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Abstract: Large-scale genome-wide association studies have identified hundreds of single-nucleotide
variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively,
these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-
SNVs might present one potential source of this “missing heritability”. Methods: We analyzed
265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more
stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive
(angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most
significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found
more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in
response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more
frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT
cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring
increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown
significant associations with body height. In line with this, we observed that CAD cases were slightly
less physically active, and their average body height was ~2.00 cm lower compared to controls; both
traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with
HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of
which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise
intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more
frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to
exercise. Conclusions: We found only spurious associations between MT genome variation and
HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be
needed to conclusively determine the role of MT DNA in CAD.

Keywords: coronary artery disease; mitochondria; mitochondrial DNA variants; haplogroups; asso-
ciation; common and rare variants

1. Introduction

Coronary artery disease (CAD) and its major complication myocardial infarction
is the most common cardiovascular disease and the main leading cause of morbidity
and mortality worldwide. CAD is posing a huge socio-economic burden to society and
health systems [1] and its prevalence is expected to increase in the coming years [2–4].
CAD is a multifactorial disease with complex etiology, considered to be driven by both
environment/lifestyle and genetic factors [5–7]. Over the last 14 years, several large-
scale genome-wide association studies and their meta-analysis have identified numerous
common genetic variants associated with CAD risk [8–17] and explored their functional
consequences [18–27]. However, collectively, these variants explain only a small proportion
(~20%) of the disease heritability [12,28]. Genetic variations of the mitochondrial (MT)
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DNA have remained out of focus for a long time and present an underexplored potential
source of the “missing heritability” of several complex traits, including CAD [29–31].

The human MT DNA is a maternally-inherited, double-stranded, circular, histone-free
“chromosome” of 16,596 base pairs (bp). Each mitochondrion contains 2 to 10 copies of
MT DNA and, depending on the tissue energy requirement, each human cell may contain
hundreds of mitochondria [32]. MT DNA encodes 37 genes corresponding to subunits
ND1 to 6 (and 4 L) of the respiratory complex I, catalytic subunits I–III (CO1–3) of the
cytochrome c oxidase (respiratory complex IV), subunits adenosine triphosphate 6 and
8 (ATP6 and 8) of the F1F0 ATPase and cytochrome b of the respiratory complex III. The
remaining genes encode 2 ribosomal RNAs (16 S and 12 S rRNAs) and 22 transfer RNAs
(tRNAs), used for mitochondrial protein synthesis [31,33,34]. All of them are involved
in oxidative phosphorylation (OXPHOS), the process by which ATP, the major source of
energy, is synthesized [35–37].

A toxic by-product of OXPHOS is the production of reactive oxygen species (ROS),
unstable compounds which can generate free radicals [38]. Mitochondria are the primary
source of endogenous ROS [38]. By antioxidant defense, cells can manage a certain level
of free radical production. However, if threshold levels are exceeded, a state of oxidative
stress occurs [39], which is known to play a vital role in the pathogenesis of atherosclerosis
and CAD [24,40]. Many of the common CAD risk factors such as age, hypertension,
hyperglycemia, high cholesterol levels, reduced physical activity, and smoking are also
known to perturb mitochondrial function and increase oxidative stress [31].

The role of mitochondrial dysfunction in CAD etiology is well established, neverthe-
less, the role of the mitochondrial genome (DNA) in this process has not been extensively
investigated [31]. Although several forms of cardiovascular disease have been related to the
presence of pathogenic mitochondrial genome mutations, the vast majority of mitochon-
drial genetic variations are “natural” single-nucleotide variants (SNVs), not directly linked
to disease pathogenesis [31]. During evolution, a number of such MT-SNVs have accumu-
lated in mitochondrial genomes subdividing the human population into several discrete
(geographic region-specific) mitochondrial phylogenetic clades or haplogroups [41]. As the
mitochondrial genome does not undergo DNA recombination, haplogroups are relatively
stable and enable the clustering of individuals based on their shared maternal ancestry [41].
These clusters are often associated with different racial/ethnic groups [31]. Considering
that family history and race/ethnicity are known to influence CAD risk, it is reasonable
to assume that mitochondrial haplogroups may contribute to this heritable modulator of
CAD susceptibility [31].

In this study, we hypothesize that mitochondrial genome variation might present one
potential source of the so-called “missing heritability” of CAD. To explore this hypothesis,
we performed: (1) association analyses of common/low-frequency MT-SNVs (MAF > 0.01;
n = 111) with CAD; (2) gene-based tests to investigate the cumulative impact of all MT-SNVs
on the mitochondrial genes in relation to CAD; and (3) comparisons of mitochondrial hap-
logroup frequencies of individuals with CAD. In all cases, we explored two different CAD
definitions (as previously used by [15]): a more stringent (HARD = 20,405), considering
only myocardial infarction and/or revascularization, and a more inclusive (SOFT = 34,782),
including all HARD CAD cases, as well as angina and chronic ischemic heart disease vs.
controls in a cohort of ca. 500,000 UK Biobank individuals. The complete workflow of this
analysis is summarized in Figure 1.
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Figure 1. A complete workflow of the analyses performed. Created with Biorender.com (accessed on
22 February 2022).

2. Materials and Methods
2.1. Study Population, Disease Phenotypes and Quality Filtering

The UK Biobank [42] is a large population-based prospective cohort study from the
United Kingdom with genetic and deep phenotypic (~7221 phenotypes http://www.
nealelab.is/uk-biobank, accessed on 22 February 2022) data on ca. 500,000 individuals aged
40 to 69. We downloaded these data (application ID 61684) and used a similar CAD case
definition, as previously described by [15], for UK Biobank. HARD CAD cases included
individuals with fatal or non-fatal myocardial infarction (MI), percutaneous transluminal
coronary angioplasty (PTCA), or coronary artery bypass grafting (CABG). SOFT CAD
included individuals meeting the HARD CAD definition as well as those with chronic
ischemic heart disease (IHD) and angina (Figure 1). In HESIN hospital episodes data and
death registry data from diagnosis and operation (primary and secondary causes), MI was
defined as hospital admission or cause of death due to ICD9 410-412, ICD10 I21-I24, I25.2;
PTCA was defined as hospital admission for PTCA (OPCS-4 K49, K50.1, K75); CABG was
defined as hospital admission for CABG (OPCS-4 K40-K46); and angina or chronic IHD was
defined as hospital admission or death due to ICD9 413, 414.0, 414.8, 414.9, ICD10 I20, I25.1,
I25.5-I25.9. In UK Biobank self-reported data, cases were defined as having “vascular/heart
problems diagnosed by the doctor” or “non-cancer illnesses that self-reported as angina
or heart attack”. Self-reported surgery included PTCA, CABG, or triple heart bypass.
All participants not defined as CAD cases using the SOFT definition were considered as
controls in the analysis. For a complete list of definition codes, see Supplementary Table S1.

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
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We subsequently performed individual-level filtering (Figure 1) by removing missingness
or heterozygosity outliers, participants with self-reported vs. genetically inferred sex
mismatches or putative sex chromosome aneuploidy, individuals that were not of European
(EUR) ancestry, and individuals having withdrawn their consent at the time of analysis. We
also identified closely related participants (kinship coefficient > 0.088 i.e., first- or second-
degree relative pairs), preferentially retaining CAD cases or relatives with the highest
call rate.

The following individual characteristics were also extracted in order to characterize
HARD/SOFT CAD cases vs. controls: age at recruitment (field #21022), sex (field #31),
BMI (field #21001), height (field #50), hypertension (fields #4080 and #4079), hypercholes-
terolemia (self-reported data and ICD9/10) and (self-reported) use of cholesterol-lowering
drugs, insulin and blood pressure medications (field #6153), type 2 diabetes (T2D, fields
#41201, #41202 and #4120, E11), glycemic control, obesity, smoking status (“ever smoked”:
field #20160 and “current” from “smoking status” field #20116), family history of heart
disease (fields #20107, #20110, #20111 in a 1st-degree relative, i.e., father, mother or sibling,
respectively). Data at the time of first assessment were obtained and processed to binary
(yes/no) values or mean values for fields with continuous data with multiple readings at
the time of first assessment.

2.2. Genotype Data Quality Control

In the UK Biobank [42], genotyping was performed using Affymetrix UK biobank
Axiom (450,000 samples) and Affymetrix UK BiLEVE Axiom (50,000 samples) arrays
(Figure 1) and the autosomal genetic data were subsequently imputed to the Haplotype
Reference Consortium panel and UK10K4 + 1000 Genomes panel. We downloaded the
genotype data for the 265 MT DNA variants for all 500,000 individuals and pre-processed
MT DNA data as previously described in ref. [43]. In brief, we first made sure that the
reference alleles match the latest MT Cambridge Revised Sequence (rCRS) of the Human
MT DNA positions. After setting all potential heterozygotes to missing, further quality
control of genotyped individuals included filtering for missingness by individual < 0.1
and missingness by SNV < 0.1 with PLINK [44]. For common/low-frequency variant
association analyses, we also required that the minor allele frequency (MAF) > 0.01. An
overview of the filtering of MT-SNVs is provided in Figure 1.

2.3. MT-SNV Association Analyses

For common and low-frequency (MAF > 0.01; n = 111) variants, we performed single
marker tests to explore their associations with HARD and SOFT CAD (Figure 1) using
SNPTEST v2.5.4 with the frequentist test and expected method, as previously described by
ref. [45]. We used as covariates the array (UK Biobank vs. UK BiLEVE), sex, birth year, and
the first five principal components of the autosomal genotype data, provided by the UK
Biobank, similar to ref. [15] and Benjamini–Hochberg (BH) [46] adjustment for multiple
testing was applied to calculate the false discovery rate (FDR). MT-SNV annotations were
performed using a manually-curated database, HmtVar (https://www.hmtvar.uniba.it/,
accessed on 22 February 2022).

