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Abstract. A common assumption in the vast literature on the extremes of spectrally one-
sided Markov additive processes (MAPs) is that the continuous-time Markov chain that
serves as the background process is irreducible. In the present paper, we consider, motivat-
ed by, for example, applications in credit risk, the case in which the irreducibility condition
has been lifted, thus allowing the presence of one or more transient classes. More specifi-
cally, we consider the distribution of the maximum when the MAP under study has only
positive jumps (the spectrally positive case) or negative jumps (the spectrally negative
case). The methodology used relies on two crucial previous results: (i) the Wiener–Hopf
decomposition for Lévy processes and, in particular, its explicit form in spectrally one-
sided cases and (ii) a result on the number of singularities of the matrix exponent of a
spectrally one-sided MAP. In both the spectrally positive and negative cases, we derive a
system of linear equations of which the solution characterizes the distribution of the
maximum of the process. As a by-product of our results, we develop a procedure for calcu-
lating the maximum of a spectrally one-sided Lévy process over a phase-type distributed
time interval.
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cense. You are free to copy, distribute, transmit and adapt this work, but you must attribute this
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by/4.0/.”
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1. Introduction
The Markov additive process (in this paper abbreviated to MAP) can be seen as the Markov-modulated version of
the Lévy process. Indeed, when an independently evolving continuous-time Markov chain on d ∈ N states, usual-
ly referred to as the background process, is in state i, the MAP locally behaves as a Lévy process Xi(·): Additionally,
a MAP allows for jumps at transition epochs of the background process. As such, MAPs offer a natural modeling
framework to study stochastic processes of which the dynamics change over time, with broad applications in, for
example, credit and risk theory, queueing, inventory management, and finance; early references on MAPs
include Çinlar (1972) and Neveu (1961).

A key object of study concerns the extreme values attained by the MAP over a finite or infinite horizon. With
Y(·) denoting the MAP under consideration, the focus is on the analysis of the distribution of its running maxi-
mum process Y(t) :� sups∈[0,t]Y(s) (as well as the corresponding running minimum process). Besides being
interesting in its own right, the running maximum process can be directly translated in terms of the first-passage
process τ(y) :� inf{s ≥ 0 : Y(s) > y} because of the known duality relation between the events {Y(t) > y} and
{τ(y) < t}. Building upon related results for Lévy processes, a wide range of characterizations is derived, typically
in terms of transforms or so-called scale functions. We refer to Ivanovs (2011), chapter II, for an extensive account
of the main results on extremes of MAPs as well as the corresponding first-passage process. Particularly note-
worthy are the results obtained by Asmussen and Kella (2000), who use martingale methods to effectively extend
the Pollaczek–Khinchine formula for spectrally one-sided Lévy processes to the MAP setting. We, in addition,
mention the work by Dieker and Mandjes (2011) as well as D’Auria et al. (2010), the latter being predominantly
in terms of the first-passage process.
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In the literature on extremes for MAPs, one typically assumes that the background process is irreducible. This
assumption is convenient as it guarantees existence and uniqueness of its invariant distribution and allows the
use of time-reversal arguments. On the other hand, the assumed irreducibility obviously restricts the general
applicability of the model. There may be events, such as a crash of a stock market, that cause permanent
changes in the fluctuations of the price levels. The resulting process can naturally be modeled using a nonirre-
ducible background process. Second, in the context of credit risk, one could think of companies paying interest
to an obligor until they go into default, thus causing a loss to the obligor, after which they effectively leave the
system—another setting that can be modeled using a nonirreducible background process. This credit-related
example motivated Delsing and Mandjes (2021) to consider the extreme values attained by a MAP of a specific
Cramér–Lundberg type endowed with a nonirreducible background process of a specific structure. Important-
ly, however, the area of extremes of more general MAPs under a nonirreducible background process is so far
largely unexplored.

The main objective of this paper is to extend existing results for extremes of MAPs to the case of an arbitrary
Markovian background process, thus covering the situation that the background process is nonirreducible. Con-
cretely, we describe the distribution of the maximum attained by the MAP until the background process reaches
an absorbing state (which covers the running maximum over an exponentially distributed horizon and, in partic-
ular, also the all-time maximum). With i representing the initial state of the background chain, we let this
maximum be denoted by Zi. The main results in this paper provide the distribution of Zi for all i for a spectrally
one-sided MAP (i.e., the direction of all jumps is either positive or negative). As a by-product of this result, we
also succeed in deriving the distribution of the maximum of a spectrally one-sided Lévy process over a phase-
type distributed time interval.

The way in which our results are obtained is remarkably straightforward and transparent. Our approach is
based on two key results. First, the Wiener–Hopf decomposition for spectrally one-sided Lévy processes (Kypria-
nou 2006, Dȩbicki and Mandjes 2015) allows us to describe the dynamics of the MAP between two successive
transition epochs of the background process. Standard analytic techniques are then used to transform resulting
expressions into a linear system of equations from which the distribution of the MAP’s maximum follows. The
second key result, as established by Ivanovs et al. (2010), characterizes the number of singularities with positive
real parts of the matrix exponent corresponding to a spectrally one-sided MAP. Using this result, we find a pro-
cedure of obtaining the solution to the system of equations, consequently determining the distribution of Zi for
all i. Notably, the approach does not rely on the use of martingale methods.

This paper is structured as follows. In Section 2, we describe our model, introduce the necessary notation, and
state the two important previous results mentioned earlier. For the spectrally positive case (no downward jumps,
that is), as treated in Section 3, we derive a system of linear equations for the transforms of Zi. To solve these
equations, we introduce an ordering on the communicating classes of the background chain, which allows us to
recursively determine the distributions of Zi for all initial states i. In Section 4, covering the spectrally negative
case (no upward jumps, that is), we derive a similar system of equations for the complementary distribution
function of Zi. By using the fact that the solution is of a specific form, we show how to solve this system. Whereas
in most of the literature on extreme values of Lévy processes, one considers extreme values over an exponentially
distributed interval, in Section 5, it is pointed out how we can use our MAP-based framework to extend such re-
sults to extreme values of Lévy processes over a phase-type time interval. Section 6 presents a series of numerical
experiments illustrating the use of our results and some implementation guidelines. Concluding remarks are
made in Section 7.

2. Model and Preliminaries
In this section, we first describe in detail the model that we consider in this paper and introduce the correspond-
ing notation. We then discuss the Wiener–Hopf decomposition for spectrally one-sided Lévy processes and the
result on the number of singularities of a spectrally one-sided MAP, that is, the results (i) and (ii) mentioned in
the introduction, which play a crucial role in our reasoning. We conclude this section by explicitly outlining the
approach that is followed.

2.1. Model
We start by giving the formal definition of a MAP. Let the background process ( J(t))t≥0 be a continuous-time
Markov chain with d ∈ N states. Associated with every state i, let (Xi(t))t≥0 be a Lévy process and assume that
these Lévy processes are mutually independent. With tn denoting the time of the nth transition of the back-
ground process, suppose that t ∈ [tn, tn+1) and that, at tn, the background chain jumped from state i to state j.
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Then, a MAP is a stochastic process (Y(t))t≥0 for which

Y(t) � Y(tn−) + Lnij + Xj(t) −Xj(tn)( )
,

where (Lnij)n∈N is a sequence of independent copies of the random variable Lij, representing the size of the jump at
the time of a transition from background state i to background state j (where i≠ j). Because jumps at self-
transitions, say from background state i to itself, can be incorporated in the Lévy process Xi(·), we assume with-
out loss of generality that there are no such self-transitions. An example of a MAP is shown in Figure 1.

In this paper, we consider a spectrally one-sided MAP Y(·) with the following characteristics. First, assume
Y(0) � 0 by convention. The generator matrix of the background process J(·), which evolves independently of the
Lévy processes upon which Y(·) is based, is (qij)di,j�1 with qi :� −qii. When there is a transition of J(·) from i to j,
there is a jump of which the size is distributed as the random variable Lij; for a given pair (i, j) of background
states, these jumps are assumed independent of all of the driving Lévy processes as well as the background
process.

Finally, we incorporate (state-dependent) killing, which happens with rate ϑi ≥ 0 when the background process
is in state i. At the moment the MAP is killed, it remains constant indefinitely such that the running maximum
becomes the all-time maximum of the process. Alternatively, killing can be thought of as reaching an absorbing
background state that corresponds to a Lévy process that is identical to zero. Various specific choices of the kill-
ing rates ϑi are of interest. When choosing ϑi � ϑ > 0 for all i, for instance, we consider the running maximum
over an exponentially distributed horizon with mean 1=ϑ. In addition, the choice ϑi � 0 for all i corresponds to
the all-time maximum. We also note that, with a specific choice of the rates ϑi, we can analyze the maximum of a
Lévy process over a phase-type interval as argued in Section 5.

Denoting by Δ the killing time of the MAP, its distribution is characterized by the following system of equa-
tions:

E(e−αΔ | J(0) � i) � qi + ϑi

qi + ϑi + α

∑
j≠i

qij
qi + ϑi

E(e−αΔ | J(0) � j) + ϑi

qi + ϑi

( )
,

for α ≥ 0. This system of equations follows by observing that the time till the first event (being either a transition
of the background process J(·) or killing) is exponentially distributed with rate qi +ϑi; then, one needs to distin-
guish between the background state becoming j (for j≠ i) and killing.

2.2. Notation
Each spectrally positive Lévy process Xi(·) is characterized by its Laplace exponent φi(·) as given by

φi(α) :� logE(e−αXi(1))
for α ≥ 0, where its right inverse is denoted by ψi(·). Similarly, for a spectrally negative Lévy process Xi(·), we
consider the cumulant generating function

Φi(α) :� logE(eαXi(1))
for α ≥ 0 with Ψi(·) denoting its right inverse. To be interpreted as the MAP counterpart of the Laplace exponent
defined earlier, letM(α) � (mij(α))i,j�1,: : : ,d be the matrix with coefficients

Figure 1. Example of a MAPwith Two Background States and Its RunningMaximum Process
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mij(α) :� qij E(e−αLij) +φi(α) 1{i�j} −ϑi 1{i�j};

here, all Xi(·) are assumed spectrally positive, and the jumps Lij are assumed nonnegative almost surely (a.s.).
Later, we also work with a similar object for the spectrally negative case (in which the jumps Lij are assumed non-
positive almost surely); this MAP counterpart of the cumulant generating function is introduced at the beginning
of Section 4.

Our aim is to analyze the distribution of Zi, that is, the maximum of the MAP under state-dependent killing,
conditional on the initial background state being i:

Zi :� sup{Y(s) : s ∈ [0,Δ] | J(0) � i}:
As mentioned, we wish to do this without a priori assuming that J(·) corresponds to an irreducible continuous-
time Markov chain. A central role is played by the probabilities for u ≥ 0,

pi(u) :� P(Zi ≥ u):

2.3. Preliminaries
Before moving on to the analytic part of the paper, we elaborate on two important results that are essential in
our approach. The first of these results, the Wiener–Hopf decomposition, shows that the state of the Lévy process
at an exponentially distributed epoch can be written as the difference between two independent nonnegative
quantities. In case the Lévy process is spectrally one-sided, these distributions can be characterized explicitly in
terms of the model primitives; notably, one of the two quantities is exponentially distributed.

