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Abstract

The study of the astrocytic contribution to brain functions has been growing in popu-

larity in the neuroscience field. In the last years, and especially since the demonstra-

tion of the involvement of astrocytes in synaptic functions, the astrocyte field has

revealed multiple functions of these cells that seemed inconceivable not long ago. In

parallel, cannabinoid investigation has also identified different ways by which canna-

binoids are able to interact with these cells, modify their functions, alter their com-

munication with neurons and impact behavior. In this review, we will describe the

expression of different endocannabinoid system members in astrocytes. Moreover,

we will relate the latest findings regarding cannabinoid modulation of some of the

most relevant astroglial functions, namely calcium (Ca2+) dynamics, gliotransmission,

metabolism, and inflammation.
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1 | ASTROCYTES AS INTEGRATORS OF
INFORMATION

Astrocytes are a population of glial cells representing approxi-

mately 10%–20% of all the cells in the central nervous system

(CNS) (Sun et al., 2017; Verkhratsky et al., 2017). Their unique

morphological complexity, with intricate arborisation and special-

ized structures that contact other CNS elements such as other glial

cells, blood vessels, and synapses, make astrocytes fundamental

players in brain physiology, as well as in the development of sev-

eral pathological processes (Valori et al., 2021). Many diverse func-

tions have been attributed to these cells, from providing metabolic

support for neurons to the exciting new concepts of astrocyte-

mediated de novo memory enhancement and active involvement

in higher-brain functions (Adamsky et al., 2018; Kastanenka

et al., 2020; Mederos et al., 2021; Mederos & Perea, 2019;

Navarrete et al., 2019; Zhou et al., 2021). Considering this, it has

become clear that the studies of CNS physiology need to address

the role of astrocytes (and probably other glial cells) to get a full

picture of how the brain elements are interconnected and work

together.

Due to their singular morphology, one single astrocyte is in con-

tact with thousands of synapses through its thin distal processes

(Bushong et al., 2002; Oberheim et al., 2009). Astrocytes are thus

able to sense neuronal activity, adapting their physiology to neuro-

nal demands and even participating in the synaptic function through

the release of gliotransmitters (Allen & Eroglu, 2017; Araque

et al., 2014; Durkee & Araque, 2019; Perea et al., 2009). On top of

that, astrocytes express different neuromodulator receptors that are

able to sense global environmental stimuli, integrating both synaptic
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and network information to finely tune neuronal connectivity (Ding

et al., 2013; Paukert et al., 2014; Zhang et al., 2021). Thus, in

response to both synaptic and extrasynaptic inputs, astrocytes are

able to modify their physiology at different time points to orches-

trate neuronal functions, being key for the proper function of brain

physiology (Pacholko et al., 2020).

This review will address how the presence and the activity of

one of these neuromodulator inputs, the endocannabinoid system

(ECS), can impact astrocyte signaling and modulate key brain

functions.

2 | THE ENDOCANNABINOID SYSTEM IN
ASTROCYTES

The ECS is a widely distributed, polyfunctional signaling system that

is virtually involved in all brain functions (Fride, 2005). This signaling

system was named after the discovery of the G-protein coupled

receptors (GPCRs) activated by the main active compound of

Cannabis, (�)-Δ9-tetrahydrocannabinol (THC), and the endogenous

lipidic substances with cannabimimetic effects, so called

endocannabinoids (eCBs) (Di Marzo, 1998). Thus, the ECS is

classically considered to be composed by type 1 and type

2 cannabinoid receptors (CB1, CB2), anandamide (AEA), and

2-arachidonoylglycerol (2-AG), which are the best characterized

eCBs derived from arachidonic acid (AA), and the enzymes responsi-

ble for their synthesis and degradation (for reviews on the ECS:

Castillo et al., 2012; Hu & Mackie, 2015, 2015; Zou & Kumar, 2018;

Cristino et al., 2020).

The boundaries of the ECS, however, are not well defined.

Several reports have been pointing towards others cannabinoid-like

receptors and cation channels that are activated by eCBs or other bio-

chemically related molecules (Di Marzo, 2018). Moreover, in addition

to the “classical” AA-derived AEA and 2-AG, other endogenous

ligands have been recently described as cannabinoid receptor modula-

tors. For instance, the lipids Lipoxin A4 (Pamplona et al., 2012) and

pregnenolone (Vallee et al., 2014) have been shown to act as positive

and negative allosteric modulators of CB1 receptors, whereas a family

of peptides (so-called Pepcans) has been proposed to regulate canna-

binoid signaling in the brain (Bauer et al., 2012). These additional ele-

ments introduce new layers of complexity that transform our

perceptions on this signaling system, giving rise to the concept of an

expanded ECS (Cristino et al., 2020; Di Marzo, 1998; Veilleux

et al., 2019).

Functionally, a wide-spread well-characterized and powerful way

through which the ECS regulates brain functions is the retrograde

control of synaptic transmission and plasticity (Castillo et al., 2012;

Kano et al., 2009). Briefly, this model indicates that the stimulation of

postsynaptic neurons induces the mobilization of eCBs that travel ret-

rogradely through the synaptic cleft, binds to presynaptic CB1 recep-

tors and thereby reduces synaptic transmission and triggers synaptic

plasticity (Piomelli, 2003). This can occur at many different types of

synapses (excitatory, inhibitory, modulatory), thereby providing a very

fine-tuned control of interneuronal communication. However, besides

this well-described mechanism of action of the ECS, studies during

the last decades revealed several additional ways through which the

ECS impacts brain functions. One of the most unexpected and intrigu-

ing ones is the relatively recent discovery that astrocytes express sev-

eral eCB-related proteins, playing a key role in the control of their

activity and functions (Busquets-Garcia et al., 2018; Covelo

et al., 2021; Oliveira da Cruz et al., 2016) (Figure 1).

The first evidence suggesting the expression of cannabinoid-like

receptors in astrocytes resulted from the observation that AEA treat-

ment reduced the connection of cultured striatal astrocytes by gap

junctions (Stella, 2010; Venance et al., 1995). Importantly, this effect

seemed to be CB1-independent, as it was not mimicked by CB1 syn-

thetic agonists (CP55940 and WIN55) nor reverted by the CB1 antag-

onist rimonabant. Indeed, CB1 expression in astrocytes was initially

controversial and early studies using cultured astrocytes addressing

this question stated contradictory results. In the same way, the identi-

fication of astroglial CB1 by ultrastructural studies was ambiguous

(Katona et al., 1999; Moldrich & Wenger, 2000; Rodríguez

et al., 2001; Salio et al., 2002). However, CB1 expression on astro-

cytes was functionally demonstrated in the context of the hippocam-

pal tripartite synapse, where local application of cannabinoids induced

astroglial Ca2+ increases, an effect that was reverted by the CB1

selective antagonist AM251 (Navarrete & Araque, 2008, 2010). Com-

plementarily, electron microscopic analyzes of double immunostaining

of the astroglial marker glial fibrillary acid protein (GFAP) and CB1 in

wild-type and null CB1 mutant mice (CB1-KO) provided definitive

anatomical evidence for the existence of astroglial CB1, although in

lower levels than neurons (Gutiérrez-Rodríguez et al., 2018; Han

et al., 2012).

