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Abstract: The growing market of herbal medicines, the increase in international trade in Latvia,
and the lack of adequate analytical methods have raised the question of the potential use of herbal
fingerprinting methods. In this study, high-performance liquid chromatography (HPLC) and thin
layer chromatography (TLC) methods were developed for obtaining chromatographic fingerprints
of four taxonomically and evolutionary different medicinal plants (Hibiscus sabdariffa L., Calendula
officinalis L., Matricaria recutita L., Achillea millefolium L.). Retention time shifting, principal component
analysis (PCA), hierarchical cluster analysis (HCA), and orthogonal projections to latent structures
(OPLS) analysis were used to improve and analyze the obtained fingerprints. HPLC data detection
at 270 nm was determined superior to 360 nm for the distinction of medicinal plants and used data
alignment method significantly increased similarity between samples. Analyzed medicinal plant
extracts formed separate, compact clusters in PCA, and the results of HCA correlated with the evolu-
tionary relationships of the analyzed medicinal plants. Herbal fingerprinting using chromatographic
analysis coupled with multivariate analysis has a great potential for the identification of medicinal
plants as well as for the distinction of Latvian native medicinal plants.

Keywords: herbal medicine; fingerprinting; HPLC; TLC; chemometrics; multivariate analysis

1. Introduction

Although in the last hundred years the backbone of Western medicine has been a great
diversity of chemically synthesized drugs, billions of people still use herbal medicine for
its well-known wellness-inducing properties and as a prophylactic and therapeutic tool for
both minor and chronic health problems [1–3]. With an increase in vegetarian and vegan
diets, the promotion of healthier lifestyles, and high prices of medication, herbal medicines
have become a top choice for many consumers and have shown steady market growth in
the 21st century, with the market size of global botanical supplements being valued at USD
27.47 billion in 2020 and the revenue forecast for 2028 being USD 55.18 billion [2,4,5].

The chemical composition of medicinal plants is very complex, with hundreds or
even thousands of chemical components, which can be affected by such factors as growth
and storage conditions, genetic composition, soil components, time of harvest, processing
methods, and others [6]. All of these factors contribute to the batch-to-batch chemical
variability of herbal medicines, supplements, and other products like herbal teas, and play
a significant role in the physiological or pharmaceutical activities of these products [1].

Latvians have deep-rooted traditions and knowledge about medicinal plant use that
are to this day still put in practice [7]. Many medicinal plants are also cultivated and
processed in Latvia for the pharmaceutical and food industry, however with growing
demand, the import of medicinal plants from foreign countries has grown from 2.98 million
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euros in 2015 to 11.99 million euros in 2020 [8]. The increasing international trade of raw
herbal materials around the world has raised concern about the possible contamination and
adulteration of the materials [9–11]. Several studies have reported species adulterations
ranging from 21% to even 80% of raw herbal samples, greatly impacting the biological
activity and chemical composition of the materials [9,11–13]. Therefore, the establishment
of authentic botanical species standards and analytical methods that can be used for identity
tests is crucial [9].

Pharmacopeias and regulatory instances, like European Pharmacopoeia, mostly sug-
gest that the identification and quantitative assay of herbal medicines should be performed
using sensory inspections and a quantitative determination of a few key components of
each herb [14,15]. However, sensory inspections can differ between specialists and are
not adequately validated, and the conclusions can be subjective [16,17]. Additionally,
the synergic effect of multiple components is why the single key component quantitative
determination is not sufficient for the quality assessment of herbal medicines [18,19].

The chemical fingerprinting method, approved by the World Health Organization
(WHO), the Food and Drug Administration (FDA) of the USA, the European Medicines
Agency (EMA), and others, can provide a comprehensive chemical description of herbal
medicines [4,20,21]. The characteristic profiles and patterns reflecting the complex chemi-
cal composition of herbal samples, called fingerprints, can be established using multiple
techniques, both chromatographic and spectroscopic [1,22]. There has been previous re-
search on spectroscopic fingerprints of Latvian native medicinal plants, but no studies on
Latvian native medicinal plant chromatographic fingerprints have been conducted to this
day. Therefore, this study focuses on high-performance liquid chromatography, equipped
with a UV detector (HPLC-UV) and thin layer chromatography (TLC) methods [23,24].
Liquid chromatography has been the most popular herbal fingerprinting method because
of the advantages such as wide suitability, high resolution, selectivity, sensitivity, repro-
ducibility, and a fully automatable operation [15,25,26]. TLC has also been consistently
used in the analysis of herbal medicines, as it is one of the analytical methods provided by
European Pharmacopeia, but with the advances in TLC equipment and automatization,
this method has also found a place in the scope of chromatographical fingerprinting, be-
cause of its simplicity, versatility, specific sensitivity, high throughput, and simple sample
preparation [27,28].

Since chromatography methods provide very large the data amounts, multivariate
statistical analysis methods can be used to reduce the large amount of data and extract
information and characters of interest [29]. Methods of multivariate statistical analysis can
be grouped according to their purposes, such as unsupervised or supervised. Unsupervised
methods such as principal component analysis (PCA) and hierarchical clustering analysis
(HCA) are the most widely used for the analysis of herbal medicines, since these methods
do not require a dependent variable for modeling [1,30,31]. PCA describes the correlation
between a large number of variables using fewer principal components (PCs) while HCA
establishes clusters of data, thereby visualizing the main patterns. PCA and HCA can
be used for taxonomic discrimination, quality assessment, and geographic origin deter-
mination of medicinal plants [31–33]. Orthogonal projection to latent structures (OPLS)
analysis is a supervised statistical method suitable for showing differences between two
predefined groups or systems [1,34,35]. This method explains which variables have the
most significant discriminatory power and how the variables are correlated. This study
used OPLS to obtain the optimal separation of herbal extract mixtures. To compare two
fingerprints or to evaluate the (dis)similarity of the fingerprints, most often the product-
moment or the Pearson’s correlation coefficient r (−1 ≤ r ≤ 1) is used [36]. In this study
Pearson’s correlation coefficient values were calculated and PCA, HCA, and OPLS analysis
was performed to analyze the obtained fingerprints.

