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Abstract

We search for gravitational-wave transients associated with gamma-ray bursts (GRBs) detected by the Fermi and
Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April
1 15:00 UTC–2019 October 1 15:00 UTC). A total of 105 GRBs were analyzed using a search for generic
gravitational-wave transients; 32 GRBs were analyzed with a search that specifically targets neutron star binary
mergers as short GRB progenitors. We find no significant evidence for gravitational-wave signals associated with
the GRBs that we followed up, nor for a population of unidentified subthreshold signals. We consider several
source types and signal morphologies, and report for these lower bounds on the distance to each GRB.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675); LIGO
(920); Gamma-ray bursts (629); Compact binary stars (283); Neutron stars (1108); Black holes (162)

1. Introduction

Gamma-ray bursts (GRBs) are transient flashes of gamma
radiation of cosmological origin observed at a rate of 1 per day
(Nakar 2007). The interaction of matter with a compact central
object, e.g., an accreting black hole (BH; Woosley 1993; Popham
et al. 1999) or a magnetar (Usov 1992; Zhang & Meszaros 2001),
is believed to drive highly relativistic jets which power the prompt
emission of these astrophysical events. GRBs are broadly grouped
into two classes—long and short GRBs—depending on the
duration and spectral hardness of their prompt emission (Mazets
et al. 1981; Norris et al. 1984; Kouveliotou et al. 1993).

Long, soft GRBs have durations 2 s and are firmly associated
by optical observations to the collapse of massive stars

(Galama et al. 1998; Hjorth et al. 2003; Stanek et al. 2003;
Hjorth & Bloom 2012). Gravitational waves (GWs) will be
radiated by the core-collapse process, (e.g., Fryer & New 2011).
Several models of this process do not yield radiation that is
detectable by the current generation of GW interferometers
beyond Galactic distances (Abbott et al. 2020c). However,
rotational instabilities and instabilities induced by the additional
presence of an accretion disk as part of the GRB engine may
enhance the GW emission, making it detectable even for
extragalactic sources (van Putten 2001; Davies et al. 2002; Fryer
et al. 2002; Kobayashi & Meszaros 2003; Shibata et al. 2003; Piro
& Pfahl 2007; Corsi & Meszaros 2009; Romero et al. 2010;
Gossan et al. 2016; Abbott et al. 2020c).
The unambiguous association (Abbott et al. 2017a) of neutron

star (NS) binary merger GW170817 (Abbott et al. 2017b, 2019d)
and short GRB 170817A (Goldstein et al. 2017; Savchenko et al.
2017) has confirmed that compact binary mergers of this kind can

203 Please direct all correspondence to LSC Spokesperson at sc-spokesperson@
ligo.org, or Virgo Spokesperson at virgo-spokesperson@ego-gw.it.
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produce short GRBs. This milestone in multimessenger astron-
omy corroborated the idea first proposed in the 1980s (Blinnikov
et al. 1984; Paczynski 1986; Eichler et al. 1989; Paczynski 1991;
Narayan et al. 1992) that the progenitors of short GRBs are
compact binaries containing NSs (for a review of proposed
progenitors, see Lee & Ramirez-Ruiz 2007; Nakar 2007). Indirect
evidence that had previously reinforced this idea was due to the
observation of a possible kilonova associated with GRB 130603B
(Berger et al. 2013; Tanvir et al. 2013), and to numerous studies
of the environments of short GRBs (for reviews see Berger
2011, 2014), starting with the afterglow observation and host-
galaxy association of GRB 050509B (Castro-Tirado et al. 2005;
Gehrels et al. 2005; Bloom et al. 2006).

In addition to confirming the origin of some short GRBs,
combining data from observations of GW170817 and GRB
170817A allowed for the inference of basic properties of short
GRB jets. These include the isotropic equivalent luminosity of the
jet, determined through a redshift measurement made possible by
the optical follow-up of the GW localization (Abbott et al. 2017a;
Goldstein et al. 2017), and the geometry of the GRB jets
(Williams et al. 2018; Farah et al. 2020; Mogushi et al. 2019). The
precise mechanism by which the jet is launched is still unknown,
although it is typically believed to be either neutrino-driven or
magnetically driven (Nakar 2007, but see also Liu et al. 2015 and
references therein). Indeed, the scientific debate about the
emission profile of the jet and the subsequent gamma-ray
production mechanism of GRB 170817A is still ongoing
(Hallinan et al. 2017; Kasliwal et al. 2017; Lamb & Kobayashi
2017; Troja et al. 2017; Gottlieb et al. 2018b; Lazzati et al. 2018;
Gill & Granot 2018; Mooley et al. 2018; Zhang et al. 2018;
Ghirlanda et al. 2019). It is generally believed that there are
symmetric polar outflows of highly relativistic material that travel
parallel to the total angular momentum of the binary system (Aloy
et al. 2005; Kumar & Zhang 2014; Murguia-Berthier et al. 2017).
These jets are thought to be collimated and roughly axisymmetric,
emitting preferentially in a narrow opening angle due to a
combination of outflow geometry and relativistic beaming. The
data from extensive multi-wavelength observation campaigns that
ran for nearly 20 months following the merger (Fong et al. 2019;
Makhathini et al. 2020; Troja et al. 2020) are in agreement with a
structured jet model, in which the energy and bulk Lorentz factor
gradually decrease with angular distance from the jet symmetry
axis (e.g., Dai & Gou 2001; Lipunov et al. 2001; Rossi et al.
2002; Zhang & Mészáros 2002; Ghirlanda et al. 2019; Beniamini
et al. 2020). Further, according to one of the models proposed, as
the jet drills through the surrounding merger ejecta it inflates a
mildly relativistic cocoon due to interactions between the material
at the edge of the jet and the ejecta (Lazzati et al. 2017; Gottlieb
et al. 2018a). In this case, it is possible that the cocoon alone could
produce the gamma-rays observed from GRB 170817A (Gottlieb
et al. 2018b). Additional joint detections of GRBs and GWs will
significantly aid our understanding of the underlying energetics
(Lamb & Kobayashi 2017; Wu & MacFadyen 2018; Burns et al.
2019), jet geometry (Farah et al. 2020; Mogushi et al. 2019;
Biscoveanu et al. 2020; Hayes et al. 2020), and jet ignition
mechanisms (Veres et al. 2018; Ciolfi et al. 2019; Zhang 2019) of
binary neutron star (BNS) coalescences.

