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Abstract

Raw data are typically required to be processed to be ready for statistical analy-
ses, and processing pipelines are often characterized by substantial heterogene-
ity. Here, we applied seven different approaches (trough-to-peak scoring by two
different raters, script-based baseline correction, Ledalab as well as four differ-
ent models implemented in the software PsPM) to two fear conditioning data
sets. Selection of the approaches included was guided by a systematic literature
search by using fear conditioning research as a case example. Our approach can
be viewed as a set of robustness analyses (i.e., same data subjected to different
processing pipelines) aiming to investigate if and to what extent these different
quantification approaches yield comparable results given the same data. To our
knowledge, no formal framework for the evaluation of robustness analyses ex-
ists to date, but we may borrow some criteria from a framework suggested for
the evaluation of “replicability” in general. Our results from seven different SCR
quantification approaches applied to two data sets with different paradigms sug-
gest that there may be no single approach that consistently yields larger effect
sizes and could be universally considered “best.” Yet, at least some of the ap-
proaches employed show consistent effect sizes within each data set indicating
comparability. Finally, we highlight substantial heterogeneity also within most
quantification approaches and discuss implications and potential remedies.
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anxiety disorders, fear, multiverse, psychophysiology, replicability crisis

1 | INTRODUCTION data are typically required to be processed to be ready for sta-
tistical analyses and interpretation. Although these processing
pipelines can be well defined and standardized, they are often

characterized by substantial heterogeneity, particularly in

Scientific work rests fundamentally upon data, their measure-
ment, processing, analysis, illustration,and interpretation. Raw
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Biological Psychology and Cognitive Neuroscience (Botvinik-
Nezer et al., 2020; Lonsdorf, Klingelhofer-Jens, et al., 2019;
Sandre et al., 2020). A commonly used measure in these sci-
entific disciplines is skin conductance that is sensitive to emo-
tional arousal, novelty, and salience (Dawson et al., 2007) and
thought to provide insight into sympathetic activation levels.
Skin conductance is characterized by slowly changing tonic
activity (skin conductance level, SCL) and faster changing
phasic activity with a rather steep incline and slower return to
baseline (skin conductance response, SCR). SCRs can occur
as spontaneous nonspecific fluctuations or stimulus-evoked
(Boucsein et al., 2012) with the strength of the latter being the
focus of this work. SCRs are typically recorded continuously
and subsequently quantified off-line. This can be done with
a multitude of different response quantification approaches,
with any given study typically choosing only one of these op-
tions. Already in 1971, Lykken and Venables raised attention
to the “[...] disconcerting diversity of electrodermal measure-
ment technique which, at best, make it difficult to compare
one set of results with another and sometimes even casts
real doubt on the interpretation of the findings.” (Lykken &
Venables, 1971, p. 656). Now, nearly half a century later, basi-
cally, everything has changed with respect to the equipment
and techniques used to record SCRs, while on the other hand,
the problem of disconcerting methodological diversity identi-
fied in 1971 still persists.

As a consequence, the interpretation of any single set
of SCR results is difficult because it may hinge on the spe-
cific choices made—as already argued by Lykken half a
century ago (Lykken & Venables, 1971, p. 656). As a poten-
tial solution to the problem of data processing and statisti-
cal heterogeneity, the “multiverse approach” has recently
been suggested (Steegen et al., 2016): In data multiverse
analyses, the same raw data are processed into a multiverse
of processed data sets (referred to as “universes”) depend-
ing on different processing choices—all potentially equally
reasonable in light of the absence of empirical and/or theo-
retical criteria to guide the researchers’ decisions. This data
(i.e., the sum of all universes) inevitably imply a multiverse
of statistical results, given a single set of identical raw
data and applied statistical models (Lonsdorf et al., 2021;
Lonsdorf, Klingelhofer-Jens, et al., 2019; Lonsdorf, Merz,
& Fullana, 2019; Silberzahn et al., 2018; Sjouwerman
et al., 2021; Steegen et al., 2016), and can inform on the
stability or robustness of the effect of interest against dif-
ferent processing pathways. To this end, multiverse-type of
studies have been proposed to explicitly facilitate debates
on what (processing or analytical) specifications should
be used (Del Giudice & Gangestad, 2021; Simonsohn
et al., 2020). Of note, the “full” multiverse consists of an
infinite number of options and hence, it has been recog-
nized that many other decisions could be considered than
what is typically referred to as “full multiverse” in these

types of studies (Del Giudice & Gangestad, 2021). Often,
it can be advantageous to focus on a more limited set of
decision nodes and investigate these in more depth. Here,
we focus on a small-scale multiverse-type of approach (re-
ferred to as “manyverse”) by comparing SCR quantifica-
tion approaches derived from a systematic literature search
in two data sets and by using fear conditioning research as
a case example. As (systematic) robustness analyses such
as multiverse-type of studies are per definition applied to
the same set of data, we acknowledge that we do not aim
for a direct comparison between both data sets as these
differ in key experimental specifications. Hence, we pro-
vide an SCR response quantification manyverse approach
within each data set.

1.1 | Different response quantification
approaches for skin conductance responses

The different currently employed approaches for SCR
quantification can be roughly grouped into (i) trough-to-
peak (TTP) scoring, (ii) computational model-based ap-
proaches such as Ledalab (Benedek & Kaernbach, 2010a;
Lim et al.,, 1997) and Psycho-Physiological Modelling
(PsPM; Bach et al., 2009, 2013; Bach & Friston, 2013),
and (iii) what we here refer to as “baseline correction”
approaches. Of note, however, these approach categories
are by no means homogeneous and different specifica-
tions and settings can be applied. We refer, for instance,
to our related work that focuses on an in-depth investi-
gation of within-approach heterogeneity of specifications
used in the baseline correction approach (Sjouwerman
et al., 2021). In the literature, these different approach
categories are generally treated interchangeably despite
the lack of empirical support for their equivalence in
capturing the same underlying construct and biologi-
cal process (jingle fallacy)—a problem that has been
discussed, for instance, in fear conditioning research
(Lonsdorf, Klingelhofer-Jens, et al., 2019; Lonsdorf,
Merz, & Fullana, 2019; Ojala & Bach, 2019; Sjouwerman
et al., 2021) as well as for related fields in psychology and
the neurosciences (Botvinik-Nezer et al., 2020; Garrett-
Ruffin et al., 2021; Sandre et al., 2020). In the following,
we briefly introduce these three different SCR quantifi-
cation approach categories: trough-to-peak, model-based
approaches, and baseline correction approaches (as well
as their subcategories).

1.1.1 | Trough-to-peak (TTP)

“Trough-to-peak” (TTP) scoring of SCRs quantifies the
difference between the skin conductance at the peak of
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aresponse and its preceding trough in prespecified time
windows according to a published set of criteria and
publication recommendations (Boucsein et al., 2012):
The onset latency, that is, the footpoint of the SCR,
is typically required to occur in an onset latency time
window (OLW) of 1-3 s (Levinson & Edelberg, 1985),
1-3.5 s (although stimulus-specific response windows
were suggested, Sjouwerman & Lonsdorf, 2019), or
1-4 s (Boucsein et al., 2012) after stimulus onset. The
SCR peak value is then required to occur in a peak de-
tection time window (PDW) of 0.5-5 s after SCR onset
(i.e., footpoint; Boucsein et al., 2012). More precisely, if
the footpoint occurs 2 s after the stimulus presentation,
the peak must occur in a time window of 2.5-7 s after
stimulus onset. Some authors have also used the full
stimulus duration (or even longer) as the PDW with-
out explicitly distinguishing between OLW and PDW.
In addition, a minimum response—typically varying
between 0.05 and 0.01 ps—is often applied (Boucsein
et al., 2012; Lonsdorf, Klingelhofer-Jens, et al., 2019).
SCRs smaller than this minimum response are not con-
sidered as a valid response and included as nonresponse
with a value of zero (Lonsdorf et al., 2017; i.e., “magni-
tude,” Venables & Christie, 1980). Consequently, TTP
scoring can only yield SCR values with a zero or a posi-
tive value.

TTP scoring employing the above-described criteria
can be performed as follows: (a) manually in most re-
cording software, (b) computer-assisted with the help
of graphical user interfaces (commonly custom-made)
which provide editable suggestions for each SCRs foot-
point and peak, or (c) supervised, but fully automatized
(“Autonomate,” Green et al., 2014)—even though the
latter can also be used as a graphical user interface for
visual inspection and/or computer-assisted scoring.
Furthermore, (d) also fully automatized custom-made
scripts are employed. Automatized approaches iteratively
apply the published TTP criteria (Boucsein et al., 2012)
while systematically dealing with the challenge of over-
lapping SCRs by searching for patterns in inflection
points (Green et al., 2014). Fully automatized TTP scoring
consequently reduces some of the drawbacks inherent to
manual or computer-assisted (semi-manual) TTP scoring:
being time-consuming, sensitive to the scale invariance
problem (i.e., depending on the scale used to view the
data different inflection points may be detected through
visual inspection), requiring long interstimulus intervals
to avoid overlapping responses, and being susceptible to
human bias. We highlight that most of the work on skin
conductance response dates back to early research in the
70 s and new work has not reinvestigated assumptions re-
garding an SCRs shape and temporal profile with newer
technical equipment in detail.

IPSYGHOPHYSIUI.OGY spr)’

1.1.2 | Baseline correction (BLC) approach

In addition, an approach that we here refer to as the
“baseline correction approach” has been suggested that
“does not require undertaking the complex process
of mathematically modeling [skin conductance] data
curves, identifying points of inflection that define a re-
sponse onset and creating, or learning to use, software
that accomplishes this process”(cf. Pineles et al., 2009,
p- 993). Pineles suggested the use of an “entire-interval
response” that scores the highest SCR peak in the entire
stimulus presentation time window (Pineles et al., 2009).
The BLC approach suggested by Pineles employs an algo-
rithm that identifies a response onset by stepping forward
(or backward) until the slope changes from negative to
positive (or from positive to negative). A response peak
is found by locating the highest SC value after the identi-
fied onset and within the window specified for the peak
(Pineles et al., 2009). Importantly, neither the onset nor
the peak may be located at the first or last data point of
their respective windows and if this happens, the algo-
rithm will look for new onset and peak in a shrunk win-
dow. If the window is iteratively shrunk to a zero width,
no response is calculated (i.e., zero). The entire-interval
response suggested by Pineles is accordingly calculated
by subtracting the mean skin conductance level for the
2 s immediately preceding stimulus onset from the high-
est SC level value during the entire stimulus presentation
period (i.e., 8 s; Pineles et al., 2009). Of note, this proce-
dure can yield negative values when no stimulus-bound
SCR is observed or when it is comparably smaller than
the (habituation) drift in SCRs. Some authors set these
negative responses to “zero” during postprocessing (e.g.,
Vogel et al., 2015). Today, BLC approaches are most often
performed with custom-made scripts that do not follow
iterative algorithms, calculate the baseline in a pre-CS
time window, and subtract this baseline from the post-
CS peak identified during a post-CS time window (for a
discussion, see Sjouwerman et al., 2021).