The aim of this study was to determine the potential use of herbal fingerprinting by
means of high-performance liquid chromatography (HPLC) and thin layer chromatography
(TLC) in conjunction with chemometrics for characterization and identification of medicinal
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plant extracts, as well as to determine if the herbal fingerprinting method can be used for
the distinction of Latvian native medicinal plants. Four taxonomically different medicinal
plants (Hibiscus sabdariffa L., Calendula officinalis L., Matricaria recutita L., and Achillea
millefolium L.) were chosen for this study based on their phylogenetic relationships and
whether or not the medicinal plant is native to Latvia. Since previous studies have mainly
focused on obtaining chromatographic fingerprints of only one genus or species and used
vastly different TLC and HPLC method parameters, this study analyzed taxonomically
and chemically different medicinal plants and aimed to develop analytical methods with
wide suitability that can be used for fingerprinting analysis of several medicinal plants,
therefore making the process of identifying medicinal plants cheaper, faster, and more
efficient [37,38]. To practically evaluate the application of the herbal fingerprinting method,
mixed extracts made from combinations of analyzed medicinal plants were made and the
possibility of identifying the components of the mixed extracts was investigated.

2. Results and Discussion
2.1. Advantages and Challenges of Thin Layer Chromatography

The efficacy of thin layer chromatography can be greatly influenced by the used
mobile phase. We tested a mobile phase consisting of ethyl acetate, water, and formic
acid, as it was provided as a method for thin layer chromatography for calendula flowers
by European Pharmacopoeia [39]. This mobile phase was efficient in the separation of
chemical components of all examined herbal extracts (Figure 1). All photos of developed
HPTLC plates under 366 nm UV light can be seen in Figures S1–S4.
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Figure 1. Developed HPTLC plates under 366 nm UV light. (a) Developed HPTLC plate of yarrow
extracts; (b) developed HPTLC plate of chamomile extracts and reference standard—chlorogenic acid.

Chamber saturation remarkably influences the reproducibility and quality of the
results of thin layer chromatography [40]. We found that a 20-min-long chamber saturation
is an insufficient time, and the migration of samples isn’t straight, thereby compromising
the results. When the chamber saturation was prolonged to 30 min, the migration trajectory
greatly improved. The best separation of chemical components was observed when the
height of development was 80 mm. As the separated compounds responded to UV light
well, derivatization reagents were not applied to the plates.

Chlorogenic acid and rutin were chosen as reference standards, and their Rf values
were measured. Chlorogenic acid was seen as a blue band under 366 nm UV light with a Rf
value of 0.33. A similar blue band with the same Rf value was seen on plates with extracts
of all analyzed medicinal plants, suggesting chlorogenic acid’s presence in all analyzed
extracts. Chlorogenic acid was also seen as a clear peak in chromatograms, which were
provided by the used software. In previous TLC studies, chlorogenic acid has also been seen
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as a blue band under 366 nm UV light and detected in calendula, yarrow, and chamomile
extracts, thereby the findings of this study coincide with previous research [41,42].

Rutin was seen as a brown band under 366 nm UV light with an Rf value of 0.26. A
similar color band with the same Rf value was observed in samples of calendula extracts,
indicating its presence in the above-mentioned extracts. This coincides with research by
Agatanovic-Kustrin et al., in which rutin had also been detected in calendula extracts [42]. In
our research, rutin, compared to chlorogenic acid, was not seen as a peak in chromatograms
provided by the software, indicating a problem with color capture and interpretation of
the used software. In addition, bands, which were seen red under 366 nm UV light, were
not properly displayed as separate, adequate peaks in chromatograms. This problem
significantly impacted data processing and result interpretation. Different TLC image
processing methods like splitting a photograph through red, green, and blue channel filters,
and denoising, are now being developed to enhance the selectivity and precision of results,
but these methods were not tested in this research [43,44].

Since the above-mentioned problem of color capture and interpretation was encoun-
tered, the results of TLC were used only as an initial screening tool to characterize the
chemical composition of the analyzed herbal extracts. The presence of chlorogenic acid,
rutin, and other reference standards in analyzed herbal extracts was later checked using
HPLC-UV. In future research, the TLC system could be combined with mass-spectrometry
for the identification of separated chemical compounds.

2.2. Method Validation of HPLC Fingerprint Analysis

The HPLC method was validated in terms of system adaptability, intra-day, inter-day
precision, and repeatability. System adaptability was assessed by injecting one calendula
sample solution six times. The average similarity was 0.9758. To test the reproducibility
of this method, three runs of the same extract solution (calendula) and three replications
of that medicinal plant sample were analyzed. The average similarity was 0.9944. The
intra-day precision test was performed by analysis of the yarrow extracts. Five yarrow
extracts were injected three times each on the same day. The average similarity between
them was calculated to be 0.9803. The inter-day precision was examined by analyzing two
extracts of each medicinal plant in duplicate on three separate days. Retention time shifting
was observed, therefore retention times were adjusted using the data alignment method
described in Section 2.4. The average similarity between extracts of each medicinal plant
was calculated to be 0.9784. Since the results of validation were consistent and adequate,
the used HPLC method was determined suitable for obtaining herbal fingerprints.

2.3. Obtained Chemical Profiles and Identification of Chemical Compounds Using HPLC

The HPLC method provided distinctive chemical profiles, also known as fingerprints,
for each of the analyzed medicinal plants. In Figure 2, the clear difference between roselle
and calendula herbal fingerprints can be seen, suggesting the contrast of the chemical
composition of a Latvian native medicinal plant and an exotic/tropical plant like roselle.

Peaks that were visible in all samples at both wavelengths and were of reasonable
heights were labeled as “common peaks”. These peaks were numbered based on their
elution order: 10 common peaks for calendula, 11—for chamomile, 9—for yarrow, and
7—for roselle were found (Figure 3). Differences in peak intensity at 270 nm or 360 nm
wavelengths were observed. For yarrow, chamomile, and calendula common peak intensity
was superior at 270 nm compared with 360 nm. The opposite was observed when analyzing
roselle samples—peak intensity was higher at 360 nm than at 270 nm, showing analytical
differences between Latvian native medicinal plants and roselle. In general, more peaks
were visible at 270 nm, thereby providing more detailed chemical profiles and making this
method superior for obtaining herbal fingerprints. Detection wavelengths’ influence on
peak intensity has been researched by Yang et al. concluding that detection of chlorogenic
acid at 273 nm is much more effective than at 360 nm, while the intensity of the rutin peak
is higher at 360 nm [45].
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Figure 2. The difference between the chemical profiles of roselle and calendula, HPLC, 270 nm.
Orange—chromatogram of roselle extract; green—chromatogram of calendula extract.

