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ABSTRACT: A fast algorithm for automated feature mining of
synthetic (industrial) homopolymers or perfectly alternating
copolymers was developed. Comprehensive two-dimensional liquid
chromatography—mass spectrometry data (LC X LC—MS) was
utilized, undergoing four distinct parts within the algorithm. Initially,
the data is reduced by selecting regions of interest within the data.
Then, all regions of interest are clustered on the time and mass-to-
charge domain to obtain isotopic distributions. Afterward, single-
value clusters and background signals are removed from the data
structure. In the second part of the algorithm, the isotopic
distributions are employed to define the charge state of the
polymeric units and the charge-state reduced masses of the units are
calculated. In the third part, the mass of the repeating unit (i.e., the
monomer) is automatically selected by comparing all mass differences within the data structure. Using the mass of the repeating unit,
mass remainder analysis can be performed on the data. This results in groups sharing the same end-group compositions. Lastly,
combining information from the clustering step in the first part and the mass remainder analysis results in the creation of
compositional series, which are mapped on the chromatogram. Series with similar chromatographic behavior are separated in the
mass-remainder domain, whereas series with an overlapping mass remainder are separated in the chromatographic domain. These
series were extracted within a calculation time of 3 min. The false positives were then assessed within a reasonable time. The
algorithm is verified with LC X LC—MS data of an industrial hexahydrophthalic anhydride-derivatized propylene glycol-terephthalic
acid copolyester. Afterward, a chemical structure proposal has been made for each compositional series found within the data.

1. INTRODUCTION the bottlenecks of these modern multi-dimensional methods is
the interpretation of the generated data.” The wide variety of

Accurate characterization of polymeric samples is at the core of
instruments deployed for this purpose (i.c., instrument type

soft material development as elucidating the structure—

property relationships of a given polymer is only possible and manufacturer), together with the incompatibility of their
with a good understanding of a sample’s composition at the respective data formats, severely inhibits the potential impact
molecular level."> Within this context, the field of analytical of multi-dimensional datasets. Consequently, there is a strong
chemistry has been making concerted efforts to develop demand for bridging datasets of multi-dimensional analysis in a
reliable, multi-dimensional approaches, with comprehensive user-friendly and automated fashion.

two-dimensional liquid chromatography (LC X LC) being At present, the interpretation of LC X LC—MS data starts
key.”™* This is because LC X LC allows the simultaneous with the MS dimension and involves molecular formula (MF)
characterization of multiple molecular characteristics, from assignments. This step is time-consuming since polymer MS

determining the molecular weight distribution and chemical
composition distribution to functionality and topology
distributions.’

Applying multi-dimensional characterization often takes the
form of combining targeted complimentary techniques; a
typical example is the coupling of chromatographic separa-
tion(s) with (high-resolution (HR)) mass spectrometry
(MS).”® While chromatography allows separation of the
compounds, MS enables their chemical identification. One of

spectra are typically complex in terms of information density.
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Furthermore, polymeric samples are fundamentally unique in
that they consist of a mixture of related molecules, each of
which differing by one repeating unit, composing a polymer
distribution. A given polymer distribution exhibits a distinct
characteristic, for instance, a specific end-group, a given
chemical composition range, or a peculiar topology. A sample
may consist of multiple polymer distributions.

Strategies for the identification of chemically related
compounds have been explored and successfully applied to
polymer MS analysis. Notably, this includes the so-called
Kendrick mass defect (KMD) concept'”'" and mass remainder
analysis (MARA).'”"> While KMD is based on a mass
rescaling,'* by setting the mass of a monomer unit to an
integer, the latter does not require a transformation of the mass
domain. Instead, MARA is based on an iterative division of the
masses by the exact mass of the repeating unit until no further
divisions can be made. The resulting mass remainder (MR)
thus embodies information related to chemical composition. It
may be noted that similarly to MARA, remainders of Kendrick
mass are suitable for identifying homologous series,"” as
emphasized in a series of comments.'®"” In addition, open-
access programs have been developed to facilitate polymer MS
data treatment, including functionalities for assisted MF
assignment, post-calibration, and determination of chemical
compositions.'* ** Nonetheless, all of the available analytical
software packages only address one dimensional datasets and
fail to facilitate a broad range of applications.

In this work, we repurposed the MARA approach to
methodically reveal data features obtained from an LC X LC—
HRMS polymer analysis, and we present an algorithm that was
developed to treat the third-order data structure: tz'>, t*°, m/
z, and I. These are the retention time in chromatographic
dimensions 1 and 2, the mass-to-charge ratio, and the intensity
of the signal at each retention time and m/z value, respectively.
Individual components of the mixture were interrelated by
their two-dimensional retention times and MR, which contain
chemical composition information. The sample we case-
studied consisted of an industrially modified polyester, from
which the repeating unit was automatically retrieved by the
algorithm. Ultimately, 10, partially separated, polymer
distributions and two distributions that underwent sodium
exchange of relative abundances as little as 0.6% were
identified in a 3 min calculation time and 5 min of manual
interpretation of the results.