A targeted search for GWs in sky and time coincidence with
GRBs enhances our potential of achieving such joint detec-
tions. In this paper we present our results for the targeted GW
follow-up of GRBs reported during the first part of the third
observing run of Advanced LIGO and Advanced Virgo (O3a)

by the Fermi (Meegan et al. 2009) and Swift (Gehrels et al.
2004; Barthelmy et al. 2005) satellites. As in the first (Abbott
et al. 2017c) and second (Abbott et al. 2017a, 2019b) observing
runs, two searches with different assumptions about signal
morphology are applied to the GW data: we process all GRBs
with a search for generic GW transients (X-Pipeline; Sutton
et al. 2010; Was et al. 2012, see Section 3.2 for details) and we
follow up short GRBs with an additional, modeled search for
BNS and neutron star–black hole (NSBH) GW inspiral signals
(PyGRB; Harry & Fairhurst 2011; Williamson et al. 2014, see
Section 3.1 for details). These searches were able to process
105 and 32 GRBs in O3a, respectively.
The scope of these targeted searches is to enhance our ability to

detect GW signals in coincidence with GRBs with respect to all-
sky searches for transient GW signals carried out by the LIGO
Scientific & Virgo Collaboration (Abbott et al. 2019c, 2021).
These may lead to joint GW–GRB detections in the case of loud
GW events, as for GW170817 and GRB 170817A, but the
targeted searches we report on here aim at uncovering subthreshold
GW signals by exploiting the time and localization information of
the GRBs themselves. The Fermi Gamma-ray Burst Monitor
(GBM) team conducts an analogous effort when searching through
GBM data for gamma-ray transients coincident with confirmed
events and low-significance candidates reported by LIGO–Virgo
offline analyses (Hamburg et al. 2020). Similarly, the Swift/Burst
Alert Telescope (BAT) team has developed their own autonomous
pipeline to enable subthreshold GRB searches for externally
triggered events (Tohuvavohu et al. 2020).
This first part of the third observing run took place between

2019 April 1 15:00 UTC and 2019 October 1 15:00 UTC. Setting
the false-alarm-rate threshold to two per year, 39 compact binary
coalescence events were identified in O3a (Abbott et al. 2021).
The majority of these have been classified as signals emitted by
binary BH mergers; however, three events have the possibility of
coming from a binary with at least one NS, that is, a potential
short GRB progenitor.

1. GW190425 (Abbott et al. 2020a) was a compact binary
coalescence with primary mass 2.00.3

0.6 and secondary mass

-
+1.4 0.3

0.3 (all measurements quoted at the 90% credible
level) and is therefore consistent with being the result of a
BNS merger (Abbott et al. 2020a, 2021).

2. GW190426 was the GW candidate event with the highest
false-alarm rate in Abbott et al. (2021); assuming it is a
real signal, its inferred component masses of -

+5.7 2.3
3.9 and

-
+1.5 0.5

0.8 indicate that it may have originated from an
NSBH, or a binary BH merger.

3. GW190814 (Abbott et al. 2020b) could have originated
from an NSBH, or a binary BH merger, as it has a
primary mass measurement of -

+23.2 1.0
1.1 and posterior

support for a secondary mass -
+2.59 0.09

0.08. This makes the
secondary compact object either the lightest BH or the
heaviest NS known to be in a compact binary system.

While there is considerable uncertainty in source type for all
three of these events, GW190425 is the one for which the
prospects of observing an associated GRB were most
promising, as it is consistent with a BNS merger, rather than
a binary BH merger or an NSBH merger with high or
moderately high mass ratio. However, no confirmed electro-
magnetic or neutrino counterparts were observed in association
with this event (Hosseinzadeh et al. 2019; Lundquist et al.
2019; Abbott et al. 2020a; Coughlin et al. 2020, 2020; see also
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Pozanenko et al. 2020, 2020) despite extensive searches, which
are logged in the Gamma-ray Coordinates Network (GCN)
Circular archive.204 There are a number of reasons for which an
electromagnetic counterpart associated with GW190425 may
not have been detected. First, the large area covered by the
localization region of GW190425 determined from GW data
(> 8000 deg2) posed a considerable challenge for electro-
magnetic follow-up. 45.4% of this localization region was
occulted by the Earth for the Fermi satellite so, if gamma-rays
were emitted from the source, it is possible they were not
detectable. Other gamma-ray observatories with lower sensi-
tivities to short GRBs, such as INTEGRAL and KONUS-
Wind, were covering relevant fractions of the localization
region, however (Martin-Carrillo et al. 2019; Svinkin et al.
2019). Second, GRB jets are expected to be aligned with the
total angular momentum of the binary system, and thus more
easily detectable at small viewing angles. The binary inclina-
tion angle of GW190425 was poorly constrained, so it is
possible that a jet from this system was formed but was
oriented away from our line of sight. Additionally, the
luminosity distance inferred for GW190425 (∼160Mpc) was
significantly larger than that for GW170817 (∼40Mpc). GRB
170817A, which followed GW170817, was such an excep-
tionally faint short GRB (Abbott et al. 2017a) that its prompt
emission photon flux would have dipped below the detection
threshold for Fermi-GBM, had the source been farther than
∼75Mpc (Abbott et al. 2017a; Goldstein et al. 2017), and
by ∼100Mpc it would become undetectable by Swift/
BAT (Tohuvavohu et al. 2020). Thus, if emission from the
system that produced GW190425 was similarly faint, it would
not have been detectable by Swift/BAT or Fermi-GBM.
Therefore, we do not necessarily expect a GRB detection to be
associated with GW190425 due to its almost unconstrained
inclination angle, large localization region, and distance, even
if gamma-rays were emitted from this system. Scenarios like
this one further motivate the need for GW follow-up analyses
of GRB events which, by definition, constrain the sky
localization and inclination angle of the progenitor.

In Section 2 we discuss the set of GRBs analyzed in this
paper. In Section 3, we summarize the two targeted search
methods used to follow up GRBs. Section 4 presents the results
obtained with these two methods. We also consider each of the
two sets of results collectively and quantify its consistency with
the no-signal hypothesis. Finally, in Section 5 we provide our
concluding remarks.