To state this Wiener–Hopf decomposition, denote, for a given Lévy process X(·), its running maximum process
by (X(t))t≥0 and its running minimum process by (X(t))t≥0. Let Tν be an exponentially distributed random vari-
able with mean ν−1, sampled independently of anything else.

Proposition 1 (Wiener–Hopf Decomposition). Let (X(t))t≥0 be a Lévy process. Then, X(Tν) can be decomposed as the
difference between the two independent nonnegative quantities X(Tν) and X(Tν) −X(Tν). Moreover, the second compo-
nent X(Tν) −X(Tν) is distributed as X(Tν).

If X(·) is spectrally positive with Laplace exponent φ(·) and corresponding right inverse ψ(·), then X(Tν) is distributed as
−Tψ(ν) and

E

(
e−γX(Tν)

)
� ν

ν−φ(γ) 1− γ

ψ(ν)
( )

:

If X(·) is spectrally negative with cumulant generating function Φ(·) and corresponding right inverse Ψ(·), then X(Tν) is
distributed as TΨ(ν) and

E

(
eγX (Tν)

)
� ν

ν−Φ(γ) 1− γ

Ψ(ν)
( )

:

This decomposition shows that, when X(·) is spectrally one-sided, the (transforms of the) two components can
be expressed explicitly in terms of the underlying Laplace exponent (in the spectrally positive case) or cumulant
generating function (in the spectrally negative case) and their right inverses. For more background and proofs,
we refer to, for example, Kyprianou (2006, chapter VI).

The second result concerns a characterization of the zeroes of the determinant of the matrix exponent M(α) of
a spectrally positive MAP. A special role is played by Lévy processes Xi(·) that are monotone a.s. (also referred to
as subordinators). Let S↑ (S↓) represent the set of background states corresponding to increasing (decreasing, re-
spectively) subordinators. The result is a slight restatement of Ivanovs et al. (2010), theorem 1 and remark 2.1.

Proposition 2. Let γ ≥ 0, and suppose the background chain J(·) consists of a single (hence, recurrent) class. If
X1(·), : : : ,Xd(·) are spectrally positive Lévy processes and the jump sizes at transition epochs Lij are nonnegative a.s. for all
i, j, then the equation det(M(γ)) � 0 has d− |S↑| solutions in C with a positive real part.

If X1(·), : : : ,Xd(·) are spectrally negative Lévy processes and the jump sizes at transition epochs Lij are nonpositive, then
the equation det(M(−γ)) � 0 has d− |S↓| solutions in C with a positive real part.

Next to these two results, we often exploit a standard relation between two transform types: for α ≥ 0 and Y a
nonnegative random variable,

βY(α) �
1− ηY(α)

α
, (1)
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where βY(α) :�
�∞
0
e−αxP(Y > x) dx and ηY(α) :�

�∞
0
e−αxP(Y ∈ dx), the latter representing the Laplace–Stieltjes trans-

form of Y. This relation trivially follows as an application of integration by parts.

2.4. Approach
Now that we have the essential notation and previous results at our disposal, we proceed by summarizing our
approach. In both spectrally one-sided cases, the starting point is to use Proposition 1 to find a relationship be-
tween characteristics of the MAP at two successive transition epochs of the background chain. This relationship
can be transformed to a system of equations for (transforms related to) p1(u), : : : ,pd(u), involving the matrixM(·);
here, we recall that we defined pi(u) :� P(Zi > u). In the spectrally positive case (Section 3), this system contains
unknown constants that can be determined exploiting Proposition 2. In the spectrally negative case (Section 4),
the solution is directly expressed in terms of the zeroes of det M(·), entailing that, again, Proposition 2 can be
used.

3. Spectrally Positive Case
Throughout this section, we assume that the MAP Y(·) is spectrally positive. As pointed out, this entails that, for
each i, j ∈ {1, : : : ,d}, Xi(·) has no downward jumps and the random variable Lij is nonnegative a.s.

We point out how to identify

Pi(γ) :�
�∞

0
e−γupi(u) du,

which is the transform of the tail distribution of Zi, and the corresponding Laplace–Stieltjes transform

ζi(γ) :� E(e−γZi):
Note that ζi(γ) � 1− γPi(γ) so that either of these transforms uniquely characterizes the distribution of Zi, the ran-
dom variable of our interest. Once the Laplace–Stieltjes transform ζi(γ) is evaluated, a numerical inversion algo-
rithm, for example, the one developed in Abate and Whitt (2006), can be used to obtain the distribution of Zi.

A few observations can be made.
• Recalling that Tγ denotes an exponentially distributed random variable with rate γ, it holds that

γPi(γ) � P(Zi > Tγ). In other words, γPi(γ) can be interpreted as the probability of Y(·) reaching an exponentially
distributed level (with mean γ−1) before the process is killed.

• Furthermore, bearing in mind that killing occurs at rate ϑi when the background process J(·) is in state i, it is
worth noting that, when ϑi � ϑ for all i, (numerical) inversion of

Pi(γ)
ϑ

� 1
ϑ

�∞

0

�∞

0
e−γuP(Y(Tϑ) > u | J(0) � i) dt du

�
�∞

0

�∞

0
e−γue−ϑtP(Y(t) > u | J(0) � i) dt du

with respect to both γ and ϑ yields P(Y(t) > u | J(0) � i), that is, the tail probability of the running maximum of
the unkilled MAP at time t.

• Finally, we note that Pi(0) � E(Zi), the expected maximum that the MAP attains before being killed.
Throughout this section, we analyze the behavior of Pi(γ) for a fixed initial state i. Because the running maxi-

mum of a nondecreasing process necessarily equals the current value of the process, the analysis turns out to be
slightly different depending on whether the Lévy process Xi(·) is a nondecreasing subordinator. We consider, in
Section 3.1, the case in which the fixed state i does not correspond to a nondecreasing subordinator and, in Sec-
tion 3.2, the case in which it does. In the analysis of these sections, unknown constants appear; Section 3.3 points
out how to determine these constants.

3.1. Nonsubordinator Case
In this section, we focus on the case in which J(0) � i, where i ∉ S↑ so that the spectrally positive Lévy process
Xi(·) may move downward in any interval with positive probability. Recall that ϑi + qi is the rate of the exponen-
tially distributed time until the first event; this first event corresponds to killing with probability π◦

i :� ϑi=(ϑi + qi)
and to a transition of the background process to state j with probability πij :� qij=(ϑi + qi). We decompose pi(u) by
distinguishing between the case that the value of the MAP’s running maximum Xi(Tϑi+qi) at time Tϑi+qi is above
or below u. In the former case, we have that Zi > u so that we are done; in the latter case with probability π◦

i we
do not exceed u before killing, whereas with probability πij, we are left with the probability of Zj exceeding level
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u−Xi(Tϑi+qi) − Lij before killing. Formalizing this reasoning and applying Proposition 1 to decompose Xi(Tϑi+qi)
into the nonnegative independent random variables Xi(Tϑi+qi) and Xi(Tϑi+qi) −Xi(Tϑi+qi), we obtain

Pi(γ) �
�∞

u�0
e−γu

�∞

w�u
P(Xi(Tϑi+qi) ∈ dw) du

+
�∞

u�0
e−γu

�u

w�0
P(Xi(Tϑi+qi) ∈ dw) ∑

j≠i

qij
ϑi + qi

P(Xi(Tϑi+qi) + Lij +Zj ≥ u−w) du,

where we have also used that Xi(Tϑi+qi) has the same distribution as Xi(Tϑi+qi) −Xi(Tϑi+qi). We continue by evalu-
ating these two terms, which, in the sequel, we refer to by P+

i (γ) and P−
i (γ), separately. Evaluation of the first

term is relatively straightforward; an interchange of the order of integration readily yields

P+
i (γ) �

�∞

w�0

�w

u�0
e−γudu P(Xi(Tϑi+qi) ∈ dw)

�
�∞

w�0
1− e−γw

γ
P(Xi(Tϑi+qi) ∈ dw) � 1− κi(γ)

γ
,

where

κi(γ) :� E
(
e−γXi(Tϑi+qi )) � ϑi + qi

ϑi + qi −φi(γ)
1− γ

ψi(ϑi + qi)
( )

(2)

by virtue of Proposition 1. We now focus on the evaluation of the second term, which is considerably more in-
volved. As a first step, we interchange the order of the sum and the integrals:

P−
i (γ) �

∑
j≠i

qij
ϑi + qi

P−
ij (γ),

where

P−
ij (γ) :�

�∞

u�0
e−γu

�u

w�0
P(Xi(Tϑi+qi) ∈ dw) P(Xi(Tϑi+qi) + Lij +Zj ≥ u−w) du:

The quantities P−
ij (γ) can be evaluated separately as follows. Realize that, by Proposition 1, −Xi(Tϑi+qi) is exponen-

tially distributed with rate μi :� ψi(ϑi + qi). We, thus, obtain the triple integral

P−
ij (γ) �

�∞

u�0
e−γu

�u

w�0

�∞

y�0
μie

−μiy P(Xi(Tϑi+qi) ∈ dw) P(Lij +Zj ≥ u−w+ y) dy du,

which, after replacing y by x− u+w, can be rewritten as�∞

u�0
e−γu

�u

w�0

�∞

x�u−w
μie

−μi(x−u+w) P(Xi(Tϑi+qi) ∈ dw) P(Lij +Zj ≥ x) dx du:

Our strategy is to interchange the order of the integrals so as to be able to do the (easy) integration over u first.
By first swapping the integrals over u and w and then those over u and x, we find

P−
ij (γ) �

�∞

w�0

�∞

x�0

�x+w

u�w
e−(γ−μi)udu

( )
μie

−μi(x+w) P(Xi(Tϑi+qi) ∈ dw) P(Lij +Zj ≥ x) dx

�
�∞

w�0

�∞

x�0
μi e

−γw

γ−μi
(e−μix − e−γx) P(Xi(Tϑi+qi) ∈ dw) P(Lij +Zj ≥ x) dx,

where the second equality follows by performing the integration over u and reorganizing the resulting expres-
sion. We can rewrite this expression as the difference of two terms in each of which the double integral factorizes
into the product of two single integrals. In particular, with

ηij(γ) :�
�∞

0
e−γx P(Lij +Zj ≥ x) dx,

some rearranging of terms leads to the expression

P−
ij (γ) �

μi

γ−μi

�∞

0
e−γwP(Xi(Tϑi+qi) ∈ dw) (ηij(μi) − ηij(γ)) �

μi κi(γ)
γ−μi

(ηij(μi) − ηij(γ)):
To separate Lij and Zj in the expression for ηij(γ), we rely on a probabilistic argument for nonnegative and inde-
pendent random variables A and B. That is, using the memoryless property of the exponential distribution,

van Kreveld, Mandjes, and Dorsman: Extreme Value Analysis for a Markov Additive Process
298 Stochastic Systems, 2022, vol. 12, no. 3, pp. 293–317, © 2022 The Author(s)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
6.