The expression of CB1 receptors in astrocytes is rather complex.

Besides the widely explored localization of CB1 in astrocytic plasma

membranes close to synaptic terminals (Covelo et al., 2021), this

receptor can be found in other subcellular localizations such as in

mitochondria (Gutiérrez-Rodríguez et al., 2018; Jimenez-Blasco

et al., 2020) and the plasmalemma of astrocytic perivascular end-feet

(Moldrich & Wenger, 2000; Rodríguez et al., 2001). Indeed, recent evi-

dence has shown that activation of mitochondrial CB1 (mtCB1) in

astrocytes via cannabinoids has a polyfunctional role that impacts glu-

cose metabolism, Ca2+ signaling and behavior (Jimenez-Blasco

et al., 2020; Serrat et al., 2021).

Contrary to CB1, CB2 was initially considered to be absent from

the brain (Atwood & Mackie, 2010). However, this receptor was later

found to be present and functionally relevant in both microglia and

possibly neurons (Jordan & Xi, 2019). Regarding astrocytes, CB2 pres-

ence seems to be questionable (Beny�o et al., 2016; Dowie

et al., 2014; Núñez et al., 2008; Stella, 2004). There are a few studies

suggesting that CB2 is expressed in astrocytic cultures (Cassano

et al., 2017; Köfalvi et al., 2016; Molina-Holgado et al., 2002) but this

can be a result of the impact that different culture protocols have on

the astroglial transcriptome (Lange et al., 2012). Overall, there is a cur-

rent lack of robust evidence for the presence of astroglial CB2 recep-

tors in physiological conditions, although astrocytes may express this
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receptor under some pathological conditions. For instance, it is widely

accepted that CB2 is upregulated in glial cells in response to some

insults (Benito et al., 2008; Jordan & Xi, 2019). However, while some

reports found this response to be specific to microglia (Núñez

et al., 2008; Schmöle et al., 2015), others reported CB2 expression in

astrocytes. For instance, CB2 was reported to be present on astro-

cytes from the spinal cord of a canine model for amyotrophic lateral

sclerosis (Fernández-Trapero et al., 2017). Moreover, CB2 is also pre-

sent in human astrocytes derived from human fetal brain tissues

(Sheng et al., 2005) and from postmortem studies of multiple sclerosis,

spinocerebellar ataxia patients, and suicide victims (García-Gutiérrez

et al., 2018; Rodríguez-Cueto et al., 2014; Zhang et al., 2011).

Besides CB1 and CB2, other GPCRs such as GPR55 and GPR18

have been proposed as putative cannabinoid receptors (Boczek &

Zylinska, 2021; Cristino et al., 2020). These receptors have been iden-

tified in astrocytes, at both mRNA- and protein-level (García-Gutiérrez

et al., 2018; Grabiec et al., 2019; Gutiérrez-Rodríguez et al., 2018;

Sawzdargo et al., 1999), however, their functional significance in

astrocytes remains largely unexplored.

Additionally to GPCRs, receptors from other classes have also been

associated to eCB signaling, namely a subset of transient receptor

potential (TRP) channels and some isoforms of peroxisome proliferator-

activated receptors (PPARs) (Muller et al., 2019; O'Sullivan, 2016). TRPs

are a superfamily of transmembrane cation channels that exhibit a

remarkable diversity of activation mechanisms, including chemical and

physical stimuli (Venkatachalam & Montell, 2007). In many cases, a sin-

gle TRP channel can be modulated by distinct stimuli that can modify

each other's responses, thereby acting as multiple signal integrators

(Venkatachalam & Montell, 2007). Amongst TRP channels, there is evi-

dence that cannabinoids can modulate the activity of TRP channels

from the vanilloid (TRPV), ankyrin (TRPA), and melastatin (TRPM)

subfamilies, namely TRPV1-4, TRPA1 and TRPM8 (Boczek &

Zylinska, 2021; Muller et al., 2019). In astrocytes, these so-called

“ionotropic cannabinoid receptors” are mainly associated to spatiotem-

poral coordination of Ca2+ and sodium (Na+) transients, that further

transduce in various internal signaling cascades with multiple outcomes

(Verkhratsky et al., 2014). The astrocytic expression and functional rele-

vance of TRPV1, TRPV2, TRPV4, and TRPA1 is widely accepted

(Benfenati et al., 2011; Luo et al., 2020; Shibasaki et al., 2013;

Shigetomi et al., 2013; T�oth et al., 2005; Yang et al., 2019). Additionally,

a recent study using primary cultures derived from piglet brains sug-

gested the presence of TRPM8 in astrocytes (Fedinec et al., 2021).

F IGURE 1 Endocannabinoid system elements in astrocytes. Upon depolarization, endocannabinoids (eCBs) are synthetized “on demand” and
released from the postsynaptic terminal. eCBs will travel retrogradely to the presynaptic neuron to inhibit neurotransmitter release but also to the
astrocytic thin processes, regulating astrocyte physiology. One of the most well-known consequences of eCBs effects on astrocytes is the
increase in cytosolic Ca2+ signals through cannabinoid (CB1) activation. However, astrocytes express other receptors associated to eCB signaling,
which, upon activation may modulate several astroglial functions, such as release of gliotransmitters, metabolism or immune response via
different signaling pathways. Of note, besides CB1 (and maybe CB2), other potential cannabinoid receptors have been described in astrocytes,
such as GPR55 and GPR18 as well as different transient receptor potential (TRPs) such as TRPV1, TRPV2, TRPV4, TRPA1 or TRPM8. Moreover,
the intracellular receptors peroxisome proliferator-activated receptors (PPARs) (α, β and γ) have been described as potential cannabinoid
receptors in astrocytes. Furthermore, functional CB1 receptors were found associated to astroglial mitochondria. Finally, astrocytes also express
all the enzymes that take part in synthesis and catabolism of both anandamide (AEA) (N-arachidonoylethanolamine phospholipase D [NAPE-PLD]
for synthesis and fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase [NAAA] for degradation) and 2-AG (diacylglycerol

lipase α [DAGLα] for synthesis and monoacylglycerol lipase [MAGL], Alpha/beta-hydrolase domain containing 12 [ABHD12], Alpha/beta-
hydrolase domain containing 6 [ABHD6] for catabolism), suggesting its implication in eCBs production and degradation.

