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Chapter 1

Introduction

From unicellular to complex multi-cellular organisms, no single cell is alike.
In humans and other animals, tissues are composed of a variety of cell types
which are in themselves composed of heterogeneous cells at multiple molecu-
lar levels. Single cell research studies the differences in pheno- and geno-types
and drivers of those differences between single cells. Variation is continuously
being introduced in all cells, making cells diverge from each other and making
every cell unique. The highest divergence rate happens during development
when cells are differentiating leading to variations in, for example, histone
modifications, methylation or the proteome. During tissue homeostasis, sin-
gle cells balance environmental factors with their corresponding cell function.
Variation between cells can be introduced during cell divisions in form of DNA
mutations (SNVs/indels/structural), copy number changes, or methylation not
being maintained. Diseases such as cancer can start out as a single cell, which
quickly diverges from its ancestral cell and gives rise to a heterogeneous tumor.

In order to measure the molecular variation between single cells, sensi-
tive sequencing technologies have been developed. The single cell sequencing
field spawned with single cell DNA sequencing and has progressed to measure
transcriptomics, DNA accessibility, histone modifications, locations of DNA-
binding proteins, DNA and RNA methylation and lineage.

This thesis focuses on analyzing multiple combined modalities measured
with single cell sequencing techniques, also known under the single cell multi-
omics umbrella. Here, I will introduce the relevant topics for multi-omics data
analysis of single cell genomics and epigenomics data.

Deoxyribonucleic Acid (DNA) is tightly regulated through multiple lay-
ers by the epigenome. At the DNA-nucleotide level, cytosines and adenines
can be modified with a methyl group, which is known to regulate expression.
DNA methylation is the lowest level of the epigenetic modifications, and is dis-
cussed in section [[.2.T] At a higher epigenetic level, DNA is packaged using
nucleosome protein complexes, which can be chemically modified, which I will
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further discuss in section[1.2.2]

1.1 Single cell genomics

DNA is tightly regulated through multiple layers to control gene expression and
to avoid errors during replication. However, nucleotides can be altered, most
commonly during cell division, which we observe as mutations. Both large and
small mutations in the DNA can be used to infer phylogenetic relationships,
and the mutations can have consequences which are extensively studied.

1.1.1 Single nucleotide variation

Every cell division, the nuclear DNA is replicated such that both daughter cells
inherit a copy of DNA. Nucleotides and, hence, DNA is affected by general
wear and tear caused by many internal and external factors. This wear and
tear causes DNA to gradually mutate over time, resulting in an ever-increasing
deviation from the original germline sequence.

Mutations can be subdivided into different classes. One class is the single
base substitution, Single Nucleotide Variant (SNV). There are many processes
which can cause the appearance of SNVs. Environmental factors such as mu-
tagenic substances or radiation, transcription and deamination of methylated
cytosines resulting in thymine bases. Also, during DNA replication a small
amount of mistakes is made, which cause lineages of cells to gradually devi-
ate from each other at the level of SNVs. This also implies that the amount of
SNVs is correlated to the amount of cell divisions.

Germline single nucleotide variation

Approximately 35 new SNVs appear during the cell divisions making up a hu-
man gameteﬂ [49]. When SNVs appear in the germline the offspring will in-
herit them, making these SNVs germline (gSNVs). When the SNV abundance
across randomly sampled individuals is higher than 1%, the SNV is classified
as an Single Nucleotide Polymorphism (SNP). For a single individual, approx-
imately 1 in 2000 bases contains such an SNP [144]. The alleles of an SNV

'The cells which contain the genetic information passed to offspring: the egg cell and sperm
cell



refers to the set of bases detected at the location of the variant. A set of alleles
which have been inherited from a single parent are called a haplotype. The set
of all SNPs on a single chromosome makes up the diplotype of either paternal
or maternal chromosome. When multiple alleles are present for a single lo-
cus, the variant is called to be heterozygous. When both maternal and paternal
copies are identical, the variant is called homozygous.

SNVs that are spatially close to each other on a chromosome are very
unlikely to separate by DNA recombination, which is referred to as linkage-
disequilibrium. Hence, by knowing a few SNVs, nearby variants can be in-
ferred. Groups of such highly correlated SNVs are called haplotype blocks.
Additionally, haplotype information can help to reconstruct the diplotype of a
genomic region, as haplotype blocks are subsets of the diplotype. There are nu-
merous efforts which aim to document human haplotypes such as, for example,
HapMap [84] or the 1000 genomes project [[10].

Single nucleotide variation effects

A Somatic Single Nucleotide Variant (sSSNV) is a variant which occurs in a
somatic cel Very small changes in the DNA sequence of a cell can result
in a large and abnormal phenotypic effects. For example, SNVs in the TP53,
BRCA, APC or SMAD4 genes can lead to cancer. Variants which cause cancer
are called driver mutations.

Most of the single base substitutions changes are not harmful; they affect
regions of the genome where the exact sequence is not important or, in case
of a protein coding gene, the base-substitution does not result in a (function-
ally) different amino-acid. Additionally, more and still effective copies of the
same gene can be available so that the loss of function of one gene does not
cause haploinsufficiency. Often, cancer develops from a sequential order of
mutations. Therefore, studying the order of mutations across time in cancer
samples is of importance, and many examples are available that study the order
in which mutations occur across tumor development [[140, |20} {192, |147]]. The
order of driver mutations can be determined by performing single cell phylo-
genetic inference on single cell DNA sequencing, or by deep bulk sequencing
followed by phylogenetic inference and de-convolution of the ’clones’ present
in a sample. The set of all somatic variants detected in a sample result in a

2 Any cell other than a gamete, germ cell, gametocyte or undifferentiated stem cell



mutation profile, which is a histogram containing the variant base itself and the
two bases flanking the substitution (3bp context). A mutation profile is influ-
enced by the mutational processes and active mutagens, as well as by a cell’s
activated DNA repair mechanisms. An sSNV can result in a growth advantage
of a particular cell. This phenomenon leads to Intra Tumor heterogeneity (ITH)
which plays a key role in cancer development.

Single cell single nucleotide variant analysis

Disease associated mutations present in the germline are usually detected through
bulk sequencing, but can also be detected using single cell DNA sequencing (ta-
ble [T). Somatic mutations (of which some could be driver mutations) can be
detected in bulk as well as single cell data. Linking somatic variants with con-
fidence to specific clones is only possible using single cell data. Somatic SNVs
can be used to estimate the past and current mutagenic processes in different
clones. Loss Of Heterozygosity (LOH) can be determined where one haplotype
is lost and only SNPs from a single haplotype can be detected for a region in a
single cell.

The general computational workflow of single cell DNA analysis can be
separated into 6 steps: Demultiplexing, Trimming, Mapping, Variant Calling,
Genotyping and finally Clustering and Imputation. For protocols where mul-
tiple samples are sequenced from the same pool of DNA, the demultiplexing
step assigns reads to a cell of origin. During trimming, low quality bases and
remains of sequencing adapters are removed. The trimmed reads are mapped,
which detects the most optimal alignment of the read to the reference genome
and assigns a confidence score to this alignment. Commonly used mappers
are BWA-mem [104]], and Bowtie2 [[100]. During variant calling, all mapped
reads are scanned and locations in the genome which likely contain an SNV are
selected.

Unfortunately, the amplification of single cell libraries is currently more
error-prone than bulk libraries. The vast majority of variants present in raw
sequencing data is technical variation caused by amplification, library prepa-
ration and sequencing. The main driver of a higher error rate is the difference
in the amount of input DNA. A bulk library has much more input DNA than
a single cell library (>100 ng vs 6.6 pg). This means that in order to get to
a sufficient DNA concentration required for sequencing, more amplification is
required which will introduce more artifacts. Secondly, only a single template
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Method | Description
DOP-PCR | High error rate but the coverage is relatively uniform [[169)]
More suitable for combining protocols, but might be more error
Cut-seq | prone due to intermediate In Vitro Transcription (IVT) amplifi-
cation and Reverse Transcription (RT) [[198]]

Due to the lower error rate more suitable for SNVs calling, but
MDA | the MDA protocol suffers from severe allelic dropout and allelic
bias [[52, 68l [157, [82]

Whole genome amplification method with reduced amplifica-
tion bias compared to MDA approach [200]

TnS-tagmentation based method, where a transposon is used to
LIANTI/ Nuc-seq | obtain fragments with adapters, followed by the use of IVT and
RT for amplification [41}[183].

MALBAC

Table 1: Overview of common single cell DNA-sequencing methods

molecule is available, which is a single point of failure. When the template
is lost before amplification, or not prepared for amplification, it will be im-
possible to detect during sequencing. When a mutation occurs in a template
molecule before or during amplification, the error will be passed on to all its
amplified DNA molecules which are sequenced. As a result most or all the
sequenced reads will contain the technically induced variant. Hence, an error
introduced before amplification will result in a high Variant Allele Frequency
(VAF), making it cumbersome or impossible to distinguish a technical variant
from a biological variant [58]].

There are various approaches to reduce the effect of noise and sparsity on
variant calls. As most of the single cell amplification methods have relatively
high technical mutation rates, correction of the base-calling confidence val-
ues are beneficial. This can be performed using, for example, GATK base-
calibration [54]. A common approach for selecting a set of high confidence
variants is to only take into account variants that occur within plausible haplo-
types (78] [30] (Figure [T). Haplotypes are also taken into account in the more
accurate bulk variant callers, like HaploTypeCaller [|11] and DeepVariant [[134]].
Single cell variant callers are, however, more stringent as they require the as-
signment of a haplotype block identified in a germline sample of the same indi-
vidual to all reads covering that variant. This method is especially effective in
a hybrid organism with a lot of heterozygous SNPs and not effective in inbred
organisms. To filter potential artifactual variant calls, machine learning is used
which is trained on real and false positive variants found in single cell libraries
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Figure 1: Usage of heterozygous germline variants to detect true somatic vari-
ants and genotyping in a high dropout regime. A) Non-inbred diploid organ-
isms contain many heterozygous germline mutations. B) Technical variants are
not phase properly with a nearby germline variant, while true somatic variants
are perfectly phased. C) During genotyping, the presence and absence of the
somatic variant can be estimated using only a single read covering the in-cis
heterozygous variant and location of the somatic variant.
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in order to select more true positive variants [[11]]. Integration with other modal-
ities which have different error-profiles can be beneficial for cross-validating
mutation calls as well as to genotype cells with, for example, complementary
scRNA [168] or bulk sequencing libraries [78]].

Both single cell DNA sequencing variant calling and genotyping is mainly
challenging due to data sparsity. The sparsity is caused by allelic dropout where
not all alleles present are detected and site dropout where a complete site is
missed. For the purpose of variant calling, a bulk sample is sequenced with 30x
coverage, meaning that on average each position in the genome is covered with
30 and each allele with roughly 15 reads. To get similar quality information
from a single cell compared to a bulk library, every cell would need to be se-
quenced with at least 30x coverage. Due to the very high sequencing costs this
is in practice rarely done, or only for very few cells.

Single cell genotyping

Variant calling results in a set of locations in the genome which contain a SN'V.
Apart from the location of the variant, the reference and alternative allele(s) are
determined. Usually, to answer the posed biological questions, it is necessary
to, not only know the total set of variants, but to also find what variants are
present for each individual cell. When, for example, deciphering what clones
are present in a sample and to which clone every cell belongs, single cell res-
olution is required. The process which identifies what variant is present in
each cell is called genotyping. During genotyping it is determined which of
the detected alleles are present in each cell. Due to allelic and site dropout it
is hard to genotype single cells, resulting in locations where ambiguity arises
because either the homolog reference allele is sequenced or the variant is not
truly present. Multiple single cell variant callers are available, such as Monovar
[[194], SCcaller [58]], Single cell genotyper [[143]] and SCAN-SNV [109] which
takes advantage of the allelic amplification bias in Multiple Displacement Am-
plification (MDA).

Because single cell genotype data is usually sparse (the coverage is around
0.05x per cell), there are efforts to impute missing genotype data. Imputation
of the genotypes is possible when phylogenetic relationships between cells are
assumed. As an organism grew out from a single cell, the root of the tree is the
germline genotype, and a rooted tree structure can be used with the germline
genotype as root. For computational tractability, a model is often used where
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no back-mutations are permitted, and with a fixed error rate of false variant
discoveries, false positives and false negatives.

A common application of single cell genotyping is to estimate the phy-
logenetic relationships between the cells. Integration of both genotyping and
phylogenetic inference solves these problems at the same time, and recent im-
plementations of such approaches have been published [[193}[159].

Another option to reduce sparsity is to group cells by another modality
such as copy number or lineage marker during phylogenetic reconstruction
and/or imputation [147]]. For copy number, (co)-clustering SNV information
with copy number information is especially beneficial and the interplay, order
and causality between sSNVs and copy number aberrations are an active line
of research. A main difficulty of integrating copy number and SNVs is that it is
not trivial to merge the phylogenetic sSSNV edit distance between the cells and
the copy number distance (or distances in any other modality) because biolog-
ically relevant weights between the modalities are not yet available and might
not hold in tumors or vary across cell types [99].

Detecting known SNPs in single cells can be performed on virtually all sin-
gle cell protocols by verifying which base is present at the SNP location. Not
all of these SNPs will be phased with a Germline Single Nucleotide Variant
(gSNV). For such variants it will not be possible to show whether the variant
is not present, especially in a high dropout regime, such as shallow single cell
DNA sequencing. Phasing with a gSNV can help detecting which alleles are
present in a cell and which are lost. More over, phasing is used in Ribonu-
cleic Acid (RNA) sequencing to detect allele specific expression, and in DNA
methylation sequencing protocols to detect allele specific methylation.

1.1.2 Copy number

In a mitotic cell division, a cell goes through the cell cycle. In the S phase
of the cell cycle, the chromosomes are replicated, resulting in two identical
copies, one for each daughter cell. The copies are, in normal circumstances,
equally divided between the two daughter cells during M phase. When some-
thing goes wrong in distributing the chromosomes over the daughter cells, a
process called mis-segregation, the resulting daughter cells will have either lost
or gained one or more chromosomes. Such cells with an abnormal amount
of copies are called aneuploid cells. Chromosome missegregations occur in a
small fraction of normal cell divisions, and are common during embryogenesis
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[176]]. The frequency of missegregations is increased in cells with Chromoso-
mal instability (CIN). Causes of CIN include degenerate telomeres, problems in
DNA damage response and defective cell cycle checkpoints. In 68% of cancer
patients aneuploidy is detected, and 61% of first trimester miscarriages con-
tain copy number aberrations, with a higher rate when the age of the mother
increases [47]).

Missegregations mainly cause proliferative disadvantages which are selected
against, but in some cases it causes a proliferative advantage. These advantages
are caused by dosage changes, which change the relative abundances of genes
and therefore influence transcript levels. Missegregations can also cause dele-
tions of cancer genes or removal of the only functional copy due to LOH. Ad-
ditionally, there is a negative effect when genes where both copies are required
for correct function, called haplo-insufficient genes, are deleted . Missegrega-
tions cause, in this case, clonal heterogeneity which results in clones that differ
in terms of growth, drug response and variable recognition by the immune sys-
tem.

