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Abstract
Zero-energy modes localized at the ends of one-dimensional (1D) wires hold great

potential as qubits for fault-tolerant quantum computing. However, all the candi-

dates known to date exhibit a wave function that decays exponentially into the bulk

and hybridizes with other nearby zero-modes, thus hampering their use for braid-

ing operations. Here, we show that a quasi-1D diamond-necklace chain exhibits a

completely unforeseen type of robust boundary state, namely compact localized zero-

energy modes that do not decay into the bulk. We theoretically engineer a lattice

geometry to access this mode, and experimentally realize it in an electronic quantum

simulator setup. Our work provides a general route for the realization of robust and

compact localized zero-energy modes that could potentially be braided without the

drawbacks of hybridization.
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Topological states of matter attracted a lot of interest in the previous years because of

their potential use as qubits in a quantum computer1–4. These boundary localized states have

an energy in the bulk gap and remain at that energy as long as the corresponding protecting

symmetries are preserved. Since these modes are extremely robust against perturbations,

the idea is that topological states can transfer information without loss into the environment.

One of the difficulties concerning quantum computing with topological states such as

the non-Abelian Majorana bound states in a Kitaev chain1,4,5 is their exponential decay

into the bulk. When a Kitaev chain is too short, the quasiparticle Majorana-bound states

at both edges hybridize and move away from zero energy. Therefore, in order to have

a proper quantum computation, the length of the chain L should be long in comparison

with the characteristic coherence length ξ, such that the amplitude of the exponentially

decaying wave function ∝ exp (−L/ξ) is small at the other side of the chain. Hybridization

was experimentally shown to be an important factor in a quantum gate device5. This

immediately brings stringent restrictions to the construction of a quantum gate based on

topological states of matter.

Other possible candidates to store and transfer quantum information are compact localized

states6–15, which have until now been shown to exist in the bulk. These states correspond to

eigenstates of the Hamiltonian that are completely localized in a certain sub-region of the

lattice, and have strictly zero amplitude otherwise. Due to their local character, compact

localized states are protected against perturbations outside the sites where they are located13.

They occur in crystalline flat-band systems, where often frustration is causing the modes

to be completely localized. As a result, these compact localized states do not mix with

other bulk states and can be excited in a relatively easy manner, as shown experimentally in

Refs.10,11,16. Furthermore, it has been recently proposed that these states could be used in a

quantum network to transfer information in a proper and experimentally feasible manner14.

Examples of these localized states can be found in (quasi)-1D lattices such as diamond, stub

or cross chains, and in 2D, such as the Lieb lattice7,8,10,11,15.

The compact localized states reported thus far occur in flat band systems, which means

that these are bulk excitations and correspond to multiple degenerate modes. This can be

beneficial when transferring information from one place to the other, but demands a large

degree of control to excite a specific mode10–12,16. Furthermore, the proposal of transferring

quantum information in a network requires a very controllable setup as well, which might

be difficult to achieve in applications outside of a laboratory.

Here, we propose a very simple model, namely non-interacting electrons in a quasi-1D

diamond-necklace chain, for which compact localized states occur at the edges. This chain

bares some resemblance with the diamond chain, although in the latter the compact localized

states are bulk modes9,12,17. The diamond-necklace chain has been studied in the context of

spin chains18–20, where it is known as the dimer-plaquette chain, and recently in the context of

flat bands in a non-interacting lattice21. The end modes that we find are doubly degenerate,

have an energy in the insulating bulk gap, are compactly localized at the extremities of the
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lattice (no bulk decay), and are robust against a large number of perturbations. Furthermore,

we show that the amplitude of the wave function of the zero mode can be fully controlled

via either introducing anisotropies in the hopping amplitude or a flux in the plaquettes. We

examine these compact states in an experimental setup and verify the theoretical proposal of

compact localized end states in the diamond-necklace chain. These states open the path to

the manipulation and braiding of boundary zero modes without the problem of hybridization

of the end modes. Moreover, the 0D boundary modes in the SSH model have been proposed

as building blocks for a poor man’s quantum gate22. We expect similar properties for the

end modes in this lattice, but with further protection.