ERASO-PICHOT ET AL. 3
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Finally, even though TRPV3 is known to be present in the brain, there

is no evidence so far for its expression in astrocytes (Luo et al., 2020;

Xu et al., 2002). However, the impact of (endo)cannabinoids on astro-

glial functions through this family of receptors is still to be established.

Regarding PPARs, these proteins constitute a family of nuclear

hormone receptors that regulate gene expression by binding to DNA

sequences called PPAR response elements upon ligand-dependent

activation (Bugge & Mandrup, 2010). All three subtypes of PPARs (α,

β, and γ) have been associated to some of the

CB1/CB2-independent cannabinoid effects (O'Sullivan, 2016; Sun &

Bennett, 2007). In mice, astrocytes have been reported to express

PPARα and PPARγ, but no PPARβ (Warden et al., 2016). Interest-

ingly, the expression of these receptors varies according to the brain

region, with a lower expression in the ventral tegmental area com-

pared to the prefrontal cortex, nucleus accumbens or amygdala, sug-

gesting the idea of an area-specific or circuit-specific astrocytic

cannabinoid signaling. Moreover, these receptors exhibit different

subcellular distributions: while PPARα is localized in the astrocytic

cell body and processes, astroglial PPARγ is mostly present in the cell

body and scarce in processes (Warden et al., 2016). This suggests a

potential for a PPAR-mediated diversity of function of cannabinoids

in astrocytes yet to be unveiled.

Importantly, astrocytes are not only passive eCB “receivers” and

some evidence has shown that these cells participate in eCB metabo-

lism. First, astrocytes have a well-recognized role on eCB degradation.

In the context of retrograde signaling, astrocytes and neurons contrib-

ute synergistically to 2-AG signaling termination through monoacyl-

glycerol lipase (MAGL), its main degrading enzyme (Chen et al., 2016;

Liu et al., 2016; Viader et al., 2015). Alpha/beta-hydrolase domain

containing 6 (ABHD6) and Alpha/beta-hydrolase domain containing

12 (ABHD12) also contribute for astrocytic 2-AG degradation, what

can be particularly relevant in adaptative responses to certain patho-

logical conditions (Marrs et al., 2010; Moreno-García et al., 2020;

Viader et al., 2016). Regarding AEA degradation, astrocytes dynami-

cally express its main catabolic enzyme, fatty acid amide hydrolase

(FAAH), which is upregulated in certain neuroinflammatory responses

(Benito et al., 2007; Kallendrusch et al., 2012; Moreno-García

et al., 2020; Núñez et al., 2008). Moreover, astrocytes also express N-

acylethanolamine acid amidase (NAAA), an alternative AEA degrada-

tion enzyme, although in lower levels when compared to FAAH

(Kallendrusch et al., 2012; Moreno-García et al., 2020).

Finally, although it was early demonstrated that cultured astro-

cytes can produce both AEA and 2-AG (Walter et al., 2002, 2004;

Walter & Stella, 2003), there is an ongoing debate about the func-

tional significance of astroglial-derived eCBs (Covelo et al., 2021).

Nonetheless, the expression of the main enzymes responsible for

2-AG and AEA production, diacylglycerol lipase α (DAGLα) and

N-arachidonoylethanolamine phospholipase D (NAPE-PLD) respec-

tively, was characterized in cultured astrocytes (Kallendrusch

et al., 2012; Viader et al., 2016) and their mRNA can also be detected

ex vivo (Schüle et al., 2021). Interestingly, this machinery seems to be

sensitive to changes in the environment, such as during maternal calo-

ric restriction in rats (Tovar et al., 2021).

3 | ROLE OF ENDOCANNABINOID
SYSTEM IN ASTROGLIAL CALCIUM
SIGNALING

3.1 | Calcium signaling in astrocytes

Being electrically nonexcitable cells, astrocytes communicate with

other cell types through different mechanisms that are largely regu-

lated by intracellular Ca2+ levels. These Ca2+ fluctuations in astro-

cytes are then modulated by environmental conditions. Ca2+ increase

is mediated either by Ca2+ entry from the extracellular space through

the plasma membrane or by Ca2+ release from the intracellular Ca2+

stores such as the endoplasmic reticulum (ER) and mitochondria. The

resulting Ca2+ events spread within the cell by passive diffusion

and/or by regenerative mechanisms (Semyanov, 2019).

Plasma membrane entrance pathways consist in ligand-activated

cation permeable ionotropic receptors, such as N-methyl-d-aspartate

(NMDA), purinergic P2X(1/5) receptors (Lalo et al., 2006; Palygin

et al., 2010), TRP channels that sense various changes in the environ-

ment (Verkhratsky et al., 2014), store operated Ca2+ entrance

(Sakuragi et al., 2017), voltage-gated Ca2+ channels (VGCCs)

(Carmignoto et al., 1998), and the sodium/calcium exchanger (NCX)

operating in reverse mode (Kirischuk et al., 2012). Note that these

sources can work together with intracellular Ca2+ stores. For instance,

it has been proposed that Ca2+ entry through VGCCs is very small in

astrocytes, but it can trigger Ca2+ release from the ER (Carmignoto

et al., 1998). The Ca2+ events are terminated by the inactivation of

the Ca2+ source and by Ca2+ extrusion through the plasma membrane

and/or uptake to the intracellular Ca2+ stores. The infinite possibilities

of combinations result in a high diversity of Ca2+ events, whose

decoding is still far to be achieved.

In astrocytes, Ca2+ release from ER is mediated by the Inositol tri-

sphosphate Receptor (IP3R) (Kirischuk et al., 1999; Ullah et al., 2006).