2. GRB Sample

The sample of GRBs analyzed in this paper includes events
circulated by the GCN,205 complemented with information
from the Swift/BAT catalog (Lien et al. 2016),206 the online
Swift GRB Archive,207 and the Fermi-GBM Catalog.208

(Gruber et al. 2014; von Kienlin et al. 2014; Narayana Bhat
et al. 2016) Once an alert detailing an event has been received
via the GCN, the dedicated Vetting Automation and Literature
Informed Database (Coyne 2015) is applied to find the latest

GRB results by comparing the time and localization parameters
with those in tables relating to each satellite, the published
catalogs, and an automatic literature search. The GCN notices
provide a set of 141 GRBs during the O3a data-taking period
(2019 April 1 15:00 UTC–2019 October 1 15:00 UTC).
As mentioned in the Introduction, we carry out two searches

with distinct assumptions about signal morphology (see Section 3
for details on both methods): a search for generic GW transients
and a modeled search for GW signals from NS binary inspirals,
i.e., BNSs and NSBHs. We do this because GRBs of different
durations are expected to have different origins and therefore
different GW signal morphologies. In particular, if a compact
binary merger were to produce a GRB it would be expected to
have a short duration. In order to specifically target such
phenomena with the modeled search, we classify each GRB as
long, short, or ambiguous. This classification relies on the
measurement of the time interval over which 90% of the total
background-subtracted photon counts are observed (T90, with
error |δT90|). When T90+ |δT90|< 2 s the GRBs are labeled as
short, when T90− |δT90|> 4 s the GRBs are labeled as long, and
the rest are labeled as ambiguous. The unmodeled search for
generic transients is applied to GRBs of all classifications. All of
the short and ambiguous GRBs are additionally analyzed with the
modeled search in order to maximize the chances of uncovering
any potential binary coalescence candidate.
The classification process results in 20 short GRBs, 108 long

GRBs, and 13 ambiguous GRBs. As in Abbott et al. (2019b),
we require a minimum amount of coincident data from at least
two GW detectors around the time of a GRB for the generic
unmodeled GW transient search to assess the significance of a
GW candidate with sub-percent level accuracy (see Section 3.2
for technical details). This requirement is applied to GRBs of
all classifications and results in 105 GRBs being analyzed with
this method, out of the 141 GRBs recorded by Fermi and Swift
during O3a. This amounts to 74.5%, a percentage of events that
is compatible with the fraction of observing time during which
at least two interferometers in the network were operating
in observing mode (81.9 %; Abbott et al. 2021). Similarly,
requirements from the modeled search (see Section 3.1 for
technical details) set the minimum amount of data needed from
at least one detector around the time of the GRBs. It leads to 32
short and ambiguous GRBs being analyzed with this
method,209 that is, 97.0% of the 33 possible ones. This value
matches the fraction of observing time during which at least
one interferometer in the network was operating in observing
mode during O3a (96.9 %; Abbott et al. 2021).
Of the 141 Fermi and Swift GRBs in our sample, the vast

majority do not have redshift measurements. Those that do are
the ambiguous GRB 190627A at z= 1.942 (Japelj et al. 2019),
and the two long GRBs 190719C and 190829A at z= 2.469
and z= 0.0785, respectively (Rossi et al. 2019; Valeev et al.
2019). All three fall beyond the detection range of our
interferometers, and are not expected to produce measurable
GW results. Regardless of availability of redshift information,

204 All GCN Circulars related to this event are archived at https://gcn.gsfc.
nasa.gov/other/S190425z.gcn3.
205 GCN Circulars Archive: http://gcn.gsfc.nasa.gov/gcn3_archive.html.
206 Swift/BAT GRB Catalog: http://swift.gsfc.nasa.gov/results/batgrbcat/.
207 Swift GRB Archive: http://swift.gsfc.nasa.gov/archive/grb_table/.
208 FERMIGBRST—Fermi-GBM Burst Catalog: https://heasarc.gsfc.nasa.
gov/W3Browse/fermi/fermigbrst.html.

209 The single GRB we were unable to follow up with the modeled search is
GRB 190605974. The GRBs we were unable to analyze with either of the
searches are: GRB 190401139, GRB 190406745, GRB 190411407, GRB
190422A, GRB 190424A, GRB 190508808, GRB 190515B, GRB 190530430,
GRB 190531840, GRB 190604B, GRB 190605974, GRB 190607071, GRB
190609315, GRB 190611A, GRB 190611950, GRB 190622368, GRB
190626254, GRB 190706B, GRB 190714573, GRB 190716917, GRB
190719113, GRB 190723309, GRB 190731943, GRB 190804792, GRB
190806675, GRB 190808498, GRB 190814837, GRB 190821A, GRB
190821716, GRB 190828614 .
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however, we followed up as many GRBs as we could and we
were indeed able to analyze these three cases.

3. Search Methods

We now provide a description of the two targeted search
methods used in this paper. These are the same methods applied to
GW data coincident with GRBs that occurred during the first
(Abbott et al. 2017c) and second (Abbott et al. 2017a, 2019b)
Advanced LIGO and Virgo observing runs. In Section 3.1 we
summarize the modeled search method that aims at uncovering
subthreshold GW signals emitted by BNS and NSBH binaries
(PyGRB; Harry & Fairhurst 2011; Williamson et al. 2014). In
Section 3.2 we discuss the search for generic GW transients
(X-Pipeline; Sutton et al. 2010; Was et al. 2012). Results from
these two searches are presented in Section 4.

3.1. Modeled Search for Binary Mergers

This analysis searches for a GW signal compatible with the
inspiral of a BNS or NSBH binary—collectively NS binaries—
within 6 s of data associated with an observed short GRB. This
stretch of data is the on-source window and runs from −5 s to
+1 s around the start of the GRB emission (i.e., the GRB trigger
time). The surrounding ∼30–90 minutes of data are split into 6 s
off-source trials which are also analyzed in order to build a
background. Around 30 minutes allows the modeled search to
accurately estimate the power spectral density of the available
instruments and ensures that it can assess at sub-percent level
accuracy the significance of any candidate events found in the on-
source window. All the data are processed using PyGRB (Harry &
Fairhurst 2011; Williamson et al. 2014), a coherent matched
filtering pipeline that is part of the general open-source software
PyCBC (Nitz et al. 2020) and has core elements in the LALSuite
software library (LIGO Scientific Collaboration 2018). We scan
each trial of data and the on-source window in the 30–1000Hz
frequency band using a predefined bank of waveform templates
(Owen & Sathyaprakash 1999) created with a hybrid geometric–
stochastic method (Capano et al. 2016; Dal Canton & Harry 2017)
and using a phenomenological inspiral-merger-ringdown wave-
form model for non-precessing point-particle binaries (IMRPhe-
nomD; Husa et al. 2016; Khan et al. 2016).210 The waveform
template bank includes waveforms corresponding to a range of
masses ([1.0, 2.8]M☉ for NSs, [1.0, 25.0]M☉ for BHs) and
dimensionless spin magnitudes ([0, 0.05] for NSs, [0, 0.998]
for BHs) for aligned-spin, zero-eccentricity BNS or NSBH
systems that may produce an electromagnetic counterpart via
the tidal disruption of the NS (Pannarale & Ohme 2014). Aside
from the updated sensitivity of our detectors, the only
difference with respect to the second LIGO–Virgo observing
run (Abbott et al. 2019b) is that the generation of the bank has
been updated to apply more accurate physics to determine
whether an NSBH system could produce an accretion disk from
this disruption (Foucart et al. 2018). We only search for
circularly polarized GWs, which may be emitted by binaries
with inclinations of 0° or 180°: such systems have GW
amplitudes that are consistent (Williamson et al. 2014) with
those of binary progenitors with inclination angles over the full
range of viewing angles that we expect for typical brightness
GRBs (30°; Fong et al. 2015), such as those in our sample.