As all of the analyzed medicinal plants are considered polyphenol-rich, five well-
known polyphenols—chlorogenic acid, caffeic acid, rutin, apigenin, and apigenin-7-gluco-
side—were chosen as reference standards [46]. To identify some of the common peaks
of samples, the retention times (RT) of reference-standard solutions and retention times
of common peaks were matched. To verify the findings, a standard adding method was
executed. If the results matched, it was assumed that the peak was identified.

In calendula extracts, 2 common peaks were identified: peak no 1, chlorogenic acid;
peak no 5, rutin. In a previous study of calendula extracts, rutin was also identified, but
chlorogenic acid had not been detected [47].

In chamomile extracts, 4 common peaks were identified: peak no 1, chlorogenic acid;
peak no 2, caffeic acid; peak no 5, apigenin-7-glucoside; peak no 8, apigenin. These findings
correlate with previous studies of chamomile, in which these compounds have also been
found [48–50]. In some studies, rutin had also been found in chamomile extracts, but when
analyzing our samples, rutin was not detected [48,50].

In yarrow extracts, 5 common peaks were identified: peak no 1, chlorogenic acid; peak
no 2, caffeic acid; peak no 3, rutin; peak no 6, apigenin-7-glucoside; peak no 8, apigenin.
All of the above-mentioned compounds, except caffeic acid, have also been identified in
previous studies concerning the chemical composition of yarrow [51–53].

In roselle samples, 3 peaks were identified: peak no 2, chlorogenic acid; peak no 3,
caffeic acid; peak no 7, rutin. These substances have also been identified by analyzing
roselle extracts in previous studies [54–56].

Information regarding retention times of the found compounds in this study can be
found in Table 1, but obtained average normalized chromatograms with labeled common
peaks can be seen in Figure 3 and Figures S5–S12. The HPLC method was effective in
separating chemical compounds of all analyzed extracts, but further research must be
conducted using mass-spectrometry to verify the identity of found compounds.

2.4. The Efficacy of HPLC Data Alignment Optimization

Retention time shifting is a common problem regarding liquid chromatography that
can be caused by minor changes in the mobile-phase organic concentration, pH, flow rate,
and other factors [57]. In this study, retention time shifting between samples impacted
their similarity, which was assessed by calculating Pearson’s correlation coefficient values.
To minimize the impact of retention time shifting, retention time adjusting was executed.
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Several retention time alignment methods have been previously developed, which signifi-
cantly reduce the influence of retention time shifts, improve similarity between samples,
and lead to much more accurate conclusions [50,58,59]. In this study, retention times were
adjusted to the average chromatogram that was obtained for each medicinal plant and
wavelength, respectively.
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Figure 3. HPLC chromatograms for each medicinal plant. (a) Average chromatogram of yarrow
extracts, 270 nm; (b) average chromatogram of yarrow extracts, 360 nm; (c) average chromatogram
of calendula extracts, 270 nm; (d) average chromatogram of calendula extracts, 360 nm; (e) average
chromatogram of chamomile extracts, 270 nm; (f) average chromatogram of chamomile extracts,
360 nm; (g) average chromatogram of roselle extracts, 270 nm; (h) average chromatogram of roselle
extracts, 360 nm.



Molecules 2022, 27, 2555 7 of 18

Table 1. Identified chemical compounds and their retention times.

Wavelength Chemical Compound Standard RT
(min)

Sample RT 1

(min)
Yarrow Chamomile Calendula Roselle

270 nm

Chlorogenic acid 9.86 9.85 ± 0.04 + + + +
Caffeic acid 10.37 10.37 ± 0.01 + + +

Rutin 17.99 17.99 ± 0.01 + + +
Apigenin-7-glucoside 21.41 21.42 ± 0.01 + +

Apigenin 32.34 32.36 ± 0.05 + +

360 nm

Chlorogenic acid 9.87 9.88 ± 0.02 + + + +
Caffeic acid 10.37 10.39 ± 0.05 + + +

Rutin 17.99 17.99 ± 0.01 + + +
Apigenin-7-glucoside 21.42 21.42 ± 0.02 + +

Apigenin 32.37 32.37 ± 0.05 + +
1 Results are shown as average RT value ± RT variance between samples. “+” chemical compound has been
identified in ethanol extracts.

Retention time adjustment significantly improved the average Pearson’s correlation
coefficient values for all analyzed medicinal plants (Table 2). The HPLC method provided
the average Pearson’s correlation coefficient value r for raw data to be higher than 0.6805 for
all medicinal plants at both wavelengths, while after the retention time adjustment, the
average value for chamomile samples was no less than 0.7995, and for other analyzed
medicinal plants it was no less than 0.9305. The improvement of Pearson’s correlation
coefficient values differed between medicinal plants. If the similarity was high even for
raw data, for example—roselle samples at 270 nm, then the increase of r values was not so
significant. But if the similarity for raw data was lower, for example—yarrow samples, the
increase in r values after retention time alignment were as high as 36.74% at 270 nm. The
lowest of average r values after retention time adjustment were for chamomile samples.
Raw Matricaria recutita L. samples were visually diverse and had the largest sample size,
thereby possibly explaining the diversity of chemical composition between samples. In a
study by Jiao et al., retention time alignment was applied to fingerprint analysis and also
provided satisfactory results [60].