Ca2+ and IP3 are co-agonists of IP3Rs (Bezprozvanny et al., 1991;

Dupont & Goldbeter, 1993; Mak et al., 1998). Ca2+ elevations reach-

ing the IP3R activation threshold can trigger a release of Ca2+ from

the ER (Shinohara et al., 2011; Wu et al., 2019), a process known as

Ca2+-induced Ca2+ release. IP3Rs activation threshold depends on

the level of IP3: when it increases, IP3Rs become more sensitive to

Ca2+, which enhances their opening probability, and consequently

IP3R-mediated amplification and propagation of Ca2+ events (Mak

et al., 1998; Shinohara et al., 2011). Astrocytes express several types

of Gq-protein coupled receptors which can trigger IP3 production via

phospholipase C (PLC) activation: metabotropic glutamate receptor

5 (mGluR5) which can be activated following synaptic glutamate

release (Bradley & Challiss, 2012; Nakahara et al., 1997; Umpierre

et al., 2019), Gq-protein coupled purinergic P2Y receptors (Fumagalli

et al., 2003; Helen et al., 1992), serotoninergic 5HT2 A, adrenergic

α1AR Gq-protein coupled receptors (O'Donnell et al., 2015; Porter-

Stransky et al., 2019; Xu & Pandey, 2000) and CB1 (Navarrete &

Araque, 2008). Of note, IP3R activity is regulated by cytosolic Ca2+

following a bell shape dependency: low concentrations of Ca2+

(50 nM–1 μM) increase the opening probability of IP3R, whereas

4 ERASO-PICHOT ET AL.
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higher concentrations (more than 1 μM) lower it. It has been proposed

that high concentrations of Ca2+ at the mouth of the channel might

prevent the propagation of the Ca2+ signal by inhibiting the channel

activity (Foskett & Mak, 2010).

Other important players in astrocytic Ca2+ dynamics, and poten-

tially astrocytes regulation of synaptic function, are mitochondria

(Stephen et al., 2014). Mitochondria act globally as Ca2+ stores.

Mitochondrial Ca2+ uptake is mostly mediated by the mitochondrial

Ca2+ uniporter (MCU) and Ca2+ release by mitochondrial NCX,

H+/Ca2+ exchanger, and the permeability transition pore (PTP) (O-

Uchi et al., 2012; Rizzuto et al., 2012). These transport mechanisms

are located in the inner mitochondrial membrane, whereas the outer

mitochondrial membrane is highly permeable to soluble molecules

smaller than 5 kDa, including Ca2+. MCU drives the entry of large flux

of Ca2+ into mitochondria, but it operates at micromolar cytosolic

Ca2+ levels, which are usually only reached at the mouth of Ca2+

sources (Boyman & Lederer, 2020; Williams et al., 2013). When mito-

chondria are located in close proximity to the ER at the level of mito-

chondria/ER contacts (MERCs), MCU can contribute to the removal

of Ca2+ released by IP3Rs (Boyman & Lederer, 2020; Marchi &

Pinton, 2014; Rizzuto et al., 2012). MERCs have been observed in

astrocytes processes and endfeet (Gӧbel et al., 2020), and the expres-

sion of some MERCs-constitutive proteins induces Ca2+ transfer from

the ER to mitochondria (Eraso-Pichot et al., 2017). However, it is not

clear how mitochondria Ca2+ uptake affects cytosolic Ca2+ transients

in astrocytes. Some studies have reported that the impairment of the

mitochondrial function increases the propagation and the duration of

Ca2+ signals, which would suggest that mitochondria modulate nega-

tively Ca2+ waves propagation (Boitier et al., 1999; Jackson &

Robinson, 2015; Reyes & Parpura, 2008). On the other hand, other

studies have observed that amplification sites for Ca2+ waves are

characterized by accumulations of ER Ca2+ signaling proteins (calreti-

culin and IP3R), and by the presence of mitochondria (Simpson

et al., 1997). Hence, ER-mitochondria Ca2+ transfer could be needed

for the propagation of cytosolic Ca2+ waves in astrocytes. Recently,

we have shown that pharmacological inhibition or overexpression of a

dominant negative mutant of MCU hamper the propagation of cyto-

solic Ca2+ events (Serrat et al., 2021). Altogether, these data suggest

that mitochondria might prevent IP3R self-inhibition by buffering the

released Ca2+ at the mouth of the channel in astrocytes. Hence,

depending on the studies, mitochondria appear as downregulators or

enhancers of cytosolic Ca2+ signals. Discrepancies could originate

from the different stimuli used (physiological synaptic stimulation vs

pharmacological [ATP] or mechanical stimuli) and the type of mito-

chondrial drugs used (mitochondrial uncoupler or diverse MCU

inhibitors).

3.2 | Calcium patterns modulation following
synaptic events

Astrocytes exhibit local and short Ca2+ events under resting condi-

tions. The precise mechanisms by which those spontaneous Ca2+

transients are generated remain debated. Although it has been pro-

posed that they could be linked to spontaneous synaptic vesicle

release (Sun et al., 2014), astrocytes are still able to generate sponta-

neous Ca2+ events when neuronal and astrocytic vesicular release is

blocked by bafilomycin A1 (Bowser & Khakh, 2007; Nett et al., 2002).

Alternatively, stochastic opening of IP3Rs could underline spontane-

ous Ca2+ transients (Foskett & Mak, 2010). However, knockout of

astrocytic IP3R type 2 still display spontaneous Ca2+ events

(Sherwood et al., 2017; Srinivasan et al., 2015). Finally, a recent report

has suggested that brief openings of PTP can be responsible for astro-

cytic spontaneous Ca2+ events in the absence of IP3R-mediated Ca2+

release (Agarwal et al., 2017). Most likely, they are generated by sto-

chastic Ca2+ fluxes through multiple pathways. Interestingly, changes

in the properties of Ca2+ events (frequency, duration, and spread)

occur in response to changes in environment, such as increased neu-

ronal activity or high metabolic demand.

Extensive literature has shown that synaptic activity induces

intracellular Ca2+ transients in astrocytes (Araque et al., 2001;

Haydon & Carmignoto, 2006; Nedergaard et al., 2003; Panatier

et al., 2011; Perea et al., 2009; Perea & Araque, 2005; Porter &

McCarthy, 1996; Volterra & Meldolesi, 2005), through the activation

of astroglial neurotransmitter receptors coupled to second messenger

pathways. In turn, Ca2+ elevations cause the release of different sig-

naling molecules, termed gliotransmitters, that modulate neuronal

excitability and synaptic transmission (Araque et al., 1999; Beattie

et al., 2002; Perea & Araque, 2007). Different patterns of neuronal

activity are encoded in spatial and temporal properties of astroglial

Ca2+ events. Thus, astrocytes display a highly complex repertoire of

subcellular and intercellular Ca2+ signals that can be generated by dif-

ferent routes and involve different subregions of the cells.

For instance, spatial propagation of Ca2+ signals has been

observed following application of mGluR agonists and low or high fre-

quency stimulation of Schaffer collaterals (Navarrete & Araque, 2008;

Sun et al., 2014; Wu et al., 2014). Propagation of Ca2+ transients is

hypothesized to allow astrocytes to convey messages to distant syn-

apses (Semyanov, 2019). This modulation of Ca2+ event properties

was abolished by mGluR antagonists, by IP3 buffering via overexpres-

sion of an IP3 sponge (modified ligand-binding domain of the IP3R) or

by knocking out the astrocyte-specific IP3R (Rungta et al., 2016;

Sherwood et al., 2017; Srinivasan et al., 2015; Tanaka et al., 2013).