Next to simple copy number aberrations where complete chromosomes are
gained and lost, there are also more complex copy number aberrations such as,
for example, chromosomal translocations. During chromosomal translocations
different regions of two or more chromosomes end up in the same chromosome.
Translocations are caused by breaks of the DNA, and are often observed in cells
with a defective DNA damage response. Structural CIN is caused by replica-
tion stress [[186], which can be caused by the amount of available nucleotides,
but can also be influenced by cyclin oncogenes [[24]]. CIN can drive cancer pro-
gression and can be seen as a scan for karyotypes with proliferative advantage.
The presence of CIN correlates with tumor progression and poor prognosis, in
part, because heterogeneous populations of cells with a variety of copy number
aberrations might be hard to target by drugs.

Single cell copy number analysis

Detecting DNA copy number genome-wide in single cells using DNA sequenc-
ing requires a protocol which samples the genome in a relatively uniform fash-
ion. This allows inference of the absolute number of DNA copies for regions in
single cells. With small bins which are densely populated across the genome,
a high-resolution signal can be achieved. To determine which allele is lost, the
haplotype of each read needs to be established. Protocols which generate longer
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fragments with high base-calling accuracy will be better at haplotyping. Once
the copy number is determined, next steps can be taken to infer phylogenetic
relationships between cells and match copy number profiles to other modalities,
for example, the transcriptome or epigenome.

Computational copy number analysis can be separated in 3 steps: counting,
abundance estimation and segmentation and lastly, phylogenetics.

Counting

By sequencing the DNA of a single cell, the genome present in the cell is sam-
pled. When for two identically sized regions A and B, region A has more frag-
ments detected than region B, it indicates that region A has more copies than
region B. During the counting step the number of molecules per genomic bin
(equally sized and regularly spaced regions across the genome) is estimated.
The size of the genomic bins used is limited by the depth of sequencing and
library quality, smaller bins will result in a higher resolution but require more
reads which are evenly distributed across the genome. Currently, bin sizes used
in single cell DNA sequencing analysis range from 2Mb down to approximately
10kb. Amplification or sequencing biases leads to reads being less evenly dis-
tributed which is usually a local effect. Using sufficiently large bin sizes will
often average out this effect.

The copy number profile readout can be biased by the Polymerase Chain
Reaction (PCR) amplification. Molecules with CG percentage around 30%
are easier to amplify and sequence, therefore resulting in more reads for these
regions. If this effect is not taken into account, it will appear that regions with
an optimal GC percentage for amplification have gained copies, and regions
with a low or high GC percentage have lost copies. Normalization based on
GC is a well described problem and not unique to single cell data. Compu-
tational solutions have been developed which try to reduce counts in regions
with optimal amplification conditions and boost counts in regions with poor
amplification conditions [28} 29} 23]].

Another processes which causes over and under counting includes the length
of the generated fragments. Regions which generate longer fragments will have
fewer reads to sequence. When using Unique Molecular Identifier (UMI)s for
de-duplication, errors in the UMI sequence can cause spurious counts because it

3The fraction of C and G nucleotides over the total in a genomic region
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will seem that there are more molecules present than in reality available [[163].
The quality of the copy number profile is very dependent on the way reads are
mapped to the genome and therefore, improves upon removal of problematic
mapping regions from the analysis [29].

The counting process results in a count matrix of cells by genomic loca-
tions. This matrix is an input to the segmentation and copy number estimation
algorithms.

Copy number estimation and segmentation

Before the count matrix is biologically interpretable, copy number estimation
and segmentation need to be performed. Copy number estimation and segmen-
tation algorithms transform a count matrix into sets of segmented (continuous)
parts of the genome which are linearly connected in each cell and a correspond-
ing estimation of the number of copies for each segment present in each cell.

The segmentation algorithm tries to detect sudden changes in copy num-
ber. Sometimes read alignment information, such as split alignments, are used
to identify DNA break point locations. Circular Binary Segmentation is often
used [127] to segment copy number profiles. However, there are also alter-
natives such as Hidden Markov Models, which have the advantage to directly
estimate a copy number value [14]]. In addition to detecting a difference in copy
number between segments, it is also challenging to estimate the integer copy
number for each segment. A doubling from 1 to 2 copies, for example, can
be interpreted as a change from 2 to 4 copies, because both cases will result
in a doubling of signal between the segments. Some algorithms take available
Fluorescence-activated cell sorting (FACS) ploidy information into account to
resolve this issue [[69]]. Taking into account the haplotypes and read depth at
the same time allows to more accurately resolve single cell copy number pro-
files [192]. B-Allele Frequency (BAF) frequencies can also be incorporated for
detecting which allele is lost and for detecting LOH.

Copy number phylogenetics

In addition to estimating the copy number profile of a single cell, it is of inter-
est to estimate the copy number profile of a population of single cells and infer
the phylogenetic relationships between the cells. This requires an algorithm
which performs segmentation on a population of cells, and is currently an open

15



problem. The problem is hard for a number of reasons: segment boundaries
have to be determined for the ensemble of cells and integration of (raw) copy
number with haplotype information from multiple cells [182]]. In shallow sin-
gle cell DNA sequencing data, the location of a segment boundary cannot be
determined exactly. An algorithm where segmentation and phylogenetic recon-
struction are integrated is essential for performing a sound reconstruction [98]].
For phylogenetics, the exact location of a break point can be used to identify
lineages and it is therefore of importance to know if a segment is shared be-
tween cells in order to discriminate independent events. Some breakpoints are
much less likely than others. A chromosome is much more likely to, for exam-
ple, break on a centromere than on a gene dense region. Complete chromosome
losses are even more common. Very common events are likely to happen mul-
tiple times in parallel. In summary, the infinite site hypothesis [91]] which is
often used in phylogenetics does not hold. Inference algorithms that allow for
the same event to happen in parallel as well as back-mutations should be used
(97, 98]

1.2 Single cell epigenomics

Epigenetics is not a well-defined term, but broadly refers to the genomic fea-
tures, excluding the DNA sequence, which influence the phenotype of a cell.
These epigenomic features constitute the epigenome. The strict definition of
epigenetics requires that the epigenetic marks are heritable, but only few of the
epigenetic marks discussed in this thesis show heritability over multiple cell
divisions [[176]. The epigenome regulates a cell state by long-term gene repres-
sion or activation and protects the genome from transposons. In this section, the
detection and analysis of histone modifications and DNA methylation in single
cells are introduced.

1.2.1 Single cell DNA methylation detection

DNA methylation is the addition of a methyl group to a DNA nucleotide.
Both cytosine and adenine can be methylated in multiple configurations, but
by far the most common and well studied methylated modification is 5-methyl-
cytosine methylation. DNA methylation is known to regulate gene expression.
Methylation of promoters make the promoter inaccessible to transcription fac-
tors and RNA polymerases, which are required for gene expression. DNA
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methylation is used, for example, to repress one of the X chromosomes during
X-chromosome inactivation and for the long-term repression of transposable
elements. While methylation levels and expression on promoter regions are
negatively correlated, gene body methylation positively correlates with expres-
sion [[190].

In human DNA, 5-methyl-cytosine is most commonly found in a CpG
context, referring to a situation where two cytosines are present on opposing
strands. The p refers to the phosphate which links any nucleotides together.
The presence of two cytosines on the opposing strands allows CpG methyla-
tion to be heritable: when a genome is replicated, a new complementary DNA
strand is formed which does not have DNA methylation yet. CpGs where only
one of the two C’s is methylated are called hemi-methylated. The unmethylated
cytosine is then methylated by the DNA Methyltransferase 1 (DNMT1) protein,
which maintains the original methylation state over cell divisions [26]. Clus-
ters of CpG sites in the genome are called CpG islands. These CpG islands are
present in about 70% of all promoters and their presence is used to divide pro-
moters into two classes [[150]. Methylation states of the CpGs in a CpG island
are highly correlated. Therefore, the methylation state of CpGs can be imputed
based on the methylation state of nearby CpGs [[197]]. Deamination causes con-
version of methylated cytosines into thymines over many generations which
causes CpG sites to be relatively under-represented in the genome [[196]]. CpG
methylation is also related to aging, as it increases over a life-time for about
2% of the CpGs and 0.5% of the non-CpGs [[173]]. Loss of DNA methylation is
commonly found in cancer [[199].

Multiple techniques have been published that measure DNA methylation
using DNA sequencing. Four main classes can be distinguished; there are meth-
ods based on enzymatic digestion, which rely on proteins, such as MspJ1 and
Hpall, to recognize methylated bases [154]]. When using enzymatic digestion,
the mapping location of the resulting fragments indicate which cytosine was
methylated. The drawback of using a methylation-sensitive restriction enzyme
is that there is no negative readout. When no methylation is present, these pro-
tocols generate no reads. Hence, the lack of methylation is indistinguishable
from allelic dropout. The second class of methods rely on physically separating
fragments with methylated residues. The third class relies on base conversion,
where methylated or unmethylated bases are converted to other bases, which
allows distinguishing methylated from unmethylated bases. For profiling the
methylome in single cells, bisulfite sequencing is most commonly used [[162,
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435, 166[], whereby all cytosine bases are converted to thymine except 5-methyl-
cytosine residues. Bisulfite conversion damages DNA, resulting in fragmenta-
tion, loss of material and coverage bias. Whole genome bisulfite sequencing
does, however, yield very large libraries which are costly to sequence at suffi-
cient depth. Therefore, a reduced representation method, called reduced repre-
sentation bisulfite sequencing (RRBS), has been developed which covers much
less of the genome but enriches for CpG rich regions. This method requires
fewer reads per cell in order to reach a similar sequencing depth for the most
variable regions [[117].

Recent alternatives to bisulfite sequencing are Tet-assisted pyridine borane se-
quencing (TAPS) [107] and NEBNext® Enzymatic Methyl-seq (EM-seq™) [|174]
which target 5-methylcytosine residues instead of unmodified cytosines and are
less prone to biases caused by conversion.

The fourth class of methods measures the cytosines directly during se-
quencing. Currently, this approach has only been shown to work well in large
bulk samples on the Oxford Nanopore platform. This method is likely to be
the future for methylation detection because no conversion steps are required
[[158]].

Computational challenges in single cell methylome analysis

The general computational workflow of single cell methylome analysis can be
separated into 6 steps: demultiplexing, trimming, mapping, methylation call-
ing, differential methylation calling, and a clustering and imputation step. For
protocols where multiple samples are sequenced from the same pool of DNA,
demultiplexing assigns reads to a cell of origin. Single cell bisulfite proto-
cols are notorious for generating chains of fragments, so called concatamers,
which are not derived from the same genomic locations. The effect of con-
catamers is alleviated by trimming off the known adapter sequences. Addi-
tionally, bases with low base-calling confidence are usually removed from the
sequenced reads.

Bisulfite conversion converts most cytosine bases to thymines. When map-
ping the resulting reads to a normal reference genome, the mapping rate is very
low, partially due to the high edit distance caused by the conversion of all cy-
tosines. To alleviate this, the trimmed reads are mapped to a reference where
all cytosines are converted to thymines. For protocols were not all cytosines are
converted, such as TAPs, using a converted genome is not required.
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During methylation calling, the aligned reads are scanned for evidence of
a cytosine being methylated or unmethylated [94f]. For most protocols, the
strandedness of the read can be determined and used to find which strand con-
tained the methylated base. Additional information is stored, such as the num-
ber of reads covering the location, the confidence of the call, the strand and the
haplotype/allele and the methylation context. This process results in methyla-
tion calls for all covered cytosines in the genome. Some locations will not get
a methylation call due to missing data or a low number of covered cytosines.
For a single cell DNA sequencing library, the amount of methylation calls is
usually low. To reduce this sparsity, methylation calls are often binned in larger
genomic bins. To cluster single cell methylation data, the Frechet distance
metric is commonly used to calculate distances between cells [[175]] followed
by clustering and complete linkage clustering with weighted Euclidean norm
[162].

Differential methylation calling tries to identify regions which are differ-
entially methylated, either between single cells or between cells which have
been clustered together (pseudobulk). The simplest way to calculate differen-
tially methylated regions is to use a Fisher exact test or by logistic regression
[40]]. Not taking into account neighboring bins, is however, a drawback of both
methods, as neighboring bins are frequently correlated and can potentially help
to boost statistical power. To overcome this drawback, smoothing strategies
which incorporate the information of multiple CpGs or bins are regularly used
[76].

Imputing sparse single cell methylation data beforehand often results in
better clustering. Single cell imputation algorithms try to guess the methyla-
tion state of uncovered CpGs. This is done by taking into account the state of
nearby CpGs, because nearby CpGs are generally correlated. Additionally, the
DNA sequence context of a certain window size (1kb) is also used to identify
sequence motifs which are related to methylation and aid in imputation accu-
racy [6]. Also, higher order features like accessibility, histone modifications
and expression can be used to perform more accurate imputation [88, |114]].

1.2.2 Histone modifications

The DNA of a cell is tightly packed using approximately 30 million nucleosome
protein complexes. These nucleosomes help to protect the DNA and reduce the
amount of space required for storage. In addition, nucleosomes have impor-

19



tant regulatory functions. A mechanism of regulation is a result of the DNA
wrapped around the nucleosomes (core-DNA), which makes it less accessible
to DNA binding proteins. This, in part, explains the large difference in nucle-
osome density between transcription start sites of expressed versus repressed
genes. Expressed genes commonly have a nucleosome depleted transcription
start site [[152]]. Approximately 146bp of DNA is wrapped by 1.7 turns around a
nucleosome, which enters and exits at the H1 linker histone. DNA which is not
wrapped around a nucleosomes is called linker-DNA, and ranges from a length
of 10bp to hundreds of bp. Without additional energy input, nucleosomes are
positioned by sequence preference with approximately a 10.4bp period, which
relates to the twisting of the DNA strand and interfacing with the nucleosome
[137]. A/T rich sequences with minor grooves face the nucleosome, while the
minor grooves of C/G rich sequences point away from the nucleosome. Pres-
ence of DNA methylation also influences nucleosome positioning [48|].

Nucleosome complexes usually consist of two copies of the 4 core histone
proteins (H2A, H2B, H3, H4) and one linker histone (H1). These histones
can be modified post-translationally with various modifications: methylation,
acetylation, ADP-ribosylation, ubiquitination, citrullination and phosphoryla-
tion [[17]]. The long protruding tails of histones are especially commonly mod-
ified. All modifications together constitute a histone code which signal histone
modification reader proteins and are sometimes used to recruit proteins to the
genome. Some modifications are mutually exclusive due to their overlapping
residues: mono-, di- or tri-methylation of the same residue can have a totally
different meaning. For example, H3K4mes marks active transcription start sites,
while H3;K4me; marks wider domains like active enhancers and promoters (Fig-
ure [2)).