50
.1

50
.9

0]
 o

n 
02

 N
ov

em
be

r 
20

22
, a

t 0
3:

33
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



�∞

0
e−γxP(A+B ≥ x) dx � 1

γ
P(A+B > Tγ) � 1

γ

(
P(A > Tγ) +P(A < Tγ)P(A+B > Tγ|A < Tγ)

)
� 1
γ

(
P(A > Tγ) +P(A < Tγ)P(B > Tγ)

)
� 1−E(e−γA)

γ
+E(e−γA)

�∞

0
e−γxP(B ≥ x) dx, (3)

where we use (1) in the last step. Furthermore, let λij(·) be the Laplace–Stieltjes transform of Lij, the size of the
(nonnegative) jump at a transition by the background chain from state i to state j (in other words,
λij(γ) :� E(e−γLij)). Recalling the definition of Pi(γ), we conclude from Identity (3) that

ηij(γ) � Λij(γ) +λij(γ)Pj(γ), Λij(γ) :� 1−λij(γ)
γ

:

We now combine all these findings, which enables us to express Pi(γ) in terms of Pj(γ) with j≠ i. Recalling that

Pi(γ) � P+
i (γ) +

∑
j≠i

qij
ϑi + qi

P−
ij (γ)

and substituting the obtained expressions for P+
i (γ) and P−

ij (γ), we obtain, for any i ∉ S↑,

Pi(γ) � 1− κi(γ)
γ

+μi κi(γ)
γ−μi

∑
j�i

qij
ϑi + qi

(Λij(μi) +λij(μi)Pj(μi) −Λij(γ) −λij(γ)Pj(γ)):

By using (2), recalling that μi � ψi(ϑi + qi), and defining

κi(γ) :� 1− κi(γ)
γ

� 1
ϑi + qi −φi(γ)

ϑi + qi
ψi(ϑi + qi) −

φi(γ)
γ

( )
,

we can compactly summarize this result as follows.

Lemma 1. For i ∉ S↑ and any γ ≥ 0, the transform of the tail probability pi(u) is given by

Pi(γ) � κi(γ) +
∑
j≠i

qij
ϑi + qi −φi(γ)

(Λij(γ) +λij(γ)Pj(γ) −Λij(μi) −λij(μi)Pj(μi)): (4)

So far, we have been working with the transform Pi(γ) of the tail probability pi(u). In the remainder of this sec-
tion, we rewrite the above lemma in terms of ζi(γ) :� E(e−γZi), which takes a particularly nice form. To this end,
first note that, as a consequence of (1),

Pi(γ) � 1− ζi(γ)
γ

: (5)

Substituting this in (4) and rewriting leads to, for γ ≥ 0,

1− ζi(γ)
γ

� 1− κi(γ)
γ

+∑
j≠i

qij
ϑi + qi −φi(γ)

1−λij(γ)
γ

+λij(γ)1− ζj(γ)
γ

− 1−λij(μi)
μi

−λij(μi)
1− ζj(μi)

μi

( )
,

or, equivalently,

ζi(γ) � κi(γ) +
∑
j≠i

qij
ϑi + qi −φi(γ)

λij(γ)ζj(γ) −λij(μi)ζj(μi)
γ

μi

( )
− qi
ϑi + qi −φi(γ)

1− γ

μi

( )
�∑

j≠i

qij
ϑi + qi −φi(γ)

λij(γ)ζj(γ) −λij(μi)ζj(μi)
γ

μi

( )
+ ϑi

ϑi + qi −φi(γ)
1− γ

μi

( )
: (6)

Multiplying (6) by ϑi + qi +φi(γ) yields the identity
(ϑi + qi −φi(γ)) ζi(γ) � ϑi 1− γ

μi

( )
+∑

j≠i
qij λij(γ)ζj(γ) −λij(μi)ζj(μi)

γ

μi

( )
: (7)

We continue by considering the case that none of the states correspond to a nondecreasing subordinator. Then,
the system of Equations (7) that characterizes ζ1(γ), : : : ,ζd(γ) can be written in a considerably more compact
form. To this end, recall that the matrixM(γ) ≡ (mij(γ))di,j�1 is defined by
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mij(γ) � qijλij(γ) +φi(γ) 1{i�j} −ϑi 1{i�j}: (8)

Furthermore, using that mii(μi) � 0, we define the quantity bi(γ) as follows:

bi(γ) :�
∑
j≠i

mij(μi)ζj(μi)
γ

μi
−ϑi 1− γ

μi

( )

� ∑d
j�1

mij(μi)ζj(μi) +ϑi

( )
γ

μi
−ϑi � γ

ωi +ϑi

μi
−ϑi, (9)

with the constants ωi defined by

ωi :�
∑d
j�1

mij(μi) ζj(μi): (10)

Upon combining these, we obtain the equation ∑d
j�1mij(γ) ζj(γ) � bi(γ), for i � 1, : : : ,d. In evident vector/matrix

notation, we have, thus, rewritten (7) as follows.

Theorem 1. If no state corresponds to a nondecreasing subordinator (i.e., i ∉ S↑ for all i � 1, : : : ,d), then, for any γ ≥ 0,

M(γ) z(γ) � b(γ): (11)

It is important to note that, throughout the analysis, no assumptions on the chain structure of the background
process J(·) are imposed. Also observe that we still need to identify the constants ωi that appear in (9), which we
do in Section 3.3.

As an aside, we mention that Identity (6) can alternatively be derived using a probabilistic argumentation,
which is, for completeness, provided in Appendix A.1.

3.2. Subordinator Case
The previous section deals with the case in which the initial state i is such that the spectrally positive Lévy pro-
cess Xi(·) does not correspond to a nondecreasing subordinator (i ∉ S↑, that is). The analysis led to the matrix
Equation (11) for the case in which no state corresponds to a nondecreasing subordinator. In the present section,
we address the case in which i ∈ S↑ and point out how (11) should be adjusted if some of the background states
correspond to nondecreasing subordinators.

To this end, let, for a given i � 1, : : : ,d, the Lévy process Xi(·) be nondecreasing almost surely. It is important to
note that in this case, necessarily, φi(γ) ≤ 0 and ψi(γ) � ∞ for all γ ≥ 0. Our method for analyzing Pi(γ) is largely
the same as in the previous section, but is somewhat simpler because of the evident fact that any nondecreasing
process attains its maximum at the end of the interval under consideration. Concretely, we could mimic the
approach of the previous section while replacing X(Tϑi+qi) by X(Tϑi+qi), but it turns out to be convenient to condi-
tion on the value of Y(·) at the minimum of the killing time and the first transition of the background process.
This yields

Pi(γ) �
�∞

0
e−γupi(u) du

�
�∞

0
e−γuP(Xi(Tϑi) ≥ u,Tϑi ≤ Tqi) du +

�∞

0
e−γu

∑
j≠i

qij
qi
P(Xi(Tqi) + Lij +Zj ≥ u,Tϑi > Tqi) du: (12)

With P+
i (γ) and P−

i (γ), respectively, representing the two terms in the right-hand side of (12), we use Proposition
1 and (1) to obtain

P+
i (γ) �

�∞

0
e−γu

ϑi

ϑi + qi
P(Xi(Tϑi+qi) ≥ u) du

� ϑi

ϑi + qi
1
γ

1−E

(
e−γXi(Tϑi+qi )

)( )
� ϑi

ϑi + qi
1
γ

1− ϑi + qi
ϑi + qi −φi(γ)

( )
and
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P−
i (γ) �

�∞

0
e−γu

∑
j≠i

qij
ϑi + qi

P(Xi(Tϑi+qi) + Lij +Zj ≥ u) du

�∑
j≠i

qij
ϑi + qi

1
γ

1−E e−γXi(Tϑi+qi )( )λij(γ) ζj(γ)
( )

�∑
j≠i

qij
ϑi + qi

1
γ

1− ϑi + qi
ϑi + qi −φi(γ)

λij(γ) (1− γPj(γ))
( )

� qi
ϑi + qi

1
γ
− 1
γ

∑
j≠i

qij
ϑi + qi −φi(γ)

(
1− γΛij(γ) − γλij(γ)Pj(γ)

)
,

recalling the identities ζj(γ) � 1− γPj(γ) and λij(γ) � 1− γΛij(γ) in the last two steps.
After collecting these intermediate results, we obtain the following characterization.

Lemma 2. For i ∈ S↑ and any γ ≥ 0,

Pi(γ) � −φi(γ)
ϑi + qi −φi(γ)

1
γ
+∑

j≠i

qij
ϑi + qi −φi(γ)

(Λij(γ) +λij(γ)Pj(γ)): (13)

Observe that (13) can also be obtained by taking the limit μi � ψi(ϑi + qi) →∞ in Lemma 1, which is consistent
with the fact that ψi(·) � ∞ for subordinator processes Xi(·). Similar to the nonsubordinator case, we can again
present a vector/matrix version for the Laplace–Stieltjes transforms ζi(γ) of (the distributions of) the random var-
iables Zi: To this end, define b◦i (γ) :� −ϑi for i ∈ S↑ and b◦i (γ) :� bi(γ) for i ∉ S↑ with bi(γ) as defined in (9). Then, us-
ing similar steps as before, we eventually find the following counterpart of Theorem 1.

Theorem 2. For any γ ≥ 0, the vectors z(γ) � (ζ1(γ), : : : ,ζd(γ)) and b◦(γ) � (b◦1(γ), : : : ,b◦d(γ)) satisfy
M(γ) z(γ) � b◦(γ): (14)

Note that, also in this set of equations, the vector b◦(γ) still contains unknowns. These constants ωi, one for
each i ∉ S↑, are identified in the next section.

3.3. Evaluation of the Unknowns
So far, we have established that, in the spectrally positive case, the Laplace–Stieltjes transforms of Z1, : : : ,Zd are
given by the solutions of (14) (which simplifies to (11) in case none of the Lévy processes Xi(·) is a nondecreasing
subordinator process). This section settles the complication that (11) contains unknown constants ωi. As we see,
the number of such constants equals the number of states that do not correspond to nondecreasing subordina-
tors, which we denote by d◦ (i.e., d◦ :� d− |S↑|). To identify these d◦ unknowns and, ultimately, the solution z(γ)
of (14), we subsequently analyze three cases:

• The background chain has no transient classes.
• The background chain has exactly one transient class.
• The background chain has more than one transient class.
We proceed by studying each of these cases separately.