1.1.3 | Computational model-based
approaches

Last, computational or model-based approaches are avail-
able in different software packages, for instance, Ledalab
(Benedek & Kaernbach, 2010a; Lim et al., 1997) and PsPM
(Bach et al., 2009, 2013; Bach & Friston, 2013) (formerly
labeled SCRalyze; Bach et al., 2009) or cvxEDA (Greco
et al., 2016). These approaches rely on (generative or for-
ward) models that specify how a physiological or psycho-
logical state generates an observable skin conductance
response and use model inversion to estimate these states
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from the data. The different model-based approaches dif-
fer in respect to the exact properties of the employed SCR
function, the treatment of slowdrifts in SCR data, the treat-
ment of observation noise, and the applied model inversion.
However, they all generally offer the advantage of automa-
ticity and computational reproducibility. Furthermore, they
are thought to improve discriminability of overlapping SCRs
in paradigms with short interstimulus intervals as SCRs are
slow responses and rapidly spaced stimuli with an interstim-
ulus interval (ISI) of 2-3 s do not elicit visually distinguish-
able SCR peaks and generally appear as a single response
(Benedek & Kaernbach, 2010a)—commonly referred to as
overlapping responses.

Specifically, deconvolution-based approaches, such
as Ledalab, decompose skin conductance data into
slowly varying tonic and fast-varying phasic activity
(Benedek & Kaernbach, 2010a; Lim et al., 1997). The
phasic component is suggested to reflect the time course
of sudomotor or sympathetic nerve activity. The latter
is characterized by a zero baseline and shorter time
constant than the resulting SCR, making it possible to
discern closely succeeding responses in rapid, quickly
spaced events with an ISI <3 s. Ledalab offers a variety
of different measures to quantify skin conductance re-
sponses within a defined response window, among them
the estimated amplitude (which may differ from a TTP
approach), the sum of all SCRs detected, the average,
the peak, and the area under the curve of the phasic
driver response.

The software package PsPM (formerly SCRalyze)
offers two different approaches: a general linear model
(GLM) approach (Bach et al., 2009) and a nonlin-
ear dynamic causal modeling (DCM) approach (Bach
et al., 2010). The GLM approach models event onsets as
delta functions, convolves the onset regressor with a ca-
nonical (or data-based) skin conductance response func-
tion, and fits the data to the resulting time series (Bach
et al., 2009). Depending on whether the GLM onset re-
gressors comprise all trials of one condition (“condition-
wise”) or only one individual trial (“trial-wise”), the
resulting parameter estimates reflect condition-specific
(e.g., CS+, CS—) or trial-specific SCR magnitudes (e.g.,
CS+ trial 1, CS+ trial 2, ..., CS— trial 1). The nonlinear
DCM approach provides a causal model that describes
how different inputs to sudomotor activity (e.g., spon-
taneous, evoked, anticipatory responses) map onto
skin conductance data. Via model inversion, the most
likely contribution of each of these components to the
observed data is estimated. For discussion and empiri-
cal evaluation of differences between Ledalab and the
GLM or DCM approach implemented in PsPM, we refer
to other sources (Bach, 2014; Bach et al., 2013; Staib
et al., 2015).

1.1.4 | Comparison between different SCR
quantification approaches

To date, few comparative studies addressing different SCR
quantification approaches exist—and those that we are
aware of (see Table 1 for a detailed summary of the sta-
tus quo) all come from authors that have developed one
of the approaches and performed comparisons for means
of validation. What is striking from Table 1 is that even
those comparative attempts are characterized by substan-
tial heterogeneity with respect to the used SCR quantifi-
cation approaches and it is noteworthy that conclusions
derived from these studies are similarly heterogeneous.
While Green and colleagues concluded that all methods
produced comparable effect sizes and hence suggest that
a number of suitable methods and software tools exist for
SCR quantification analysis of SCRs (Green et al., 2014),
Bach and colleagues in contrast concluded that all model-
based methods as implemented in SCRalyze are more
sensitive than the “peak-scoring” approach and provide
significantly higher predictive validity than any Ledalab
measure in most of the tested contrasts (Bach, 2014).
Speculations on potential explanations for these con-
flicting results and conclusions may be derived from
Table 1. As this is, however, beyond the main aim of
the present work, we refer the interested reader to the
Supplementary Material for an in-depth discussion.

1.2 | Overarching aim

Our work departs from the lack of conclusive and compre-
hensive comparative work addressing the question if and
to what extent different SCR quantification approaches
(when applied to an identical data set) can be used in-
terchangeably (jingle fallacy). Particularly, in light of re-
cent discussions on measurement challenges and their
potential contributions to (non-) replicability (Flake &
Fried, 2020), it is particularly timely to investigate to what
extent a given effect can be formally “replicated” by sub-
jecting single data sets to multiple theoretically equally
justifiable SCR response quantification approaches (i.e.,
robustness analyses).

First, we need a synopsis of the different approaches
employed in the literature as well as their abundance to
guide the decision on approaches to compare. Here, we
provide an exemplary systematic literature search focus-
ing on different SCR quantification approaches by using
fear conditioning research as a case example.

Second, we provide an independent evaluation of seven
commonly used and equally justifiable SCR response
quantification approaches applied to two data sets. Note
that we do not aim for a direct comparison between both
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data sets as these differ in more than a single specifica-
tion (e.g., CS and ITI duration, reinforcement rate, sample
size) but provide a manyverse analysis within each data
set. Note that the multiverse approach focuses on apply-
ing different pipelines to the same underlying data. To our
knowledge, no formal framework for the evaluation of ro-
bustness analyses exists to date, but we may borrow some
criteria from a framework suggested for the evaluation of
replicability in general (LeBel et al., 2018), as robustness
can be viewed as a subaspect of replicability. While multi-
verse analyses often focus on the distribution of p values
across the multiverse (e.g., Steegen et al., 2016), we extend
this somewhat limited focus by also considering effect
sizes and precision of the estimates.

Third and finally, we include TTP scoring from two
independent raters per data set (one experienced and
one first-time rater) to address the question if computer-
assisted TTP scoring is reproducible (i.e., obtaining “the
same” result when applying the same method to the same
data).

If we find evidence for the robustness of the results
across the different SCR quantification approaches, this
would argue in favor of the interchangeable use of differ-
ent SCR quantification approaches. This would be really
good news for the field. If we, in turn, observe a lack of
robustness as defined by the above criteria, we have iden-
tified a challenge that we can then take into account when
making analysis decisions and comparing SCR results.

2 | METHOD

2.1 | Systematic literature search

A systematic literature search was performed according
to PRISMA guidelines (Moher et al., 2009) covering all
publications (including e-pubs ahead of print) in PubMed
during the 6 months prior to March 22, 2019. This sys-
tematic literature search was performed to derive data in-
tended to serve as case examples for a number of research
projects such as our recently published work (Lonsdorf,
Klingelhofer-Jens, et al., 2019) and the present work. As
described in Lonsdorf, Klingelhofer-Jens, et al. (2019),
the following search terms were used: threat condition-
ing OR fear conditioning OR threat acquisition OR fear
acquisition OR threat learning OR fear learning OR threat
memory OR fear memory OR return of fear OR threat
extinction OR fear extinction. The original study was in-
cluded in case author corrections were published within
the search period, unless the study itself was already in-
cluded. From the identified 854 records listed in PubMed,
Stage 2 screening (abstract) included 152 records. For
Stage 3 screening (full text), 86 were retained. Screening
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served the aim that the final set of studies consisted of 50
records that reported results for (1) SCRs as an outcome
measure from (2) the fear acquisition training phase (3)
in human participants (a flow chart with details has been
published in Lonsdorf, Klingelhofer-Jens, et al., 2019). A
subset of the identified SCR quantification approaches
was subsequently applied to two independent data sets
(see below for details). The literature search here served
the purpose to guide our decision on which approaches to
apply here and to obtain an overview of what is commonly
used in the literature. Hence, the literature search can be
considered a tool rather than an aim in its own right.

2.2 | Participants and

experimental paradigms
2.2.1 | Dataset1: Hamburg

Participants

Data set 1 consisted of the acquisition phase (i.e., Day 1)
from the baseline (T,)) measurement of a longitudinal fear
conditioning study in 120 participants. Data from two par-
ticipants were excluded due to protocol deviations leav-
ing 118 participants for analyses (78 females, mean + SD
age of 24.38 + 3.7 years). All participants gave written
informed consent to the protocol which was approved by
the local ethics committee (PV 5157, Ethics Committee of
the General Medical Council Hamburg). Data set 1 has
been included as a case example in a previous publica-
tion (Lonsdorf, Klingelhofer-Jens, et al., 2019) focusing on
methodological questions (i.e., exclusion of “nonlearner”
and “nonresponder” in fear conditioning research).

Paradigm and stimuli

The paradigm (for details, see Lonsdorf, Klingelhdofer-
Jens, et al., 2019) consisted of a 2-day uninstructed fear
conditioning paradigm with habituation and acquisition
training taking place on Day 1 and extinction training
and recall test taking place on Day 2. The study included
a baseline measurement (7,,) and a follow-up measure-
ment (T;) 6 months later when the identical paradigm was
conducted again. During all experimental phases, BOLD
fMRI, fear ratings (after each experimental phase), and
skin conductance responses were acquired. BOLD fMRI
as well as fear ratings are, however, not included in the
present work, as it focuses exclusively on the methodo-
logical question of different approaches to SCR quantifi-
cation, and only data from the fear acquisition training
phase at T, were included. All data sets were trimmed to
this period of interest starting 2 s prior to the first event
of interest (i.e., first CS presentation during acquisition
training) and ending between 10 and 20 s (20 s trim cutoff
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value) after the last event of interest (i.e., last CS or US
presentation during acquisition training). Two light gray
fractals served as conditioned stimuli that were presented
14 times in a pseudo-randomized order for 6-8 s (mean:
7 s). Trial order was randomized in such a way that not
more than two trials of the same type (i.e., CS +, CS—) suc-
ceeded each other. Allocation of the two visual stimuli to
CS+ and CS- was counterbalanced between participants
and the CS+ was followed by the US in all cases during
fear acquisition training (100% reinforcement rate). A
white fixation cross was shown for 10-16 s (mean: 13 s)
which served as the intertrial intervals (ITIs). All stimuli
were presented on a dark gray background and controlled
by Presentation software (Version 14.8, Neurobehavioral
Systems, Inc, Albany California, USA).

The US was an electrotactile stimulus consisting of
three 2 ms rectangular pulses with an interpulse inter-
val of 50 ms (onset: 200 ms before CS+ offset) and was
administered to the back of the right hand of the partic-
ipants. It was generated by a Digitimer DS7A constant
current stimulator (Welwyn Garden City, Hertfordshire,
UK) and delivered through a 1 cm diameter platinum pin
surface electrode (Speciality Developments, Bexley, UK).
The electrode was attached between the metacarpal bones
of the index and the middle finger. US intensity was indi-
vidually calibrated in a standardized step-wise procedure
aiming at an unpleasant, but still tolerable level.