The experimental setup that we use to verify the theoretical calculations is based on

the electronic quantum simulator using CO adsorbed on a Cu(111) sample23–26. A Cu(111)

substrate exhibits a 2D electron gas at its surface. The CO molecules act as repulsive

scatterers for the surface electrons of the Cu(111) substrate, confining them to the area

between the CO molecules24,25,27,28. This method and similar ones have been successfully

used to fabricate flat-band models such as the Lieb lattice25,29 and stub, diamond and

cross lattices15. Further, these setups have been used to show robust zero modes in an

SSH model29, in a 2D kagome28 and in a kekulé lattice27. However, in all these previous

examples the corner modes decay exponentially into the bulk. The experimental results are

compared with tight-binding and muffin-tin calculations, see Supplementary Information

(SI) for further details. In the remainder, we first discuss the diamond-necklace chain in

more detail and then describe the experiment.

The quasi-1D diamond-necklace lattice is shown in Fig. 1a. The lattice consists of 4 sites

in a unit cell, connected with a hopping t1. The Bloch Hamiltonian is given by

H(k) =


ε −t1e−ik −t1 −t1

−t1eik ε −t1 −t1
−t1 −t1 ε 0

−t1 −t1 0 ε

 , (1)

where k is the wave number and ε the onsite energy. Apart from three dispersive bands,

the spectrum shows a flat band at energy E = ε corresponding to a wave function

|ψ〉 = (0, 0, 1,−1)T , which is completely localized on the sites 3 and 4. The spectrum

with ε = 0 is shown in Fig. 1b. Now, we can open a gap in the spectrum by introducing a

hopping t2 6= t1 between sites 1-4 and 2-3, as shown in Figs. 1c-d. The localized state is no

longer a solution to the Schrödinger equation and there is a gap at E = ε = 0.

In a finite chain consisting of N sites, this band-gap opening gives rise to compact lo-

calized boundary states. The finite chain is shown in Fig. 1e; the chain starts and ends

with a hopping t3, which allows us to tune the amplitude of the localized wave functions.

The spectrum of the finite chain as a function of t2/t1 is shown in Fig. 1f. In this finite

chain, there is a zero-energy end mode, indicated in red in the spectrum. These states are
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Figure 1. The quasi-1D diamond-necklace chain. (a) Periodic diamond-necklace chain with hop-

ping t1 connecting the four lattice sites (numbering indicated in grey). (b) Band structure for the

lattice shown in (a). The band structure shows a flat band at E = 0. (c) The diamond-necklace

lattice with the hopping t2 between sites 1-4 and 2-3, and t1 otherwise. (d) Band structure for

the lattice show in (c) with t2 = 2t1. When t2 6= t1, a band gap opens up at E = 0. (e) Finite-

size lattice ending on both sides with a bond t3. In this case, one can always find a degenerate

state with E = 0 that is compactly localized at the boundaries of the chain when t2 6= t1. The

wave-functions amplitude of these wave functions are schematically shown in red and the exact

amplitudes depend on the hopping parameters t1, t2 and t3. (f) Spectrum of the finite-size lattice

shown in (e) consisting of N = 82 sites and hopping parameters t3 = t1. The zero mode localized

at the end of the chain is shown in red and is always compactly localized (no bulk decay) in the

three lattice sites at the boundaries when t2 6= t1.

compactly localized on sites 1, 4 and 5 on the left side of the chain and on sites N−2, N−1

and N on the right side of the chain when t1 6= t2, as schematically shown with red disks

in Fig. 1e. The modes can be understood as a hybrid of the compact localized bulk states

in a diamond chain9,12,30 and a boundary mode in the SSH model31. When considering the

limit t3 = 0, there are two isolated sites on either side of the chain, with a localized wave

function at energy E = ε. If t1 = t2, there are compact states in the bulk and the end mode

can hybridize with the compact states near the boundary. When t1 6= t2, there is a gap

in the spectrum and therefore no state with the same energy in the bulk to hybridize with

the edge mode. In this sense, one could expect an exponential decay from the end-localized

states into the bulk if the hopping t3 6= 0, in a similar way as it occurs in the SSH model31.