2.4. MT-Gene-Based Association Analyses

To also consider the potential effects of rare (MAF ≤ 0.01) variants on CAD risk, we as-
signed all SNVs to MT genes based on MITOMAP (https://www.mitomap.org/MITOMAP,
accessed on 22 February 2022) and used the R software package SKAT (v2.0.1) [47] to per-
form MT-gene-based (additionally including the whole mitochondrion as our region of
interest, MT) association analyses with HARD and SOFT CAD phenotypes (Figure 1),
again using as covariates the array (UK Biobank vs. UK BiLEVE), sex, birth year and
the first five principal components of the autosomal genotype data, provided by the
UK Biobank, similar to ref. [15] and obtain resampled residuals (n.Resampling = 1000,
type.Resampling = “bootstrap”) to compute resampling p-value.

https://www.hmtvar.uniba.it/
https://www.mitomap.org/MITOMAP
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2.5. Haplogroup Assignment

We used the PhyloTree Build 17 [48] as implemented in HaploGrep (v2.2.8) [49] to
estimate mitochondrial haplogroups in our dataset. Thereafter, we assigned individuals
to one of the major European haplogroups (H, I, J, K, R, T, U, V, W, X), or to a group of
“others” (https://www.mitomap.org/foswiki/pub/MITOMAP/WebHome/simple-tree-
mitomap-2019.pdf, accessed on 22 February 2022). Fisher’s exact test [50] was used to
calculate the statistical significance of the overlaps between haplogroups and HARD and
SOFT CAD phenotypes. Benjamini–Hochberg (BH) [46] adjustment for multiple testing
was applied to calculate the false discovery rate (FDR) (Figure 1).

3. Results
3.1. Characteristics of Study Subjects

The current study included ca. 500,000 genotyped individuals from the UK Biobank [42],
48,700 with an inclusive CAD phenotype (SOFT) that incorporated self-reported angina or
other evidence of chronic coronary heart disease, of which 28,503 had a more stringently
defined CAD phenotype (HARD) of myocardial infarction (Figure 1), similar to ref. [15].
All participants (n = 453,805) not defined as CAD cases using the SOFT definition are
considered as controls in the analysis. After this step of quality control, 45,285 individuals
were removed: 24,770 cases with the HARD, 42,079 cases with the SOFT CAD phenotype,
and 415,271 controls remained. Finally, further quality control of genotyped individuals
included filtering for missingness by individual < 0.1 and missingness by SNV < 0.1 was
performed, considering the 265 mitochondrial variants present on the UK Biobank or UK
BiLEVE arrays (as described in Section 2.2. in Methods). As a result, a further 54,474 indi-
viduals were removed, leaving us with 20,405 cases with the HARD and 34,782 cases with
the SOFT phenotype vs. 356,563 controls. Individual characteristics of these individuals, in
terms of common CAD risk factors, are summarized in Table 1.

Table 1. Individual characteristics of HARD and SOFT CAD cases vs. controls. *** Represents
statistically significant (of p < 0.001) difference between HARD and SOFT CAD cases vs. controls,
whereas +++, ++ and + represent statistically significant (of p < 0.001, p < 0.01 and p < 0.05, respectively)
difference between HARD vs. SOFT CAD cases.

Risk Factors HARD *** SOFT *** CONTROL

Men (%) 77 67 43
Age, years (mean ± SD, range) 63 (61.33 ± 6.35, 58–66) 63 (61.14 ± 6.43, 58–66) 57 (56.08 ± 8.05, 50–63)

Diastolic blood pressure > 90 mmHg (%) 21.23 21.54 22.41
Systolic blood pressure > 140 mmHg (%) 49.88 50.04 41.52

Hypercholesterolemia (%) 51.20 44.78 6.00
Hypertriglyceridemia (%) 1.55 1.43 0.80
Poor glycemic control (%) 3.59 3.20 0.80

Type 2 diabetes (%) 20.80 19.41 4.14

BMI, kg/m2 (mean ± SD, range)
28.29 (28.91 ± 4.72,

25.72–31.47)
28.34 (29.03 ± 4.98,

25.66–31.66)
26.51 (27.18 ± 4.69,

23.96–29.60)
Obesity (BMI > 30 kg/m2, %) 35.17 36.10 22.65

Central obesity (%) 63.39 +++ 60.40 36.61
Body height male (mean ± SD, range):

female
173.92 ± 6.76 +++ (Med = 174) 174.16 ± 6.82 (Med = 174) 175.95 ± 6.82 (Med = 176)
160.37 ± 6.38 ++ (Med = 160) 160.68 ± 6.33 (Med = 161) 162.61 ± 6.29 (Med = 163)

Physically active (%) 51.31 51.08 54.60
Smoking history (ever smoked, %) 72.23 +++ 69.56 60.21

Current smoker (%) 13.74 + 12.90 9.27
History of heart disease in first-degree

relative (%) 59.14 +++ 57.35 41.41

https://www.mitomap.org/foswiki/pub/MITOMAP/WebHome/simple-tree-mitomap-2019.pdf
https://www.mitomap.org/foswiki/pub/MITOMAP/WebHome/simple-tree-mitomap-2019.pdf
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3.2. MT-SNV Associations with HARD and SOFT CAD Phenotypes

After quality control of genotyped individuals (including filtering for missingness
by individual < 0.1 and missingness by SNV < 0.1, as described in Section 2.2. in Meth-
ods), from the 265 MT-SNVs present in the UK Biobank or UK BiLEVE arrays, 243 re-
mained for further analyses. For the genotyped common and low-frequency MT-SNVs
(MAF > 0.01; n = 111, of those n = 39 with MAF > 0.05; genotyping rate > 0.99) in the UK
Biobank, we performed single marker association analyses with HARD (n = 20,405) and
SOFT (n = 34,782) CAD phenotypes, adjusting for the array, sex, birth year and first five
principal components.

In HARD cases, no MT-SNVs survived multiple testing correction, the most signifi-
cant (nominal p < 0.05) findings (Table 2 and Figure 2) being for m.295C>T (rs41528348,
p = 0.0118, MAF = 0.10, OR = 1.05; 95% CI 1.02–1.09, in control region/CR, tagging macro-
haplogroup J) and m.12612A>G (rs28359172, p = 0.0158, MAF = 0.10, OR = 1.05; 95% CI
1.02–1.08, synonymous, in ND5 gene, tagging macro-haplogroup J), both more frequent in
cases, thus potentially conferring increased CAD risk. In addition, four more MT-SNVs
were found more frequently in controls: m.12372G>A (rs2853499, p = 0.0059, MAF = 0.22,
OR = 0.97; 95% CI 0.95–0.99, synonymous, in ND5 gene, tagging macro-haplogroup U),
m.11467A>G (rs2853493, p = 0.0065, MAF = 0.22, OR = 0.97; 95% CI 0.95–1.00, synony-
mous, in ND4 gene, tagging macro-haplogroup U), m.15301G>A (rs193302991, p = 0.0115,
MAF = 0.04, OR = 0.97; 95% CI 0.92–1.03, synonymous, in CYB gene) and m.7768A>G
(rs41534044, p = 0.0185, MAF = 0.04, OR = 0.91; 95% CI 0.86–0.96, synonymous, in CO2
gene). For a complete list of MT-SNV associations with HARD CAD phenotypes, see
Supplementary Table S2.

In SOFT cases, four MT-SNVs survived multiple testing correction (at FDR < 5%;
Table 3 and Figure 3), all potentially conferring increased CAD risk: m.10400C>T (rs28358278,
p = 0.0007, MAF = 0.02, OR = 1.28; 95% CI 1.21–1.35, non-synonymous/Thr→Ala, in ND3
gene, tagging macro-haplogroup M), m.11251A>G (rs869096886, p = 0.0011, MAF = 0.20,
OR = 1.03; 95% CI 1.01–1.05, synonymous, in ND4 gene, tagging macro-haplogroups J and
T), and two MT-SNVs in CYB gene—m.15452C > A (rs193302994, p = 0.0017, MAF = 0.20,
OR = 1.03; 95% CI 1.01–1.05, non-synonymous/Leu→Ile, tagging macro-haplogroups J
and T) and m.15301G>A (rs193302991, p = 0.0010, MAF = 0.04, OR = 1.03; 95% CI 0.99–1.07,
synonymous). For a complete list of MT-SNVs associations with SOFT CAD phenotype,
see Supplementary Table S3.

Table 2. HARD CAD common and low-frequency (MAF > 0.01; n = 111) MT-SNV most significant
associations. CR = control region.

Locus RSID Variation MAF AA OR 95% CI p HG

ND5 rs2853499 m.12372G>A 0.22 Syn 0.97 0.95–0.99 0.0059 U
ND4 rs2853493 m.11467A>G 0.22 Syn 0.97 0.95–1.00 0.0065 U
CYB rs193302991 m.15301G>A 0.04 Syn 0.97 0.92–1.03 0.0115 .
CR rs41528348 m.295C>T 0.10 . 1.05 1.02–1.09 0.0118 J

ND5 rs28359172 m.12612A>G 0.10 Syn 1.05 1.02–1.08 0.0158 J
CO2 rs41534044 m.7768A>G 0.04 Syn 0.91 0.86–0.96 0.0185 .
ND4 rs28358285 m.11299T>C 0.08 Syn 0.94 0.91–0.98 0.0227 K
CYB rs41518645 m.15257G>A 0.02 Asp→Asn 1.11 1.04–1.19 0.0231 .
ND1 rs28358584 m.3480A>G 0.08 Syn 0.94 0.91–0.98 0.0390 .

tRNASer(UCN) rs201950015 m.7476C>T 0.02 . 1.01 1.03–1.19 0.0400 .
rRNA12S rs2853518 m.750A>G 0.02 . 0.87 0.80–0.95 0.0420 .

ND4L rs28358280 m.10550A>G 0.08 Syn 0.95 0.91–0.98 0.0435 K
ND6 rs193302977 m.14167C>T 0.08 Syn 0.95 0.91–0.98 0.0476 .
ATP6 rs193303045 m.9055G>A 0.09 Ala→Thr 0.95 0.92–0.98 0.0476 .
ND5 rs869156190 m.13965T>C 0.01 Syn 1.10 1.00–1.21 0.0484 .
ND5 rs28359178 m.13708G>A 0.12 Ala→Thr 1.04 1.01–1.07 0.0499 J
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Figure 2. A solar plot of HARD CAD common and low-frequency (MAF > 0.01; n = 111) MT-SNV
associations.

