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ABSTRACT
Chromatin factors interact with each other in a cell and sequence-specific manner
in order to regulate transcription and a wealth of publically available datasets exists
describing the genomic locations of these interactions. Our recently published BiSA
(Binding Sites Analyser) database contains transcription factor binding locations
and epigenetic modifications collected from published studies and provides tools
to analyse stored and imported data. Using BiSA we investigated the overlapping
cis-regulatory role of estrogen receptor alpha (ERα) and progesterone receptor (PR)
in the T-47D breast cancer cell line. We found that ERα binding sites overlap with a
subset of PR binding sites. To investigate further, we re-analysed raw data to remove
any biases introduced by the use of distinct tools in the original publications. We
identified 22,152 PR and 18,560 ERα binding sites (<5% false discovery rate) with
4,358 overlapping regions among the two datasets. BiSA statistical analysis revealed
a non-significant overall overlap correlation between the two factors, suggesting that
ERα and PR are not partner factors and do not require each other for binding to
occur. However, Monte Carlo simulation by Binary Interval Search (BITS), Relevant
Distance, Absolute Distance, Jaccard and Projection tests by Genometricorr revealed
a statistically significant spatial correlation of binding regions on chromosome
between the two factors. Motif analysis revealed that the shared binding regions
were enriched with binding motifs for ERα, PR and a number of other transcription
and pioneer factors. Some of these factors are known to co-locate with ERα and PR
binding. Therefore spatially close proximity of ERα binding sites with PR binding
sites suggests that ERα and PR, in general function independently at the molecular
level, but that their activities converge on a specific subset of transcriptional targets.

Subjects Bioinformatics, Computational Biology, Molecular Biology
Keywords Transcription factors, Estrogen receptor alpha, Progesterone receptor, ERα, ESR1, PR,
Breast cancer, T47D, BiSA, Genomic region database

INTRODUCTION
The ovarian steroid hormones progesterone and estrogen play critical roles in the

development and progression of breast cancer and endometriosis (D’Abreo & Hindenburg,

2013; Salehnia & Zavareh, 2013; Shao et al., 2014). These hormones exert their functions
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by activating specific nuclear receptors, estrogen binds to estrogen receptor (ERα) and

progesterone binds to progesterone receptor (PR) (Tsai & O’Malley, 1994).

Once activated these receptors bind to their DNA response elements and regulate

transcription of target genes. ERα and PR, along with human epidermal growth factor

receptor 2 (HER2), are used to classify phenotypes in breast cancers and to predict

response to specific therapies (Cadoo, Fornier & Morris, 2013; Kittler et al., 2013). A high

number of ERα positive breast cancers are also PR positive (Cadoo, Fornier & Morris, 2013;

Penault-Llorca & Viale, 2012). Furthermore, studies from animal models and clinical trials

have shown that progesterone via its receptor PR is a major player in development and

growth of breast cancer and uterine fibroids, however, PR inhibits the development of

estrogen-driven endometrial cancer (Ishikawa et al., 2010; Kim, Kurita & Bulun, 2013).

Many recent reviews highlight the importance of the role that progesterone and estrogen

play via their receptors in various types of breast cancers (Abdel-Hafiz & Horwitz, 2014;

Kalkman, Barentsz & van Diest, 2014; Obiorah et al., 2014; Wang & Di, 2014; Yadav et

al., 2014). Therefore it is important to understand how ERα and PR work together in

regulating a number of cellular pathways, and clinical and molecular research on these

factors continue to unveil new insights (Bulun, 2014).

It is acknowledged that ERα and PR binding, as well as that of other steroid hormone

receptors, is assisted by binding of the pioneer transcription factor FOXA1 (Ballare et al.,

2013; Lam et al., 2013) to condensed chromatin, therefore, the interactions of FOXA1

with other factors have been well studied (Augello, Hickey & Knudsen, 2011; Bernardo

& Keri, 2012). There are a number of publications that have studied PR binding sites

in progesterone-treated breast and other tissues (Ballare et al., 2013; Clarke & Graham,

2012; Yin et al., 2012). Many studies have also published ERα binding sites (Joseph et al.,

2010; Schmidt et al., 2010; Tsai et al., 2010). However there is lack of investigation into the

combined action of the two factors on DNA. Therefore in this report we investigated the

interaction of these nuclear receptors on DNA. Our previously published BiSA database

(Khushi et al., 2014) contains a number of datasets describing ERα and PR binding sites

for various cell lines, therefore, we investigated the binding pattern of these factors in the

T-47D breast cancer cell line. T-47D cells are derived from metastatic female human breast

cancer and are known to be ERα and PR positive and their growth is simulated by the

treatment of estrogen (Chalbos et al., 1982; Ström et al., 2004).