The strength of any potential signal is ranked via a coherent
matched filter signal-to-noise ratio (S/N; Harry & Fairhurst 2011;
Williamson et al. 2014) which is re-weighted according to a χ2

goodness-of-fit between the template that identified it and the
signal itself. The significance of the latter is quantified as the
probability of background alone producing such an event. This is
evaluated by comparing the re-weighted S/N of the loudest
trigger within the 6 s on-source to the distribution of the re-
weighted S/Ns of the loudest triggers in the 6 s off-source trials.
When data from more than one detector are available, this
background S/N distribution is extended by generating additional
off-source trials via time slides, that is, by combining data from
detectors after introducing time shifts longer than the light-travel
time across the network. Specifically, our time shifts are 6 s long,
in order to match the width of the on-source window and the off-
source trials.
In order to derive the sensitivity of this search to potential GRB

sources, simulated signals are injected in software into the off-
source data. The 90% exclusion distances, D90, are defined as the
distances within which 90% of the injected simulated signals are
recovered with a greater ranking statistic than the loudest on-source
event. Three different astrophysical populations are considered:
BNS binaries with generically oriented—i.e., precessing—spins,
aligned-spin NSBH binaries, and NSBH binaries with generically
oriented spins. These simulated signals cover a portion of
parameter space that extends beyond that covered by the template
bank, as they include NS dimensionless spin values up to 0.4 and,
for two families of injected signals, admit precession. As stated
previously, the templates used to filter the data are produced using
IMRPhenomD. In order to factor into the sensitivity assessment
any potential loss due to uncertainties in GW signal modeling,
the injected signals are not produced with the same model used for
the templates. Precessing BNS signals are simulated using the
TaylorT2 time-domain, post-Newtonian inspiral approximant
(SpinTaylorT2; Sathyaprakash & Dhurandhar 1991; Blanchet
et al. 1996; Mikoczi et al. 2005; Arun et al. 2009; Bohé et al.
2013, 2015; Mishra et al. 2016), while NSBH-injected waveforms
are generated assuming a point-particle effective-one-body model
tuned to numerical simulations which can allow for precession
effects from misaligned spins (SEOBNRv3; Pan et al. 2014;
Taracchini et al. 2014; Babak et al. 2017). The three populations
used to build the injected signals are defined as in the first two
LIGO–Virgo observing runs, to allow for direct comparisons
(Abbott et al. 2017c, 2019b). NS masses for the injections are
taken between 1M☉ and 3M☉ from a normal distribution centered
at 1.4M☉with a standard deviation of 0.2M☉ (Kiziltan et al. 2013)
and 0.4M☉ for BNS and NSBH systems, respectively. BH masses
are taken to be between 3M☉ and 15M☉ from a normal
distribution centered at 10M☉ with a standard deviation of 6M☉.
Spins are drawn uniformly in magnitude and, when applicable,
with random orientation; the maximum allowed NS spin
magnitude is 0.4, from the fastest observed pulsar spin (Hessels
et al. 2006), while the maximum BH spin magnitude is set to 0.98,
motivated by X-ray binary observations (e.g., Özel et al. 2010;
Kreidberg et al. 2012; Miller & Miller 2014). Injected signals have
a range of total inclinations from 0°–30° and 150°–180° while
removing any systems which could not feasibly produce a short
GRB (Pannarale & Ohme 2014).

3.2. Unmodelled Search for Generic Transients

X-Pipeline looks for excess power that is coherent across
the network of GW detectors and consistent with the sky

210 All waveforms mentioned in this section are generated with the LALSimu-
lation package that is part of the LALSuite software library (LIGO Scientific
Collaboration 2018).
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localization and time window for each GRB. As in the first two
observing runs, we use a search time window that begins 600 s
before the GRB trigger time and ends 60 s after it, or at the T90
time itself (whichever is larger). This window is long enough to
encapsulate the time delay between GW emission from a
progenitor and the GRB prompt emission (Koshut et al. 1995;
Aloy et al. 2000; MacFadyen et al. 2001; Zhang et al. 2003;
Lazzati 2005; Wang & Meszaros 2007; Burlon et al. 2008, 2009;
Lazzati et al. 2009; Vedrenne & Atteia 2009). Our frequency
range is restricted to the most sensitive band of the GW detectors,
namely 20–500Hz. While gravitational radiation from core-
collapse supernovae is expected to contain frequency content
above this band (Radice et al. 2019), detection of bursts above a
few hundred hertz is not energetically favorable (see, e.g., Figure
4 in Abbott et al. 2019a) and increasing the frequency upper limit
also increases the computational cost.

The generic transient search pipeline coherently combines
data from all detectors and produces time–frequency maps of
this GW data stream. The maps are scanned for clusters of
pixels with excess energy, referred to as events. The events
obtained this way are first ranked according to a detection
statistic based on energy and then subject to coherent
consistency tests. These are based on correlations between
data in different detectors and reject events associated with
noise transients. The surviving event with the largest ranking
statistic is taken to be the best candidate for a GW detection. Its
significance is evaluated in the same way as in the modeled
analysis, but with 660 s long off-source trials. In order to ensure
that the significance is assessed at a sub-percent level, we
require at least ∼1.5 hr of coincident data from at least two
detectors around the time of a GRB. Non-Gaussian noise
transients, or glitches, are handled as described in Abbott et al.
(2019b).