2.2.2 | Dataset2: Mainz

Participants

Forty male participants (mean + SD age 0f 28.1 + 2.7 years)
were included in the data set that was published previ-
ously (Gerlicher et al., 2018). All participants provided
written informed consent and the protocol was approved
by the local ethics committee (Ethikkommission der
Landesidrztekammer, Rheinland-Pfalz). Data of 2 partici-
pants on day 1 (fear acquisition) were excluded from the
analyses of SCR data presented in this work due to record-
ing artifacts, leaving data of n = 38 participants for statisti-
cal analysis of each phase.

Paradigm and stimuli

Data set 2 consists of a 3-day paradigm comprising fear
acquisition on Day 1, extinction and subsequent drug
administration on Day 2, and a test of the effect of the
drug manipulation on Day 3 (for details, see Gerlicher
et al., 2018) with only the fear acquisition training phase
used for the present work. During all experimental phases,
BOLD fMRI, expectancy ratings (before and after each
experimental phase), and skin conductance data were
acquired. BOLD fMRI as well as expectancy ratings are,

however, not included in the present work, as it focuses
exclusively on the methodological question of different
approaches to SCR quantification. Two black geometric
symbols (square and rhombus) served as CS+ and CS—
and were presented in the center of a computer screen.
The CSs were superimposed on background pictures of
either a kitchen or a living room. Assignment of symbols
to CS+ or CS— and rooms to background pictures were
randomized between participants. CSs were presented for
4.5 s. US delivery started at 4400 ms after CS onset and
terminated with CS presentation. Intertrial intervals lasted
17, 18, or 19 s (mean of 18.5 s). The trial order was rand-
omized in such a way that not more than two trials of the
same type (i.e., CS+, CS—) succeeded each other. During
fear acquisition training on Day 1, participants were pre-
sented with 10 CS+ and 10 CS— trials in context A. Five
out of 10 CS+ presentations (i.e., 50% reinforcement) were
reinforced with an electric stimulus. Stimulus presenta-
tion was controlled by Presentation software (Version 14.8,
Neurobehavioral Systems, Inc, Albany California, USA).

Electrical stimuli consisting of three square-wave
pulses of 2 ms (50 ms interstimulus interval) were em-
ployed as the US. The electrical stimuli were generated by
a Digitimer DS7A constant current stimulator (Welwyn
Garden City, Hertfordshire, UK) and delivered on the
right dorsal hand through a surface electrode with a plat-
inum pin (Specialty Developments, Bexley, UK). Before
the start of the experiment, the intensity of the US was
calibrated to a level described as painful, but still tolerable
by the participant.

2.3 | SCRrecording and response
quantification
2.3.1 | SCRrecording

Data set 1 (Hamburg)

Skin conductance response was measured via self-
adhesive Ag/AgCl electrodes placed on the palmar side of
the left hand on the distal and proximal hypothenar. Data
were recorded with a skin conductance unit together with
a Biopac MP150-amplifier system (BIOPAC® Systems Inc.,
Goleta, CA, USA) and converted from analog to digital
using a CED2502-SA with Spike 2 software (Cambridge
Electronic Design, Cambridge, UK). Data were recorded
continuously at 1000 Hz with a gain of 5 pQ/V and a
1.0 Hz hardware filter.

Data set 2 (Maing)

Electrodermal activity was recorded from the thenar
and hypothenar of the nondominant hand using self-
adhesive Ag/AgACl electrodes (EL-509, BIOPAC®
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Systems Inc., Goleta, CA, USA) filled with an iso-
tonic electrolyte medium and the Biopac MP150 with
EDA100C. All data sets were trimmed to 5 s prior to the
first event of interest (i.e., first CS presentation during
acquisition training) and 22 s after the last event of in-
terest (i.e., last CS or US presentation during acquisi-
tion training). The signal was low-pass filtered with a
second-order Butterworth filter with a cutoff frequency
of 1 Hz using Matlab 2019a (Mathworks®, Natick,
Massachusetts, USA).

2.3.2 | SCR quantification
approaches employed

We applied three different response quantification ap-
proaches including their subcategories to both data sets:
TTP was employed by two different raters for each data
set, one representative BLC approach (i.e., most com-
monly used specifications according to the literature
search; Sjouwerman et al., 2021) as well as computational
approaches as implemented in Ledalab (one representa-
tive setting) and PsPM (GLM-based as well as three differ-
ent DCM-based settings). This was done for the full fear
acquisition training phase for both data sets as well as (i)
for the first and (ii) second half of this phase separately
and by using (iii) the last two trials of fear acquisition
training only (results are presented in the Supplementary
Material). For Ledalab and PsPM, data used for (i), (ii),
and (iii) were derived from the same model as the full
phase. The decision to include these additional phases
was guided by the fact that the specific number of trials
included in the statistical models to analyze the success of
fear acquisition training is heterogeneous in the literature
as revealed by the systematic literature search (Lonsdorf
etal., 2021) and as illustrated for fear extinction (Lonsdorf
etal., 2021; Ney et al., 2020).

Here, we do neither employ an unsupervised fully
automated script-based TTP approach nor include
Autonomate because the supervised TTP approach offered
through Autonomate’s graphical user interface is reported
(Green et al., 2014) to be procedurally nearly identical to
the computer-assisted TTP approach employed here with
identical OLW and PDWs. The choice of approaches was
guided by the results of our systematic literature search
described in Section 3.1.

Trough-to-peak (TTP)

SCRs were scored computer-assisted by using a custom-
made computer program according to published guide-
lines (Boucsein et al., 2012) and while being blind to
stimulus type associated with a given SCR. More pre-
cisely, the trough was identified in an onset latency
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window (OLW) of 0.9-4 s (Boucsein et al., 2012) poststim-
ulus onset and the peak was identified in a peak detection
window (PDW) of maximally 5 s post-SCR onset. In case
of multiple peaks in the PDW, the first peak was consid-
ered. This approach corresponds to what has been recom-
mended by the Society for Psychophysiological Research
(see Boucsein et al., 2012) and corresponds to what has
been referred to as the so-called “first-interval response”
in fear conditioning research. Provided the CS-US inter-
val is sufficiently long (i.e., 6-10 s; Stewart et al., 1961)
three SCR components that map onto different underlying
processes can be distinguished in fear conditioning stud-
ies which have been referred to as the first-interval (FIR),
second-interval (SIR), and third-interval responses (TIR).
More precisely, the FIR (SCR onset: 1-4 s post-CS onset)
is considered an orienting response while the SIR (SCR
onset: 4 s post-CS onset to 1 s after CS onset) is thought to
reflect anticipatory responding to the soon to be presented
US and typically occurs only after contingency learning
(Ohman, 1972). Finally, the TIR is the response to the US
itself. This work on the three different components dates
back to the 70s (Ohman, 1972; Prokasy & Ebel, 1967,
Rescorla & Wagner, 1972) but the distinction between
these three intervals has not been universally adopted (for
a summary and critique, see Pineles et al., 2009). In fact,
“Of the two anticipatory response components, the first
is usually larger than the second and, because it is highly
sensitive to conditioning manipulations, it is frequently
the only one reported” (Lipp, 2006), possibly also because
the FIR has been shown to have higher reliability than the
SIR (Fredrikson et al., 1993). It is also important to note
that the assessment of the SIR is often not possible when
the CS-US interval is too short or when startle probes are
included in the experimental design (i.e., the SCR to the
probe confounds the SIR).

Raters 1 (TTP1) were experienced raters and Raters 2
(TTP2) were first-time raters for both data sets but differ-
ent individuals for these data sets resulting in a total of
4 raters. For TTP1, in the Hamburg sample, a stimulus-
specific time window was used with the OLW defined
for SCRs to the CS as 0.9 to 3.5 s and the US as 0.9-2.5 s
post-US onset, as suggested recently based on an empiri-
cal evaluation of SCR onset latencies across stimulus types
(Sjouwerman & Lonsdorf, 2019). This was done to have a
direct empirical comparison between these recently sug-
gested time windows and the time windows suggested in
the published recommendations by Boucsein et al. (2012),
which were applied for TTP2 (Hamburg) and both Mainz
rater.

Both raters for the Hamburg sample were trained by
the senior author and so was the experienced rater in the
Mainz data set (AMG) who then trained the first-time
rater in the Mainz data set.
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Data were downsampled to 10 Hz. Each scored SCR
was checked visually, and the scoring suggested by the
custom-made computer program was corrected if neces-
sary (e.g., the foot or trough when misclassified by the
algorithm was manually corrected, see Supplementary
Material for examples). Data with recording artifacts
(i.e., in more than half of the trials) were treated as
missing data points and excluded from the analyses.
For the Hamburg data sets, SCRs below 0.01 puS or the
absence of any SCR (i.e., flat line or habituation drift)
within the defined time window were classified as non-
responses and set to 0. The threshold of 0.01 pS for this
data set was determined empirically by visually inspect-
ing response specifically above and below this cutoff
(Lonsdorf, Klingelhofer-Jens, et al., 2019), which sug-
gested that in this data sets, responses >0.01 pS can be
reliably identified. For the Mainz data sets, a minimum
amplitude criterion of 0.02 uS was used.

Baseline correction (BLC)

A custom-made script in Matlab version R2019b
(Mathworks®, Natick, Massachusetts, USA) imple-
mented the BLC response quantification approach by
subtracting the mean of the 2 s time window prior to
stimulus onset from the subsequent highest value iden-
tified in a peak detection window (PDW). The PDW
spanned the minimal CS duration (6 s; as CS dura-
tion was jittered between 6 and 8 s) for the Hamburg
sample and the full CS duration (4.5 s) for the Mainz
sample for both, CS and US, stimuli. In light of a sub-
stantial degree of heterogeneity in the specification of
the duration of the baseline time window and the PDW
as revealed by the systematic literature search, these
specifications were decided on because they were the
most abundant ones in the literature search (n = 3, see
results and our related work for details on heterogene-
ity within the BLC approach, Sjouwerman et al., 2021)
and matched rather closely the criteria initially pro-
posed by Pineles (BWL: —2 s, PDW: full CS duration;
Pineles et al., 2009) (as described in the Introduction
and in Table 1). Note, however, that Pineles employed
an iterative algorithm in the program Mathematica
for peak detection that prevents the identification of a
peak despite the absence of a response (e.g., detection
of the peak at the first data point in the PDW when
no reaction is present but only a habituation drift).
Here, however, we did not use such an iterative algo-
rithm for the representative BLC approach as no pub-
lication identified through the systematic literature
search used an iterative algorithm. A comprehensive
discussion and evaluation of the different implementa-
tions of the BLC approach will be discussed elsewhere
(Sjouwerman et al., 2021).