3.3.1. No Transient Classes. In case the background chain has no transient classes, all classes of the chain are
necessarily recurrent. To analyze Zi, it evidently suffices to restrict ourselves to the recurrent class in which the
background state i is. As a consequence, without loss of generality, we may assume that the background process
J(·) is irreducible. In this case, which has been studied extensively (see, e.g., the results in D’Auria et al. 2010, Die-
ker and Mandjes 2011), the following procedure can be used to identify the ωi. Note that, using the linear equa-
tions given in (14), one may express the vector z(γ) by relying on Cramer’s rule. More concretely, with the matrix
Mb,i(γ) denoting the matrixM(γ) in which the ith column is replaced by the vector b◦(γ), we have that

ζi(γ) � det Mb,i(γ)
det M(γ) :

Because ζi(γ) is finite, any zero of the denominator should be a zero of the numerator. According to Proposition
2, in case J(·) consists of a single class, det M(γ) � 0 has d◦ zeroes in the right half of the complex plane. For ease
of exposition, we make the assumption that these zeroes have multiplicity one (and we call them, say,
γ1, : : : ,γd◦). In the special case this assumption does not hold, a reasoning similar to the one that follows still
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applies, but one needs to resort to the concept of Jordan chains. We do not discuss this procedure in detail and in-
stead refer to the in-depth treatment in D’Auria et al. (2010).

Having distinct zeroes guarantees that we have d◦ equations to identify the ωi. That is, for i � 1, : : : ,d and
j � 1, : : : ,d◦,

det Mb,i(γj) � 0; (15)

in other words, the zeroes of det M (in the right half of the complex plane, that is) are also zeroes of det Mb,i for
each i � 1, : : : ,d. For any given j � 1, : : : ,d◦, this seemingly yields d equations, but it can be seen easily that each of
these d equations effectively provides the same information. Indeed, with mk(γ) denoting the kth column of
M(γ), suppose, for any fixed i, that det M(γ) � 0 and det Mb,i(γ) � 0 for some γ ≥ 0. This implies that both M(γ)
andMb,i(γ) are singular, and as a consequence, there are nontrivial vectors u and v such that∑d

j�1
mj(γ) vj � 0,

∑
j≠i

mj(γ) uj + b◦(γ) ui � 0:

As a consequence, for any i′ ≠ i,

0 � −ui′
∑d
j�1

mj(γ) vj + vi′
∑
j≠i

mj(γ) uj + vi′b◦(γ) ui

� −ui′vimi(γ) + ∑
j≠i, i′

(vi′uj − ui′vj) mj(γ) + vi′uib
◦(γ),

entailing that there is a linear combination of the columns of Mb,i′ (γ) that equals 0: In other words, Mb,i′ (γ) is sin-
gular, and hence, det Mb,i′ (γ) � 0 as well.

Now that we know that (15), for any given index j � 1, : : : ,d◦, provides us with just a single equation, we study
this equation in more detail. Let us focus on det Mb,1(γj) � 0 for j � 1, : : : ,d◦ (we take i � 1, that is). With M̄ij(γ)
representing the (d− 1) × (d− 1) matrix that results after deleting the ith column and the jth row from M(γ) and
recalling that b◦i (γ) � γ (ωi +ϑi)=μi −ϑi for i ∉ S↑ and b◦i (γ) � −ϑi for i ∈ S↑, this equation can be rewritten as∑

i∉S↑
γj

ωi +ϑi

μi
−ϑi

( )
(−1)1+idet M̄i1(γj) +

∑
i∈S↑

ϑi (−1)idet M̄i1(γj) � 0:

We, thus, obtain d◦ equations (one for each γj) that are linear in the unknowns ω1, : : : ,ωd◦ , which can be dealt
with in the standard manner, thus yielding a solution for the ωi.

3.3.2. A Single Transient Class. We now consider the case in which the background chain has a single transient
class, say T ⊂ {1, : : : ,d}, next to one or more recurrent classes. In this case, note that the ζi(γ) for all recurrent
states i, that is, i ∉ T, can be computed by the procedure pointed out earlier. Subsequently, for i ∈ T ,we rewrite
the ith equation of (14) as ∑

j∈T
mij(γ)ζj(γ) � b◦i (γ) −

∑
j∉T

mij(γ)ζj(γ): (16)

Observe that the right-hand side is known; we denote it by b
◦
i (γ): Define d :� |T| as the number of transient states

and d
◦
:� |T \ S↑| as the number of transient states that do not correspond to nondecreasing subordinators. In ad-

dition, we define the d × d matrix M̄(γ) :� (mij(γ))i,j∈T, and we let the d-dimensional vector z(γ) :� (ζi(γ))i∈T repre-
sent the entries of z(γ) that correspond to the states in T. Likewise, b

◦(γ) � (b◦i (γ))i∈T represents the vector of
right-hand sides of (16). Using these definitions, (16) can be written as

M̄(γ) z(γ) � b
◦(γ):

Clearly, suppose that we could prove that det M̄(γ) � 0 has d
◦
zeroes in the right half of the complex plane; then,

we could identify the constants ωi by following the same approach as the one we develop for the case of no tran-
sient classes. This is why we now verify that the entries of M̄(γ) can be written in the form (8) with transition
rates that correspond to a single recurrent class so that we can apply Proposition 2 to establish the desired prop-
erty for the number of zeroes of det M̄(γ) � 0 in the right half of the complex plane. By rewriting the diagonal ele-
ments of M̄(γ) as

mii(γ) � qii +φi(γ) −ϑi � qii +φi(γ) −ϑi, (17)
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with

qii :� − ∑
j∈T\{i}

qij and ϑi :� ϑi +
∑
j∉T

qij, (18)

we conclude that the row sums of transition rates qii +∑
j∈T\{i}qij equal zero for all i ∈ T. This means that M̄(γ) in-

deed has the desired form: the entries are of the form (8) with transition rates that correspond to a single recur-
rent class. Applying Proposition 2, we have that det M̄(γ) � 0 has d

◦
zeroes in the right half of the complex plane

so that we can identify the ωi for i ∈ T \ S↑ (repeating the remark on roots with the multiplicity larger than one as
made earlier in relation to the case with recurrent states only).

3.3.3. Multiple Transient Classes. We now consider the case in which there are K > 1 transient classes (say
T1, : : : ,TK). We let R be the union of all remaining recurrent classes. Furthermore, we write Tk↝Tk′ if there is a
direct transition from a state in Tk to a state in Tk′ , that is, there is a state i ∈ Tk and a state j ∈ Tk′ such that qij > 0.
To handle the case of multiple transient classes, we order the transient classes in “layers” as follows. Let C0 :� R,
and for n � 1, 2, : : : , let the nth layer set be given by

Cn :� Cn−1 ∪ {Tk : for all k′ such that Tk↝Tk′ it holds that k′ ∈ Cn−1}:
It is worth noting that, if a background state i is element of the layer set Cj but not of Cj−1, then the background
chain can reach a recurrent state in minimally j transitions. In addition, we can observe that the number of non-
empty layer sets (including C0) is at most K + 1. See Figure 2 for a pictorial illustration.

In the previous two cases, we already explained how to compute ζi(γ) for i ∈ R and i ∈ C1, respectively. We
now point out how we can evaluate ζi(γ) for i ∈ Cn, having ζi(γ) for i ∈ R,C1, : : : ,Cn−1 at our disposal so that we
can recursively determine all ζi(γ). Suppose that Tk ⊆ Cn \Cn−1 (where it is noted that there are potentially multi-
ple transient classes in Cn \Cn−1). As states in Tk cannot have direct transitions to classes outside Cn−1, we have,
for i ∈ Tk, that ∑

j∈Tk

mij(γ)ζj(γ) � b◦i (γ) −
∑
j∈Cn−1

mij(γ)ζj(γ):

From this point, the analysis follows that of the case with a single transient class. More specifically, the number
of zeroes of the determinant of the matrix (mij(γ))i,j∈Tk

in the right half of the complex plane equals the number of
states in Tk that do not correspond to nondecreasing subordinators, using the same argument as in the case of a
single transient class. This allows us to identify the ωi for i ∈ Tk \ S↑.

4. Spectrally Negative Case
The model we analyze in this section can be seen as the spectrally negative counterpart of the one considered in
the previous section. This concretely means that now the Lévy processes Xi(·) are assumed to be spectrally nega-
tive and the jumps Lij are nonpositive. In addition, we replace our earlier definition of the entries of the matrix
M(ν) � (mij(ν))di,j�1 by

mij(ν) :� qijλij(−ν) +Φi(ν) 1{i�j} −ϑi 1{i�j}, (19)

for ν ≥ 0, to account for the nonpositive jumps. As in the spectrally positive case, the matrixM(ν) is helpful in es-
tablishing the main result of this section.

Figure 2. Example of Layer Sets with K � 4 Transient Classes

Notes. In this case, C0 � R, C1 � R ∪ T1, C2 � R ∪ T1 ∪ T2, and C3 � R ∪ T1 ∪ T2 ∪ T3 ∪ T4. In this figure, an arrow between the classes U and V
means thatU↝V.
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Unlike in the previous section, throughout the present section, we focus directly on pi(u) � P(Zi ≥ u) rather
than on its Laplace transform Pi(γ); as it turns out, Laplace transforms are not required in the analysis of the
spectrally negative case. A convenient feature, made more precise later, is that, in the spectrally negative setting,
the form of the distribution of the Zi is known.

Somewhat comparably to the setup of Section 3, to make the presentation as transparent as possible, we first
treat the case in which none of the Lévy processes Xi(·) is a nonincreasing subordinator (Section 4.1), after which
we point out how to adapt the analysis to the case in which some of the Xi(·) are (Section 4.2).

The following claim plays a crucial role in this section.

Lemma 3. The equation det M(ν) � 0 has d◦ zeroes with a positive real part, say ν1, : : : ,νd.

By Proposition 2, we already know that Lemma 3 holds if the background process is irreducible. In Section 4.3,
we provide a proof for the case that the background process has a general chain structure.

4.1. Nonsubordinator Case
In this section, we consider the situation in which none of the states corresponds to a nonincreasing subordinator.
This means that, for all i � 1, : : : ,d, Proposition 1 implies that the running maximum Xi(Tϑi+qi) has an exponential
distribution with rate μi :�Ψi(ϑi + qi). Recalling that the time until either the process is killed or the background
chain transitions are distributed exponentially with rate ϑi + qi, we, thus, obtain the identity

pi(u) � e−μiu +∑
j≠i

qij
ϑi + qi

p−ij (u), (20)

with

p−ij (u) :�
�u

0
μie

−μiwP(Xi(Tϑi+qi) + Lij +Zj ≥ u−w) dw: (21)

To streamline our analysis, we impose Property (A). By Lemma 3, we know that, in this setting, without nonin-
creasing subordinators, the equation det M(ν) � 0 has d zeroes with a positive real part.

The d zeroes of det M(ν) with a positive real part are distinct: (A)

Importantly, however, imposing (A) effectively does not impose any restriction: as discussed in Remark 2, the ar-
gumentation can be adapted to cover zeroes with higher multiplicities.