2. EXPERIMENTAL SECTION

2.1. Data Acquisition. The raw LC X LC—HRMS data
was acquired from Groeneveld et al.*'

2.1.1. Chemicals and Samples. The solvents used included
n-hexane (>99.5%, HiPerSolv grade) and dichloromethane
(DCM, >99.8%, HiPerSolv grade) obtained from VWR
International (Fontenay-sous-Bois, France). Tetrahydrofuran
(unstabilized, GPC grade) was obtained from Biosolve
(Valkenswaard, The Netherlands). For mass spectrometry,
sodium iodide was used as the jonization agent (>99.5%) and
3-nitrobenzyl alcohol (>99.5%, mass spectrometry grade) was
used as the supercharging agent, both obtained from Sigma-
Aldrich (Darmstadt, Germany).

The model sample consists of a propylene glycol (PG)—
terephthalic acid (TPA) copolyester, which was derivatized
with hexahydrophthalic anhydride (HHPA) provided by
Covestro (Waalwijk/Zwolle, The Netherlands). The number
average molecular weight is estimated to be 1880 Da, based on
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SEC analysis using polystyrene as the molecular weight
calibration. The sample was prepared at a concentration of
20 mg'mL™" in dichloromethane.

2.1.2. Instruments. Two-dimensional LC X LC—HRMS
experiments were performed using an Agilent 1290 Infinity
2D- LC system (Agilent Technologies, Waldbronn, Germany)
coupled with a Waters Synapt-G2 high-resolution mass
spectrometer. The system comprised two binary pumps
(G4220A) for solvent delivery, an autosampler (G4226A),
column thermostat (G1316C) equipped with a 2D-LC 8-port
2-postion modulation valve (G4236A) with 40 uL loops, and a
diode-array detector (G4212A) equipped with an Agilent Max-
Light cartridge flow cell (G4212—6008, 10 mm, Vg, = 1.0 uL).
The 'D column was a Phenomenex Luna HILIC (150 X 2.0
mm id., 3.0 um particles, 200 A pore size) column used for
gradient-NPLC, while two Waters Acquity APC XT columns
(75 X 4.6 mm id., 1.7 um particles, 45 A pore size and 75 X
4.6 mm id.,, 2.5 um particles, 125 A pore size, respectively)
were coupled in series for SEC experiments.

For parallel UV/HRMS detection, the analytical effluent was
split after the second-dimension SEC column set using a tee
piece and in-house-made restriction capillaries (450 X 0.075
mm i.d. and 900 X 0.050 mm i.d. capillaries), ensuring a split
ratio of 9:1 to the diode array and mass spectrometer,
respectively. Using the diverter valve of the Synapt-G2 system,
the smallest split flow was combined with a make-up flow (1:1
ratio) consisting of 1 mM Nal with 0.5% (v/v) 3-nitrobenzyl
alcohol in deionized water.

2.1.3. Analytical Conditions. The gradient-NPLC 'D was
thermostated at 23 °C, and a flowrate of 40 yL-min™' was
applied with a gradient of 30% (v/v) dichloromethane in
hexane (mobile phase A) to 5% (v/v) THF in dichloro-
methane (mobile phase B). The used gradient program is 0.0—
37.5—45.0—46.0—65.0 min 0.0—100.0—100.0—0.0—0.0% B.
Between 55.0 and 60.0 min, the flowrate was increased to
0.08 mL-min~" to re-equilibrate the column. The modulation
time was set to 45 s, corresponding to a modulation volume of
30 uL and 75% loop filling. The D SEC separation was
operated at 50 °C and run isocratically with THF containing
0.1% (v/v) formic acid using a flowrate of 1.1 mL-min~". The
diode-array detectors recorded full spectra from 240 to 400 nm
and channels with a specific wavelength of 254 and 262 nm
with a bandwidth of 4.8 nm with a scan rate of 40 Hz.
Conditions used for the mass spectrometer were as follows: m/
z range, 300—3000; scan rate, 0.2 s; positive ESI; time-of-flight
MS resolution mode; capillary voltage, 3.0 kV; sampling cone,
100 V; trap collision voltage, 15 V; source temperature 100 °C;
desolvation temperature, 250 °C; nitrogen desolvation gas
flow, 800 L-h™'; nebulizer gas flow, 100 L-h™". Internal mass
calibration was performed using leucine enkephalin as the
reference mass.

2.2. Data Processing. The entire algorithm was written
using MATLAB 2019b (Mathworks, Natick, MA, USA). Raw
LC X LC—HRMS data were converted into mzXML format by
ProteoWizard 3.0.19202 64-bit.”> Table 1 shows the user-
defined parameters needed for the algorithm. Further
explanation of the algorithm is provided in Section 3. A
flowchart illustrating a detailed workflow including each user-
defined parameter can be found in Supporting Information
Section S-1. The algorithm has been incorporated in the open-
access MOREDISTRIBUTIONS software.”’

https://doi.org/10.1021/acs.analchem.1c05336
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Table 1. User-Defined Parameters Used in the Algorithm

Symbol Parameter Value
Linindp ROI analysis: minimum mass peak intensity 100
counts
Am/z.,, ~ ROI analysis: mass tolerance 0.15 Da
min,dp ROI analysis: minimum number of consecutive 6 scans
datapoints
Niabgll background removal: occurrence of signals (a) a=2%b
Lininjbg above b percent of the maximum ROI intensity =20%
Ayianr |l clustering: maximum Mahalanobis distance 0.05 i
Ayt 0.15
M epmin MARA: minimum mass of repeat unit 12.0000
Da
AMR,.,,  MARA: mass remainder tolerance when binning 0.0S Da
Myqq MARA: optional parameter. The mass of the 22.9898
adduct Da

3. RESULTS AND DISCUSSION

The data analysis is divided in four main steps: (i) preparation
of the data structure, (ii) charge-state deconvolution, (iii)
MARA, and (iv) description of the molecular distributions
within the polymeric sample. Figure 1 shows an overview of
the smaller steps within this strategy, which will be described in
further detail below. For a more detailed flowchart, please refer
to Supporting Information Section S-1. Note that the original
datapoints are not removed during any of these steps so that,
after feature mining, additional observations about the
identified polymeric series, e.g,, size distribution, can be made.