The IP3R is the ideal support for the spatial propagation of Ca2+ tran-

sients upon neuronal stimulation. Indeed, glutamate, ATP, noradrena-

line and eCBs can activate GPCRs and thereby increase the

production of diacylglycerol and IP3 by PLC. The resulting high cyto-

solic IP3 levels increase the probability that spontaneous Ca2+ fluctu-

ations are amplified by Ca2+-induced Ca2+ release. This amplification

can convert spatially restricted Ca2+ transient into propagating

events. The central role of IP3R in the propagation of Ca2+ transient

in astrocytes was illustrated in a couple of studies using KO mice for

IP3R2 in astrocytes. Spontaneous Ca2+ fluctuations still occur in those

mice, but they can no longer be amplified by Ca2+-induced Ca2+

release (Rungta et al., 2016; Sherwood et al., 2017; Srinivasan

et al., 2015; Tanaka et al., 2013). Recent work from our team also
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suggests that neuronal activity can modulate IP3R activity by tuning

the Ca2+ uptake into mitochondria (Serrat et al., 2021). Interestingly,

mtCB1 is involved in this mechanism, as will be discussed below.

3.3 | Cannabinoid modulation of calcium signals in
astrocytes

The most studied example of how cannabinoids may modulate neuro-

nal communication through astrocytic Ca2+ signals so far is the CB1

receptor. In 2008, Alfonso Araque's group demonstrated that CB1

expressed in hippocampal astrocytes could be activated by exogenous

cannabinoids as well as by eCBs released by neurons following neuro-

nal stimulation. CB1 activation increased astrocyte Ca2+ levels

through PLC-dependent Ca2+ release from the ER, ultimately inducing

cytosolic Ca2+ increases in astrocytes soma and processes. This

CB1-induced Ca2+ increase can spread along the cell and induce the

release of gliotransmitters at distal regions (Navarrete &

Araque, 2008). This propagation of astrocytic Ca2+ signals has been

shown to induce short-term (Covelo & Araque, 2018; Navarrete &

Araque, 2010) or long-term potentiation (G�omez-Gonzalo et al., 2015)

at distant synapses. In this aspect, astroglial CB1 act through specific

signaling pathways that differ from the canonical neuronal ones that

occur at short distances and result in a presynaptic inhibition of neu-

rotransmitter release (Kano et al., 2009). Interestingly, other studies

have shown that the physiological or the pharmacological activation

of CB1 produces astrocytic Ca2+ increase (Hegyi et al., 2018;

K}oszeghy et al., 2015; Robin et al., 2018). However, in these works,

the mechanisms involved in the propagation of the Ca2+ signal were

not explored.

At subcellular level, CB1 receptors in astrocytes have been

observed not only at the plasma membrane but also associated with

intracellular organelles like mitochondria (Gutiérrez-Rodríguez

et al., 2018; Jimenez-Blasco et al., 2020). Contrary to other pools of

CB1, astroglial mtCB1 activation has been associated with Gαi/o pro-

teins, inhibition of mitochondrial soluble adenylyl cyclase (sAC) and

reduction of mitochondrial respiration through the regulation of spe-

cific mitochondrial respiratory subunits (Hebert-Chatelain et al., 2016;

Jimenez-Blasco et al., 2020). Our recent paper shows that the physio-

logical spreading of astrocytic Ca2+ events in the context of lateral

potentiation requires mtCB1 signaling (Serrat et al., 2021). Indeed, lat-

eral potentiation is virtually abolished in mice expressing DN22 CB1,

a mutant version of this receptor that is excluded from mitochondria

(Hebert-Chatelain et al., 2016; Soria-Gomez et al., 2021). We hypoth-

esize that the activation of mtCB1 enhances the transfer of Ca2+

between ER and mitochondria, removing the inhibition of IP3R by

buffering the released Ca2+ at the mouth of the channel. Indeed, in

cultured astrocytes, almost 100% of mitochondria are located less

than 100 nm from ER, a distance that permit Ca2+ exchanges

between the two organelles (Csordás et al., 2018). In addition, activa-

tion of mtCB1 receptors induces ER-mitochondria Ca2+ transfer.

mtCB1 has also been identified in astrocytic processes, in the vicinity

of synapses (less than 1 μM away [Gutiérrez-Rodríguez et al., 2018]).

Hence, all the machinery needed for mtCB1-regulated

ER-mitochondria Ca2+ transfer is present in astrocytic processes. In

addition, in our hand, MCU inhibition affects the spatial and temporal

spreading of subcellular Ca2+ events following strong stimulation of

Schaffer collaterals in hippocampal slices, a protocol known to induce

lateral potentiation (Serrat et al., 2021).

Interestingly, other members of the ECS are potential modulators

of Ca2+ signals in astrocytes. Astrocytes express a huge variety of

TRP channels that may control astrocytic Ca2+ signals (Verkhratsky

et al., 2014) and are potentially modulated by both endogenous and

exogenous cannabinoids (Muller et al., 2019). For instance, TRPA1,

which has been implicated in the regulation of astrocyte resting Ca2+

(Shigetomi et al., 2013), has shown also cannabinoid-mediated activity

(Muller et al., 2019). Also, in Drosophila melanogaster, the TRP analog

water witch (WTRW) has been seen to control Ca2+ dynamics in

astrocytes, modulating neuronal activity and behavior (Ma

et al., 2016). Interestingly, this same channel in astrocytes and neu-

rons is modulated by AEA metabolites and protects against seizures

(Jacobs & Sehgal, 2020), thus opening the door for further effects of

cannabinoids on astrocyte Ca2+ regulation in a CB1-independent

manner.

3.4 | Cannabinoid modulation of gliotransmission

The cannabinoid regulation of Ca2+ signals was linked to the astroglial

release of a number of gliotransmitters. These active molecules,

including ATP, glutamate, D-Serine, and GABA, released in many dif-

ferent brain regions, such as the hippocampus, amygdala, striatum or

spinal cord (Carlsen et al., 2021; Covelo & Araque, 2018; Martín

et al., 2015; Martin-Fernandez et al., 2017; Navarrete &

Araque, 2008; Robin et al., 2018) were shown to modulate a number

of short- and long-term effects on synaptic transmission at both inhib-

itory and excitatory synapses (for recent review see [Covelo

et al., 2021]). While the role of glial cells on cannabinoid-mediated

synaptic effects is well described, the molecular and cellular mecha-

nisms of gliotransmitter release from astrocytes are yet to be fully

understood.