A crucial fact is that the first-passage process pertaining to Y(·) is a MAP itself irrespective of whether the back-
ground process is irreducible; cf. the discussion in Ivanovs (2011), section 2.6. This implies that the random varia-
bles Zi have phase-type distributions; see, for example, Asmussen (2003), section III.4, for background on this
class of distributions. More specifically, one obtains their Laplace transforms by plugging in α � 0 in the expres-
sion of the first statement of Ivanovs (2011), corollary 4.21. The result concretely entails that, in our setting,
without nonincreasing subordinators, for a d × d transition rate matrix Λ, a vector l :� −Λ1 ≥ 0 with at least one
positive entry, and initial distributions a1, : : : ,ad,

E(e−γZi) � ai(γI−Λ)−1l:
Recalling the definition of M(ν) in (19), the zeroes of det M(ν) coincide with those of det(−νI−Λ); cf. Ivanovs
(2011), theorem 4.7, and again the first statement of Ivanovs (2011), corollary 4.21. Because of this, the matrix
(γI −Λ) is singular in γ � −ν1, : : : , − νd; hence, E(e−γZi) can be written as a linear combination of the terms
1=(γ+ ν1), : : : , 1=(γ+ νd). This means that, under (A), we can write, for k � 1, : : : ,d and u ≥ 0,

pi(u) �
∑d
k�1

cik e−νku, (22)

where C � (cik)di,k�1 is a matrix of unknown coefficients whose rows add up to one.

Remark 1. As mentioned, the first statement of Ivanovs (2011), corollary 4.21, already provides a characterization
of the distribution of the random variables Zi (for i � 1, : : : ,d) under a possibly nonirreducible background chain.
It is noted, though, that in Ivanovs (2011), corollary 4.21, the distribution of the Zi is given in terms of a
Laplace–Stieltjes transform, which contains unknown matrices (viz. in the terminology of Ivanovs (2011), the ma-
trices Λ(q) and Π(q)), which can be numerically computed, for example, using Ivanovs (2011), theorem 4.14. Our
contribution is that we obtain a more explicit result in Theorem 3: our result concerns the probabilities pi(u),
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corresponding to the tail of Zi, rather than their transforms. For each i, we succeed in expressing pi(u) in terms of
the solutions of an eigensystem.

We now exploit the structure as given in (22) to generate equations by which we can determine the coefficients
cik. To this end, we define aik :� cikνk. By conditioning on the value of Zj in (21) using (22), we, thus, obtain

p−ij (u) �
�u

0
μie

−μiw
�∞

0

∑d
k�1

ajk e−νkv P(Xi(Tϑi+qi) + Lij ≥ u−w− v) dv dw: (23)

We then substitute v by u−w− x and recall that Xi(Tϑi+qi) and Lij are nonpositive random variables, leading to

p−ij (u) �
�u

0
μie

−μiw
�u−w

−∞

∑d
k�1

ajke−νk(u−w−x) P(Xi(Tϑi+qi) + Lij ≥ x) dx dw

�
�u

0
μie

−μiw
�0

−∞

∑d
k�1

ajke−νk(u−w−x) P(Xi(Tϑi+qi) + Lij ≥ x) dx dw:

Pulling the sum in front of the integrals leads to a sum in which the two integrals factorize. That is, we obtain

p−ij (u) �
∑d
k�1

ajk
�0

−∞
eνkx (1−P(Xi(Tϑi+qi) + Lij < x)) dx ·

�u

0
μie

−μiwe−νk(u−w) dw: (24)

Now, we can rewrite the first integral in this expression using (1) and Proposition 1, yielding�0

−∞
eνkx (1−P(Xi(Tϑi+qi) + Lij < x)) dx � 1

νk
E

(
eνkX i(Tϑi+qi )

)
λij(−νk)

� 1
νk

Ψi(ϑi + qi) − νk
ϑi + qi −Φi(νk)

ϑi + qi
Ψi(ϑi + qi)

( )
λij(−νk)

� 1
νk

ϑi + qi
ϑi + qi −Φi(νk)

μi − νk
μi

( )
λij(−νk):

Furthermore, we note for the second integral of (24) that�u

0
μie

−μiwe−νk(u−w) dw � μi

μi − νk
(e−νku − e−μiu):

Combining these, we conclude that

p−ij (u) �
∑d
k�1

cjk
ϑi + qi

ϑi + qi −Φi(νk) (e
−νku − e−μiu)λij(−νk): (25)

It can be seen that the μi differ from the νk because, if they were equal for some pair (i, k), then pi(u) would have a
term that is constant in u, thus violating its form given in (22). In Appendix A.2, an alternative, probabilistic
proof of (25) is given.

We now focus on finding the values of the coefficients cik for i, k � 1, : : : ,d. Observe that we have two alterna-
tive ways of writing pi(u): Representation (22) and a representation based on (20) and (25). Note that both are lin-
ear combinations of e−μiu and e−ν1u, : : : , e−νdu. The weights corresponding to each of these d + 1 exponentials
should match, thus providing equations that impose constraints on the cik.

• Focusing on the terms corresponding to e−νku for k− 1, : : : ,d, we, thus, obtain the equations

cik �
∑
j≠i

qij
1

ϑi + qi −Φi(νk)λij(−νk)
( )

cjk, (26)

where, as observed earlier, ∑d
k�1cik � 1:

• Regarding the terms corresponding to e−μiu, recalling that μi differs from all the νk, we should have

1−∑d
k�1

∑
j≠i

qij
1

ϑi + qi −Φi(νk)λij(−νk)
( )

cjk � 0:

This equation holds true if (26) applies, which can be seen by recognizing the left-hand side as 1−∑d
k�1cik (as

the obvious consequence of ∑d
k�1cik � 1). In other words, this equation does not provide any additional

information.
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We now observe that (26) is equivalent to, for i, k � 1, : : : ,d,∑d
j�1

mij(νk) cjk � 0: (27)

We reassuringly notice from (27) that the matrix M(νk) is singular for all k � 1, : : : ,d, and hence, that the νk are in-
deed the solutions to det M(ν) � 0.

As was done in the spectrally positive case, our result can be rewritten in a more compact vector/matrix form.
In particular, to find the cjk, it is enough to solve, for k � 1, : : : ,d, the matrix-vector equation

M(νk) ck � 0,

where ck :� (c1k,: : : ,cdk)�, subject to C 1 � 1. The following theorem summarizes these findings.

Theorem 3. Under Property (A), pi(u) satisfies

pi(u) �
∑d
k�1

cik e−νku,

for i � 1, : : : ,d. Here, for k � 1, : : : ,d, the vectors ck solve M(νk) ck � 0 subject to C 1 � 1:

Remark 2. We briefly comment on the case in which some solutions of det M(ν) � 0 have multiplicity larger than
one. For instance in the case of a root with multiplicity two, suppose that, for some k1 ≠ k2, νk1 � νk2 � ν, giving
rise to terms in (22) proportional to e−νu and u e−νu. Finding the associated weights works effectively as pointed
out: use Identity (20) to find two alternative expressions for pi(u) and then equate the terms proportional to u e−νu
so as to obtain linear equations for these coefficients (in addition to equating all terms proportional to e−νku). For
an in-depth treatment of these multiplicity issues, we again refer to D’Auria et al. (2010).

4.2. Subordinator Case
We now consider the case in which some of the states of the background process correspond to a nonincreasing
subordinator. Let i be in the set of states corresponding to nonincreasing subordinators, denoted by S↓. For i ∈ S↓,
Zi � 0 with positive probability.

The structure of this section is similar to that of the nonsubordinator case, the main difference being that now
the MAP cannot cross positive levels (in the upward direction, that is) while the background process is in i ∈ S↓.
Therefore, the following decomposition applies for u > 0:

pi(u) �
∑
j≠i

qij
ϑi + qi

p−ij (u), (28)

with
p−ij (u) :� P(Xi(Tϑi+qi) + Lij +Zj ≥ u):

Regarding the zeroes of det M(ν), we make a similar claim and assumption as in Section 4.1. Let d◦ :� |S \ S↓| be
the number of states that do not correspond to a nonincreasing subordinator. Then, by Lemma 3, we know that
det M(ν) has d◦ zeroes with a positive real part, say (νk)k∉S↓ . In our analysis, we impose Property (A′).

The d◦ zeroes of det M(ν) with a positive real part are distinct: (A′)
The case of zeroes with higher multiplicities can be dealt with as discussed in Remark 2, and the case that J(·) is
not irreducible is covered by Section 4.3.

Relying on the same reasoning as in Section 4.1, under (A′), we again have, because of the first-passage process
being a MAP and the first statement of Ivanovs (2011), corollary 4.21, that pi(u) is a linear combination of expo-
nential terms, whereas the number of such terms now equals d◦. Concretely, for u > 0 and i � 1, : : : ,d,

pi(u) �
∑
k∉S↓

cike−νku: (29)

To identify the coefficients cik, it proves worthwhile to further study p−ij (u). In particular, for any j � 1, : : : ,d, condi-
tioning on the value of Zj yields

p−ij (u) �
∑
k∉S↓

�∞

u
cjkνke−νkv P(Xi(Tϑi+qi) + Lij ≥ u− v) dv:

Then, we subsequently use Relation (1) and Proposition 1 to obtain
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p−ij (u) �
∑
k∉S↓

cjke−νku E
(
eνkXi(Tϑi+qi )

)
λij(−νk) �

∑
k∉S↓

cjk
ϑi + qi

ϑi + qi −Φi(νk) e
−νku λij(−νk),

such that, in combination with (28), we have

pi(u) �
∑
j�i

∑
k∉S↓

cjk
qij

ϑi + qi −Φi(νk) e
−νku λij(−νk): (30)

By equating (29) and (30), we, thus, obtain equations that the coefficients should satisfy. As it turns out, doing
this for any i ∈ S↓ and k ∉ S↓, we again obtain (26). Following the same steps as the ones leading to Theorem 3, we
obtain the following result. However, the matrix C now consists of entries cik with k ∉ S↓, whereas ck :�
(c1k ,: : : ,cdk)� as before.

Theorem 4. Under Property (A′), the tail probability pi(u) satisfies
pi(u) �

∑
k∉S↓

cike−νku,

for i � 1, : : : ,d. Here, for k ∉ S↓, the vectors ck solve M(νk) ck � 0 subject to
∑

k∉S↓cik � 1 for all i ∉ S↓.

We note that, because the rows i of C such that i ∈ S↓ do not add up to one, we have that
P(Zi � 0) � 1−∑

k∉S↓cik > 0:

4.3. Number of Roots with a Positive Real Part
In the previous sections, we provide a recipe to compute the tail probabilities pi(u) using Lemma 3. The objective
of this section is to prove this lemma. To this end, we partition the state space of the background chain in K tran-
sient classes (say T1, : : : ,TK) and L recurrent classes (say R1, : : : ,RL). We label the classes such that, for
ℓ ∈ {1, : : : ,K}, class ℓ refers to Tℓ, and for ℓ ∈ {K+ 1, : : : ,K+ L}, class ℓ refers to Rℓ−K. We also order the transient
classes as is done in Section 3.3: for any ℓ, Tℓ has no transitions to other classes Tℓ′ such that ℓ′ ≤ ℓ. Furthermore,
we let d◦ℓ be the number of states in class ℓ that do not correspond to nonincreasing subordinators,
ℓ � 1, : : : ,K+ L.