Figure 2 presents the raw data used to assess the validity of
the developed algorithm. It consists of a total ion current
(TIC) chromatogram of 60 min, composed of 14,300 MS
spectra, each of which was acquired from m/z 300 to 3000.
The modified polyester exhibits a range of end-groups that are
intended to be separated in the first dimension by normal
phase chromatography (NPLC), while molecular-weight based
separation is addressed in the second dimension via size
exclusion chromatography (SEC). The added value of the MS
dimension is strongly dependent on the operator’s effort to
carefully assign MS peaks and relate their retention times. In
practice, an operator will look at the MS spectra at different
retention times (often randomly selected) or as the sum of the
spectra within a given range. During the investigation of these
spectra, structures are assigned to the m/z with the highest
abundance. From these first assignments, a list of theoretical
m/z values is calculated with which extracted ion chromato-
grams for each degree of polymerization are generated. During
this laborious process, secondary distributions of lower
abundance and/or unexpected series may be discarded, failing
to provide a comprehensive picture of the sample. Although it
may be argued that the most abundant polymeric distributions

are the focus of an analysis, it can be acknowledged that in
many instances, secondary products are the key to better
understand the properties of a sample.”* Yet, species that are
unexpected and have a low relative abundance are the least
likely to be identified with manual data processing. The present
algorithm aims at overcoming this drawback.

3.1. Extracting Information by Region of Interest
Analysis and Filtering Unnecessary Data. The algorithm
includes a series of user-defined parameters whose values are to
be set on an individual basis. These parameters are
summarized in Table 1 and may be adjusted based on the
kind of mass spectrometer used and the type of LC separation
achieved, which ultimately includes the scan rate, the mass
resolution and mass accuracy of the data, and the resolution of
the chromatographic dimension. Most of these variables play
an important role in the first step of the algorithm operation,
which aims at preparing the data structure. The region of
interest (ROI) analysis™ was used to extract points with a
minimum intensity (I,,) in the m/z domain. The LC
separation prior to MS analysis allows the exclusion of
(random) noise by considering ROIs only if the datapoints
within a certain mass tolerance (m/z = A m/z) are being
found in a given number of successive scans. Provided the peak
width of the LC separation here and the used scan rate (0.2 s),
the minimum number of consecutive points (Nmin‘dp) was set
to 6.

Background signals, eg., solvent ions or salt clusters,
represent a large amount of the total intensity and are likely
to be selected during the ROI analysis. Before appropriate
identification of the polymeric structures can be performed,
these background signals need to be removed from the data
structure. However, the fact that such signals are present
continuously allows them to be distinguished from sample-
related components. This can be performed automatically by
counting the number of datapoints that exceed a set threshold
and comparing this with the typical number of datapoints for a
chromatographic peak. In this work, an intensity threshold
(Ininpg) of 20% of the maximum ROI intensity has been used.
If this threshold was passed in more than 2% of all datapoints
(Nimaxpg), then the ROT was deemed a background signal and
deleted from the data structure. This threshold seemed
sufficiently high that real chromatographic peaks are not
filtered out. An example of this can be found in Supporting
Information S-2.

MARA performs deisotoping of the distribution due to
overlap between different polymeric units and their different
isotope distributions.'”> A fundamental difference between
MARA and this work is that the isotopic distribution within
the sample is utilized. As there is more information available

1. Preparation 2. Charge-state deconvolution

Isotope distribution

\ 4

3. Mass remainder analysis 4. Describing distributions

Determine distribution of

Determination of repeat

ROI selection

A4

unit mass

mass remainder, mass &

1 |
1{
Determination of the fetenfoniime.

modulo
|

determination
X 1
Discard background Discard single value
signals clusters
L 8
Clustering on retention Mass determination
time & m/z
i |—

Classify end-group

Mass remainder grouping composition

—

Figure 1. Overview of the proposed data analysis strategy. Colors indicate (red) discard irrelevant data, (purple) grouping of data, and (green)

classification of the compositional series.
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within the dataset (i.e., the chromatographic information), the
relative isotopic intensities are not needed to distinguish
between these different species. To do this, hierarchical cluster
analysis26 with a Mahalanobis distance metric>”*® (dy, =
0.05) within both time domains and m/z domain was
employed to define ROI clusters.

In most cases, the differences in m/z between the isotopes of
a compound are significantly smaller than the differences in m/
z between different compounds. The difference in m/z
between isotopes is directly related to the difference in the
mass of a >C and a *C atom (1.0033 Da)*’ divided by the
charge (z). The benefit of a Mahalanobis metric is that the
metric normalizes all dimensions, making differences in
clustering ranges (ie, the time and m/z ranges) obsolete.
Therefore, even if there is mass overlap between different
monomer compositions and isotopic distributions, the differ-
ence in the time domain is in most instances sufficient to
distinguish between different monomeric compositions. In the
rare cases where this is not applicable, the next steps of the
algorithm filter these datapoints out as explained in Section
34.