The highest classification of histone modifications separates them into two
main classes, repressive and active modifications. The repressive modifications
are associated with tightly packed chromatin states, called the heterochromatin.
Generally, genes and transposable elements [[179] on the heterochromatin are
not expressed. The active modifications are associated with a more open chro-
matin state and active transcription. An overview of some commonly methy-
lated residues of the H3 subunit are shown in table

The most common technique for detecting histone modifications in bulk is
Chromatin Immuno Precipitation (ChIP)seq. In ChIPseq, antibodies are tar-
geting DNA fragments with nucleosomes containing specific histone modifica-
tions. These fragments are pulled down and sequenced. An alternative method,
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Figure 2: Schematic overview of CpG methylation and histone marks on the
promoter and gene body of expressed and repressed genes. CpG methylation
of promoters of expressed genes is low in order to be accessible and allow for
transcription initiation. The CpG methylation of the gene body of expressed
genes is elevated, likely due to increased accessibility caused by transcription.
Transcribed genes accumulate H3K3¢gmes on their gene body and H;K4mes on
their promoter. HzKj7mes and H3Kgmes are primarily present on repressed
genes.
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modification | Function

H;K4me; poised epigenetic state [|13]]

H; K4 mes transcription [83]]

H;Kgmes transcriptional silencing and repression, AT rich gene poor re-
gions

H3;Ky7mes transcription repression and X inactivation, GC rich gene dense
regions, DNA damage response

H;K36mes transcription elongation

H;K79mes euchromatin, transcription elongation, checkpoint response

Table 2: Overview of some common histone H3 methylation modifications

sensitive enough for low input material, uses Micrococcal Nuclease (MNase)
tethered to an antibody which guides the MNase to a specific histone modi-
fication. The MNase cleaves nearby linker DNA, the resulting fragments are
sequenced, and the mapping locations inform where the histone modification
was present. Another method suited for low-input material, uses an antibody
which is tethered to a protein A-Tn5 transposase fusion protein. In a process
called tagmentation, the fusion protein simultaneously cleaves DNA near the
histone mark and adds the adapters required for DNA sequencing. Sensitive
methods for measuring histones through single cell sequencing are based on
using either MNase or Tn5 transposase. See Table [3|for an overview of current
methods. All these methods generate reads at locations nearby the histone mark
or DNA binding protein of interest. These reads are analyzed to find regions
which are differentially modified, and are used to cluster the single cells.

Computational challenges in single cell histone modification analysis

The mundane question which is asked for a single locus is simple: does a nearby
nucleosome contain the mark of interest or not? For some cells, a read will
cover the locus of interest and therefore, confirms a nucleosome with the modi-
fication nearby. For most cells, the question cannot be answered, as there are no
reads covering the locus. This either means there was indeed no modification
nearby, or the measurement dropped out. Currently, the number of dropouts
is very substantial for any of the protocols measuring histone modifications.
The main computational challenges of single cell histone modifications detec-
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Method Year of introduction
Single cell ChIP
SC-ChIP [141]] 2015
ht-sc-ChIP-seq [[73]] 2019
itChIP-seq [J3]] 2019
pA-MNase
CuT&Run [161]] 2018
uliCUT&RUN [/74] 2019
scChiC-seq [95]] 2019
1scChiC-seq [96] 2021
pA-TnS
ChlIL-seq [77] 2019
CoBATCH [181] 2019
Cut&Tag [89] 2019
autoCUT&Tag [86] 2021
scCut&Tag [16] 2021
scCUT&Tag [|187]] 2021

Table 3: Overview of single cell histone profiling methods
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tion are therefore similar to single cell genome sequencing and are related to
dropouts in the resulting sparse data. In principle, handling this data is quite
similar to single cell transcriptome libraries, as there will be some reads at lo-
cations with signal (transcripts vs a nearby histone modification of interest). In
contrast to transcriptome data, where highly expressed genes have many tem-
plates (transcripts) available to amplify and sequence, histone modifications
only have few templates available (2 DNA templates for a non-dividing diploid
cell). Most histone modifications are deposited in (spatially side by side and
dense) clusters. This results in spatially correlated measurements, allowing for
the use of binning or smoothing to combat the sparsity. For some histone mod-
ifications the location of the domains are known. H3K3gmes is, for example,
found on gene bodies and can therefore be quantified per gene. H3K4me; can
be quantified per promoter. Latent Dirichlet Allocation [38] or Latent Seman-
tic Indexing [106]] are used for dimensionality reduction of sparse data while
simultaneously imputing missing values.

1.3 Combining it all together:
single cell multi-omics

Heterogeneity of tissues has been extensively studied using single cell omics.
As described in the previous sections, it can be used to find subclones in a tu-
mor, reveal lineage relationships, identify subpopulations of cells on the basis
of expression and to identify dynamics, DNA methylation and histone modifi-
cations.

Almost all components in a cell interact and affect each other. Hence, there
are many questions to be asked about the relationships between various modal-
ities. For example, how do DNA copy number changes influence gene expres-
sion? How often does the same copy number aberration occur in the same clone
in a tumor? How does methylation affect transcription, and vice versa? A way
to answer questions like these is to use single cell multi-omics, where multiple
modalities are measured in the same population of cells

Single cell multi-omics datasets can be divided into two major classes [99].
In the first class of datasets [110,|111} |57, |7, |42]], multiple modalities are mea-
sured from the same cell. The resulting data is usually more sparse than when
modalities are measured individually. This sparsity can be caused by compe-
tition of the modalities during the protocol or sequencing process. Balancing
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multiple modalities such that enough information can be extracted from all of
them simultaneously has been proven difficult. Additional technical biases can
occur when measurements are able to influence one other. For example, if both
modalities are derived from genomic DNA, the detection of the modalities in
the same region can cause competition and dropout of one of the modalities for
that region.

There are many ways to analyze multi-omics data, and the best strategy
depends on the specific modalities and questions at hand. Typically, in single
cell experiments the aim is to detect subpopulations of cells through, for ex-
ample, clustering. Clustering can be performed on one of the modalities, as,
for example, on the copy number profile per cell. If properly analysed, these
clusters reveal subpopulations which are biologically meaningful, such as in the
case of copy number profiles, the clones present in a sample. When using the
biologically meaningful subpopulations, the remaining modalities can be used
to identify differences between the populations [99]. This is especially useful
when a modality by itself is more difficult to cluster due to sparsity or novelty,
causing unavailability of appropriate distance metrics. In case of a combined
protocol with bisulfite or histone modification data, for example, it makes sense
to first cluster on the very well characterized modality which is in most cases
related to cell types identity, such as transcriptome data. Then, the DNA methy-
lation can be investigated per cell type. It is also possible to cluster using the
information contained in all modalities. Such methods are currently in devel-
opment but will likely work similar to their counterparts used to analyse bulk
multi-omics data [[160, 139, |&]].

In the second class of single cell multi-omics datasets the modalities of
interest are measured in different cells. These cells are sampled from the same
population of cells. This approach can be beneficial as there is no need to set
up an experimental protocol which is able to measure multiple modalities in
the same single cell. The drawback is that the modalities require to be aligned
or linked to one other. How this is done depends on the types of modalities to
be measured, and whether a third modality (for example FACS information) is
available which is shared between all cells.
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1.4 Thesis outline

This thesis contains three research chapters. The technological foundation of
each chapter is measuring multiple modalities in single cells by single cell se-
quencing.

Chapter 2]

Here we study Clonal dynamics in colorectal cancer by evolving a colon can-
cer organoid model over 100 generations simultaneously monitoring clone size,
Copy Number Variant (CNV)s, and single nucleotide variants SNVs in individ-
ual cells. These integrated measurements reveal the order of events in which
chromosomal aberrations occur and allow the identification of aberrations that
recur multiple times within the same population. We observe recurrent sequen-
tial loss of chromosome 4 after loss of chromosome 18 in multiple unique tumor
clones and show this reflects clinical observations.

Chapter 3]

In this chapter, a new technique scSort-ChIC is introduced. ScSort-ChIC can
be used to profile histone mark locations in single cells and allows pairing with
FACS information. scSort-ChIC is used to map active and repressive histone
modifications in Hematopoietic Stem and Progenitor Cells (HSPCs), and ma-
ture blood cells in the mouse bone marrow. During differentiation, HSPCs
acquire distinct active chromatin states that depend on the specific cell fate,
mediated by cell type-specifying transcription factors. In contrast, most re-
gions that gain or lose repressive marks during differentiation do so indepen-
dent of cell fate. Joint profiling of H3K4me; and H3K9mes demonstrates that
cell types within the myeloid lineage have distinct active chromatin but share
similar myeloid-specific heterochromatin-repressed states. This suggests hier-
archical chromatin regulation during hematopoiesis: heterochromatin dynam-
ics define differentiation trajectories and lineages, while euchromatin dynamics
establish cell types within lineages.

Chapter {4

In this chapter, a new technique to profile both histone mark locations DNA-
methylation and FACS properties from the same single cell is introduced. This
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combination of measurements has never been performed before. The method
is thoroughly validated, and applied to a system where the cell cycle can be
closely monitored. The FACS information is used to integrate data from multi-
ple histone marks and compare their behavior during the cell cycle.

Chapter 5|

I conclude this thesis in where I will discuss present-day challenges
and possible solutions to combat these challenges and a bit of future outlook.
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Integration of multiple lineage
measurements from the same
cell reconstructs parallel tumor
evolution
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2.1 Summary

The dynamics of tumorigenesis shares many similarities with Darwinian evolu-
tion. Elevated mutation rates result in genetically diverse tumor sub-populations.
Selection leads to clonal expansion of the fittest genotypes resulting in tumor
outgrowth and dissemination. Here we mimic this process by evolving a colon
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cancer organoid model over 100 generations simultaneously monitoring clone
size, copy number variants (CNVs), and single nucleotide variants (SNVs)
in thousands of individual cells. This offers the unique opportunity to com-
bine multiple measurements to reconstruct evolution. These integrated mea-
surements reveal the order of events in which chromosomal aberrations occur
and allow the identification of aberrations that recur multiple times within the
same population. For example, we observe recurrent sequential loss of chro-
mosome 4 after loss of chromosome 18 in multiple unique tumor clones closely
reflecting clinical observations. organoid evolution models complemented with
integrated single-cell sequencing technology provide a powerful platform to
study and hopefully control tumor evolution.

2.2 Introduction

Cancer initiation is the result of cells gradually acquiring genetic alterations
due to carcinogenic exposure and DNA replication infidelity [63]]. Some alter-
ations confer a growth advantage resulting in tumor formation in which DNA
repair and genome integrity are increasingly ablated leading to further genetic
alterations. As a result, tumor clones arise that exhibit distinct genetic compo-
sitions of single nucleotide variants (SNVs), insertions/deletions (indels) and
copy number variants (CNVs). This intra tumor heterogeneity (ITH) [71} |85,
125] [155]], plays a key role in cancer development. Tumor clones may for in-
stance have varying proliferative and metastatic potentials. Furthermore, ITH
plays a key role in therapy resistance and the frequent lethal outcome of cancer,
since some tumor clones may have intrinsic resistance to therapy [[115} [115}
116]]. For this reason, substantial efforts have been made to characterize ITH
by mapping the clonal evolution in tumors using whole genome sequencing
(WGS) of the tumor bulk. However, without temporal resolution this approach
only provides a limited view on ITH. It is for example difficult to infer the order
in which genetic lesions have occurred and the number of subclones that can be
identified is limited [1}, 55} 142} 172]. While regional sequencing may alleviate
some of these issues, it only gives a snapshot of this heterogeneity and does not
reveal the evolution of the cancer [|164].

To characterize ITH at high clonal and temporal resolution, genetic alter-
ations in single-cells and multiple time-points need to be obtained. This is en-
abled by single-cell DNA sequencing, which was first introduced in 2011 [[121]]

30



and has since been used to investigate tumor heterogeneity and tumor evolu-
tion in many studies [25] |39, |53} 70, 121} 140, |184, |188|]. However, most of
these studies construct clonal evolution trees exclusively based on either SNVs
( 140, [188] or CNVs [25, 39} 53, 121]], and thus never exploit the combined
information contained in both types of genetic alterations. For instance, recur-
rent chromosome amplifications or deletions within the same sample cannot
be distinguished without knowledge of both the CNVs and the SNVs from the
same single cell. Furthermore, the order of events in which CNVs are estab-
lished can only be determined with high certainty by combining CNV data
with SNV data. Constructing trees based on multiple independent lineage trac-
ing strategies moreover enables internal validation by evaluating consistency
across multiple independent lineage markers. Most single-cell efforts to date
that characterize clonal evolution trees are limited in the number of cells and/or
the number of SNVs that are interrogated and do not include multiple time-
points. A few existing studies do combine SNVs and CNVs measurements
from the same single cells in tumors [70, |184]]. However, these studies rely on
a limited number of SNVs and suffer from low resolution CNV data, resulting
in shallow trees that lack the resolution to acquire a complete picture of the
clonal evolution of these tumors.

In this study we combine high resolution CNV data with high quality SNVs
from thousands of single cells in order to improve the ability to delineate ac-
curate clonal evolution trees. To increase the accuracy of the clonal evolution
trees even further we added a viral barcode-based lineage tracing strategy in
addition to single-cell DNA sequencing-based detection of SNVs and CNVs.
This provides three (CNVs, SNVs and the lineage barcodes) complementary
levels of lineage tracing which can be integrated to acquire a complete view
of tumor evolution and which allows internal validation of the resulting clonal
evolution trees. We moreover introduce a temporal axis to the data by taking
multiple time points during clonal evolution.

We utilize a colon carcinoma organoid model, which has the ability to ac-
quire many CNVs, and allows the introduction of viral lineage tracing bar-
codes. Colon carcinoma is frequently initiated by mutations in Wnt, Epider-
mal Growth Factor Receptor (EGFR), P53 and Transforming Growth Factor
(TGF)-f3 signaling pathways. Furthermore, colon carcinoma is often associ-
ated with chromosomal instability (CIN) resulting in widespread CNVs [62].
Recent studies have shown that the formation of colon carcinoma can be accu-
rately mimicked in vitro using an organoid model [60]. This organoid model

31



uses CRISPR-Cas9 to induce sequential mutations in APC, TP53, KRAS and
SMAD4. APC”- TP53"~ KRASC'?P SMAD4"~ (APKS) organoids morphologi-
cally and phenotypically resemble carcinoma stage colorectal tumors and have
pronounced CIN. The CIN results in genetically heterogeneous cultures mim-
icking the ITH observed in clinical samples of colorectal carcinoma (CRC)
[31]]. Copy number aberrations common to the APKS organoids and CRC pa-
tients include chromosome 4, 18 and 8. [[156, 123, |36, [51]],.

Chromosome 4 and 18 deletions are common in tetraploid colon cancer
tumors [[56]]. These properties make the organoid model an interesting system
to study ITH and tumor evolution.

After introduction of the viral barcodes into the organoid model at the be-
ginning of the experiment, the organoids undergo a 26-week period of in vitro
evolution, during which single-cell DNA sequencing is performed at multiple
time points in order to detect CNVs, SNVs and viral lineage barcodes. In paral-
lel, the relative amount of each tumor clone was analyzed weekly through bulk
sequencing of the lineage barcode. This combination of lineage measurements
allows the construction of unprecedentedly detailed clonal evolution trees. Fur-
thermore, due to the combination of three markers (CNVs, SNVs and the viral
lineage barcodes) internal validation of the constructed trees can be performed,
as trees constructed based on two markers can be validated by the third. The re-
sulting clonal evolution trees reveal the order of events in which chromosomal
deletions and amplifications occur and allow the identification of chromosomal
aberrations that occur multiple times independently within the same cell pop-
ulation. Based on our trees we could for instance establish that chromosome
4 and chromosome 18 are sequentially lost in multiple unique tumor clones.
Such findings can have important clinical implications as we find that this com-
bination of chromosome 4 and chromosome 18 deletions not only provides a
strong proliferative advantage in our experiments, but also results in signifi-
cantly worse recurrence free survival compared to patients with only a single
chromosome 18 deletion.
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2.3 Results

Lineage tracing in colon carcinoma organoids reveals clonal dynam-
ics

To track the clonal evolution of colon carcinoma we used early passage human-
derived APKS colon organoid cultures in triplicates (hereafter referred to as
Replicate 1, Replicate 2 and Replicate 3). After establishment of the organoid
line, a viral lineage library with around 60,000 unique barcodes was introduced.
The organoids subsequently underwent a 26-week (25 passages) in vitro evo-
Iution period (Figure 1). The relative abundance of each of the viral barcodes
was analyzed weekly through bulk sequencing of the lineage barcode. By as-
sessing the relative barcode abundance in all three replicates we observed rapid
expansion of a relatively small number of clones (Figure S1). An important
question is whether the observed dynamics could be explained by neutral drift
in the culture. To exclude this possibility, we performed stochastic simulation
of the organoid culture ( Methods), taking into account the proliferation rate
of the organoids, the number of individual cells at the start of the experiment
(start population size) and the number of cells that is left after passaging of
the organoids (bottle neck size). We observed that the decrease in entropy in
the actual experiment is significantly faster than in the simulations indicating
that these clonal dynamics could not be explained by neutral drift in the culture
(Figure S2), indicating there is a selection process underlying the clonal dy-
namics. Furthermore, we observe expansion of the same clones (as determined
through CNVs) in multiple replicates, providing additional support for a strong
selective pressure on the organoids.