METHODS
PR data were taken from the study of Clarke & Graham (2012) and ERα data were

obtained from the ENCODE project (Gertz et al., 2012). PR data were obtained by treating

T47D cells with the progestin ORG2058 for 45 min, followed by PR-specific chromatin

immunoprecipitation and deep sequencing (ChIP-Seq). Gertz et al. studied ERα binding

sites by treating with estradiol (E2), GEN (Genistein) and BPA (Bisphenol A) and conclude

that compared to E2, GEN and BPA treatment results in fewer ERα binding sites and less

change in gene expression. We selected the E2-treated dataset for our study. Datasets from

both studies were of 36 base pair lengths on the Illumina platform. The PR data were
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generated using an Illumina Genome Analyzer IIx while ERα libraries were sequenced on

Illumina HiSeq 2000. The data used in this study have been derived from peer-reviewed

publications, suggesting that they are of an acceptable quality, in addition we also ensured

standard quality control checks prior to our re-analysis of the raw data. The two studies

used different genome assemblies and different tools to align the reads and to call the

peaks. Therefore, to remove any biases we re-analysed the raw ERα and PR data. We

mapped the raw data to the GRCh37/hg19 assembly using Bowtie version 2 (Langmead &

Salzberg, 2012). The aligned replicates were merged using Picard tools (Li et al., 2009) and

Model-based Analysis of ChIP-seq Algorithm (MACS) version 1.4.2 (Zhang et al., 2008)

was employed, with default settings, to identify PR and ERα binding regions in the two

datasets. Regions associated with greater than 5% false discovery rate (FDR) were removed

(Zhang et al., 2008).

We performed motif analysis using HOMER software (Heinz et al., 2010). HOMER

employs a differential motif discovery algorithm by comparing two sets of sequences

and quantifying consensus motifs that are differentially enriched in a set. HOMER

automatically generates an appropriate background sequence matched for the GC

content to avoid bias from CpG Islands. The tool is exclusively written for analysing DNA

regulatory elements in ChIP-Seq experiments and has been used in number of high impact

publications (Berman et al., 2012; Wang et al., 2011b; Xie et al., 2013).

Overlapping features were studied in BiSA (Khushi et al., 2014). BiSA is a bioinformatics

database resource that can be run on Windows as a personal resource or web-based under

Galaxy (Goecks et al., 2010) as a collaborative tool. BiSA is pre-populated with published

transcription factor and histone modification datasets and allows investigators to run a

number of overlapping and non-overlapping genomic region analyses using their own

datasets, or against the pre-loaded Knowledge Base. Overlapping features can be visualised

as a Venn diagram and binding regions of interest can also be annotated with nearby

genes. BiSA also provides an easy graphical interface to find the statistical significance of

observed overlap between two genomic region datasets by implementing the IntervalStat

tool (Chikina & Troyanskaya, 2012). The tool calculates a p-value for each peak region by

comparing a region from the query dataset to all regions in a reference dataset. The tool

restricts the analysis to regions that are within a domain dataset which can be a whole

genome or can be possible interval locations such as promoter proximal regions. Based on

IntervalStat calculated p-values BiSA calculates a summary statistic that we refer to as the

Overlap Correlation Value (OCV). The OCV ranges from 0 to 1, the closer the value to 1

the stronger the significance of overlap of two datasets. The OCV represents the fraction of

regions in the query dataset with a p-value less than a specified threshold. In BiSA, we have

set the threshold p-value to 0.05 and used a number of domains such as whole genome and

promoter proximal regions for this analysis.

We also investigated the spatial correlation of regions of whole datasets being closer

to each other by Binary Interval Search (BITS) (Layer et al., 2013) and Genometricorr

(Favorov et al., 2012). BITS implements a Monte Carlo simulation by comparing actual

overlapping regions to random observed overlap. Genometricorr considers one genomic
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Table 1 Motif analysis of PR regions. Known motif analysis of PR top 1,000 regions using Homer software.