Table 3. SOFT CAD common and low-frequency (MAF > 0.01; n = 111) MT-SNV most significant
associations. CR = control region. * MT-SNVs that survived multiple testing correction (at FDR < 5%).

Locus RSID Variation MAF AA OR 95% CI p HG

ND3 rs28358278 m.10400C>T 0.02 Thr→Ala 1.28 1.21–1.35 0.0007 * M
CYB rs193302991 m.15301G>A 0.04 Syn 1.03 0.99–1.07 0.0010 * .
ND4 rs869096886 m.11251A>G 0.20 Syn 1.03 1.01–1.05 0.0011 * JT
CYB rs193302994 m.15452C>A 0.20 Leu→Ile 1.03 1.01–1.05 0.0017 * JT
ND5 rs869156190 m.13965T>C 0.01 Syn 1.13 1.05–1.21 0.0035 .
ND4 rs2857284 m.10873T>C 0.03 Syn 1.03 0.99–1.07 0.0048 .
ND1 rs1599988 m.4216T>C 0.20 Tyr→His 1.03 1.01–1.05 0.0055 .
CR rs41528348 m.295C>T 0.10 . 1.04 1.01–1.06 0.0084 J

ND4 rs2853493 m.11467A>G 0.22 Syn 0.98 0.96–0.99 0.0084 U
ND5 rs2853499 m.12372G>A 0.22 Syn 0.98 0.96–0.99 0.0089 U
ND5 rs28359172 m.12612A>G 0.10 Syn 1.03 1.01–1.06 0.0190 J
CR rs41419246 m.16145G>A 0.03 . 1.08 1.03–1.12 0.0242 .

CYB rs41518645 m.15257G>A 0.02 Asp→Asn 1.08 1.02–1.14 0.0256 .

rRNA12S rs2853517 m.709G>A 0.15 . 1.04 1.01–1.01 0.0256 L6, G, N2,
T, B5

CO2 . m.8269G>A 0.03 Syn 1.06 1.02–1.11 0.0273 .
tRNASer(UCN) rs201950015 m.7476C>T 0.02 . 1.08 1.02–1.14 0.0371 .

rRNA12S rs2853518 m.750A>G 0.02 . 0.90 0.84–0.96 0.0392 .
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Figure 3. A solar plot of SOFT CAD common and low-frequency (MAF > 0.01; n = 111) MT-SNV
associations. CR = control region.

3.3. MT-Gene-Based Associations with HARD and SOFT CAD Phenotypes

We next sought to also consider the potential effects of rare (MAF < 0.01) MT-SNVs
on CAD risk, hence we performed MT-gene-based association analyses with HARD and
SOFT CAD phenotypes, additionally including the whole mitochondrion as our region of
interest (MT). As a result, we observed that in both HARD and SOFT cases, CO2 displayed
gene-based association at nominal significance (p < 0.05), while CYB and ND3 were also
associated (nominal p < 0.05) with SOFT CAD phenotype (Table 4). When considering the
whole mitochondrion (MT), no significant associations with CAD were observed (n = 243;
p = 0.07, Table 4).

Table 4. MT-gene-based associations with HARD and SOFT CAD phenotypes. MT = mitochondrion;
n (ALL) = the number of MT-SNVs in the region; n (TESTED) = the number of MT-SNVs from the
region considered in the gene-based test; MT = mitochondrion.

HARD SOFT

Set p n (ALL) n (TESTED) p n (ALL) n (TESTED)

CO2 0.04 5 5 0.03 5 5
CYB 0.05 20 20 0.02 20 20
ND3 0.10 8 8 <0.01 8 8

ND4L 0.19 2 2 0.30 2 2
ND5 0.10 35 33 0.14 35 33

rRNA12S 0.08 11 11 0.05 11 11
rRNA16S 0.17 13 13 0.07 13 13

MT 0.07 243 226 0.07 243 226

3.4. MT-Haplogroup Associations with HARD and SOFT CAD Phenotypes

Different human mitochondrial haplogroups may result in differences in mitochon-
drial function that may influence susceptibility to CAD. Hence, we estimated all the
mitochondrial haplogroups in our dataset (Table 5, Supplementary Tables S4 and S5).
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Table 5. Haplogroup assignment in HARD and SOFT CAD cases vs. controls prior to further
assigning individuals to one of the major European haplogroups. * Indicates that a haplogroup
survived multiple testing correction (at FDR < 5%).

HARD SOFT

Haplogroup OR Cases (%) Controls (%) p OR Cases (%) Controls (%) p

G1a 4.86 0.02 <0.01 7.02 × 10−3 4.54 0.02 <0.01 1.51 × 10−3

G2b1a2 1.73 0.28 0.16 1.20 × 10−4 * 1.60 0.26 0.16 2.80 × 10−5 *
L2c 0.18 0.01 0.07 2.00 × 10−4 * 0.60 0.04 0.07 0.04

M27b 3.99 0.03 0.01 3.79 × 10−3 3.00 0.02 0.01 7.42 × 10−3

M3a 1.71 0.22 0.13 8.80 × 10−4 1.67 0.21 0.13 5.70 × 10−5 *
M45a 1.52 0.59 0.39 1.00 × 10−5 * 1.42 0.55 0.39 4.00 × 10−6 *

M57b1 33.06 0.02 <0.01 1.40 × 10−4 * 19.31 0.01 <0.01 9.97 × 10−4

M65a1 2.24 0.08 0.04 2.84 × 10−3 2.00 0.07 0.04 1.37 × 10−3

U2b2 2.56 0.11 0.04 1.20 × 10−4 * 2.31 0.09 0.04 2.90 × 10−5 *

Three haplogroups survived multiple testing correction (at FDR < 5%) in both HARD
and SOFT cases vs. controls: M45a (0.59% and 0.55% vs. 0.39%, OR = 1.52 and OR = 1.42,
respectively), G2b1a2 (0.28% and 0.26% vs. 0.16%, OR = 1.73 and OR = 1.60, respectively)
and U2b2 (0.11% and 0.09% vs. 0.04%, OR = 2.56 and OR = 2.31, respectively). In HARD
cases, haplogroup M57b1 was also significantly (at FDR < 5%) over-represented in cases
vs. controls (0.02% vs. <0.01%, OR = 3 3.06), while haplogroup L2c was significantly (at
FDR < 5%) under-represented in cases vs. controls (0.01% vs. 0.07%, OR = 0.18) (Table 5
and Supplementary Table S4). In SOFT cases, haplogroup M3a was also significantly (at
FDR < 5%) over-represented in cases vs. controls (0.21% vs. 0.13%, OR = 1.67, Table 5 and
Supplementary Table S5).

We further assigned individuals to one of the major European haplogroups (Figure 4).
As a result, 43.28%, 3.19%, 10.70%, 8.25%, 0.22%, 9.52%, 13.70%, 2.65%, 2.01%, 1.34% and
5.14% of individuals belonged do the haplogroups H, I, J, K, R, T, U, V, W, X or “others”,
respectively. Overall, the frequencies of the major European mitochondrial haplogroups did
not differ significantly (at FDR < 5%) between CAD patients and control subjects (Figure 4).
Only the frequency of haplogroup I was significantly (nominal p < 0.05) higher in patients
with HARD CAD phenotype vs. controls (3.35% vs. 3.08%, OR = 1.09) and the haplogroup
R was significantly (nominal p < 0.001 and p < 0.01) higher in patients with HARD and
SOFT CAD phenotype vs. controls (0.26% and 0.23% vs. 0.16%, OR = 1.70 and OR = 1.49,
respectively; Figure 4).

Figure 4. Frequencies (%) of mitochondrial (MT) haplogroups within HARD and SOFT CAD pheno-
types vs. controls. ***, ** and * represent statistically significant (of p < 0.001, p < 0.01 and p < 0.05,
respectively) differences between the comparison groups.
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4. Discussion

Over the last 14 years, several large-scale genome-wide association studies have found
hundreds of single-nucleotide variants (SNVs) significantly associated with CAD; however,
these explain <20% of the heritability. In this study, we hypothesize that mitochondrial
(MT)-SNVs might present one potential source of the “missing heritability”.

We analyzed 265 common/low-frequency (MAF ≥ 1%) and rare (MAF < 1%) MT-
SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions, HARD
(n = 20,405) and SOFT (n = 34,782) (Figure 1), as previously proposed by [15], and using
the array, sex, birth year and first five principal components as covariates. Overall, the
differences in the prevalence of common risk factors among CAD cases (both HARD and
SOFT phenotypes) and controls were statistically significant (p < 0.001; Table 1), male
gender, older age, hypertension, hypercholesterolemia, obesity, T2D, physical inactivity,
shorter body statue, smoking and positive family history demonstrating predominance in
CAD patients.