3.2. Charge-State Reduction. Online coupling of liquid
separations with mass spectrometry typically involves ioniza-
tion techniques such as electrospray ionization (ESI). A
distinct consequence of ESI usage is the generation of multiple
charged ions, resulting in molecules with the same composition
existing as various ionic forms [M + z X m_gq]*, with z > 1.
The differences in m/z within each cluster can be exploited to
define the charge-state of the polymeric unit. Charge-state
deconvolution transforms the signal to produce spectra of
intensity vs uncharged mass (see Supporting Information
Section S-3). All single value clusters are deleted from the data
structure as these will most likely represent random noise.
After charge-state deconvolution, the data is again clustered
within the two time domains and the mass domain with dy,
0.15. This threshold is larger than the first clustering
threshold as the differences within the mass domain are larger
than the differences within the m/z domain and since the
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single point clusters are removed, there is less chance of false
inclusion.

3.3. Mass Remainder Strategies. Now that the data
structure only consists of clusters that are of interest and their
charge states have been reduced, grouping on composition is
performed based on MR. Depending on the complexity of a
synthetic polymer, i.e., the number of different monomers, the
mass of a polymeric unit can generally be expressed as the sum
of the mass of the end-groups (@ and ®), the mass of the
repeating monomers (mrep ;) multiplied by the number of
monomers (n;), and the isotopic variety expressed as the
number of carbon-13 atoms multiplied by the difference in
mass between *C and *C (i.e,, 1.0033 Da), where i represents
different monomers. Ionization in a mass spectrometer adds
the number of charged adducts (e.g, the charge, z) multiplied
by the adduct mass (m,44) minus the mass of an electron (m, =
5.486 X 107*) to the mass and divides the total mass by the
charge. For an ion of a homopolymer, this results in eq 1 for
the mass-to-charge ratio.

m a+a)+mrep><n+13C><1.0033

z

_me

(1)
The algorithm automatically retrieves the mass of the
monomeric units within the polymer by plotting all the mass
differences within the ROIs in a histogram. Indeed, together
with the mass differences related to isotopic distributions, the
monomer mass is the most recurring mass difference in the
sample’s spectra. Figure 3A shows the mass-difference
histogram of the polyester sample. To avoid the consideration
of isotopic contributions (mass differences typically multiples
of 1.0033 Da for carbon for instance), the algorithm selects the
most abundant mass difference higher than 12 Da. This value
was chosen as the smallest monomer unit we may expect in a
synthetic organic polymer (mc = 12.0000 Da) and may be
tuned by the user. The algorithm identified a repeating unit of
mass 206.0571 Da. Differences of multiple repeating units (i.e.,
2, 3, and 4 repeating units corresponding to 412, 618, and 824
Da) are also found abundantly.

+ myq
z
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Figure 3. (A) Histogram of mass differences between all found ROIs.
The most occurring difference at 206.0571 Da corresponds to the
mass of the repeating unit (PG-TPA) of the polyester. (B) Histogram
of the found MRs within the polyester data. All groups are numbered
from the highest to the lowest intensity. The inset shows a zoomed-in
region of the MR plot for series 2 and 9.

In this work, the sample analyzed is a copolyester produced
by the polycondensation of propylene glycol (PG)
(m(C3HgO,) = 76.0524 Da) and terephthalic acid (TPA)
(m(CgH4O,) = 166.0266 Da). As a result, the monomers are
perfectly alternating and the copolymer can be regarded as a
homopolymer with a repeating unit corresponding to the sum
of the two monomers minus two water molecules. This value is
206.0579 Da, which is in good agreement (Am = 8 X 10—4
Da) with the algorithm selection. This functionality is of great
interest for analysis where the nature of the polymer is
unknown.

The two end-groups of the investigated polyester can consist
of any combination of PG, TPA, or HHPA, and the most
abundant adduct is sodium (m,yy = 22.9898 Da) in this
analysis. After subtracting m,qq — m, from each ROI and
calculating the MR of each ROI, the resulting MRs were
plotted in a histogram (binned with a margin of error of AMR
= 0.05 Da) against the number of times the MR was found,
and results are shown in Figure 3B. This revealed distinct
groups each sharing the same end-group composition. Note
that the mass of the adduct is an optional user adjustable input
parameter and can be set to 0 if multiple or unknown adducts
are present. The use of this variable adjusts the mass
remainders, so they only contain information about the end-
group composition.

3.4. Describing the Distributions. Ultimately, we can
identify compositional series by grouping the previously found
isotope clusters based on their MRs. The decision of whether
two isotopic distributions belong to the same compositional
series can now be defined by the number of MR values they
have in common. The higher chance of incidental overlap for
broader isotopic distributions can be compensated for by
setting a criterion based on the fraction of MRs that need to
overlap instead of their absolute number. Figure S7 in
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Supporting Information Section S-4 displays the outlined
process of grouping the isotopic distributions for a zoomed-in
part of the data. The isotopic pattern clusters carry the
combined retention and mass-spectral information, though
they contain no information about the extent the individual
isotopic distributions are related. The MR series yield
information on which masses differ by n times the repeat
unit mass and the end-group compositions; however, MRs are
unrelated to the previous chromatographic and mass
spectrometric information. Combining the information from
both angles effectively groups isotopic distributions to the
underlying compositional series 2 and 6. This grouping
method is not perfect, especially since the overlap criterion
(C,,) either splits groups into multiple sub-groups with a
partial overlap (C,, < 0.5) or heavily favors larger isotopic
distributions and tends to exclude two-point clusters (C,, >
0.5). It can, however, be debated whether two-point isotopic
distributions provide enough evidence for identification in the
first place. Figure S7D shows the classification of the different
compositional series in the polyester data using C,, = 0.6. It
should be noted that simply comparing the mass remainder of
the monoisotopic mass will not result in acceptable group
definition as the abundance of the monoisotopic mass
decreases quickly with the increasing number of carbon atoms.