However, due to destructive interference, the zero mode does not decay exponentially into

the bulk, but remains compactly localized at the edges.

We can write down an exact form of the wave function by making use of destructive

interference32–34. In this perspective, we are looking for a (not-normalized) wave function of

the form |ψ〉 = (1, 0, 0, r1, r2, 0, 0, ...)
T that has only an amplitude on the sites 1, 4 and 5 and
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energy E = ε. When acting on our trial wave function with the Hamiltonian corresponding

to the finite chain, we find

H|ψ〉 =



ε −t3 0 0 0 0 · · ·
−t3 ε 0 −t1 −t2 0 · · ·
0 0 ε −t2 −t1 −t1 · · ·
0 −t1 −t2 ε 0 0 · · ·
0 −t2 −t1 0 ε 0 · · ·
0 0 −t1 0 0 ε · · ·
...

...
...

...
...

...
. . .





1

0

0

r1
r2

0
...



= ε



1

−(t3 + t1r1 + t2r2)/ε

−(t2r1 + t1r2)/ε

r1
r2
0
...


. (2)

The wave function is a solution to the Schrödinger equation when t3 + t1r1 + t2r2 = 0

and t2r1 + t1r2 = 0, which gives r1 = t3t1/t and r2 = −t3t2/t, where t = t22 − t21. The

eigenfunction with energy ε is then given by |ψ〉 = (1, 0, 0, t3t1/t,−t3t2/t, 0, 0, ...)T , and is

completely localized. A similar calculation holds for the wave function localized on the right

side of the chain. When t2 = t1, the amplitude on site 1 becomes zero and we obtain the

compact localized state for the sites 4 and 5 corresponding to the states in the bulk flat band

shown in Fig. 1b. Another way to open the bulk gap in the spectrum is to introduce a flux

in the diamond part of the chain, as it was experimentally shown for a diamond chain12. By

introducing a flux, we obtain the same physics for the compact localized boundary modes,

but now the amplitude of sites 4 and 5 depends on the flux, see Supplementary Information

(SI) for an explicit calculation.

Now, we examine some particular properties of these end modes. Since these modes

are compactly localized, any perturbation outside of the boundary region will not disturb

them. More generally, these modes are protected against any perturbation that does not

couple to the sites 1, 4 and 5, and perturbations that preserve the destructive interference

when connecting to sites 1, 4 and 5, see SI for further details. These features make the end

modes robust against any kind of disorder in the bulk of the crystalline lattice. Furthermore,

contrary to the exponentially decaying topological modes, this end-localized zero mode has

no exponential decay into the bulk. This means that the wave functions of the end modes

cannot hybridize with each other and gap out. Therefore, there are no finite-size effects

hampering the protection of these end modes. Especially for quantum computations or

braiding, the decay length of the topological boundary modes is one of the main issues that
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can affect the performance4. Since there is no decay of the wave function in these compact

localized modes, it is not possible to hybridize and the energy will remain strictly at zero.

Finally, we note that the wave function amplitude at sites 1, 4 and 5 can be tuned at will.

The amplitudes on site 4 and 5 only depend on the strength of the hopping parameters t1,

t2, and t3 at the boundaries, and are not influenced by variations of the parameters in the

remainder of the chain. In the next section, we show how to experimentally engineer these

boundary modes in an electronic lattice and how to change the wave function amplitude of

the compact localized states by tuning the hopping t3.

The theory presented in the previous section is now confronted with experiment. Fig-

ure 2 shows a constant-current image of a diamond-necklace chain realized by positioning

CO molecules on a Cu(111) surface using the tip of an STM (Scienta Omicron LT-STM)

operating at 4 K. Each CO molecule (black contrast) has been moved individually and is

positioned using a procedure described in the literature35–37. The confined regions define

atomic sites, see Fig. 2a. The boundary hopping t3 is controlled by positioning the high-

lighted COs in Fig. 2a-c. In Fig. 2a, the highlighted CO molecules are far away from each

other (1.28 nm), leading to a strong coupling between the neighboring sites (i.e. large t3). In

contrast, the highlighted COs are closer to each other (1.024 nm) in Fig. 2c, which decreases

the boundary hopping amplitude t3. The experimental spectra corresponding to the LDOS

for the indicated sites from Fig. 2a-c are given in Fig. 2d-f (solid lines). Note that we only

show the spectra on the left side of the chain, since the spectra on the right are similar by

rotational symmetry. Spectra of additional sites are shown in the supporting information.