When performing common and low-frequency MT-SNVs (MAF ≥ 0.01; n = 111) as-
sociation analyses in these individuals, we observed that in HARD cases, no MT-SNVs
survived multiple testing correction, the most significant (nominal p < 0.05) findings being
for m.295C>T, m.12612A>G, m.12372G>A, m.11467A>G, m.15301G>A and m.7768A>G
(Table 2 and Figure 2). m.295C>T (rs41528348, p = 0.0118, MAF = 0.10) is a control region
(CR) genetic variant tagging macro-haplogroup J, known to be associated with low maximal
oxygen uptake (VO2max) in response to aerobic exercise [51–53] and thus cardiorespiratory
fitness and CVD risk [54–57]. In line with this, a previous study in the UK Biobank [58]
reported a significant association between m.295C>T and several blood cell traits (Figure 5),
known to increase with training [59]. Our results demonstrate that m.295C>T was more
frequent (OR = 1.05; 95% CI 1.02–1.09, p = 0.0118) in HARD cases, thus potentially con-
ferring a decreased cardiorespiratory fitness/exercise capacity and increased CAD risk.
m.12612A>G (rs28359172, p = 0.0158, MAF = 0.10), a synonymous (V92V) genetic variant in
the subunit 5 of NADH dehydrogenase (ND5), may demonstrate similar functionality, as it
is also tagging macro-haplogroup J and displays similar patterns of association in the UK
Biobank (Figure 5) [58].

m.12372G>A (rs2853499, p = 0.0059, MAF = 0.22) and m.11467A>G (rs2853493, p = 0.0065,
MAF = 0.22) represent two synonymous (L12L and L236L) variants in the ND5 and ND4
(the subunit 4 of NADH dehydrogenase) genes found more frequently in control vs. HARD
CAD cases (OR = 0.97; 95% CI 0.95–0.99 and OR = 0.97; 95% CI 0.95–1.00), tagging macro-
haplogroup U. This possibly CAD-protective (and longevity increasing [60]) role of macro-
haplogroup U could be partially explained by altered pH [61] and a reduced load of harmful
reactions [62], as pH is known to play a role in mitochondrial ROS generation [63,64] and
endurance time during exercise [65]. Interestingly, m.12372G>A displayed significant
associations with ten different blood cell and kidney-related traits in the UK Biobank
(Figure 5) [58]. Endurance time during exercise has been related to pre-exercise blood pH
and demonstrated to increase with increasing pH [65].

In SOFT cases, four MT-SNVs survived multiple testing correction (at FDR < 5%;
Table 3 and Figure 3), all potentially conferring increased CAD risk: m.10400C>T, m.11251A>G,
m.15452C>A and 15301G>A. m.11251A>G (rs869096886, p = 0.0011, MAF = 0.20) repre-
sents a synonymous sequence variant in the ND4 gene and m.15452C>A (rs193302994,
p = 0.0017, MAF = 0.20) is a non-synonymous (Leu→Ile) sequence variant in the CYB gene;
both were found more frequently in SOFT CAD cases vs. controls (OR = 1.03; 95% CI
1.01–1.05). m.11251A>G (rs869096886) and m.15452C>A (rs193302994) are tagging macro-
haplogroup J and thus potentially related to a decreased cardiorespiratory fitness/exercise
capacity [52,53] and increased CAD risk. Moreover, both MT-SNVs displayed significant
associations with body height in the UK Biobank (Figure 5) [58]. In line with this, we
observed that the average body height of both male and female CAD cases was ~2.00 cm
lower compared to controls (Table 1), and shorter body height is related to an increased
CAD risk [66].
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Figure 5. A visual overview of the previous findings for HARD and SOFT CAD MT-SNV associations
in UK Biobank reported by ref. [58]. Created with BioRender.com, accessed on 22 February 2022.
MCH: mean corpuscular hemoglobin; MCV: mean corpuscular volume; RDW: red blood cell distribu-
tion width; RBC#: red blood cell count; WBC#: white blood cell count; LYMPH#: lymphocyte count;
MONO%: monocyte percentage of white cells; MCV: mean corpuscular volume; PCT: plateletcrit; Cr:
creatinine; eGFRCr: estimated glomerular filtration rate creatinine; eGFRCrCy: estimated glomerular
filtration rate creatinine and cystatin C.

Gene-based tests revealed that in both HARD and SOFT cases, CO2 displayed gene-
based association at nominal significance (p < 0.05, Table 4). The CO2 gene encodes for
the second subunit of cytochrome c oxidase (COX, complex IV). Dysfunction of COX has
been previously associated with mitochondrial oxidative stress, obesity, and T2D [67]. CYB
and ND3 were also associated (nominal p < 0.05) with the SOFT CAD phenotype (Table 4).
Somatic variations in CYB have been previously related to hypertrophic cardiomyopathy
(one of its clinical manifestations being angina) and exercise intolerance [68]. Recently,
a large gene-based meta-analysis of mitochondrial genes with several metabolic traits
identified ND3 associated with BMI (p < 1 × 10−3) [43].

All haplogroups demonstrating significant (at FDR < 5%) associations in our study
(M45a, G2b1a2, U2b2 with both HARD/SOFT, M57b1 and L2c (under-represented) with
HARD and M3a with SOFT CAD phenotypes; Table 5 and Supplementary Table S4) were
with a frequency <1%, whereas other studies have considered only haplogroups with a
frequency ≥5% [69]. Low counts in the less common haplogroups may lead to a false-
positive result [70]. Although this should be addressed by performing multiple testing
corrections, grouping the less frequent haplogroups may be another approach to tackle
this [70]. Hence, we also assigned individuals to one of the major European haplogroups
(Figure 4) for comparison. As a result, we observed that 43.28% of the individuals belonged
to the macro-haplogroup H, 13.70% to the macro-haplogroup U, 10.70% to the macro-
haplogroup J, and 9.52% to the macro-haplogroup T (Figure 4), in line with previous
reports in other European populations [71]. Overall, the frequencies of the major European
mitochondrial haplogroups did not differ significantly (at FDR < 5%) between CAD patients
and control subjects (Figure 4). Only the frequency of haplogroup I was significantly
(nominal p < 0.05) higher in patients with HARD CAD phenotype vs. controls (3.35% vs.
3.08%, OR = 1.09) and the macro-haplogroup R was significantly (nominal p < 0.001 and
p < 0.01) higher in patients with HARD and SOFT CAD phenotype vs. controls (0.26% and
0.23% vs. 0.16%, OR = 1.70 and OR = 1.49, respectively) (Figure 4). Of note, however, we
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were able to assign most samples reliably into haplogroups, as the MT DNA haplogroups
were deduced from genotyping arrays with limited numbers of (high-quality) SNVs being
profiled, hence the quality score for haplogroup assignment ranged from 0.50 to 0.86, with
a median of 0.68. Therefore, we were not able to exclude samples with quality scores for
haplogroup assignment <0.8 (as in ref. [72]). Moreover, we performed Fisher’s exact, which
did not allow us to adjust for covariates, hence it is possible that known and unknown
potential confounding factors might have influenced these results. Though, in which cases
to adjust for which covariates and whether it will increase or decrease the study power
and/or bias, is still a matter of intense debate [73,74].

Several other limitations should also be acknowledged. It is well known that very
large cohorts are required to reliably associate genetic variations with complex traits [70].
The power for detecting causal MT-SNVs and haplogroups has been compared with that
in the nuclear genome given equal effect sizes, estimating that the sample size required
for the mitochondrial studies would be roughly the same as that needed for the nuclear
genome studies [75]. Previous power calculations for ischemic stroke (assuming an ad-
ditive model) [76] revealed a maximum power of 73% to detect SNVs with OR = 1.4 and
MAF = 0.30, whereas for SNVs conferring OR = 1.20 and MAF = 0.20, the study power
dropped to 4.6% and further to 0.001% for OR = 1.10 and MAF = 0.10. This study concluded
that “prohibitively large sample sizes” would be required to achieve sufficient power to
detect individual MT DNA variants [76]. In line with this, we observe that in HARD
CAD cases, where n = 20,405, no MT-SNVs survived multiple testing correction, whereas
when increasing n to 34,782 in SOFT CAD cases, four MT-SNVs survived multiple testing
correction (FDR < 5%). Hence, even larger sample sizes (≥50,000) may be required to
reliably associate MT-SNVs and haplogroups with CAD.

In addition to the number of individuals, the number of MT-SNVs studied was
also limited. In the UK Biobank [42], genotyping was performed using Affymetrix UK
biobank Axiom (450,000 samples) and Affymetrix UK BiLEVE Axiom (50,000 samples)
arrays, which included 265 genotyped MT DNA variants. After quality control procedures
(Figure 1), 243 MT-SNVs remained for further analyses, and 111 of those were common
or low-frequency (MAF > 0.01) and could be used for single-marker association analyses.
However, this is clearly not a representative set of MT-SNVs and, as previously recognized,
some regions may be not well covered, such as the hypervariable regions [77,78]. Clearly,
whole-genome sequencing or targeted sequencing of MT-DNA, considering their ability to
achieve a deep genome coverage, would allow the identification of many more MT-SNVs
(especially the low-frequency/rare variants; MAF ≤ 0.01), improving also the detection of
haplogroups and allowing the investigation of heteroplasmy, a phenomenon characteristic
to MT DNA [33,79].

Heteroplasmy denotes the coexistence of MT DNA genomes with wild-type inher-
ited SNVs and somatic variants in varying ratios, which are dynamically determined and
display patterns of cell and tissue specificity, and may differ even within the same mito-
chondrion [33], determining the clinical presentation of disease phenotypes [77,80,81]. In
this study, we were limited to genotype calls from arrays, which are restricted in terms of
minor alleles and do not allow the capture of heteroplasmy [77,80]. Moreover, MT DNA
content was assessed only in blood cells, whereas previous studies have identified an addi-
tional six vascular and metabolic tissues relevant to CAD [82,83]. Therefore, whole-genome
sequencing/targeted sequencing of MT-DNA across several vascular and metabolic tissues
relevant to CAD may be necessary [7,82,83] in order to characterize the full landscape of
mitochondrial genetic variations and their potential contribution to these complex disease
phenotypes. This may be necessary, especially considering that the energy requirements
and thus sensitivity to the changes in mitochondrial function differ for different cells and
tissues and hence may be important in determining the phenotypic effect of MT-SNVs [31].

