as	a	case	example.	Our	approach	can	
be	viewed	as	a	set	of	robustness	analyses	(i.e.,	same	data	subjected	to	different	
processing	pipelines)	aiming	to	investigate	if	and	to	what	extent	these	different	
quantification	approaches	yield	comparable	results	given	the	same	data.	To	our	
knowledge,	no	formal	 framework	for	 the	evaluation	of	robustness	analyses	ex-
ists	 to	date,	but	we	may	borrow	some	criteria	 from	a	 framework	suggested	 for	
the	evaluation	of	“replicability”	in	general.	Our	results	from	seven	different	SCR	
quantification	approaches	applied	to	two	data	sets	with	different	paradigms	sug-
gest	 that	 there	may	be	no	single	approach	 that	consistently	yields	 larger	effect	
sizes	 and	 could	 be	 universally	 considered	 “best.”	 Yet,	 at	 least	 some	 of	 the	 ap-
proaches	employed	show	consistent	effect	sizes	within	each	data	set	indicating	
comparability.	Finally,	we	highlight	substantial	heterogeneity	also	within	most	
quantification	approaches	and	discuss	implications	and	potential	remedies.
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Biological	Psychology	and	Cognitive	Neuroscience	(Botvinik-	
Nezer	 et	 al.,  2020;	 Lonsdorf,	 Klingelhöfer-	Jens,	 et	 al.,  2019;	
Sandre	et	al., 2020).	A	commonly	used	measure	in	these	sci-
entific	disciplines	is	skin	conductance	that	is	sensitive	to	emo-
tional	arousal,	novelty,	and	salience	(Dawson	et	al., 2007)	and	
thought	to	provide	insight	into	sympathetic	activation	levels.	
Skin	conductance	is	characterized	by	slowly	changing	tonic	
activity	 (skin	 conductance	 level,	 SCL)	 and	 faster	 changing	
phasic	activity	with	a	rather	steep	incline	and	slower	return	to	
baseline	(skin	conductance	response,	SCR).	SCRs	can	occur	
as	spontaneous	nonspecific	 fluctuations	or	stimulus-	evoked	
(Boucsein	et	al., 2012)	with	the	strength	of	the	latter	being	the	
focus	of	this	work.	SCRs	are	typically	recorded	continuously	
and	subsequently	quantified	off-	line.	This	can	be	done	with	
a	multitude	of	different	response	quantification	approaches,	
with	any	given	study	typically	choosing	only	one	of	these	op-
tions.	Already	in	1971,	Lykken	and	Venables	raised	attention	
to	the	“[…]	disconcerting	diversity	of	electrodermal	measure-
ment	technique	which,	at	best,	make	it	difficult	to	compare	
one	 set	 of	 results	 with	 another	 and	 sometimes	 even	 casts	
real	doubt	on	the	interpretation	of	the	findings.”	(Lykken	&	
Venables, 1971,	p.	656).	Now,	nearly	half	a	century	later,	basi-
cally,	everything	has	changed	with	respect	to	the	equipment	
and	techniques	used	to	record	SCRs,	while	on	the	other	hand,	
the	problem	of	disconcerting	methodological	diversity	identi-
fied	in	1971	still	persists.

As	a	consequence,	 the	 interpretation	of	any	single	set	
of	SCR	results	is	difficult	because	it	may	hinge	on	the	spe-
cific	 choices	 made—	as	 already	 argued	 by	 Lykken	 half	 a	
century	ago	(Lykken	&	Venables, 1971,	p.	656).	As	a	poten-
tial	solution	to	the	problem	of	data	processing	and	statisti-
cal	heterogeneity,	the	“multiverse	approach”	has	recently	
been	 suggested	 (Steegen	 et	 al.,  2016):	 In	 data	 multiverse	
analyses,	the	same	raw	data	are	processed	into	a	multiverse	
of	processed	data	sets	(referred	to	as	“universes”)	depend-
ing	on	different	processing	choices—	all	potentially	equally	
reasonable	in	light	of	the	absence	of	empirical	and/or	theo-
retical	criteria	to	guide	the	researchers’	decisions.	This	data	
(i.e.,	the	sum	of	all	universes)	inevitably	imply	a	multiverse	
of	 statistical	 results,	 given	 a	 single	 set	 of	 identical	 raw	
data	and	applied	statistical	models	(Lonsdorf	et	al., 2021;	
Lonsdorf,	Klingelhöfer-	Jens,	et	al., 2019;	Lonsdorf,	Merz,	
&	 Fullana,  2019;	 Silberzahn	 et	 al.,  2018;	 Sjouwerman	
et	al.,  2021;	Steegen	et	al.,  2016),	 and	can	 inform	on	 the	
stability	or	robustness	of	the	effect	of	interest	against	dif-
ferent	processing	pathways.	To	this	end,	multiverse-	type	of	
studies	have	been	proposed	to	explicitly	facilitate	debates	
on	 what	 (processing	 or	 analytical)	 specifications	 should	
be	 used	 (Del	 Giudice	 &	 Gangestad,  2021;	 Simonsohn	
et	al., 2020).	Of	note,	the	“full”	multiverse	consists	of	an	
infinite	number	of	options	and	hence,	 it	has	been	recog-
nized	that	many	other	decisions	could	be	considered	than	
what	 is	 typically	 referred	 to	 as	 “full	 multiverse”	 in	 these	

types	of	studies	 (Del	Giudice	&	Gangestad, 2021).	Often,	
it	can	be	advantageous	 to	 focus	on	a	more	 limited	set	of	
decision	nodes	and	investigate	these	in	more	depth.	Here,	
we	focus	on	a	small-	scale	multiverse-	type	of	approach	(re-
ferred	 to	 as	 “manyverse”)	 by	 comparing	 SCR	 quantifica-
tion	approaches	derived	from	a	systematic	literature	search	
in	two	data	sets	and	by	using	fear	conditioning	research	as	
a	case	example.	As	(systematic)	robustness	analyses	such	
as	multiverse-	type	of	studies	are	per	definition	applied	to	
the	same	set	of	data,	we	acknowledge	that	we	do	not	aim	
for	 a	 direct	 comparison	 between	 both	 data	 sets	 as	 these	
differ	 in	key	experimental	 specifications.	Hence,	we	pro-
vide	an	SCR	response	quantification	manyverse	approach	
within	each	data	set.

1.1	 |	 Different response quantification 
approaches for skin conductance responses

The	 different	 currently	 employed	 approaches	 for	 SCR	
quantification	can	be	roughly	grouped	into	(i)	trough-	to-	
peak	 (TTP)	scoring,	 (ii)	computational	model-	based	ap-
proaches	such	as	Ledalab	(Benedek	&	Kaernbach,	2010a;	
Lim	 et	 al.,	 1997)	 and	 Psycho-	Physiological	 Modelling	
(PsPM;	 Bach	 et	 al.,	 2009,	 2013;	 Bach	 &	 Friston,	 2013),	
and	 (iii)	 what	 we	 here	 refer	 to	 as	 “baseline	 correction”	
approaches.	Of	note,	however,	these	approach	categories	
are	 by	 no	 means	 homogeneous	 and	 different	 specifica-
tions	and	settings	can	be	applied.	We	refer,	for	instance,	
to	our	related	work	that	focuses	on	an	in-	depth	investi-
gation	of	within-	approach	heterogeneity	of	specifications	
used	 in	 the	 baseline	 correction	 approach	 (Sjouwerman	
et	 al.,  2021).	 In	 the	 literature,	 these	 different	 approach	
categories	are	generally	 treated	 interchangeably	despite	
the	 lack	 of	 empirical	 support	 for	 their	 equivalence	 in	
capturing	 the	 same	 underlying	 construct	 and	 biologi-
cal	 process	 (jingle	 fallacy)—	a	 problem	 that	 has	 been	
discussed,	 for	 instance,	 in	 fear	 conditioning	 research	
(Lonsdorf,	 Klingelhöfer-	Jens,	 et	 al.,  2019;	 Lonsdorf,	
Merz,	&	Fullana, 2019;	Ojala	&	Bach, 2019;	Sjouwerman	
et	al., 2021)	as	well	as	for	related	fields	in	psychology	and	
the	 neurosciences	 (Botvinik-	Nezer	 et	 al.,  2020;	 Garrett-	
Ruffin	et	al., 2021;	Sandre	et	al., 2020).	In	the	following,	
we	briefly	 introduce	 these	 three	different	SCR	quantifi-
cation	approach	categories:	trough-	to-	peak,	model-	based	
approaches,	and	baseline	correction	approaches	(as	well	
as	their	subcategories).

1.1.1	 |	 Trough-	to-	peak	(TTP)

“Trough-	to-	peak”	(TTP)	scoring	of	SCRs	quantifies	the	
difference	between	the	skin	conductance	at	the	peak	of	
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a	response	and	its	preceding	trough	in	prespecified	time	
windows	 according	 to	 a	 published	 set	 of	 criteria	 and	
publication	 recommendations	 (Boucsein	 et	 al.,  2012):	
The	 onset	 latency,	 that	 is,	 the	 footpoint	 of	 the	 SCR,	
is	 typically	 required	 to	occur	 in	an	onset	 latency	 time	
window	(OLW)	of	1–	3  s	 (Levinson	&	Edelberg, 1985),	
1–	3.5  s	 (although	 stimulus-	specific	 response	 windows	
were	 suggested,	 Sjouwerman	 &	 Lonsdorf,  2019),	 or	
1–	4 s	 (Boucsein	et	al., 2012)	after	stimulus	onset.	The	
SCR	peak	value	is	then	required	to	occur	in	a	peak	de-
tection	time	window	(PDW)	of	0.5–	5 s	after	SCR	onset	
(i.e.,	footpoint;	Boucsein	et	al., 2012).	More	precisely,	if	
the	footpoint	occurs	2 s	after	the	stimulus	presentation,	
the	peak	must	occur	in	a	time	window	of	2.5–	7 s	after	
stimulus	 onset.	 Some	 authors	 have	 also	 used	 the	 full	
stimulus	 duration	 (or	 even	 longer)	 as	 the	 PDW	 with-
out	 explicitly	 distinguishing	 between	 OLW	 and	 PDW.	
In	 addition,	 a	 minimum	 response—	typically	 varying	
between	 0.05	 and	 0.01	 μs—	is	 often	 applied	 (Boucsein	
et	 al.,  2012;	 Lonsdorf,	 Klingelhöfer-	Jens,	 et	 al.,  2019).	
SCRs	smaller	than	this	minimum	response	are	not	con-
sidered	as	a	valid	response	and	included	as	nonresponse	
with	a	value	of	zero	(Lonsdorf	et	al., 2017;	i.e.,	“magni-
tude,”	Venables	&	Christie, 1980).	Consequently,	TTP	
scoring	can	only	yield	SCR	values	with	a	zero	or	a	posi-
tive	value.

TTP	 scoring	 employing	 the	 above-	described	 criteria	
can	 be	 performed	 as	 follows:	 (a)	 manually	 in	 most	 re-
cording	 software,	 (b)	 computer-	assisted	 with	 the	 help	
of	 graphical	 user	 interfaces	 (commonly	 custom-	made)	
which	 provide	 editable	 suggestions	 for	 each	 SCRs	 foot-
point	and	peak,	or	(c)	supervised,	but	 fully	automatized	
(“Autonomate,”	 Green	 et	 al.,  2014)—	even	 though	 the	
latter	 can	 also	 be	 used	 as	 a	 graphical	 user	 interface	 for	
visual	 inspection	 and/or	 computer-	assisted	 scoring.	
Furthermore,	 (d)	 also	 fully	 automatized	 custom-	made	
scripts	are	employed.	Automatized	approaches	iteratively	
apply	 the	 published	TTP	 criteria	 (Boucsein	 et	 al.,  2012)	
while	systematically	dealing	with	 the	challenge	of	over-
lapping	 SCRs	 by	 searching	 for	 patterns	 in	 inflection	
points	(Green	et	al., 2014).	Fully	automatized	TTP	scoring	
consequently	reduces	some	of	the	drawbacks	inherent	to	
manual	or	computer-	assisted	(semi-	manual)	TTP	scoring:	
being	 time-	consuming,	 sensitive	 to	 the	 scale	 invariance	
problem	 (i.e.,	 depending	 on	 the	 scale	 used	 to	 view	 the	
data	different	 inflection	points	may	be	detected	through	
visual	inspection),	requiring	long	interstimulus	intervals	
to	avoid	overlapping	responses,	and	being	susceptible	to	
human	bias.	We	highlight	that	most	of	the	work	on	skin	
conductance	response	dates	back	to	early	research	in	the	
70 s	and	new	work	has	not	reinvestigated	assumptions	re-
garding	an	SCRs	shape	and	temporal	profile	with	newer	
technical	equipment	in	detail.

1.1.2	 |	 Baseline	correction	(BLC)	approach

In	 addition,	 an	 approach	 that	 we	 here	 refer	 to	 as	 the	
“baseline	correction	approach”	has	been	suggested	 that	
“does	 not	 require	 undertaking	 the	 complex	 process	
of	 mathematically	 modeling	 [skin	 conductance]	 data	
curves,	 identifying	 points	 of	 inflection	 that	 define	 a	 re-
sponse	 onset	 and	 creating,	 or	 learning	 to	 use,	 software	
that	 accomplishes	 this	 process”(cf.	 Pineles	 et	 al.,  2009,	
p.	993).	Pineles	 suggested	 the	use	of	an	“entire-	interval	
response”	that	scores	the	highest	SCR	peak	in	the	entire	
stimulus	presentation	time	window	(Pineles	et	al., 2009).	
The	BLC	approach	suggested	by	Pineles	employs	an	algo-
rithm	that	identifies	a	response	onset	by	stepping	forward	
(or	 backward)	 until	 the	 slope	 changes	 from	 negative	 to	
positive	 (or	 from	positive	 to	negative).	A	response	peak	
is	found	by	locating	the	highest	SC	value	after	the	identi-
fied	onset	and	within	the	window	specified	for	the	peak	
(Pineles	et	al., 2009).	Importantly,	neither	the	onset	nor	
the	peak	may	be	located	at	the	first	or	last	data	point	of	
their	 respective	 windows	 and	 if	 this	 happens,	 the	 algo-
rithm	will	look	for	new	onset	and	peak	in	a	shrunk	win-
dow.	If	the	window	is	iteratively	shrunk	to	a	zero	width,	
no	response	is	calculated	(i.e.,	zero).	The	entire-	interval	
response	 suggested	 by	 Pineles	 is	 accordingly	 calculated	
by	 subtracting	 the	mean	skin	conductance	 level	 for	 the	
2 s	immediately	preceding	stimulus	onset	from	the	high-
est	SC	level	value	during	the	entire	stimulus	presentation	
period	(i.e.,	8 s;	Pineles	et	al., 2009).	Of	note,	this	proce-
dure	can	yield	negative	values	when	no	stimulus-	bound	
SCR	 is	observed	or	when	 it	 is	 comparably	 smaller	 than	
the	 (habituation)	 drift	 in	 SCRs.	 Some	 authors	 set	 these	
negative	responses	to	“zero”	during	postprocessing	(e.g.,	
Vogel	et	al.,	2015).	Today,	BLC	approaches	are	most	often	
performed	with	custom-	made	scripts	 that	do	not	 follow	
iterative	 algorithms,	 calculate	 the	 baseline	 in	 a	 pre-	CS	
time	 window,	 and	 subtract	 this	 baseline	 from	 the	 post-
	CS	peak	identified	during	a	post-	CS	time	window	(for	a	
discussion,	see	Sjouwerman	et	al., 2021).

1.1.3	 |	 Computational	model-	based			
approaches

Last,	 computational	or	model-	based	approaches	are	avail-
able	 in	 different	 software	 packages,	 for	 instance,	 Ledalab	
(Benedek	&	Kaernbach, 2010a;	Lim	et	al., 1997)	and	PsPM	
(Bach	 et	 al.,  2009,	 2013;	 Bach	 &	 Friston,  2013)	 (formerly	
labeled	 SCRalyze;	 Bach	 et	 al.,  2009)	 or	 cvxEDA	 (Greco	
et	 al.,  2016).	 These	 approaches	 rely	 on	 (generative	 or	 for-
ward)	models	 that	 specify	how	a	physiological	or	psycho-
logical	 state	 generates	 an	 observable	 skin	 conductance	
response	and	use	model	 inversion	to	estimate	these	states	
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from	 the	 data.	 The	 different	 model-	based	 approaches	 dif-
fer	in	respect	to	the	exact	properties	of	the	employed	SCR	
function,	the	treatment	of	slowdrifts	in	SCR	data,	the	treat-
ment	of	observation	noise,	and	the	applied	model	inversion.	
However,	they	all	generally	offer	the	advantage	of	automa-
ticity	and	computational	reproducibility.	Furthermore,	they	
are	thought	to	improve	discriminability	of	overlapping	SCRs	
in	paradigms	with	short	interstimulus	intervals	as	SCRs	are	
slow	responses	and	rapidly	spaced	stimuli	with	an	interstim-
ulus	interval	(ISI)	of	2–	3 s	do	not	elicit	visually	distinguish-
able	SCR	peaks	and	generally	appear	as	a	single	response	
(Benedek	&	Kaernbach, 2010a)—	commonly	referred	to	as	
overlapping	responses.