Motif Name P-value % of targets sequences
with motif

PR(NR)/T47D 1e–123 59.40%

FOXA1(Forkhead)/LNCAP-FOXA1 1e–28 27.10%

AP-2gamma(AP2)/MCF7-TFAP2C 1e–10 13.70%

region set as a reference and other set as a query and provides four asymmetric pair-wise

statistical tests (i) relative distance also called local correlation, (ii) absolute distance,

(iii) Jaccard statistic and (iv) projection statistical tests. In local correlation the significance

of relative distance between the genomic regions is measured by Kolmogorov–Smirnov

test, in absolute distance test the significance of base pair distance among the regions is

measured by permutation test, Jaccard statistic takes into account the ratio of intersecting

bases to the union base pairs. A projection test calculates the overlapping centre points

of query to reference regions and finds the significance of result outside of the null

expectation by binomial test (Favorov et al., 2012). We performed 10,000 simulations

for BITS and Genometricorr statistical tests.

We performed functional annotation of ERα-PR common cis-regulatory regions using

GREAT (Genomic Regions Enrichment of Annotations Tool) (McLean et al., 2010).

GREAT incorporates annotations from 20 ontologies covering gene ontology, phenotype

data, human disease pathways, gene expression, regulatory motifs and gene families. We

performed GREAT annotation using its default settings. A region was considered to have

a proximal association with a gene if it was within 5 kb upstream or 1 kb downstream of

the transcription start site (TSS). Regions outside this distance and up to 1,000 kb from the

TSS to the next gene proximal region were considered to have a distal association.

RESULTS
Analysis of PR and ERα ChIP-seq data from T-47D breast cancer cells revealed 22,152

PR and 18,560 ERα binding regions with FDR <5%. HOMER motif analysis on the top

ranked 1,000 regions by peak score revealed the strong presence of a PRE motif (59.40%)

and ERE motif (48.80%) (Tables 1 and 2). These were the most statistically significant

motifs identified, in agreement with other studies (Kim, Kurita & Bulun, 2013; Lin et

al., 2007). In addition, in PR binding regions we found motifs for the transcriptional

partners FOXA1 and AP-2 (TFAP2C) as other top ranked motifs. The transcription

factor activator protein 2C (TFAP2C) is known to be involved in normal mammary

development, differentiation, and oncogenesis (Cyr et al., in press; Lal et al., 2013; Woodfield

et al., 2010). Interestingly PR motifs were present in 344 (34.4%) of the 1,000 top ranked

ERα binding regions. Consensus FOXA1 motifs were also detected in 27% of PR binding

regions and 24% of regions bound by ERα. FOXA1 is a member of the forkhead family of

transcription factors, which are known to bind and reconfigure condensed chromatin to
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Table 2 Motif analysis of ERα regions. Known motif analysis of ESR1 top 1,000 regions.

Motif Name P-value % of targets sequences
with motif

ERE(NR/IR3)/MCF7-ERa 1e–474 48.80%

FOXA1(Forkhead)/LNCAP-FOXA1 1e–22 24.30%

PR(NR)/T47D-PR 1e–20 34.40%

enable the binding of other transcription factors (Bernardo & Keri, 2012) . The presence

of high quality (p-value <1.00e–05) peaks and known conserved PR and ERα recognition

sequences confirmed the success of the alignment and peak-calling process.

The size distribution of ERα (18,560 regions) and PR (22,152 regions) binding regions

were visualised by drawing a histogram and box plot (Figs. 1 and 2). Mean PR binding

region size was 1508 with a median of 1336. In contrast, ERα binding regions were on

average half the size of PR binding regions, with a mean size of 601 and median 529.

Most PR binding regions (∼94%) were greater than 1 kb, whereas most ERα binding

regions (∼95%) were less than 1 kb. The longer PR regions may be due to longer input

DNA fragment lengths in the original samples (Kharchenko, Tolstorukov & Park, 2008;

Landt et al., 2012).

Limited overlap of ERα and PR regions
Using BiSA, we identified that almost one quarter (23.6%) of ERα binding regions (4,344)

overlap with 3,870 unique PR binding regions. This revealed that some long PR binding

regions spanned more than one ERα binding region and the reverse was also true for

large ERα binding regions. In total, we found 4,358 sections that were common to the two

datasets. The Venn diagram in Fig. 3A shows this overlap between the two ligand-activated

transcription factors. The 4,358 overlapping sections of the regions common to the

two datasets were extracted and plotted for their region lengths (Fig. 3B). Out of 4,358

overlapping sections 4,279 (98.2%) were more than 100 bases long, suggesting a strong

binding overlap between the two transcription factor data sets. An example of a shared

ERα and PR binding region is shown in Fig. 4. The 631 bp ERα binding region (red dotted

lines) is completely contained within the 813 bp PR binding region (blue dotted lines) and

the two regions share the peak centre location (Fig. 4).