We also did not consider mitochondrial DNA copy number (MT DNA-CN), repre-
senting the number of mitochondria per cell and the number of MT DNA per mitochon-
drion [84,85]. Each mitochondrion contains multiple copies of MT DNA, and different
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cells and tissues contain different numbers (up to 7000) of mitochondria, again displaying
patterns of cell and tissue variability [84,85]. MT DNA-CN is believed to serve as an indirect
biomarker that would capture the underlying mitochondrial activity and function, such as
energy production capacity and metabolic characteristics, thus possibly playing a causative
role in health and disease [85]. Decreased MT DNA-CN has been previously associated
with an increased risk of developing cardiovascular disease (CVD) outcomes [84]. More
recently, similar analyses in the UK Biobank demonstrated a possible causal role of lower
MT DNA-CN on higher CAD risk [86]. In an even larger cohort (of 408,361 individuals
from TOPMed and UK Biobank), a decline in MT DNA-CN was observed in elderly indi-
viduals (>65 years) and lower MT DNA-CN levels also demonstrated an age-independent
association with hypertension, hyperlipidemia, T2D, and obesity, i.e., the well-known
CAD risk factors [87]. However, none of these studies compared the MT DNA-CN levels
between HARD vs. SOFT CAD phenotypes, which could be a subject of future studies.
Furthermore, considering that MT DNA-CN varies greatly across cell and tissue types,
again profiling of several vascular and metabolic tissues relevant to CAD may be necessary
for such investigations [7,82,83].

Yet another important aspect not considered here is the nuclear genome, considering
the co-evolution of mitochondria and eukaryotic cells [37]. The mitochondrial genome
encodes only 37 genes, mainly components of the OXPHOS machinery, whereas the re-
maining ~1000–1500 mitochondrial proteins are all encoded by the nuclear genome [88].
The importance of common genetic variation in the nuclear genome regulating MT hetero-
plasmy and DNA-CN is an active area of research [85,89–91]. Moreover, genetic variants
in nuclear genes could lead to oxidative disorders or modulate the mitochondrial vari-
ants [81], and mild nuclear gene variants could potentially become clinically relevant when
combined with an incompatible MT DNA [92]. Additive interactions (epistasis) between
mitochondrial variants in the MT-ND2 gene and nuclear variants in genes responsible for
mitochondrial replication and transcription have been demonstrated to influence the BMI
and obesity phenotype [93]. Similarly, our previous investigations have demonstrated the
role of nuclear-encoded mitochondria imported genes in coordinating the response to hy-
percholesterolemia and atherosclerotic lesion expansion, as well as foam cell formation [24].
Hence, further analyses also considering these additional variations will be required.

Finally, similar to SNVs in the nuclear genome, even if (mitochondria) genome-wide
significant associations with HARD/SOFT CAD phenotypes would be identified, their
functional consequences would need to be determined in the CAD-relevant tissues [82,83].
Currently, functional studies for MT-SNVs are not readily available; however, several novel
experimental animal models (e.g., mice strains displaying DNA haplogroups similar to
those observed in humans) may be available in the near future, allowing the investigation of
the potential causality of the relationship between inherited “natural” non-pathogenic MT-
SNVs and potential alterations in mitochondrial function (e.g., oxygen consumption and
oxidant production, cellular ATP levels) and their relation to alterations in cardiovascular
function and CAD risk [31,37,81].

5. Conclusions

We found only spurious MT-SNV, gene, and haplogroup associations with HARD and
SOFT CAD phenotypes and conclude that whole-genome sequencing/targeted-sequencing
of MT-DNA, across several vascular and metabolic tissues relevant to CAD in even larger
study cohorts (n > 50,000), followed by functional studies in animal models, may be neces-
sary to conclusively determine the role of MT-SNVs, genes, and haplogroups in modulating
the risk of CAD. Therefore, whole-genome sequencing/targeted sequencing of MT-DNA
across several vascular and metabolic tissues relevant to CAD may be necessary [7,82,83]
in order to characterize the full landscape of mitochondrial genetic variations and their
potential contribution to these complex disease phenotypes. This may be especially nec-
essary considering that the energy requirements and thus sensitivity to the changes in
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mitochondrial function differ for different cells and tissues and hence may be important in
determining the phenotypic effect of MT-SNVs [31].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13030516/s1, Table S1. A complete list of HARD and SOFT
CAD case definition codes. Table S2. A complete list of 111 common and low-frequency MT-SNV as-
sociations with HARD CAD phenotype. Table S3. A complete list of 111 common and low-frequency
MT-SNV associations with SOFT CAD phenotype. Table S4. Haplogroup assignment in HARD CAD
cases vs. controls prior to excluding samples with quality scores for haplogroup assignment <0.8 and
further assigned individuals to one of the major European haplogroups. Table S5. Haplogroup assign-
ment in SOFT CAD cases vs. controls prior to excluding samples with quality scores for haplogroup
assignment <0.8 and further assigned individuals to one of the major European haplogroups.

Author Contributions: Conceptualization, B.V.; methodology, B.V., and A.S.; formal analysis, B.V.
and A.S.; investigation and data curation, I.R.; writing—original draft preparation, B.V.; writing—
review and editing, A.S. and I.R.; visualization, B.V.; supervision, B.V.; project administration, B.V.;
funding acquisition, B.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Latvian Council of Science, project, “Using Machine
Learning To Model The Complex Interplay Between Diet, Genetic Factors and Mitochondria in
Coronary Artery Disease”, project No. lzp-2020/2-0338.

Institutional Review Board Statement: The present study was conducted using the UK Biobank
Resource (application ID 61684). The UK Biobank has obtained approval from the North West
Multi-centre Research Ethics Committee (MREC) as a Research Tissue Bank (RTB; 11/NW/0382) [42].

Informed Consent Statement: Electronic signed consent was obtained from all the UK Biobank
patient(s) at recruitment [42].

Data Availability Statement: The data supporting results reported in this study will be returned to
the UK Biobank and available for download to registered researchers on approved applications (https:
//biobank.ndph.ox.ac.uk/ukb/ukb/docs/ukblink_instruct.html, accessed on 22 February 2022).

Acknowledgments: The present study was conducted using the UK Biobank Resource (application
ID 61684).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J.L. Global and regional burden of disease and risk factors, 2001:

Systematic analysis of population health data. Lancet 2006, 367, 1747–1757. [CrossRef]
2. Maouche, S.; Schunkert, H. Strategies beyond genome-wide association studies for atherosclerosis. Arterioscler. Thromb. Vasc. Biol.

2012, 32, 170–181. [CrossRef] [PubMed]
3. Sayols-Baixeras, S.; Lluís-Ganella, C.; Lucas, G.; Elosua, R. Pathogenesis of coronary artery disease: Focus on genetic risk factors

and identification of genetic variants. Appl. Clin. Genet. 2014, 7, 15–32.
4. Erdmann, J.; Willenborg, C.; Nahrstaedt, J.; Preuss, M.; König, I.R.; Baumert, J.; Linsel-Nitschke, P.; Gieger, C.; Tennstedt, S.;

Belcredi, P.; et al. Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23.
Eur. Heart J. 2011, 32, 158–168. [CrossRef] [PubMed]

5. Davey Smith, G.; Ebrahim, S.; Lewis, S.; Hansell, A.L.; Palmer, L.J.; Burton, P.R. Genetic epidemiology and public health: Hope,
hype, and future prospects. Lancet 2005, 366, 1484–1498. [CrossRef]

6. Erdmann, J.; Kessler, T.; Munoz Venegas, L.; Schunkert, H. A decade of genome-wide association studies for coronary artery
disease: The challenges ahead. Cardiovasc. Res. 2018, 114, 1241–1257. [CrossRef] [PubMed]

7. Vilne, B.; Schunkert, H. Integrating Genes Affecting Coronary Artery Disease in Functional Networks by Multi-OMICs Approach.
Front. Cardiovasc. Med. 2018, 5, 89. [CrossRef] [PubMed]

8. Samani, N.J.; Erdmann, J.; Hall, A.S.; Hengstenberg, C.; Mangino, M.; Mayer, B.; Dixon, R.J.; Meitinger, T.; Braund, P.;
Wichmann, H.E.; et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007, 357, 443–453.
[CrossRef] [PubMed]

9. Erdmann, J.; Grosshennig, A.; Braund, P.S.; König, I.R.; Hengstenberg, C.; Hall, A.S.; Linsel-Nitschke, P.; Kathiresan, S.; Wright, B.;
Trégouët, D.A.; et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat. Genet. 2009, 41, 280–282.
[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/genes13030516/s1
https://www.mdpi.com/article/10.3390/genes13030516/s1
https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/ukblink_instruct.html
https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/ukblink_instruct.html
http://doi.org/10.1016/S0140-6736(06)68770-9
http://doi.org/10.1161/ATVBAHA.111.232652
http://www.ncbi.nlm.nih.gov/pubmed/22258900
http://doi.org/10.1093/eurheartj/ehq405
http://www.ncbi.nlm.nih.gov/pubmed/21088011
http://doi.org/10.1016/S0140-6736(05)67601-5
http://doi.org/10.1093/cvr/cvy084
http://www.ncbi.nlm.nih.gov/pubmed/29617720
http://doi.org/10.3389/fcvm.2018.00089
http://www.ncbi.nlm.nih.gov/pubmed/30065929
http://doi.org/10.1056/NEJMoa072366
http://www.ncbi.nlm.nih.gov/pubmed/17634449
http://doi.org/10.1038/ng.307
http://www.ncbi.nlm.nih.gov/pubmed/19198612


Genes 2022, 13, 516 15 of 18

10. Trégouët, D.A.; König, I.R.; Erdmann, J.; Munteanu, A.; Braund, P.S.; Hall, A.S.; Grosshennig, A.; Linsel-Nitschke, P.; Perret, C.;
DeSuremain, M.; et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus
for coronary artery disease. Nat. Genet. 2009, 41, 283–285. [CrossRef] [PubMed]

11. Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.R.; Barbalic, M.;
Gieger, C.; et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011,
43, 333–338. [CrossRef] [PubMed]

12. Deloukas, P.; Kanoni, S.; Willenborg, C.; Farrall, M.; Assimes, T.L.; Thompson, J.R.; Ingelsson, E.; Saleheen, D.; Erdmann, J.;
Goldstein, B.A.; et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 2013, 45,
25–33. [CrossRef] [PubMed]

13. Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.;
Hopewell, J.C.; et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery
disease. Nat. Genet. 2015, 47, 1121–1130. [PubMed]

14. Webb, T.R.; Erdmann, J.; Stirrups, K.E.; Stitziel, N.O.; Masca, N.G.D.; Jansen, H.; Kanoni, S.; Nelson, C.P.; Ferrario, P.G.;
König, I.R.; et al. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated with Coronary Artery Disease. J. Am.
Coll. Cardiol. 2017, 69, 823–836. [CrossRef] [PubMed]