Specifically,	 deconvolution-	based	 approaches,	 such	
as	 Ledalab,	 decompose	 skin	 conductance	 data	 into	
slowly	 varying	 tonic	 and	 fast-	varying	 phasic	 activity	
(Benedek	 &	 Kaernbach,  2010a;	 Lim	 et	 al.,  1997).	 The	
phasic	component	is	suggested	to	reflect	the	time	course	
of	 sudomotor	 or	 sympathetic	 nerve	 activity.	 The	 latter	
is	 characterized	 by	 a	 zero	 baseline	 and	 shorter	 time	
constant	 than	 the	 resulting	SCR,	making	 it	possible	 to	
discern	 closely	 succeeding	 responses	 in	 rapid,	 quickly	
spaced	events	with	an	ISI	<3 s.	Ledalab	offers	a	variety	
of	different	measures	 to	quantify	 skin	conductance	re-
sponses	within	a	defined	response	window,	among	them	
the	estimated	amplitude	(which	may	differ	from	a	TTP	
approach),	 the	 sum	 of	 all	 SCRs	 detected,	 the	 average,	
the	 peak,	 and	 the	 area	 under	 the	 curve	 of	 the	 phasic	
driver	response.

The	 software	 package	 PsPM	 (formerly	 SCRalyze)	
offers	 two	different	approaches:	a	general	 linear	model	
(GLM)	 approach	 (Bach	 et	 al.,  2009)	 and	 a	 nonlin-
ear	 dynamic	 causal	 modeling	 (DCM)	 approach	 (Bach	
et	al., 2010).	The	GLM	approach	models	event	onsets	as	
delta	functions,	convolves	the	onset	regressor	with	a	ca-
nonical	(or	data-	based)	skin	conductance	response	func-
tion,	and	fits	the	data	to	the	resulting	time	series	(Bach	
et	al., 2009).	Depending	on	whether	the	GLM	onset	re-
gressors	comprise	all	trials	of	one	condition	(“condition-	
wise”)	 or	 only	 one	 individual	 trial	 (“trial-	wise”),	 the	
resulting	 parameter	 estimates	 reflect	 condition-	specific	
(e.g.,	CS+,	CS−)	or	 trial-	specific	SCR	magnitudes	(e.g.,	
CS+	trial	1,	CS+	trial	2,	…,	CS−	trial	1).	The	nonlinear	
DCM	 approach	 provides	 a	 causal	 model	 that	 describes	
how	 different	 inputs	 to	 sudomotor	 activity	 (e.g.,	 spon-
taneous,	 evoked,	 anticipatory	 responses)	 map	 onto	
skin	 conductance	 data.	 Via	 model	 inversion,	 the	 most	
likely	 contribution	 of	 each	 of	 these	 components	 to	 the	
observed	 data	 is	 estimated.	 For	 discussion	 and	 empiri-
cal	 evaluation	 of	 differences	 between	 Ledalab	 and	 the	
GLM	or	DCM	approach	implemented	in	PsPM,	we	refer	
to	 other	 sources	 (Bach,  2014;	 Bach	 et	 al.,  2013;	 Staib	
et	al., 2015).

1.1.4	 |	 Comparison	between	different	SCR	
quantification	approaches

To	date,	few	comparative	studies	addressing	different	SCR	
quantification	 approaches	 exist—	and	 those	 that	 we	 are	
aware	of	(see	Table 1	for	a	detailed	summary	of	 the	sta-
tus	quo)	all	come	from	authors	that	have	developed	one	
of	the	approaches	and	performed	comparisons	for	means	
of	validation.	What	 is	 striking	 from	Table 1	 is	 that	even	
those	comparative	attempts	are	characterized	by	substan-
tial	heterogeneity	with	respect	to	the	used	SCR	quantifi-
cation	approaches	and	 it	 is	noteworthy	 that	conclusions	
derived	 from	 these	 studies	 are	 similarly	 heterogeneous.	
While	Green	and	colleagues	concluded	 that	all	methods	
produced	comparable	effect	sizes	and	hence	suggest	that	
a	number	of	suitable	methods	and	software	tools	exist	for	
SCR	quantification	analysis	of	SCRs	(Green	et	al., 2014),	
Bach	and	colleagues	in	contrast	concluded	that	all	model-	
based	 methods	 as	 implemented	 in	 SCRalyze	 are	 more	
sensitive	 than	 the	 “peak-	scoring”	 approach	 and	 provide	
significantly	 higher	 predictive	 validity	 than	 any	 Ledalab	
measure	in	most	of	the	tested	contrasts	(Bach, 2014).

Speculations	on	 potential	 explanations	 for	 these	con-
flicting	 results	 and	 conclusions	 may	 be	 derived	 from	
Table  1.	 As	 this	 is,	 however,	 beyond	 the	 main	 aim	 of	
the	 present	 work,	 we	 refer	 the	 interested	 reader	 to	 the	
Supplementary	Material	for	an	in-	depth	discussion.

1.2	 |	 Overarching aim

Our	work	departs	from	the	lack	of	conclusive	and	compre-
hensive	comparative	work	addressing	the	question	if	and	
to	 what	 extent	 different	 SCR	 quantification	 approaches	
(when	 applied	 to	 an	 identical	 data	 set)	 can	 be	 used	 in-
terchangeably	(jingle	fallacy).	Particularly,	 in	light	of	re-
cent	 discussions	 on	 measurement	 challenges	 and	 their	
potential	 contributions	 to	 (non-	)	 replicability	 (Flake	 &	
Fried, 2020),	it	is	particularly	timely	to	investigate	to	what	
extent	a	given	effect	can	be	formally	“replicated”	by	sub-
jecting	 single	 data	 sets	 to	 multiple	 theoretically	 equally	
justifiable	 SCR	 response	 quantification	 approaches	 (i.e.,	
robustness	analyses).

First,	we	need	a	 synopsis	of	 the	different	approaches	
employed	 in	 the	 literature	as	well	as	 their	abundance	to	
guide	 the	 decision	 on	 approaches	 to	 compare.	 Here,	 we	
provide	an	exemplary	systematic	 literature	search	focus-
ing	on	different	SCR	quantification	approaches	by	using	
fear	conditioning	research	as	a	case	example.

Second,	we	provide	an	independent	evaluation	of	seven	
commonly	 used	 and	 equally	 justifiable	 SCR	 response	
quantification	approaches	applied	to	 two	data	sets.	Note	
that	we	do	not	aim	for	a	direct	comparison	between	both	
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data	 sets	 as	 these	 differ	 in	 more	 than	 a	 single	 specifica-
tion	(e.g.,	CS	and	ITI	duration,	reinforcement	rate,	sample	
size)	but	provide	a	manyverse	analysis	within	each	data	
set.	Note	that	the	multiverse	approach	focuses	on	apply-
ing	different	pipelines	to	the	same	underlying	data.	To	our	
knowledge,	no	formal	framework	for	the	evaluation	of	ro-
bustness	analyses	exists	to	date,	but	we	may	borrow	some	
criteria	from	a	framework	suggested	for	the	evaluation	of	
replicability	in	general	(LeBel	et	al., 2018),	as	robustness	
can	be	viewed	as	a	subaspect	of	replicability.	While	multi-
verse	analyses	often	focus	on	the	distribution	of	p	values	
across	the	multiverse	(e.g.,	Steegen	et	al., 2016),	we	extend	
this	 somewhat	 limited	 focus	 by	 also	 considering	 effect	
sizes	and	precision	of	the	estimates.

Third	 and	 finally,	 we	 include	 TTP	 scoring	 from	 two	
independent	 raters	 per	 data	 set	 (one	 experienced	 and	
one	first-	time	rater)	to	address	the	question	if	computer-	
assisted	TTP	scoring	 is	 reproducible	 (i.e.,	 obtaining	“the	
same”	result	when	applying	the	same	method	to	the	same	
data).

If	 we	 find	 evidence	 for	 the	 robustness	 of	 the	 results	
across	 the	 different	 SCR	 quantification	 approaches,	 this	
would	argue	in	favor	of	the	interchangeable	use	of	differ-
ent	SCR	quantification	approaches.	This	would	be	really	
good	news	for	the	field.	If	we,	 in	turn,	observe	a	lack	of	
robustness	as	defined	by	the	above	criteria,	we	have	iden-
tified	a	challenge	that	we	can	then	take	into	account	when	
making	analysis	decisions	and	comparing	SCR	results.

2 	 | 	 METHOD

2.1	 |	 Systematic literature search

A	 systematic	 literature	 search	 was	 performed	 according	
to	 PRISMA	 guidelines	 (Moher	 et	 al.,  2009)	 covering	 all	
publications	(including	e-	pubs	ahead	of	print)	in	PubMed	
during	 the	 6	 months	 prior	 to	 March	 22,	 2019.	 This	 sys-
tematic	literature	search	was	performed	to	derive	data	in-
tended	to	serve	as	case	examples	for	a	number	of	research	
projects	 such	as	our	 recently	published	work	 (Lonsdorf,	
Klingelhöfer-	Jens,	et	al., 2019)	and	the	present	work.	As	
described	 in	 Lonsdorf,	 Klingelhöfer-	Jens,	 et	 al.	 (2019),	
the	 following	 search	 terms	 were	 used:	 threat	 condition-
ing	 OR	 fear	 conditioning	 OR	 threat	 acquisition	 OR	 fear	
acquisition	OR	threat	learning	OR	fear	learning	OR	threat	
memory	 OR	 fear	 memory	 OR	 return	 of	 fear	 OR	 threat	
extinction	OR	fear	extinction.	The	original	study	was	in-
cluded	in	case	author	corrections	were	published	within	
the	search	period,	unless	the	study	itself	was	already	in-
cluded.	From	the	identified	854	records	listed	in	PubMed,	
Stage	 2	 screening	 (abstract)	 included	 152	 records.	 For	
Stage	3	screening	(full	text),	86	were	retained.	Screening	

served	the	aim	that	the	final	set	of	studies	consisted	of	50	
records	that	reported	results	for	(1)	SCRs	as	an	outcome	
measure	 from	(2)	 the	 fear	acquisition	 training	phase	 (3)	
in	human	participants	(a	flow	chart	with	details	has	been	
published	in	Lonsdorf,	Klingelhöfer-	Jens,	et	al., 2019).	A	
subset	 of	 the	 identified	 SCR	 quantification	 approaches	
was	 subsequently	 applied	 to	 two	 independent	 data	 sets	
(see	below	for	details).	The	literature	search	here	served	
the	purpose	to	guide	our	decision	on	which	approaches	to	
apply	here	and	to	obtain	an	overview	of	what	is	commonly	
used	in	the	literature.	Hence,	the	literature	search	can	be	
considered	a	tool	rather	than	an	aim	in	its	own	right.

2.2	 |	 Participants and 
experimental paradigms

2.2.1	 |	 Data	set	1:	Hamburg

Participants
Data	set	1	consisted	of	the	acquisition	phase	(i.e.,	Day	1)	
from	the	baseline	(T0)	measurement	of	a	longitudinal	fear	
conditioning	study	in	120	participants.	Data	from	two	par-
ticipants	 were	 excluded	 due	 to	 protocol	 deviations	 leav-
ing	118	participants	for	analyses	(78	females,	mean ± SD	
age	 of	 24.38  ±  3.7  years).	 All	 participants	 gave	 written	
informed	consent	to	the	protocol	which	was	approved	by	
the	local	ethics	committee	(PV	5157,	Ethics	Committee	of	
the	 General	 Medical	 Council	 Hamburg).	 Data	 set	 1	 has	
been	 included	 as	 a	 case	 example	 in	 a	 previous	 publica-
tion	(Lonsdorf,	Klingelhöfer-	Jens,	et	al., 2019)	focusing	on	
methodological	questions	(i.e.,	exclusion	of	“nonlearner”	
and	“nonresponder”	in	fear	conditioning	research).

Paradigm and stimuli
The	 paradigm	 (for	 details,	 see	 Lonsdorf,	 Klingelhöfer-	
Jens,	 et	 al.,  2019)	 consisted	 of	 a	 2-	day	 uninstructed	 fear	
conditioning	paradigm	with	habituation	and	acquisition	
training	 taking	 place	 on	 Day	 1	 and	 extinction	 training	
and	recall	test	taking	place	on	Day	2.	The	study	included	
a	 baseline	 measurement	 (T0)	 and	 a	 follow-	up	 measure-
ment	(T1)	6	months	later	when	the	identical	paradigm	was	
conducted	again.	During	all	experimental	phases,	BOLD	
fMRI,	 fear	 ratings	 (after	 each	 experimental	 phase),	 and	
skin	conductance	 responses	were	acquired.	BOLD	 fMRI	
as	well	as	 fear	 ratings	are,	however,	not	 included	 in	 the	
present	 work,	 as	 it	 focuses	 exclusively	 on	 the	 methodo-
logical	question	of	different	approaches	to	SCR	quantifi-
cation,	 and	 only	 data	 from	 the	 fear	 acquisition	 training	
phase	at	T0	were	included.	All	data	sets	were	trimmed	to	
this	period	of	 interest	starting	2 s	prior	to	the	first	event	
of	 interest	 (i.e.,	 first	 CS	 presentation	 during	 acquisition	
training)	and	ending	between	10	and	20 s	(20 s	trim	cutoff	
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value)	 after	 the	 last	 event	 of	 interest	 (i.e.,	 last	 CS	 or	 US	
presentation	during	acquisition	training).	Two	light	gray	
fractals	served	as	conditioned	stimuli	that	were	presented	
14	times	in	a	pseudo-	randomized	order	for	6–	8 s	(mean:	
7 s).	Trial	order	was	randomized	in	such	a	way	that	not	
more	than	two	trials	of	the	same	type	(i.e.,	CS	+,	CS−)	suc-
ceeded	each	other.	Allocation	of	the	two	visual	stimuli	to	
CS+	and	CS–		was	counterbalanced	between	participants	
and	the	CS+	was	followed	by	the	US	in	all	cases	during	
fear	 acquisition	 training	 (100%	 reinforcement	 rate).	 A	
white	fixation	cross	was	shown	for	10–	16 s	(mean:	13 s)	
which	served	as	the	intertrial	intervals	(ITIs).	All	stimuli	
were	presented	on	a	dark	gray	background	and	controlled	
by	Presentation	software	(Version	14.8,	Neurobehavioral	
Systems,	Inc,	Albany	California,	USA).

The	 US	 was	 an	 electrotactile	 stimulus	 consisting	 of	
three	 2  ms	 rectangular	 pulses	 with	 an	 interpulse	 inter-
val	 of	 50  ms	 (onset:	 200  ms	 before	 CS+	 offset)	 and	 was	
administered	to	the	back	of	the	right	hand	of	the	partic-
ipants.	 It	 was	 generated	 by	 a	 Digitimer	 DS7A	 constant	
current	 stimulator	 (Welwyn	 Garden	 City,	 Hertfordshire,	
UK)	and	delivered	through	a	1 cm	diameter	platinum	pin	
surface	electrode	(Speciality	Developments,	Bexley,	UK).	
The	electrode	was	attached	between	the	metacarpal	bones	
of	the	index	and	the	middle	finger.	US	intensity	was	indi-
vidually	calibrated	in	a	standardized	step-	wise	procedure	
aiming	at	an	unpleasant,	but	still	tolerable	level.