Upon inspection, we observe that the red spectrum (sites 1 and N , respectively) always has

a peak-like structure around the onsite energy V = −0.1 V, whereas the bulk sites exhibit a

gap-like structure around that energy (green site). Moreover, by positioning the highlighted

CO molecules differently, one can change the LDOS of the blue site from exhibiting a peak

(Fig. 2d) to having a dip (Fig. 2f) around V = −0.1 V. Hence, the amplitude of the wave

function on that site can be modified via minor changes in the coupling strength t3. The

experimental observations are verified via a finite-size tight-binding calculation (dashed lines

in Fig. 2d-f). In addition to the strong hopping parameter t1 = 0.095 eV and the weak

hopping t2 = 0.1t1 presented in Fig. 1e, we introduce the hopping t4 = 0.4t1 that connects

the diamonds. To make the comparison with the experimental spectra, we only change the

boundary hopping parameter t3 from 0.8t1 (d), to 0.5t1 (e) and 0.3t1 (f) (and orbital overlap

in a similar way, see SI). Also in the tight-binding LDOS, we clearly observe a large change in

the blue spectra whereas the other spectra remain similar. Note that because of the coupling

between the surface state with bulk states of the Cu crystal, the LDOS corresponding to

the bulk sites of the chain does not completely vanish around V = −0.1 V. A comparison

between the tight-binding and muffin-tin model is presented in the SI.

Next, we present wave-function maps of the created lattices with strong and weak coupling

t3 in Fig. 3. In Fig. 3a, we show the wave-function map for the strong boundary coupling

chain at V = −0.213 V. At this energy, the electronic LDOS is mainly localized in the bulk
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Figure 2. Experimental configuration and LDOS of the quasi-1D diamond-necklace chain (a-c)

STM images of the diamond-necklace chain with a strong (a), intermediate (b) and weak (c)

hopping t3. The CO adsorbates are shown in black, of which four COs are highlighted. The

highlighted COs determine the strength of the boundary hopping t3. (d-f) Experimental spectra

(solid lines) compared to the tight-binding spectra (dashed lines) of the sites indicated in (a). In

the strong coupling (d), all spectra exhibit a gap around the onsite energy V = −0.10 V, except

the spectra corresponding to the end sites (red and blue), which exhibit a peak. Upon decreasing

the boundary hopping parameter t3, we observe that the main difference in the spectra from the

strong hopping (d) to the weak hopping (f) is the blue spectrum. When changing the COs near

the edge of the lattice slightly, we influence the hopping parameter such that the spectrum on the

blue site exhibits a peak around V = −0.10 V for the strong hopping (d), and a dip around the

same energy in the weak hopping regime (f). Here,t1 = 0.095 eV, t2 = 0.1t1, and t3 goes from 0.8t1

(d), to 0.5t1 (e) and 0.3t1 (f).

of the chain (bright colors), whereas it is absent in the end sites (dark colors), see Fig. 3a.

When increasing the voltage to V = −0.122 V, the LDOS becomes more pronounced at the

end modes of the lattice, more specifically on site 1 and 4, whereas the other sites and in

particular site 2 show less intensity. A closer inspection of the end modes in the strong

and weak chain is shown in Fig. 3c and d, respectively. We observe that the end mode is

more pronounced on lattice site 4 with the strong boundary bonding t3(Fig. 3c), and less

pronounced in the weak boundary bonding t3 (Fig. 3d). The tight-binding wave function

amplitudes are represented as circles on top of the wave function map, where the circle radius

scales linearly with |ψ|2. The theoretical results indicate the same trend. A comparison in

the framework of the muffin-tin model for these wave-function maps is shown in the SI.