High resolution CNV detection allows identification of many unique
CNYV states

In parallel to the bulk analysis of the viral lineage barcodes, single cells were
harvested at regular intervals and processed for single-cell DNA sequencing us-
ing an NLA-III restriction enzyme-based technique 93] [119], (Figure 2A). In
short, adapters containing Unique Molecule Identifiers (UMI), allowing quan-
tification of the absolute number of unique molecules in each single cell, are
ligated to the NLA-III cut sites and the molecules are amplified using In Vitro
Transcription (IVT) prior to sequencing. After binning the mapped reads using
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500 kb bins and filtering of cells with too few reads or fragmented genomes, a
total of 1641 cells with a mean number of 326,000 unique molecules per cell re-
mained (Figure 2B). Copy number profiles were normalized by dividing by the
median and multiplying by 2. Dimensionality reduction using principal com-
ponent analysis on the median normalized matrix shows that the cells cluster
by replicate and time point, while for early time points the cells of the various
replicates are more similar (Figure S7). Recurrent breakpoints between regions
with different copy number were detected by hierarchical clustering followed
by circular binary segmentation (Methods). The high resolution and low noise
(Figure S3) of the NLA-III restriction enzyme-based technique allows accu-
rate quantification of the CNV profile for each single cell. For instance, we
observed multiple unique CNVs affecting chromosome 18, which could not
have been detected through bulk WGS (Figure 2D; for example: copy number
states 2, 6 and 11).

In parallel to single-cell NLA-III sequencing we performed standard bulk
WGS at the start and at the end of the in vitro evolution period. In this bulk
data we observed a full deletion of chromosome 4 in Replicate 1 at the end
of the experiment. However, the B-allele frequency (BAF) revealed that both
alleles were still present albeit in unequal amounts (Figure S4). This indicated
that a fraction of cells had lost one allele of chromosome 4, while the rest
of the cells had lost the other allele. To confirm this in the single cells we
first acquired the diplotype of chromosome 4, based on another organoid line
derived from the same donor which had completely lost one of the alleles of
chromosome 4. This diplotype was then used to assess which allele (if any) of
chromosome 4 was lost in each of the single cells. Indeed, in Replicate 1 we
observed 314 single cells with a loss of chromosome 4 allele A and 96 cells with
a loss of chromosome 4 allele B. The diplotype for chromosome 18 could also
be acquired. Here we observed that all the unique deletions on chromosome
18 concern the same allele. The observed single cell BAFs of chromosome
4 and 18 are tri-modal with peaks around 0, 0.5 and 1, indicating the cells
were diploid and not tetraploid (Figure S4B). These observations demonstrate
that the combination of single-cell NLA-III sequencing and WGS allows allele
specific CNV detection in single cells. Most of the deletions and amplifications
observed in the organoid culture are also frequently observed in patients in
CRC, emphasizing the relevance of the organoid model for studying colorectal
cancer (Figure 2C).

In total we identify 25 unique CNVs across 1641 single cells, with 52
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unique CNV states (a CNV state is a genome wide CNV profile that is shared
by at least three single cells; Methods), ranging in size from 434 cells to 3
cells (Figure 2D). In Replicate 1 we observe a massive expansion of cells with
a chromosome 4 and a chromosome 18 deletion, while in the second (Repli-
cate 2) and third (Replicate 3) experiment we observe expansion of cells with a
chromosome 8p deletion.

Construction of High-Resolution Clonal Evolution trees

To establish clonal evolution trees, a directed edit distance graph was created
from the CNV states. Since the same CNV state can be present at multiple
time points, each time point was added as a separate node in the graph. This
enables enforcing temporal consistency (i.e. earlier time points could not be
derived from later time points) in the tree construction (Methods). A span-
ning arborescence was extracted from the directed CNV edit distance graph
using Edmonds algorithm [61]]. The clonal evolution trees were visualized us-
ing ToverBoom (Figure 3C-E, Methods). The resulting clonal evolution trees
indicate the most likely evolutionary trajectories along which the tumor has
evolved. The tree for Replicate 1, for instance, indicates that CNV State 3 is a
descendant of CNV State 2, which is logical considering that CNV State 2 has
a chromosome 18 loss and CNV State 3 has a chromosome 18 and a chromo-
some 4 loss (Figure 2D). In conclusion, the high resolution CNV calling allows
construction of detailed clonal evolution trees with a temporal component.

Integration of CNV states with an independent lineage marker is
required for confirmation of clonal evolution trees

Although the clonal evolution trees indicate the most likely evolutionary tra-
jectory, it cannot be excluded that two seemingly related CNV states arose in-
dependently, in particular given that copy number changes occur frequently in
this genetic background. To disambiguate the relation between two CNV states
we can leverage the information provided by the viral lineage barcode. This
is schematically represented in Figure 3A-B. For a new CNV state to be in-
troduced during the experiment, both the cells in the new CNV state and its
parental cells must be marked by the same viral lineage barcode. For example,
the new CNV state k arose from the parental CNV state [ because both states
share viral lineage barcode 1 (Figure 3A). On the other hand, CNV states ob-
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served in cells that do not share a viral lineage barcode with their putative parent
most likely arose prior to the introduction of the lineage markers (illustrated by
CNV state m in Figure 3A). Similarly, a CNV state that contains cells with
multiple lineage markers most likely also arose prior to barcode introduction
(CNV state [ in Figure 3A).

A clone in a certain CNV state harboring multiple lineage markers, which
are also present in their inferred parental CNV state (for example CNV state
y and CNV state z in Figure 3B) are particularly interesting. In this example,
CNV state z and CNV state y both harbor viral lineage barcodes 1 and 2, indi-
cating that these CNV states are closely related and arose after lineage marker
introduction. Since the viral lineage barcodes mark unique lineages, this im-
plies that the loss of chromosome A occurred twice independently, once in a
cell with lineage barcode 1 and once in a cell with lineage barcode 2. An alter-
native explanation for the observation of CNV states sharing lineage barcodes
is that these CNV states were already present at the start of the experiment and
that the same lineage barcode was introduced multiple times into cells with
these CNV states. However, this is very unlikely due to the large number of
barcodes present in the viral lineage library (based on simulations the probabil-
ity of two cells in the starting culture receiving the same viral barcode is smaller
than 0.0001).

To detect the viral lineage marker in single cells, allowing us to disam-
biguate and validate clonal evolution trees, we employed an experimental strat-
egy that enriches for reads containing the viral lineage barcode (Methods,
Figure S6). This allowed us to detect the lineage barcode for 293 of the se-
quenced single cells. The lineage barcode information can be superimposed
on the clonal evolution trees, which allows us to distinguish between the cases
described previously (Figure 3A-B). Indeed, we observe shared viral lineage
barcodes between several CNV states that are descending from each other ac-
cording to the CNV based clonal evolution trees. For instance, CNV state 2
(chromosome 18 deletion) and CNV state 3 (chromosome 18 and 4 deletion)
share a viral lineage barcode BC1 (Figure 3C). This confirms that during the
course of the in vitro evolution a single cell with BC1 belonging to CNV state
2 lost the A allele of chromosome 4 thereby founding CNV state 3. A shared
viral lineage barcode BC2 was also observed between CNV states 3, 5, 16, 20
and 21, all of which share a chromosome 18 deletion. This indicates that, even
though this particular viral lineage barcode is not observed in CNV state 2,
it must have been present and was most likely not observed due to sampling.
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Other examples of new CNV states arising during the in vitro evolution period
include CNV state 7, 17, 22 and 27 from CNV state 1 in Replicate 2 (Figure
3D) and CNV state 9 from CNV state 2 in Replicate 3 (Figure 3E). Interest-
ingly, in Replicate 2, the CNV based clonal evolution tree suggests that CNV
state 17 and 22 arose independently from CNV state 1. Based on the viral lin-
eage barcodes we can conclude that this is false and that CNV states 17 and
22 in fact are descending from CNV state 1. This illustrates the importance
of integrating multiple lineage measurements to achieve an accurate picture of
tumor evolution.

Besides observing multiple CNV states sharing the same viral lineage bar-
code, we also observe multiple viral lineage barcodes within the same CNV
state (e.g. CNV states 1, 2, 4 and 6). The most likely explanation for this is that
these CNV states were already present at the moment of viral lineage barcode
introduction (Figure 3A). The observation that CNV states 1, 2, 4 and 6 were
already present at the start of the experiment is confirmed by the fact that these
states are all present in multiple replicates. Furthermore, we already observe a
subclonal chromosome 18 loss (CNV state 2) in the bulk WGS from samples
taken at the start of the experiment (Figure S4D).

Somatic Single Nucleotide Variants provide an additional layer of
information to increase tree resolution

Somatic single Nucleotide Variants (sSSNVs) can be used as lineage markers as
they are inherited from one cell to its progeny. Shared sSN'Vs thus indicate a
shared common ancestor and sSNV's can be used to disambiguate phylogenetic
relationships between previously identified CNV states. While copy number al-
terations are likely to have a fitness effect, most sSSNVs are passenger mutations
without any effect on the fitness of the cells, thus providing a lineage marker
which is less affected by selection. Moreover, unlike viral lineage markers,
sSNVs accumulate throughout time, and therefore provide lineage marking of
clones which initiate during the evolution experiment. For these reasons, in ad-
dition to the viral barcodes and copy number profiles, we assess sSSNVs within
the cells of all three replicates. This additional layer of information allows us to
identify additional heterogeneity within the population of cells with the same
copy number state, verify edges of the inferred lineage trees based on the copy
numbers and identify copy number aberration events which occurred multiple
times.
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sSNVs called from single cell sequencing data suffer from high numbers of
false positive calls. To identify reliable sSSNVs, we therefore trained a random
forest (RF) classifier on the somatic mutations that could be verified in the bulk-
library and used the trained classifier to identify reliable sSSNVs (Methods).
Every variant that passed the RF filter is phased to at least one heterozygous
germline variant or discarded otherwise. Positive variant calls are identified
by presence of the alternative allele among all sequence reads for the position
within a cell. Negative variant calls are identified by presence of the reference
allele in phase with the germline variant found to be linked with the alternative
allele [30} [78]. This procedure allowed us to extract 106 high-quality sSNVs
from all cells used for tree inference.

sSNVs can be overlaid on the lineage trees inferred from the copy number
calls. Figure 4A-B show this for two example sSNVs across all three repli-
cates. The sSNV can be present (red markers), absent (the reference allele is
detected, blue markers) or undetermined (insufficient coverage to be detected,
grey markers). This example shows that subclones of the A18 clone always
carry the variant, while the A8 clone including subclones do not. This confirms
that there is strong association of these two SNVs to clones with a similar copy
number profile.

By clustering based on all detected sSNVs the cells separate in two main
groups. The first group of cells is characterized by chromosome 18 loss, while
the second predominantly carries a chromosome 8p deletion (Figure 4C). Most
variants are detected in multiple replicates, which indicates that the variant was
likely present before the replicates were separated.

Integrating sSSNVs with CNVs in single cells suggests
parallel evolution of copy number states

In addition to the strong co-segregation of copy number state and somatic vari-
ants (Figure 4C), we also observe more complex relations between the two
lineage markers. We define three classes of sSSNVs at the branching point of
two copy number states (Figure 5).

In the first class, a copy number aberration occurs after the sSNV. This
would be consistent with a situation in which at an early time point a clone is
marked by an sSNV, while after the CNV-induced bifurcation the newly de-
rived clone only contains cells carrying the alternative allele (Figure SA, top).
We find examples of this first class on Chr8 and Chrl8 for Replica 2 and 1,
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respectively (Figure SA, bottom).

In the second class, an sSNV is introduced after a CNV is created. Here,
at early time points the clone does not contain any cells with the sSSNV. After
branching into a new copy number state, the sSSNV is exclusively observed for
the cells in the new CNV state, indicating it must have been introduced after
the acquisition of the CNV (Figure 5B, top). This class of sSSNVs can be used
to verify edges in the copy number tree similar to the viral lineage markers.
Examples of the second class are shown for Replicate 1 occurring within chr18-
loss subclones (Figure 5B, bottom).

In the third, most interesting, class the same CNV occurs twice indepen-
dently. This situation would be consistent with a clone in a single CNV state
that contains cells both with and without an sSSNV at an early time point. If after
the introduction of a CNV the new clone also contains cells with and without
the sSNV, this must mean that the copy number aberration must have occurred
at least twice; once in the clone with the sSSNV and once in the clone without
the sSSNV (Figure 5C, top). An example for such a parallel evolution event can
be found in multiple variants that show both the reference and mutated alleles
in the A18 state and the A18A4a state (Figure 5C, bottom). The same holds
for the A18 to A18A4b state (Figure SC, bottom).

Accurately identifying the first two classes is challenging, because it is al-
ways possible that the presence or absence of a particular sSSNV is not detected
because of drop-outs in the single-cell data. However, distinguishing the third
class from the first two classes is less vulnerable to sampling errors. If both
the presence and absence of an sSSNV are detected before and after a CNV is
initiated, it rules out the first and second scenario, in particular when this is sup-
ported by several sSSNVs. Taken together, an integrated analysis of how sSNVs
segregated between copy number states suggests that these copy number states
can arise multiple times independently.

Loss of chromosome 18 followed by loss of chromosome 4 worsens
survival probability

The most highly abundant and fastest growing clone across the 3 replicates was
characterized by a combination of a loss of chromosome 18 and a loss of chro-
mosome 4. Although we did observe cells with a chromosome 18 loss only, we
did not observe cells with a chromosome 4 loss only, suggesting that the loss
of chromosome 4 only results in a proliferative advantage in the presence of a
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chromosome 18 loss. To see if there is any evidence that supports this hypoth-
esis we turned to the Memorial Sloan Kettering Colorectal Cancer (MSKCC)
database [[189]]. The MSKCC data show that in colorectal cancer patients chro-
mosomes 18 and 4 are frequently lost (Figure 2C).

However, tumors with a lower copy number ratio for chromosome 4 than for
chromosome 18 occur less frequently in the same patient than can be expected
based on the frequencies of chromosome 18 and chromosome 4 copy numbers
(based on a permutation strategy, Methods, Figure 6A). At the same time, there
is an enrichment for tumors wherein the copy number ratio for chromosome 18
is lower than for chromosome 4, indicating that most often a chromosome 18
deletion occurs prior to a chromosome 4 deletion. Strikingly, this is in line with
the order of events we observe in the APKS organoid cultures.