Ledalab

A continuous decomposition analysis (CDA)
was conducted using Ledalab V3.4.9 (Benedek &
Kaernbach, 2010a) running in Matlab 2019b (Mathworks®,
Natick, Massachusetts, USA). CDA extracts phasic infor-
mation underlying the EDA signal. SCRs are deconvolved
by the general response shape and are then decomposed
into continuous phasic and tonic components. For data
preprocessing, a second-order low-pass Butterworth filter
was applied and data were downsampled to 10 Hz. The
“optimize” function, as implemented in Ledalab, was used
using default settings. The response window was defined
as 0.9-4.0 s after stimulus onset. The minimum thresh-
olds of SCRs were 0.01 and 0.02 pS for the Hamburg and
the Mainz data sets, respectively. For statistics, the “CDA.
SCR” value was extracted, representing the phasic SCR ac-
tivity most accurately without falling back on classic SCR
amplitude, which may, however, differ from TTP ampli-
tude (www.ledalab.de). According to the developers, the
CDA approach is the recommended approach in Ledalab
and was, among the publications using Ledalab, also most
frequently used according to our literature search.

PsPM

PsPM  single-trial ~ GLM. All  Psychophysiological
Modeling analyses (PsPM 4.3.0 [Bach et al., 2018])
were conducted in Matlab 2019b. To capture the nature
of increasing SCRs over time in the fear conditioning
paradigm due to learning, single-trial modeling was
conducted. To estimate single-trial SCR, we employed a
general linear model (Bach et al., 2009, 2013) comprising
one regressor for each CS onset and one regressor for
each US delivery and used a canonical skin conductance
response function with time-derivative (Bach et al., 2010)
and fixed response latency.

PsPM DCM fixed and flexible onset. Nonlinear modeling
(dynamic causal, DCM) in PsPM employs a nonlinear
inversion algorithm to infer single-trial estimates of
sudomotor impulse response magnitude (Bach et
al., 2010). Following the PsPM manual, in the first model,
we applied a “full interval” model in which the SCR
onset, and its onset latency as implemented in PsPM, can
be modeled within a time window that spans the entire
CS duration (i.e., until US onset). In a second model, we
defined a time window of 0-4 s (“restricted interval”) to
resemble the TTP (see 2.3.2.1) and Ledalab (see 2.3.2.3)
approaches. In a third model, a fixed latency response
at CS onset (i.e., DCM fixed onset) was defined. These
different models were specified to elaborate on the most
appropriate model and most appropriate time window in
light of the PsSPM manual indicating that DCM models
that allow for a flexible response onset come with the risk
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of absorbing SCR elicited by the US and US omission and
erroneously assigning it to the CS+. Thus, these models
are not recommended for analyzing reinforced SCR trials
that are particularly problematic for experimental designs
with 100% or high reinforcement rates. More precisely,
PsPM’s manual states for the nonlinear model, “for
fear conditioning paradigms, the best way of modelling
anticipatory SCR is currently under investigation. It is
possibly suboptimal to model one anticipatory “flexible”
response, in particular at longer CS/US SOAs when this
flexible response may absorb SCR elicited by US or US
omission” (cf. page 22, manual for PsPM 4.3.0, http://
pspm.sourceforge.net/). In all three DCM models (i.e.,
fixed, full interval, and restricted interval), the response
latency was fixed at US onset and US omission for each
trial.

2.4 | Statistical analyses

All analyses were conducted in R version 4.0.2.

2.4.1 | Within SCR quantification
approach analyses

For all subject-specific mean stimulus SCRs, as quanti-
fied by all here employed approaches, Bayesian paired
two-sample ¢ tests as implemented in the “BayesFactor”
(https://CRAN.R-project.org/package=BayesFactor, ver-
sion 0.9.12-4.2) package (Morey & Rouder, 2015) were
conducted in R to assess CS+/CS— discrimination. The
package’s ¢ test BF function was used with 1000,000 it-
erations to extract the posterior of the effect size for CS
discrimination for each iteration per subject. The median
effect size and its 95% credible intervals (Crls) were cal-
culated and the Bayes factor was extracted using the ex-
tractBF function. To provide complementary analyses that
provide results based on most commonly employed fre-
quentist statistics to assess mean differences between CS+
and CS— (CS+/CS— discrimination), parallel analyses
employed paired ¢ tests for all approaches using R’s t test
function yielding p values and 95% confidence intervals.

2.4.2 | Evaluation of

robustness of the effect against and
consistency of the effect between different
SCR quantification approaches

Here, we adopted criteria for the evaluation of a set of
robustness analyses from criteria suggested for the eval-
uation of outcomes from replication attempts (LeBel
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et al., 2018). The robustness analyses presented here test
whether different SCR quantification approaches ap-
plied to an identical data set to yield results that justify
interpreting and using the different approaches inter-
changeably. More precisely, we aim to empirically eval-
uate whether different approaches can be considered
exact/very close replications or should be considered far
(or conceptual) replications in the data sets used here.
Even though LeBel et al. used a frequentist framework
to evaluate replicability, while we use a Bayesian ap-
proach to evaluate robustness, we consider the criteria
to be generally applicable to our purposes. More pre-
cisely, we adopt the following criteria that we will apply
to our data:

a. Is a signal detected within each approach? A signal
is considered detected when the 95% Crl around the
effect size point estimate does not include zero.

b. How precise is the effect size estimate within each ap-
proach? How wide are the CrI’s within the different
SCR quantification approaches?

c. Are the effect size estimates consistent across ap-
proaches? Consistency between two effects is consid-
ered given when the effect size point estimate of one
approach is included in the other effect size’s CrIs.

2.4.3 | Measures of agreement across SCR
quantification approaches

Most commonly the intraclass correlation coefficient
(ICC) has been used in comparative research. The ICC
is a “measure of agreement, corrected for the agree-
ment expected by chance” (cf. Bland & Altman, 1990)
and is based on data that are centered and scaled using
a pooled mean and standard deviation (in “traditional,”
Pearson’s correlation, each variable is centered and
scaled by its individual mean and standard deviation).
The ICC is commonly used to assess the consistency of
measurements made by multiple observers (Shrout &
Fleiss, 1979), in this case, multiple response quantifica-
tion approaches. However, the use of the ICC has been
criticized (Bland & Altman, 1990) and problematically,
in case of systematic differences across approaches,
which likely do exist here, the ICC is a composite of in-
traobserver and interobserver variability (with observer
here being approach) and may yield implausible results.
In light of these criticisms which will not be reiterated
in full detail (Shrout & Fleiss, 1979), the ICC is not con-
sidered the optimal tool for the assessment of interrater
or intermethod agreement. Thus, we use an alternative
measure that has the advantage of “high flexibility re-
garding the measurement scale, the number of raters,
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[and] can handle missing data” (cf. Zapf et al., 2016):
the alpha coefficient suggested by Krippendorff
(Krippendorff, 1970) as comprehensively described by
Zapf and colleagues (2016). We use Krippendorff’'s o
to investigate the agreement between two raters using
the TTP approach (a) across all trials, (b) trial-by-trial,
and (c) per CS type. Furthermore, we assess the agree-
ment across all approaches investigated here including
both TTP raters (n = 8 approaches) (a) across all trials,
(b) trial-by-trial, and (c) per CS type. We also provide a
trial-by-trial pairwise agreement between the different
approaches (n = 8) across all CS types and per CS type, re-
spectively. Finally, we assessed trial-by-trial agreement
between all possible pairs of quantification approaches.
Krippendorff’s « is a reliability coefficient with values
ranging from —1 to 1, where —1 is perfect disagreement
and 1 is perfect agreement. According to Krippendorff,
a of >0.8 is required for agreement (Krippendorff, 2004).
Benchmark values have been suggested (Landis &
Koch, 1977) for interpretation of the strength of agree-
ment as substantial (0.61-0.8), moderate (0.41-0.6), and
fair (0.21-0.40). All analyses were conducted in R 4.0.2
using the script provided by Zapf et al. (2016) selecting
ordinal measurement scaling, a two-sided type one error
of 5%, and 1000 bootstrap samples.

3 | RESULTS

3.1 | Systematic literature search

The systematic literature search revealed that trough-
to-peak (TTP) scoring (n = 24) and baseline correction

(a) ... (b)
|

1 square = 1 publication

. TTP (comp. assisted) TTP (custom script) Ledalab
[l TP (Autonomate) BLC B scralyze/PsPM

EEEN =

SE

(BLC) approaches (n = 18 including two that used SCL
rather than SCR but applied a baseline correction ap-
proach) were most abundant in the publications exempla-
rily screened (published between 06/2018 and 02/2019),
whereas model-based approaches (n = 5) were less fre-
quently employed (see Figure 1a). Of the model-based ap-
proaches, n = 4 used Ledalab (n = 3 CDA with varying
time windows, n = 1 DDA) and n = 1 study used the GLM
approach as implemented in PsPM/SCRalyze. Within the
TTP approach category, manual or computer-assisted TTP
scoring are subsumed under the term “computer-assisted”
and was most commonly applied (n = 19) and the software
Autonomate was applied in three studies (n = 3) while a
custom-made script was used in two (n = 2) studies. Of
note, it was oftentimes unclear which software program
(e.g., Matlab, Acknowledge, custom-made) was used for
TTP scoring and procedures were often described as very
rudimentary to an extent that it is possible that some
studies actually used custom-made scripts rather than
computer-assisted TTP scoring. Furthermore, it was often
not clear if the time window described referred to the time
window in which the onset (OLW) or the peak (PDW) had
to occur. In light of the slow-responding SCR, this is a cru-
cial difference. Three studies were excluded: two studies
reported skin conductance level rather than SCR which
was quantified through other means than BLC and one
did record SCR but did not report methods for response
quantification or SCR results as they did fail to observe
differential responding (i.e., CS+ > CS—) in SCRs. Thus,
from the 50 publications included 47 reported methods for
SCR quantification.

Of note, these categories of approaches (TTP, BLC,
model-based) were not homogeneous in themselves as

— O

custom script ‘
LEDA CDA |
LAB

GLM single-trial

DCM full CS interval (FI)
DCM fixed onset (FO)

DCM restr. interval (RI)

FIGURE 1 (a)Frequency of different SCR quantification approaches exemplified from the systematic literature search which included
47 publications, published between 06/2018 and 02/2019. (b) Illustration of the different SCR quantification approaches employed to the two
independent data sets in the current work: trough-to-peak (TTP), baseline correction (BLC), Ledalab, as well as PsPM (formerly SCRalyze)

with four different specifications
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across studies different criteria were applied to define a valid
response, which is—at least in part—attributable to different
procedural specifications (e.g., CS and ITI durations). For
conciseness, we here selected one representative set of crite-
ria for each approach (i.e., TTP, Ledalab, BLC, see Methods
for justification for the choice of specifications for each ap-
proach) and included four different implementations of-
fered by PsPM (see Figure 1b). The latter decision was based
on a look into the future for which we envision enhanced
reproducibility of SCR response quantification which can be
achieved optimally through model-based approaches.