2.2.2	 |	 Data	set	2:	Mainz

Participants
Forty	male	participants	(mean ± SD	age	of	28.1 ± 2.7 years)	
were	 included	 in	 the	 data	 set	 that	 was	 published	 previ-
ously	 (Gerlicher	 et	 al.,  2018).	 All	 participants	 provided	
written	informed	consent	and	the	protocol	was	approved	
by	 the	 local	 ethics	 committee	 (Ethikkommission	 der	
Landesärztekammer,	Rheinland-	Pfalz).	Data	of	2	partici-
pants	on	day	1	(fear	acquisition)	were	excluded	from	the	
analyses	of	SCR	data	presented	in	this	work	due	to	record-
ing	artifacts,	leaving	data	of	n = 38	participants	for	statisti-
cal	analysis	of	each	phase.

Paradigm and stimuli
Data	 set	 2	 consists	 of	 a	 3-	day	 paradigm	 comprising	 fear	
acquisition	 on	 Day	 1,	 extinction	 and	 subsequent	 drug	
administration	 on	 Day	 2,	 and	 a	 test	 of	 the	 effect	 of	 the	
drug	 manipulation	 on	 Day	 3	 (for	 details,	 see	 Gerlicher	
et	al., 2018)	with	only	the	fear	acquisition	training	phase	
used	for	the	present	work.	During	all	experimental	phases,	
BOLD	 fMRI,	 expectancy	 ratings	 (before	 and	 after	 each	
experimental	 phase),	 and	 skin	 conductance	 data	 were	
acquired.	 BOLD	 fMRI	 as	 well	 as	 expectancy	 ratings	 are,	

however,	not	 included	 in	 the	present	work,	as	 it	 focuses	
exclusively	 on	 the	 methodological	 question	 of	 different	
approaches	 to	 SCR	 quantification.	 Two	 black	 geometric	
symbols	 (square	 and	 rhombus)	 served	 as	 CS+	 and	 CS−	
and	 were	 presented	 in	 the	 center	 of	 a	 computer	 screen.	
The	 CSs	 were	 superimposed	 on	 background	 pictures	 of	
either	a	kitchen	or	a	living	room.	Assignment	of	symbols	
to	 CS+	 or	 CS−	 and	 rooms	 to	 background	 pictures	 were	
randomized	between	participants.	CSs	were	presented	for	
4.5  s.	 US	 delivery	 started	 at	 4400  ms	 after	 CS	 onset	 and	
terminated	with	CS	presentation.	Intertrial	intervals	lasted	
17,	18,	or	19 s	(mean	of	18.5 s).	The	trial	order	was	rand-
omized	in	such	a	way	that	not	more	than	two	trials	of	the	
same	type	(i.e.,	CS+,	CS−)	succeeded	each	other.	During	
fear	acquisition	training	on	Day	1,	participants	were	pre-
sented	with	10	CS+	and	10	CS−	trials	 in	context	A.	Five	
out	of	10	CS+	presentations	(i.e.,	50%	reinforcement)	were	
reinforced	 with	 an	 electric	 stimulus.	 Stimulus	 presenta-
tion	was	controlled	by	Presentation	software	(Version	14.8,	
Neurobehavioral	Systems,	Inc,	Albany	California,	USA).

Electrical	 stimuli	 consisting	 of	 three	 square-	wave	
pulses	 of	 2  ms	 (50  ms	 interstimulus	 interval)	 were	 em-
ployed	as	the	US.	The	electrical	stimuli	were	generated	by	
a	 Digitimer	 DS7A	 constant	 current	 stimulator	 (Welwyn	
Garden	 City,	 Hertfordshire,	 UK)	 and	 delivered	 on	 the	
right	dorsal	hand	through	a	surface	electrode	with	a	plat-
inum	 pin	 (Specialty	 Developments,	 Bexley,	 UK).	 Before	
the	 start	 of	 the	 experiment,	 the	 intensity	 of	 the	 US	 was	
calibrated	to	a	level	described	as	painful,	but	still	tolerable	
by	the	participant.

2.3	 |	 SCR recording and response 
quantification

2.3.1	 |	 SCR	recording

Data set 1 (Hamburg)
Skin	 conductance	 response	 was	 measured	 via	 self-	
adhesive	Ag/AgCl	electrodes	placed	on	the	palmar	side	of	
the	left	hand	on	the	distal	and	proximal	hypothenar.	Data	
were	recorded	with	a	skin	conductance	unit	together	with	
a	Biopac	MP150-	amplifier	system	(BIOPAC®	Systems	Inc.,	
Goleta,	 CA,	 USA)	 and	 converted	 from	 analog	 to	 digital	
using	 a	 CED2502-	SA	 with	 Spike	 2	 software	 (Cambridge	
Electronic	Design,	Cambridge,	UK).	Data	were	recorded	
continuously	 at	 1000  Hz	 with	 a	 gain	 of	 5	 μΩ/V	 and	 a	
1.0 Hz	hardware	filter.

Data set 2 (Mainz)
Electrodermal	 activity	 was	 recorded	 from	 the	 thenar	
and	 hypothenar	 of	 the	 nondominant	 hand	 using	 self-	
adhesive	 Ag/AgACl	 electrodes	 (EL-	509,	 BIOPAC®	
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Systems	 Inc.,	 Goleta,	 CA,	 USA)	 filled	 with	 an	 iso-
tonic	 electrolyte	 medium	 and	 the	 Biopac	 MP150	 with	
EDA100C.	All	data	sets	were	trimmed	to	5 s	prior	to	the	
first	event	of	 interest	 (i.e.,	 first	CS	presentation	during	
acquisition	training)	and	22 s	after	the	last	event	of	in-
terest	 (i.e.,	 last	 CS	 or	 US	 presentation	 during	 acquisi-
tion	 training).	 The	 signal	 was	 low-	pass	 filtered	 with	 a	
second-	order	Butterworth	filter	with	a	cutoff	frequency	
of	 1  Hz	 using	 Matlab	 2019a	 (Mathworks®,	 Natick,	
Massachusetts,	USA).

2.3.2	 |	 SCR	quantification	
approaches	employed

We	 applied	 three	 different	 response	 quantification	 ap-
proaches	 including	their	subcategories	to	both	data	sets:	
TTP	was	employed	by	 two	different	 raters	 for	each	data	
set,	 one	 representative	 BLC	 approach	 (i.e.,	 most	 com-
monly	 used	 specifications	 according	 to	 the	 literature	
search;	Sjouwerman	et	al., 2021)	as	well	as	computational	
approaches	as	 implemented	 in	Ledalab	 (one	 representa-
tive	setting)	and	PsPM	(GLM-	based	as	well	as	three	differ-
ent	DCM-	based	settings).	This	was	done	for	the	full	fear	
acquisition	training	phase	for	both	data	sets	as	well	as	(i)	
for	 the	 first	and	 (ii)	 second	half	of	 this	phase	 separately	
and	 by	 using	 (iii)	 the	 last	 two	 trials	 of	 fear	 acquisition	
training	only	(results	are	presented	in	the	Supplementary	
Material).	 For	 Ledalab	 and	 PsPM,	 data	 used	 for	 (i),	 (ii),	
and	 (iii)	 were	 derived	 from	 the	 same	 model	 as	 the	 full	
phase.	 The	 decision	 to	 include	 these	 additional	 phases	
was	guided	by	the	fact	 that	 the	specific	number	of	 trials	
included	in	the	statistical	models	to	analyze	the	success	of	
fear	acquisition	training	is	heterogeneous	in	the	literature	
as	revealed	by	the	systematic	literature	search	(Lonsdorf	
et	al., 2021)	and	as	illustrated	for	fear	extinction	(Lonsdorf	
et	al., 2021;	Ney	et	al., 2020).

Here,	 we	 do	 neither	 employ	 an	 unsupervised	 fully	
automated	 script-	based	 TTP	 approach	 nor	 include	
Autonomate	because	the	supervised	TTP	approach	offered	
through	Autonomate’s	graphical	user	interface	is	reported	
(Green	et	al., 2014)	to	be	procedurally	nearly	identical	to	
the	computer-	assisted	TTP	approach	employed	here	with	
identical	OLW	and	PDWs.	The	choice	of	approaches	was	
guided	 by	 the	 results	 of	 our	 systematic	 literature	 search	
described	in	Section 3.1.

Trough- to- peak (TTP)
SCRs	were	scored	computer-	assisted	by	using	a	custom-	
made	 computer	 program	 according	 to	 published	 guide-
lines	 (Boucsein	 et	 al.,  2012)	 and	 while	 being	 blind	 to	
stimulus	 type	 associated	 with	 a	 given	 SCR.	 More	 pre-
cisely,	 the	 trough	 was	 identified	 in	 an	 onset	 latency	

window	(OLW)	of	0.9–	4 s	(Boucsein	et	al., 2012)	poststim-
ulus	onset	and	the	peak	was	identified	in	a	peak	detection	
window	(PDW)	of	maximally	5 s	post-	SCR	onset.	In	case	
of	multiple	peaks	in	the	PDW,	the	first	peak	was	consid-
ered.	This	approach	corresponds	to	what	has	been	recom-
mended	by	the	Society	for	Psychophysiological	Research	
(see	 Boucsein	 et	 al.,  2012)	 and	 corresponds	 to	 what	 has	
been	referred	to	as	the	so-	called	“first-	interval	response”	
in	fear	conditioning	research.	Provided	the	CS–	US	inter-
val	 is	 sufficiently	 long	 (i.e.,	 6–	10	 s;	 Stewart	 et	 al.,  1961)	
three	SCR	components	that	map	onto	different	underlying	
processes	can	be	distinguished	in	fear	conditioning	stud-
ies	which	have	been	referred	to	as	the	first-	interval	(FIR),	
second-	interval	(SIR),	and	third-	interval	responses	(TIR).	
More	precisely,	the	FIR	(SCR	onset:	1–	4 s	post-	CS	onset)	
is	 considered	 an	 orienting	 response	 while	 the	 SIR	 (SCR	
onset:	4 s	post-	CS	onset	to	1 s	after	CS	onset)	is	thought	to	
reflect	anticipatory	responding	to	the	soon	to	be	presented	
US	 and	 typically	 occurs	 only	 after	 contingency	 learning	
(Ohman, 1972).	Finally,	the	TIR	is	the	response	to	the	US	
itself.	This	work	on	the	three	different	components	dates	
back	 to	 the	 70s	 (Ohman,  1972;	 Prokasy	 &	 Ebel,  1967;	
Rescorla	 &	 Wagner,  1972)	 but	 the	 distinction	 between	
these	three	intervals	has	not	been	universally	adopted	(for	
a	summary	and	critique,	see	Pineles	et	al., 2009).	In	fact,	
“Of	 the	 two	 anticipatory	 response	 components,	 the	 first	
is	usually	larger	than	the	second	and,	because	it	is	highly	
sensitive	 to	 conditioning	 manipulations,	 it	 is	 frequently	
the	only	one	reported”	(Lipp, 2006),	possibly	also	because	
the	FIR	has	been	shown	to	have	higher	reliability	than	the	
SIR	(Fredrikson	et	al., 1993).	It	is	also	important	to	note	
that	the	assessment	of	the	SIR	is	often	not	possible	when	
the	CS–	US	interval	is	too	short	or	when	startle	probes	are	
included	in	the	experimental	design	(i.e.,	the	SCR	to	the	
probe	confounds	the	SIR).

Raters	1	(TTP1)	were	experienced	raters	and	Raters	2	
(TTP2)	were	first-	time	raters	for	both	data	sets	but	differ-
ent	 individuals	 for	 these	 data	 sets	 resulting	 in	 a	 total	 of	
4	 raters.	 For	TTP1,	 in	 the	 Hamburg	 sample,	 a	 stimulus-	
specific	 time	 window	 was	 used	 with	 the	 OLW	 defined	
for	SCRs	to	the	CS	as	0.9	to	3.5 s	and	the	US	as	0.9–	2.5 s	
post-	US	onset,	as	suggested	recently	based	on	an	empiri-
cal	evaluation	of	SCR	onset	latencies	across	stimulus	types	
(Sjouwerman	&	Lonsdorf, 2019).	This	was	done	to	have	a	
direct	empirical	comparison	between	these	recently	sug-
gested	time	windows	and	the	time	windows	suggested	in	
the	published	recommendations	by	Boucsein	et	al. (2012),	
which	were	applied	for	TTP2	(Hamburg)	and	both	Mainz	
rater.

Both	 raters	 for	 the	 Hamburg	 sample	 were	 trained	 by	
the	senior	author	and	so	was	the	experienced	rater	in	the	
Mainz	 data	 set	 (AMG)	 who	 then	 trained	 the	 first-	time	
rater	in	the	Mainz	data	set.
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Data	were	downsampled	to	10 Hz.	Each	scored	SCR	
was	checked	visually,	and	the	scoring	suggested	by	the	
custom-	made	computer	program	was	corrected	if	neces-
sary	(e.g.,	 the	foot	or	trough	when	misclassified	by	the	
algorithm	 was	 manually	 corrected,	 see	 Supplementary	
Material	 for	 examples).	 Data	 with	 recording	 artifacts	
(i.e.,	 in	 more	 than	 half	 of	 the	 trials)	 were	 treated	 as	
missing	 data	 points	 and	 excluded	 from	 the	 analyses.	
For	 the	Hamburg	data	sets,	SCRs	below	0.01	μS	or	 the	
absence	 of	 any	 SCR	 (i.e.,	 flat	 line	 or	 habituation	 drift)	
within	the	defined	time	window	were	classified	as	non-
responses	and	set	to	0.	The	threshold	of	0.01	μS	for	this	
data	set	was	determined	empirically	by	visually	inspect-
ing	 response	 specifically	 above	 and	 below	 this	 cutoff	
(Lonsdorf,	 Klingelhöfer-	Jens,	 et	 al.,  2019),	 which	 sug-
gested	that	in	this	data	sets,	responses	>0.01	μS	can	be	
reliably	identified.	For	the	Mainz	data	sets,	a	minimum	
amplitude	criterion	of	0.02	μS	was	used.

Baseline correction (BLC)
A	 custom-	made	 script	 in	 Matlab	 version	 R2019b	
(Mathworks®,	 Natick,	 Massachusetts,	 USA)	 imple-
mented	 the	 BLC	 response	 quantification	 approach	 by	
subtracting	 the	mean	of	 the	2  s	 time	window	prior	 to	
stimulus	onset	from	the	subsequent	highest	value	iden-
tified	 in	 a	 peak	 detection	 window	 (PDW).	 The	 PDW	
spanned	 the	 minimal	 CS	 duration	 (6  s;	 as	 CS	 dura-
tion	was	 jittered	between	6	and	8 s)	 for	 the	Hamburg	
sample	and	 the	 full	CS	duration	 (4.5 s)	 for	 the	Mainz	
sample	for	both,	CS	and	US,	stimuli.	In	light	of	a	sub-
stantial	degree	of	heterogeneity	in	the	specification	of	
the	duration	of	the	baseline	time	window	and	the	PDW	
as	 revealed	 by	 the	 systematic	 literature	 search,	 these	
specifications	 were	 decided	 on	 because	 they	 were	 the	
most	abundant	ones	in	the	literature	search	(n = 3,	see	
results	and	our	related	work	for	details	on	heterogene-
ity	within	the	BLC	approach,	Sjouwerman	et	al., 2021)	
and	 matched	 rather	 closely	 the	 criteria	 initially	 pro-
posed	by	Pineles	 (BWL:	−2 s,	PDW:	 full	CS	duration;	
Pineles	 et	 al.,  2009)	 (as	 described	 in	 the	 Introduction	
and	in	Table 1).	Note,	however,	that	Pineles	employed	
an	 iterative	 algorithm	 in	 the	 program	 Mathematica	
for	peak	detection	that	prevents	the	identification	of	a	
peak	despite	the	absence	of	a	response	(e.g.,	detection	
of	 the	 peak	 at	 the	 first	 data	 point	 in	 the	 PDW	 when	
no	 reaction	 is	 present	 but	 only	 a	 habituation	 drift).	
Here,	however,	we	did	not	use	such	an	 iterative	algo-
rithm	for	the	representative	BLC	approach	as	no	pub-
lication	 identified	 through	 the	 systematic	 literature	
search	 used	 an	 iterative	 algorithm.	 A	 comprehensive	
discussion	and	evaluation	of	the	different	implementa-
tions	of	the	BLC	approach	will	be	discussed	elsewhere	
(Sjouwerman	et	al., 2021).