Differences between raw data and adjusted data can also be seen in the PCA of nine
chamomile sample triplicates (Figure 4). The PCA of adjusted data resulted in 6 components
with R2(X) of 97.9% and Q2 95.9%. After adjusting retention times, the chamomile extracts
from each sample formed compact clusters in comparison to raw data, proving the efficacy
of the used data alignment method (Figure 4). The PCA analysis was performed using a
two-component model with a total variance 75.5% (PC1 44.9%, PC2 30.6%) for raw data
and 85.4% (PC1 71.4%, PC2 14.0%) for adjusted data explained. With adequate results, the
effect of retention time adjustment was also visualized in PCA in a previous study [60].

Table 2. Pearson’s correlation coefficient values for raw data and data with adjusted retention times.

Medicinal Plant

Average Pearson’s Correlation Coefficient Value
(270 nm)

Average Pearson’s Correlation Coefficient Value
(360 nm)

Raw Data Data with Adjusted
Retention Times Raw Data Data with Adjusted

Retention Times

Roselle 0.9628 0.9764 0.8519 0.9648
Chamomile 0.7122 0.7995 0.7220 0.8116
Calendula 0.7997 0.9457 0.8909 0.9762

Yarrow 0.6805 0.9305 0.8191 0.9305
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(a) The PCA clusters for raw chamomile extract HPLC data, 360 nm (extracts made from different
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2.5. Multivariate Analysis and Phylogenetic Relationships

To further investigate the differences of obtained HPLC chemical profiles, unsuper-
vised multivariate analysis methods like PCA and HCA on raw HPLC data were executed.
All chromatograms were normalized beforehand. All investigated medicinal plants in PCA
formed tight clusters both at 360 nm and 270 nm wavelengths, respectively (Figure 5). At
360 nm the clusters of calendula and yarrow samples are grouped almost together, while at
270 nm the differentiation of clusters is superior, and all clusters are separate (Figure 5).

At 270 nm PC1 describes 35.9%, but PC2—21.8%, forming 57.7% of a total variance for
the chromatographic information, while at 360 nm PC1 describes 39.5%, but PC2—24.9%,
forming 64.4% of chromatographic information. A combination of the first ten components
describes 95% (R2(X) 95.2%, Q2 92.4% at 270 nm, and R2(X) 95.7%, Q2 93.7% at 360 nm) of
the composition of herbal compounds. The main differences in chemical composition are
described by the PC1 and PC2, while later components have a smaller impact. The first
two components at 270 nm describe a smaller portion of chromatographic information than
at 360 nm, suggesting that at 270 nm more differences in chemical profiles were observed.
PC1 can be used only to differentiate the roselle samples, while PC2 shows differences in
the chemical composition of yarrow, calendula, and chamomile. Additionally, the loadings
of PC2 at 270 nm wavelength describe more differences in chemical composition than at
360 nm, proving that data detection at 270 nm is superior for the differentiation of medicinal
plants (Figure 6). From the PCA, we could see that the roselle cluster is the furthest from
other clusters, suggesting its chemical composition is different to other investigated plants
(Figure 5).

The clear difference in chemical composition of roselle samples was also expected
based on the phylogenetic tree, a diagram that portrays the evolution of a set of species
from their most recent common ancestor that was generated for these medicinal plants
(Figure 7a) [61]. From the phylogenetic tree, it was observed that chamomile, calendula, and
yarrow share a more recent common ancestor than either one share with roselle, suggesting
that there will be a visible distinction of chemical profiles. Since the chemical composition
is influenced also by the geographical origin of plant samples, and roselle samples came
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from tropical regions, but chamomile, calendula, and yarrow samples from Eastern Europe
(mainly Latvia) the differences in chemical profiles could also be affected [6].
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A correlation between the phylogenetic relationships and groupings of fingerprint
datasets was also confirmed in HCA (Figure 7). Latvian native medicinal plant samples
are located on one branch of the dendrogram, while roselle samples are on another branch,
the same as in the phylogenetic tree. However a difference from the phylogenetic tree in
HCA was seen for Latvian native medicinal plants (yarrow, calendula, and chamomile). In
the phylogenetic tree, chamomile and yarrow share a more recent common ancestor than
either one share with calendula (Figure 7a). That suggests that the chemical composition of
yarrow and chamomile should be more alike. But the HCA proves otherwise—samples
of chamomile are located closer to calendula samples in the dendrogram at 270 nm and
samples of yarrow and calendula are grouped together at 360 nm, suggesting a more similar
chemical composition, respectively (Figure 7). As previously mentioned, the chemical
composition can be impacted by many factors, including the origin of samples, soil, growth
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conditions, and other reasons, which could have impacted this result [6]. Further research
with larger sample sizes should be conducted to investigate this observation. In a study
done by Kharyuk et al. a correlation was found between evolutionary relationships and
herbal fingerprints for closely related species with samples made from similar parts, but
groupings of higher order were not accurate [62]. The distance between clusters is larger
at 270 nm, making the method superior for the identification of medicinal plants and for
providing distinctive chemical profiles.
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2.6. Application of the Herbal Fingerprinting Method

Mixed extracts of different combinations of the four analyzed medicinal plants were
made, and HPLC, together with OPLS and HCA, was performed to see if we could identify
the components of mixed extracts and to further investigate the possible application of the
herbal fingerprinting method. OPLS has also been applied in previous studies to differenti-
ate medicinal plants and their products [63–65]. The scatter plots and dendrograms of OPLS
can be seen in Figure 8. Simple extracts made from one medicinal plant were also added to
this analysis to see how the mixed extracts group in comparison to single medicinal plant
extracts. Sets of simple and mixed extracts (56) were included in the OPLS analysis. OPLS
analysis of data detected at 270 nm resulted in a tricomponent with R2(X) of 80.5%, R2(Y) of
91.4%, and Q2 of 88.5% of the variables. OPLS analysis of data detected at 360 nm resulted
in tricomponent with R2(X) of 89.4%, R2(Y) of 83.2%, and Q2 of 80.7% of the variables.
These results proved that the quality of the model was very good. From the scatter plots in
Figure 8a,c we can see that the composition of mixed extracts influenced the location of
clusters, correlated with the location of simple extracts, and indicated the components in the
mixed extracts. For example, at 270 nm the clusters of mixed extract CD (chamomile and
roselle) were located in between clusters of simple extracts—C (chamomile) and D (roselle).
This tendency can be also seen in mixed extracts made from 3 different medicinal plants.
For example, at 270 nm the clusters of mixed extract BCD (calendula, chamomile, and
roselle) were located in between clusters of simple extracts—B (calendula), C (chamomile),
and D (roselle). This observation can also be seen at 360 nm although the clusters are tighter
and the separation of clusters is better at 270 nm. Dendrograms of OPLS (Figure 8b,d) show
that samples tend to group according to their composition. At both wavelengths, roselle
extract (D) is on a separate branch of the diagram with the highest Euclidean distance
showing the dissimilarity from all other samples and the biggest difference in chemical
composition. At 270 nm the dominant component is chamomile (C) because all mixed
extracts containing chamomile tend to group closer to the simple chamomile extract than
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to other components of the mixed extract. For the same reason, at 360 nm the dominant
component is calendula (B). OLPS analysis proves that the fingerprinting method can be
used not only to identify extracts made from one medicinal plant but also to identify and
characterize the composition of extracts made from several medicinal plants.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 19 
 