Similarly to the modeled search, we quantify the sensitivity
of the generic transient search by injecting simulated signals
into off-source data in software and recovering them.
Calibration errors are accounted for by jittering the amplitude
and arrival time of the injections according to a Gaussian
distribution representative of the calibration uncertainties in
O3a (Abbott et al. 2017c). We report results obtained for four
distinct sets of circular sine-Gaussian (CSG) waveforms, with
fixed quality factor Q= 9 and with central frequencies of 70,
100, 150, and 300 Hz (see Equation (1) and Section 3.2 of
Abbott et al. 2017c). These models are intended to represent
the GWs from stellar collapses. In all four cases, we set the
total radiated energy to EGW= 10−2M☉c

2, a choice that is
about an order of magnitude higher than the results presented in
Abbott et al. (2020c) for the detectability of core-collapse
supernovae. As optimistic representatives (Ott & Santamaría
2013) of longer-duration GW signals detectable by the
unmodeled search, we use accretion disk instability (ADI)
waveforms (van Putten 2001; van Putten et al. 2014). In these
ADI models, instabilities form in a magnetically suspended
torus around a rapidly spinning BH, causing GWs to be
emitted. The model specifics and parameters used to generate
the five families of ADI signals that we consider are the same
as in Table 1 and Section 3.2 of Abbott et al. (2017c).

4. Results

During O3a we used the generic transient method to follow up a
total of 105 GRBs, whereas the modeled search was applied to the
32 GRB triggers classified as short or ambiguous. For all of the

most GW-signal-like triggers associated with the examined GRBs,
the searches returned no significant probability of incompatibility
with background alone (p-value). This indicates that no GW signal
was uncovered in association with any of these GRBs. This is
consistent with the estimated GW–GRB joint detection rate with
Fermi-GBM of 0.07–1.80 per year reported in Abbott et al.
(2019b) for the 2019–2020 LIGO–Virgo observing run. The most
significant events found by the generic transient method and by the
modeled search had p-values of 5.5× 10−3 (GRB 190804058) and
2.7× 10−2 (GRB 190601325), respectively.
Figures 1 and 2 show the cumulative distributions of p-

values returned by the modeled search and the generic transient
search, respectively. For cases in which no associated on-
source trigger survived the analysis cuts of the modeled search,
the associated p-value ranges between 1—i.e., an upper bound
on a probability—and the fraction of background trials for the
GRB that also yielded no associated GW trigger. In both
figures, the expected background distribution under the no-
signal hypothesis is shown by the dashed line, and its 2σ limits
are indicated by the two dotted lines. Both cumulative
distributions are within the 2σ lines and therefore compatible
with the no-signal hypothesis. These figures indicate that the
lowest p-value found by each search is compatible with the no-
signal hypothesis.
Having found no GW signal associated with the GRBs

followed up by our searches, we consider the set of modeled
search results and the set of generic transient search results,
collectively. We apply a weighted binomial test described in
Abadie et al. (2012) to evaluate how consistent each set of
results is collectively with the no-signal hypothesis. This test is
conducted using the most significant 5% of p-values in the
sample weighted by a prior probability of detection estimated

Figure 1. Cumulative distribution of loudest on-source event p-values for the
neutron star binary modeled search in O3a. If the search reports no trigger in
the on-source, we plot an upper limit on the p-value of 1 (open circles), and a
lower limit equal to the fraction of off-source trials that contained no trigger
(full circles). The dashed line indicates the expected distribution of p-values
under the no-signal hypothesis, with the corresponding 2σ envelope marked by
dotted lines.
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using the network detector sensitivity at the time and location
of each GRB. This final probability of observing this
distribution of p-values given background alone, i.e., under
the no-signal hypothesis, was 0.43 (0.31) for the modeled
(generic transient) search method. Therefore, both searches
gave no significant evidence for a population of unidentified
subthreshold GW signals. For the analyses carried out in the
first observing run of Advanced LIGO and Advanced Virgo,
the combined p-values were 0.57 and 0.75 for the modeled and
generic transient search, respectively (Abbott et al. 2017c); in
the second observing run of Advanced LIGO and Advanced
Virgo, they were 0.30 and 0.75 (Abbott et al. 2019b).

In Figure 3, we show the cumulative 90% exclusion distances
for the 32 short and ambiguous GRBs followed up with the
modeled search. The lowest exclusion distance values (∼20Mpc)
were obtained for ambiguous GRB 190409901. This is due to the
fact that only Virgo data were available for this GRB and that the
sky location of this event was in a direction in which Virgo had
∼30% sensitivity with respect to an optimal sky location. For each
of the three simulated signal classes, we quote the median of the
32 D90 results in the top part of Table 1. All three values are 40%–

60% times higher than those reported in Abbott et al. (2019b) for
the previous LIGO–Virgo observing run. The individual D90

values for each class of simulated signals are reported in Table 2.
As a term of comparison, during the six month duration of O3a,
the Hanford and Livingston Advanced LIGO instruments, and the
Virgo interferometer had BNS ranges of 108Mpc, 135Mpc, and
45Mpc, respectively.211 We also place a 90% confidence level
lower limit on the distance for each of the 105 GRBs analyzed
by the generic transient search, assuming the various emission

models discussed in Section 3.2 (see also Abbott et al. 2017c).
Figure 4 shows the distribution of D90 values for the ADI
model A (van Putten 2001; van Putten et al. 2014) and for a
CSG with central frequency of 150 Hz (Abbott et al. 2017c).
These limits depend on the sensitivity of the detector network
which, in turn, varies over time and with sky location, and have
been marginalized over errors introduced by detector calibra-
tion. For the ADI and the CSG models mentioned above, as
well as for the other seven models used in the generic transient

Figure 2. Cumulative distribution of p-values from the unmodelled search for
transient gravitational waves associated with 105 gamma-ray bursts. The
dashed line represents the expected distribution under the no-signal hypothesis,
with dotted lines indicating a 2σ deviation from this distribution.

Figure 3. Cumulative histograms of the 90% confidence exclusion distances,
D90, for the binary neutron star (blue, thin line) and generically spinning
neutron star–black hole (orange, thick line) signal models, shown for the
sample of 32 short and ambiguous gamma-ray bursts (GRBs) that were
followed up by the NS binary modeled search during O3a, none of which had
an identified gravitational wave counterpart. For a given GRB event and signal
model, D90 is the distance within which 90% of simulated signals inserted into
off-source data are recovered with greater significance than the most significant
on-source trigger. These simulated signals have inclinations θJN—the angle
between the total angular momentum and the line of sight—drawn uniformly in

qsin JN with θJN restricted to [0°, 30°] ∪ [150°, 180°].