3.2 | Descriptive presentation of trial-by-
trial SCR trajectories and average values
across SCR quantification approaches

Here, we present trial-by-trial SCR trajectories for the CS+,
CS—, and US during fear acquisition training as derived
from the different SCR quantification approaches employed
for both data sets (see Figure 2a,b) as well as averaged SCR
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values across all trials per stimulus type (i.e., CS+, CS—, and
US, see Figure 2c,d). On a descriptive level, in both data
sets (Hamburg, Mainz), the trial-by-trial trajectories appear
to follow a similar pattern when responses are quantified
through the TTP, BLC, Ledalab approach, or the single-trial
GLM approach implemented in PsPM. The trial-by-trial tra-
jectories based on the three different DCM approaches im-
plemented in PsPM (i.e., full interval [FI], fixed onset [FO],
and restricted interval [RI]) deviate on a descriptive level
from the trajectories derived from the above-mentioned ap-
proaches. More precisely, data derived from the DCM FI
approach (for both the Hamburg and the Mainz data sets)
and the RI approach (primarily Mainz data set) apparently
yielded larger CS+ responses but substantially smaller US
responses. This was particularly pronounced in the Mainz
data sets in which the CS duration was shorter than in the
Hamburg study (Mainz: 4 s, Hamburg: 6-8 s jittered) and
the reinforcement ratio was partial (50%) while it was full
(100%) in the Hamburg study. This might be indicative of an
overestimation of CS+ responses at the cost of underestima-
tion of US responses. This is in line with the PsPM manual

Hamburg Mainz
(a) (b) Stimulus - CS+ -+ CS- - US
TTP rater 1 TTP rater 2 Baseline Correction LedaLab SCR TTP rater 1 TTP rater 2 Baseline Correction Ledalab SCR
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FIGURE 2 Trial-by-trial trajectories for the CS+ (red), CS— (blue), and US (black) during fear acquisition training for the Hamburg

(a) and Mainz (b) samples illustrated for all different SCR quantification approaches employed: TTP Rater 1 and TTP Rater 2, baseline
correction (BLC), Ledalab, PsPM single-trial GLM, PsPM DCM with flexible response onset in full CS interval (FI), PsSPM DCM with the
fixed response at CS onset (FO), and PsPM DCM with flexible response onset in a restricted interval (RI). Furthermore, the averaged raw
SCRs (plus standard error) for the CS+ (red), CS— (blue), and US (black) for each SCR quantification approach employed in the Hamburg
(c) and Mainz (d) data sets are shown. Supplementary Figure S1 illustrates trial-by-trial average values derived from the different
quantification approaches in a single figure, and supplementary Figure S2 shows the averaged raw SCRs split up for the first and second half
of fear acquisition training. Note that in the Hamburg sample, a 100% reinforcement rate was employed, whereas a 50% reinforcement rate
was employed in the Mainz sample resulting in a reduced number of US responses available. As indicated in the PsPM manual, PsPM DCM
models that allow for a flexible response onset (here: FI and RI) come with the risk of absorbing SCRs elicited by the US and US omission
and erroneously assigning it to the CS+ when the CS-US interval is short
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noting that PsPM DCM models that allow for a flexible re-
sponse onset come with the risk of absorbing SCRs elicited
by the US and US omission and erroneously assigning it to
the CS+. Indeed, in the Mainz data, the DCMs with flex-
ible response onset (FI, RI) and in the Hamburg data set, the
DCM modeling the full interval (FI) seem to underestimate
US responses and instead overestimate reinforced CS+ re-
sponses (note, order of CS+ responses differed between
participants). Thus, these models do not seem suitable for
analyzing reinforced SCR trials that are particularly prob-
lematic in paradigms with 100% or high reinforcement rate
as all CS+ trials are reinforced. Yet, also when only analyz-
ing unreinforced CS+ trials, this results in a reduced num-
ber of CS+ trials which necessarily impacts on the variance
of the data which may turn out to be different between the
CS— and the CS+ due to the different number of trials in-
cluded in the analyses.

Furthermore, for the Mainz sample, the trajectories
yielded by PsPM’s FI model (i.e., modeling the full CS
duration of 4.5 s) and the restricted interval model (i.e.,
modeling 0-4 s post-CS onset) unsurprisingly result
in near-identical results as the CS duration (4.5 s) was
only 0.5 s longer than the definition of the restricted
interval (i.e., 4 s post-CS onset). In the Hamburg data

set in which the CS duration was longer (6-8 s jittered),
however, both approaches differ substantially (i.e., full
interval modeled 0-6, 0-7, or 0-8 s, restricted interval:
0-4 s). It is striking that in the Hamburg sample, in
which the CS-US interval is much longer than in the
Mainz sample, the trajectory derived from the DCM
RI model (i.e., CS modeled as 0-4 s post-CS onset)
resembled the trajectories of the TTP, BLC, Ledalab,
and PsPM GLM model approaches despite apparently
smaller differences between the CS+ and the CS— (see
also 3.3. for statistics). Yet, the US trajectory is rather
comparable.

3.3 | CS discrimination and
effect sizes for the different SCR
quantification approaches

Both frequentist (Figure 3a,b) and Bayesian
(Figure 3c,d) paired two-sample ¢ tests indicate signifi-
cant CS discrimination during fear acquisition training
for data derived from all different SCR quantification
approaches employed (all p’s < .003, BFs > 7.16, see
Figure 3a,b), even though CS discrimination values
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FIGURE 3 CSdiscrimination (based on raw values per CS type during fear acquisition training) based on data derived through different

Effect size (8) for SCR CS+/CS- difference

SCR quantification approaches in the Hamburg (a, c) and Mainz (b, d) data sets. A and B show mean CS discrimination (+standard error)

and results as a table (i.e., mean, p values, confidence intervals) from paired-sample ¢ tests, whereas c and d show corresponding effect
sizes (zcredible intervals) as well as results as a table (i.e., Bayes factors and credible intervals) as derived from the Bayesian paired two-
sample ¢ tests for the Hamburg (c) and Mainz (d) data sets. Supplementary Figure S3 shows this split up for the first and second half of fear
acquisition training. Normalization (e.g., Z scoring) can naturally increase effect sizes. In our data, z scoring does not change the general
pattern of heterogeneous effect size point estimates between quantification methods (see supplementary Figure S4)
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differed numerically between approaches. Similarly,
resulting effect size estimates derived from Bayesian
paired two-sample ¢ tests (Figure 3c,d) differed between
response quantification approaches with marked vari-
ation in the Hamburg sample and lower variation be-
tween effect sizes but also wider credible intervals in
the smaller Mainz sample.

It is striking that there is no clear pattern between both
data sets that can be taken to identify a specific SCR re-
sponse quantification approach that results in generally
higher or lower effect sizes across both paradigms which
differ in CS duration (4.5 s vs. 6-8 s), a number of trials
(10 vs. 14), and reinforcement rate (50% vs. 100%) as well
as the sample size (38 vs. 118 participants).

3.4 | Formal
comparison of robustness of results across
SCR quantification approaches

Here we evaluate the results of the sets of robustness anal-
yses based on three criteria borrowed from a framework
suggested for the evaluation of “replicability”: (1) the ex-
istence of a signal, (2) its precision, and (3) the pairwise
consistency of results.

First, as described above (see 3.3), a signal is defined
here as larger SCRs to the CS+ compared with the CS-
averaged across all trials of the fear acquisition training
phase. A signal is obtained for SCRs quantified from any of
the eight approaches employed here in both the Hamburg
and the Mainz samples.

Second, effect sizes are more precise in the larger
Hamburg data sets (Crl width [min-max]: 0.363-0.445)
compared with the smaller Mainz data set (Crl width
[max-min]: 0.702-0.843), {(7) = —16.12, p < .001, but are
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rather similar within different approaches applied to the
data of one data set.

Third, the pairwise consistency of effect sizes as in-
dicated by the point estimate of one effect size falling
within the 95% CrI of the other estimate is summarized in
Table 2. For both the Hamburg (black) and Mainz (blue)
data set, effect sizes derived from TTP1 and TTP2 as well
as TTP1 and BLC and TTP2 and BLC were consistent with
each other. For the Hamburg data set, effect sizes derived
from these three approaches (TTP1, TTP2, and BLC) were
consistent with those derived from Ledalab while they
were inconsistent with those derived from Ledalab in the
Mainz data set with Ledalab resulting in larger effect sizes
than any of the other approaches.

For the Mainz data set, all pairwise comparisons be-
tween effect sizes derived from any of the four PsPM mod-
els and the four other approaches (TTP1, TTP2, BLC, and
Ledalab) yielded consistent effect sizes with the excep-
tion of Ledalab yielding inconsistently larger effect sizes
than the DCM fixed onset (FO), TTP1, TTP2, and BLC
approaches. Yet, it has to be highlighted that the 95% CrI
in the smaller Mainz data set are wide and larger sample
sizes may result in a different conclusion.

In the Hamburg data set, in turn, effect sizes derived
from PsPM’s single-trial models were inconsistent (i.e.,
smaller) with effect sizes derived with the aforementioned
four approaches (TTP1, TTP2, BLC, and Ledalab). In fact,
for the Hamburg sample, effect sizes derived from any of
the PsPM-based approaches were smaller than these four
approaches (TTP1, TTP2, BLC, and Ledalab) and have to
be evaluated as inconsistent with these as their respec-
tive point estimates fall outside of the 95% CrI of any of
these approaches. Within the different PsPM approaches,
effect sizes derived from the single-trial GLM model and
the DCM full interval (FI) model are consistent with each

TABLE 2 Pairwise consistency between different SCR quantification approaches with ¢ indicating consistency and X indicating
nonconsistency for the Hamburg sample (in black: X, ') and the Mainz sample (in blue: & v") for trough-to-peak (TTP), baseline correction
(BLC), Ledalab, as well as four different models in PsPM including the trial-wise general linear model (GLM) as well as three dynamic
causal modeling (DCM) models with full interval (FI), flexible onset (FO), and restricted interval (RI)

\ BLC Ledalab
vy V% x v x v x v x v
| vV V% x v x v x v x v
BLC V% xv xv x v x v
Ledalab xv xv x % x v
v v xv x v
vv x v
v v
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other while the effect size derived from the single-trial
GLM model is inconsistent with the fixed onset (FO) and
restricted interval (RI) models with larger effect sizes de-
rived from the GLM model compared with the FO and the
RI models.

The fixed onset (FO) model’s effect sizes were con-
sistent with both the full (FI) and restricted interval (RI)
models’ effect sizes but the effect sizes derived from the
full interval (FI) model were inconsistently larger than
those derived from the reduced interval (RI) model.

3.5 | Agreement between different SCR
quantification approaches

Across all SCR quantification approaches, trial-wise agree-
ment in the Hamburg sample (see Figure 4b) was mostly
moderate to substantial but for some trials also fair. In the
Mainz sample, it was poor to substantial (Figure 5b). In
the Hamburg sample, substantial agreement was observed
for the CS+ trials (average [range]: 0.618 [0.533 to 0.708])
as well as for the US trials (average [range]: 0.631 [0.577 to
0.715]). Agreement for the CS- trials, however, was only
moderate (average [range]: 0.500 [0.311 to 0.673]) in the
Hamburg sample. In the Mainz sample in turn, substan-
tial agreement was observed for the CS+ (average [range]:
0.639 [0.449 to0 0.769]) and the CS— (average [range]: 0.726
[0.653 to 0.805]) while agreement was only fair for the US
(average [range]: 0.226 [0.165 to 0.330]).