 

data detected at 360 nm resulted in tricomponent with R2(X) of 89.4%, R2(Y) of 83.2%, and 
Q2 of 80.7% of the variables. These results proved that the quality of the model was very 
good. From the scatter plots in Figure 8a,c we can see that the composition of mixed ex-
tracts influenced the location of clusters, correlated with the location of simple extracts, 
and indicated the components in the mixed extracts. For example, at 270 nm the clusters 
of mixed extract CD (chamomile and roselle) were located in between clusters of simple 
extracts—C (chamomile) and D (roselle). This tendency can be also seen in mixed extracts 
made from 3 different medicinal plants. For example, at 270 nm the clusters of mixed ex-
tract BCD (calendula, chamomile, and roselle) were located in between clusters of simple 
extracts—B (calendula), C (chamomile), and D (roselle). This observation can also be seen 
at 360 nm although the clusters are tighter and the separation of clusters is better at 270 
nm. Dendrograms of OPLS (Figure 8b,d) show that samples tend to group according to 
their composition. At both wavelengths, roselle extract (D) is on a separate branch of the 
diagram with the highest Euclidean distance showing the dissimilarity from all other sam-
ples and the biggest difference in chemical composition. At 270 nm the dominant compo-
nent is chamomile (C) because all mixed extracts containing chamomile tend to group 
closer to the simple chamomile extract than to other components of the mixed extract. For 
the same reason, at 360 nm the dominant component is calendula (B). OLPS analysis 
proves that the fingerprinting method can be used not only to identify extracts made from 
one medicinal plant but also to identify and characterize the composition of extracts made 
from several medicinal plants. 

 

 

(a) (b) 

Molecules 2022, 27, x FOR PEER REVIEW 12 of 19 
 

 

  
(c) (d) 

Figure 8. OPLS scatter plots and dendrograms for HPLC data of mixed extracts: (a) OPLS dendro-
gram of HPLC data of mixed extracts at 270 nm; (b) OPLS dendrogram of HPLC data of mixed 
extracts at 270 nm; (c) OPLS dendrogram of HPLC data of mixed extracts at 360 nm; (d) OPLS den-
drogram of HPLC data of mixed extracts at 360 nm. 

3. Materials and Methods 
3.1. Plant Material 

Twenty-five commercially available medicinal plant samples were collected from 
four different medicinal plants: roselle, chamomile, calendula, and yarrow. Chamomile, 
calendula, and yarrow were chosen because these medicinal plants are native to Latvia, 
are commonly used in Latvian traditional medicine, and all belong to the Asteraceae fam-
ily. Roselle was chosen as a non-native, taxonomically different (Malvaceae family) me-
dicinal plant to compare the chemical composition and fingerprints to the phylogenetic 
relationships of native and non-native medicinal plants, as well as to see if developed 
chromatographic methods can be used for a wider spectrum of medicinal plants. The de-
tailed sample information is listed in Table 3.  

Table 3. Used medicinal plant samples. 

Medicinal Plant 
Number of 

Samples 
Sample Origin Coun-

try/Region 
Code in Fig-

ures 

Roselle  
(Hibiscus sabdariffa L.) 

7 
Africa (5) 

Hib or D Uzbekistan (1) 
Jamaica (1) 

Chamomile 
(Matricaria recutita L.) 

9 
Latvia (7) 

Cha or C 
Poland (2) 

Calendula 
(Calendula officinalis L.) 

4 Latvia (4) Cal or B 

Yarrow 
(Achillea millefolium L.) 

5 Latvia (5) Ach or A 

3.2. Chemicals and Reagents 
Certified reference materials (CRM): caffeic acid (≥98%), apigenin (≥95%), and apig-

enin-7-glucoside were purchased from Sigma-Aldrich (St. Louis, MO, USA). Primary 

Figure 8. OPLS scatter plots and dendrograms for HPLC data of mixed extracts: (a) OPLS dendrogram
of HPLC data of mixed extracts at 270 nm; (b) OPLS dendrogram of HPLC data of mixed extracts at
270 nm; (c) OPLS dendrogram of HPLC data of mixed extracts at 360 nm; (d) OPLS dendrogram of
HPLC data of mixed extracts at 360 nm.

3. Materials and Methods
3.1. Plant Material

Twenty-five commercially available medicinal plant samples were collected from
four different medicinal plants: roselle, chamomile, calendula, and yarrow. Chamomile,
calendula, and yarrow were chosen because these medicinal plants are native to Latvia,
are commonly used in Latvian traditional medicine, and all belong to the Asteraceae
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family. Roselle was chosen as a non-native, taxonomically different (Malvaceae family)
medicinal plant to compare the chemical composition and fingerprints to the phylogenetic
relationships of native and non-native medicinal plants, as well as to see if developed
chromatographic methods can be used for a wider spectrum of medicinal plants. The
detailed sample information is listed in Table 3.

Table 3. Used medicinal plant samples.