Table 1
Median 90% Confidence Level Exclusion Distances, D90, for the Searches

during O3a

Modelled Search NSBH NSBH
(Short GRBs) BNS Generic Spins Aligned Spins

D90 [Mpc] 119 160 231

Unmodelled search CSG CSG CSG CSG
(All GRBs) 70 Hz 100 Hz 150 Hz 300 Hz

D90 (Mpc) 146 104 73 28

Unmodelled search ADI ADI ADI ADI ADI
(All GRBs) A B C D E

D90 (Mpc) 23 123 28 11 33

Note.Modeled search results are shown for three classes of NS binary
progenitor model, and unmodeled search results are shown for CSG (Abbott
et al. 2017c) and ADI (van Putten 2001; van Putten et al. 2014) models.

211 The BNS inspiral range is defined as the distance at which the coalescence
of two 1.4 Me NSs can be detected with an S/N of 8, averaged over all
directions in the sky, source orientation, and polarization (Finn & Chernoff
1993; Allen et al. 2012; Chen et al. 2021).
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Table 2
Information and Limits on Associated GW Emission for Each of the Fermi and Swift GRBs Followed Up during the LIGO–Virgo Run O3a

D90 (Mpc)

GRB Name UTC Time R.A. Decl. Satellite Type Network BNS
Generic
NSBH

Aligned
NSBH ADI-A

CSG
150 Hz

190404293 07:01:21 8h 05m 33s 55° 25′ Fermi Long H1L1 L L L 35 152
190406450 10:47:20 23h 46m 21s 20° 23′ Fermi Long H1L1V1 L L L 2 115
190406465 11:09:47 19h 05m 21s 61° 30′ Fermi Long H1L1V1 L L L 69 186
190407575 13:48:36 6h 02m 07s −64° 08′ Fermi Long H1L1V1† L L L 61 171
190407672 16:07:26 12h 07m 16s 40° 37′ Fermi Long L1V1 L L L 32 49
190407788 18:54:41 13h 30m 57s −7° 57′ Fermi Ambiguous L1V1 169 311 395 34 54
190409901 21:38:05 15h19m53s −33°52′ Fermi Ambiguous V1 19 22 34 L L
190411579 13:53:58 3h 02m 31s 48° 38′ Fermi Long H1L1V1† L L L 10 108
190415173 04:09:49 1h 50m 50s 17° 26′ Fermi Long H1V1 L L L 2 5
190419414 09:55:37 7h 05m 48s −40° 08′ Fermi Long H1V1† L L L 34 54
190420981 23:32:24 21h 17m 09s −66° 25′ Fermi Ambiguous L1V1 175 215 315 35 52
190422284 06:48:17 20h 26m 38s −73° 01′ Fermi Long H1L1† L L L 14 127
190422670 16:05:04 12h 36m 55s −54° 57′ Fermi Long H1L1V1 L L L 2 167
190425089 02:07:43 21h 01m 43s −15° 13′ Fermi Ambiguous L1V1(H1L1) 204 247 440 23 38
190427A 04:34:15 18h 40m 52s 40° 19′ Swift Short L1V1 138 199 253 33 92
190428783 18:48:12 1h 55m 45s 15° 51′ Fermi Long L1V1 L L L 29 38
190429743 17:49:50 13h 20m 12s −7° 60′ Fermi Long H1L1V1 L L L 70 126
190501794 19:03:42 10h 25m 09s −22° 00′ Fermi Long L1V1† L L L 18 35
190502168 04:01:30 6h 16m 43s 3° 17′ Fermi Long H1L1V1 L L L 34 92
190504415 09:57:34 4h 41m 57s 39° 34′ Fermi Long H1L1V1† L L L 16 50
190504678 16:16:28 9h 09m 43s 33° 01′ Fermi Short L1V1 93 124 189 17 68
190505051 01:14:09 22h 21m 33s 42° 11′ Fermi Short L1V1 100 149 206 24 36
190507270 06:28:23 10h 23m 50s −12° 48′ Fermi Long H1L1† L L L 39 111
190507712 17:05:16 05h44m53s −61°7′ Fermi Short V1 42 58 70 L L
190507970 23:16:29 19h 11m 16s −22° 49′ Fermi Long H1L1V1 L L L 32 231
190508987 23:41:24 6h 54m 02s 27° 02′ Fermi Long H1L1V1† L L L 30 178
190510120 02:52:13 8h 18m 09s −53° 04′ Fermi Long H1V1† L L L 8 53
190510430 10:19:16 8h 32m 31s 33° 33′ Fermi Short H1L1 128 196 253 48 116
190511A 07:14:48 8h 25m 46s −20° 15′ Swift Long H1L1 L L L 50 142
190512A 14:40:09 5h 29m 35s −7° 35′ Swift Long L1V1 L L L 20 56
190515190 04:33:03 9h 10m 45s 29° 17′ Fermi Short L1V1 122 148 194 22 42
190517813 19:30:10 18h 00m04s 25° 46′ Fermi Long H1L1 L L L 30 74
190519A 07:25:39 7h 39m 01s −38° 49′ Swift Long H1L1V1 L L L 10 190
190525032 00:45:47 22h 32m 04s 5° 27′ Fermi Short H1L1V1 128 248 385 22 165
190531312 07:29:11 1h 24m 28s 16° 21′ Fermi Long L1V1 L L L 21 73
190531568 13:38:03 18h 16m 40s 38° 52′ Fermi Short H1V1 86 150 187 3 29
190601325 07:47:24 10h 51m 55s 54° 35′ Fermi Short H1V1