When excluding the three PsPM DCM models which
may not be optimally suited for the analyses of fear con-
ditioning data derived from the experimental designs em-
ployed here (see above and see PsSPM manual 4.3.0, page
22), agreement in the Hamburg sample remained substan-
tial for the CS+ (average [range]: 0.778 [0.567 to 0.861])
and US (average [range]: 0.800 [0.734 to 0.845]) and re-
mained moderate for the CS- ((average [range]: 0.578
([0.376 to 0.720]). For the Mainz sample, agreement for
the CS+ trials (average [range]: 0.808 [0.493 to 0.875]) and
CS- (average [range]: 0.749 [0.619 to 0.842] also remained
substantial when excluding the three PsSPM DCM models
while agreement for the US trials improved from fair to
substantial (average [range]: 0.668 ([0.543 to 0.882]).

The trial-wise agreement between pairs of SCR quan-
tification approaches in the Hamburg sample (Figure 4a)
and the Mainz sample (Figure 5a) differed substantially
with some approaches showing consistent and near-
perfect agreement across stimulus types (e.g., TTP1 vs.
TTP2) and data sets. Yet, the pattern of pairwise agree-
ment was often not consistent across both data sets. In the
Hamburg data set, the agreement seems to be lowest for
the CS- trials, whereas in the Mainz sample, the agree-
ment seems to be lowest for the US trials.

3.6 | Secondary question: Interrater
comparisons for computer-assisted
TTP scoring

For both data sets (Hamburg and Mainz), two independ-
ent raters quantified SCRs through computer-assisted
TTP scoring whereof Rater 1 at both sites was experi-
enced and Rater 2 at both sites was the first-time rater
(note that Raters 1 and 2 were different individuals for
both sites, i.e., there were a total of 4 raters). Note, how-
ever, that Hamburg Rater 1 and Rater 2 used slightly
different scoring criteria (i.e., 0.9-3.5 and 0.9-4.5 s
OLWSs). Formal interrater reliability coefficients using
Krippendorff’s alpha indicate near-perfect agreement
across all trials and CS types (Hamburg sample: aver-
age Krippendorff’s alpha [lower/upper bounds of CIs]:
0.962[0.955, 0.969]; Mainz sample: 0.973 [0.954, 0.991]).
Reliability coefficients calculated separately for the
stimulus types also revealed near-perfect agreement for
the CS+ (Hamburg sample: 0.961 [0.948, 0.974]; Mainz
sample: 0.990 [0.977, 0.998]), the CS- (Hamburg sample:
0.948 [0.934, 0.962]; Mainz sample: 0.992 [0.984,0.997]),
and the US (Hamburg sample: 0.961 [0.946, 0.975];
Mainz sample: 0.919 [0.823, 0.986]).

Finally, the range of trial-wise agreement (see
Supplementary Table S1) revealed near-perfect agreement
across trials for the Hamburg sample [0.845, 0.996] and
the Mainz sample alike [0.860, 1].

Figure 6 illustrates the excellent interrater reliability on
a CS-type level (i.e., averaged SCR magnitude per stimulus
type for Rater 1 and Rater 2) per individual. Note that the
figure illustrates this descriptively on an individual level
(i.e., connects the average SCR magnitude value as scored
by Rater 1 and Rater 2 for data from the same participant,
while the analyses described above (i.e., Krippendorft’s
alpha) do not include the individual subject level.

4 | DISCUSSION

Here, we provide a comparison between seven different
SCR quantification approaches in two data sets. The over-
arching aim of this work was to (a) evaluate if and to what
extent seven different approaches lead to comparable results
as well as (b) investigate the interrater agreement between
two individuals performing TTP scoring in two data sets.

4.1 | Take-home message from the
systematic literature search

Our work departs from a systematic literature search that
was intended to guide our selection of the to be included
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FIGURE 4 Krippendorff’s alpha (and CIs) as a measure of agreement between SCR quantification approaches, as calculated in the
Hamburg sample (a) across all eight approaches employed for each trial during fear acquisition training. And as calculated (b) for pairwise
comparisons between the eight different approaches employed here (including the three DCM models). Different stimulus types are color
coded with the CS+ in red, CS— in blue, and the US in black. Vertical lines are positioned at 0.8 and 0.4 highlighting benchmarks for
near-perfect agreement (>0.80) and fair to poor (<0.41) according to the benchmarks suggested by Landis and Koch (1977). According to
the benchmarks by Landis and Koch (1977), values can be interpreted using the following benchmarks for Krippendorff’s a < 0 “poor”
agreement, 0 to 0.2 “slight,” 0.21 to 0.40 “fair,” 0.41 to 0.60 “moderate,” 0.61-0.80 “substantial,” and 0.81 to 1 “near perfect.” Note that trial
sequences on the y axis in the smaller tiles in panel B are identical to the trial sequence on the y axis in B
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FIGURE 5 Krippendorff’s alpha (and CIs) as a measure of agreement between SCR quantification approaches as calculated in the
Mainz sample (a) across all eight approaches employed for each trial during fear acquisition training and as calculated (b) for pairwise
comparisons between the eight different approaches employed here (including the four DCM models). Different stimulus types are color
coded with the CS+ in red, CS— in blue, and the US in black. Vertical lines are positioned at 0.8 and 0.4 highlighting benchmarks for near-
perfect agreement (>0.80) and fair to poor (<0.41) according to the benchmarks suggested by Landis and Koch (1977). According to the
benchmarks by Landis et al. (1977), values can be interpreted using the following benchmarks for Krippendorff’s a < 0 “poor” agreement,
0to 0.2 “slight,” 0.21 to 0.40 “fair,” 0.41 to 0.60 “moderate,” 0.61-0.80 “substantial,” and 0.81 to 1 “near perfect.” Note that trial sequences on
the y axis in the smaller tiles in panels C and D are identical to the trial sequence on the y axis in A and B
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during fear acquisition training. Subplots show single-trial or pairwise discrimination values as well as box plots and densities for both raters

with identical trials connected through lines. Note that densities are nearly completely overlapping. Note that Raters 1 and 2 were different

individuals in the Hamburg and Mainz samples. Also note that both raters used the same criteria in the Mainz sample, whereas in the

Hamburg sample, both raters used slightly different criteria to allow for a direct comparison of two previously suggested sets of criteria (see

Methods for details)

SCR quantification approaches. Even though the litera-
ture search hence mainly served as a tool, some important
take-home messages can be derived: First (computer-
assisted) TTP scoring and BLC through custom-made
scripts seem to be the prevailing approaches for SCR
quantification in fear conditioning research to date. Our
literature search, however, covers only articles published
in a 6-month period until early 2019 and we anticipate that
the model-based approaches may become increasingly at-
tractive with increasing appreciation of the value and im-
portance of computational reproducibility. Yet, a recently
published study that focuses on different filter settings in
SCR quantification also included a systematic literature
search of fear conditioning studies covering 2019 and 2020
(Privratsky et al., 2020) and the frequencies that can be de-
rived from the Supplementary Material seem comparable
to what we found.

Second, the SCR quantification approaches identified
(i.e., TTP, BLC, Ledlab, and PsPM) do not represent uni-
tary methods but come in heterogeneous specifications

(see, e.g., Table 1). This likely originates—at least partly—
from differences in experimental paradigms, particularly
timing and duration of stimulus presentation. This, how-
ever, is unlikely to be obvious for novices or researchers
outside the field and we thus recommend explicitly and
clearly justify specific choices for response quantification
criteria including appropriate references. More precisely,
TTP and BLC approaches differ in the definition of onset
latency, baseline, and peak detection time window, and
a comprehensive overview has been provided by Pineles
et al. (2009). Similarly, a number of different settings and
approaches are offered by software programs that imple-
ment model-based approaches such as Ledalab (http://
www.ledalab.de/documentation.htm) and PsPM (e.g.,
GLM-based, DCM-based with different possible settings
each, http://pspm.sourceforge.net/documentation/). The
specific model, the chosen settings, and, if applicable, the
selected output measure (e.g., parameter estimate, recon-
structed response, the area under the curve, etc.) need to
be reported in enough detail to allow for computational
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reproducibility, which is often not the case as revealed
by our literature search. We refer to our related work
(Sjouwerman et al., 2021) for an investigation of within-
approach heterogeneity with a focus on the BLC method as
an in-depth discussion is beyond the scope of the present
work.

Third, we noticed that navigating among the different
SCR quantification approaches and terminology employed
in the literature can be rather challenging even for re-
searchers familiar with the field. For instance, TTP scoring
has sometimes been referred to as (standard) “peak scor-
ing,” a term that has also been used to subsume TTP and
BLC approaches (Privratsky et al., 2020). This distinction
is, however, important as the onset latency window (OLW)
for TTP scoring cannot be employed as a peak detection
window (PDW) in BLC approaches (as done in Privratsky
et al., 2020) simply as the onset of a stimulus induced SCR
(i.e., OLW) occurs with a different timing from CS onset
as the peak (i.e., PDW) and hence the peak may be missed.
This is rather likely when employing windows as short
as 0-3 s (Privratsky et al., 2020) taken from the OLW as
PDW. To avoid this jingle (i.e., assuming erroneously that
two different things are the same because they bear the
same name)-jangle (i.e., two identical things are errone-
ously considered to be different because they carry differ-
ent names) fallacy, we suggest using standard terminology
and to describe methods and procedures as precisely and
transparently as possible. This includes ensuring that
references refer to the procedure employed in all details,
which was not always true for the publications included in
the systematic literature search. It was most striking that
many publications employing the BLC approaches often-
times cited the study by Pineles et al. (2009) as a reference,
which, however, used an iterative algorithm and often dif-
ferent time windows than the citing literature. The articles
identified through the literature search, however, were ex-
clusively based on custom-made scripts that did not seem
to include an iterative algorithm but were also not shared
with the articles. In conclusion, we see an urgent need for
more standardization in the field with respect to the defi-
nition of time windows, peak detection (first, largest), and
reporting standards.

4.2 | Comparison between
different approaches

Here, we applied seven different SCR quantification ap-
proaches to two independent data sets in a manyverse
approach: computer-assisted TTP scoring, a representa-
tive BLC approach, CDA as implemented in the software
Ledalab as well as four different models offered by the
software PsPM (GLM single trial, DCM full interval, DCM

fixed onset, and DCM restricted interval). Furthermore,
two independent raters performed TTP scoring in both
data sets—whereof one first-time rater and one expe-
rienced rater to allow for the assessment of interrater
reliability.