Ledalab
A	 continuous	 decomposition	 analysis	 (CDA)	
was	 conducted	 using	 Ledalab	 V3.4.9	 (Benedek	 &	
Kaernbach, 2010a)	running	in	Matlab	2019b	(Mathworks®,	
Natick,	Massachusetts,	USA).	CDA	extracts	phasic	infor-
mation	underlying	the	EDA	signal.	SCRs	are	deconvolved	
by	the	general	response	shape	and	are	then	decomposed	
into	 continuous	 phasic	 and	 tonic	 components.	 For	 data	
preprocessing,	a	second-	order	low-	pass	Butterworth	filter	
was	applied	and	data	were	downsampled	 to	10 Hz.	 The	
“optimize”	function,	as	implemented	in	Ledalab,	was	used	
using	default	settings.	The	response	window	was	defined	
as	 0.9–	4.0  s	 after	 stimulus	 onset.	 The	 minimum	 thresh-
olds	of	SCRs	were	0.01	and	0.02	μS	for	the	Hamburg	and	
the	Mainz	data	sets,	respectively.	For	statistics,	the	“CDA.
SCR”	value	was	extracted,	representing	the	phasic	SCR	ac-
tivity	most	accurately	without	falling	back	on	classic	SCR	
amplitude,	which	may,	however,	differ	from	TTP	ampli-
tude	(www.ledal	ab.de).	According	to	the	developers,	 the	
CDA	approach	is	the	recommended	approach	in	Ledalab	
and	was,	among	the	publications	using	Ledalab,	also	most	
frequently	used	according	to	our	literature	search.

PsPM
PsPM single- trial GLM. All	 Psychophysiological	
Modeling	 analyses	 (PsPM	 4.3.0	 [Bach	 et	 al.,  2018])	
were	 conducted	 in	 Matlab	 2019b.	To	 capture	 the	 nature	
of	 increasing	 SCRs	 over	 time	 in	 the	 fear	 conditioning	
paradigm	 due	 to	 learning,	 single-	trial	 modeling	 was	
conducted.	To	 estimate	 single-	trial	 SCR,	 we	 employed	 a	
general	linear	model	(Bach	et	al., 2009,	2013)	comprising	
one	 regressor	 for	 each	 CS	 onset	 and	 one	 regressor	 for	
each	US	delivery	and	used	a	canonical	skin	conductance	
response	function	with	time-	derivative	(Bach	et	al., 2010)	
and	fixed	response	latency.

PsPM DCM fixed and flexible onset.	 Nonlinear	modeling	
(dynamic	 causal,	 DCM)	 in	 PsPM	 employs	 a	 nonlinear	
inversion	 algorithm	 to	 infer	 single-	trial	 estimates	 of	
sudomotor	 impulse	 response	 magnitude	 (Bach	 et	
al., 2010).	Following	the	PsPM	manual,	in	the	first	model,	
we	 applied	 a	 “full	 interval”	 model	 in	 which	 the	 SCR	
onset,	and	its	onset	latency	as	implemented	in	PsPM,	can	
be	modeled	within	a	 time	window	 that	 spans	 the	entire	
CS	duration	(i.e.,	until	US	onset).	In	a	second	model,	we	
defined	a	time	window	of	0–	4 s	(“restricted	interval”)	to	
resemble	 the	TTP	 (see	 2.3.2.1)	 and	 Ledalab	 (see	 2.3.2.3)	
approaches.	 In	 a	 third	 model,	 a	 fixed	 latency	 response	
at	 CS	 onset	 (i.e.,	 DCM	 fixed	 onset)	 was	 defined.	 These	
different	models	were	specified	to	elaborate	on	the	most	
appropriate	model	and	most	appropriate	time	window	in	
light	 of	 the	 PsPM	 manual	 indicating	 that	 DCM	 models	
that	allow	for	a	flexible	response	onset	come	with	the	risk	

http://www.ledalab.de
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of	absorbing	SCR	elicited	by	the	US	and	US	omission	and	
erroneously	assigning	 it	 to	 the	CS+.	Thus,	 these	models	
are	not	recommended	for	analyzing	reinforced	SCR	trials	
that	are	particularly	problematic	for	experimental	designs	
with	 100%	 or	 high	 reinforcement	 rates.	 More	 precisely,	
PsPM’s	 manual	 states	 for	 the	 nonlinear	 model,	 “for	
fear	 conditioning	 paradigms,	 the	 best	 way	 of	 modelling	
anticipatory	 SCR	 is	 currently	 under	 investigation.	 It	 is	
possibly	suboptimal	 to	model	one	anticipatory	“flexible”	
response,	 in	particular	at	 longer	CS/US	SOAs	when	 this	
flexible	 response	 may	 absorb	 SCR	 elicited	 by	 US	 or	 US	
omission”	 (cf.	 page	 22,	 manual	 for	 PsPM	 4.3.0,	 http://
pspm.sourc	eforge.net/).	 In	 all	 three	 DCM	 models	 (i.e.,	
fixed,	 full	 interval,	 and	 restricted	 interval),	 the	 response	
latency	was	 fixed	at	US	onset	and	US	omission	 for	each	
trial.

2.4	 |	 Statistical analyses

All	analyses	were	conducted	in	R	version	4.0.2.

2.4.1	 |	 Within	SCR	quantification	
approach	analyses

For	 all	 subject-	specific	 mean	 stimulus	 SCRs,	 as	 quanti-
fied	 by	 all	 here	 employed	 approaches,	 Bayesian	 paired	
two-	sample	 t	 tests	as	 implemented	 in	 the	“BayesFactor”	
(https://CRAN.R-	proje	ct.org/packa	ge=Bayes	Factor,	 ver-
sion	 0.9.12-	4.2)	 package	 (Morey	 &	 Rouder,	 2015)	 were	
conducted	 in	 R	 to	 assess	 CS+/CS−	 discrimination.	 The	
package’s	 t	 test	 BF	 function	 was	 used	 with	 1000,000	 it-
erations	 to	 extract	 the	 posterior	 of	 the	 effect	 size	 for	 CS	
discrimination	for	each	iteration	per	subject.	The	median	
effect	size	and	its	95%	credible	 intervals	(CrIs)	were	cal-
culated	and	the	Bayes	factor	was	extracted	using	the	ex-
tractBF	function.	To	provide	complementary	analyses	that	
provide	 results	 based	 on	 most	 commonly	 employed	 fre-
quentist	statistics	to	assess	mean	differences	between	CS+	
and	 CS−	 (CS+/CS−	 discrimination),	 parallel	 analyses	
employed	paired	t	tests	for	all	approaches	using	R’s	t	test	
function	yielding	p	values	and	95%	confidence	intervals.

2.4.2	 |	 Evaluation	of	
robustness	of	the	effect	against	and	
consistency	of	the	effect	between	different	
SCR	quantification	approaches

Here,	we	adopted	criteria	 for	 the	evaluation	of	a	set	of	
robustness	analyses	from	criteria	suggested	for	the	eval-
uation	 of	 outcomes	 from	 replication	 attempts	 (LeBel	

et	al., 2018).	The	robustness	analyses	presented	here	test	
whether	 different	 SCR	 quantification	 approaches	 ap-
plied	to	an	identical	data	set	to	yield	results	that	justify	
interpreting	 and	 using	 the	 different	 approaches	 inter-
changeably.	More	precisely,	we	aim	to	empirically	eval-
uate	 whether	 different	 approaches	 can	 be	 considered	
exact/very	close	replications	or	should	be	considered	far	
(or	conceptual)	 replications	 in	 the	data	sets	used	here.	
Even	though	LeBel	et	al.	used	a	frequentist	framework	
to	 evaluate	 replicability,	 while	 we	 use	 a	 Bayesian	 ap-
proach	to	evaluate	robustness,	we	consider	the	criteria	
to	 be	 generally	 applicable	 to	 our	 purposes.	 More	 pre-
cisely,	we	adopt	the	following	criteria	that	we	will	apply	
to	our	data:

a.	 Is	 a	 signal	 detected	 within	 each	 approach?	 A	 signal	
is	 considered	 detected	 when	 the	 95%	 CrI	 around	 the	
effect	 size	 point	 estimate	 does	 not	 include	 zero.

b.	 How	precise	is	the	effect	size	estimate	within	each	ap-
proach?	 How	 wide	 are	 the	 CrI’s	 within	 the	 different	
SCR	quantification	approaches?

c.	 Are	 the	 effect	 size	 estimates	 consistent	 across	 ap-
proaches?	 Consistency	 between	 two	 effects	 is	 consid-
ered	given	when	 the	effect	 size	point	estimate	of	one	
approach	is	included	in	the	other	effect	size’s	CrIs.

2.4.3	 |	 Measures	of	agreement	across	SCR	
quantification	approaches

Most	 commonly	 the	 intraclass	 correlation	 coefficient	
(ICC)	has	been	used	in	comparative	research.	The	ICC	
is	 a	 “measure	 of	 agreement,	 corrected	 for	 the	 agree-
ment	 expected	 by	 chance”	 (cf.	 Bland	 &	 Altman,  1990)	
and	is	based	on	data	that	are	centered	and	scaled	using	
a	pooled	mean	and	standard	deviation	(in	“traditional,”	
Pearson’s	 correlation,	 each	 variable	 is	 centered	 and	
scaled	by	 its	 individual	mean	and	standard	deviation).	
The	ICC	is	commonly	used	to	assess	the	consistency	of	
measurements	 made	 by	 multiple	 observers	 (Shrout	 &	
Fleiss, 1979),	in	this	case,	multiple	response	quantifica-
tion	approaches.	However,	the	use	of	the	ICC	has	been	
criticized	(Bland	&	Altman, 1990)	and	problematically,	
in	 case	 of	 systematic	 differences	 across	 approaches,	
which	likely	do	exist	here,	the	ICC	is	a	composite	of	in-
traobserver	 and	 interobserver	 variability	 (with	 observer	
here	being	approach)	and	may	yield	implausible	results.	
In	light	of	these	criticisms	which	will	not	be	reiterated	
in	full	detail	(Shrout	&	Fleiss, 1979),	the	ICC	is	not	con-
sidered	the	optimal	tool	for	the	assessment	of	interrater	
or	intermethod	agreement.	Thus,	we	use	an	alternative	
measure	 that	 has	 the	 advantage	 of	 “high	 flexibility	 re-
garding	 the	 measurement	 scale,	 the	 number	 of	 raters,	

http://pspm.sourceforge.net/
http://pspm.sourceforge.net/
https://cran.r-project.org/package=BayesFactor
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[and]	 can	 handle	 missing	 data”	 (cf.	 Zapf	 et	 al.,  2016):	
the	 alpha	 coefficient	 suggested	 by	 Krippendorff	
(Krippendorff,  1970)	 as	 comprehensively	 described	 by	
Zapf	 and	 colleagues  (2016).	 We	 use	 Krippendorff’s	 α	
to	 investigate	 the	 agreement	 between	 two	 raters	 using	
the	TTP	approach	(a)	across	all	 trials,	 (b)	 trial-	by-	trial,	
and	(c)	per	CS	type.	Furthermore,	we	assess	the	agree-
ment	across	all	approaches	investigated	here	including	
both	TTP	raters	(n = 8	approaches)	(a)	across	all	trials,	
(b)	trial-	by-	trial,	and	(c)	per	CS	type.	We	also	provide	a	
trial-	by-	trial	 pairwise	 agreement	 between	 the	 different	
approaches	(n = 8)	across	all	CS	types	and	per	CS	type,	re-
spectively.	Finally,	we	assessed	trial-	by-	trial	agreement	
between	all	possible	pairs	of	quantification	approaches.	
Krippendorff’s	 α	 is	 a	 reliability	 coefficient	 with	 values	
ranging	from	−1	to	1,	where	−1	is	perfect	disagreement	
and	1	is	perfect	agreement.	According	to	Krippendorff,	
α	of	≥0.8	is	required	for	agreement	(Krippendorff, 2004).	
Benchmark	 values	 have	 been	 suggested	 (Landis	 &	
Koch, 1977)	for	interpretation	of	the	strength	of	agree-
ment	as	substantial	(0.61–	0.8),	moderate	(0.41–	0.6),	and	
fair	(0.21–	0.40).	All	analyses	were	conducted	in	R	4.0.2	
using	the	script	provided	by	Zapf	et	al. (2016)	selecting	
ordinal	measurement	scaling,	a	two-	sided	type	one	error	
of	5%,	and	1000	bootstrap	samples.

3 	 | 	 RESULTS

3.1	 |	 Systematic literature search

The	 systematic	 literature	 search	 revealed	 that	 trough-	
to-	peak	 (TTP)	 scoring	 (n  =  24)	 and	 baseline	 correction	

(BLC)	 approaches	 (n  =  18	 including	 two	 that	 used	 SCL	
rather	 than	 SCR	 but	 applied	 a	 baseline	 correction	 ap-
proach)	were	most	abundant	in	the	publications	exempla-
rily	 screened	 (published	 between	 06/2018	 and	 02/2019),	
whereas	 model-	based	 approaches	 (n  =  5)	 were	 less	 fre-
quently	employed	(see	Figure 1a).	Of	the	model-	based	ap-
proaches,	n = 4	used	Ledalab	(n = 3	CDA	with	varying	
time	windows,	n = 1	DDA)	and	n = 1	study	used	the	GLM	
approach	as	implemented	in	PsPM/SCRalyze.	Within	the	
TTP	approach	category,	manual	or	computer-	assisted	TTP	
scoring	are	subsumed	under	the	term	“computer-	assisted”	
and	was	most	commonly	applied	(n = 19)	and	the	software	
Autonomate	was	applied	in	three	studies	(n = 3)	while	a	
custom-	made	script	was	used	 in	 two	(n = 2)	studies.	Of	
note,	 it	was	oftentimes	unclear	which	software	program	
(e.g.,	Matlab,	Acknowledge,	 custom-	made)	was	used	 for	
TTP	scoring	and	procedures	were	often	described	as	very	
rudimentary	 to	 an	 extent	 that	 it	 is	 possible	 that	 some	
studies	 actually	 used	 custom-	made	 scripts	 rather	 than	
computer-	assisted	TTP	scoring.	Furthermore,	it	was	often	
not	clear	if	the	time	window	described	referred	to	the	time	
window	in	which	the	onset	(OLW)	or	the	peak	(PDW)	had	
to	occur.	In	light	of	the	slow-	responding	SCR,	this	is	a	cru-
cial	difference.	Three	studies	were	excluded:	two	studies	
reported	 skin	 conductance	 level	 rather	 than	 SCR	 which	
was	 quantified	 through	 other	 means	 than	 BLC	 and	 one	
did	record	SCR	but	did	not	report	methods	 for	response	
quantification	 or	 SCR	 results	 as	 they	 did	 fail	 to	 observe	
differential	responding	(i.e.,	CS+ > CS−)	in	SCRs.	Thus,	
from	the	50	publications	included	47	reported	methods	for	
SCR	quantification.

Of	 note,	 these	 categories	 of	 approaches	 (TTP,	 BLC,	
model-	based)	 were	 not	 homogeneous	 in	 themselves	 as	

F I G U R E  1  (a)	Frequency	of	different	SCR	quantification	approaches	exemplified	from	the	systematic	literature	search	which	included	
47	publications,	published	between	06/2018	and	02/2019.	(b)	Illustration	of	the	different	SCR	quantification	approaches	employed	to	the	two	
independent	data	sets	in	the	current	work:	trough-	to-	peak	(TTP),	baseline	correction	(BLC),	Ledalab,	as	well	as	PsPM	(formerly	SCRalyze)	
with	four	different	specifications
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across	studies	different	criteria	were	applied	to	define	a	valid	
response,	which	is—	at	least	in	part—	attributable	to	different	
procedural	 specifications	 (e.g.,	 CS	 and	 ITI	 durations).	 For	
conciseness,	we	here	selected	one	representative	set	of	crite-
ria	for	each	approach	(i.e.,	TTP,	Ledalab,	BLC,	see	Methods	
for	justification	for	the	choice	of	specifications	for	each	ap-
proach)	 and	 included	 four	 different	 implementations	 of-
fered	by	PsPM	(see	Figure 1b).	The	latter	decision	was	based	
on	a	look	into	the	future	for	which	we	envision	enhanced	
reproducibility	of	SCR	response	quantification	which	can	be	
achieved	optimally	through	model-	based	approaches.