With the introduced ordering of class, the transition rate matrix of the background chain can now be written in
the following form:

Q �

Q̄1 S12 ⋯ S1K S1,K+1 ⋯ S1,K+L
0 Q̄2 ⋯ S2K S2,K+1 ⋯ S2,K+L
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ Q̄K SK,K+1 ⋯ SK,K+L
0 0 ⋯ 0 QK+1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 ⋯ QK+L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: (31)

The block matrices QK+1, : : : ,QK+L correspond to the recurrent classes and can be interpreted as “true” transition
rate matrices of Markov chains of lower dimension in that they have nonnegative entries except on their diagonals
and their row sums are all zero. This does not hold for the block matrices Q̄1, : : : , Q̄K: because they correspond to
transient classes, their off-diagonal entries are still nonnegative, but they have at least one strictly negative row
sum. The matrices Sk,ℓ with k � 1, : : : ,K and ℓ � K+ 1, : : : ,K+ L contain nonnegative entries and correspond to tran-
sitions from Tk into a different class.

The next step is to construct the matrix M(ν) that corresponds to the “rearranged transition matrix” Q. This
matrix is “block upper triangular,” which is inherited from the matrix Q. It concretely means that, for appropri-
ately constructed matrices M̄1(ν), : : : ,M̄K(ν) and MK+1(ν), : : : ,MK+L(ν) (based on, respectively, Q̄1(ν), : : : , Q̄K(ν)
and QK+1(ν), : : : ,QK+L(ν)),

det M(ν) � det M̄1(ν) ⋯ det M̄K(ν) det MK+1(ν) ⋯ det MK+L(ν); (32)

here, the matrices M̄ℓ(ν) (for ℓ � 1, : : : ,K) correspond to transient classes, whereas the matrices Mℓ(ν) (for
ℓ � K+ 1, : : : ,K+ L) correspond to recurrent classes. It is clear that det Mℓ(ν), where ℓ � K+ 1, : : : ,K+ L, has d◦ℓ
roots with a positive real part as an immediate consequence of Proposition 2. This also holds for det M̄ℓ(ν), where
ℓ � 1, : : : ,K, which follows by rewriting the diagonal entries as we did in (17) and (18) in such a way that M̄ℓ(ν)
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has the desired form to apply Proposition 2. Upon combining these, we conclude that det M(ν) � 0 has ∑K+L
ℓ�1 d

◦
ℓ � d◦

zeroes as desired.

Remark 3. As indicated, the computation of the coefficients cik amounts to solving an eigensystem; see Theorems
3 and 4. However, using the structure of the background chain, in specific cases, this computation can be simpli-
fied considerably. Appealing to the factorization of det M(ν) provided in Equation (32), it can be argued that
some of the cik are necessarily equal to zero. In the first place, let νk be a root of det M(ν) such that det Mℓ(νk) � 0
for some ℓ ∈ {K+ 1, : : : ,K+ L} (i.e., ℓ corresponds to a recurrent class). If the roots of det M(ν) are simple, this
means that νk does not solve det Mℓ′ (ν) � 0 for ℓ′ ∈ {K+ 1, : : : ,K+ L} with ℓ′ � ℓ, nor det M̄ℓ′ (ν) � 0 for
ℓ′ ∈ {1, : : : ,K}. By virtue of the structure of the matrix M(ν), which is inherited from the transition rate matrix Q
(as given in (31)), we, thus, conclude that cik � 0 for all states i from which the recurrent class ℓ cannot be reached.
In the second place, analogously, if νi is such that det M̄ℓ(νi) � 0 for some ℓ ∈ {1, : : : ,K} (i.e., ℓ corresponds to a
transient class), then cik � 0 for all states k that cannot be reached from this transient class. This reduction proce-
dure makes intuitive sense: informally, the distribution of Zi cannot be affected by properties of the MAP that
correspond to states that cannot be reached from state i.

5. Maximum of a Spectrally One-Sided Lévy Process over a Phase-Type Period
In Lévy fluctuation theory, the focus is predominantly on the evaluation of the distribution of extreme values
over exponentially distributed intervals; see, for instance, Proposition 1 for a key result in this context. In the pre-
sent section, we use our results on the maximum of a killed MAP to determine the distribution of a spectrally
one-sided Lévy process over a phase-type distributed time interval.

The practical relevance of working with the classP of phase-type distributions lies in the fact that any distribu-
tion on the positive half-line can be approximated arbitrarily closely by a distribution in P (Asmussen 2003,
theorem III.4.2). The proof of this property reveals that, actually, any distribution on the positive half-line can be
approximated arbitrarily closely by elements from a smaller class, namely, the class of mixtures of Erlang distri-
butions. In particular, a deterministic positive number can be approximated by an Erlang distributed random
variable with a large number of phases.

This section has two main goals. In Section 5.1, we show how our results on the maximum of a killed spectrally
one-sided MAP can be applied to derive the distribution of the maximum of a spectrally one-sided Lévy process
over a phase-type distributed time interval. Then, in Section 5.2, we obtain more specific results for the practical-
ly relevant class of mixtures of Erlang distributions.

5.1. Translation into the MAP Framework
We start our exposition by interpreting a phase-type distributed random variable as an absorption time in a
continuous-time Markov chain. Each element in the class P is characterized by (i) a finite state space {1, : : : ,d};
(ii) an initial distribution a ∈ R

d; (iii) a d × d matrix T � (tij)di,j�1 with nonpositive diagonal entries, nonnegative
off-diagonal entries, and nonpositive row sums; and (iv) a nonnegative exit vector t :� −T1. Note that the (d+ 1) ×
(d+ 1)matrix

T̄ :� T t
0� 0

( )
,

is a genuine transition rate matrix of a (d+ 1)-state Markov chain in that its diagonal entries are nonpositive, its
off-diagonal entries are nonnegative, and its row sums are equal to zero. The (d+ 1) st column and row in this
matrix correspond to a newly added state d + 1, which we refer to as the absorbing state. Observe that this chain
can hit state d + 1 from any other state according to the exit vector t. Now, the phase-type random variable corre-
sponding to the preceding instance is the time it takes the expanded Markov chain (with transition rate matrix T̄)
to reach the absorbing state, at which the initial state has been sampled according to the distribution a.

We now consider the distribution of the maximum of the spectrally one-sided Lévy process X(·) over a phase-
type distributed time interval (being characterized by the initial distribution a and the transition rate matrix T̄).
To use the MAP framework that we have been working with in the previous sections, we let X1(·), : : : ,Xd(·) be in-
dependent copies of a common spectrally one-sided Lévy process X(·) such that the resulting MAP evolves as
this Lévy process. We write φ(·) for the Laplace exponent of X(·) in case it is spectrally positive, and we write
Φ(·) for the cumulant generating function of X(·) in case it is spectrally negative. In addition, we let Xd+1(t) ≡ 0
for all t ≥ 0. Furthermore, we choose Q � T +diag(t) and ϑ � t such that absorption in state d + 1 corresponds to
killing. In addition, let the jumps of the MAP at transition epochs of the background process, as represented by
the random variables Lij, be equal to zero. Observe that, under this construction, with Z̄ denoting the maximum
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of the Lévy process X(·) over the phase-type interval,

P(Z̄ ≥ u) �∑d
i�1

αiP(Zi ≥ u),

where P(Zi ≥ u) can be analyzed using the techniques for extremes of MAPs as developed earlier in the paper.

5.2. Mixtures of Erlang Distributions
Because, with this distribution class, we can approximate any nonnegative random variable arbitrarily closely,
we are particularly interested in the case in which the time interval is a mixture of Erlang distributions. This con-
cretely means that, for some k ∈ N and i � 1, : : : k, with probability pi ∈ [0, 1] the length of the interval is sampled
from an Erlang distribution with shape parameter di ∈ N and scale parameter τi > 0 (obviously requiring∑k

i�1pi � 1). It takes little thought to conclude that, in order to evaluate the maximum of the Lévy process of such
an interval, it suffices to be able to evaluate its maximum over an Erlang distributed time interval (say with pa-
rameters d ∈ N and τ > 0). This requires us to extend the result of an example from Asmussen and Ivanovs
(2018), which focuses on the maximum of Brownian motion (with a given drift and variance parameter) over an
Erlang(d,τ) distributed time interval. Specifically, we generalize this result to any spectrally one-sided Lévy pro-
cess (in which, to avoid trivial cases, we assume that the underlying Lévy process is not a subordinator). Related
results on maxima over an Erlang horizon include Boxma and Mandjes (2021), section 5; Dȩbicki and Mandjes
(2015), section IV.1; and Starreveld et al. (2016). In the remainder of this section, we treat both spectrally one-
sided cases separately.

5.2.1. Maximum of a Spectrally Positive Lévy Process over an Erlang-Distributed Time Interval. Recall from Theo-
rem 1 that the Laplace–Stieltjes transform of the maximum, z(γ), satisfies the linear system M(γ)z(γ) � b(γ),
where the (d × d)-dimensional matrixM(·) is given by

M(γ) �

−τ+φ(γ) τ 0 ⋯ 0 0
0 −τ+φ(γ) τ ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ −τ+φ(γ) τ

0 0 0 ⋯ 0 −τ+φ(γ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

The direct implication of the matrix M(·) being upper triangular is that z(γ) as well as the unknown constants ωi

can be solved recursively. A concrete recipe for this could be the following. Defining m(γ) :� −τ+φ(γ), we first
find ζd(γ) � bd(γ)=m(γ). Note that the numerator contains the constant ωd (see (9)), which can be identified using
the observation that the (single) zero, say γ? :� ψ(τ), from the denominator should be a zero of the numerator as
well. As a next step, we identify ζd−1(γ) observing that

ζd−1(γ) � bd−1(γ) − τ ζd(γ)
m(γ) �m(γ) bd−1(γ) − τ bd(γ)

m2(γ) :

This expression contains the (by now known) constant ωd as well as the (still unknown) constant ωd−1 through
the function bd−1(γ). However, ωd−1 can again be found, noting that the double zero from the denominator
(which is again γ?) is also a double zero of the numerator. Thus, noting that m(γ?) � 0, we obtain

m′(γ?) bd−1(γ?) − τ b′d(γ?) � 0,

from which we find the unknown constant ωd−1. We can continue along these lines until we have identified all
Laplace–Stieltjes transforms ζi(γ) and corresponding constants ωi for i � 1, : : : ,d. After a number of computations,
one then obtains

ζi(γ) � 1− γ

ψ(τ)
( )

− τ

m(γ)
( )d−i+1

− γ

ψ(τ)
∑d−i
j�1

− τ

m(γ)
( )j

lim
ν→ψ(τ)

ζi+j(ν):

Because ζj(ψ(τ)) is not well defined for any j � 1, : : : ,d, we note that limν→ψ(τ)ζj(ν) can be derived from ζj(γ) by
L’Hôpital’s rule.