Medicinal Plant Number of Samples Sample Origin
Country/Region Code in Figures

Roselle
(Hibiscus sabdariffa L.) 7

Africa (5)
Hib or DUzbekistan (1)

Jamaica (1)

Chamomile
(Matricaria recutita L.) 9

Latvia (7)
Cha or CPoland (2)

Calendula
(Calendula officinalis L.) 4 Latvia (4) Cal or B

Yarrow
(Achillea millefolium L.) 5 Latvia (5) Ach or A

3.2. Chemicals and Reagents

Certified reference materials (CRM): caffeic acid (≥98%), apigenin (≥95%), and
apigenin-7-glucoside were purchased from Sigma-Aldrich (St. Louis, MO, USA). Primary
reference standards: rutin was purchased from PhytoLab (Vestenbergsgreuth, Germany),
chlorogenic acid was purchased from the HWI group (Rülzheim, Germany). All solvents
used were of analytical or HPLC grade. Water was distilled and purified using the Stakpure
GmpH water system (Niederahr, Germany).

3.3. Sample Preparation

All medicinal plant samples were ground to a fine powder, and the powders were
stored in airtight packaging at room temperature till extraction.

To make a simple extract from only one medicinal plant 5.0 g of powdered medicinal
plant sample was weighed and transferred to a 50 mL conical flask with a glass stopper,
and 50 mL of 96% v/v ethanol was added. This procedure was executed in triplicate. Three
extractions from each medicinal plant sample were made to reduce the impact of sample
preparation and short time stability, as well as to additionally control measurement quality.
The material was extracted by maceration for 24 h at room temperature. The extracts were
filtered through Sartorius smooth filter paper, grade 3-HW (Göttingen, Germany), and the
supernatant was collected in an airtight container and stored at 4 ◦C until chromatographic
analysis.

To test the application of our methods, mixed extracts from different combinations of
analyzed medicinal plants were made. All combinations and their codes can be found in
Table 4. Two different mixed extract preparation methods were executed—mixing together
extracts already made from one medicinal plant (first method) and executing extraction
from a mix of dry medicinal plant samples (second method). All combinations found in
Table 4 were made using both methods.

In the first method, two simple extracts (ratio 50:50 v/v) or three simple extracts (ratio
33:33:33 v/v) were taken and transferred into airtight containers and carefully mixed. This
procedure was executed in duplicate for all mixed extracts to reduce the impact of sample
preparation. These extracts also were stored at 4 ◦C until chromatographic analysis.

In the second method, each needed medicinal plant sample was weighed and trans-
ferred to a 50 mL conical flask with a glass stopper, all dry samples were mixed together and
ethanol 96% v/v was added with a ratio 1.0 g of mixed plant material: 10 mL ethanol. This
procedure was executed in duplicate for all mixed extracts to reduce the impact of sample
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preparation. The materials were extracted by maceration for 24 h at room temperature.
The extracts were filtered through Sartorius smooth filter paper, grade 3-HW (Göttingen,
Germany), and the supernatant was collected in an airtight container and stored at 4 ◦C
until chromatographic analysis.

Table 4. Combinations of medicinal plants in mixed extracts.

Medicinal Plants Code in Figures

Yarrow and calendula AB
Yarrow and chamomile AC

Yarrow and roselle AD
Calendula and chamomile BC

Calendula and roselle BD
Chamomile and roselle CD

Yarrow, calendula, chamomile ABC
Yarrow, calendula, roselle ABD

Yarrow, chamomile, roselle ACD
Calendula, chamomile, roselle BCD

The same certified reference materials and medicinal plant samples were used for the
HPLC and TLC methods.

3.4. High-Performance Liquid Chromatography (HPLC) Conditions, Sample Preparation and
Data Processing

HPLC analysis was performed on a DIONEX UltiMate 3000 UHPLC+ focused system
(Thermo Fisher Scientific, Waltham, MA, USA), which consists of an UltiMate 3000 pump,
UltiMate 3000 autosampler, UltiMate 3000 column compartment, UltiMate 3000 variable
wavelength detector, and Chromeleon software. As a stationary phase, an Ascentis Express
90 Å AQ-C18 column (15 cm × 3.0 mm, 2.7 µm, Supelco, Darmstadt, Germany) was
used. The mobile phase was composed of 0.1% aqueous trichloroacetic acid (v/v) (A) and
acetonitrile (B) with the following gradient elution: 0 min—95% A, 45 min—55% A, 50 min—
95% A. Before each sample analysis, a 4 min equilibration with 5% B was performed. The
flow rate was set at 0.425 mL/min, the column temperature was 40 ◦C, injection volume
was 1 µL, and the time of analysis was 50 min. The detection wavelength was set at 360 nm
and 270 nm. Before HPLC analysis, extracts were put at room temperature for 2 h to reach
room temperature and reduce the possibility of sample temperature influence on results.
Before analysis, extracts were filtered through syringe filters with 0.45 µm pore size. Peaks
with early retention time (<4 min) were omitted from the chemical profiles and further
analysis due to the chance of errors and false signals not related to the composition of the
sample. The average chromatogram for each medicinal plant was generated by combining
all obtained chromatograms according to detection wavelengths. Since the quantitative
concentrations of compounds were not investigated, all chromatograms were normalized
beforehand. HPLC was performed on both the simple extracts made from one medicinal
plant and mixed extracts.

3.5. Thin Layer Chromatography (TLC) Conditions and Sample Preparation

TLC analysis was performed on a CAMAG TLC system (Muttenz, Switzerland) and
visionCATS software. HPTLC Silica gel 60 F254 glass plates 20 cm × 10 cm from Merck
(Darmstadt, Germany) were used as a stationary phase. The plates were activated at 60 ◦C
for one hour before use. Before TLC analysis, extracts were put at room temperature for 2 h.
Using the CAMAG Linomat 5 semi-automatic sampler, 7 µL samples were applied using a
100 µL syringe. Samples were applied with 8 mm bandwidth and 8 mm from the bottom of
the plate. The number of samples on each plate differed between medicinal plants. The
syringe was washed with purified water between each sample. The CAMAG ADC2 auto-
matic developing chamber was saturated with the mobile phase ethyl acetate:water:formic
acid 80:10:10 (v/v/v) for 30 min and then developed until 80 mm height. The same mobile
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phase has been used in two previous studies analyzing Salvia officinalis L. extracts and
Artemisia species, and it is also stated as the TLC method for analyzing Calendula flowers
by the European Pharmacopoeia [39,66,67]. After development, the plates were visualized
in the TLC Visualizer 2 under UV wavelengths of 366 nm, 254 nm, and white light. TLC
was performed only on simple extracts made from one medicinal plant.