3.2	 |	 Descriptive presentation of trial- by- 
trial SCR trajectories and average values 
across SCR quantification approaches

Here,	we	present	trial-	by-	trial	SCR	trajectories	for	the	CS+,	
CS−,	 and	 US	 during	 fear	 acquisition	 training	 as	 derived	
from	the	different	SCR	quantification	approaches	employed	
for	both	data	sets	(see	Figure 2a,b)	as	well	as	averaged	SCR	

values	across	all	trials	per	stimulus	type	(i.e.,	CS+,	CS−,	and	
US,	 see	 Figure  2c,d).	 On	 a	 descriptive	 level,	 in	 both	 data	
sets	(Hamburg,	Mainz),	the	trial-	by-	trial	trajectories	appear	
to	 follow	 a	 similar	 pattern	 when	 responses	 are	 quantified	
through	the	TTP,	BLC,	Ledalab	approach,	or	the	single-	trial	
GLM	approach	implemented	in	PsPM.	The	trial-	by-	trial	tra-
jectories	based	on	the	three	different	DCM	approaches	im-
plemented	in	PsPM	(i.e.,	full	interval	[FI],	fixed	onset	[FO],	
and	 restricted	 interval	 [RI])	 deviate	 on	 a	 descriptive	 level	
from	the	trajectories	derived	from	the	above-	mentioned	ap-
proaches.	 More	 precisely,	 data	 derived	 from	 the	 DCM	 FI	
approach	(for	both	the	Hamburg	and	the	Mainz	data	sets)	
and	the	RI	approach	(primarily	Mainz	data	set)	apparently	
yielded	larger	CS+	responses	but	substantially	smaller	US	
responses.	This	was	particularly	pronounced	in	the	Mainz	
data	sets	in	which	the	CS	duration	was	shorter	than	in	the	
Hamburg	study	(Mainz:	4 s,	Hamburg:	6–	8 s	 jittered)	and	
the	reinforcement	ratio	was	partial	(50%)	while	it	was	full	
(100%)	in	the	Hamburg	study.	This	might	be	indicative	of	an	
overestimation	of	CS+	responses	at	the	cost	of	underestima-
tion	of	US	responses.	This	is	in	line	with	the	PsPM	manual	

F I G U R E  2  Trial-	by-	trial	trajectories	for	the	CS+	(red),	CS−	(blue),	and	US	(black)	during	fear	acquisition	training	for	the	Hamburg	
(a)	and	Mainz	(b)	samples	illustrated	for	all	different	SCR	quantification	approaches	employed:	TTP	Rater	1	and	TTP	Rater	2,	baseline	
correction	(BLC),	Ledalab,	PsPM	single-	trial	GLM,	PsPM	DCM	with	flexible	response	onset	in	full	CS	interval	(FI),	PsPM	DCM	with	the	
fixed	response	at	CS	onset	(FO),	and	PsPM	DCM	with	flexible	response	onset	in	a	restricted	interval	(RI).	Furthermore,	the	averaged	raw	
SCRs	(plus	standard	error)	for	the	CS+	(red),	CS−	(blue),	and	US	(black)	for	each	SCR	quantification	approach	employed	in	the	Hamburg	
(c)	and	Mainz	(d)	data	sets	are	shown.	Supplementary	Figure S1	illustrates	trial-	by-	trial	average	values	derived	from	the	different	
quantification	approaches	in	a	single	figure,	and	supplementary Figure	S2	shows	the	averaged	raw	SCRs	split	up	for	the	first	and	second	half	
of	fear	acquisition	training.	Note	that	in	the	Hamburg	sample,	a	100%	reinforcement	rate	was	employed,	whereas	a	50%	reinforcement	rate	
was	employed	in	the	Mainz	sample	resulting	in	a	reduced	number	of	US	responses	available.	As	indicated	in	the	PsPM	manual,	PsPM	DCM	
models	that	allow	for	a	flexible	response	onset	(here:	FI	and	RI)	come	with	the	risk	of	absorbing	SCRs	elicited	by	the	US	and	US	omission	
and	erroneously	assigning	it	to	the	CS+	when	the	CS–	US	interval	is	short
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noting	that	PsPM	DCM	models	that	allow	for	a	flexible	re-
sponse	onset	come	with	the	risk	of	absorbing	SCRs	elicited	
by	the	US	and	US	omission	and	erroneously	assigning	it	to	
the	CS+.	 Indeed,	 in	 the	Mainz	data,	 the	DCMs	with	 flex-
ible	response	onset	(FI,	RI)	and	in	the	Hamburg	data	set,	the	
DCM	modeling	the	full	interval	(FI)	seem	to	underestimate	
US	responses	and	instead	overestimate	reinforced	CS+	re-
sponses	 (note,	 order	 of	 CS+	 responses	 differed	 between	
participants).	Thus,	these	models	do	not	seem	suitable	for	
analyzing	reinforced	SCR	trials	 that	are	particularly	prob-
lematic	in	paradigms	with	100%	or	high	reinforcement	rate	
as	all	CS+	trials	are	reinforced.	Yet,	also	when	only	analyz-
ing	unreinforced	CS+	trials,	this	results	in	a	reduced	num-
ber	of	CS+	trials	which	necessarily	impacts	on	the	variance	
of	the	data	which	may	turn	out	to	be	different	between	the	
CS−	and	the	CS+	due	to	the	different	number	of	trials	in-
cluded	in	the	analyses.

Furthermore,	for	the	Mainz	sample,	the	trajectories	
yielded	by	PsPM’s	FI	model	(i.e.,	modeling	the	full	CS	
duration	of	4.5 s)	and	the	restricted	interval	model	(i.e.,	
modeling	 0–	4  s	 post-	CS	 onset)	 unsurprisingly	 result	
in	near-	identical	results	as	the	CS	duration	(4.5 s)	was	
only	 0.5  s	 longer	 than	 the	 definition	 of	 the	 restricted	
interval	 (i.e.,	4 s	post-	CS	onset).	 In	 the	Hamburg	data	

set	in	which	the	CS	duration	was	longer	(6–	8 s	jittered),	
however,	both	approaches	differ	substantially	(i.e.,	full	
interval	modeled	0–	6,	0–	7,	or	0–	8 s,	restricted	interval:	
0–	4  s).	 It	 is	 striking	 that	 in	 the	 Hamburg	 sample,	 in	
which	 the	 CS–	US	 interval	 is	 much	 longer	 than	 in	 the	
Mainz	 sample,	 the	 trajectory	 derived	 from	 the	 DCM	
RI	 model	 (i.e.,	 CS	 modeled	 as	 0–	4  s	 post-	CS	 onset)	
resembled	 the	 trajectories	 of	 the	 TTP,	 BLC,	 Ledalab,	
and	 PsPM	 GLM	 model	 approaches	 despite	 apparently	
smaller	differences	between	the	CS+	and	the	CS−	(see	
also	 3.3.	 for	 statistics).	Yet,	 the	 US	 trajectory	 is	 rather	
comparable.

3.3	 |	 CS discrimination and 
effect sizes for the different SCR 
quantification approaches

Both	 frequentist	 (Figure  3a,b)	 and	 Bayesian	
(Figure 3c,d)	paired	two-	sample	t	tests	indicate	signifi-
cant	CS	discrimination	during	fear	acquisition	training	
for	 data	 derived	 from	 all	 different	 SCR	 quantification	
approaches	 employed	 (all	 p’s  <  .003,	 BFs  >  7.16,	 see	
Figure  3a,b),	 even	 though	 CS	 discrimination	 values	

F I G U R E  3  CS	discrimination	(based	on	raw	values	per	CS	type	during	fear	acquisition	training)	based	on	data	derived	through	different	
SCR	quantification	approaches	in	the	Hamburg	(a,	c)	and	Mainz	(b,	d)	data	sets.	A	and	B	show	mean	CS	discrimination	(±standard	error)	
and	results	as	a	table	(i.e.,	mean,	p	values,	confidence	intervals)	from	paired-	sample	t	tests,	whereas	c	and	d	show	corresponding	effect	
sizes	(±credible	intervals)	as	well	as	results	as	a	table	(i.e.,	Bayes	factors	and	credible	intervals)	as	derived	from	the	Bayesian	paired	two-	
sample	t	tests	for	the	Hamburg	(c)	and	Mainz	(d)	data	sets.	Supplementary Figure	S3	shows	this	split	up	for	the	first	and	second	half	of	fear	
acquisition	training.	Normalization	(e.g.,	z	scoring)	can	naturally	increase	effect	sizes.	In	our	data,	z	scoring	does	not	change	the	general	
pattern	of	heterogeneous	effect	size	point	estimates	between	quantification	methods	(see	supplementary Figure	S4)
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differed	 numerically	 between	 approaches.	 Similarly,	
resulting	 effect	 size	 estimates	 derived	 from	 Bayesian	
paired	two-	sample	t	tests	(Figure 3c,d)	differed	between	
response	quantification	approaches	with	marked	vari-
ation	 in	 the	 Hamburg	 sample	 and	 lower	 variation	 be-
tween	 effect	 sizes	 but	 also	 wider	 credible	 intervals	 in	
the	smaller	Mainz	sample.

It	is	striking	that	there	is	no	clear	pattern	between	both	
data	sets	 that	can	be	taken	to	 identify	a	specific	SCR	re-
sponse	 quantification	 approach	 that	 results	 in	 generally	
higher	or	lower	effect	sizes	across	both	paradigms	which	
differ	in	CS	duration	(4.5 s	vs.	6–	8 s),	a	number	of	trials	
(10	vs.	14),	and	reinforcement	rate	(50%	vs.	100%)	as	well	
as	the	sample	size	(38	vs.	118	participants).

3.4	 |	 Formal 
comparison of robustness of results across 
SCR quantification approaches

Here	we	evaluate	the	results	of	the	sets	of	robustness	anal-
yses	based	on	three	criteria	borrowed	from	a	framework	
suggested	for	the	evaluation	of	“replicability”:	(1)	the	ex-
istence	of	a	signal,	(2)	 its	precision,	and	(3)	the	pairwise	
consistency	of	results.

First,	as	described	above	 (see	3.3),	a	signal	 is	defined	
here	 as	 larger	 SCRs	 to	 the	 CS+	 compared	 with	 the	 CS-		
averaged	 across	 all	 trials	 of	 the	 fear	 acquisition	 training	
phase.	A	signal	is	obtained	for	SCRs	quantified	from	any	of	
the	eight	approaches	employed	here	in	both	the	Hamburg	
and	the	Mainz	samples.

Second,	 effect	 sizes	 are	 more	 precise	 in	 the	 larger	
Hamburg	 data	 sets	 (CrI	 width	 [min–	max]:	 0.363–	0.445)	
compared	 with	 the	 smaller	 Mainz	 data	 set	 (CrI	 width	
[max–	min]:	0.702–	0.843),	t(7) = −16.12,	p < .001,	but	are	

rather	similar	within	different	approaches	applied	to	the	
data	of	one	data	set.

Third,	 the	 pairwise	 consistency	 of	 effect	 sizes	 as	 in-
dicated	 by	 the	 point	 estimate	 of	 one	 effect	 size	 falling	
within	the	95%	CrI	of	the	other	estimate	is	summarized	in	
Table 2.	For	both	the	Hamburg	(black)	and	Mainz	(blue)	
data	set,	effect	sizes	derived	from	TTP1	and	TTP2	as	well	
as	TTP1	and	BLC	and	TTP2	and	BLC	were	consistent	with	
each	other.	For	the	Hamburg	data	set,	effect	sizes	derived	
from	these	three	approaches	(TTP1,	TTP2,	and	BLC)	were	
consistent	 with	 those	 derived	 from	 Ledalab	 while	 they	
were	inconsistent	with	those	derived	from	Ledalab	in	the	
Mainz	data	set	with	Ledalab	resulting	in	larger	effect	sizes	
than	any	of	the	other	approaches.

For	 the	 Mainz	 data	 set,	 all	 pairwise	 comparisons	 be-
tween	effect	sizes	derived	from	any	of	the	four	PsPM	mod-
els	and	the	four	other	approaches	(TTP1,	TTP2,	BLC,	and	
Ledalab)	 yielded	 consistent	 effect	 sizes	 with	 the	 excep-
tion	of	Ledalab	yielding	inconsistently	 larger	effect	sizes	
than	 the	 DCM	 fixed	 onset	 (FO),	 TTP1,	 TTP2,	 and	 BLC	
approaches.	Yet,	it	has	to	be	highlighted	that	the	95%	CrI	
in	the	smaller	Mainz	data	set	are	wide	and	larger	sample	
sizes	may	result	in	a	different	conclusion.

In	the	Hamburg	data	set,	 in	 turn,	effect	sizes	derived	
from	 PsPM’s	 single-	trial	 models	 were	 inconsistent	 (i.e.,	
smaller)	with	effect	sizes	derived	with	the	aforementioned	
four	approaches	(TTP1,	TTP2,	BLC,	and	Ledalab).	In	fact,	
for	the	Hamburg	sample,	effect	sizes	derived	from	any	of	
the	PsPM-	based	approaches	were	smaller	than	these	four	
approaches	(TTP1,	TTP2,	BLC,	and	Ledalab)	and	have	to	
be	 evaluated	 as	 inconsistent	 with	 these	 as	 their	 respec-
tive	point	estimates	fall	outside	of	the	95%	CrI	of	any	of	
these	approaches.	Within	the	different	PsPM	approaches,	
effect	sizes	derived	from	the	single-	trial	GLM	model	and	
the	DCM	full	interval	(FI)	model	are	consistent	with	each	

T A B L E  2 	 Pairwise	consistency	between	different	SCR	quantification	approaches	with	✔	indicating	consistency	and	✘	indicating	
nonconsistency	for	the	Hamburg	sample	(in	black:	✘,	✔)	and	the	Mainz	sample	(in	blue:	 )	for	trough-	to-	peak	(TTP),	baseline	correction	
(BLC),	Ledalab,	as	well	as	four	different	models	in	PsPM	including	the	trial-	wise	general	linear	model	(GLM)	as	well	as	three	dynamic	
causal	modeling	(DCM)	models	with	full	interval	(FI),	flexible	onset	(FO),	and	restricted	interval	(RI)
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other	 while	 the	 effect	 size	 derived	 from	 the	 single-	trial	
GLM	model	is	inconsistent	with	the	fixed	onset	(FO)	and	
restricted	interval	(RI)	models	with	larger	effect	sizes	de-
rived	from	the	GLM	model	compared	with	the	FO	and	the	
RI	models.

The	 fixed	 onset	 (FO)	 model’s	 effect	 sizes	 were	 con-
sistent	with	both	the	full	(FI)	and	restricted	interval	(RI)	
models’	effect	 sizes	but	 the	effect	 sizes	derived	 from	the	
full	 interval	 (FI)	 model	 were	 inconsistently	 larger	 than	
those	derived	from	the	reduced	interval	(RI)	model.

3.5	 |	 Agreement between different SCR 
quantification approaches

Across	all	SCR	quantification	approaches,	trial-	wise	agree-
ment	in	the	Hamburg	sample	(see	Figure 4b)	was	mostly	
moderate	to	substantial	but	for	some	trials	also	fair.	In	the	
Mainz	sample,	 it	was	poor	 to	substantial	 (Figure 5b).	 In	
the	Hamburg	sample,	substantial	agreement	was	observed	
for	the	CS+	trials	(average	[range]:	0.618	[0.533	to	0.708])	
as	well	as	for	the	US	trials	(average	[range]:	0.631	[0.577	to	
0.715]).	Agreement	for	the	CS-		 trials,	however,	was	only	
moderate	(average	[range]:	0.500	[0.311	to	0.673])	 in	the	
Hamburg	sample.	In	the	Mainz	sample	in	turn,	substan-
tial	agreement	was	observed	for	the	CS+	(average	[range]:	
0.639	[0.449	to	0.769])	and	the	CS−	(average	[range]:	0.726	
[0.653	to	0.805])	while	agreement	was	only	fair	for	the	US	
(average	[range]:	0.226	[0.165	to	0.330]).

When	excluding	 the	 three	PsPM	DCM	models	which	
may	not	be	optimally	suited	for	the	analyses	of	fear	con-
ditioning	data	derived	from	the	experimental	designs	em-
ployed	here	(see	above	and	see	PsPM	manual	4.3.0,	page	
22),	agreement	in	the	Hamburg	sample	remained	substan-
tial	 for	 the	CS+	(average	 [range]:	0.778	[0.567	 to	0.861])	
and	 US	 (average	 [range]:	 0.800	 [0.734	 to	 0.845])	 and	 re-
mained	 moderate	 for	 the	 CS-		 ((average	 [range]:	 0.578	
([0.376	 to	 0.720]).	 For	 the	 Mainz	 sample,	 agreement	 for	
the	CS+	trials	(average	[range]:	0.808	[0.493	to	0.875])	and	
CS-		(average	[range]:	0.749	[0.619	to	0.842]	also	remained	
substantial	when	excluding	the	three	PsPM	DCM	models	
while	agreement	 for	 the	US	 trials	 improved	 from	 fair	 to	
substantial	(average	[range]:	0.668	([0.543	to	0.882]).