To conclude, we have theoretically and experimentally introduced the notion of robust

compact localized boundary states. These states are present in the insulating bulk-band

gap and are completely localized at the boundary of the diamond-necklace chain. We have
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Figure 3. Experimental and tight-binding (red, dashed) wave-function maps of the boundary mode

in the three chains. The circle radius of the tight-binding wave functions scales linearly with |ψ|2

on the indicated site. (a) Wave-function map of the strong boundary hopping at V = −0.213 V.

The wave function is localized in the bulk of the chain. (b) The wave-function map of the strong

boundary hopping at V = −0.122 V. The amplitude of the wave function is now mainly localized

at the ends of the chain. We note that due to imperfections in the determination of the sample tilt,

the maps show deviations between the left and right sides of the chain. (c-d) Zoom in of the edge

of the strong (c) and the weak (d) boundary hopping chain at V = −0.122 V. The relative weight of

the wave function at site 1 increases upon decreasing the boundary hopping amplitude t3, whereas

the amplitude on site 3 decreases. This is in line with the observations from the tight-binding

model.

shown how to change the wave-function amplitude of the boundary mode by controlling the

boundary-hopping parameter, both in theory and in an experiment. Since these states are

doubly degenerate and do not decay into the bulk, they might be the ideal candidates for

quantum operations and to store and transfer information in the same way as the topological

0D modes in an SSH chain, with the difference that the chains do not need to be long in

comparison with the decoherence length of the zero modes. It would be worthwhile to

investigate whether compact Majorana bound-states can be realized in such a quasi-1D

chain with the same non-Abelian properties as the ones in the Kitaev chain, and to perform

braiding operations with those compact localized edge modes.
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METHODS

Scanning tunneling microscopy experiments

The tunneling spectra in Fig. 2 were acquired at constant height, by placing the tip above

a single site. The feedback loop is disconnected and a modulated voltage is applied to the

tunneling junction. The tunneling current I and conductance dI/dV are measured simulta-

neously. The differential conductance is obtained with a lock-in amplifier (rms modulation

of 10 mV at 769 Hz). All spectra were averaged using at least 18 dI/dV sets of reproducible

curves. Density-of-state maps have been performed by disabling the feedback loop and acti-

vating the external voltage modulation of the lock-in. The energy has been carefully chosen

from the LDOS curves (see Fig. 2), and the current has been set to 1 nA by adjusting the

tip-surface distance.

Muffin-tin simulations

The experimental platform can be simulated by describing the surface state of the Cu(111)

as a 2D electron gas that is patterned with circular potential barriers (CO molecules) with

a height of V = 0.9 eV and a radius R = 0.3 nm25. We determine the energies and wave

functions of this system by numerically solving the Schrödinger equation. To account for

the coupling between the surface- and bulk states of copper, a Lorentzian broadening with

a FWHM of 0.08 eV is applied to the theoretically computed energy levels.
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Supplementary Information

Compact localized boundary states in a quasi-1D electronic

diamond-necklace chain

S. N. Kempkes, P. Capiod, S. Ismaili, J. Mulkens, I. Swart, and C. Morais Smith

In this supplementary information, we provide more details of the theoretical calculations

presented in the main text. In particular, we discuss the opening of the band gap with a

flux, the perturbations that are allowed to keep the boundary mode pinned at zero energy,

and show a comparison between the muffin-tin and the tight-binding model.

THE DIAMOND-NECKLACE CHAIN

Flux in the diamond-necklace chain

In line with previous works on the quasi-1D diamond chainS1,S2, we analyze what hap-

pens when a magnetic flux is piercing the diamonds in the lattice, see Fig. S1. The Bloch

Hamiltonian

H(k) =


ε te−ik −teiϕ −t
−teik ε −t −t
−te−iϕ −t ε 0

−t t 0 ε

 , (S1)

where t is the hopping amplitude, k the wave number, ε the onsite energy, and ϕ the flux

per diamond. Introducing a nonzero flux in the diamond-necklace chain opens a band gap

at E = ε = 0 (Figs. S1a-d), similar to an anisotropic hopping, as was described in the main

text. A π-flux gives rise to flat bands, in the same way as the Aharonov-Bohm cages do

in the diamond chainS1,S2, see Fig. S1d. In a finite-size lattice, a nonzero flux immediately

gives rise to compact states as well. Using the same wave function as shown in the main

text |ψ〉 = (1, 0, 0, r1, r2, 0, ...)
T , we find in this case r1 = 1/[1− exp(iϕ)] and r2 = −r1 for a

compactly localized state, see Figs. S1e-f.