15. Nelson, C.P.; Goel, A.; Butterworth, A.S.; Kanoni, S.; Webb, T.R.; Marouli, E.; Zeng, L.; Ntalla, I.; Lai, F.Y.; Hopewell, J.C.; et al.
Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 2017, 49, 1385–1391.
[CrossRef] [PubMed]

16. Howson, J.M.M.; Zhao, W.; Barnes, D.R.; Ho, W.K.; Young, R.; Paul, D.S.; Waite, L.L.; Freitag, D.F.; Fauman, E.B.; Salfati, E.L.; et al.
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat. Genet. 2017, 49, 1113–1119.
[CrossRef]

17. Van der Harst, P.; Verweij, N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of
Coronary Artery Disease. Circ. Res. 2018, 122, 433–443. [CrossRef] [PubMed]

18. Brænne, I.; Civelek, M.; Vilne, B.; Di Narzo, A.; Johnson, A.D.; Zhao, Y.; Reiz, B.; Codoni, V.; Webb, T.R.; Foroughi Asl, H.; et al.
Prediction of Causal Candidate Genes in Coronary Artery Disease Loci. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2207–2217.
[CrossRef]

19. Kessler, T.; Vilne, B.; Schunkert, H. The impact of genome-wide association studies on the pathophysiology and therapy of
cardiovascular disease. EMBO Mol. Med. 2016, 8, 688–701. [CrossRef] [PubMed]

20. Zhao, Z.; Yang, Y.; Zeng, Y.; He, M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based
ovarian cancer diagnosis. Lab Chip 2016, 16, 489–496. [CrossRef] [PubMed]

21. Kessler, T.; Zhang, L.; Liu, Z.; Yin, X.; Huang, Y.; Wang, Y.; Fu, Y.; Mayr, M.; Ge, Q.; Xu, Q.; et al. ADAMTS-7 inhibits re-
endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1. Circulation 2015,
131, 1191–1201. [CrossRef] [PubMed]

22. Kessler, T.; Wobst, J.; Wolf, B.; Eckhold, J.; Vilne, B.; Hollstein, R.; von Ameln, S.; Dang, T.A.; Sager, H.B.; Moritz Rumpf, P.; et al.
Functional Characterization of the GUCY1A3 Coronary Artery Disease Risk Locus. Circulation 2017, 136, 476–489. [CrossRef]
[PubMed]

23. Aherrahrou, R.; Aherrahrou, Z.; Schunkert, H.; Erdmann, J. Coronary artery disease associated gene Phactr1 modulates severity
of vascular calcification in vitro. Biochem. Biophys. Res. Commun. 2017, 491, 396–402. [CrossRef]

24. Vilne, B.; Skogsberg, J.; Foroughi Asl, H.; Talukdar, H.A.; Kessler, T.; Björkegren, J.L.M.; Schunkert, H. Network analysis reveals a
causal role of mitochondrial gene activity in atherosclerotic lesion formation. Atherosclerosis 2017, 267, 39–48. [CrossRef]

25. Schunkert, H.; von Scheidt, M.; Kessler, T.; Stiller, B.; Zeng, L.; Vilne, B. Genetics of coronary artery disease in the light of
genome-wide association studies. Clin. Res. Cardiol. Off. J. Ger. Card. Soc. 2018, 107, 2–9. [CrossRef]

26. Lempiäinen, H.; Brænne, I.; Michoel, T.; Tragante, V.; Vilne, B.; Webb, T.R.; Kyriakou, T.; Eichner, J.; Zeng, L.; Willenborg, C.; et al.
Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Sci. Rep. 2018, 8,
3434. [CrossRef] [PubMed]

27. Neiburga, K.; Vilne, B.; Bauer, S.; Bongiovanni, D.; Ziegler, T.; Lachmann, M.; Wengert, S.; Hawe, J.; Güldener, U.;
Westerlund, A.; et al. Vascular Tissue Specific miRNA Profiles Reveal Novel Correlations with Risk Factors in Coronary Artery
Disease. Biomolecules 2021, 11, 1683. [CrossRef] [PubMed]

28. Kovacic, J.C. Unraveling the Complex Genetics of Coronary Artery Disease. J. Am. Coll. Cardiol. 2017, 69, 837–840. [CrossRef]
29. Hudson, G.; Gomez-Duran, A.; Wilson, I.J.; Chinnery, P.F. Recent mitochondrial DNA mutations increase the risk of developing

common late-onset human diseases. PLoS Genet. 2014, 1, e1004369. [CrossRef] [PubMed]
30. Sobenin, I.A.; Sazonova, M.A.; Postnov, A.Y.; Bobryshev, Y.V.; Orekhov, A.N. Changes of mitochondria in atherosclerosis: Possible

determinant in the pathogenesis of the disease. Atherosclerosis 2013, 227, 283–288. [CrossRef]
31. Bray, A.W.; Ballinger, S.W. Mitochondrial DNA mutations and cardiovascular disease. Curr. Opin. Cardiol. 2017, 32, 267–274.

[CrossRef] [PubMed]
32. Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.;

Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [CrossRef] [PubMed]
33. Stefano, G.B.; Kream, R.M. Mitochondrial DNA heteroplasmy in human health and disease. Biomed. Rep. 2016, 4, 259–262.

[CrossRef] [PubMed]

http://doi.org/10.1038/ng.314
http://www.ncbi.nlm.nih.gov/pubmed/19198611
http://doi.org/10.1038/ng.784
http://www.ncbi.nlm.nih.gov/pubmed/21378990
http://doi.org/10.1038/ng.2480
http://www.ncbi.nlm.nih.gov/pubmed/23202125
http://www.ncbi.nlm.nih.gov/pubmed/26343387
http://doi.org/10.1016/j.jacc.2016.11.056
http://www.ncbi.nlm.nih.gov/pubmed/28209224
http://doi.org/10.1038/ng.3913
http://www.ncbi.nlm.nih.gov/pubmed/28714975
http://doi.org/10.1038/ng.3874
http://doi.org/10.1161/CIRCRESAHA.117.312086
http://www.ncbi.nlm.nih.gov/pubmed/29212778
http://doi.org/10.1161/ATVBAHA.115.306108
http://doi.org/10.15252/emmm.201506174
http://www.ncbi.nlm.nih.gov/pubmed/27189168
http://doi.org/10.1039/C5LC01117E
http://www.ncbi.nlm.nih.gov/pubmed/26645590
http://doi.org/10.1161/CIRCULATIONAHA.114.014072
http://www.ncbi.nlm.nih.gov/pubmed/25712208
http://doi.org/10.1161/CIRCULATIONAHA.116.024152
http://www.ncbi.nlm.nih.gov/pubmed/28487391
http://doi.org/10.1016/j.bbrc.2017.07.090
http://doi.org/10.1016/j.atherosclerosis.2017.10.019
http://doi.org/10.1007/s00392-018-1324-1
http://doi.org/10.1038/s41598-018-20721-6
http://www.ncbi.nlm.nih.gov/pubmed/29467471
http://doi.org/10.3390/biom11111683
http://www.ncbi.nlm.nih.gov/pubmed/34827683
http://doi.org/10.1016/j.jacc.2016.12.007
http://doi.org/10.1371/journal.pgen.1004369
http://www.ncbi.nlm.nih.gov/pubmed/24852434
http://doi.org/10.1016/j.atherosclerosis.2013.01.006
http://doi.org/10.1097/HCO.0000000000000383
http://www.ncbi.nlm.nih.gov/pubmed/28169948
http://doi.org/10.1038/290457a0
http://www.ncbi.nlm.nih.gov/pubmed/7219534
http://doi.org/10.3892/br.2016.590
http://www.ncbi.nlm.nih.gov/pubmed/26998260


Genes 2022, 13, 516 16 of 18

34. Wallace, D.C. Mitochondrial genetic medicine. Nat. Genet. 2018, 50, 1642–1649. [CrossRef]
35. Gutierrez, J.; Ballinger, S.W.; Darley-Usmar, V.M.; Landar, A. Free radicals, mitochondria, and oxidized lipids: The emerging role

in signal transduction in vascular cells. Circ. Res. 2006, 99, 924–932. [CrossRef] [PubMed]
36. Earp, M.A.; Brooks-Wilson, A.; Cook, L.; Le, N. Inherited common variants in mitochondrial DNA and invasive serous epithelial

ovarian cancer risk. BMC Res. Notes 2013, 6, 425. [CrossRef] [PubMed]
37. Moreira, J.D.; Gopal, D.M.; Kotton, D.N.; Fetterman, J.L. Gaining Insight into Mitochondrial Genetic Variation and Downstream

Pathophysiology: What Can i(PSCs) Do? Genes 2021, 12, 1668. [CrossRef] [PubMed]
38. Krzywanski, D.M.; Moellering, D.R.; Fetterman, J.L.; Dunham-Snary, K.J.; Sammy, M.J.; Ballinger, S.W. The mitochondrial

paradigm for cardiovascular disease susceptibility and cellular function: A complementary concept to Mendelian genetics. Lab.
Investig. 2011, 91, 1122–1135. [CrossRef]

39. Madamanchi, N.R.; Runge, M.S. Mitochondrial dysfunction in atherosclerosis. Circ. Res. 2007, 100, 460–473. [CrossRef] [PubMed]
40. Madamanchi, N.R.; Vendrov, A.; Runge, M.S. Oxidative Stress and Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25,

29–38. [CrossRef] [PubMed]
41. Torroni, A.; Petrozzi, M.; D’Urbano, L.; Sellitto, D.; Zeviani, M.; Carrara, F.; Carducci, C.; Leuzzi, V.; Carelli, V.; Barboni, P.; et al.

Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of
Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am. J. Hum. Genet.
1997, 60, 1107–1121. [PubMed]

42. Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al.
The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [CrossRef] [PubMed]

43. Kraja, A.T.; Liu, C.; Fetterman, J.L.; Graff, M.; Have, C.T.; Gu, C.; Yanek, L.R.; Feitosa, M.F.; Arking, D.E.; Chasman, D.I.; et al.
Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits. Am. J. Hum. Genet.
2019, 104, 112–138. [CrossRef] [PubMed]

44. Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of
larger and richer datasets. GigaScience 2015, 4, 7. [CrossRef] [PubMed]

45. Børte, S.; Zwart, J.A.; Skogholt, A.H.; Gabrielsen, M.E.; Thomas, L.F.; Fritsche, L.G.; Surakka, I.; Nielsen, J.B.; Zhou, W.;
Wolford, B.N.; et al. Mitochondrial genome-wide association study of migraine—The HUNT Study. Cephalalgia 2020, 40, 625–634.
[CrossRef] [PubMed]

46. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat.
Soc. 1995, 57, 289–300. [CrossRef]

47. Lee, S.; Fuchsberger, C.; Kim, S.; Scott, L. An efficient resampling method for calibrating single and gene-based rare variant
association analysis in case-control studies. Biostatistics 2016, 17, 1–15. [CrossRef] [PubMed]

48. Van Oven, M. PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5,
e392–e394. [CrossRef]

49. Kloss-Brandstätter, A.; Pacher, D.; Schönherr, S.; Weissensteiner, H.; Binna, R.; Specht, G.; Kronenberg, F. HaploGrep: A fast and
reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 2011, 32, 25–32. [CrossRef]
[PubMed]

50. Fisher, R.A. On the interpretation of X2 from contingency tables, and the calculation of P. J. R. Stat. Soc. 1922, 85, 87–94. [CrossRef]
51. Vellers, H.L.; Verhein, K.C.; Burkholder, A.B.; Lee, J.; Kim, Y.; Lighfoot, J.T.; Shi, M.; Weinberg, C.R.; Sarzynski, M.A.;

Bouchard, C.; et al. Association between Mitochondrial DNA Sequence Variants and VO2max Trainability. Med. Sci. Sports Exerc.
2020, 52, 2303–2309. [CrossRef] [PubMed]

52. Martínez-Redondo, D.; Marcuello, A.; Casajús, J.A.; Ara, I.; Dahmani, Y.; Montoya, J.; Ruiz-Pesini, E.; López-Pérez, M.J.; Díez-
Sánchez, C. Human mitochondrial haplogroup H: The highest VO2max consumer—Is it a paradox? Mitochondrion 2010, 10,
102–107. [CrossRef]

53. Kiiskilä, J.; Jokelainen, J.; Kytövuori, L.; Mikkola, I.; Härkönen, P.; Keinänen-Kiukaanniemi, S.; Majamaa, K. Association of
mitochondrial DNA haplogroups J and K with low response in exercise training among Finnish military conscripts. BMC Genom.
2021, 22, 75. [CrossRef]

54. Kodama, S. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy
Men and Women. JAMA 2009, 301, 2024. [CrossRef] [PubMed]

55. Wessel, T.R. Relationship of Physical Fitness vs Body Mass Index with Coronary Artery Disease and Cardiovascular Events in
Women. JAMA 2004, 292, 1179. [CrossRef] [PubMed]

56. Sui, X.; LaMonte, M.J.; Blair, S.N. Cardiorespiratory Fitness as a Predictor of Nonfatal Cardiovascular Events in Asymptomatic
Women and Men. Am. J. Epidemiol. 2007, 165, 1413–1423. [CrossRef] [PubMed]

57. Kurl, S.; Laukkanen, J.A.; Rauramaa, R.; Lakka, T.A.; Sivenius, J.; Salonen, J.T. Cardiorespiratory Fitness and the Risk for Stroke in
Men. Arch. Intern. Med. 2003, 163, 1682. [CrossRef] [PubMed]

58. Yonova-Doing, E.; Calabrese, C.; Gomez-Duran, A.; Schon, K.; Wei, W.; Karthikeyan, S.; Chinnery, P.F.; Howson, J.M.M. An atlas
of mitochondrial DNA genotype-phenotype associations in the UK Biobank. Nat. Genet. 2021, 53, 982–993. [CrossRef] [PubMed]

59. Branch, J.D.; Pate, R.R.; Bourque, S.P.; Convertino, V.A.; Durstine, J.L.; Ward, D.S. Effects of exercise mode on hematologic
adaptations to endurance training in adult females. Aviat. Space Environ. Med. 1997, 68, 788–794. [PubMed]

http://doi.org/10.1038/s41588-018-0264-z
http://doi.org/10.1161/01.RES.0000248212.86638.e9
http://www.ncbi.nlm.nih.gov/pubmed/17068300
http://doi.org/10.1186/1756-0500-6-425
http://www.ncbi.nlm.nih.gov/pubmed/24148579
http://doi.org/10.3390/genes12111668
http://www.ncbi.nlm.nih.gov/pubmed/34828274
http://doi.org/10.1038/labinvest.2011.95
http://doi.org/10.1161/01.RES.0000258450.44413.96
http://www.ncbi.nlm.nih.gov/pubmed/17332437
http://doi.org/10.1161/01.ATV.0000150649.39934.13
http://www.ncbi.nlm.nih.gov/pubmed/15539615
http://www.ncbi.nlm.nih.gov/pubmed/9150158
http://doi.org/10.1038/s41586-018-0579-z
http://www.ncbi.nlm.nih.gov/pubmed/30305743
http://doi.org/10.1016/j.ajhg.2018.12.001
http://www.ncbi.nlm.nih.gov/pubmed/30595373
http://doi.org/10.1186/s13742-015-0047-8
http://www.ncbi.nlm.nih.gov/pubmed/25722852
http://doi.org/10.1177/0333102420906835
http://www.ncbi.nlm.nih.gov/pubmed/32056457
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1093/biostatistics/kxv033
http://www.ncbi.nlm.nih.gov/pubmed/26363037
http://doi.org/10.1016/j.fsigss.2015.09.155
http://doi.org/10.1002/humu.21382
http://www.ncbi.nlm.nih.gov/pubmed/20960467
http://doi.org/10.2307/2340521
http://doi.org/10.1249/MSS.0000000000002390
http://www.ncbi.nlm.nih.gov/pubmed/33064405
http://doi.org/10.1016/j.mito.2009.11.005
http://doi.org/10.1186/s12864-021-07383-x
http://doi.org/10.1001/jama.2009.681
http://www.ncbi.nlm.nih.gov/pubmed/19454641
http://doi.org/10.1001/jama.292.10.1179
http://www.ncbi.nlm.nih.gov/pubmed/15353530
http://doi.org/10.1093/aje/kwm031
http://www.ncbi.nlm.nih.gov/pubmed/17406007
http://doi.org/10.1001/archinte.163.14.1682
http://www.ncbi.nlm.nih.gov/pubmed/12885683
http://doi.org/10.1038/s41588-021-00868-1
http://www.ncbi.nlm.nih.gov/pubmed/34002094
http://www.ncbi.nlm.nih.gov/pubmed/9293346


Genes 2022, 13, 516 17 of 18

60. Chen, A.; Raule, N.; Chomyn, A.; Attardi, G. Decreased reactive oxygen species production in cells with mitochondrial
haplogroups associated with longevity. PLoS ONE 2012, 7, e46473. [CrossRef] [PubMed]

61. Rollins, B.; Martin, M.V.; Sequeira, P.A.; Moon, E.A.; Morgan, L.Z.; Watson, S.J.; Schatzberg, A.; Akil, H.; Myers, R.M.;
Jones, E.G.; et al. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS ONE 2009, 4,
e4913. [CrossRef] [PubMed]

62. Chang, X.; Liu, Y.; Mentch, F.; Glessner, J.; Qu, H.; Nguyen, K.; Sleiman, P.M.A.; Hakonarson, H. Mitochondrial DNA haplogroups
and risk of attention deficit and hyperactivity disorder in European Americans. Transl. Psychiatry 2020, 10, 370. [CrossRef]

63. Selivanov, V.A.; Zeak, J.A.; Roca, J.; Cascante, M.; Trucco, M.; Votyakova, T.V. The role of external and matrix pH in mitochondrial
reactive oxygen species generation. J. Biol. Chem. 2008, 283, 29292–29300. [CrossRef] [PubMed]

64. Gómez-Durán, A.; Pacheu-Grau, D.; López-Gallardo, E.; Díez-Sánchez, C.; Montoya, J.; López-Pérez, M.J.; Ruiz-Pesini, E.
Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum. Mol. Genet.
2010, 19, 3343–3353. [CrossRef] [PubMed]

65. Jones, N.L.; Sutton, J.R.; Taylor, R.; Toews, C.J. Effect of pH on cardiorespiratory and metabolic responses to exercise. J. Appl.
Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 959–964. [CrossRef]

66. Nelson, C.P.; Hamby, S.E.; Saleheen, D.; Hopewell, J.C.; Zeng, L.; Assimes, T.L.; Kanoni, S.; Willenborg, C.; Burgess, S.;
Amouyel, P.; et al. Genetically determined height and coronary artery disease. N. Engl. J. Med. 2015, 372, 1608–1618. [CrossRef]

67. Holvoet, P.; Vanhaverbeke, M.; Bloch, K.; Baatsen, P.; Sinnaeve, P.; Janssens, S. Low MT-CO1 in Monocytes and Microvesicles Is
Associated with Outcome in Patients with Coronary Artery Disease. J. Am. Heart Assoc. 2016, 5, e004207. [CrossRef] [PubMed]

68. Hagen, C.M.; Aidt, F.H.; Havndrup, O.; Hedley, P.L.; Jespersgaard, C.; Jensen, M.; Kanters, J.K.; Moolman-Smook, J.C.;
Møller, D.V.; Bundgaard, H.; et al. MT-CYB mutations in hypertrophic cardiomyopathy. Mol. Genet. Genom. Med. 2013,
1, 54–65. [CrossRef]

69. Ebner, S.; Lang, R.; Mueller, E.E.; Eder, W.; Oeller, M.; Moser, A.; Koller, J.; Paulweber, B.; Mayr, J.A.; Sperl, W.; et al. Mitochondrial
Haplogroups, Control Region Polymorphisms and Malignant Melanoma: A Study in Middle European Caucasians. PLoS ONE
2011, 6, e27192. [CrossRef] [PubMed]

70. Samuels, D.C.; Carothers, A.D.; Horton, R.; Chinnery, P.F. The power to detect disease associations with mitochondrial DNA
haplogroups. Am. J. Hum. Genet. 2006, 78, 713–720. [CrossRef] [PubMed]

71. Aldámiz-Echevarría, T.; Resino, S.; Bellón, J.M.; Jiménez-Sousa, M.A.; Miralles, P.; Medrano, L.M.; Carrero, A.; Díez, C.; Pérez-
Latorre, L.; Fanciulli, C.; et al. European mitochondrial haplogroups predict liver-related outcomes in patients coinfected with
HIV and HCV: A retrospective study. J. Transl. Med. 2019, 17, 244. [CrossRef] [PubMed]

72. Gonalves, V.F.; Giamberardino, S.N.; Crowley, J.J.; Vawter, M.P.; Saxena, R.; Bulik, C.M.; Yilmaz, Z.; Hultman, C.M.; Sklar, P.;
Kennedy, J.L.; et al. Examining the role of common and rare mitochondrial variants in schizophrenia. PLoS ONE 2018, 13,
e0191153.