5.2.2. Maximum of a Spectrally Negative Lévy Process over an Erlang-Distributed Time Interval. For the spec-
trally negative case, we follow the line of reasoning used in Section 4. The first observation is that, in this case,
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M(ν) has a single positive root with multiplicity d, namely, ν :�Ψ(τ). Because the geometric multiplicity of M(ν)
is one, its exponent contains multiples of uke−νu for k � 0, : : : ,d− 1 (cf. Remark 2). Let Zi be the maximum of the
process X(·) when starting in phase i, that is, with still d− i+ 1 phases ahead (which is equivalent to setting
αi � 1). We can represent the density of Zi by a mixture of d− i+ 1 Erlang densities, that is,

P(Zi ∈ du) � ∑d−i+1
k�1

aik
νk

(k− 1)!u
k−1e−νudu, (33)

where the aik are coefficients that we determine as follows. Evidently, the quantity νk=(k− 1)! could have been in-
corporated in the coefficient aik, but as it turns out, not doing so makes the formulas slightly cleaner. We already
mentioned that ad1 � 1 as the maximum of a spectrally negative Lévy process over an exponentially distributed in-
terval is exponentially distributed with parameterΨ(τ) (see Proposition 1). As a consequence of (33), we find that

pi(u) �
�∞

u
P(Zi ∈ dx) � ∑d−i+1

k�1
aik e−νu

∑k−1
m�0

νmum

m!
: (34)

Similar to the strategy followed in Section 4, we now derive a second expression for pi(u), also in terms of the aik,
which, in combination with (34), allows us to determine these unknown coefficients. To this end, note that, in
our setting, (20) implies, for i � 1, : : : ,d− 1, that

pi(u) � e−νu + p−i+1(u), (35)

where

p−i+1(u) �
�u

0
νe−νwP(X(Tτ) +Zi+1 ≥ u−w) dw: (36)

Conditioning on the value v of Zi+1, using (33), and substituting x � u−w− v, we, thus, obtain

p−i+1(u) �
�u

0
νe−νw

�∞

u−w

∑d−i
k�1

ai+1,k
νk

(k− 1)!v
k−1e−νvP(X(Tτ) ≥ u−w− v) dv dw

�
�u

0
e−νw

�0

−∞

∑d−i
k�1

ai+1,k
νk+1

(k− 1)! (u−w− x)k−1e−ν(u−w−x)P(X(Tτ) ≥ x) dx dw:

It then follows from an application of the binomial theorem that

p−i+1(u) �
�u

0

�0

−∞

∑d−i
k�1

ai+1,k
νk+1

(k− 1)!
∑k−1
ℓ�0

k− 1
ℓ

( )
(u−w)ℓ(−x)k−1−ℓe−ν(u−x)P(X(Tτ) ≥ x) dx dw

�∑d−i
k�1

ai+1,k
∑k−1
ℓ�0

e−νu
�u

0

νℓ+1(u−w)ℓ
ℓ!

dw ·
�0

−∞
νk−ℓ(−x)k−1−ℓ
(k− 1− ℓ)! eνxP X(Tτ) ≥ x( ) dx

�∑d−i
k�1

ai+1,k
∑k−1
ℓ�0

Gℓ(u) Hk−1−ℓ, (37)

with

Gm(u) :� e−νu
�u

0

νm+1wm

m!
dw and Hm :�

�0
−∞

νm+1(−x)m
m!

eνxP(X(Tτ) ≥ x) dx:

For an alternative, probabilistic derivation of (37), we refer to Appendix A.3. We proceed by evaluating the ob-
jects Gm(u) and Hm. The former can be rewritten as

Gm(u) � e−νu
νm+1

m!

�u

0
wm dw � e−νu

νm+1

(m+ 1)!u
m+1:

Deriving a closed-form expression for Hm is significantly more involved. The following lemma proves useful in
this regard.

Lemma 4. For any nonnegative random variable A and m � 1, 2, : : : ,�0

−∞
(−x)meνxP(−A ≥ x) dx �m! ν−m−1 − hm,
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where hm :� �∞
0
xme−νx P(A > x) dx. In addition, hm satisfies the recursion

hm �m
ν
hm−1 − 1

ν
h◦m,

with h◦m :� E(Ame−νA) and h0 � 1
ν (1−E(e−νA)).

Proof. The first claim is verified by observing that P(−A ≥ x) � 1−P(A > −x). The second claim, the recursive re-
lation for hm, follows by applying integration by parts. Namely, for m � 1, 2, : : : ,

hm :�
�∞

0
xme−νx P(A > x) dx � −1

ν

�∞

0
xm P(A > x) d(e−νx)

�
�∞

0

e−νx

ν
d(xm P(A > x)) �m

ν
hm−1 − 1

ν
h◦m:

Finally, the expression for h0 results from the definition of hm in combination with (1). This completes the proof. �

In our analysis, we apply this lemma to the case in which A � −X(Tτ) so that

h◦m � E(Ame−νA) � (−1)m dm

dνm
E(e−νA) � (−1)m dm

dνm
Ψ(τ) − ν

τ−Φ(ν)
τ

Ψ(τ)
( )

:

In conclusion,

Hm � 1− νm+1

m!
hm,

where, for n � 1, : : : ,m,

hn � n
ν
hn−1 − 1

ν
h◦n, and h0 � 1

ν
1−Ψ(τ) − ν

τ−Φ(ν)
τ

Ψ(τ)
( )

:

At this point, we have obtained two expressions for pi(u), both in terms of a sum whose summands are propor-
tional to e−νu, u e−νu, : : : ,ud−i e−νu: Equating these gives a linear system from which the coefficients aik can be
solved. In this context, it is noted that, conveniently, solving this linear system allows a recursive solution proce-
dure. To see this, first recall that ad1 � ν. Then, ad−1,1 and ad−1,2, appearing in (34) for i � d− 1, are, by (37), ex-
pressed in terms of ad1. Then, along similar lines, ad−2,1, ad−2,2 and ad−2,3 are expressed in terms of ad−1,1 and ad−1,2
and so on.

6. Numerical Experiments
In the previous sections, we develop theory on the distribution of the maximum of a spectrally one-sided MAP.
We now discuss some practical issues concerning the implementation of our findings, the determination of the
role of the model parameters, and the application of our results in a practical context. So as to cover these three
issues, we consider three experiments: the first highlights the impact of the structure of the background process,
the second focuses on the maximum of a Lévy process in Erlang-distributed time intervals, and the third is moti-
vated by a problem in risk theory.

6.1. Impact of the Chain Structure of the Background Process
In this first experiment, we consider a spectrally positive MAP in which the background chain J(·) has the struc-
ture shown in Figure 3 (where qij > 0 when there is an arrow from i to j and qij � 0 otherwise). With states 4 and 5
being absorbing, the background process is clearly not irreducible. As a consequence, we cannot use results from
the existing literature and have to rely on the results found in Section 3.

Our goal is to evaluate z(γ), that is, the vector of Laplace–Stieltjes transforms of the Zi. This vector is the
solution of the matrix Equation (14), in which we follow the procedure developed in Section 3.3 to determine the
unknown constants ωi. We first categorize the communicating classes of J(·) in layers: using the notation from
Section 3.3, we have C0 � R � {4, 5}, C1 � {2, 3, 4, 5} and C2 � {1, 2, 3, 4, 5}. Note that, even though the communicat-
ing class {1} has a transition to the recurrent state 5, it belongs only to C2 because it also has transitions into C1.
Following our procedure, we consecutively evaluate ζi(γ) for i ∈ {4, 5}, then for i ∈ {2, 3}, and finally for i � 1.

Using this approach, we now consider an example MAP with the background chain structure given in Figure
3. We let X1(·),X2(·),X3(·),X5(·) correspond to standard Brownian motions, and X4(·) to a gamma process (i.e.,
Lévy process with independent gamma distributed increments) with jump intensity two and jump size
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parameter two so that

φ4(α) � 2 log
2

α+ 2

( )
:

Additionally, we let the background be governed by the transition rate matrix

Q �

−4 1 2 0 1
0 −20 1 0 19
0 1 −20 19 0
0 0 0 0 0
0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and we set Lij � 0 for all i, j, so there are no jumps at transition epochs of the background process. Finally, we con-
sider the setting in which # � (0,0,0,0:5,0:5)�, meaning that killing only happens in states 4 and 5. For these model
parameters, we plot in Figure 4 the density functions fi(·) of the Zi.

We comment on a few aspects pertaining to Figure 4 that illustrate the impact of the chain structure. First,
from the given transition rate matrix, it is clear that, if J(0) � 2, then the process likely ends up in state 5. This ex-
plains why the densities of Z2 and Z5 behave similarly. A similar reasoning applies to Z3 and Z4. Also, Z4 and Z5

are “closer to being killed” than Z2 and Z3 and, therefore, have more probability mass close to zero. Finally, no-
tice that, from initial state 1, absorption in state 4 or 5 is about equally likely, resulting in a density function that
roughly behaves as the average of the two pairs mentioned.

Figure 3. Example Background Chain

Figure 4. Probability Density Functions f1(·), : : : , f5(·), Corresponding to Z1, : : : ,Z5 with the Model Parameters as Specified in
Section 6.1
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6.2. Maximum of a Lévy Process in an Erlang-Distributed Time Interval
This example focuses on the distribution of the maximum of a Lévy process over a time interval of Erlang-
distributed length, applying the theory of Section 5. We choose the model parameters as pointed out in Section
5.1. That is, we let background state i represent the ith phase of the interval. With n denoting the total number of
phases, we let qi,i+1 � 1

n for all i � 1, : : : ,n− 1 and # � (0, 0, : : : , 0, 1
n)�. This way, the mean interval length equals

unity, and killing occurs only in the last phase. Because phase transitions should not affect the Lévy process, we
take Li,i+1 � 0 for all i � 1, : : : ,n− 1. We particularly study the impact of the number of phases on the distribution
of the maximum of the Lévy process, bearing in mind the Erlang distribution’s capability of approximating a de-
terministic number. Indeed, our Erlang random variable converges to the deterministic value one as n→∞, and
this experiment serves to get insight into the maximum of a Lévy process during a deterministic time interval.

We first consider the case of X(·) being a standard Brownian motion, noting that, for this instance, we know
that its maximum in a deterministic interval has a half-normal distribution (i.e., the distribution of the absolute
value of a normally distributed random variable). Figure 5 shows the corresponding density functions for n � 1,
2, 5 phases as well as its limiting counterpart. The figure confirms that the densities converge to the limit, at
which the curve for n � 5 already produces a reasonable fit.