The	trial-	wise	agreement	between	pairs	of	SCR	quan-
tification	approaches	in	the	Hamburg	sample	(Figure 4a)	
and	 the	 Mainz	 sample	 (Figure  5a)	 differed	 substantially	
with	 some	 approaches	 showing	 consistent	 and	 near-	
perfect	 agreement	 across	 stimulus	 types	 (e.g.,	 TTP1	 vs.	
TTP2)	 and	 data	 sets.	 Yet,	 the	 pattern	 of	 pairwise	 agree-
ment	was	often	not	consistent	across	both	data	sets.	In	the	
Hamburg	data	set,	the	agreement	seems	to	be	lowest	for	
the	 CS-		 trials,	 whereas	 in	 the	 Mainz	 sample,	 the	 agree-
ment	seems	to	be	lowest	for	the	US	trials.

3.6	 |	 Secondary question: Interrater 
comparisons for computer- assisted 
TTP scoring

For	both	data	sets	(Hamburg	and	Mainz),	two	independ-
ent	 raters	 quantified	 SCRs	 through	 computer-	assisted	
TTP	 scoring	 whereof	 Rater	 1	 at	 both	 sites	 was	 experi-
enced	and	Rater	2	at	both	sites	was	the	first-	time	rater	
(note	that	Raters	1	and	2	were	different	individuals	for	
both	sites,	i.e.,	there	were	a	total	of	4	raters).	Note,	how-
ever,	 that	 Hamburg	 Rater	 1	 and	 Rater	 2	 used	 slightly	
different	 scoring	 criteria	 (i.e.,	 0.9–	3.5	 and	 0.9–	4.5  s	
OLWs).	 Formal	 interrater	 reliability	 coefficients	 using	
Krippendorff’s	 alpha	 indicate	 near-	perfect	 agreement	
across	 all	 trials	 and	 CS	 types	 (Hamburg	 sample:	 aver-
age	Krippendorff’s	alpha	 [lower/upper	bounds	of	CIs]:	
0.962	[0.955,	0.969];	Mainz	sample:	0.973	[0.954,	0.991]).	
Reliability	 coefficients	 calculated	 separately	 for	 the	
stimulus	types	also	revealed	near-	perfect	agreement	for	
the	CS+	(Hamburg	sample:	0.961	[0.948,	0.974];	Mainz	
sample:	0.990	[0.977,	0.998]),	the	CS-		(Hamburg	sample:	
0.948	[0.934,	0.962];	Mainz	sample:	0.992	[0.984,0.997]),	
and	 the	 US	 (Hamburg	 sample:	 0.961	 [0.946,	 0.975];	
Mainz	sample:	0.919	[0.823,	0.986]).

Finally,	 the	 range	 of	 trial-	wise	 agreement	 (see	
Supplementary	Table S1)	revealed	near-	perfect	agreement	
across	 trials	 for	 the	 Hamburg	 sample	 [0.845,	 0.996]	 and	
the	Mainz	sample	alike	[0.860,	1].

Figure 6	illustrates	the	excellent	interrater	reliability	on	
a	CS-	type	level	(i.e.,	averaged	SCR	magnitude	per	stimulus	
type	for	Rater	1	and	Rater	2)	per	individual.	Note	that	the	
figure	illustrates	this	descriptively	on	an	individual	 level	
(i.e.,	connects	the	average	SCR	magnitude	value	as	scored	
by	Rater	1	and	Rater	2	for	data	from	the	same	participant,	
while	 the	 analyses	 described	 above	 (i.e.,	 Krippendorff’s	
alpha)	do	not	include	the	individual	subject	level.

4 	 | 	 DISCUSSION

Here,	 we	 provide	 a	 comparison	 between	 seven	 different	
SCR	quantification	approaches	in	two	data	sets.	The	over-
arching	aim	of	this	work	was	to	(a)	evaluate	if	and	to	what	
extent	seven	different	approaches	lead	to	comparable	results	
as	well	as	(b)	investigate	the	interrater	agreement	between	
two	individuals	performing	TTP	scoring	in	two	data	sets.

4.1	 |	 Take- home message from the 
systematic literature search

Our	work	departs	from	a	systematic	literature	search	that	
was	intended	to	guide	our	selection	of	the	to	be	included	
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F I G U R E  4  Krippendorff’s	alpha	(and	CIs)	as	a	measure	of	agreement	between	SCR	quantification	approaches,	as	calculated	in	the	
Hamburg	sample	(a)	across	all	eight	approaches	employed	for	each	trial	during	fear	acquisition	training.	And	as	calculated	(b)	for	pairwise	
comparisons	between	the	eight	different	approaches	employed	here	(including	the	three	DCM	models).	Different	stimulus	types	are	color	
coded	with	the	CS+	in	red,	CS−	in	blue,	and	the	US	in	black.	Vertical	lines	are	positioned	at	0.8	and	0.4	highlighting	benchmarks	for	
near-	perfect	agreement	(>0.80)	and	fair	to	poor	(<0.41)	according	to	the	benchmarks	suggested	by	Landis	and	Koch (1977).	According	to	
the	benchmarks	by	Landis	and	Koch	(1977),	values	can	be	interpreted	using	the	following	benchmarks	for	Krippendorff’s	a < 0	“poor”	
agreement,	0	to	0.2	“slight,”	0.21	to	0.40	“fair,”	0.41	to	0.60	“moderate,”	0.61–	0.80	“substantial,”	and	0.81	to	1	“near	perfect.”	Note	that	trial	
sequences	on	the	y	axis	in	the	smaller	tiles	in	panel	B	are	identical	to	the	trial	sequence	on	the	y	axis	in	B
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F I G U R E  5  Krippendorff’s	alpha	(and	CIs)	as	a	measure	of	agreement	between	SCR	quantification	approaches	as	calculated	in	the	
Mainz	sample	(a)	across	all	eight	approaches	employed	for	each	trial	during	fear	acquisition	training	and	as	calculated	(b)	for	pairwise	
comparisons	between	the	eight	different	approaches	employed	here	(including	the	four	DCM	models).	Different	stimulus	types	are	color	
coded	with	the	CS+	in	red,	CS−	in	blue,	and	the	US	in	black.	Vertical	lines	are	positioned	at	0.8	and	0.4	highlighting	benchmarks	for	near-	
perfect	agreement	(>0.80)	and	fair	to	poor	(<0.41)	according	to	the	benchmarks	suggested	by	Landis	and	Koch (1977).	According	to	the	
benchmarks	by	Landis	et	al.	(1977),	values	can	be	interpreted	using	the	following	benchmarks	for	Krippendorff’s	a < 0	“poor”	agreement,			
0	to	0.2	“slight,”	0.21	to	0.40	“fair,”	0.41	to	0.60	“moderate,”	0.61–	0.80	“substantial,”	and	0.81	to	1	“near	perfect.”	Note	that	trial	sequences	on	
the	y	axis	in	the	smaller	tiles	in	panels	C	and	D	are	identical	to	the	trial	sequence	on	the	y	axis	in	A	and	B
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SCR	 quantification	 approaches.	 Even	 though	 the	 litera-
ture	search	hence	mainly	served	as	a	tool,	some	important	
take-	home	 messages	 can	 be	 derived:	 First	 (computer-	
assisted)	 TTP	 scoring	 and	 BLC	 through	 custom-	made	
scripts	 seem	 to	 be	 the	 prevailing	 approaches	 for	 SCR	
quantification	in	fear	conditioning	research	to	date.	Our	
literature	search,	however,	covers	only	articles	published	
in	a	6-	month	period	until	early	2019	and	we	anticipate	that	
the	model-	based	approaches	may	become	increasingly	at-
tractive	with	increasing	appreciation	of	the	value	and	im-
portance	of	computational	reproducibility.	Yet,	a	recently	
published	study	that	focuses	on	different	filter	settings	in	
SCR	 quantification	 also	 included	 a	 systematic	 literature	
search	of	fear	conditioning	studies	covering	2019	and	2020	
(Privratsky	et	al., 2020)	and	the	frequencies	that	can	be	de-
rived	from	the	Supplementary	Material	seem	comparable	
to	what	we	found.

Second,	 the	 SCR	 quantification	 approaches	 identified	
(i.e.,	TTP,	BLC,	Ledlab,	and	PsPM)	do	not	represent	uni-
tary	 methods	 but	 come	 in	 heterogeneous	 specifications	

(see,	e.g.,	Table 1).	This	likely	originates—	at	least	partly—	
from	 differences	 in	 experimental	 paradigms,	 particularly	
timing	and	duration	of	stimulus	presentation.	This,	how-
ever,	 is	 unlikely	 to	 be	 obvious	 for	 novices	 or	 researchers	
outside	 the	 field	 and	 we	 thus	 recommend	 explicitly	 and	
clearly	justify	specific	choices	for	response	quantification	
criteria	 including	 appropriate	 references.	 More	 precisely,	
TTP	and	BLC	approaches	differ	in	the	definition	of	onset	
latency,	 baseline,	 and	 peak	 detection	 time	 window,	 and	
a	 comprehensive	 overview	 has	 been	 provided	 by	 Pineles	
et	al. (2009).	Similarly,	a	number	of	different	settings	and	
approaches	are	offered	by	software	programs	 that	 imple-
ment	 model-	based	 approaches	 such	 as	 Ledalab	 (http://
www.ledal	ab.de/docum	entat	ion.htm)	 and	 PsPM	 (e.g.,	
GLM-	based,	 DCM-	based	 with	 different	 possible	 settings	
each,	 http://pspm.sourc	eforge.net/docum	entat	ion/).	 The	
specific	model,	the	chosen	settings,	and,	if	applicable,	the	
selected	output	measure	(e.g.,	parameter	estimate,	recon-
structed	response,	the	area	under	the	curve,	etc.)	need	to	
be	 reported	 in	 enough	 detail	 to	 allow	 for	 computational	

F I G U R E  6  Interrater	comparisons	between	TTP	Rater	1	and	TTP	Rater	2	for	the	Hamburg	sample	(upper	row)	and	the	Mainz	sample	
(lower	row)	for	single-	trial	discrimination	(light	gray)	as	well	as	single-	trial	SCRs	for	the	CS+	(red),	CS−	(blue),	and	the	US	(dark	gray)	
during	fear	acquisition	training.	Subplots	show	single-	trial	or	pairwise	discrimination	values	as	well	as	box	plots	and	densities	for	both	raters	
with	identical	trials	connected	through	lines.	Note	that	densities	are	nearly	completely	overlapping.	Note	that	Raters	1	and	2	were	different	
individuals	in	the	Hamburg	and	Mainz	samples.	Also	note	that	both	raters	used	the	same	criteria	in	the	Mainz	sample,	whereas	in	the	
Hamburg	sample,	both	raters	used	slightly	different	criteria	to	allow	for	a	direct	comparison	of	two	previously	suggested	sets	of	criteria	(see	
Methods	for	details)

http://www.ledalab.de/documentation.htm
http://www.ledalab.de/documentation.htm
http://pspm.sourceforge.net/documentation/
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reproducibility,	 which	 is	 often	 not	 the	 case	 as	 revealed	
by	 our	 literature	 search.	 We	 refer	 to	 our	 related	 work	
(Sjouwerman	et	al.,  2021)	 for	an	 investigation	of	within-	
approach	heterogeneity	with	a	focus	on	the	BLC	method	as	
an	in-	depth	discussion	is	beyond	the	scope	of	the	present	
work.

Third,	we	noticed	that	navigating	among	the	different	
SCR	quantification	approaches	and	terminology	employed	
in	 the	 literature	 can	 be	 rather	 challenging	 even	 for	 re-
searchers	familiar	with	the	field.	For	instance,	TTP	scoring	
has	sometimes	been	referred	to	as	(standard)	“peak	scor-
ing,”	a	term	that	has	also	been	used	to	subsume	TTP	and	
BLC	approaches	(Privratsky	et	al., 2020).	This	distinction	
is,	however,	important	as	the	onset latency	window	(OLW)	
for	TTP	 scoring	 cannot	 be	 employed	 as	 a	 peak detection	
window	(PDW)	in	BLC	approaches	(as	done	in	Privratsky	
et	al., 2020)	simply	as	the	onset	of	a	stimulus	induced	SCR	
(i.e.,	OLW)	occurs	with	a	different	timing	from	CS	onset	
as	the	peak	(i.e.,	PDW)	and	hence	the	peak	may	be	missed.	
This	 is	 rather	 likely	 when	 employing	 windows	 as	 short	
as	0–	3 s	 (Privratsky	et	al., 2020)	 taken	from	the	OLW	as	
PDW.	To	avoid	this	jingle	(i.e.,	assuming	erroneously	that	
two	 different	 things	 are	 the	 same	 because	 they	 bear	 the	
same	name)-	jangle	 (i.e.,	 two	 identical	 things	are	errone-
ously	considered	to	be	different	because	they	carry	differ-
ent	names)	fallacy,	we	suggest	using	standard	terminology	
and	to	describe	methods	and	procedures	as	precisely	and	
transparently	 as	 possible.	 This	 includes	 ensuring	 that	
references	refer	to	the	procedure	employed	in	all	details,	
which	was	not	always	true	for	the	publications	included	in	
the	systematic	literature	search.	It	was	most	striking	that	
many	publications	employing	the	BLC	approaches	often-
times	cited	the	study	by	Pineles	et	al. (2009)	as	a	reference,	
which,	however,	used	an	iterative	algorithm	and	often	dif-
ferent	time	windows	than	the	citing	literature.	The	articles	
identified	through	the	literature	search,	however,	were	ex-
clusively	based	on	custom-	made	scripts	that	did	not	seem	
to	include	an	iterative	algorithm	but	were	also	not	shared	
with	the	articles.	In	conclusion,	we	see	an	urgent	need	for	
more	standardization	in	the	field	with	respect	to	the	defi-
nition	of	time	windows,	peak	detection	(first,	largest),	and	
reporting	standards.

4.2	 |	 Comparison between 
different approaches

Here,	 we	 applied	 seven	 different	 SCR	 quantification	ap-
proaches	 to	 two	 independent	 data	 sets	 in	 a	 manyverse	
approach:	 computer-	assisted	 TTP	 scoring,	 a	 representa-
tive	BLC	approach,	CDA	as	implemented	in	the	software	
Ledalab	 as	 well	 as	 four	 different	 models	 offered	 by	 the	
software	PsPM	(GLM	single	trial,	DCM	full	interval,	DCM	

fixed	 onset,	 and	 DCM	 restricted	 interval).	 Furthermore,	
two	 independent	 raters	 performed	 TTP	 scoring	 in	 both	
data	 sets—	whereof	 one	 first-	time	 rater	 and	 one	 expe-
rienced	 rater	 to	 allow	 for	 the	 assessment	 of	 interrater	
reliability.

4.2.1	 |	 (Computational)	reproducibility	and	
concordance	between	TTP	raters

From	a	computational	reproducibility	perspective	(i.e.,	ob-
taining	the	same	results	when	applying	the	same	methods	
to	the	same	data),	fully	unsupervised	and	fully	automatized	
procedures	offer	practical	and	methodological	advantages	
and	are	available	for	the	TTP	approach	(i.e.,	Autonomate,	
Green	et	al., 2014),	inherent	in	the	model-	based	computa-
tional	approaches	(e.g.,	PsPM,	Ledalab)	and	implemented	
in	the	script-	based	BLC	approaches.	Yet,	reproducibility	is	
limited	 as	 particularly	 the	 custom-	made	 scripts	 were	 not	
publicly	available.	Computer-	assisted	or	manual	TTP	scor-
ing	 approaches,	 in	 turn,	 require	 extensive	 training	 prior	
to	performing	the	scoring,	are	never	completely	free	from	
scorer	bias	and	human	errors,	and	require	substantial	time	
investments	when	a	large	number	of	trials	and/or	a	large	
number	of	participants	are	included.	From	a	reproducibil-
ity	perspective,	however,	within-	lab	interrater	concordance	
rates	reported	here	are	near	perfect	for	both	data	sets	even	
with	 a	 slight	 change	 in	 employed	 criteria	 (i.e.,	 TTP1	 and	
TTP2	in	the	Hamburg	sample)	and	one	rater	being	experi-
enced	while	one	was	the	first-	time	rater.	This	matches	high	
concordance	rates	as	reported	in	previous	reports		(average	
ICC:	 .982;	 Green	 et	 al.,  2014)	 and	 together	 suggests	 that	
reliability	and	reproducibility	may	not	be	a	major	concern	
for	computer-	assisted	TTP	scoring,	provided	raters	are	well	
trained.	Our	results	are	reassuring	and	echo	previous	find-
ings	that	suggest	that	the	reliability	of	TTP	scoring	is	excel-
lent.	Note,	however,	that	all	four	raters	were	directly	(both	
raters	for	the	Hamburg	data	set,	experienced	rater	for	the	
Mainz	data	set)	or	indirectly	(new	rater	for	the	Mainz	data	
set)	trained	by	the	senior	author	(T.B.L.)	and	it	cannot	be	
excluded	that	agreement	between	raters	trained	in	different	
research	groups	may	yield	less-	consistent	results.	A	future	
direction	could	be	to	have	different	labs	using	the	TTP	ap-
proach	scoring	the	same	data	set	and	investigating	the	con-
vergence	rates	(i.e.,	many	labs	approach).