Statistical analysis of ERα-PR overlap
To determine whether the overlap between ERα and PR binding was statistically

significant, statistical analysis was performed in BiSA, BITS and Genometricorr. In

BiSA, using a whole genome domain and selecting the ERα cistrome as query and PR

as reference revealed an overlap correlation value of 0.33. The value decreased to 0.26

when PR was selected as query and ERα as reference. This showed that, although a

considerable proportion of ERα binding regions are also bound by PR, the two receptors
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Figure 1 Distribution of PR binding region sizes. (A) Box plot with mean and median information.
(B) Histogram of region sizes with bin size 1,000.

do not cooperate for binding at all sites. To determine whether the significance of ERα-PR

binding overlap was greater in functionally relevant genomic regions, we compared the

level of binding overlap over a range of genomic domains from promoter proximal (within

500 b of a TSS) to more distal regions (Table 3). We found a low though consistent overlap

correlation value (∼0.3) whether promoter proximal or distal sites were included in the

analysis (Table 3). To confirm that the OCV result is independent of the mean region

sizes of the two datasets, we fixed the PR region sizes to 300 bases from each side of peak

summits to match mean ERα region length (mean = 601) and performed the OCV test

again. This did not change the OCV (0.33) for the whole genome dataset, and there was

negligible change in OCV observed for other domains (Table 3).

Using BITS and Genometricorr, we further investigated whether the spatial proximity

correlation between PR and ERα binding was more significant than expected by chance.

BITS Monte Carlo simulation reported that the spatial correlation of ERα and PR was

statistically significant, with a p-value of 0.0001. Similarly Genometricorr’s Relative
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Figure 2 Distribution of ERα binding region sizes. (A) Box plot with mean and median information.
(B) Histogram of ERα region sizes with bin 200.

Correlation test, Absolute Distance test, Jaccard test and Projection tests also reported the

spatial correlation between the two factors as statistically significant (p-value =<1e–04)

(Fig. 5). We repeated the tests for the 600bp fixed-width PR dataset and found no change

in reported p-values from BITS or Genometricorr. This confirmed that a change in

average region size between the two datasets does not affect the statistical analysis and

demonstrated that the tendency for binding events for the two factors to be close to each

other is statistically significant. Therefore we conclude that, although there are a number

of statistically significant shared binding sites in the ERα and PR datasets, and that ERα

and PR often bind in proximity to each other, the observed overlap of the two factors is

not strong enough for them to be considered as co-factors that consistently co-operate on

shared binding regions. However, the close proximity of the binding regions for the two

factors shows a spatial convergence and is statistically significant.

Motif analysis
The 4,358 common sections of ERα-PR were searched for known motifs. Known motif

analysis in these common sections revealed a strong presence of ERE, forkhead protein
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Figure 3 Visualisation of ERα and PR binding region overlap. (A) Venn diagram showing overlap
between ERα and PR data. The 4,344 ERα binding regions overlap with 3,870 unique PR binding regions
making up 4,358 overlapping sections. (B) Region sizes of 4,358 regions common to the ERα and PR
datasets.

and PRE motifs. In Table 4, we listed the top ranked motifs, ordered by p-value. A PRE

motif was found in 41.88% (1,825) of the total 4,358 regions, which was much higher

than the number of ERE motifs detected 14.3% (623) of the sequences. However, this may

reflect the higher stringency of the position specific scoring matrix used to identify ERE

motif occurrence than the matrix used to find PRE motifs since the p-value for ERE motif

detection (1e–291) was much stronger than the p-value for PRE motif occurrence in the

dataset (1e–179). The presence of FOXA1 motifs in these regions confirms that the factor

facilitates the binding of ERα and PR on these regions as previously reported (Augello,

Hickey & Knudsen, 2011; Bernardo & Keri, 2012; Nakshatri & Badve, 2009). In addition

AP-2 and TEAD4 (TEA) motifs were also identified in these regions and in the 1,000 top

scoring PR binding regions. AP-2 has a known role in normal mammary development and

breast cancer (Cyr et al., in press; Lal et al., 2013; Woodfield et al., 2010). TEAD4 has also

been shown to be co-expressed with other oncogenes and is correlated with poor prognosis