We proceed with an example in which the distribution of the maximum over a deterministic time horizon is
not known. Let X(·) be the independent sum of (i) a standard Brownian motion that is increased by a positive

Figure 5. Density Functions f (·) of theMaximum of a Standard BrownianMotion over an n-Phase Erlang-Distributed Interval
withMean One (for n � 1, 2, 5) with the Solid Line Representing Their Counterpart for a Deterministic Interval of Length One (as
n→∞)

n = 1

n = 2

n = 5

n→ ∞

0.5 1.0 1.5 2.0 2.5 3.0
x
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0.4
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0.8
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1.4
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Figure 6. Density Functions f (·) of theMaximum of the Lévy ProcessX(·) over an n-Phase Erlang Distributed Interval with
Mean One (for n � 1, : : : , 5)
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Notes. Here, X(·) is the sum of a standard Brownian motion with positive drift and a compound Poisson process with negative Erlang-
distributed jump sizes.
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drift one and (ii) a compound Poisson process with arrival rate one and Erlang(2, 2) distributed jumps in the neg-
ative direction (thus, rendering the process spectrally negative). Figure 6 illustrates the (fast) convergence of the
density functions as n grows, thus providing us with a way to approximate the distribution of the maximum of
X(·) evaluated over a deterministic interval.

6.3. Risk Model
The last example is a special case of the model discussed in Delsing andMandjes (2021) and is motivated by applica-
tions in credit risk. The process of interest is the capital of an insurance company over timewith a finite number of ob-
ligors n. Each obligor independently goes into default after an exponentially distributed time with mean one. When
going into default, the obligor makes a claim of exponential size with mean one and immediately ends the contract
with the insurance company (i.e., leaves the system). Each obligor not gone into default pays premiums at rate r per
time unit. Figure 7 shows a possible sample path of the process. We wish to quantify the ruin probability, that is, the
probability that the capital of the insurance company eventually hits zero given some initial reserve u ≥ 0.

This model can be cast in our framework as follows. Let background state i represent the number of obligors
that have not yet gone into default. Then, the transition rates of the background chain are qi,i−1 � i for i � 1, : : : ,n
(all other transition rates are zero). As we are interested in the all-time ruin probability, we let # � 0. Observe
that the ruin probability depends on the minimum of the process, in which the results in this paper are in terms
of the maximum, but this is easily remedied by flipping the sign. Concretely, we choose Xi(t) � −irt for
t ≥ 0, i � 0, : : : ,n, and we have positive jumps Li,i−1 of exponentially distributed size with mean one for
i � 1, : : : ,n. The ruin probability with initial capital u is now given by P(Zn ≥ u).

In an example with (initially) four obligors, Figure 8 shows how the ruin probability depends on the initial
capital u and premium rate r. The ruin probability is decreasing in both u and r, and our techniques can be used
to assess the corresponding sensitivities. Clearly, one can trade off u and r: when reducing the premium rate r, a
higher initial surplus u is needed to guarantee a given ruin probability. This trade-off is illustrated in Figure 9.

Figure 8. Ruin Probability per Initial Capital for a FewDifferent Premium Rates r

r = 1

r = 2

r = 4

0 2 4 6 8
Initial capital0.0

0.1

0.2

0.3

0.4
Ruin probability

Figure 7. Sample Path of the Capital Surplus of the Insurance Company with Four Obligors
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7. Directions for Further Research
In this final section, we discuss two directions for further research.

7.1. Adding Jumps in the Opposite Direction
A possible extension to our model could be the inclusion of phase-type distributed jumps in the “opposite” direc-
tion to the model. More concretely, in our spectrally positive setup, we would allow phase-type negative jumps
(in both the Lévy processes and the jumps at transition epochs of the background process), and analogously, in
our spectrally negative setup we would allow phase-type positive jumps. Alternatively, one could consider
jumps in the opposite direction whose distribution has a rational Laplace transform (rather than being a phase-
type distribution). Extensions of this type are in line with earlier analyses, such as Lewis and Mordecki (2008), be-
ing conceptually relatively straightforward but requiring a substantial amount of additional notation. Relative to
the spectrally one-sided MAPs that we consider in the present paper, models that include phase-type jumps in
the opposite direction are significantly more general; we recall that any positive random variable can be approxi-
mated arbitrarily closely by a phase-type distributed random variable (Asmussen 2003, theorem III.4.2).

7.2. Wiener–Hopf-Type Results Under Nonirreducibility
In the present paper, the focus is on spectrally one-sided MAPs, the underlying aim being the derivation of com-
putable quantities. As a result, our analysis provides expressions for the distribution of the maximum in terms of
the model primitives. In Ivanovs (2017), general MAPs (i.e., without any assumptions on the direction of the
jumps but still requiring that J(·) is irreducible) are considered, leading to a Wiener–Hopf-type decomposition.
The price to be paid, however, is that the characterization of the distribution of the maximum is considerably
more implicit than in the spectrally one-sided cases. An interesting question is to what extent the results in Iva-
novs (2017) for the extrema carry over to the case that J(·) is not irreducible.
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Appendix. Probabilistic Arguments
In this appendix, we present alternative, probabilistic derivations of some equations in this paper.

A.1. Alternative Derivation of Equation (6)
Starting from state i, we once again condition on whether the MAP is killed before leaving state i or the background pro-
cess jumps to some state j≠ i. This leads to

Zi �
Xi(Tϑi+qi ) with probability

ϑi

ϑi + qi
,

Xi(Tϑi+qi ) + Xi(Tϑi+qi ) + Lij +Zj
[ ]+ with probability

qij
ϑi + qi

, j≠ i:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Figure 9. Relation Between Premium Rate and Initial Capital for a Few Fixed Ruin Probabilities
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In terms of Laplace–Stieltjes transforms, this is equivalent to

ζi(γ) � ϑi

ϑi + qi
κi(γ) +

∑
j≠i

qij
ϑi + qi

κi(γ)E e−γ[X i(Tϑi+qi )+Lij+Zj]+
( )

, (A.1)

where, by Proposition 1, the random variable −Xi(Tϑi+qi ) is exponentially distributed with rate μi. We now present a lem-
ma enabling us to evaluate the rightmost Laplace–Stieltjes transform.

Lemma A.1. Let A be a nonnegative random variable. Then, for γ,μ ≥ 0, we have

E e−γ[A−Tμ]+
( )

� μ

μ− γ
E e−γA
( )

− γ

μ− γ
E e−μA
( )

:

Proof. Applying the standard identity e−x+ + ex
− � e−x + 1 to x � γ(A−Tμ), it holds that, using the memoryless property of

Tμ,

E e−γ[A−Tμ]+
( )

� E e−γ(A−Tμ)
( )

+ 1−E eγ[A−Tμ]−
( )

� E e−γA
( )

E eγTμ

( )
+ 1− P(A > Tμ) +P(A < Tμ)E(eγTμ )

( )
:

The result follows from the fact that P(A < Tμ) � E(e−μA). w

Equation (6) can now immediately be obtained from (A.1) by using the preceding lemma with A � Lij +Zj and recalling (2).

A.2. Alternative Derivation of Equation (25)
Observe that Definition (21) is equivalent to

p−ij (u) :� P Xi(Tϑi+qi ) < u , Xi(Tϑi+qi ) + Xi(Tϑi+qi ) + Lij + Zj ≥ u
( )

:

For k � 1, : : : ,d, let Zjk be independent exponentially distributed random variables with rate νk. An alternative formulation
of (23) is that, recalling that Xi(Tϑi+qi ) is exponentially distributed with parameter μi,

p−ij (u) �
∑d
k�1

cjkP Xi(Tϑi+qi ) < u , Xi(Tϑi+qi ) +Xi(Tϑi+qi ) + Lij +Zjk ≥ u
( )

:

Because Xi(Tϑi+qi ) and Lij are nonpositive, the memoryless property of Zjk implies that

p−ij (u) �
∑d
k�1

cjkP Xi(Tϑi+qi ) < u , Zjk +Xi(Tϑi+qi ) ≥ u
( )

·P(Zjk > −(Xi(Tϑi+qi ) + Lij)):

Because Zjk has an exponential distribution with rate νk, we have the equality P(Zjk > A) � E(e−νkA) for any nonnegative
random variable A. Combining this observation with the fact that Xi(Tϑi+qi ) is exponentially distributed with rate μi, we
then arrive at

p−ij (u) �
∑d
k�1

cjk
μi

μi − νk
(e−νku − e−μiu)E(eνkX i (Tϑi+qi ))λij(−νk)

�∑d
k�1

cjk
ϑi + qi

ϑi + qi −Φi(νk) (e
−νku − e−μiu)λij(−νk),

where the transform of Xi(Tϑi+qi ) is taken from Proposition 1. This completes the alternative derivation of Equation (25).

A.3. Alternative Derivation of Equation (37)
Let Uk be an Erlang random variable with k phases of rate ν, and let (Vn)n≤k denote the first n phases of Uk. Equation
(36) can be written as

p−i+1(u) � P(Xi(Tτ) ≤ u, Xi(Tτ) +Xi(Tτ) +Zi+1 > u)

� ∑d−i−1
k�1

ai+1,kP(Xi(Tτ) ≤ u, Xi(Tτ) +Xi(Tτ) +Uk > u)

because Zi+1 is a mixture of d− i− 1 Erlang random variables (see (33)). Suppose we need to add to Xi(Tτ) exactly
ℓ ∈ {1, : : : , k} exponential phases of Uk in order to exceed u, that is, u−Xi(Tτ) ∈ [Vℓ−1,Vℓ). The remainder of the ℓ th
phase is again exponential, so there are k− ℓ+ 1 phases left to negate the nonpositive variable Xi(Tτ). Therefore, we
write

p−i+1(u) �
∑d−i−1
k�1

ai+1,k
∑k
ℓ�1

P(Xi(Tτ) +Vℓ−1 ≤ u < Xi(Tτ) +Vℓ , Xi(Tτ) + (Vk −Vℓ +Tν) > 0), (A.2)
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where, by Proposition 1, Xi(Tτ) is exponentially distributed with rate ν. Now note that these two events are independent,
and their respective probabilities are

P(Xi(Tτ) +Vℓ−1 ≤ u < Xi(Tτ) +Vℓ) �
�u

0
P(Vℓ −Vℓ−1 > u− x)P(Xi(Tτ) +Vℓ−1 ∈ dx)

�
�u

0
e−ν(u−x)

νℓxℓ−1

(ℓ− 1)! e
−νx dx � Gℓ−1(u) (A.3)

and

P(Xi(Tτ) + (Vk −Vℓ +Tν) > 0) �
�∞

0
P(Xi(Tτ) > −x)P(Vk −Vℓ +Tν ∈ dx)

�
�∞

0
P(Xi(Tτ) > −x)ν

k−ℓ+1xk−ℓ

(k− ℓ)! e−νxdx �Hk−ℓ:
(A.4)

Combining (A.2), (A.3), and (A.4) finally leads to Equation (37).
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