3.6. Phylogenetic Tree

A phylogenetic tree was constructed using the PhyloT v2 platform based on the
NCBI taxonomy [68]. The constructed phylogenetic tree was visualized using the iTOL
platform [69].

3.7. Data Analysis

All experiments were performed at least in triplicate with constant results. Differences
among groups were considered significant at p < 0.05. Rf values in thin layer chromatog-
raphy were measured using an Rf value tool provided by the visionCATS software. This
software was also used to automatically generate profiles of analyzed medicinal plants.
The raw HPLC chromatographic data were exported as *.txt format files. Chromatogram
normalization and visualization were conducted, and the average chromatogram for each
plant was generated on SpectraGryph 1.2.15. software (Friedrich Menges, Oberstdorf,
Germany) [70]. SpecAlign software was used to adjust HPLC retention times to the plant’s
average chromatogram. The used method was first proposed by J.W.H. Wong et al. and
released in SpecAlign 2.4.1 (University of Oxford, Oxford, United Kingdom) [58]. PCA,
HCA, and OPLS were performed using SIMCA 14 software (Umetrics, Umea, Sweden).
The formation of clusters was visualized in scatter plots, dendrograms, and loadings. HCA
was calculated using Ward’s algorithm. Pearson’s correlation coefficients were calculated
on Origin 10 software (Originlab, North Hampton, MA, USA). PCA, HCA, OPLS and
similarity analysis were carried out on both the HPLC raw data and HPLC data with
adjusted retention times.

4. Conclusions

The herbal fingerprinting method has a great potential for the identification and char-
acterization of herbal extracts. Research shows clear differences in chemical fingerprints
of Latvian native medicinal plants (chamomile, calendula, and yarrow) and roselle. TLC
can be used as an initial screening tool of herbal extracts, while HPLC gives much more
detailed information regarding the chemical composition of herbal extracts. HPLC fin-
gerprint similarity can be greatly improved by adjusting retention times to the average
chromatogram of each medicinal plant. In HPLC data, detection at 270 nm is superior to
360 nm and provides more detailed results of the chemical composition of herbal extracts
and can be used to identify and differentiate medicinal plants. The correlation between
the phylogenetic relationships and groupings of fingerprint datasets of analyzed medicinal
plants was confirmed. The developed HPLC method in conjunction with chemometrics can
also be used to identify components of mixed extracts containing different combinations of
analyzed medicinal plants. Future research using other methods such as mass-spectrometry
and larger sample sizes should be conducted to gain a deeper knowledge of the chemical
composition of herbal extracts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27082555/s1. Figure S1: Developed HPTLC plate of Achillea
millefolium L. extracts under 366 nm UV light. Figure S2: Developed HPTLC plate of Matricaria
recutita L. extracts and chlorogenic acid under 366 nm UV light. Figure S3: Developed HPTLC plate of
Calendula officinalis L. extracts under 366 nm UV light. Figure S4: Developed HPTLC plate of Hibiscus
sabdariffa L. extracts and rutin under 366 nm UV light. Figure S5: The average HPLC chromatogram
of Hibiscus sabdariffa L., 270 nm. Figure S6: The average HPLC chromatogram of Calendula officinalis
L., 270 nm. Figure S7: The average HPLC chromatogram of Matricaria recutita L., 270 nm. Figure S8:
The average HPLC chromatogram of Achillea millefolium L., 270 nm. Figure S9: The average HPLC
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chromatogram of Hibiscus sabdariffa L., 360 nm. Figure S10: The average HPLC chromatogram of
Calendula officinalis L., 360 nm. Figure S11: The average HPLC chromatogram of Matricaria recutita L.,
360 nm. Figure S12: The average HPLC chromatogram of Achillea millefolium L., 360 nm.
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(Ance Bārzdin, a); writing—review and editing, A.B. (Agnese Brangule), A.P., D.B.; supervision, A.B.
(Agnese Brangule), D.B.; project administration, A.B. (Agnese Brangule). All authors have read and
agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation program under the grant agreement No 857287.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors thank Riga Stradin, š University Department of Pharmaceutical
Chemistry for providing access to the instruments used in this research. This research has been
conducted as a part of the Baltic Biomaterials Centre of Excellence project.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples are not available.

References
1. Goodarzi, M.; Russell, P.J.; Vander Heyden, Y. Similarity analyses of chromatographic herbal fingerprints: A review. Anal. Chim.

Acta 2013, 804, 16–28. [CrossRef] [PubMed]
2. Suroowan, S.; Mahomoodally, M.F. Herbal medicine of the 21st century: A focus on the chemistry, pharmacokinetics and toxicity

of five widely advocated phytotherapies. Curr. Top. Med. Chem. 2019, 19, 2718–2738. [CrossRef] [PubMed]
3. Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front.

Pharmacol. 2014, 4, 177. [CrossRef] [PubMed]
4. Li, Y.; Shen, Y.; Yao, C.L.; Guo, D.A. Quality assessment of herbal medicines based on chemical fingerprints combined with

chemometrics approach: A review. J. Pharm. Biomed. Anal. 2020, 185, 113215. [CrossRef] [PubMed]
5. Botanical Supplements Market Size, Share & Trends Analysis. Report by Source (Herbs, Leaves, Spices, Flowers), by Form

(Tablets, Liquid), by Application, by Distribution Channel, by Region, and Segment Forecasts, 2020–2028. Available online:
https://www.grandviewresearch.com/industry-analysis/botanical-supplements-market (accessed on 10 March 2022).

6. Sendker, J.; Sheridan, H. Composition and quality control of herbal medicines. In Toxicology of Herbal Products; Pelkonen, O., Duez,
P., Vuorela, P., Vuorela, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 29–65.