(Xia et al., 2014; Mesrouze et al., 2014; Lim et al., 2014). The presence of the related motifs in
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Figure 4 Example overlapping region. IGV snapshot of PR binding region at chr1:7507615–7508428
(marked by blue dotted lines) and ERα binding region (marked by red dotted lines). (A) Progestin treated
and control samples. (B) Estradiol (E2) treated and control sample. The red boxes are reads that mapped
to the forward strand and blue boxes are reads that mapped to the reverse strand of the human genome
(build hg19).

Table 3 BiSA Overlap Correlation Value (OCV) testing. BiSA Statistical analysis of overlap between ERα and PR datasets using different domain
datasets.

Domain Overlap Correlation Value (OCV) # of overlapsb/total
ERα regions in domain

Query = ERα

Reference = PR
Query = PR
Reference = ERα

Query = ERα

Reference = PR (600 bp long)a

Whole Genome 0.33 0.26 0.33 4,344/18,560

500 bp upstream, downstream of TSS 0.3 0.17 0.22 112/419

1 kb upstream, downstream of TSS 0.28 0.18 0.25 157/647

5 kb upstream of TSS 0.3 0.21 0.28 304/1,224

5 kb upstream, downstream of TSS 0.31 0.22 0.3 522/2,147

10 kb upstream, downstream of TSS 0.31 0.22 0.3 929/3,666

45 kb–55 kb upstream of TSS 0.29 0.21 0.28 449/1,929

95 kb–105 kb upstream of TSS 0.31 0.24 0.3 514/2,017

90 kb–110 kb upstream of TSS 0.31 0.23 0.3 878/3,495

Notes.
a PR regions are fixed to 600 bp long by cutting off 300 bp on both sides of peak summits.
b Number of overlaps in this column is reported by selecting ERα as the query and PR as the reference dataset.

the ERα-PR shared regions as well as in regions that bind uniquely ERα or PR suggests that

AP-2 and/or TEAD play a key role for both receptors and could be important in facilitating

cooperation between the two nuclear receptors.

Using Homer, we also looked at relative position distributions of these motifs (Fig. 6).

We found that the motifs converge around the centres of the peaks, supporting their

biological significance as primary binding events.
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Figure 5 Statistical significance test using Genometricorr. Genometricorr statistical significance anal-
ysis of ERα (query)-PR (reference). (A) Relative and Absolute Distance Correlation tests are shown
graphically. Overlay line (data density) when in the blue section shows negative correlation while the
high density in the red section shows positive correlation. (B) Results from Jaccard and Projection tests
are shown in text.

Figure 6 Motif position distributions in ERα-PR overlapping regions. Frequency distribution of ERE,
FOXA1, PRE, AP-2 and TEAD4 motifs around centres of peaks using a 50 bp bin size.
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Table 4 Known motif analysis of ERα and PR overlapping common regions. Top ranked known motif analysis of ERα-PR common sections (4,358
regions).

Motif Name P-value % of targets sequences
with motif

ERE(NR/IR3)/MCF7-ERa 1e–291 14.30%

FOXA1(Forkhead)/LNCAP-FOXA1 1e–249 35.11%

PR(NR)/T47D-PR 1e–179 41.88%

AP-2gamma(AP2)/MCF7-TFAP2C 1e–122 20.38%

TEAD4(TEA)/Tropoblast-Tead4 1e–86 17.97%

Enrichment analysis of ERα-PR common regions
We used GREAT (Genomic Regions Enrichment of Annotations Tool) (McLean et al.,

2010) to interpret the functional role of 4,358 ERα-PR common regions. GREAT revealed

that only 34 regions (∼0.8%) are not associated with any gene and 3,687 (∼85%) regions

are associated with 2 genes (Fig. 7). Most of the regions were found to be distal binding

events while 405 (∼9%) regions are within 5 kb of transcription start sites (TSS). Region

to gene association revealed MYC has the maximum number of regions linked to this gene

(26 regions). The known role of estrogen-induced MYC oncogene in breast cancer (Orr

et al., 2012; Wang et al., 2011a) confirms a biological relevant regions-to-gene association.