One of the general mechanisms used by eukaryotic cells to export

their contents to the extracellular space is through vesicular release

dependent on SNARE proteins. These proteins, also expressed in

astrocytes, were suggested to be major mediators of gliotransmission

(Araque et al., 2000; Navarrete et al., 2019; Schwarz et al., 2017).

Likewise, it was proposed that they are involved in a mechanism by

which cannabinoid-activated astrocytic Ca2+-signaling affects synap-

tic function. Min and Nevian (2012) showed that eCB mediated spike

timing-dependent depression (t-LTD) in the rat barrel cortex relies on

SNARE-dependent exocytosis of astroglial glutamate. Another study

found that CB1 receptor activation triggers the release of D-serine

and ATP from neocortical astrocytes by SNARE-dependent mecha-

nism (Rasooli-Nejad et al., 2014). Interestingly, one alternative, nonve-

sicular mechanism was recently proposed to rely on astroglial

hemichannels (Labra et al., 2018). In agreement with this hypothesis,

6 ERASO-PICHOT ET AL.
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it was previously shown that AEA may facilitate the opening of astro-

cytic hemichannels in the healthy brain, suggesting that the eCB might

participate in the mechanisms of ATP release (Vázquez et al., 2015).

More in depth investigation of different mechanisms governing glio-

transmission in the future might help to disentangle the complex eCB-

mediated effects on synaptic transmission.

In the classical model of cannabinoid signaling, eCBs are released

from postsynaptic neurons upon neuronal activation and travel across

synapses, activating CB1 on presynaptic axons and glia to modulate

neurotransmission. Thus, so far, the majority of research on the can-

nabinoid effects on glia–neuron communication focused on

CB1-regulated gliotransmission. However, recently accumulating evi-

dence suggests that glial cells are not only affected by cannabinoids,

but, as we mentioned before, they also possess functional machinery

to produce and release them. Early evidence showing that ATP stimu-

lation increased 2-AG production in astrocytes in vitro (Walter

et al., 2004; Witting et al., 2004), was followed by recent work that

demonstrated that cultured spinal astrocytes co-express CB1 and the

2-AG synthesizing enzyme, DAGLα, and that upon cannabinoid stimu-

lation astrocytes produce 2-AG in a Ca2+-dependent manner (Hegyi

et al., 2018). In line with this, (Schüle et al., 2021) showed that a sub-

population of astrocytes in the adult mouse brain expresses DAGLα

and that genetic deletion of this enzyme in glutamate/aspartate

transporter-expressing astrocytes resulted in altered affective behav-

iors in female mice. Furthermore, one recent study suggested that

astrocyte-derived eCBs are involved in transient heterosynaptic

depression in the hippocampus (Smith et al., 2020). Taken together,

these results point out to a potential role of astrocyte-derived eCBs in

the regulation of brain functions, an interesting direction for future

studies.

4 | ENDOCANNABINOID SYSTEM
REGULATION OF ASTROCYTE METABOLISM

4.1 | Astrocyte metabolism

One of the key and best studied functions of astrocytes is their

contribution to brain metabolism in general and to neuronal

metabolism in particular. In that sense, metabolic compartmentali-

zation between astrocytes and neurons has risen to a complex pic-

ture in which many metabolic pathways start in one cell type and

end in the other (Bélanger et al., 2011). The prototypical example

of this compartmentalization is the well-known astrocyte-neuron

lactate shuttle (ANLS). The ANLS claims that astrocytes are capa-

ble to perform aerobic glycolysis and release lactate that will be in

turn used by neighboring neurons as a metabolic or signaling mole-

cule (Barros, 2013; Bélanger et al., 2011; Pellerin &

Magistretti, 1994).

The discovery of the ANLS led to the idea that astrocytes are

mainly glycolytic cells, while neurons rely on their mitochondrial meta-

bolic activity to sustain their high energy demands. However, some

recent studies propose that astrocytes show a more complex and

versatile metabolism than previously thought. As an example, astro-

cytes are able to perform fatty acid oxidation (Ebert et al., 2003;

Eraso-Pichot et al., 2018; Fecher et al., 2019) although the contribu-

tion of this pathway to the general brain metabolism is still a matter of

debate (Schönfeld & Reiser, 2013, 2021).

In addition, although to a lower level than some peripheral tissues

such as the liver, astrocytes present glycogen reserves, which can be

rapidly metabolized to obtain ATP and lactate (Bak et al., 2018).

Finally, other metabolic pathways have been proposed to mediate this

astrocyte-neuron metabolic coupling and add layers to astrocyte met-

abolic complexity, such as the oxidation of glutamate and the

glutamate-glutamine cycle (Schousboe et al., 2014).

Interestingly, the metabolic complexity of astrocytes depends on

environmental conditions. The best-known example of astrocytic

adaptation to neuronal demands is the aforementioned ANLS, where

neuronal activity through glutamate release is able to inhibit astrocytic

mitochondrial activity and increase aerobic glycolysis and lactate

release (Pellerin et al., 2007). However, many other metabolic path-

ways in astrocytes have been demonstrated to be plastic upon neuro-

nal activity such as the glycogenolysis (Magistretti et al., 1981), the

oxidation of fatty acids (Eraso-Pichot et al., 2018) or the glutamate-

glutamine cycle (Schousboe et al., 2014).

Cannabinoids are amongst the signaling molecules that may serve

as environmental cues to induce changes in astrocytic metabolism,

and could help explain how astroglial metabolic adaptations are neces-

sary for brain physiology. Interestingly, exogenous and endogenous

cannabinoids exert an effect on brain glucose levels that point to

them as regulators of astrocytic metabolism (Brett et al., 2001;

Margulies & Hammer, 1991; Nogueiras et al., 2009; Volkow

et al., 1991).

4.2 | Endocannabinoid impact on astrocyte
metabolism

Evidence for the different roles of cannabinoids in astrocytic metabo-

lism came mostly from the use of exogenous cannabinoids like THC

to change astrocytic metabolic pathways. For instance, one of the ear-

liest hints of the direct impact of cannabinoids in astrocyte glucose

metabolism was provided by the observation that THC stimulates glu-

cose utilization possibly through CB1 receptors or other alternative

noncanonical pathways in cultured astrocytes (Sánchez et al., 1998).

On the other hand, pharmacological activation of cannabinoid recep-

tors induced suppression of glucose metabolism in the astrocytic tri-

carboxylic acid (TCA) cycle in hippocampal slices, blocked by a specific

CB1 antagonist (AM251) (Duarte et al., 2012).