3.5. Structure Proposal of End-Group Composition.
After classification of all compositional series, a structure
proposal of these distributions can be performed manually. By
cycling through the compositional series, starting with the
series with the highest sum intensity, an end-user can form
structure proposals for each end-group composition based on
the MR. In this step, the MR is expressed as the weighted
average of the mono-isotopic mass of the isotopic distribution.
One should note that knowledge about the sample is preferable
for this step. If libraries of different expected end-group
compositions are available, then this step could be performed
automatically. The user interface is accompanied with a tool to
automatically suggest chemical formulas that are in agreement
with the found MR. If the chemical formulas are inconclusive,
then the user can decide to add the mass of the repeating unit
to the mass (See series 1 and 7 in particular), remove the
adduct masses if the initial adduct mass was set to 0, and allow
for ion exchange. An example of chemical composition
selection can be seen in Supporting Information Section S-S.

Figure 4 shows the three highest sum intensity groups
plotted at their positions on the chromatogram and the
cumulative chromatogram of these groups. A contour plot of
all groups and information about all individual groups can be
seen in Supporting Information Section S-5. The algorithm
revealed series of polymers that are hard to detect by manual
interpretation of the LC X LC—MS data. Figure 5 shows one
of these underlying distributions in the form of the ninth most
prominent group with an MR of 82.0992 Da. This group co-
elutes with the most prominent group and is therefore difficult
to distinguish visually within the chromatogram. However, the
cumulative MR plot (Figure 3B) clearly shows that this is a
different compositional series compared to the chromato-
graphic-related group 1 at MR 24.0685 Da. The distribution of
MRs of group 2 starting at 76.0560 Da appears to connect with
the distribution of MRs of group 9 (see the inset of Figure 3B);
however, it is distinguished as a different group due to the
chromatographic behavior (Figure S5). This shows the
separation power of the proposed algorithm. With all
compositional series mapped, all groups consisting of more
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Figure 4. (A) Most prominent compositional series. (B) Second most prominent compositional series. A minor contamination of series 9 is also
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Figure S. Contour plot of the first, second, and ninth most prominent
groups. Group 9 showed chromatographic overlap with group 1 but
different chromatographic behavior than the second most prominent

group.

than 10 ROIs, where the charge state reduction was successful
(i.e., only difference of 1 Da was present within the series, no
partial mass differences) and had a unique MR were selected.

In three cases, the algorithm found low abundance
distributions with a similar MR and chromatographic location,
indicating misclustering. Through the interface that accom-
panies the algorithm, the user may assess the presence of false
positives. The task is made relatively straightforward by a set of

plots (see Supporting Information Section S-5). For this case
study, this step took approximately S min. Figure 6 shows the
approximate location in the chromatographic plane of all 12
found groups. Table S2 in Supporting Information Section S-§
shows the MR, proposed end-groups, proposed chemical

structures, and mass information for each series.

Contour plot of all 12 found compositional series
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Figure 6. Contour plot of the polyester data showing the approximate
positions of the 12 found groups. For a more detailed figure, please
refer to the Supporting Information (Figure S8).
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Since the remaining MR values consist of the sum of both
end-group masses, a relatively straightforward interpretation
can be done when some background information about the
polymer is available. Furthermore, if the chemistry of the
sample is not known, or unexpected end-groups are present,
then the mass remainder values may provide evidence for
possible compositions. The interpretation process for the
sample in question was as follows:

The series with an MR of 0.0060 consists only of the repeat
unit, and the lack of MR indicates no end-group. In other
words, this is a cyclic oligomer. Another series, which behaves
chromatographically different and has a different MR of
18.0233 Da, represents a linear polymer consisting of only
repeat units and H,O (18.0106 Da), that is, PG and TPA are
the end-groups (H-(PG-TPA),-OH). The MRs of 76.0560 and
172.0762 Da directly correspond to the masses of PG (76.0524
Da) and cyclohexane dicarboxylic acid (172.0736 Da), the
reaction product of the derivation with HHPA, indicating
dihydroxyl functional end-groups (H-(PG-TPA),-PG) and
diacid functional end-groups (HHPA-(PG-TPA),-OH), re-
spectively. The MR of 24.0685 Da corresponds to an acid/
hydroxyl functionality (HHPA-(PG-TPA),-PG). This combi-
nation is larger than the repeat unit, and thus the resulting MR
is aliased; however, it can be calculated that 76.0524 +
172.0736 — 206.0579 — 18.0106 24.0575 Da. This
conclusion could also be made by realizing that TPA and
cyclohexane dicarboxylic acid differ by 6.0470 Da, and thus
this difference could be added to the previously determined
linear series with an MR of 18.0233 Da. Similarly, the
difference of 6.0470 Da can be added to the 172.0762 series to
find an HHPA-(PG-TPA),-PG-HHPA series with an MR of
178.1253 Da, or this can be concluded by adding two units of
HHPA and one unit of PG and extracting two units of water
and the repeat unit mass (172.0736 X 2 + 76.0524 — 18.0106
X 2 — 206.0579 = 178.1205 Da). The found series at MRs of
134.1073 and 82.0992 Da show a similar chromatographic
behavior to the H-(PG-TPA),-PG and HHPA-(PG-TPA),-PG
series. Compared to these series, they differ by 58.0508 and
58.0307 Da in MR, respectively. Although unexpected, this
difference corresponds closely to an extra PG unit in the chain
(76.0524 — 18.0106 = 58.0419 Da). This may be caused by a
minor contamination of dipropylene glycol in the PG
monomer. Dipropylene glycol is a common side product of
PG production.’