(H1L1V1)
136 169 248 17 34

190603795 19:04:25 1h 20m 19s 40° 55′ Fermi Long H1L1 L L L 3 156
190604446 10:42:37 22h 50m 12s 46° 22′ Fermi Long H1L1 L L L 72 174
190606080 01:55:07 5h 06m 09s −0° 41′ Fermi Short H1V1 52 68 81 8 37
190608009 00:12:18 15h 02m 57s −31° 25′ Fermi Long L1V1† L L L 15 30
190610750 17:59:49 21h 49m 31s 42° 25′ Fermi Long L1V1 L L L 1 40
190610834 20:00:23 20h 59m 19s −15° 56′ Fermi Ambiguous L1V1 149 202 306 34 58
190610A 11:27:45 3h 04m 57s −7° 40′ Swift Short H1L1 63 82 114 23 58
190612165 03:57:24 14h 55m 48s 62° 06′ Fermi Long H1L1V1† L L L 48 178
190613A 04:07:18 12h 10m 12s 67° 15′ Swift Long H1L1V1 L L L 70 200
190613B 10:47:02 20h 21m 45s −4° 39′ Swift Long H1L1† L L L 54 160
190615636 15:16:27 12h 45m 36s 49° 23′ Fermi Long H1L1V1 L L L 4 45
190619018 00:26:01 23h 17m 14s 12° 52′ Fermi Long H1L1V1† L L L 6 132
190619595 14:16:25 19h24m 16s 20° 10′ Fermi Long H1L1V1† L L L 2 47
190620507 12:10:10 10h 48m 19s 30° 29′ Fermi Long H1L1 L L L 5 94
190623461 11:03:27 22h 21m 57s −23° 20′ Fermi Long H1L1V1 L L L 10 95
190627481 11:31:59 23h 29m 02s −8° 53′ Fermi Long H1L1 L L L 16 116
190627A 11:18:31 16h 19m 29s −5° 18′ Swift Ambiguous H1L1 115 139 211 21 77
190628521 12:30:55 9h 36m 19s −77° 04′ Fermi Long H1L1 L L L 47 164
190630257 06:09:58 20h 27m 55s −1° 20′ Fermi Short H1V1 47 91 121 16 25
190630B 06:02:08 14h 54m 55s 41° 32′ Swift Long H1V1 L L L 10 12
190630C 23:52:59 19h 35m 33s −32° 46′ Swift Long H1L1V1 L L L 47 118
190701A 09:45:20 1h 52m 31s 58° 54′ Swift Long H1L1V1 L L L 12 157
190707285 06:50:05 10h 11m 28s −30° 59′ Fermi Long H1L1V1 L L L 49 163
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Table 2
(Continued)

D90 (Mpc)

GRB Name UTC Time R.A. Decl. Satellite Type Network BNS
Generic
NSBH

Aligned
NSBH ADI-A

CSG
150 Hz

190707308 07:23:01 12h 17m 19s −9° 31′ Fermi Long H1L1 L L L 34 75
190708365 08:45:11 13h 59m 24s −1° 18′ Fermi Long H1L1V1 L L L 18 58
190712018 00:25:20 22h44m14s −38°35′ Fermi Ambiguous H1L1 68 204 357 L L
190712095 02:16:41 19h 13m 33s 56° 09′ Fermi Long H1L1V1 L L L 38 159
190716019 00:27:59 4h 41m 40s 16° 28′ Fermi Long H1L1† L L L 5 12
190718A 04:41:15 22h 26m 25s −41° 11′ Swift Long H1L1† L L L 12 93
190719499 11:57:51 6h 34m 26s 6° 42′ Fermi Long H1L1V1 L L L 33 94
190719C 14:58:34 16h 00m 49s 13° 00′ Swift Long H1L1V1† L L L 4 157
190720613 14:42:09 13h 30m 52s 41° 47′ Fermi Long H1L1V1 L L L 10 38
190720964 23:08:38 9h 15m 28s −55° 35′ Fermi Long H1L1 L L L 10 34
190724031 00:43:56 11h21m24s 15°9′ Fermi Short H1L1 197 286 329 L L
190726642 15:24:53 20h 41m 02s 34° 17′ Fermi Long H1L1V1† L L L 34 85
190726843 20:14:30 22h 50m 43s −55° 59′ Fermi Long H1L1V1† L L L 72 180
190727668 16:01:52 14h 57m 57s 19° 26′ Fermi Long H1L1 L L L 24 109
190727B 20:18:17 8h 25m 59s −13° 16′ Swift Long L1V1 L L L 34 68
190728271 06:30:36 23h 46m 45s 5° 26′ Fermi Short H1L1V1 160 204 272 32 79
190804058 01:23:27 7h 12m 04s −64° 52′ Fermi Ambiguous H1V1 132 184 240 34 74
190805106 02:32:30 11h 10m 36s −23° 46′ Fermi Long H1L1V1 L L L 35 121
190805199 04:46:00 13h 59m 00s 19° 28′ Fermi Long H1V1 L L L 33 75
190806535 12:50:02 20h 22m 14s 0° 33′ Fermi Long H1L1V1 L L L 20 52
190808752 18:03:17 11h 12m 12s 39° 43′ Fermi Long L1V1 L L L 32 62
190810675 16:12:01 12h 55m 07s −37° 34′ Fermi Short H1L1V1 85 159 222 2 50
190813520 12:29:09 7h 05m 31s −23° 16′ Fermi Short H1L1 84 121 161 23 56
190816A 14:42:24 22h 44m 43s −29° 45′ Swift Long L1V1† L L L 34 75
190817953 22:52:25 18h 20m 40s −31° 08′ Fermi Ambiguous H1L1 61 102 109 1 30
190822705 16:55:29 8h 49m 04s −8° 05′ Fermi Short L1V1 148 181 278 2 17
190824A 14:46:39 14h 21m 17s −41° 54′ Swift Long H1L1V1† L L L 24 160
190825171 04:06:56 14h 03m 26s −74° 08′ Fermi Long L1V1 L L L 17 38
190827467 11:12:48 11h 43m 14s 46° 27′ Fermi Long H1L1 L L L 7 26
190828B 12:59:59 16h 47m 21s 27° 17′ Swift Long H1V1† L L L 22 52
190829A 19:56:44 2h 58m 10s −8° 57′ Swift Long L1V1† L L L 33 51
190830023 00:32:48 7h 27m 36s −23° 46′ Fermi Long L1V1 L L L 33 59
190830264 06:20:46 10h 36m 48s −54° 43′ Fermi Ambiguous H1V1

(H1L1V1)
242 331 478 31 45

190831332 07:57:31 4h 22m 31s 14° 53′ Fermi Long L1V1 L L L 22 40
190831693 16:38:37 11h 19m 31s −22° 21′ Fermi Long H1L1V1 L L L 28 86
190901890 21:21:49 14h 41m 12s 0° 56′ Fermi Long L1V1† L L L 22 29
190903722 17:19:36 04h09m43s −64°8′ Fermi Short V1 66 87 133 L L
190904174 04:11:00 2h 23m 40s −25° 02′ Fermi Ambiguous L1V1(H1V1) 84 109 154 7 12
190905985 23:38:28 15h37m55s 3°7′ Fermi Short V1 42 54 77 L L
190906767 18:25:09 11h 27m 21s −71° 34′ Fermi Long H1L1V1 L L L 36 111
190910028 00:39:37 15h 18m 00s 9° 04′ Fermi Long H1V1 L L L 33 54
190913155 03:43:09 16h 53m 21s 44° 58′ Fermi Short H1V1