PGR was also among the top 10 genes identified with the largest number of associated

regions (File S1). Gene ontology enrichment analysis of the common regions revealed

epithelial cell development as the most significant biological process (File S1). Epithelial

cell development was linked to 30 genes associated with 120 regions out of which 4 regions

were within 5 kb of a TSS. Pathway Commons, a meta-database of public biological

pathway information (Cerami et al., 2006), revealed the ERα signalling network as the most

significant term (p-value = 5.7e–37) where 137 regions were found regulating 24 genes

associated with this pathway. The FOXA1 transcription factor network and IL6-dedicated

signalling events were also significant terms (p-value 1.6e–19 and 2.6e–17). Mouse phe-

notype analysis revealed two breast cancer related ontologies (abnormal mammary gland

epithelium physiology and abnormal mammary gland development) as the most signifi-

cant terms. There were 32 regions associated with 5 genes linked to abnormal mammary

gland epithelium physiology and 189 regions associated with 52 genes linked to mammary

gland development. The File S1 also lists regions and associated genes with the ontologies.

DISCUSSION
The BiSA database provides a good starting point for studying overlapping binding by

a range of transcription factors from a comprehensive collection of published studies

(Khushi et al., 2014). The datasets available in BiSA represent the original genomic

Khushi et al. (2014), PeerJ, DOI 10.7717/peerj.654 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.654/supp-1
http://dx.doi.org/10.7717/peerj.654/supp-1
http://dx.doi.org/10.7717/peerj.654/supp-1
http://dx.doi.org/10.7717/peerj.654/supp-1
http://dx.doi.org/10.7717/peerj.654/supp-1
http://dx.doi.org/10.7717/peerj.654/supp-1
http://dx.doi.org/10.7717/peerj.654


Figure 7 ERα-PR common region-gene association. (A) Number of associated genes per region. (B) Region-gene association binned by orientation
and distance to TSS. (C) Region-gene association binned by absolute distance to TSS.

locations identified in the published studies from which they are sourced. Although the

same standard pipeline has often been applied, it must be acknowledged that differences

in read alignment algorithms (Kerpedjiev et al., 2014; Lunter & Goodson, 2011) and the

use of a variety of peak-caller programmes (Ladunga, 2010; Pepke, Wold & Mortazavi,

2009; Wilbanks & Facciotti, 2010) has an impact on downstream analysis, largely due

to differences in stringency that affects the number of genomic regions identified. Our

initial investigation of the overlap in ERα and PR binding in T-47D cells, utilizing the

published binding regions, revealed an overlap of ∼27% of ERα binding regions with

the published PR cistrome (data not shown). This suggested an interesting functional

relationship between the receptors, which justified further study. To perform a more

rigorous exploration of their overlapping binding patterns, we reanalysed the raw ERα

and PR ChIP-seq data using a standardized pipeline. This illustrates the great value of BiSA

as an easy to implement first pass tool to investigate potential functional relationships in

transcription factor binding and epigenomic datasets.

The BiSA statistical overlap correlation value (OCV) represents a statistical summary

value of the set of p-values calculated by the IntervalStat tool and reflects the overall

correlation of two binding site datasets. IntervalStat calculates a p-value for each query

region against the closest reference region within the given domain. It is designed to

identify factors that target the same genomic locations. As described in examples in

our previous study (Khushi et al., 2014) the OCV should be greater than 0.5 for partner

factors, reflecting a statistically significant correlation between two binding patterns. For

example the OCV for known partners, FOXA3 (query) to FOXA1 (reference) was 0.72

(Motallebipour et al., 2009). Similarly the OCV for CTCF (query) and SA1 (reference),

which are known to co-locate on DNA, was 0.82 (Schmidt et al., 2010). Therefore the

lower OCV for ERα-PR suggests that the majority of ERα and PR binding events are

independent of each other, however, the OCV test does not challenge the biological
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co-occurrence of binding of the two factors on the reported regions where IntervalStat

reports a statistically significant p-value.

A consistent overlap was found both proximal and distal to gene promoters (Table 3).