Both MRs of 58.0568 and 6.0557 Da were also found as
series and using the same logic as above, these series add an
extra PG monomer or replace a TPA unit for an HHPA unit
within the cyclic series respectively. The two remaining series,
e.g., 46.0489 and 200.1319 Da, show a similar chromatographic
behavior to the HHPA-(PG-TPA),-PG and HHPA-(PG-
TPA),-PG-HHPA end-group series. These series differ by
21.9804 and 22.0066 Da in MR, respectively, from their
supposedly related group. Sodium exchange, with the free
carboxylic acid of the cyclohexane dicarboxylic acid end-group,
replaces one of the hydrogen atoms, causing this mass
difference with the related group ([R-COOH]Na" + NaX —
[R-COONa]Na" + HX) resulting in an exact mass difference
of 21.9819 Da (22.9898 Da — 1.0078 Da).

The mass differences between the proposed structures and
the experimental data deviate to a varying degree, which can
have different explanations. First, the found mass of the
repeating unit differs by 0.8 mDa from the theoretical value.
Depending on the number of repeating units within the
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polymeric chain, this difference increases. To accommodate
this, the algorithm allows the user to input the true mass
remainder if the user deems this necessary. Furthermore, the
resolution of the mass spectrometer and the ROI selection can
have an impact on the accuracy of the found mass remainders,
and especially with low abundant series (i.e., series 12), the
ROI selection can be critical in the accuracy of the mass
remainders since there are fewer values available to average the
MR from.

4. CONCLUSIONS

An easy and rapid feature mining strategy for LC X LC—MS
polymer analysis was successfully developed and applied to an
industrial polyester sample. While polymer feature extraction is
time-consuming or very often not possible (with traditional
MS software), the algorithm classified compositional series
within a time span of 3 min, leaving the user with only two
tasks: a rapid assessment of false positives (which we
performed in S min here) and validation of MF assignment.
Even series with a low abundancy and high chromatographic
overlap with other series were still classified by the algorithm as
unique series within the sample. This will allow making better
estimations of sample purity and homogeneity within
(industrial) samples, which ultimately can provide better
tools for product development and quality consistency. Due to
the multidimensional technique, varying degrees of informa-
tion are utilized, e.g, m/z (and after charge-state reduction,
mass), MR, and retention time. This removes the need for
deisotoping as the isotopic distributions allow charge-state
reduction and simplify the grouping of compositional series,
allowing the classification of polymer features.

For all found compositional series that consisted of at least
10 datapoints and where the distribution of MRs consisted of
differences of 1 (ie, successful charge-state reduction), a
structure proposal was made. Due to chromatographic overlap,
related series with small structural differences (e.g, an
additional PG monomer in the chain due to contaminants of
dipropylene glycol or sodium exchange within the carboxylic
acid groups) were distinguished from each other using the
different MRs, whereas compositional series with overlapping
MRs were distinguished owing to different chromatographic
behaviors. This shows the separation power of the developed
algorithm. Confident structural proposals are facilitated by
chemical knowledge of the investigated sample; however, on a
routine basis, the authors envision setting up custom libraries.
Using these libraries, the assignment step can be further
supported.

The algorithm, however, is unable to accurately quantify the
found distributions. In some cases, the charge-state reduction
was incorrect due to small deviations within the m/z range,
leaving some signals unable to be classified within the
compositional series. Nonetheless, the information within the
selected compositional series can be used to select all m/z
values of interest out of the raw data and perform more
accurate quantification of the compositional series.

The algorithm in its current form is viable for homopol-
ymers or perfectly alternating copolymers (i.e., looking at the
summed mass of both monomers as the repeating unit).
Adaptations of the algorithm are required to accomplish a
viable routine analysis for random or block copolymers. Nagy
et al. used the MARA technique to distinguish compositional
series of copolymers,'”'**" though the end-group composition
was not a factor within their sample. When dealing with
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different chemical compositions and different end-group
compositions, additional considerations have to be made
since more distributions are present within the sample.

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.1c05336.