(H1L1V1)
201 250 382 9 15

190914345 08:16:34 1h 13m 45s 21° 27′ Fermi Long L1V1† L L L 23 36
190915240 05:44:57 3h 13m 19s 3° 59′ Fermi Long L1V1 L L L 25 42
190916590 14:10:14 21h 25m 04s −48° 54′ Fermi Long H1L1V1 L L L 23 170
190919764 18:20:02 23h 49m 26s −21° 49′ Fermi Long H1L1V1 L L L 73 234
190921699 16:45:55 22h 33m 31s −63° 25′ Fermi Long H1V1 L L L 32 46
190923617 14:48:02 0h 32m 48s −11° 01′ Fermi Ambiguous H1L1 133 162 239 32 80
190926A 09:52:16 6h 42m 27s 59° 32′ Swift Long H1L1† L L L 72 186
190930400 09:36:06 15h 52m 52s −6° 05′ Fermi Long L1V1† L L L 22 30
191001279 06:41:50 20h 20m 47s 15° 05′ Fermi Long H1V1 L L L 12 41

Note. The Satellite column lists the instrument the sky localization of which was used for GW analysis purposes. The Network column lists the GW detector network
used in the analysis of each GRB: H1 = LIGO Hanford, L1 = LIGO Livingston, V1 = Virgo. A† denotes cases in which T90 > 60 s, so the on-source window of the
generic transient search was extended to cover the GRB duration. For cases in which the generic transient search (Section 3.2) and the neutron star binary search
(Section 3.1) used a different network, we report the network used by the latter in parentheses. Columns 8–12 display the 90% confidence exclusion distances to the
GRB (D90) for several emission scenarios: BNS, generic and aligned-spin NSBH, ADI-A, and CSG GW burst at 150 Hz with total radiated energy
EGW = 10−2 M☉ c2. The first three are determined with the neutron star binary search, while the last two are calculated with the generic transient search.
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method search (see Section 3.2), we provide population median
exclusion limits, D90, in Table 1. These vary roughly over one
order of magnitude, which reflects the wide range of models
used in the analysis. We report the D90 values found for each
GRB in the case of ADI model A simulated signals and CSG
simulated signals with central frequency of 150 Hz in Table 2.

4.1. GRB 190610A

For each event in the O3a sample that was localized with an
error radius smaller than 0°.5, we searched GLADE (Dálya et al.
2018) for galaxies within 200Mpc. We then compared the
angular separation between each GRB and galaxy, and recorded
all separations less than or equal to twice the error radius for each
GRB. Of the 141 events in our sample, four had nearby galaxies
according to the definition above: GRB 190530430, GRB
190531840, GRB 190610A, and GRB 190731943. Data for our
GW follow-up analysis were available only in the case of the short
GRB 190610A, first observed by Swift/BAT (Evans et al. 2019)
and localized to within a 90% error radius of ¢1.9 (Lien et al. 2016;
Palmer et al. 2019). On the edge of its localization region, there is
a nearby galaxy at a luminosity distance of approximately
165Mpc (z= 0.037), as reported in GLADE (see Figure 5).212

The angular separation between the center of the localization
region and the nearby galaxy is at the 2.21σ level relative to the
formal fit error, which is slightly less conservative than the
quoted 90% localization derived from the S/N, and is

consistent with expectations of angular offsets from a host
galaxy at that distance (Fong & Berger 2013).
We did not find any GW signal associated with GRB

190610A in the data available from the two LIGO detectors
(Virgo data were not in observing mode at that particular time).
Our modeled search described in Section 3.1, which uses an
on-source window from −5 s to +1 s around the GRB trigger
time, placed 90% confidence exclusion distances of 63Mpc,
82Mpc, and 114Mpc for BNS binaries with generically
oriented spins, NSBH binaries with generically oriented spins,
and aligned-spin NSBH binaries (see Section 3.1 for more
details on these three populations). In general, a distance of
165Mpc can be within the reach of our modeled search, but
GRB 190610A was in a sky location such that the sensitivity of
both detectors was less than 30% of what it would have been in
an optimal sky location.

5. Conclusions

We carried out targeted analyses for GWs associated with
Fermi and Swift GRBs reported during the O3a LIGO–Virgo
observing run. In the case of short and ambiguous GRBs events
(see Section 2), we ran a modeled search for NS binary merger
signals (Harry & Fairhurst 2011; Williamson et al. 2014), while
an unmodeled search for GW transient signals was performed for
all GRBs (Sutton et al. 2010; Was et al. 2012). As a result of our
analyses, we found no GW signal in association with the GRBs
that we followed up. This is consistent with the previously
predicted rate of coincident detections of 0.1–1.4 per year for
the third observing run of Advanced LIGO and Advanced
Virgo (Abbott et al. 2017a). Additionally, by carrying out a
weighted binomial test, we found no strong evidence for a
population of unidentified subthreshold GW signals in our results.
We set lower bounds on the distances to the progenitors of all
GRBs we analyzed for a number of emission models. These D90

values are reported in Table 2, along with other information about
each GRB that we considered; this includes timing, sky location,
observing instrument, and GW detectors with available data. The

Figure 4. Cumulative histograms of the 90% confidence exclusion distances,
D90, for accretion disk instability (ADI; van Putten 2001; van Putten
et al. 2014) signal model A (orange, thin line) and circular sine-Gaussian
(CSG) 150 Hz (Abbott et al. 2017c) model (green, thick line). For a given GRB
and signal model this is the distance within which 90% of simulated signals
inserted into off-source data are successfully recovered with a significance
greater than the loudest on-source trigger. The median values for ADI-A and
CSG-150 waveforms are 23 Mpc and 73 Mpc, respectively.

Figure 5. Overlay of the estimated 90% Swift/BAT error radius for GRB
190610A (orange circle) on the sky. A galaxy at around 165 Mpc (Dálya
et al. 2018) compatible with this localization is indicated by the blue crosshair.

212 This galaxy can be found in the HyperLeda database (http://leda.univ-
lyon1.fr/) under the identifier PGC 1015066 (Makarov et al. 2014), as well as
the Sloan Digital Sky Survey under the identifier J030449.65-073956.6 (Alam
et al. 2015).
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90% confidence level exclusion distances achieved in this run
include the largest values published so far for some individual
GRBs (see Abbott et al. 2017c, 2019b). Among the GRBs we
analyzed is GRB 190610A, the sky localization of which included
a nearby galaxy at a luminosity distance of 165Mpc. We placed
90% confidence level exclusion distances lower than this value for
NS binary merger GW signals and are therefore unable to rule out
the possibility that GRB 190610A occurred in such galaxy.
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