We also find that patients with a combination of a chromosome 18 and a
chromosome 4 deletion have higher mortality than patients with a chromosome
18 deletion without a chromosome 4 deletion (Figure 6B). This suggests that
a chromosome 4 deletion in the context of a prior chromosome 18 deletion re-
sults in a deadlier tumor than either deletion on its own. To investigate this in a
more systematic manner we investigated all possible combinations of two chro-
mosomal deletions and/or amplifications. We define a ‘priming event’, which
is the first aberration and a ‘conditional event’” which is the second aberration in
the context of a particular priming event. We then compared the absolute cor-
relation between the copy ratios for any given pair of priming and conditional
events to the hazard ratio of the conditional event over the priming event alone
(Figure 6C). This analysis shows that a loss of chromosome 18 as priming
event followed by a loss of chromosome 4 as conditional event has the highest
hazard ratio of all possible conditional events.

These analyses highlight the relevance of our organoid system as a model
for colorectal cancer that enables insight into clonal heterogeneity and ordering
of mutational events with clinical relevance. Additionally, based on the obser-
vations in the organoids we find that a chromosome 4 deletion conditional on
a chromosome 18 deletion results in a deadlier tumor. To our knowledge, this
is the first example of a conditional chromosomal aberration resulting in higher
mortality than the corresponding single aberrations.

40



2.4 Discussion

Delineating the clonal evolution trajectory through which a tumor is formed is
pivotal to the understanding of tumor biology. Since every cell inside a tumor is
unique, this requires an approach with single cell resolution. Here, we use sin-
gle cell WGS in combination with viral lineage tracing to acquire CNV states,
SNV states and viral lineage barcodes for 1641 single cells. Almost all of the
CNVs identified in the organoids also frequently occur in colorectal carcinoma
samples, indicating that the organoids are a valid and valuable model for col-
orectal carcinoma. Based on the CNVs in the single cells we could identify 52
unique CNV states in the organoids. From the 52 CNV states we derived highly
detailed clonal evolution trees, which could in turn be internally validated based
on the viral lineage markers and the SNVs. This internal validation is only pos-
sible due to the multiple independent lineage markers simultaneously.

The addition of the viral lineage markers revealed that certain CNVs oc-
curred in multiple independent events in the organoid cultures. For instance,
we observed at least 4 independent events in which a copy of chromosome 4
was lost. The frequent loss of chromosome 4 suggests that this event provides
the organoids with a proliferative advantage. Indeed, the viral lineage barcodes
showed that the clones that lost chromosome 4 expanded during the in vitro
evolution period.

Clustering of the SNVs identified two main groups, which perfectly over-
lap with the two main CNV clones in the data, the chromosome 18 loss group
and the chromosome 8p loss group. However, more detailed interrogation of
the SNVs revealed several SNVs that can only be explained by multiple occur-
rences of a certain CNV. Again, this confirms the observation that chromosome
4 loss occurred multiple times during the in vitro evolution period.

In our data, the loss of chromosome 4 only occurred in the context of a loss
of chromosome 18. This implies the order of the chromosomal aberrations is in
this case important for progression. Analysis of patient data from the MSKCC
colorectal cancer dataset revealed that, in patients, loss of chromosome 4 also
very frequently occurs in the context of a chromosome 18 deletion. Further-
more, the combination of a chromosome 18 and a chromosome 4 deletion re-
sults in a higher mortality than a chromosome 18 deletion alone. Strikingly, a
further systematic exploration of context dependent deletions or amplifications
that result in a higher mortality than the initial amplification or deletion alone
revealed that only the conditional deletion of chromosome 4 in the context of a
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deletion of chromosome 18 results in higher mortality.

In conclusion, we showed that using three independent lineage measure-
ments acquired through single cell WGS yields highly structured clonal evo-
lution trees of colorectal carcinoma organoids. The lineage measurements re-
vealed that certain chromosomal aberrations occurred in multiple independent
events. Finally, the most frequently occurring chromosomal aberration identi-
fied in the organoids results in higher mortality when occurring in patients with
colorectal carcinoma.
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Data availability

The accession numbers for the datasets reported in this study are available on
SRA: Bio project id: PRINA645018. The copy number tree inference and
plotting code is available at https://github.com/BuysDB/ToverB
oomnl the imputation generation code athhttps://github.com/zztin/s
iCloneFit IO and scripts at https://github.com/BuysDB/Tumo
rEvolutionReconstruction.

2.5 Methods

Viral library construction

The viral construct was created using the pCDH lentivector CD811A-1 (Sys-
tem Bioscience) in which a GFP was inserted under control of the PGK pro-
motor and a puromycin resistance cassette was inserted under control of the
Eefla promotor. Nsil and Ascl restriction sites were inserted in the 5° UTR
of the GFP gene using inverse PCR. The barcode insert was created using a
80bp primer containing the barcode (consisting of 4 stretches of 5 random nu-
cleotides interspersed by A’s) flanked by M13 forward and reverse sequences
and restriction sites for Nsil and Ascl and made double stranded using a com-
plementary primer and Klenow fragment (NEB). The insert was subsequently
digested with Nsil-HF and Ascl-HF (NEB), to create the right overhangs for
ligation into the plasmid. Plasmid was linearized using Nsil-HF and Ascl-HF
and barcode insert was ligated using T4 DNA Ligase (NEB). Ligated plasmid
was transformed into Stable Competent E. Coli cells (C3040 NEB) and 30.000
colonies were harvested from which plasmids were extracted.

Viral library complexity assessment

8 replicates of 1 ug of viral library were amplified using NEBNext High fi-
delity PCR mix (NEB) for 10 cycles with barcoded PCR forward primer 1 and
PCR reverse primer 1 (Table S1). Illumina sequencing libraries were generated
through 5 additional cycles of PCR with Illumina Truseq small RNA library
PCR primers. The viral library was sequenced on a NextSeq500 using 2x75bp
paired end sequencing. Barcode sequences were merged if they were within
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hamming distance 2 from each other, merging them into the most abundant of
the two, while taking into account sequencing quality.

DNA extraction, barcode amplification and barcode sequencing

For each organoid line DNA was harvested weekly. Cell lysis was performed
overnight at 50C using 0.05 units of Qiagen Protease in 10 mM tris pH 7 in a
total volume of 1 ml. All samples were split into two and DNA was extracted
using phenol/chloroform extraction followed by AMPure DNA bead clean-up
(Beckman). Viral barcodes were amplified using a two-step PCR strategy [[102].
All PCRs were done in 96 well plates, using the 96 barcoded forward primers (1
primer per well, Table S1) in combination with a mix of 5 reverse primers. The
5 reverse primers are identical except for a small (0, 1, 2, 3 or 4 base insertion),
which ensures high complexity of the libraries, required for sequencing. First,
for both replicates of a sample 5 cycles of PCR were performed on 500ng of
genomic DNA using NEBnext High Fidelity PCR master mix (NEB) and bar-
coded primers containing a Unique Molecule Identifier (UMI) (Table S1). Af-
ter PCR, excess primers were digested using ExoSap (Agilent) to prevent UMI
replacement during later stages of amplification. After ExoSap treatment PCR
reactions were cleaned up using AMPure beads and another 25 cycle PCR was
performed using Illumina Truseq small RNA library PCR primers. Libraries
were sequenced on [llumina NextSeq 500 using 2x75 bp paired end sequencing.
DNA reads were mapped to an artificial reference genome containing 30.190
viral genomes, each with their own unique barcode. Only reads that mapped
uniquely to a single viral barcode were considered for further analysis. Library
PCR duplicates (based on UMI sharing) were removed. To estimate barcode
frequency for each individual time point we used the approach described in
[102], which uses a Bayesian model to infer the frequency of the barcode in the
original culture through the number of reads sequenced in the two replicates
from that timepoint.

Whole genome sequencing and bulk variant calling

At passage 4 and passage 21 WGS was performed on the APKS organoids. At
passage 4 a mix of DNA from the three replicates was used, while at passage
21 each replicate was sequenced individually. For this DNA was isolated from
cells that were left over after passaging the culture. Library preparation and
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whole genome sequencing was performed at Macrogen using Illumina TruSeq
DNA PCR free library preparation and sequenced on a HiSeq 10X with 2 x
150 bp paired end sequencing. Reads were aligned to GRCh38 using Burrows
Wheeler Aligner v0.7.14 mapping tool with settings ‘bwa mem —M’ [[103].
Duplicate reads were marked using Sambamba (version 0.6.6) dedup. Base
Quality Score Recalibration was done using GATKBaseRecalibrator v3.7 [11]].
Somatic variants were detected using Mutect 2.2 [44]).

Single Cell Whole genome Sequencing

Cells were sorted into 384-well plates with 5 ul of mineral oil (Sigma-Aldrich).
After sorting, cells can be stored at -20C. 500 nl of lysis mix (0.0005 u Qi-
agen Protease in NEB Buffer 4) was added to each well and lysis was per-
formed at 55C overnight followed by heat inactivation for 20 minutes at 75C
and for 5 minutes at 80C. 500nl of Restriction Enzyme mix (0.5 u Nlalll in
NEB Cutsmart buffer) was added to each well and restriction was performed
for 3 hours at 37C followed by heat inactivation for 20 minutes at 65C. 100
nl of 1 uM barcoded double stranded Nlalll adapter was added to each well.
1100 ul of Ligation mix (200 u T4 DNA Ligase in 1x T4 DNA Ligase buffer
supplemented with 3 mM ATP) was added to each well and ligation was per-
formed overnight at 16C. After ligation, single cells were pooled and library
preparation was performed as described in Muraro et al. [120]]. Libraries were
sequenced on an [llumina Nextseq500 with 2 x 75 bp paired end sequencing or
on a HiSeq 10X with 2 x 150 bp paired end sequencing.

Single cell whole genome data processing

Sequencing data were analyzed through custom snakemake workflows (Python
v3.6), which are available at
https://github.com/BuysDB/SingleCellMultiOmics/tree/master/sin
glecellmultiomics/snakemake workflows/nlalIll

The UMI and cell barcode were extracted and trimmed from read 1 of the
read pair and the 6bp random hexamer was trimmed from read 2. From the re-
sulting trimmed reads, only those starting with the Nlalll recognition sequence
CATG were kept. Additionally, adapters were trimmed using cutadapt [|112].
The trimmed reads were mapped to hg38 using BWA 0.7.16a-r118. Next, the
mapping location and strand of the Nlalll recognition sequence in combina-
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tion with the UMI sequence and cell barcode was used as a unique molecular
identifier. This step associates reads to unique molecules in order to deduplicate
reads to reduce amplification biases and is used to extract a consensus sequence
for each molecule. The consensus base calls are used to genotype germline and
somatic SNVs

In order to remove non-uniquely mapping reads, the reference genome was
digested in-silico using the NIalll cut site. For each NIlalll cut site the two
flanking fragments were determined for sequences up to 69 bases in length.
These fragments were mapped back to the hg38 reference. For each site multi-
mapping fragments were recorded. Only molecules mapping to uniquely map-
pable sites according to the in-silico digestion were kept for copy number anal-
ysis. For each cell, molecules were binned in 500kb bins. Bins with fewer
than 3000 unique cut sites are considered to have poor mappability and were
excluded from the analysis. Due to unavailability of wild-type WGS single cell
libraries the copy number profiles could not be normalized against a reference
profile. Instead count data was median normalized for each cell and multiplied
by 2, resulting in a median copy number of 2 for every cell. Next, we carried
out GC bias correction by performing a LOESS regression for the copy num-
ber profile of each cell. The corrected values were clipped to a maximum copy
number of 4, to mitigate inflated noise at high copy numbers. We find that, even
after the rigorous data processing described above, we do not obtain a reliable
copy number profile for all cells, these profiles might be caused by cell division
or a cell lysis-induced artefact. To filter cells with an unreliable copy number
profile we trained a random forest classifier. Training labels were obtained by
k-means clustering (k=12) the cells in UMAP 2D space and manually identify-
ing the cluster which predominantly contains cells with unreliable copy number
profiles. The final classifier was applied on the total matrix and all cells with a
posterior >0.99 for the noisy cluster were discarded. The out-of-bag classifica-
tion score of the random forest was 0.985.

Copy number segmentation and state definition

Before copy number segmentation, cells were clustered using Ward’s hierarchi-
cal clustering on the Euclidean distance. The number of clusters were set based
on the maximum silhouette score, but to ensure conservative (tight) clusters,
overclustering was manually enforced for certain large clusters. For each re-
sulting cluster of cells, the mean copy number was calculated per bin and copy
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number segments were detected using circular binary segmentation [[127]] with
p=0.05 and 10,000 shuffles. Segment calls with a mean absolute difference of
smaller than 0.6 were rejected. For each cell, the median for each segment was
calculated and rounded to the nearest integer.

Segments with variance higher than 0.025 across all cells, which in practice
turned out to be small genomic segments with hard to resolve copy numbers,
were rejected to prevent those small segments from majorly influencing lineage
tree inference.

To obtain diplotypes for both chromosome 4 and 18, data from a bulk sam-
ple (AP1-P23) derived from the P11IN line was leveraged, which contains a
complete and clonal loss of both chromosome 4 and 18. For each heterozygous
gSNV, the allele with a BAF of 1 is assigned to allele B and the allele with
a BAF of 0 to allele A. The A and B allele-frequencies were determined per
cell for each segment on chromosome 4 and chromosome 18. Per segment the
allele specific copy number was estimated by multiplying the estimated total
copy number by the A and B allele frequency.

To define the copy number states, a second round of clustering of the cells
was performed based on the integer copy number segmentation. Cells with
hamming distance of zero were grouped to form the copy number states. Copy
number states were sorted by the number of cells associated with the state,
which ranges from 395 cells in copy number state 1 and 2 cells in copy num-
ber state 52. Copy number states with fewer than 2 cells were discarded. The
segmented copy number calls along with the diplotype specific segmented copy
number calls for chromosome 4 and 18 for each cell individually gives rise to
the copy number state matrix.

Copy number tree inference

To extract a copy number tree we first infer a directed graph from the single
cell copy number state matrix. Every node in the graph represents a single
copy number state at one point in time. To incorporate a time axis in the graph,
every copy number state is represented by one node for every time point a copy
number state has been measured. When a copy number state of a particular
clone is missing we interpolate its abundance using linear interpolation. In this
directed graph, every edge represents a copy number change and the weight of
the edge represents the amount of edits between two nodes. Edges are pruned
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if they are biologically not plausible, e.g. in case they connect nodes with zero
copies to a higher copy number or if they connect nodes in opposite temporal
direction. A zero-weight edge is added between temporally adjacent nodes
representing the same copy number state. An artificial root node is added to
the graph wherein all segments are set to a diploid copy number state. From
the resulting graph, an arborescence is extracted by using Edmonds algorithm,
resulting in a copy number tree.

Copy number tree plotting

Copy number trees are plotted using a novel visualization, developed for this
purpose, called ToverBoom. In Toverboom, each node represents a copy num-
ber state and the width of each node represents the relative amount of cells
in the copy number state. Each branch represents a transition to another copy
number state. The width of the nodes is smoothed using cubic interpolation.
Lineage barcodes for each single cell were extracted from the single cell whole
genome sequencing libraries. The lineage abundance was extracted from the
bulk barcode sequencing libraries. Within one copy number state the relative
abundance of every associated lineage barcode is calculated and projected on
the lineage tree using a stacked area chart, where the area reflects the relative
abundance of the lineage barcode within the associated copy number clone.
The copy number tree inference and plotting code is available at https:
//github.com/BuysDB/ToverBoom.

Somatic single nucleotide variants detection

Variants were jointly called on 7841 cells derived from the three quadruple
mutant replicates, and two other replicates (one single mutant and one double
mutant which both serve as a normal control). All cells are descendants from
the same donor.