Visual representation of the feature mining flowchart,
background removal, visual representation of charge-
state reduction within the data, grouping of information,
and information about each found compositional group
(PDF)

B AUTHOR INFORMATION

Corresponding Authors

Stef R.A. Molenaar — Van ‘t Hoff Institute for Molecular
Sciences (HIMS), Analytical Chemistry Group, University of
Amsterdam, Amsterdam 1098 XH, The Netherlands; Centre
for Analytical Sciences Amsterdam (CASA), 1098 XH
Amsterdam, The Netherlands; ©® orcid.org/0000-0002-
4142-7233; Email: s.r.a.molenaar@uva.nl

Bram van de Put — Van ‘t Hoff Institute for Molecular
Sciences (HIMS), Analytical Chemistry Group, University of
Amsterdam, Amsterdam 1098 XH, The Netherlands; Centre
for Analytical Sciences Amsterdam (CASA), 1098 XH
Amsterdam, The Netherlands; TI-COAST, Amsterdam 1098
XH, The Netherlands; ® orcid.org/0000-0001-5213-2767;
Email: bram.vandeput@wur.nl

Authors

Jessica S. Desport — Van ‘t Hoff Institute for Molecular
Sciences (HIMS), Analytical Chemistry Group, University of
Amsterdam, Amsterdam 1098 XH, The Netherlands; Centre
for Analytical Sciences Amsterdam (CASA), 1098 XH
Amsterdam, The Netherlands

Saer Samanipour — Van ‘t Hoff Institute for Molecular
Sciences (HIMS), Analytical Chemistry Group, University of
Amsterdam, Amsterdam 1098 XH, The Netherlands; Centre
for Analytical Sciences Amsterdam (CASA), 1098 XH
Amsterdam, The Netherlands; ® orcid.org/0000-0001-
8270-6979

Ron A.H. Peters — Van ‘t Hoff Institute for Molecular Sciences
(HIMS), Analytical Chemistry Group, University of
Amsterdam, Amsterdam 1098 XH, The Netherlands; Centre
for Analytical Sciences Amsterdam (CASA), 1098 XH
Amsterdam, The Netherlands; Covestro, Group Innovation,
Physics and Material Science, Waalwijk 5145 PE, The
Netherlands

Bob W.J. Pirok — Van ‘t Hoff Institute for Molecular Sciences
(HIMS), Analytical Chemistry Group, University of
Amsterdam, Amsterdam 1098 XH, The Netherlands; Centre
for Analytical Sciences Amsterdam (CASA), 1098 XH
Amsterdam, The Netherlands; © orcid.org/0000-0002-
4558-3778

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.1c05336

Author Contributions

1SRAM. and B.V.D.P. contributed equally.

Notes

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

S.RAM. acknowledges the UNMATCHED project, which is
supported by BASF, DSM, and Nouryon, and receives funding
from the Dutch Research Council (NWO) in the framework of
the Innovation Fund for Chemistry (CHIPP Project
731.017.303) and from the Ministry of Economic Affairs in
the framework of the “PPS-toeslagregeling”. B.W.J.P. acknowl-
edges the Agilent UR grant #4354. The authors would like to
thank Gino Groeneveld for the provided data and Dr. Paul
Buijsen for the synthesis of the model samples. This work was
performed in the context of the Chemometrics and Advanced
Separations Team (CAST) within the Centre for Analytical
Sciences Amsterdam (CASA). The valuable contributions of
the CAST members are gratefully acknowledged.

B REFERENCES

(1) Andrews, E. H. Int. ]. Polym. Mater. 1973, 2, 337—359.

(2) Seymour, R. B.; Carraher, C. E. Structure-Property Relationships in
Polymers; Plenum Press: New York, 1984.

(3) Kilz, P. Chromatographia 2004, 59, 3—14.

(4) Pasch, H; Trathnigg, B. Multidimensional HPLC of Polymers;
Springer Laboratory; Springer: Berlin, Heidelberg, 2013,
DOI: 10.1007/978-3-642-36080-0.

(5) Pirok, B. W. J.; Mengerink, Y.; Peters, R. A. H. LCGC Eur. 2021,
34, 172—180.

(6) Pliischke, L.; Ndiripo, A; Mundil, R;; Merna, J.; Pasch, H;
Lederer, A. Macromolecules 2020, 53, 3765—3777.

(7) Groeneveld, G.; Dunkle, M. N.; Rinken, M.; Gargano, A. F. G;
de Niet, A; Pursch, M.;; Mes, E. P. C.; Schoenmakers, P. J. J.
Chromatogr. A 2018, 1569, 128—138.

(8) Knol, W. C,; Pirok, B. W. J.; Peters, R. A. H. J. Sep. Sci. 2021, 63.

(9) Bos, T. S.; Knol, W. C.; Molenaar, S. R. A,; Niezen, L. E.;
Schoenmakers, P. J.; Somsen, G. W.; Pirok, B. W. J. J. Sep. Sci. 2020,
43, 1678—1727.

(10) Fouquet, T. N. J. J. Mass Spectrom. 2019, 54, 933—947.

(11) Ishitsuka, K; Kakiuchi, T.; Sato, H.; Fouquet, T. N. J. Rapid
Commun. Mass Spectrom. 2020, 34, No. e8584.

(12) Nagy, T.; Kuki, A,; Zsuga, M.; Kéki, S. Anal. Chem. 2018, 90,
3892-3897. )

(13) Nagy, T.; Kuki, A; Hashimov, M.; Zsuga, M, Kéki, S.
Macromolecules 2020, 53, 1199—1204.

(14) Kendrick, E. Anal. Chem. 1963, 35, 2146—2154.

(18) Sato, H.; Nakamura, S.; Teramoto, K; Sato, T. J. Am. Soc. Mass
Spectrom. 2014, 25, 1346—135S.