Perturbations

Next, we analyze which perturbations are allowed to keep the boundary mode localized

and pinned to zero energy. Therefore, we observe what happens with the wave function

when applying the general perturbations a, b, c, d, ..., o (other perturbations are zero) in

combination with different hopping parameters (t1 to t6, see Fig. S2). We find

1



Figure S1. Flux in the diamond-necklace chain. (a) Unit cell of the diamond-necklace chain with

hopping t and flux ϕ. (b) Band structure with ϕ = 0 and ε = 0. (c) Band structure with ϕ = π/2.

A gap opens up at ε = 0. (d) Band structure with a π-flux. All the bands are completely flat. (e)

Schematic of a finite-size lattice with a flux. The compact localized states are indicated by the red

circles. (f) Band structure of the finite chain consisting of N = 82 sites. A nonzero flux opens up

a gap at zero energy and gives rise to the compact localized states on sites 1, 4 and 5, and N-2,

N-1 and N.

H|ψ〉 =



ε −t1 a b c d e · · ·
−t1 ε f −t2 −t3 g h · · ·
a f ε −t4 −t5 −t6 i · · ·
b −t2 −t4 ε j k l · · ·
c −t3 −t5 j ε m n · · ·
d g −t6 k m ε o · · ·
e h i l n o ε · · ·
...

...
...

...
...

...
. . .





1

0

0

r1
r2

0

0

0
...



=



ε+ br1 + cr2

−t1 − t2r1 − t3r2
a− t4r1 − t5r2
b+ εr1 + jr2
c+ jr1 + εr2
d+ kr1 +mr2
e+ lr1 + nr2

...


. (S2)
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Figure S2. Schematic of the allowed perturbations a, f and g with general hopping parameters in

the diamond-necklace chain (perturbations h and i are not included in this image to prevent clump-

ing). Apart from these perturbations, any perturbation that preserves the destructive interference

or does not couple to the sites 1, 4 and 5 is allowed.

From the latter expression, we observe that the wave-function amplitude on sites 1, 4 and

5 depends on these perturbing constants b, c, and j. To find the solution that obeys the

Schrödinger equation with this eigenstate and energy ε, we need to solve 7 equations simul-

taneously (one for each line). There is no general solution for these equations. To simplify

this, we set the constants that perturb the sites 1, 4 and 5 to zero, i.e. b = c = j = 0.

Further, there is no general solution when the equations in the last two lines are present

in the general form d + kr1 + mr2 and e + lr1 + nr2. For the moment, we also set those

parameters d, k,m, e, l and n to zero, such that we have

H|ψ〉 =



ε −t1 a 0 0 0 0 · · ·
−t1 ε f −t2 −t3 g h · · ·
a f ε −t4 −t5 −t6 i · · ·
0 −t2 −t4 ε 0 0 0 · · ·
0 −t3 −t5 0 ε 0 0 · · ·
0 g −t6 0 0 ε o · · ·
0 h i 0 0 o ε · · ·
...

...
...

...
...

...
. . .





1

0

0

r1
r2
0

0

0
...



=



ε

−t1 − t2r1 − t3r2
a− t4r1 − t5r2

εr1
εr2

0

0
...


= ε



1

0

0
at3−t1t5
t2t5−t3t4
at2−t1t4
t3t4−t2t5

0

0
...


, (S3)

where the values for r1 = (at3 − t1t5)/(t2t5 − t3t4) and r2 = (at2 − t1t4)/(t3t4 − t2t5)

were substituted into the last equation. In this way, we can find an analytic expression for

the compact boundary states. These couplings and allowed perturbations a, f and g are
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schematically shown in Fig. S2. We further note that other perturbations are allowed if the

destructive interference is preserved. For example, we take line 6 in Eq. (S2): d+kr1+mr2 =

0. This line corresponds to connecting site 1, 4 and 5 to site 6. From the analysis of the

perturbation, we know that r2/r1 = −(at2− t1t4)/(at3− t1t5) = A. When the constants are

chosen such that d = −(k+mA)r1, these perturbations will not affect the compact localized

state. A similar analysis leads to e = −(l+ nA)r1 for the perturbation in line 7 of Eq. (S2),

where sites 1, 4 and 5 are connected to site 7, and similar expressions follow in general for all

sites connecting to the sites 1, 4, and 5. Furthermore, all perturbations that do not couple

to the sites 1, 4 and 5 are allowed trivially. The same analysis can be done for the compact

state localized on the right side of the chain. Therefore, we conclude that the end modes

are robust against a large number of perturbations.