Basecalling phred scores of the single cell bam files were recalibrated using
GATK base quality score recalibration. All variants detected using the GATK
HaplotypeCaller in the (Wildtype/P11N) bulk library and variants detected by
Mutect2 in any of the bulk samples were supplied as known variation to be
masked during covariate analysis. Candidate sSNVs were jointly called using
BCFtools 1.9-174 [103]] on a bam file containing all cells, and a threshold was
set on the QUAL column for a phred score of at least 30.
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To remove technical artifacts and germline variation only sSNVs uniquely
detected in the quadruple mutant cells were kept, while sSSN'Vs detected in sin-
gle cells from the normal control samples were dropped. Furthermore, sSSNVs
detectable in the (Wildtype/P11N) bulk library with more than one read were
dropped.

Haplotype phasing was performed using a strategy adapted from Bohrson et
al.[30]. Briefly, for each sSSNV phased heterozygous single nucleotide germline
variants (gSNV) were determined in the (Wildtype/P11N) library. For the sS-
NVs with at least one phased gSNV, it was determined if phasing between the
heterozygous gSNV and the sSNV is concordant in at least 95% of all cells,
otherwise the sSSNV was discarded. Molecules containing the sSSNV are used
as evidence indicative of presence of the sSSNV. Absence of the sSSNV is in-
ferred when a cell has a molecule containing both the phased gSNV allele and
the reference allele at the sSSNV locus.

The sSNVs were further filtered by a random forest classifier trained on the
198150
sSNVs detected in bulk using Mutect2 as the ground truth. The features con-
sisted of all the columns generated by the GATK variant caller, of which Read-
PosRankSum and BaseQRankSum were most informative for classification.
These features were appended with the following: the number of reads car-
rying the alternative base, the mean base quality of the alternative base in the
single cell data, the mean number of gSNVs overlapping with reads containing
the alternative allele and the mean number of gSNVs overlapping with reads
containing the reference allele and the complexity of the reference sequence in
a 75bp, 150bp, 300bp, 500bp and 1kb window, encoded by counting the num-
ber of unique Sbp and 7bp k-mers. Final classification of the candidate variants
was performed using leave one out cross-validation. The classifier used is a
sklearn random forest classifier with 100 trees and class balancing weights en-
abled. Finally, all selected variants were inspected in a genome browser (IGV).
A few variants were removed upon manual inspection.

Somatic single nucleotide variant imputation

Genotypes of all quadruple mutant single cells to which a copy number state
could be assigned are inferred and imputed using a Bayesian inference algo-
rithm, SiCloneFit [[193]]. The imputation allows for clustering of the single cell
SNV genotypes. Only variants which were present in at least 2 cells and only
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cells with at least 4 sSSNVs were used for the imputation. Expected false neg-
ative and false positive rates of the sSSNV measurements are set at 0.001 and
0.0001, respectively. SiCLoneFit utilizes Gibbs sampling of the posterior dis-
tribution of measured SN'Vs to infer tumor clones, phylogeny, and genotype in
each tumor clone. The missing sSSNV measurements are imputed according to
their genotype in the assigned clone. The imputed sSNVs were then combined
with the measured sSNVs and clustered and plotted (Fig. 4B). The imputation
and visualization tools are available at https://github.com/zztin
/siCloneF1t1IO0, To test the accuracy of the imputation we performed 10
fold cross-validation by leaving out a fold of 10% of known sSNV calls. The
estimated accuracy is approximately 0.86.

Neutral drift simulations

To investigate neutral drift, we performed in silico stochastic simulations. To
this end, three parameters were defined: the replication rate (rr) (number of cell
divisions per hour) of the organoids, the number of cells starting the population
(sp) and the number of cells that were retained when passaging the culture
(bottle neck size (bns)). The simulation was then executed as follows. Every
cell in the starting population is considered a unique clone, every hour every
cell belonging to a certain clone has a certain probability to proliferate (rr).
When a cell proliferates the number of cells belonging to that clone increases
by 1. After 168 hours (1 week) bns cell are randomly selected and allowed
to restart the culture. This process then continues for 25 weeks. Finally, the
Shannon’s entropy of the clones in the culture was analyzed to estimate the
clonal dynamics.

Conditional chromosomal aberration analysis

Contigs (entire chromosomes, except chromosome 8 which was split into 8p
and 8q) were filtered on having an average absolute log2 copy ratio of > 1.5
in the MSKCC data set. For these contigs the absolute correlations of the log2
copy ratio for all combinations were calculated. For each combination of con-
tigs a Cox regression model was created in which the hazard ratio for tumors
harboring both the priming and the conditional event was compared to tumors
harboring only the priming event. P-values were corrected using Benjamini
Hochberg p-value correction.
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FIGURE S1. Clonal dynamics during ir vitro evolution. (A-C) Relative
frequency of observed viral lineage barcodes in replicates 1 through 3.
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FIGURE S2. Simulation of clonal dynamics. Simulation of the Shannon
entropy of the relative viral lineage barcode frequency as a function of time
given a certain culture complexity at viral lineage introduction and a certain
bottle neck size during the weekly passaging of the organoids (colored lines).
Simulations assume there is no selection pressure on the culture and all cells
have equal proliferative capacity. We calculated the Shannon’s entropy of the
clones as a measure for culture complexity. The replication rate was varied
between 1/36, 1/48, 1/72 and 1/96 cell divisions per hour but there were no
differences in entropy between the different proliferation rates, indicating that
proliferation rate does not influence the clonal dynamics if it is assumed that
all cells have the same proliferative potential. The entropy for the different
simulations showed that the culture complexity is primarily depending on the
bottle neck size, where a smaller bottle neck size shows a faster decrease in
culture complexity, and to a lesser extend on the starting population size, where
smaller starting sizes show a faster decrease in complexity.
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mosome for all single cells.
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Figure S4. Bulk copy number profile (A): Bulk copy number profiles for replicate
1-3 at 23 passages. (B-C): B-allele frequencies in bins across chromosome 4 (B) and
18 (C), each bin contains 500 SNPs present in the Hapmap SNP project.

61



A APKS1 B APKS2

Time (weeks) Time (weeks)

C APKS3

Time (weeks)
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Figure S6. Enrichment of sSSNVs positions from the single cell libraries. (A) En-
richment strategy for the sSSNV positions. In brief, candidate sSNV positions were
identified from a first round of sequencing of the single cell libraries. Anti-sense oligo’s
to the candidate positions were designed and hybridized to the single cell DNA li-
braries. Oligo’s were pulled down from the mix and enriched libraries were sequenced.
(B): Enrichment of candidate sSNV positions after pull-down enrichment.
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Figure S7. Quality control plots of the single cell copy number data by
principal component analysis on the median normalized count matrix with al-
lele specific counts on chromosome 4 and 18. Each dot corresponds to a single
cell. (A) Cells are colored based on the replicate the cells belong to. (B-D)
Cells of a single replicate are shown and the brightness of each dot indicates
the passage (time-point).
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3.1 Summary

Post-translational histone modifications modulate chromatin packing to regu-
late gene expression. How chromatin states, at euchromatic and heterochro-
matic regions, underlie cell fate decisions in single cells is relatively unex-
plored. We develop sort assisted single-cell chromatin immunocleavage (sort-
ChIC) and map active (H3Kyme; and H3Kyme3) and repressive (H3K;7mes
and H3Kgmes3) histone modifications in HSPCs, and mature blood cells in
the mouse bone marrow. During differentiation, HSPCs acquire distinct active
chromatin states that depend on the specific cell fate, mediated by cell type-
specifying transcription factors. By contrast, most regions that gain or lose re-
pressive marks during differentiation do so independent of cell fate. Joint profil-
ing of H3K4me; and H3K9mes demonstrates that cell types within the myeloid
lineage have distinct active chromatin but share similar myeloid-specific het-
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erochromatin repressed states. This suggests hierarchical chromatin regulation
during hematopoiesis: heterochromatin dynamics define differentiation trajec-
tories and lineages, while euchromatin dynamics establish cell types within
lineages.

3.2 Introduction

Hematopoietic stem cells (HSCs) reside in the Bone Marrow (BM) to replenish
blood cells while maintaining a balance of diverse blood cell types [[129, |[165].
During differentiation, HSCs progressively restrict their potential to fewer lin-
eages to yield mature blood cells [[128]]. These cell fate decisions are accompa-
nied by gene expression dynamics, which have recently been dissected through
single-cell Messenger Ribonucleic Acid (mRNA) sequencing technologies [72}
12}, /130].

The regulation of gene expression relies, in part, on post-translational mod-
ifications of histones that modulate the packing of chromatin [5] 22]. Chro-
matin dynamics during hematopoiesis have so far been analyzed in detail for
open chromatin regions in single cells [34, [136] and active chromatin marks
in sorted blood cell types [101]. Although the role of repressive chromatin
has been characterized in embryonic stem cell cultures [[118}|185,(32,(132] and
during early development [122, |64} |67]], the dynamics of repressive chromatin
states during hematopoiesis has been relatively unexplored.

Two repressive chromatin states play a major role in gene regulation: a
polycomb-repressed state, marked by H3;K,7mes at gene-rich, GC-rich regions
[21} |131]], and a condensed heterochromatin state mainly found in gene poor
AT-rich regions, marked by H;Kgmes [[122]]. Conventional techniques to detect
these histone modifications involve chromatin immunoprecipitation (ChIP), which
relies on physical pull-down of histone-DNA complexes. This pull-down can
hinder sensitive detection in single cells, although microfluidic or combina-
torial barcoding extensions of ChIP-seq has improved the assay to single-cell
resolution [141},/73,[3]]. Alternatives to ChIP [[151]] circumvent this pulldown by
using antibody tethering of either protein-A-micrococcal nuclease (pA-MNase)
or protein-A-Tn5 transposase [89, (77, improving signal-to-noise by cutting
only at specific sites of the genome. Although these tethering-based strategies
have enabled large-scale profiling of histone modifications in single cells [|187,
16, 86], they generally do not enrich for different cell types, making it difficult
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to dissect chromatin regulation in rare cell types, such as hematopoietic stem
and progenitor cells in the bone marrow.

Here we develop sortChIC, which combines single-cell histone modifica-
tion profiling with cell enrichment, and apply it to map histone modifications
in hematopoietic stem cells/early progenitors (HSPCs) and mature blood cell
types in the mouse bone marrow. We characterize active (H3K4me; and H3K4-
mes) and repressive chromatin (H3;K;y7mes3; and H3Kgmes). Active chromatin in
HSPCs primes for different blood cell fates, while H3K,7me3 repressive chro-
matin in mature cell types silences genes of alternative fates. Although H3-
Ky7me3; and H3Kgmes repressive modifications target distinct regions of the
genome, most regions that gain or lose repressive modifications during differ-
entiation do so independent of the specific cell fate. By contrast, active chro-
matin shows divergent changes during hematopoiesis, where gains and losses
at genomic regions depend on the specific cell fate. Transcription factor (TF)
motif analysis predicts cell type-specifying TFs that drive different chromatin
dynamics to acquire distinct chromatin states. Simultaneous targeting of Hs-
K4yme; and H3Kgmej reveals that cell types within the myeloid lineage have
distinct active chromatin states, while sharing similar lineage-specific hetero-
chromatin. Our resource reveals a single-cell view of chromatin state dynamics
during hematopoiesis in both euchromatic and heterochromatic regions. We
propose a hierarchical differentiation program of chromatin regulation in he-
matopoiesis, by which heterochromatin states define a differentiation trajectory
and lineages, while euchromatin states establish cell types.
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Fig. 1: sortChIC maps histone modifications in single cell. (a) Schematic of
the sortChIC method. Fixed and permeabilized cells are stained with an anti-
body targeting a histone modification. Inactive protein A-micrococcal nuclease
(pA-MNase) is added, tethering MNase to the histone modification antibody.
Single cells are FACS sorted. MNase is activated to induce specific cuts in
the genome. Unique molecular identifiers (UMI) and cell-specific barcodes are
ligated to the cut fragments. Barcoded fragments are pooled, amplified, and se-
quenced. (b-e) Location of cuts in H3Kyme; (b), H3Kymes (c), H3Kgmes (d),
and H3K,7mes (e) in individual K562 cells along a 4 MB region of chromo-
some 3. Black traces represent the sortChIC signal averaged over all individual
cells, blue traces represent ENCODE ChlIP-seq profiles.

3.3 Results

SortChIC maps histone modifications in single cells.

To detect histone modifications in single cells, we first fix cells in ethanol to pre-
serve surface antigens for FACS sorting and incubate with an antibody against a
particular histone modification. We then add protein A-MNase (pA-MN) which
binds to the antibody at specific regions of the genome (Fig. 1a). During this
incubation, MNase is kept inactive (i.e., no Ca>*). After washing away un-
bound antibody, single cells in the G1 phase of the cell cycle are sorted into
384-well plates (Supplementary Fig. 1a). Next, MNase is activated by adding
calcium, allowing MNase to digest internucleosomal regions of the DNA that
are in proximity to the antibody. Without the need for purification steps, nu-
cleosomes are stripped oftf the DNA, and the genomic fragments are ligated
to barcoded adapters containing a unique molecular identifier (UMI) and cell-
specific barcode. The genomic fragments are amplified by in vitro transcription
and PCR, and sequenced (Methods).

To test if sortChIC is sensitive enough to detect histone modifications in
single cells, we apply it on the well-characterized human leukemia cell line
K562. In these cells, we map four histone modifications that represent major
chromatin states regulating gene expression (Fig. 1b-e). For modifications
associated with gene activation, we profile H3;K4me; (Fig. 1b), found at active
enhancers and promoters and H;Kymes (Fig. 1c), found at the promoters of
active genes [79]]. For modifications associated with repression, we profile H3-
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Kgmes (Fig. 1d) and H3K;7mes3 (Fig. 1e), found in gene-poor and gene-rich
regions, respectively 2°.

For each of the four histone modifications, we process 1128 K562 cells in
the G1 phase of the cell cycle to ensure a single genome copy per cell. Using the
position of the MNase cut site and unique molecular identifies (UMIs), we map
unique MNase cut sites genome-wide (Methods). We use a combination of total
unique cuts recovered and fraction of cuts in the MNase-preferred AT context
to remove low quality cells (Supplementary Fig. 1b, Methods). Overall, 4176
/ 4608 of the cells met our criteria, with a mean of 15000 unique cuts per cell
(Supplementary Fig. 1b) with a median of 80% of the sequenced reads falling
in peaks identified by adding the sortChIC signal over all cells (Supplementary
Fig. 1c, Methods).

We compare pseudobulk sortChIC profiles with publicly available bulk ChIP-
seq results [50], showing high correlation (Pearson correlation > 0.8) between
sortChIC pseudobulk and the ChIP-seq signal for each of their respective marks
(Supplementary Fig. 1d-e). Single-cell tracks underneath each average track
(Fig. 1b) illustrate the high reproducibility of the signal between cells. Of note,
the H3Kg9mes histone modification profiles obtained from sortChIC represent
the heterochromatin state without the need for input normalization (Supple-
mentary Fig. 1f), a procedure that is often needed in classical ChIP exper-
iments [[170]. Lastly, we compared the sensitivity and specificity of sortChIC
with existing high throughput single cell chromatin methods. We compared our
profiling of H3K;7me3 by determining the number of unique fragments and the
fraction of fragments falling into peaks per cell, then comparing it with H3K7-
mes profiling from scChIP-seq and TnS-based methods (Supplementary Fig.
1g). In both aspects, sortChIC performs equally or better than scChIP-seq and
TnS5-based methods. Overall, sortChIC accurately reveals active and repressive
chromatin landscapes in single cells.