7. Sile, I.; Romane, E.; Reinsone, S.; Maurina, B.; Tirzite, D.; Dambrova, M. Medicinal plants and their uses recorded in the Archives
of Latvian Folklore from the 19th century. J. Ethnopharmacol. 2020, 249, 112378. [CrossRef] [PubMed]

8. Plants and Parts of Plants, Incl. Seeds and Fruits, of a Kind Used Primarily in Perfumery, in Pharmacy or for Insecticidal, Fungicidal
or Similar Purposes, Fresh, Chilled, Frozen or Dried, Whether or Not Cut, Crushed or Powdered. Available online: https:
//eksports.csb.gov.lv/en/years/products-selected/import/2020/TOTAL-II-12-1211/TOTAL (accessed on 25 February 2022).

9. Srirama, R.; Santhosh Kumar, J.U.; Seethapathy, G.S.; Newmaster, S.G.; Ragupathy, S.; Ganeshaiah, K.N.; Uma Shaanker, R.;
Ravikanth, G. Species adulteration in the herbal trade: Causes, consequences and mitigation. Drug Saf. 2017, 40, 651–661.
[CrossRef]

10. Newmaster, S.G.; Grguric, M.; Shanmughanandhan, D.; Ramalingam, S.; Ragupathy, S. DNA barcoding detects contamination
and substitution in North American herbal products. BMC Med. 2013, 11, 222. [CrossRef]

11. Mishra, P.; Kumar, A.; Nagireddy, A.; Mani, D.N.; Shukla, A.K.; Tiwari, R.; Sundaresan, V. DNA barcoding: An efficient tool to
overcome authentication challenges in the herbal market. Plant Biotechnol. J. 2016, 14, 8–21. [CrossRef]

12. Torelli, A.; Marieschi, M.; Bruni, R. Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of
SCAR markers. Food Control 2014, 36, 126–131. [CrossRef]

13. Urumarudappa, S.K.; Gogna, N.; Newmaster, S.G.; Venkatarangaiah, K.; Subramanyam, R.; Saroja, S.G.; Gudasalamani, R.; Dorai,
K.; Ramanan, U.S. DNA barcoding and NMR spectroscopy-based assessment of species adulteration in the raw herbal trade of
Saraca asoca (Roxb.) Willd, an important medicinal plant. Int. J. Legal Med. 2016, 130, 1457–1470. [CrossRef]

http://doi.org/10.1016/j.aca.2013.09.017
http://www.ncbi.nlm.nih.gov/pubmed/24267059
http://doi.org/10.2174/1568026619666191112121330
http://www.ncbi.nlm.nih.gov/pubmed/31721714
http://doi.org/10.3389/fphar.2013.00177
http://www.ncbi.nlm.nih.gov/pubmed/24454289
http://doi.org/10.1016/j.jpba.2020.113215
http://www.ncbi.nlm.nih.gov/pubmed/32199327
https://www.grandviewresearch.com/industry-analysis/botanical-supplements-market
http://doi.org/10.1016/j.jep.2019.112378
http://www.ncbi.nlm.nih.gov/pubmed/31707047
https://eksports.csb.gov.lv/en/years/products-selected/import/2020/TOTAL-II-12-1211/TOTAL
https://eksports.csb.gov.lv/en/years/products-selected/import/2020/TOTAL-II-12-1211/TOTAL
http://doi.org/10.1007/s40264-017-0527-0
http://doi.org/10.1186/1741-7015-11-222
http://doi.org/10.1111/pbi.12419
http://doi.org/10.1016/j.foodcont.2013.08.001
http://doi.org/10.1007/s00414-016-1436-y


Molecules 2022, 27, 2555 16 of 18

14. Council of Europe-EDQM. European Pharmacopoeia 10th Edition. 10.0, Volume 1. Herbal Drugs and Herbal Drug Preparations.
Available online: https://pheur.edqm.eu/app/arch/content/arch-0/2020_10th_Edition_10.0_Volume_1_E.pdf (accessed on
3 March 2022).

15. Tistaert, C.; Dejaegher, B.; Vander Heyden, Y. Chromatographic separation techniques and data handling methods for herbal
fingerprints: A review. Anal. Chim. Acta 2011, 690, 148–161. [CrossRef] [PubMed]

16. Liu, Y.; Wei, J.; Gao, Z.; Zhang, Z.; Lyu, J. A review of quality assessment and grading for agarwood. Chin. Herb. Med. 2017, 9,
22–30. [CrossRef]

17. Liu, K.; Zhang, J.W.; Liu, X.G.; Wu, Q.W.; Li, X.S.; Gao, W.; Wang, H.Y.; Li, P.; Yang, H. Correlation between macroscopic
characteristics and tissue-specific chemical profiling of the root of Salvia miltiorrhiza. Phytomedicine 2018, 51, 104–111. [CrossRef]
[PubMed]

18. Guo, D. Quality marker concept inspires the quality research of traditional Chinese medicines. Chin. Herb. Med. 2017, 9, 1–2.
[CrossRef]

19. Li, P.; Qi, L.W.; Liu, E.H.; Zhou, J.L.; Wen, X.D. Analysis of Chinese herbal medicines with holistic approaches and integrated
evaluation models. Trends Anal. Chem. 2008, 27, 66–77. [CrossRef]

20. World Health Organization. Programme on Traditional Medicine. Guidelines for the Assessment of Herbal Medicines. 1991. Available
online: https://apps.who.int/iris/bitstream/handle/10665/58865/WHO_TRM_91.4.pdf?sequence=1&isAllowed=y (accessed
on 28 February 2022).

21. EMA. Guideline on Quality of Herbal Medicinal Products/Traditional Herbal Medicinal Products. 2011. Available online:
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-herbal-medicinal-products-traditional-
herbal-medicinal-products-revision-2_en.pdf (accessed on 28 February 2022).

22. Bansal, A.; Chhabra, V.; Rawal, R.K.; Sharma, S. Chemometrics: A new scenario in herbal drug standardization. J. Pharm. Anal.
2014, 4, 223–233. [CrossRef]

23. Brangule, A.; Šukele, R.; Bandere, D. Herbal medicine characterization perspectives using advanced FTIR sample techniques–
diffuse reflectance (DRIFT) and photoacoustic spectroscopy (PAS). Front. Plant Sci. 2020, 11, 356. [CrossRef]
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