MUFFIN-TIN AND TIGHT-BINDING MODEL

We use the muffin-tin model to calculate the spectra for the configurations shown in

Fig. 2. The wave-function maps for the bulk wave function at E = −0.21 eV and the edge

modes at E = −0.14 eV are presented in Fig. S3. In these maps, we observe a shift in

the amplitude for the boundary wave function to site 4 when the hopping parameter t3
increases, whereas the bulk modes remain the same.

The results for the spectra of the same sites as in the main text are given in Figs. S4a-c

for the strong (a), intermediate (b) and weak hopping (c) t3. A Lorentzian broadening

of Γ = 80 meV is applied to the spectra to take the scattering with the bulk states into

account. Further, we solve the finite-size tight-binding model with four hopping hopping

parameters t1 − t4, as mentioned in the main text. Here, t1 is the strong hopping within a

diamond, t2 is the weak hopping within a diamond, t3 is the hopping to the boundary site

and t4 is the hopping connecting the diamonds. The parameters used in Figs. S4d-f are (all

in eV): es = −0.10, t1 = 0.095, t2 = 0.1t1, t4 = 0.4t1, and an NN orbital overlap of s1 = 0.1,

s2 = 0.1s1, s4 = 0.4s1. Further, the hopping parameters t3 (overlap s3) are t3 = 0.8t1
(s3 = 0.8s1) in Fig. S4d, t3 = 0.5t1 (s3 = 0.5s1) in Fig. S4e and t3 = 0.3t1 (s3 = 0.3s1) in

Fig. S4f. The muffin-tin and tight-binding descriptions provide the same behavior as shown

in Fig. S4.
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Figure S3. Wave function maps obtained from the muffin-tin model for the bulk and boundary

modes. (a-b) Weak boundary hopping configuration. (c-d) Intermediate boundary hopping con-

figuration. (e-f) Strong boundary hopping configuration. We observe a shift in amplitude for the

boundary modes when going from weak to strong coupling. Scale bar 2.6 nm.
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Figure S4. Comparison of the muffin-tin and tight-binding model. (a-c) LDOS of the sites in the

strong (a), intermediate (b), and weak (c) hopping chain as indicated in the main text, obtained

from the muffin-tin model. (d-f) LDOS of the sites in the strong (d), intermediate (e) and weak

(f) hopping chain indicated in the main text obtained from the tight-binding model with the

parameters indicated in the text. The similarity between the LDOS calculated using these two

different methods is clearly visible.
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ADDITIONAL DIFFERENTIAL CONDUCTANCE SPECTRA

0.8

1.2

-0.4 -0.3 -0.2 -0.1 0 0.1

LD
O

S 
(a

rb
. u

.)

Voltage (V)

0.8

1.2

-0.4 -0.3 -0.2 -0.1 0 0.1

LD
O

S 
(a

rb
. u

.)

Voltage (V)

0.8

1.2

-0.4 -0.3 -0.2 -0.1 0 0.1

LD
O

S 
(a

rb
. u

.)

Voltage (V)

3 nm

a

d e f

b c

Figure S5. Differential conductance spectra of various sites and three configurations of the diamond-

necklace chain. (a-c) LDOS of the sites in the strong (a), intermediate (b), and weak (c) hopping

chain indicated in the main text, obtained from the muffin-tin model. (d-f) LDOS of the sites in

the strong (d), intermediate (e) and weak (f) hopping chain indicated in the main text obtained

from the tight-binding model with the parameters indicated in the text. The similarity between

the LDOS calculated using these two different methods is clearly visible.
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