Active chromatin in HSPCs primes for different blood cell fates,
while H;K,;me; repressive chromatin in differentiated cell types si-
lences genes of alternative fates.

We next map active and repressive chromatin changes during blood forma-
tion. We combine sortChIC with cell surface marker staining against lineage
markers, Sca-1, and c-Kit to sort abundant and rare cell types from the mouse
bone marrow in parallel and map histone modifications associated with dif-
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ferent chromatin states (Supplementary Fig. 2a). Dimensionality reduction
based on a multinomial model (Methods) and then visualizing this latent space
with Uniform Manifold Approximation and Projection (UMAP) reveals dis-
tinct clusters that contain LSKs (Lin"Scal*cKit* sorted cells), unenriched cell
types, and mixtures of lineage negative (Lin") and unenriched cell types (Fig.
2a, Supplementary Fig. 2b). We use the H3Kyme; signal in cluster-specific
promotor regions (transcription start site (TSS) +/- 5 kb) to determine marker
genes for eight blood cell types (Fig. 2b, Methods). These regions are associ-
ated with known cell type-specific genes such as the B cell-specific transcrip-
tion factor, EbfI (Fig. 2c), and the neutrophil-specific gene, S100a8 (Fig. 2d).
For H3K4me; and H3;K4mes, these regions are marked in their respective cell
types, while for H3K,7mes these regions show specific depletion in their respec-
tive cell types (Fig. 2e). Using a publicly available dataset 4, we analyze the
mRNA abundances associated with our cell type-specific regions across blood
cell types and confirm that these sets of genes are cell type-specific (Supple-
mentary Fig. 2¢). Our sortChIC data produces high resolution maps of histone
modifications in single cells. For example, the TSS of a B cell-specific tran-
scription factor, EbfI, shows B-cell specific signal in H3Kyme; and H3K4mes.
For H3K,7mes, EbfI is upregulated in non-B cells and depleted in B cells (Fig.
2f and Supplementary Fig. 2d-f). Interestingly, we find that hematopoietic
stem and early progenitor cells (HSPCs) already have H3K4me3 and H3Kyme;
marks at the Ebfl promoter and gene body, respectively, suggesting HSPCs
may already have active marks at intermediate levels relative to differentiated
cell types.

We extend the EbfI observation to all TSSs in our cell type-specific gene
sets. To quantify the changes as HSPCs differentiate into different cell types,
we compared fold changes between differentiated cell types relative to HSPCs
across each of our eight sets of cell type-specific genes derived from H3Ky-
me3 (Supplementary Fig. 2d-f, Methods). When compared to the HSPCs,
we find that changes in active chromatin levels are up- or down-regulated de-
pending on the cell fate. For example, at B cell-specific genes, active chro-
matin levels increase from HSPCs to B cells and to pDCs, but decrease in ba-
sophils/eosinophils, neutrophils, and erythroblasts (Supplementary Fig. 2d, e).
This divergent pattern occurs in all differentiated cell type-specific gene sets,
suggesting that cell type-specific regions in HSPCs already have an interme-
diate level of active chromatin marks, which are then modulated up or down
depending on the cell type into which the HSPCs differentiate.
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Fig. 2: Active and repressive chromatin states in single cells from the
mouse bone marrow. (a) UMAPs of H3Kyme3;, H3K4yme;, and H3K,7me3
single-cell epigenomes from whole bone marrow (unenriched), lineage nega-
tive (Lin"), and Lin"Scal*cKit* (LSK) sorted populations. (b) UMAPs colored
by cell type. Eryths: erythroblasts, NKs: natural killer cells, Baso/Eosino: ba-
sophils/eosinophils, pDCs: plasmacytoid dendritic cells, cDCs: common den-
dritic cells, HSPCs: hematopoietic stem cells and early progenitor cells, (c)
UMAP summary colored by sortChIC signal in a region +/- 5 kb centered at the
transcription start site of EbfI, a B cell-specific gene. (d) Same as (c) but for
a region around $700a8, a neutrophil-specific gene. (e) Heatmap of sortChIC
signals for regions around cell type-specific genes showing high levels of active
marks (H;K4yme;, H3K4mes3) in their respective cell type, and correspondingly
low levels in the repressive mark (H3zK;7mes3). (f) Example of active and re-
pressive chromatin states near the transcription start site of a B cell specific
transcription factor Ebfl. H3Kymes and H3K4me; show large number of cuts
specifically in B cells; H3K,7me3; shows B cell-specific depletion of cuts. Col-
ored line plots (same color code as in b) represent the average sortChIC signal
for cells of the same cell. Individual cells are ordered by cell type, color coded
on the left.
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Repressive H3K,7mes marks at B cell-specific genes, by contrast, are up-
regulated in non-B cells compared to HSPCs, while only a subset of them loses
H;K;7mes; when differentiating into B-cells (Supplementary Fig. 2f). Across
other cell type-specific genes, we observe a similar trend where HSPCs up-
regulate H3Ky7mes3 at genes specific for alternative cell fates, likely silencing
cell type-inappropriate genes. This upregulation suggests that a main role of
H;K;7mes3 during hematopoiesis is to silence genes of alternative blood cell
fates.

In sum, our analysis at blood cell type-specific genes shows that active chro-
matin primes HSPCs for different blood cell fates, while H3K,7mes repressive
chromatin during hematopoiesis silences genes of alternative fates.

Dynamic H;Kome; regions reveal clusters enriched for HSPCs, ery-
throid, myeloid, and lymphoid lineages.

To understand chromatin regulation in gene-poor heterochromatic regions, we
map H3;Kgmes modifications from the same technical batch of HSPCs, lineage
negative, and unenriched bone marrow cells as was used for the H3Kyme;, H3z-
Kymes, and H3Ky7mes sortChIC experiments. In contrast to the other three
marks, where we find eight cell types, H3Kgmes analysis reveals four clusters:
one cluster containing mostly LSKs, one cluster containing mostly unenriched
cells, and two clusters containing a mixture of unenriched and lineage negative
cells (Fig. 3a, b). We find large megabase-scale domains marked by H;Kgmes
in gene-poor regions that are constant across cell types, but also smaller sub-
megabase regions with cluster-specific signal, suggesting that there may be dif-
ferences reflecting different cell types or lineages, despite having large regions
of heterochromatin that are conserved across cell types (Fig. 3c). Differential
analysis on 50 kb regions across the genome identified 6085 cluster-specific
regions (q-value < 10, deviance goodness-of-fit test from Poisson regression,
Methods) for H3Kg9mes. These cluster-specific HsKomes regions have a me-
dian distance of 62.8 kb to the nearest TSS of a gene, and are closer to TSSs
than H3Komes-marked regions in general, which have a median distance of 138
kb to a TSS (Supplementary Fig. 3a). This suggests that some cluster-specific
H;Kgmes regions may be associated with gene regulation.

Since cluster-specific H3Komes regions were closer to TSSs than general
H3;Komes-marked regions, we hypothesize that the H3Ksme; mark in these
same regions may also show cluster-specific signal. Out of the 6085 cluster-
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specific H3Kgmes regions, we select 150 regions with the largest depletion of
the H3Kgmes sortChIC signal relative to HSPCs for each of the four clusters,
resulting in four sets of cluster-specific regions (Supplementary Fig. 3b). Com-
paring the H3Kyme; signal in each of these four sets of regions shows cell
type-specific retention in these regions (Supplementary Fig. 3c), consistent
with an anticorrelated relationship with H3Kgmes;. Heatmaps of the H;Kgmes
and H3;K4me; signal at the four sets of regions reveal an anticorrelated struc-
ture between H3Kgmes versus H3Kyme; (Fig. 3d), allowing the prediction of
cell types in the H3Kgmes data (Supplementary Fig. 3b, c¢). Erythroid regions
are upregulated in erythroblasts in H3K4me;; lymphoid regions show strongest
upregulation in B cells; myeloid regions show strongest upregulation in neu-
trophils. We use this anticorrelation at cluster-specific H3Kgmes regions to
identify cells related to erythroid, lymphoid, and myeloid lineages in H3Kgmes
(Fig. 3e). We find that regions depleted of H3Komes; in HSPCs show upreg-
ulation of H3Ksme; in HSPCs (Fig. 3f). For H3Kgmes-depleted regions in
myeloid cells, we find that H;K4me; is upregulated not only in neutrophils, but
also in other cell types that share the myeloid lineage, such as common den-
dritic cells (Fig. 3g). This anticorrelation is exemplified in a genomic region
surrounding the Gbel gene, showing repression of H3Kyme; signal specifi-
cally in erythroblasts accompanied by high levels of H3Kgmes. In this region,
HSPCs, lymphoid, and myeloid cell types show enrichment of H3;K4me; ac-
companied by a marked depletion in H3Kgmes (Fig. 3h). At these lineage-
specific H3Kgmes regions, we also see cell type-specific signal in H3K4mes
and in H3Kj,7mes, although the pattern is weaker than in H3K4yme; (Supple-
mentary Fig. 3d). Overall, we find the H3Kgmes clusters are related to HSPCs,
erythroid, lymphoid, and myeloid lineages.
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Fig. 3: heterochromatin state dynamics during hematopoiesis. (a) UMAP
of H3Kgme; representing single cells from whole bone marrow (unenriched),
lineage negative (Lin-), and Lin-Scal+cKit+ (LSK) sorted cells. (b) Fraction
of unenriched, Lin", and Lin Scal*cKit" cells in each of the four H3Kgme;
clusters. (c) Region showing the H3Kgmes pseudobulk sortChIC signal of the
four clusters. (d) Heatmap of 50 kb bins displaying the relative H3Kgmes (left)
and H3zK,7me;3 (right) sortChiC signal in erythroblasts, lymphoid, myeloid, and
HSPCs. (e) UMAP of H3;Kyme; and H3Kgmes; sortChIC data, colored by cell
type. (f) Single-cell signal of clusterl-depleted bins (averaged across the 150
bins) showing low H3Kgmes and high H3K4yme; signal in lymphoid cells. Both
H3;Kgmes (above) and H3Kyme; (below) are quantified using the same set of
bins. (g) Single-cell signal of cluster3-specific bins showing low H3Kgmes; and
high H3K4me; signal in myeloid cells. (h) Zoom-in of the same genomic region
in (b) for H3K9mes and H3K4yme; pseudobulk sortChIC signal.

Repressive chromatin dynamics are
largely cell fate-independent.

We ask whether global patterns in chromatin dynamics during hematopoiesis
differed between repressive and active marks. We apply differential analysis on
50 kb regions for all four marks, resulting in 10518 dynamic bins for H3K4-
mej, 2225 for H3K4mes, 5494 for H3K,7mes, and 6085 for H3Kgmes (g-value
< 10”9 for H3K,7mes3, H3Ksme;, and H3Ksmes: g-value < 107 for H3;Komes,
Supplementary Table 1, Methods). For each histone modification, we cluster
the pseudobulk signal of each cell type across the bins. Hierarchical clustering
reveals global relationships between cell types. In active marks, we find that the
largest differences come from erythroblast versus non-erythroblasts (Fig. 4a,
left two panels). This erythroblast distinction corroborates with our analysis of
fold changes at TSSs of cell type-specific genes, where the erythroblasts shows
the largest changes in active chromatin during differentiation (Supplementary
Fig. 2d, e). Furthermore, we find that HSPCs often have intermediate levels of
H;Kyme; and H3Kymes (Fig. 4a, left two panels), suggesting a generally more
accessible chromatin state HSPCs.
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Fig. 4: Repressive chromatin dynamics are largely cell fate-independent.
(a) Heatmap of log, counts per million (CPM) of 50 kilobase bins across pseu-
dobulks. Changing bins that are statistically significant are shown (deviance
goodness-of-fit test from Poisson regression, Methods). The rows and columns
are ordered by complete-linkage clustering. Above each heatmap is a dendro-
gram from clustering the columns, showing the relationship between cell types.
(b) Barplot of the fraction of changing bins (Methods) that are gained or lost in
all non-HSPC:s relative to HSPCs. Each cell type shows two bars, one for each
direction (either gained or lost). Fraction is calculated by dividing the number
of bins that change cell fate-independently by the number of bins that change
in that cell type for that direction. (c) Genome browser view of the Hoxa region
showing a H3K,7me3; domain that is gained during hematopoiesis. (d) Genome
view of the immunoglobulin heavy chain (/gH) region displaying the loss of a
H3;Komes domain in lymphoid and myeloid cells.

Projecting the active mark data onto the two most significant axes of chro-
matin variation [171]], shows that the HSPCs take a central position relative to
other cell types, suggesting that changes in active chromatin during hematopoi-
esis can diverge depending on the specific cell fate (Supplementary Fig. 4a, left
two panels).

By contrast, repressive chromatin dynamics, marked by H3zK,7mes and
H3;Kgmes, mainly distinguish between HSPCs and differentiated cell types,
thereby marking the progress along the differentiation trajectory (Fig. 4a, right
two panels). Projecting the repressive mark data reveals an axis connecting
HSPCs and other cell types (Sup. Fig. 4a, right two panels). To ask whether
regions gain or lose chromatin marks depending on the specific cell fate, we
calculate the fraction of changing bins that gain or lose chromatin marks in all
non-HSPCs relative to HSPCs (Methods). We find more than half of bins that
gain or lose repressive marks between one cell type versus HSPCs are also gain-
ing or losing marks across all other cell fates (Fig. 4b), suggesting that many
changes in repressive chromatin during hematopoiesis occur independent of
the specific cell fate. By contrast, only 8 percent of bins in active chromatin, on
average, show cell type-independent changes. Fold changes between HSPCs
and non-HSPCs at changing bins show distinct separation between HSPCs and
non-HSPCs in repressive marks, but not in active marks (Supplementary Fig.
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4b), corroborating that many changes in repressive chromatin are independent
of cell fate. These cell fate-independent changes are exemplified for H3Ky7-
mes at the Hoxa region, which shows low levels of H3K;7mes, and its levels
are upregulated in differentiated cell types (Fig. 4c). HSPCs at the Igh region
show high levels of H3Komes, and its levels are downregulated in myeloid and
lymphoid cells, suggesting that this /gh region, which encodes the heavy chains
of immunoglobulins, are de-repressed during differentiation (Fig. 4d).

We ask whether H3K»7mes and H3Kgmes may regulate distinct processes.
We confirm that H3K,7me3; dynamics occur at GC-rich regions close to TSSs
while H3Komes dynamics at AT-rich regions occur further from TSSs (Sup-
plementary Fig. 4c, d), consistent with known sequence-specific contexts of
the two repressive marks 2°. GO term analysis of H3;Komes regions unique to
HSPCs shows enrichment for immune-related processes such as phagocytosis,
complement activation, and B cell receptor signaling (Supplementary Fig. 4e),
suggesting that HSPCs use H3Kgmes to repress genes that may later need to be
used in differentiated blood cells. By contrast, GO term analysis of H3K7me3
regions unique to HSPCs does not show consistent enrichment for biological
processes related to blood development.

Taken together, we find that HSPCs have active chromatin marks at inter-
mediate levels relative to other blood cell types. During differentiation, active
marks at these regions can then be up- or down-regulated depending on the
specific cell fate. By contrast, most dynamic repressive chromatin regions are
gained or lost independent of the specific cell fate.