It is acknowledged that gene expression is regulated through interaction at a number of

cis-regulatory elements, which includes promoters and enhancers. Moreover, enhancers

can spread over a range of distances from the TSS. Therefore, the detection of binding sites

over a range of distances and locations is to be expected (Bulger & Groudine, 2011; Calo &

Wysocka, 2013). This spatial correlation between the two factors is identified as statistically

significant by Monte Carlo simulation using BITS, Relevant Distance, Absolute Distance,

Jaccard and Projection tests using Genometricorr. Therefore, the regions from the two

factors are found in close proximity more often than expected by chance although they do

not exactly overlap. Therefore the consistent OCV observed using various domains and

statistically significant spatial convergence suggest that the consistent overlap may have

biological significance. Although not all sites overlapped, many of the shared ERα and

PR binding regions were highly statistically significant binding sites for both receptors,

as determined by a strong p-value and low FDR value in MACS, suggesting that these

are biologically valid binding regions for these receptors and that their overlap reflects

converging function on a subset of gene targets.

In recent years a number of studies have published ERα binding regions in the MCF-7

cell line (Grober et al., 2011; Gu et al., 2010; Hu et al., 2010; Hurtado et al., 2008; Joseph et al.,

2010; Schmidt et al., 2010; Tsai et al., 2010; Welboren et al., 2009). However only two studies

have published ERα data in T47D cells (Gertz et al., 2012; Joseph et al., 2010). We chose to

study the Gertz et al. (2012) dataset because using data from the Joseph et al. (2010) study

we called only 1,817 peaks with FDR <5%, which can be an indication of low quality ChIP

(Landt et al., 2012). On the other hand for the PR dataset, we did not employ the datasets

published by Yin et al. (2012) because the experiment was performed with an antiprogestin

(RU486) treatment, which would not be expected to elicit the same binding pattern as

PR agonist, and lacked any control sample. MACS distributes read tags from the control

sample along the genome to model Poisson distribution, and false discovery rate (FDR)

is calculated by swapping control and ChIP samples. Therefore it is recommended for

ChIP-seq studies to have an appropriate input control sample (Wilbanks & Facciotti, 2010).

ENCODE guidelines also emphasise the importance of using a suitable control dataset to

adjust for variable DNA fragment lengths (Landt et al., 2012).

There is a slight difference in the reported low-significance motifs for PR data between

this report and the Clarke and Graham study (Clarke & Graham, 2012). The two most

significant motifs (PRE are FOXA1) are the same in the two studies, however, Clarke

and Graham found an NF1 half-site as one of the significant motifs and AP-1 sites as

non-significant while in this study we found an AP-2 motif higher in significance than the

NF1 motif (not shown). This minor difference is due to the difference in binding regions

as Clarke and Graham published 6,312 PR bound regions in T47D cells by aligning to hg18

and using the ERANGE peak caller, however, in this study we reported 22,152 PR regions

by aligning to hg19 assembly and using MACS as our peak caller.
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The ERα-PR data was collected from two separate publications where the binding

of each factor was studied by stimulation of T-47D cells with estrogen or progesterone

independently. Therefore the focus of this study was to examine the correlation of ERα-PR

binding patterns which revealed an interesting convergence on specific loci. We studied the

association between common regions and nearby genes and found biologically relevant

gene pathways. The Myc oncogene, which was most highly associated with binding sites

common to ERα and PR, is a known target of both estrogen and progesterone and plays

a key role in the normal breast and breast cancer (Curtis et al., 2012; Hynes & Stoelzle,

2009). PR itself is also regulated by both hormones and the PGR gene was highly associated

with shared ERα and PR binding regions. Transcriptional regulation by estrogen and

progesterone co-treatment in this cell model was not available, however it would be

interesting to study the binding of the two factors under the influence of both stimuli

(estrogen and progesterone) to observe the impact of converging ERα and PR regulation in

comparison to individual stimulation.

CONCLUSION
In summary, we have evidence for a biologically relevant interplay between PR and ERα

in a subset of binding sites in breast cancer cells. Our analysis demonstrated the utility of

our previously published software BiSA (Khushi et al., 2014), which has a comprehensive

knowledge base, consisting of transcription factor binding sites and histone modifications

collected from previously published studies. Using BiSA we identified that ERα and PR

co-locate on a subset of binding sites. The BiSA statistical testing of overlap revealed a low

overlap correlation value (OCV) suggesting that the two factors are not obligate cofactors.

However, spatial correlation testing using Monte Carlo simulation by BITS, Relevant

Distance, Absolute Distance, Jaccard and Projection tests by Genometricorr revealed a

statistically significant correlation between the two factors. In addition, the discovery that

ERα, FOXA1, PR, AP-2 and TEAD4 binding motifs are significantly enriched in regions

that are bound by both ERα and PR suggests that their overlap is biologically relevant.
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