73. Vansteelandt, S.; Goetgeluk, S.; Lutz, S.; Waldman, I.; Lyon, H.; Schadt, E.E.; Weiss, S.T.; Lange, C. On the adjustment for
covariates in genetic association analysis: A novel, simple principle to infer direct causal effects. Genet. Epidemiol. 2009, 33,
394–405. [CrossRef] [PubMed]

74. Aschard, H.; Vilhjálmsson, B.J.; Joshi, A.D.; Price, A.L.; Kraft, P. Adjusting for heritable covariates can bias effect estimates in
genome-wide association studies. Am. J. Hum. Genet. 2015, 96, 329–339. [CrossRef] [PubMed]

75. McRae, A.F.; Byrne, E.M.; Zhao, Z.Z.; Montgomery, G.W.; Visscher, P.M. Power and SNP tagging in whole mitochondrial genome
association studies. Genome Res. 2008, 18, 911–917. [CrossRef] [PubMed]

76. Anderson, C.D.; Biffi, A.; Nalls, M.A.; Devan, W.J.; Schwab, K.; Ayres, A.M.; Valant, V.; Ross, O.A.; Rost, N.S.; Saxena, R.; et al.
Common variants within oxidative phosphorylation genes influence risk of ischemic stroke and intracerebral hemorrhage. Stroke
2013, 44, 612–619. [CrossRef]

77. Flaquer, A.; Baumbach, C.; Kriebel, J.; Meitinger, T.; Peters, A.; Waldenberger, M.; Grallert, H.; Strauch, K. Mitochondrial genetic
variants identified to be associated with BMI in adults. PLoS ONE 2014, 9, e105116. [CrossRef] [PubMed]

78. Flaquer, A.; Rospleszcz, S.; Reischl, E.; Zeilinger, S.; Prokisch, H.; Meitinger, T.; Meisinger, C.; Peters, A.; Waldenberger, M.;
Grallert, H.; et al. Mitochondrial GWA Analysis of Lipid Profile Identifies Genetic Variants to Be Associated with HDL Cholesterol
and Triglyceride Levels. PLoS ONE 2015, 10, e0126294.

79. Chen, R.; Aldred, M.A.; Xu, W.; Zein, J.; Bazeley, P.; Comhair, S.A.A.; Meyers, D.A.; Bleecker, E.R.; Liu, C.; Erzurum, S.C.; et al.
Comparison of whole genome sequencing and targeted sequencing for mitochondrial DNA. Mitochondrion 2021, 58, 303–310.
[CrossRef] [PubMed]

80. Flaquer, A.; Baumbach, C.; Ladwig, K.H.; Kriebel, J.; Waldenberger, M.; Grallert, H.; Baumert, J.; Meitinger, T.; Kruse, J.;
Peters, A.; et al. Mitochondrial genetic variants identified to be associated with posttraumatic stress disorder. Transl. Psychiatry
2015, 5, e524. [CrossRef] [PubMed]

81. Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards
and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [CrossRef] [PubMed]

82. Talukdar, H.A.; Asl, H.F.; Jain, R.K.; Ermel, R.; Ruusalepp, A.; Franzén, O.; Kidd, B.A.; Readhead, B.; Giannarelli, C.;
Kovacic, J.C.; et al. Cross-Tissue Regulatory Gene Networks in Coronary Artery Disease. Cell Syst. 2016, 2, 196–208. [CrossRef]
[PubMed]

http://doi.org/10.1371/journal.pone.0046473
http://www.ncbi.nlm.nih.gov/pubmed/23144696
http://doi.org/10.1371/journal.pone.0004913
http://www.ncbi.nlm.nih.gov/pubmed/19290059
http://doi.org/10.1038/s41398-020-01064-1
http://doi.org/10.1074/jbc.M801019200
http://www.ncbi.nlm.nih.gov/pubmed/18687689
http://doi.org/10.1093/hmg/ddq246
http://www.ncbi.nlm.nih.gov/pubmed/20566709
http://doi.org/10.1152/jappl.1977.43.6.959
http://doi.org/10.1056/NEJMoa1404881
http://doi.org/10.1161/JAHA.116.004207
http://www.ncbi.nlm.nih.gov/pubmed/27919931
http://doi.org/10.1002/mgg3.5
http://doi.org/10.1371/journal.pone.0027192
http://www.ncbi.nlm.nih.gov/pubmed/22174736
http://doi.org/10.1086/502682
http://www.ncbi.nlm.nih.gov/pubmed/16532401
http://doi.org/10.1186/s12967-019-1997-x
http://www.ncbi.nlm.nih.gov/pubmed/31349790
http://doi.org/10.1002/gepi.20393
http://www.ncbi.nlm.nih.gov/pubmed/19219893
http://doi.org/10.1016/j.ajhg.2014.12.021
http://www.ncbi.nlm.nih.gov/pubmed/25640676
http://doi.org/10.1101/gr.074872.107
http://www.ncbi.nlm.nih.gov/pubmed/18356315
http://doi.org/10.1161/STROKEAHA.112.672089
http://doi.org/10.1371/journal.pone.0105116
http://www.ncbi.nlm.nih.gov/pubmed/25153900
http://doi.org/10.1016/j.mito.2021.01.006
http://www.ncbi.nlm.nih.gov/pubmed/33513442
http://doi.org/10.1038/tp.2015.18
http://www.ncbi.nlm.nih.gov/pubmed/25756807
http://doi.org/10.1038/gim.2015.30
http://www.ncbi.nlm.nih.gov/pubmed/25741868
http://doi.org/10.1016/j.cels.2016.02.002
http://www.ncbi.nlm.nih.gov/pubmed/27135365


Genes 2022, 13, 516 18 of 18

83. Franzén, O.; Ermel, R.; Cohain, A.; Akers, N.K.; Di Narzo, A.; Talukdar, H.A.; Foroughi-Asl, H.; Giambartolomei, C.; Fullard, J.F.;
Sukhavasi, K.; et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science
2016, 353, 827–830. [CrossRef] [PubMed]

84. Ashar, F.N.; Zhang, Y.; Longchamps, R.J.; Lane, J.; Moes, A.; Grove, M.L.; Mychaleckyj, J.C.; Taylor, K.D.; Coresh, J.; Rotter, J.I.; et al.
Association of Mitochondrial DNA Copy Number with Cardiovascular Disease. JAMA Cardiol. 2017, 2, 1247. [CrossRef] [PubMed]

85. Chong, M.; Mohammadi-Shemirani, P.; Perrot, N.; Nelson, W.; Morton, R.W.; Narula, S.; Lali, R.; Khan, I.; Khan, M.; Judge, C.; et al.
GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 73 loci and highlights a potential causal role in dementia.
eLife 2021, 11, e7038.

86. Liu, X.; Longchamps, R.J.; Wiggins, K.L.; Raffield, L.M.; Bielak, L.F.; Zhao, W.; Pitsillides, A.; Blackwell, T.W.; Yao, J.; Guo, X.; et al.
Association of mitochondrial DNA copy number with cardiometabolic diseases. Cell Genom. 2021, 1, 100006. [CrossRef] [PubMed]

87. Luo, J.; Noordam, R.; Jukema, J.W.; van Dijk, K.W.; Hägg, S.; Grassmann, F.; le Cessie, S.; van Heemst, D. Low mitochondrial copy
number drives atherogenic cardiovascular disease: Evidence from prospective cohort analyses in the UK Biobank combined with
Mendelian Randomization. medRxiv 2021. [CrossRef]

88. Hock, M.B.; Kralli, A. Transcriptional control of mitochondrial biogenesis and function. Annu. Rev. Physiol. 2009, 71, 177–203.
[CrossRef]

89. Nandakumar, P.; Tian, C.; O’Connell, J.; 23andMe Research Team; Hinds, D.; Paterson, A.D.; Sondheimer, N. Nuclear genome-wide
associations with mitochondrial heteroplasmy. Sci. Adv. 2021, 7, eabe7520. [CrossRef] [PubMed]

90. Hägg, S.; Jylhävä, J.; Wang, Y.; Czene, K.; Grassmann, F. Deciphering the genetic and epidemiological landscape of mitochondrial
DNA abundance. Hum. Genet. 2020, 140, 849–861. [CrossRef] [PubMed]

91. Guyatt, A.L.; Brennan, R.R.; Burrows, K.; Guthrie, P.A.I.; Ascione, R.; Ring, S.M.; Gaunt, T.R.; Pyle, A.; Cordell, H.J.;
Lawlor, D.A.; et al. A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts.
Hum. Genom. 2019, 13, 6. [CrossRef] [PubMed]

92. Wallace, D.C.; Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring
Harb. Perspect. Biol. 2013, 5, a021220. [CrossRef] [PubMed]
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