Relatedly,	we	note	also	substantial	heterogeneity	in	the	
time	windows	and	peak	definitions	(e.g.,	first	peak,	highest	
peak)	used	 for	TTP	scoring	 in	 the	 literature.	For	 instance,	
our	 literature	search	revealed	that	some	authors	use	what	
corresponds	to	the	First-	interval	response	(FIR)	in	fear	con-
ditioning	 research	 (i.e.,	 onset	 latency	 window,	 0.9–	4  s	 or	
0.9–	3.5 s)	as	used	here,	whereas	others	identify	a	peak	in	the	
entire	CS	duration	(or	entire	CS	duration	+0.5 s)	window	
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starting	from	CS	onset,	CS	onset	+0.5 s,	or	CS	onset	+1 s	or	
in	a	time	window	that	spans	the	full	CS	duration	(or	start-
ing	from	CS	onset	+1 s)	to	2 s	after	CS	offset	(the	latter	of	
which	likely	partly	captures	the	SCRs	to	the	US	as	this	also	
seems	to	be	applied	to	reinforced	CS+	trials).	Hence,	future	
work	should	also	focus	on	the	role	of	between-	study	hetero-
geneity	in	TTP	scoring	between	different	laboratories	which	
could	also	be	done	in	a	many	labs	approach.

4.2.2	 |	 Robustness	of	the	CS	discrimination	
effect	against	different	response	
quantification	approaches

The	 application	 of	 different	 SCR	 quantification	 ap-
proaches	to	the	same	data	sets	can	be	viewed	as	a	set	of	
robustness	analyses	(i.e.,	applying	different	processing	or	
analysis	pipelines	to	the	same	data)	with	the	overarching	
aim	to	investigate	if	and	to	what	extent	the	different	meth-
ods	lead	to	comparable	results	within	each	data	set.	As	we	
are	 not	 aware	 of	 a	 formal	 framework	 for	 the	 evaluation	
of	the	outcome	of	robustness	analyses,	we	here	borrowed	
some	criteria	from	a	framework	suggested	for	the	evalua-
tion	of	“replicability”	in	general	(LeBel	et	al., 2018).	More	
precisely,	 we	 evaluated	 whether	 there	 was	 (a)	 a	 signal.	
This	 is	 in	 the	context	of	 this	work	defined	as	significant	
CS	discrimination.	We	furthermore	evaluated	(b)	whether	
the	effect	size	of	this	signal	was	consistent	across	the	dif-
ferent	approaches,	and	whether	(c)	the	(relative)	precision	
of	the	effect	differed	across	the	different	SCR	quantifica-
tion	approaches.

In	 sum,	 a	 signal	 (i.e.,	 significant	 CS	 discrimination)	
was	universally	observed	in	both	data	sets	irrespective	of	
the	quantification	approach.	As	we	focused	on	the	average	
responding	during	the	full	fear	acquisition	training	phase	
in	which	strong	CS	discrimination	is	typically	observed,	it	
cannot	be	excluded	that	a	focus	on	a	subtler	effect	in	dif-
ferent	experimental	phases	such	as	a	return	of	fear	test	or	
recall	phase	may	lead	to	different	results	across	SCR	quan-
tification	approaches.	This	would	be	important	to	address	
in	future	work.

Furthermore,	 the	 precision	 of	 the	 resulting	 estimates	
did	 not	 differ	 significantly	 between	 different	 SCR	 quan-
tification	approaches	applied	within	the	data	sets,	which	
is	 novel	 and	 relevant	 information	 that	 has	 not	 been	 ad-
dressed	before.

Yet,	the	effect	sizes	yielded	by	the	different	approaches	
were	not	universally	consistent:	In	the	Hamburg	sample	
(N = 118,	100%	reinforcement	 rate,	CS	duration:	6–	8 s),	
both	TTP	raters	(TTP1	and	TTP2),	the	BLC	approach,	as	
well	as	the	CDA	approach	implemented	in	Ledalab	yielded	
consistent	effect	sizes	while	effect	sizes	generated	through	
any	 of	 the	 PsPM	 models	 were	 smaller	 and	 inconsistent	

with	 all	 of	 the	 aforementioned	 approaches.	 In	 addition,	
the	four	PsPM	models	did	not	yield	consistent	effect	sizes	
either	when	compared	to	each	other	in	the	Hamburg	data	
set.	In	the	smaller	Mainz	sample	(N = 38,	50%	reinforce-
ment	rate,	CS	duration:	4.5 s),	however,	most	approaches	
yielded	 consistent	 effect	 sizes	 even	 though	 it	 has	 to	 be	
noted	that	the	CrIs	were	wider	as	in	the	larger	Hamburg	
sample.	 Still,	 the	 CDA	 approach	 as	 implemented	 in	
Ledalab	yielded	an	effect	size	that	was	inconsistent	with	
and	larger	than	those	yielded	by	TTP1,	TTP2,	BLC	as	well	
as	one	of	the	PsPM	models	(i.e.,	DCM	FO).

4.2.3	 |	 Comparable	results	yielded	by	the	
TTP	and	representative	BLC	approach

From	this	pattern	of	(in)consistency,	we	conclude	that	in	
the	two	data	sets	investigated	here,	only	a	few	SCR	quan-
tification	 approaches	 yielded	 comparable	 effect	 sizes	 in	
both	 data	 sets,	 despite	 numeric	 differences	 between	 the	
CS+	and	the	CS−	(CS	discrimination):	TTP	and	the	repre-
sentative	BLC	approach	employed	as	well	as	some	of	the	
PsPM	models	(i.e.,	GLM	and	DCM	FI;	DCM	FI	and	DCM	
FO;	as	well	as	DCM	FO	and	DCM	RI).

With	respect	to	the	TTP	and	BLC	approach,	the	time	
window	 during	 which	 the	 peak	 SCR	 was	 to	 be	 identi-
fied	were	relatively	similar	in	TTP	(i.e.,	up	to	5 s	post-	CS	
onset)	and	BLC	(i.e.,	full	CS	duration	which	corresponds	
to	0–	6 s	in	the	Hamburg	and	0–	4.5 s	post-	CS	onset	in	the	
Mainz	sample).	The	 trough	of	 the	response,	however,	 is	
defined	very	differently	(i.e.,	BLC:	average	SCL	2 s	prior	
to	CS	onset;	TTP:	onset	 in	an	OLW	of	0.9–	4.5 s	post-	CS	
onset).	This	group-	level	comparability	between	both	ap-
proaches	 is	 striking	and	surprising	given	 the	prominent	
differences	 between	 both	 approaches.	 For	 instance,	 the	
BLC	 approach	 can	 yield	 negative	 values	 as	 the	 highest	
value	in	the	PDW	which	may	be	lower	than	the	average	
baseline	 when	 there	 is	 a	 strong	 habituation	 drift	 in	 the	
data	 while	 such	 negative	 values	 are	 implausible	 in	TTP	
scoring.	 Furthermore,	 as	 the	 BLC	 approach	 was	 em-
ployed	in	a	script-	based	manner	without	visual	inspection	
and	without	 the	 implementation	of	adaptive	algorithms	
(as	 in	 Pineles	 et	 al.,  2009),	 a	 value	 for	 a	 response	 is	 al-
ways	 identified	while	 the	TTP	approach	may	score	both	
missing	(e.g.,	electrode	artifacts)	and	zero	responses.	The	
latter	is,	for	instance,	the	case,	when	there	is	only	a	habit-
uation	 trend	 but	 no	 response,	 which	 would	 correspond	
to	a	negative	value	in	the	BLC	approach.	We	refer	to	our	
related	 work	 using	 a	 full	 multiverse	 approach	 covering	
150	combinations	of	time	windows	used	in	the	BLC	ap-
proach	 for	 an	 in-	depth	 discussion	 about	 the	 differences	
between	 TTP	 and	 BLC	 approaches	 and	 the	 resulting	
problems	(Sjouwerman	et	al., 2021).	Note	that	 the	work	
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by	 Sjouwerman	 et	 al.  (2021)	 is	 complementary	 to	 the	
work	presented	here.	While	we	here	investigate	whether	
seven	 different	 SCR	 response	 quantification	 approaches	
result	in	convergent	results	(i.e.,	comparison	between	dif-
ferent	 approaches),	 our	 related	 work	 focuses	 on	 within- 
approach heterogeneity	 in	 parameter	 specification	 (e.g.,	
time	windows)	 in	one	of	 the	approaches	used	here	(i.e.,	
the	BLC	approach).

Despite	 a	 number	 of	 major	 problems	 with	 the	
BLC	 approach	 discussed	 in	 depth	 in	 our	 related	 work	
(Sjouwerman	et	al., 2021),	our	results	are	reassuring	that	
TTP	and	the	representative	BLC	approach	to	SCR	quanti-
fication	seem	to	yield	comparable	results—	at	least	for	the	
design	specifications	included	here	and	average	respond-
ing	at	the	group	level.	As	these	are	the	currently	two	most	
abundantly	used	approaches	to	SCR	quantification	in	the	
field	of	 fear	conditioning	research,	 this	 is	good	news	for	
the	 field	 even	 though	 we	 highlight	 stimulus	 (i.e.,	 CS−)-	
specific	reduced	agreement.

4.2.4	 |	 Different	model-	based	approaches	as	
implemented	in	PsPM

Furthermore,	it	is	noteworthy	that	the	four	PsPM	mod-
els	 yielded	 more	 consistent	 results	 not	 only	 in	 com-
parison	with	each	other	but	also	with	any	of	 the	other	
approaches	 in	 the	 Mainz	 than	 the	 Hamburg	 data	 sets.	
We	can	only	speculate	on	potential	reasons	beyond	the	
generally	 wider	 CrI	 in	 the	 smaller	 Mainz	 sample.	 For	
instance,	the	stimulus	durations	in	the	studies	included	
in	previous	PsPM	comparative	work	(Bach, 2014;	Bach	
et	 al.,  2010,	 2013)	 were	 with	 1–	3.5  s	 rather	 short.	 The	
CS	 duration	 of	 4.5  s	 in	 the	 Mainz	 data	 set	 is	 closer	 to	
this	 than	 the	 6–	8  s	 duration	 in	 the	 Hamburg	 data	 set.	
It	 remains	 to	 be	 investigated	 systematically	 whether	
the	model-	based	approaches	in	PsPM	are	optimized	for	
shorter	duration	CSs,	and	short	ITIs	or	work	equally	well	
with	 longer	duration	stimuli	 that	are	more	common	in	
fear	conditioning	research.	In	addition,	reinforced	CS+	
trials	 were	 excluded	 in	 the	 studies	 validating	 PsPM	 in	
fear	 conditioning	 data	 and	 also	 in	 the	 only	 study	 in-
cluded	 in	 our	 systematic	 literature	 search	 that	 used	
PsPM’s	GLM	model	(Taylor	et	al., 2018).	We	did	not	ex-
clude	reinforced	trials	in	the	Mainz	sample	and	this	was	
impossible	to	do	for	the	Hamburg	sample	as	all	CS+	tri-
als	were	followed	by	the	US—	in	fact,	this	may	be	a	major	
reason	why	the	PsPM	models	were	inconsistent	with	any	
other	models	in	the	Hamburg	data.	Of	note,	two	of	the	
here	employed	DCM	approaches	seemed	to	erroneously	
assign	 SCRs	 elicited	 by	 the	 US	 to	 the	 CS	 in	 both	 sam-
ples.	Thus,	the	DCM	approaches	may	not	be	optimal	for	
response	 quantification	 in	 paradigms	 with	 full	 or	 high	

reinforcement	 rates	 or	 when	 not	 excluding	 reinforced	
trials	(see	PsPM	manual	4.3.0,	page	22).	Of	note,	exclud-
ing	reinforced	trials	as	modeling	a	flexible	CS	response	
onset	 may	 absorb	 SCR	 elicited	 by	 US	 or	 US	 omission	
leads	 to	 an	 unequal	 number	 of	 trials	 for	 the	 CS+	 and	
the	CS−.	These	unequal	numbers	of	trials	resulting	from	
excluding	reinforced	 trials	may	result	 in	different	vari-
ances,	reliability	estimates,	and	statistical	power	which	
may	 also	 be	 problematic.	 Another	 difference	 between	
previous	comparative	work	focusing	on	SCRalyze/PsPM	
is	that	these	previous	studies	included	a	(substantially)	
higher	number	of	trials	per	condition	(i.e.,	16–	90	trials)	
as	our	work	(i.e.,	10–	15)	which	may	result	in	differences	
in	statistical	power	and	a	different	impact	of	the	fast	ha-
bituation	typically	seen	in	skin	conductance	responding.

In	 sum,	 the	 software	 package	 PsPM	 offers	 a	 number	
of	 different	 model	 specifications	 that—	likely	 depending	
on	experimental	specifications—	can	substantially	impact	
the	results.	Thus,	data	processing	and	model	specification	
need	to	be	reported	in	detail	to	ensure	computational	re-
producibility,	and	the	models	need	to	be	empirically	eval-
uated	against	typical	paradigm	specification	details	such	
as	 reinforcement	 rate	 and	 stimulus	 duration	 (see,	 e.g.,	
Bach	et	al., 2010).

4.3	 |	 Implications for postprocessing and 
data analyses

Here,	we	have	illustrated	that	different	commonly	used	
SCR	quantification	approaches	used	in	fear	condition-
ing	 research	 do	 not	 necessarily	 yield	 converging	 and	
comparable	 effect	 sizes	 for	 group-	level	 CS-		 discrimi-
nation	 despite	 all	 yielding	 significant	 CS+/CS−	 dis-
crimination	in	the	same	direction.	The	different	effect	
sizes	and	different	numeric	values	for	CS+	and	CS−	re-
sponses	 as	 well	 as	 CS+/CS−	 discrimination	 may	 also	
have	implications	for	the	application	of	commonly	used	
postprocessing	 or	 data-	cleaning	 procedures	 such	 as	
minimal	response	criteria	as	well	as	 the	 identification	
of	 performance-	based	 exclusion	 of	 SCR	 nonresponder	
and	SCR	nonlearner	(for	a	critical	evaluation	and	dis-
cussion,	 see	Lonsdorf,	Klingelhöfer-	Jens,	et	al., 2019).	
For	 instance,	 responses	 quantified	 through	 the	 TTP	
approach	 cannot	 be	 smaller	 than	 zero	 while	 the	 BLC	
approach	can	yield	negative	values	(for	an	empirical	in-
vestigation,	see	Sjouwerman	et	al., 2021).	Further,	it	is	
clear	from	the	average	CS+,	CS-	,	and	CS	discrimination	
values	(see	Figure 2)	yielded	by	the	different	response	
quantification	 approaches	 that	 identical	 cutoffs	 for	
nonlearning	are	likely	to	lead	to	different	results	across	
approaches.	Yet,	we	did	not	investigate	this	empirically	
and	hence	can	only	speculate	here.



   | 25 of 30KUHN et al.

4.4	 |	 Is it realistic to assume the 
existence of a single and universally best 
approach for SCR quantification?