Recent studies revealed the link between astrocytic mtCB1

receptors, astrocyte glucose metabolism and THC-induced defects in

social behavior. In that study, 24 h THC treatment induced a decrease

in complex I stability and function, eventually leading to a decrease of

lactate production that resulted in impaired social behaviors. These

metabolic changes were mediated by mtCB1 and were due to a

decrease of phosphorylation of the Ser 173 residue of NADH:
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ubiquinone oxidoreductase subunit S4 (NDUFS4) by intra-

mitochondrial protein kinase A (PKA)/cAMP signaling (Jimenez-Blasco

et al., 2020). The changes in mitochondrial complex I affected not only

mitochondrial respiration, but also reduced astrocytic mitochondrial

reactive oxygen species (mROS). Astrocytes produce a higher amount

of mROS than neurons, which plays a key role on the physiological

regulation of glucose utilization and neuronal survival (Vicente-

Gutierrez et al., 2019). The transcription factor hypoxia-inducible fac-

tor 1 (HIF-1) senses mROS and regulates glycolysis, impacting the

conversion of glucose to lactate (Kim et al., 2006). THC treatment

decreased the expression of the alpha subunit of HIF-1, which

resulted in a decrease of lactate production, both in cultured astro-

cytes and in vivo, in an mtCB1 dependent manner, affecting social

behaviors in mice (Jimenez-Blasco et al., 2020). In summary, this study

showed that exogenous cannabinoid-induced bioenergetic stress in

the astrocytes directly impacts neuronal functions in vivo.

In relation to eCBs, one study focusing on brain ischemia sug-

gested a possible relation between 2-AG and astrocytic glucose

metabolism regulation: the authors showed that after short glucose

and oxygen deprivation, treatment of primary astrocytes with 2-AG

increased their survival via STAT3 (Wang et al., 2016). STAT3 is a

transcription factor that regulates aerobic glycolysis and ROS produc-

tion in astrocytes (Sarafian et al., 2010) and while the mechanisms of

the action of 2-AG remain unexplored, this evidence could suggest a

link between this endogenous messenger and astrocytic metabolism.

CB2 receptors have also been studied in the context of astrocytic

metabolism, although scarcely. In vitro, activation of CB2 in cultured

cortical astrocytes with the selective agonists GP1a and JWH133 led

to an increase of glucose transport, which was blocked by AM630, a

selective CB2 antagonist. Moreover, the inhibition of cyclooxygenase

2, an enzyme that, amongst other functions, have been shown to par-

ticipate in the degradation of AEA, induced an increase in glucose

uptake in ex vivo hippocampal slices, which was blocked by CB2 acti-

vation (Köfalvi et al., 2016). However, it is possible that this effect is

not due to the direct stimulation of glucose metabolism by CB2 but

more because of a change on transporter localization dynamics in the

plasma membrane, since the CB1/CB2 agonist WIN55,212-2

decreases mitochondrial oxidative glucose metabolism through CB1

receptors in astrocytes (Duarte et al., 2012).

As mentioned above, glutamate metabolism is another of the

astrocytic functions that contribute to brain energy homeostasis and

neuronal functions. Although glutamate is mostly metabolized into

lactate in the TCA cycle, about 30% of the glutamate is transformed

to glutamine to then be transported to neurons (Schousboe

et al., 1993). When THC is injected in the brain of rats, the expression

of the enzyme glutamine synthetase (GS) – that metabolizes synaptic

glutamate into glutamine– is reduced (Suárez et al., 2002). Interest-

ingly, endogenous 2-AG protects against GS changes induced by lipo-

polysaccharide (LPS) activation of cultured primary astrocytes: during

the early phase of the treatment, GS shows an upregulation linked to

p38 phosphorylation that can be blocked by 2-AG, an effect that is

not present after treatment with AM630, a CB2 receptor antagonist.

Moreover, during the late phase of activation via LPS, extracellular

signal-regulated kinases 1/2 (ERK1/2) phosphorylation mediates a

downregulation of GS, which is reversed by 2-AG. This effect is par-

tially blocked by both AM281 and AM630 suggesting the role of both

CB1 and CB2 receptors in this process (Wang et al., 2018). Although

underexplored, this evidence suggests a role for eCB modulation of

glutamate/glutamine metabolism in astrocytes.

Regarding cannabinoid-modulation of other metabolic pathways

in astrocytes, THC has been seen to activate carnitine palmitoyltrans-

ferase 1 (CPT1) and ketogenesis in cultured astrocytes in a

CB1-dependent manner (Blazquez et al., 1999). This effect, together

with other observations in other organs showing a CB1-depedent

modulation of fatty acid oxidation (Jourdan et al., 2012), suggests a

role for cannabinoids in the modulation of astrocytic fatty acid oxida-

tion, which may be complementary to their effect in glucose usage.

Finally, a work from our lab established an indirect regulation of glyco-

gen content mediated by CB1 in astrocytes (Bosier et al., 2013), again

opening new ways of cannabinoid regulation of astrocytic

metabolism.

In summary, the impact of eCBs on astrocyte metabolism remains

highly unexplored, but evidence of exogenous cannabinoids and

receptor pharmacology points to a complex regulation of multiple

pathways in these glial cells, which might link regulation of metabo-

lism to brain functions and behavior.

5 | ROLE OF THE ENDOCANNABINOID
SYSTEM IN ASTROGLIAL INFLAMMATORY
PROCESSES

5.1 | Astrocyte implication in inflammation

Astrocytes are known to play key roles in the CNS inflammation in

response to innate and adaptive immune responses. First, astrocytes

are major players in the maintenance and permeability of the blood–

brain barrier, thus controlling immune infiltration in the brain. Second,

astrocytes are immune-competent cells, meaning that they are able to

respond to danger signals through the release of cytokines and che-

mokines, activating adaptive immune defense (Colombo &

Farina, 2016).

Like many elements of these pathways, the role of astrocytes in

the development and maintenance of inflammation in the CNS is mul-

tiple. For instance, depending on the nature of the stimulus as well as

the phase of the inflammation process, astrocytic immune activation

may be detrimental or protective (Sofroniew, 2020).

One of the most-studied and best-known indicators of astrocytic

responses to danger, linked to the astrocyte contribution to CNS

inflammation, is astrogliosis. Astrogliosis has been broadly studied for

over a century as a hallmark of brain disease conditions, and it was

considered to be a morphological change occurring in astrocytes

through the increased expression of GFAP, a major protein constitu-

ent of astrocytic intermediate filaments. However, nowadays, and

thanks to the contributions of years of research in different labs, its

definition has changed to a complex process whereby astrocytes, in

8 ERASO-PICHOT ET AL.

 10981136, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/glia.24246 by U

niversite D
e B

ordeaux, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



response to pathology, “engage in molecularly defined programs

involving changes in transcriptional regulation, as well as biochemical,

morphological, metabolic, and physiological remodeling, which ulti-

mately result in gain of new function(s) or loss or upregulation of

homeostatic ones” (Escartin et al., 2021). Interestingly, this process

depends on the injury as well as the area affected and it can be pro-

tective or detrimental depending on the population, the nature of the

danger or the state of the inflammation, so it seems meaningless to

consider astrogliosis as a whole as a friend or a foe of the inflamma-

tory processes (Escartin et al., 2021).