42.1 | (Computational) reproducibility and
concordance between TTP raters

From a computational reproducibility perspective (i.e., ob-
taining the same results when applying the same methods
to the same data), fully unsupervised and fully automatized
procedures offer practical and methodological advantages
and are available for the TTP approach (i.e., Autonomate,
Green et al., 2014), inherent in the model-based computa-
tional approaches (e.g., PsPM, Ledalab) and implemented
in the script-based BLC approaches. Yet, reproducibility is
limited as particularly the custom-made scripts were not
publicly available. Computer-assisted or manual TTP scor-
ing approaches, in turn, require extensive training prior
to performing the scoring, are never completely free from
scorer bias and human errors, and require substantial time
investments when a large number of trials and/or a large
number of participants are included. From a reproducibil-
ity perspective, however, within-lab interrater concordance
rates reported here are near perfect for both data sets even
with a slight change in employed criteria (i.e., TTP1 and
TTP2 in the Hamburg sample) and one rater being experi-
enced while one was the first-time rater. This matches high
concordance rates as reported in previous reports (average
ICC: .982; Green et al., 2014) and together suggests that
reliability and reproducibility may not be a major concern
for computer-assisted TTP scoring, provided raters are well
trained. Our results are reassuring and echo previous find-
ings that suggest that the reliability of TTP scoring is excel-
lent. Note, however, that all four raters were directly (both
raters for the Hamburg data set, experienced rater for the
Mainz data set) or indirectly (new rater for the Mainz data
set) trained by the senior author (T.B.L.) and it cannot be
excluded that agreement between raters trained in different
research groups may yield less-consistent results. A future
direction could be to have different labs using the TTP ap-
proach scoring the same data set and investigating the con-
vergence rates (i.e., many labs approach).

Relatedly, we note also substantial heterogeneity in the
time windows and peak definitions (e.g., first peak, highest
peak) used for TTP scoring in the literature. For instance,
our literature search revealed that some authors use what
corresponds to the First-interval response (FIR) in fear con-
ditioning research (i.e., onset latency window, 0.9-4 s or
0.9-3.5 s) as used here, whereas others identify a peak in the
entire CS duration (or entire CS duration +0.5 s) window
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starting from CS onset, CS onset +0.5 s, or CS onset +1 s or
in a time window that spans the full CS duration (or start-
ing from CS onset +1 s) to 2 s after CS offset (the latter of
which likely partly captures the SCRs to the US as this also
seems to be applied to reinforced CS+ trials). Hence, future
work should also focus on the role of between-study hetero-
geneity in TTP scoring between different laboratories which
could also be done in a many labs approach.

4.2.2 | Robustness of the CS discrimination
effect against different response
quantification approaches

The application of different SCR quantification ap-
proaches to the same data sets can be viewed as a set of
robustness analyses (i.e., applying different processing or
analysis pipelines to the same data) with the overarching
aim to investigate if and to what extent the different meth-
ods lead to comparable results within each data set. As we
are not aware of a formal framework for the evaluation
of the outcome of robustness analyses, we here borrowed
some criteria from a framework suggested for the evalua-
tion of “replicability” in general (LeBel et al., 2018). More
precisely, we evaluated whether there was (a) a signal.
This is in the context of this work defined as significant
CS discrimination. We furthermore evaluated (b) whether
the effect size of this signal was consistent across the dif-
ferent approaches, and whether (c) the (relative) precision
of the effect differed across the different SCR quantifica-
tion approaches.

In sum, a signal (i.e., significant CS discrimination)
was universally observed in both data sets irrespective of
the quantification approach. As we focused on the average
responding during the full fear acquisition training phase
in which strong CS discrimination is typically observed, it
cannot be excluded that a focus on a subtler effect in dif-
ferent experimental phases such as a return of fear test or
recall phase may lead to different results across SCR quan-
tification approaches. This would be important to address
in future work.

Furthermore, the precision of the resulting estimates
did not differ significantly between different SCR quan-
tification approaches applied within the data sets, which
is novel and relevant information that has not been ad-
dressed before.

Yet, the effect sizes yielded by the different approaches
were not universally consistent: In the Hamburg sample
(N = 118, 100% reinforcement rate, CS duration: 6-8 s),
both TTP raters (TTP1 and TTP2), the BLC approach, as
well as the CDA approach implemented in Ledalab yielded
consistent effect sizes while effect sizes generated through
any of the PsPM models were smaller and inconsistent

IPSYGHUPHYSIOI.OGY sprf

with all of the aforementioned approaches. In addition,
the four PsPM models did not yield consistent effect sizes
either when compared to each other in the Hamburg data
set. In the smaller Mainz sample (N = 38, 50% reinforce-
ment rate, CS duration: 4.5 s), however, most approaches
yielded consistent effect sizes even though it has to be
noted that the CrIs were wider as in the larger Hamburg
sample. Still, the CDA approach as implemented in
Ledalab yielded an effect size that was inconsistent with
and larger than those yielded by TTP1, TTP2, BLC as well
as one of the PsPM models (i.e., DCM FO).

4.2.3 | Comparable results yielded by the
TTP and representative BLC approach

From this pattern of (in)consistency, we conclude that in
the two data sets investigated here, only a few SCR quan-
tification approaches yielded comparable effect sizes in
both data sets, despite numeric differences between the
CS+ and the CS— (CS discrimination): TTP and the repre-
sentative BLC approach employed as well as some of the
PsPM models (i.e., GLM and DCM FI; DCM FI and DCM
FO; as well as DCM FO and DCM RI).

With respect to the TTP and BLC approach, the time
window during which the peak SCR was to be identi-
fied were relatively similar in TTP (i.e., up to 5 s post-CS
onset) and BLC (i.e., full CS duration which corresponds
to 0-6 s in the Hamburg and 0-4.5 s post-CS onset in the
Mainz sample). The trough of the response, however, is
defined very differently (i.e., BLC: average SCL 2 s prior
to CS onset; TTP: onset in an OLW of 0.9-4.5 s post-CS
onset). This group-level comparability between both ap-
proaches is striking and surprising given the prominent
differences between both approaches. For instance, the
BLC approach can yield negative values as the highest
value in the PDW which may be lower than the average
baseline when there is a strong habituation drift in the
data while such negative values are implausible in TTP
scoring. Furthermore, as the BLC approach was em-
ployed in a script-based manner without visual inspection
and without the implementation of adaptive algorithms
(as in Pineles et al., 2009), a value for a response is al-
ways identified while the TTP approach may score both
missing (e.g., electrode artifacts) and zero responses. The
latter is, for instance, the case, when there is only a habit-
uation trend but no response, which would correspond
to a negative value in the BLC approach. We refer to our
related work using a full multiverse approach covering
150 combinations of time windows used in the BLC ap-
proach for an in-depth discussion about the differences
between TTP and BLC approaches and the resulting
problems (Sjouwerman et al., 2021). Note that the work
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by Sjouwerman et al. (2021) is complementary to the
work presented here. While we here investigate whether
seven different SCR response quantification approaches
result in convergent results (i.e., comparison between dif-
ferent approaches), our related work focuses on within-
approach heterogeneity in parameter specification (e.g.,
time windows) in one of the approaches used here (i.e.,
the BLC approach).

Despite a number of major problems with the
BLC approach discussed in depth in our related work
(Sjouwerman et al., 2021), our results are reassuring that
TTP and the representative BLC approach to SCR quanti-
fication seem to yield comparable results—at least for the
design specifications included here and average respond-
ing at the group level. As these are the currently two most
abundantly used approaches to SCR quantification in the
field of fear conditioning research, this is good news for
the field even though we highlight stimulus (i.e., CS—)-
specific reduced agreement.

4.2.4 | Different model-based approaches as
implemented in PsPM

Furthermore, it is noteworthy that the four PsPM mod-
els yielded more consistent results not only in com-
parison with each other but also with any of the other
approaches in the Mainz than the Hamburg data sets.
We can only speculate on potential reasons beyond the
generally wider CrI in the smaller Mainz sample. For
instance, the stimulus durations in the studies included
in previous PsPM comparative work (Bach, 2014; Bach
et al., 2010, 2013) were with 1-3.5 s rather short. The
CS duration of 4.5 s in the Mainz data set is closer to
this than the 6-8 s duration in the Hamburg data set.
It remains to be investigated systematically whether
the model-based approaches in PsPM are optimized for
shorter duration CSs, and short ITIs or work equally well
with longer duration stimuli that are more common in
fear conditioning research. In addition, reinforced CS+
trials were excluded in the studies validating PsPM in
fear conditioning data and also in the only study in-
cluded in our systematic literature search that used
PsPM’s GLM model (Taylor et al., 2018). We did not ex-
clude reinforced trials in the Mainz sample and this was
impossible to do for the Hamburg sample as all CS+ tri-
als were followed by the US—in fact, this may be a major
reason why the PsPM models were inconsistent with any
other models in the Hamburg data. Of note, two of the
here employed DCM approaches seemed to erroneously
assign SCRs elicited by the US to the CS in both sam-
ples. Thus, the DCM approaches may not be optimal for
response quantification in paradigms with full or high

reinforcement rates or when not excluding reinforced
trials (see PsPM manual 4.3.0, page 22). Of note, exclud-
ing reinforced trials as modeling a flexible CS response
onset may absorb SCR elicited by US or US omission
leads to an unequal number of trials for the CS+ and
the CS—. These unequal numbers of trials resulting from
excluding reinforced trials may result in different vari-
ances, reliability estimates, and statistical power which
may also be problematic. Another difference between
previous comparative work focusing on SCRalyze/PsPM
is that these previous studies included a (substantially)
higher number of trials per condition (i.e., 16-90 trials)
as our work (i.e., 10-15) which may result in differences
in statistical power and a different impact of the fast ha-
bituation typically seen in skin conductance responding.

In sum, the software package PsPM offers a number
of different model specifications that—Ilikely depending
on experimental specifications—can substantially impact
the results. Thus, data processing and model specification
need to be reported in detail to ensure computational re-
producibility, and the models need to be empirically eval-
uated against typical paradigm specification details such
as reinforcement rate and stimulus duration (see, e.g.,
Bach et al., 2010).

4.3 | Implications for postprocessing and
data analyses

Here, we have illustrated that different commonly used
SCR quantification approaches used in fear condition-
ing research do not necessarily yield converging and
comparable effect sizes for group-level CS- discrimi-
nation despite all yielding significant CS+/CS— dis-
crimination in the same direction. The different effect
sizes and different numeric values for CS+ and CS— re-
sponses as well as CS+/CS— discrimination may also
have implications for the application of commonly used
postprocessing or data-cleaning procedures such as
minimal response criteria as well as the identification
of performance-based exclusion of SCR nonresponder
and SCR nonlearner (for a critical evaluation and dis-
cussion, see Lonsdorf, Klingelhofer-Jens, et al., 2019).
For instance, responses quantified through the TTP
approach cannot be smaller than zero while the BLC
approach can yield negative values (for an empirical in-
vestigation, see Sjouwerman et al., 2021). Further, it is
clear from the average CS+, CS-, and CS discrimination
values (see Figure 2) yielded by the different response
quantification approaches that identical cutoffs for
nonlearning are likely to lead to different results across
approaches. Yet, we did not investigate this empirically
and hence can only speculate here.
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4.4 | Isitrealistic to assume the
existence of a single and universally best
approach for SCR quantification?