(16) Fouquet, T. Anal. Chem. 2018, 90, 8716—8718.

(17) Nagy, T.; Kuki, A.; Zsuga, M.; Kéki, S. Anal. Chem. 2018, 90,
8719—-8720.

(18) Desport, J. S.; Frache, G.; Patiny, L. Rapid Commun. Mass
Spectrom. 2020, 34 Suppl 2, No. e8652.

(19) Town, J. S,; Gao, Y.,; Hancox, E.; Liarou, E.; Shegiwal, A;
Atkins, C. J.; Haddleton, D. Rapid Commun. Mass Spectrom. 2020, 34
Suppl 2, No. e8654.

(20) Fouquet, T. N. J; Nakamura, S.; Sato, H. Kendo. 2019,
DOI: 10.13140/RG.2.2.16742.45124.

(21) Groeneveld, G.; Gargano, A. F. G.; Voeten, R. L. C; Bos, T. S;
Peters, R. A. H.; Schoenmakers, P. J. Development of a NPLCXSEC—
UV/HRMS Platform for the Correlative Chemical Characterization of
Complex Polyesters Independent of Chemical Composition. Prep.
2022.

(22) Chambers, M. C.; MacLean, B.; Burke, R;; Amodei, D.;
Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B;
Egertson, J.; et al. Nat. Biotechnol. 2012, 30, 918—920.

(23) Molenaar, S. R. A; Van de Put, B,; Pirok, B. W. J.
MOREDISTRIBUTIONS; Zenodo 2021.

(24) Modern Polyesters: Chemistry and Technology of Polyesters and
Copolyesters; Scheirs, J.; Long, T. E., Eds.; Wiley & Sons, 2003.

https://doi.org/10.1021/acs.analchem.1c05336
Anal. Chem. 2022, 94, 5599-5607


https://pubs.acs.org/doi/10.1021/acs.analchem.1c05336?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c05336/suppl_file/ac1c05336_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stef+R.A.+Molenaar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4142-7233
https://orcid.org/0000-0002-4142-7233
mailto:s.r.a.molenaar@uva.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bram+van+de+Put"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5213-2767
mailto:bram.vandeput@wur.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jessica+S.+Desport"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saer+Samanipour"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8270-6979
https://orcid.org/0000-0001-8270-6979
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ron+A.H.+Peters"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bob+W.J.+Pirok"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4558-3778
https://orcid.org/0000-0002-4558-3778
https://pubs.acs.org/doi/10.1021/acs.analchem.1c05336?ref=pdf
https://doi.org/10.1080/00914037308072367
https://doi.org/10.1365/s10337-003-0106-7
https://doi.org/10.1007/978-3-642-36080-0?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.0c00314?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chroma.2018.07.054
https://doi.org/10.1016/j.chroma.2018.07.054
https://doi.org/10.1002/jssc.202000768
https://doi.org/10.1002/jssc.202000011
https://doi.org/10.1002/jssc.202000011
https://doi.org/10.1002/jms.4480
https://doi.org/10.1002/rcm.8584
https://doi.org/10.1002/rcm.8584
https://doi.org/10.1021/acs.analchem.7b04730?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b04730?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.9b02409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac60206a048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s13361-014-0915-y
https://doi.org/10.1007/s13361-014-0915-y
https://doi.org/10.1021/acs.analchem.8b01628?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b01886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b01886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/rcm.8652
https://doi.org/10.1002/rcm.8652
https://doi.org/10.1002/rcm.8654
https://doi.org/10.1002/rcm.8654
https://doi.org/10.13140/RG.2.2.16742.45124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nbt.2377
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c05336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Analytical Chemistry

pubs.acs.org/ac

(25) Gorrochategui, E.; Jaumot, J.; Tauler, R. BMC Bioinformatics
2019, 20, 256.

(26) Theodoridis, S.; Koutroumbas, K. Clustering Algorithms II:
Hierarchical Algorithms. In Pattern Recognition; Academic Press,
2009; pp. 653—700 DOI: 10.1016/B978-1-59749-272-0.X0001-2.

(27) Mahalanobis, P. C. On the General Distance in Statistics. In
Proceedings of the National Institute of Science of India; 1936; Vol. 12,
pp- 49-5S.

(28) Mimmack, G. M.; Mason, S. J.; Galpin, J. S. J. Clim. 2001, 14,
2790-2797.

(29) Gross, J. H. Mass Spectrometry; 3rd ed.; Springer International
Publishing: Cham, 2017..

(30) Kirk, R. E. Encyclopedia of Chemical Technology; 4th ed.; Wiley—
Blackwell, 1994. )

(31) Nagy, T.; Kuki, A.; Nagy, M.; Zsuga, M.; Kéki, S. Anal. Chem.
2019, 91, 6479-6486.

5607

https://doi.org/10.1021/acs.analchem.1c05336
Anal. Chem. 2022, 94, 5599-5607


https://doi.org/10.1186/s12859-019-2848-8
https://doi.org/10.1186/s12859-019-2848-8
https://doi.org/10.1016/B978-1-59749-272-0.X0001-2
https://doi.org/10.1016/B978-1-59749-272-0.X0001-2
https://doi.org/10.1016/B978-1-59749-272-0.X0001-2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2
https://doi.org/10.1021/acs.analchem.8b04976?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b04976?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c05336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