Interestingly, both endogenous and exogenous cannabinoids have

been shown to be key players in the inflammatory responses of the

brain, even being considered as potential targets in the treatment of

some diseases that involve inflammatory processes (Kasatkina

et al., 2021). The cellular mediators of these effects, however, are not

clear yet. Given their role in the control of inflammatory responses,

astrocytes are potential players in the modulation of inflammation by

cannabinoids; however, the direct link is still missing. Here we will

present some findings that point to astrocytes as possible mediators

of the cannabinoid-mediated effects on CNS inflammation.

5.2 | Cannabinoid impact on astrocyte-mediated
inflammation

Evidence on the role of cannabinoids in astrocyte-mediated inflamma-

tion came from studies in astrocytic cultures. In these early works,

AEA was shown to modulate astrocytic immune responses to differ-

ent stimuli, such as infection with Theiler's murine encephalomyelitis

virus (TMEV) or treatment with LPS. In these works, AEA treatment

decreases nitric oxide and tumor necrosis factor α (TNFα) release in

response to these insults (Molina-Holgado et al., 1997), as well as to

increase the release of interleukin-6, considered to be anti-

inflammatory and immunosuppressive, in astrocytic cultures infected

with TMEV (Molina-Holgado et al., 1998). Moreover, AEA and the

synthetic cannabinoid analog CP-55940 reduced nitric oxide produc-

tion induced by LPS stimulation in a CB1 and CB2 dependent mecha-

nism (Molina-Holgado et al., 2002). In the same line, application of the

synthetic cannabinoid WIN55,212-2 was shown to inhibit the genera-

tion of inflammatory mediators in interleukin-1β-stimulated human

astrocytes (Sheng et al., 2005). Finally, UCM707, a potent and selec-

tive AEA uptake inhibitor, was able to reduce the production of proin-

flammatory molecules in LPS-treated astrocytes also in a CB1 and

CB2 dependent manner, thus emphasizing a role of astroglial eCBs in

this process (Ortega-Gutiérrez et al., 2005). These early works sug-

gested a role of cannabinoids in the modulation of astrocytic inflam-

matory responses via different signaling mechanisms.

Interestingly, contrary to the other astrocytic functions explained

in this review, the regulation of the astrocytic inflammatory processes

by cannabinoids has been described to be modulated through differ-

ent mechanisms. In all these early works, many of the cannabinoid

effects were found to be modulated, but not completely blocked by

CB1 and CB2 antagonism, suggesting an involvement of other ECS

members. As an example, recent evidence point to a protective role of

palmitoylethanolamide (PEA), which can be considered as an

“extended endocannabinoid” (Cristino et al., 2020), in different

models of Alzheimer's disease (Beggiato et al., 2018; Bronzuoli

et al., 2018; Scuderi et al., 2011). PEA has been demonstrated to exert

some of its effects in astrocytes, reducing the release of inflammatory

mediators and thus promoting neuronal survival (Beggiato

et al., 2020). Interestingly, PEA seems to act through PPARα recep-

tors, which are expressed in astrocytes but are not the classic cannabi-

noid receptors (Scuderi et al., 2012).

Another mechanism by which astrocytes contribute to inflamma-

tory processes seems to be the degradation of the eCB signals. In fact,

it has been demonstrated that astrocytes play key roles in terminating

the cannabinoid signals from neurons via degradation enzymes such

as MAGL (Viader et al., 2015). In fact, astrocytic-specific deletion of

MAGL attenuates LPS-induced neuroinflammation. Given that MAGL

is the enzyme responsible of degradation of 2-AG to AA, a precursor

of prostaglandin synthesis, the authors suggest that the reduction in

the inflammation is due to the decrease in the synthesis of prostaglan-

dins in the brain, rather than by an increased eCB tone (Grabner

et al., 2016). Anyhow, the link between the eCBs and inflammatory

molecules and their shared pathways in astrocytes needs to be

addressed in more detail and seems also a promising candidate for the

cannabinoid regulation of astrocytic-mediated inflammatory

processes.

Nowadays, different cannabis-derived cannabinoids have gained

interest due to their anti-inflammatory effects in different pathological

models (Graczyk et al., 2021). Given the relevant role of astrocytes in

brain inflammation, it seems logic that some of these effects of canna-

binoids are mediated by astrocytes. As reviewed here, some evi-

dences have found this link between cannabinoids, astrocytes, and

inflammation. Interestingly, many of these effects seem to be medi-

ated by other receptors than CB1 such as CB2 or nonclassical canna-

binoid receptors, opening new possibilities by which cannabinoids

may regulate the other astrocytic functions. However, the exact

mechanism of the different cannabinoids in regulating CNS inflamma-

tion through astrocytes -especially in vivo- are still lacking and repre-

sent a great target for future studies and application of cannabinoids

as brain anti-inflammatory agents.

6 | CONCLUDING REMARKS

Astrocytes emerged as active players in multiple CNS functions, from

memory encoding to the immune defense of the brain. Interestingly,

some of these functions have been discovered only recently, suggest-

ing that we may have uncovered only the tip of the iceberg of astro-

cytic implication in brain processes. At the same time, although the

study of cannabinoids has traveled a longer way, astrocytic implication

in some of the effects of cannabinoids is just starting to emerge. As

seen in this review, most of the studies so far regarding the cannabi-

noid modulation of astroglial functions are focused on the CB1 recep-

tor. However, astrocyte express other ECS members which are
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gaining more interest since they may be targets of the newly-

discovered promising therapeutic components of the cannabis sativa

plant, such as cannabidiol or cannabigerol. Thus, the field should

address the potential modulation of astroglial functions by these new

components through other ECS members, to have a complete picture

of the role of cannabinoids in astrocytes in physiology and pathology.

Also, cannabinoids might be implicated in other astrocytic functions

with therapeutic interest not addressed in this review, such as in neu-

rotransmitter or ionic uptake (Egaña-Huguet et al., 2021). To summa-

rize, the field is just starting to address the role of astrocytes in some

cannabinoid-mediated effects in the CNS, as seen in some recent dis-

coveries discussed in this review. These studies, together with the

possible implications of other ECS members in astrocyte physiology,

suggest new research paths to understand how (endo)cannabinoid

effects and functions can be exerted through astrocytes and, con-

versely, how astrocytes can contribute to higher-brain functions via

cannabinoid signaling.”
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