It	has	been	proposed	that	we	may	identify	the	“best”	ap-
proach	 for	SCR	quantification	by	means	of	 “retrodictive	
validity,”	 formerly	 referred	 to	 as	 “predictive	 validity”	
(Bach	 et	 al.,  2020;	 Bach	 &	 Melinscak,  2020).	 More	 pre-
cisely,	it	has	been	proposed	that	the	method	with	the	high-
est	retrodictive	validity	is	the	method	that	has	the	highest	
chance	 of	 recovering	 an	 unobservable	 (psychological)	
process	 from	skin	conductance	data.	 It	has	 further	been	
suggested	 that	 this	 can	 be	 achieved	 by	 comparing	 two	
conditions	that	are	known	to	induce	strong	differences	in	
sympathetic	arousal	(Bach, 2014)	such	as	viewing	of	aver-
sive	(strong	arousal)	and	neutral	(weak	arousal)	pictures	
or	a	condition	predictive	of	an	aversive	event	(i.e.,	CS+)	
and	a	control	condition	(i.e.,	CS−).	According	to	the	retro-
dictive	validity	idea,	the	best	method	would	be	the	method	
that	best	separates	both	conditions.	In	the	context	of	this	
work,	the	method	that	produces	the	strongest	CS	discrimi-
nation	or	the	largest	effect	size.	Even	though	an	in-	depth	
discussion	on	the	retrodictive	validity	idea	is	beyond	the	
scope	of	this	work,	we	would	like	to	note	that	an	exclusive	
focus	 on	 effect	 size	 falls	 short	 of	 appreciating	 measure-
ment	precision	as	an	important	criterion.

When	 interpreting	 the	 results	 of	 our	 work	 in	 a	 “ret-
rodictive	validity	 framework,”	 there	 is	no	evidence	 for	a	
single,	universally	superior	approach.	More	precisely,	our	
results	from	two	different	data	sets	differing	primarily	in	
the	 number	 of	 participants	 (118	 vs.	 38),	 reinforcement	
rate	(100%	vs.	50%),	and	CS	duration	(6–	8 s	vs.	4.5 s)	reveal	
no	single	method	that	yields	a	consistently	higher	effect	
size	compared	with	other	methods	in	both	data	sets.

Rather	 than	 suggesting	 a	 single	 universally	 superior	
approach,	we	echo	the	notion	that	assumptions	about	the	
shape	 and	 timing	 of	 an	 SCR	 across	 different	 quantifica-
tion	approaches	are	mostly	similar,	but	that	“they	are	im-
plemented	using	different	algorithms	which	may	impact	
their	performance	and	comparability	across	different	par-
adigms	or	experimental	contexts”	(cf.	Green	et	al., 2014,	
p.	192).	Consequently,	a	single	best	or	“superior”	method	
may	 not	 exist	 as	 the	 most	 suitable	 method	 may	 depend	
on	design	and	sample	specifics.	This	is	a	complicated	sce-
nario	that	does	not	allow	for	an	easy	solution.	As	a	conse-
quence,	we	call	for	caution	in	light	of	the	recent	suggestion	
(e.g.,	 Bach	 &	 Melinscak,  2020;	 Privratsky	 et	 al.,  2020)	
that	 PsPM-	based	 SCR	 quantification	 generally	 leads	 to	 a	
massive	reduction	in	required	participants	as	opposed	to	
other	 approaches	 due	 to	 substantially	 higher	 statistical	
power	and	retrodictive	validity	(as	also	discussed	in	Bach	
&	Melinscak, 2020).	More	precisely,	our	data	suggest	that	
(sometimes)	 the	 opposite	 may	 be	 true:	 for	 instance,	 we	

observed	 smaller	 effect	 sizes	 for	 CS	 discrimination	 (i.e.,	
retrodictive	validity)	for	all	PsPM-	based	approaches	as	op-
posed	to	the	TTP,	BLC,	and	Ledalab-	based	SCR	quantifi-
cation	in	the	Hamburg	sample.	Given	that	the	evidence	to	
date	is	limited,	we	echo	the	call	(Bach	&	Melinscak, 2020)	
for	 more	 comparative	 (multiverse-	type	 of)	 studies	 and	
thorough	validation	of	new	methods	 in	different	experi-
mental	and	design	settings	until	a	single	method	can	be	
recommended,	in	particular	as	universally	superior.	This	
is	particularly	important	as	the	authors	note	that	the	tool-
box	PsPM	has	“been	evaluated	only	in	limited	experimen-
tal	 circumstances	 and	 by	 a	 small	 group	 of	 researchers”	
(cf.	Bach	&	Melinscak, 2020).	We	echo	their	call	for	more	
methodological	 research	 in	 order	 to	 establish	 “a	 clearer	
picture	on	what	the	best	measurement	approach	is	in	dif-
ferent	 research	 scenarios”	 (cf.	 Bach	 &	 Melinscak,  2020)	
and	with	the	present	work	provide	the	first	step	into	this	
direction.

4.5	 |	 Limitations

Here,	 we	 compare	 seven	 different	 SCR	 quantification	 ap-
proaches	as	identified	through	a	literature	review.	Yet,	the	
“full”	multiverse	of	possible	SCR	processing	steps	includes	
a	number	of	additional	steps	not	considered	here	in-	depth	
such	as	transformations	(see	also	Supplementary	Material),	
cutoff	 criteria	 (Lonsdorf,	 Klingelhöfer-	Jens,	 et	 al.,  2019),	
data	 exclusion	 (Lonsdorf,	 Klingelhöfer-	Jens,	 et	 al.,  2019),	
and	 filtering	 (see,	 e.g.,	 Privratsky	 et	 al.,  2020).	 Aiming	 to	
cover	all	potentially	relevant	decision	nodes	is	infinite	and	
a	focus	on	“a”	multiverse	rather	than	“the”	multiverse	still	
provides	valuable	information.	This	can	help	to	deflate	the	
multiverse	and	leaves	only	the	relevant	specifications	(i.e.,	
those	that	have	not	been	shown	to	be	clearly	inferior	in	the	
more	focused	investigations)	for	the	construction	of	a	larger	
and	 more	 comprehensive	 multiverse.	 Future	 work	 may	
systematically	 focus	on	these	additional	decision	nodes	or	
cover	different	parts	of	 the	 full	data	multiverse	 systemati-
cally	(see	Sjouwerman	et	al., 2021	for	a	multiverse	focusing	
on	within-	approach	heterogeneity	in	the	BLC	method).

SCRs	were	relatively	larger	in	the	Mainz	compared	with	
the	Hamburg	sample.	This	difference	may	be	explained	by	
the	usage	of	a	more	aversive	US	in	the	Mainz	sample:	US	
intensity	was	calibrated	to	a	level	perceived	as	“maximally	
painful,	 but	 still	 tolerable”	 compared	 with	 “maximally	
uncomfortable,	but	not	painful”	in	the	Hamburg	sample.	
Empirical	and	theoretical	work	suggests	that	stronger	US	
intensity	 is	associated	with	 larger	conditioned	responses	
(Morris	&	Bouton, 2006;	Rescorla	&	Wagner, 1972).	The	
difference	 could	 also	 be	 explained	 by	 the	 different	 rein-
forcement	rates	employed	in	both	data	sets	as	SCRs	have	
been	 suggested	 to	 reflect	 the	 associability	 of	 a	 stimulus	
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(Li	et	al., 2011;	Seymour	et	al., 2005;	Tzovara	et	al., 2018;	
Zhang	et	al., 2016).	Finally,	differences	in	external	condi-
tions,	such	as	room	temperature	and	differences	in	hard-
ware	could	also	account	for	these	differences.

Furthermore,	our	literature	search	covered	only	a	lim-
ited	time	frame	(6 months	in	2019)	and	hence	the	results	
may	not	be	fully	representative.	Yet,	a	different	literature	
search	(Privratsky	et	al., 2020;	full	details	provided	in	the	
supplementary	material)	covering	more	than	90	articles	in	
the	field	of	fear	conditioning	from	2019	and	2020	shows	a	
similar	picture	with	BLC	and	TTP	being	most	abundantly	
used	(subsumed	as	“peak	scoring”	by	the	authors,	which	
is	 a	 problematic	 term,	 however)	 and	 with	 substantially	
fewer	studies	using	Ledalab,	 few	studies	using	PsPM,	or	
other	approaches	(e.g.,	“area	under	the	curve”,	cvxEDA).	
Even	 though	 the	 literature	 search	 provided	 here	 served	
primarily	as	a	tool	to	guide	the	selection	of	the	to-	be	in-
cluded	 SCR	 quantification	 approaches,	 the	 results	 by	
Privratsky	 are	 reassuring	 the	 frequencies	 reported	 here	
are	representative	despite	the	short	time	window.

Finally,	our	comparison	of	different	SCR	quantification	
approaches	across	two	data	sets	focused	on	average	group-	
level	responding	and	future	work	focusing	on	individual-	
level	responding	would	be	a	logical	extension	of	our	and	
previous	work.

4.6	 |	 Prospects and challenges of a 
multiverse- type of approach

Multiverse-	type	 of	 approaches	 (Del	 Giudice	 &	
Gangestad,  2021;	 Simonsohn	 et	 al.,  2020;	 Steegen	
et	al., 2016)	have	recently	gained	momentum	in	the	field	
of	 psychophysiology—	for	 instance,	 in	 research	 using	
EEG	(Clayson	et	al., 2021;	Kołodziej	et	al., 2021;	Nikolin	
et	al., 2022;	Sandre	et	al., 2020;	Wacker, 2017)	or	in	fear	
conditioning	 research	 with	 a	 focus	 on	 SCRs	 (Lonsdorf	
et	 al.,  2021;	 Lonsdorf,	 Klingelhöfer-	Jens,	 et	 al.,  2019;	
Lonsdorf,	 Merz,	 &	 Fullana,  2019;	 Sjouwerman	
et	al., 2021).	Multiverse-	type	of	approaches	can	be	con-
sidered	 an	 attempt	 to	 empirically	 optimize	 processing	
pipelines	and	an	intermediate	step	toward	more	stand-
ardization	in	fields	that	are	characterized	by	substantial	
heterogeneity	in	data	(recording)	and	processing	steps.	
More	 precisely,	 multiverse-	type	 of	 analyses	 examine	
the	impact	of	a	(large)	set	of	different	equally	justifiable	
methodological	decisions	on	the	robustness	of	an	effect	
of	interest.	By	empirically	identifying	and	subsequently	
deprioritizing	unsuitable	paths,	they	can	help	to	deflate	
the	multiverse	of	possible (equally justifiable)	data	analy-
sis	paths.	The	most	critical	step	in	setting	up	a	multiverse-	
type	 of	 analysis	 is	 the	 selection	 of	 the	 to-	be	 included	
decision	 nodes	 and	 their	 specifications.	 Specifically,	

it	 is	 inherently	 challenging	 to	 define	 which	 methodo-
logical	decisions	can	be	considered	“equally	justifiable”	
(for	 discussions,	 see	 Del	 Giudice	 &	 Gangestad,  2021;	
Lonsdorf	et	al., 2021)	in	particular	in	light	of	often	un-
derspecified	 theories	 in	 psychology	 that	 leave	 much	
room	for	different	definitions	and	hence	operationaliza-
tion	of	(latent)	constructs	(discussed	for	fear	condition-
ing	research	in	Lonsdorf	et	al., 2021;	Lonsdorf,	Merz,	&	
Fullana, 2019).	In	addition,	it	is	important	to	note	that	
not	 all	 equally	 justifiable	 paths	 necessarily	 belong	 to	
the	 (exact)	 same	 multiverse.	 For	 instance,	 a	 statistical	
model	 with	 an	 included	 covariate	 tests	 a	 different	 un-
derlying	hypothesis	than	a	model	without	that	covariate	
and,	hence,	 is—	in	a	strict	 sense—	not	part	of	 the	same	
(model)	 multiverse	 (Del	 Giudice	 &	 Gangestad,  2021).	
Along	the	same	lines,	it	may	also	be	debatable	whether	
model-	based	approaches	and	TTP/BLC	approaches	be-
long	to	the	same	multiverse	as	they	may	measure	differ-
ent	constructs	(e.g,	estimated	sudomotor	nerve	activity	
vs.	observable	physiological	response,	respectively).	As	
these	 approaches	 are,	 however,	 used	 interchangeably	
in	the	literature,	we	combined	them	in	the	same	multi-
verse	here.	We	have	chosen	to	depart	from	a	systematic	
literature	search	as	a	means	to	objectively	decide	on	the	
to-	be	included	paths	by	defining	“equally	justifiable”	as	
approaches	that	are	used	interchangeably	in	the	litera-
ture.	Other	approaches	that	have	been	used	to	guide	the	
decision	on	which	specifications	to	include	are	based	on	
expert	agreement	(Wacker, 2017)	and/or	multiple	ana-
lyst	approaches	(Silberzahn	et	al., 2018).	An	advantage	
of	our	approach	 is	 that	 the	different	quantification	ap-
proaches	 included	mirror	the	actual	multitude	of	deci-
sions	 a	 researcher	 is	 presently	 faced	 in	 the	 field	 when	
aiming	to	quantify	SCRs.	Hence,	our	approach	provides	
empirical	evidence	whether	it	can	indeed	be	considered	
justifiable	 to	use	 the	different	 included	approaches	 in-
terchangeably	in	the	field.

4.7	 |	 Summary and outlook

Our	results	illustrate	heterogeneity	in	the	exact	specifica-
tion	and	implementation	of	SCR	response	quantification	
approaches	 derived	 from	 a	 systematic	 literature	 search	
and	 a	 thorough	 summary	 of	 the	 available	 comparative	
studies.	Empirically,	we	illustrate	partly	inconsistent	out-
comes	for	effects	sizes	of	CS	discrimination	when	apply-
ing	seven	different	SCR	quantification	approaches	to	the	
same	data.	Our	 results	 challenge	 the	existence	of	a	uni-
versally	best	or	superior	SCR	quantification	approach	and	
call	for	more	and	systematic	comparative	(multiverse-	type	
of)	 studies	 focusing	 on	 different	 decision	 nodes	 during	
data	processing	but	also	on	different	experimental	design	
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specifications	which,	however,	requires	specifically	tailed	
experimental	 designs.	 Finally,	 we	 call	 for	 more	 consid-
eration	to	measurement	and	reliability	questions	and	for	
more	 systematic	 and	 collaborative	 efforts	 to	 solve	 these	
challenges	as	a	research	field	and	work	toward	more	ex-
change,	 more	 homogenization	 in	 research	 methods,	 as	
well	as	detailed	reporting.
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FIGURE S1	Trial-	by-	trial	averages	values	(averaged	across	
participants)	for	the	CS+	(left),	CS−	(middle)	and	the	US	
(right)	in	the	Hamburg	sample	(upper	row)	and	the	Mainz	
sample	(bottom	row)
FIGURE S2	 Averaged	 raw	 SCRs	 (plus	 standard	 error)	 for	
the	 CS+	 (red),	 CS−	 (blue)	 and	 US	 (black)	 for	 each	 SCR	
quantification	 approach	 employed	 in	 the	 Hamburg	 and	
Mainz	datasets	split	up	for	the	first	half	of	acquisition	training	
(left)	and	the	second	half	of	acquisition	training	(right)
FIGURE S3	Average	CS	discrimination	(±standard	errors)	
based	on	raw	values	per	CS	 type	during	 fear	acquisition	
training	 based	 on	 data	 derived	 through	 different	 SCR	
response	quantification	approaches	in	the	Hamburg	and	
Mainz	datasets	as	corresponding	effect	sizes	and	credible	
intervals	 as	 derived	 from	 the	 Bayesian	 paired-	sample	

T-	tests	 for	 the	 first	half	of	acquisition	training	(left)	and	
the	second	half	of	acquisition	training	(right)
FIGURE S4	 Effect	 sizes,	 Bayes	 Factors,	 and	 credible	
intervals	as	derived	from	the	Bayesian	paired	two-	sample	
t-	tests	for	the	Hamburg	(A)	and	Mainz	(B)	datasets	based	
on	z-	transformed	data	(based	on	a	reviewer’s	request)
TABLE S1	 Trial-	wise	 agreement	 (Krippendorff-	alpha	 as	
well	 as	 lower	 and	 upper	 CI	 bounds)	 for	Trough-	to-	peak	
(TTP)	rater	1	and	2	in	the	Hamburg	sample	(left)	and	the	
Mainz	sample	(right).	Note	that	there	were	fewer	trials	in	
general	in	the	Mainz	sample	and	that	only	50%	of	the	CS+	
was	followed	by	the	US
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