It has been proposed that we may identify the “best” ap-
proach for SCR quantification by means of “retrodictive
validity,” formerly referred to as “predictive validity”
(Bach et al., 2020; Bach & Melinscak, 2020). More pre-
cisely, it has been proposed that the method with the high-
est retrodictive validity is the method that has the highest
chance of recovering an unobservable (psychological)
process from skin conductance data. It has further been
suggested that this can be achieved by comparing two
conditions that are known to induce strong differences in
sympathetic arousal (Bach, 2014) such as viewing of aver-
sive (strong arousal) and neutral (weak arousal) pictures
or a condition predictive of an aversive event (i.e., CS+)
and a control condition (i.e., CS—). According to the retro-
dictive validity idea, the best method would be the method
that best separates both conditions. In the context of this
work, the method that produces the strongest CS discrimi-
nation or the largest effect size. Even though an in-depth
discussion on the retrodictive validity idea is beyond the
scope of this work, we would like to note that an exclusive
focus on effect size falls short of appreciating measure-
ment precision as an important criterion.

When interpreting the results of our work in a “ret-
rodictive validity framework,” there is no evidence for a
single, universally superior approach. More precisely, our
results from two different data sets differing primarily in
the number of participants (118 vs. 38), reinforcement
rate (100% vs. 50%), and CS duration (6-8 s vs. 4.5 s) reveal
no single method that yields a consistently higher effect
size compared with other methods in both data sets.

Rather than suggesting a single universally superior
approach, we echo the notion that assumptions about the
shape and timing of an SCR across different quantifica-
tion approaches are mostly similar, but that “they are im-
plemented using different algorithms which may impact
their performance and comparability across different par-
adigms or experimental contexts” (cf. Green et al., 2014,
p. 192). Consequently, a single best or “superior” method
may not exist as the most suitable method may depend
on design and sample specifics. This is a complicated sce-
nario that does not allow for an easy solution. As a conse-
quence, we call for caution in light of the recent suggestion
(e.g., Bach & Melinscak, 2020; Privratsky et al., 2020)
that PsPM-based SCR quantification generally leads to a
massive reduction in required participants as opposed to
other approaches due to substantially higher statistical
power and retrodictive validity (as also discussed in Bach
& Melinscak, 2020). More precisely, our data suggest that
(sometimes) the opposite may be true: for instance, we
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observed smaller effect sizes for CS discrimination (i.e.,
retrodictive validity) for all PsPM-based approaches as op-
posed to the TTP, BLC, and Ledalab-based SCR quantifi-
cation in the Hamburg sample. Given that the evidence to
date is limited, we echo the call (Bach & Melinscak, 2020)
for more comparative (multiverse-type of) studies and
thorough validation of new methods in different experi-
mental and design settings until a single method can be
recommended, in particular as universally superior. This
is particularly important as the authors note that the tool-
box PsPM has “been evaluated only in limited experimen-
tal circumstances and by a small group of researchers”
(cf. Bach & Melinscak, 2020). We echo their call for more
methodological research in order to establish “a clearer
picture on what the best measurement approach is in dif-
ferent research scenarios” (cf. Bach & Melinscak, 2020)
and with the present work provide the first step into this
direction.

4.5 | Limitations
Here, we compare seven different SCR quantification ap-
proaches as identified through a literature review. Yet, the
“full” multiverse of possible SCR processing steps includes
a number of additional steps not considered here in-depth
such as transformations (see also Supplementary Material),
cutoff criteria (Lonsdorf, Klingelhofer-Jens, et al., 2019),
data exclusion (Lonsdorf, Klingelhtfer-Jens, et al., 2019),
and filtering (see, e.g., Privratsky et al., 2020). Aiming to
cover all potentially relevant decision nodes is infinite and
a focus on “a” multiverse rather than “the” multiverse still
provides valuable information. This can help to deflate the
multiverse and leaves only the relevant specifications (i.e.,
those that have not been shown to be clearly inferior in the
more focused investigations) for the construction of a larger
and more comprehensive multiverse. Future work may
systematically focus on these additional decision nodes or
cover different parts of the full data multiverse systemati-
cally (see Sjouwerman et al., 2021 for a multiverse focusing
on within-approach heterogeneity in the BLC method).
SCRswere relatively larger in the Mainz compared with
the Hamburg sample. This difference may be explained by
the usage of a more aversive US in the Mainz sample: US
intensity was calibrated to a level perceived as “maximally
painful, but still tolerable” compared with “maximally
uncomfortable, but not painful” in the Hamburg sample.
Empirical and theoretical work suggests that stronger US
intensity is associated with larger conditioned responses
(Morris & Bouton, 2006; Rescorla & Wagner, 1972). The
difference could also be explained by the different rein-
forcement rates employed in both data sets as SCRs have
been suggested to reflect the associability of a stimulus
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(Li et al., 2011; Seymour et al., 2005; Tzovara et al., 2018;
Zhang et al., 2016). Finally, differences in external condi-
tions, such as room temperature and differences in hard-
ware could also account for these differences.

Furthermore, our literature search covered only a lim-
ited time frame (6 months in 2019) and hence the results
may not be fully representative. Yet, a different literature
search (Privratsky et al., 2020; full details provided in the
supplementary material) covering more than 90 articles in
the field of fear conditioning from 2019 and 2020 shows a
similar picture with BLC and TTP being most abundantly
used (subsumed as “peak scoring” by the authors, which
is a problematic term, however) and with substantially
fewer studies using Ledalab, few studies using PsPM, or
other approaches (e.g., “area under the curve”, cvxEDA).
Even though the literature search provided here served
primarily as a tool to guide the selection of the to-be in-
cluded SCR quantification approaches, the results by
Privratsky are reassuring the frequencies reported here
are representative despite the short time window.

Finally, our comparison of different SCR quantification
approaches across two data sets focused on average group-
level responding and future work focusing on individual-
level responding would be a logical extension of our and
previous work.

4.6 | Prospects and challenges of a
multiverse-type of approach

Multiverse-type of approaches (Del Giudice &
Gangestad, 2021; Simonsohn et al., 2020; Steegen
etal., 2016) have recently gained momentum in the field
of psychophysiology—for instance, in research using
EEG (Clayson et al., 2021; Kotodziej et al., 2021; Nikolin
et al., 2022; Sandre et al., 2020; Wacker, 2017) or in fear
conditioning research with a focus on SCRs (Lonsdorf
et al., 2021; Lonsdorf, Klingelhdfer-Jens, et al., 2019;
Lonsdorf, Merz, & Fullana, 2019; Sjouwerman
et al., 2021). Multiverse-type of approaches can be con-
sidered an attempt to empirically optimize processing
pipelines and an intermediate step toward more stand-
ardization in fields that are characterized by substantial
heterogeneity in data (recording) and processing steps.
More precisely, multiverse-type of analyses examine
the impact of a (large) set of different equally justifiable
methodological decisions on the robustness of an effect
of interest. By empirically identifying and subsequently
deprioritizing unsuitable paths, they can help to deflate
the multiverse of possible (equally justifiable) data analy-
sis paths. The most critical step in setting up a multiverse-
type of analysis is the selection of the to-be included
decision nodes and their specifications. Specifically,

it is inherently challenging to define which methodo-
logical decisions can be considered “equally justifiable”
(for discussions, see Del Giudice & Gangestad, 2021;
Lonsdorf et al., 2021) in particular in light of often un-
derspecified theories in psychology that leave much
room for different definitions and hence operationaliza-
tion of (latent) constructs (discussed for fear condition-
ing research in Lonsdorf et al., 2021; Lonsdorf, Merz, &
Fullana, 2019). In addition, it is important to note that
not all equally justifiable paths necessarily belong to
the (exact) same multiverse. For instance, a statistical
model with an included covariate tests a different un-
derlying hypothesis than a model without that covariate
and, hence, is—in a strict sense—not part of the same
(model) multiverse (Del Giudice & Gangestad, 2021).
Along the same lines, it may also be debatable whether
model-based approaches and TTP/BLC approaches be-
long to the same multiverse as they may measure differ-
ent constructs (e.g, estimated sudomotor nerve activity
vs. observable physiological response, respectively). As
these approaches are, however, used interchangeably
in the literature, we combined them in the same multi-
verse here. We have chosen to depart from a systematic
literature search as a means to objectively decide on the
to-be included paths by defining “equally justifiable” as
approaches that are used interchangeably in the litera-
ture. Other approaches that have been used to guide the
decision on which specifications to include are based on
expert agreement (Wacker, 2017) and/or multiple ana-
lyst approaches (Silberzahn et al., 2018). An advantage
of our approach is that the different quantification ap-
proaches included mirror the actual multitude of deci-
sions a researcher is presently faced in the field when
aiming to quantify SCRs. Hence, our approach provides
empirical evidence whether it can indeed be considered
justifiable to use the different included approaches in-
terchangeably in the field.

4.7 | Summary and outlook

Our results illustrate heterogeneity in the exact specifica-
tion and implementation of SCR response quantification
approaches derived from a systematic literature search
and a thorough summary of the available comparative
studies. Empirically, we illustrate partly inconsistent out-
comes for effects sizes of CS discrimination when apply-
ing seven different SCR quantification approaches to the
same data. Our results challenge the existence of a uni-
versally best or superior SCR quantification approach and
call for more and systematic comparative (multiverse-type
of) studies focusing on different decision nodes during
data processing but also on different experimental design
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specifications which, however, requires specifically tailed
experimental designs. Finally, we call for more consid-
eration to measurement and reliability questions and for
more systematic and collaborative efforts to solve these
challenges as a research field and work toward more ex-
change, more homogenization in research methods, as
well as detailed reporting.
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FIGURE S1 Trial-by-trial averages values (averaged across
participants) for the CS+ (left), CS— (middle) and the US
(right) in the Hamburg sample (upper row) and the Mainz
sample (bottom row)

FIGURE S2 Averaged raw SCRs (plus standard error) for
the CS+ (red), CS— (blue) and US (black) for each SCR
quantification approach employed in the Hamburg and
Mainz datasets split up for the first half of acquisition training
(left) and the second half of acquisition training (right)
FIGURE S3 Average CS discrimination (+standard errors)
based on raw values per CS type during fear acquisition
training based on data derived through different SCR
response quantification approaches in the Hamburg and
Mainz datasets as corresponding effect sizes and credible
intervals as derived from the Bayesian paired-sample

T-tests for the first half of acquisition training (left) and
the second half of acquisition training (right)

FIGURE S4 Effect sizes, Bayes Factors, and credible
intervals as derived from the Bayesian paired two-sample
t-tests for the Hamburg (A) and Mainz (B) datasets based
on z-transformed data (based on a reviewer’s request)
TABLE S1 Trial-wise agreement (Krippendorff-alpha as
well as lower and upper CI bounds) for Trough-to-peak
(TTP) rater 1 and 2 in the Hamburg sample (left) and the
Mainz sample (right). Note that there were fewer trials in
general in the Mainz sample and that only 50% of the CS+
was followed by the US
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