Transcription factor motifs underlie active and repressive chromatin
dynamics in hematopoiesis.

Next, we ask whether regulatory information in the DNA sequences underly-
ing the sortChIC data can explain the cell type-specific distributions in active
and repressive chromatin landscapes. We hypothesize that regions with cor-
related sortChIC signal across cells can be explained in part by transcription
factor binding motifs shared across these regions [9}|92]] (Sup. Fig. 5a, Meth-
ods). Overlaying the predicted single-cell TF motif activities onto the UMAP
representation shows the expected blood cell type-specific activity for known
regulators. We find the ERG motif active specifically in HSPCs (Fig. Sa, left),
consistent with the role of ERG in maintenance of hematopoietic stem cells
[92]. CEBP family motif is active in neutrophils (Fig. 5a, mid left), consistent
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with its proposed function [[153] |46]]. EBF motif activity is specific to B cells
(Fig. 5a, mid right), consistent with its role in specifying B cell differentiation
[177]]. We find TALI to have erythroblast-specific activity (Fig. 5a, right), in
agreement with its role in erythropoiesis [75].

We summarize the inferred single-cell TF activities in a heatmap to com-
prehensively predict transcriptional regulators underlying the cell type-specific
distribution of active chromatin (Fig. 5a, b). We predict motifs active in pDCs
belonging to the IRF and RUNX family (Fig. 5b, Supplementary Fig. 5b-d).
High activity of IRF motifs corroborates with pDC function to secrete type 1 in-
terferon [80, [180]. Runx proteins have been shown to regulate development of
dendritic cell progenitors [148|] and migration of pDCs from the bone marrow
[149]. We find NK cells to have high ETS family motif activity (Fig. 5b, Sup.
Fig. 5b, e), consistent with the role of Ets/ in development of natural killer and
innate lymphocyte cells [|15,201]]. Finally, we predict transcription factors that
have low activity in HSPCs and pDCs but high activity in other cell types, such
as the NR4A family (Fig. 5b, Sup. Fig. 5, b and f. Nr4al has been shown to
repress gene expression [126]] and control hematopoietic stem cell quiescence
by suppressing inflammatory signaling [65]]. The low activity of several TFs
specific in HSPCs and pDCs suggests that the pDCs we identify could be in a
more progenitor-like state, consistent with the pseudobulk clustering results in
H3K4mel, H3K4me3 and H3K27me3 (Flg 43).

We apply our TF motif analysis to the two repressive chromatin landscapes
to predict motifs that explain HSPC-specific distributions of repressive chro-
matin. In H3zKj;mes, we predict a CCAT motif belonging to the Yin Yang
family [90] specifically active in HSPCs (Fig. 5c¢). Of note, Yy is gene encod-
ing the polycomb group protein and has been shown to regulate hematopoietic
stem cell self-renewal [108]]. In H3Komes, we predict an AT-rich motif belong-
ing to the transcriptional repressor PLZF specifically active in HSPCs (Fig.
5d). PLZF has been implicated in regulating the cell cycle of hematopoietic
stem cells [178]].

In sum, our motif analysis explains differences in chromatin levels across
cells in terms of TF activities. Our predictions suggest that differentiating blood
cells decide which active regions to up- or down-regulate depending on the
cell type-specific TFs that associate with different regions. Although repres-
sive chromatin dynamics in both H3K;7me3; and H;Kgmes are mainly cell fate-
independent, our analysis suggests that distinct TFs regulate the two separate
pathways.
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Fig. 5: Transcription factor motifs underlie active and repressive chromatin
dynamics in hematopoiesis. (a) Examples of four transcription factor (TF) motifs
whose activities are predicted to drive cell type-specific H;Kyme,; distributions. The
ERG motif is predicted to be active in HSPCs, the CEBP motif in neutrophils, the EBF
motif in B cells, and the TAL1 motif in erythroblasts. Cell type for each cell cluster
is labeled in (b). (b) Heatmap of H3Kyme; TF motif activities in single cells. Rows
represent motifs. Columns are individual cells whose cell types are annotated by the
top color bar. The right panel shows a H;K4yme; UMAP colored by cell types, with
cell type-to-color legend below. (c) Predicted H3;K,;me; activity of a motif belonging
to the Yin Yang (YY) protein family in single cells. Circled cluster is enriched for
HSPCs. (d) Predicted H3Kgmes; activity of PLZF motif in single cells. Circled cluster
is enriched for HSPCs.

Distinct cell types can share
similar heterochromatin landscapes.

To understand in more detail the relationship between the eight cell types iden-
tified by histone marks of gene-rich regions (H3Kyme;, H3Kymes, and H3-
Kjy7me3) to the four clusters identified by HzKomes, we stain cells with both
H;Kyme; and H3Kgmes antibody concurrently [[191]]. This double-incubation
strategy generates cuts that come from both H;Ksme; and H;Kgmes from the
same cell, and uses our sortChIC resource to infer the relationships between the
two marks in single cells (Fig. 6a). We sort Lin™ and unenriched cells to profile
both abundant and rare cell types. UMAP of the joint landscape reveals clusters
that are depleted of mature lineage markers as well as enriched for mature cell
types (Fig. 6b). We use clusters from H3Kyme; and H3K9mes single-incubated
data to develop a model of how the double-incubated data could be generated
(Fig. 6¢, Methods).

For our model, we focus on regions that show large differences between cell
types. We select 811 regions associated with cell type-specific genes (Methods)
found in our H3K4me, analysis (Fig. 2e) and 6085 cluster-specific regions (50
kb bins) found in our H3Komes analysis (Fig. 4a, right panel) as features in our
model, making a total of 6896 regions. To verify that our features show cluster-
specific differences, we cluster the single-incubated H3K4me; signal across cell
types (Supplementary Fig. 6a). We find that neutrophils, basophils/eosinophils,
and cDCs cluster together, consistent with their common myeloid lineage [4].
B cells and NK cells also cluster together, consistent with their common lym-
phoid lineage [[181]. Erythroblasts form a distinct branch from other cell types.
Finally, pDCs cluster most closely with HSPCs.
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Fig. 6: Distinct cell types can share similar heterochromatin landscapes.
(a) Double incubation experiment produces cuts associated with either Hs-
Kyme; or H3Kgmes. (H3Kyme;+H3Kgmes) (b) UMAP representation of the
H;K4me;+H3Kgmes landscape in unenriched and lineage-negative cells in the
bone marrow. (c¢) Schematic of how the standard single-incubated data can pro-
duce a model of which cluster-pair (one from H3zKgmes, the other from H3Ky-
me;) generates the observed double-incubated data. (d) Output of cluster-pair
predictions from H3;Kyme;+H3Kgmes double-incubated cells. Cells are col-
ored by their predicted H;Komes clusters. (e and f) UMAP representation of
the H3Kyme;+H3Kgomes landscape, colored by their predicted H;Kyme; clus-
ter (e) or H3Komes cluster (f). (g) Graphical summary of chromatin dynamics
as dendrograms showing relationships between HSPCs and differentiated cells.
During hematopoiesis, the direction of change in active chromatin depends on
the specific cell fate, resulting in global differences that are largest between dif-
ferentiated cell types from different lineages. By contrast, many regions gain
or lose repressive marks during hematopoiesis independent of the specific cell
fate, resulting in global differences that are largest between HSPCs and differ-
entiated cell types. Dynamics in active marks and H3K;7me3;-marked repres-
sive chromatin reveal cell type information, while dynamics in heterochromatin
regions marked by H3Kg9me; reveal lineage information.

Since a priori we do not know which cluster from H3zKsme; pairs with
which cluster from H3Kgmes, we generate an in silico model of all possible
pairings (Fig. 6c, left). For each double-incubated cell, we then perform model
selection to choose the pair with the highest probability (Fig. 6c, right, and
Supplementary Fig. 6c¢, d; Methods). This selection reveals that neutrophils,
basophils/eosinophils, and cDCs share a common heterochromatin landscape,
reflecting their myeloid lineage (Fig. 6d). We find B-cells and NK cell share
a lymphoid-specific heterochromatin. Erythroblasts do not share a heterochro-
matin landscape with any other cell type. Although we did not explicitly sort
for HSPCs, a small fraction of cells was assigned to both an HSPC-specific
active chromatin and HSPC-specific heterochromatin state, reflecting the rarity
of HSPCs in the bone marrow. Surprisingly, we find pDCs associated with the
HSPC-enriched H;Kgmes landscape, suggesting that these cells that we sorted
may have already committed towards a pDC fate through its active chromatin,
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while its heterochromatin remains undifferentiated.

This joint analysis confirms that distinct cell types in related lineages can
share their heterochromatin state (Fig. 6e, f), suggesting a hierarchical model
where changes in heterochromatin establish lineages and changes in active
chromatin define cell types within lineages.

3.4 Discussion

We profile and analyze active and repressive chromatin states in single cells dur-
ing blood formation, providing a comprehensive map of chromatin regulation
at both euchromatic and heterochromatic regions. We find that repressive chro-
matin shows distinct dynamics compared with active chromatin, demonstrating
that profiling repressive chromatin regulation in single cells reveals novel dy-
namics not captured by profiling active chromatin. Active chromatin primes
HSPCs, and is up- or down-regulated depending on the specific cell fate, medi-
ated by cell type-specific transcription factors. Consequently, active chromatin
shows divergent changes for different blood cell fates, resulting in global differ-
ences in active chromatin that are larger between mature cell types than between
HSPCs and mature cell types (Fig. 6g, left panel). These active chromatin dy-
namics likely reflect the dynamics in mRINA abundances [[101]. By contrast,
changes in repressive chromatin during hematopoiesis often occur in the same
direction (either gained or lost) regardless of the specific cell fate, resulting in
global differences in repressive chromatin that are larger between HSPCs and
mature cell types than between mature cell types (Fig. 6g, middle and right
panel). Overall, our results show that single-cell repressive chromatin dynam-
ics provide an orthogonal viewpoint to active chromatin and mRNA dynamics
during hematopoiesis.

Technologies to profile histone modifications in single cells by sequencing
is still in its infancy, but has the potential to unlock the spectrum of chromatin
states in the genome of individual cells. The ideal assay strives to have high
sensitivity, high throughput, and robustness in both active and repressive chro-
matin states. Current techniques to map histone modifications in single cells use
one of three approaches: ChIP-based, pA-Tn5-based, and pA-MNase-based.
ChIP-based strategies utilize microfluidics systems or combinatorial barcoding
to overcome the low sensitivity of ChIP [141] 73] 3|]. pA-Tn5-based strategies
profile histone modifications with very high throughput, but due to the intrin-
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sic affinity of Tn5 to open chromatin regions [89, [77, |187, |16, 86, [181]], high
specificity can so far only be achieved at the cost of some sensitivity. pA-
MNase-based methods profile histone modifications with high sensitivity, and
have robust detection of modifications associated with euchromatic regions as
well as heterochromatic regions, but has generally less throughput compared
with Tn5-based methods [95} 96} [74]]. SortChIC is a unique single-cell method
that combines cell enrichment to greatly enhance throughput of rare cells, while
achieving high sensitivity and robustness to profile active and repressive chro-
matin states (Supplementary Fig. 1g, Supplementary Table 2), thereby comple-
menting newly available high throughput Tn5-based methods [[16].

This comprehensive profiling of rare progenitors and their multiple cell
fates enables new systematic analyses, such as quantifying chromatin dynam-
ics that are cell fate-independent during differentiation. This analysis reveals
that cell fate-independent changes during differentiation occur frequently for
repressive chromatin, while such changes for active chromatin are rare. Our
strategy combines rare progenitor cell enrichment with comprehensive differ-
entiated cell type profiling to allow systematic analysis of chromatin dynamics
during differentiation into multiple cell fates.

Our single-cell analysis further expands the role of H3Kgmes, which has
been classically associated with constitutive types of chromatin [[122]. We find
that H3Kgmes is a dynamic chromatin modification that regulates different lin-
eages in blood and is rewired as HSPCs differentiate into different blood lin-
eages. Although in vivo dynamics in H3K9mes have been recently reported
during early development [[122} 64, |67]], our results extend the role of H3Kgmes
dynamics to also regulate homeostatic renewal in adult physiology.

Joint profiling analysis demonstrates that cell types from a common lineage
can share a similar heterochromatin landscape. Our results suggest that the dis-
tinct chromatin dynamics in active chromatin and heterochromatin can reveal
the hierarchical relationships between cell types. We find ¢cDCs, neutrophils,
and basophils/eosinophils to share a similar myeloid-specific heterochromatin
landscape, suggesting that the H3Komes; mediated heterochromatin can be rela-
tively stable while other chromatin changes further distinguish between distinct
cell types. pDCs have been reported to come from lymphoid precursors [59],
although the exact origin has been debated [[138]]. We find pDCs to be distinct
from cDCs at both the active and heterochromatin level, although the hetero-
chromatin of pDCs is also distinct from other lymphoid cell types such as B
cells or NK cells. One explanation could be that pDCs diverge early from other
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Iymphoid cell types and do not participate in the heterochromatin rewiring that
occurs during lymphopoiesis. Overall, we propose a hierarchical chromatin
regulation program during hematopoiesis, in which heterochromatin states de-
fine a differentiation trajectory and lineages, while euchromatin states establish
cell types.
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3.5 Methods

Cell culture

K562 cells (ATCC® CCL-243™) were grown in RPMI 1640 Medium Gluta-
MAX™, supplemented with 5% FCS, Pen-Strep and non-essential amino acids.
After harvesting cells were washed 3 times with room temperature PBS before
continuing with the sortChIC protocol.
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Animal experiments

Experimental procedures were approved by the Dier Experimenten Commissie
of the Royal Netherlands Academy of Arts and Sciences and performed ac-
cording to the guidelines. Primary bone marrow cells were harvested from
3-months-old C57BL/6 mice. Femur and Tibia were extracted, the bones ends
were cut away to access the bone marrow which was flushed out using a 22G
syringe with HBSS (-Ca, -Mg, -phenol red, Gibco 14175053) supplemented
with Pen-Strep and 1% FCS. The bone marrow was dissociated and debris was
removed by passing it through a 70 um cell strainer (Corning, 431751). Cells
were washed with 25 ml supplemented HBSS before linage marker staining was
performed following the instructions of the EasySep™ Mouse Hematopoietic
Progenitor Cell Isolation Kit (Stemcell) at half of the recommended concentra-
tion of the biotinylated antibodies. This was followed by 30min incubation at
4 °C with a Streptavidin-PE (Biolegend, 1:5000), anti c-kit-APC (Biolegend,
1:800) and anti scal-PeCy7 (Biolegend, 1:400). After 2 additional washes with
HBBS (+PS, +FCS) cells were prepared following the sortChIC protocol for
the 4 different histone modifications.

Pa-MN production

The Pa-MN fusion protein was produced following the methods section in 2*.

pK19pA-MN was a gift from Ulrich Laemmli (Addgene plasmid # 86973;
http://n2t.net/addgene:86973; RRID: Addgene_86973)

sortChIC-seq experiments
Cell preparation: fixation

All steps were performed on ice. Cells were resuspended in 300 pl PBS per
1 million cells in a 15 ml protein low binding falcon tube and 700 pl ethanol
(-20 °C precooled) per 1 million cells are added while vertexing cells at middle
speed. Cells were fixed for 1 h at -20 °C. After fixation cells were washed
twice in 1 ml wash buffer (47.5 ml H;O RNAse free, 1 ml 1M HEPES pH 7.5
(Invitrogen), 1.5 ml SM NacCl, 3.6 ul pure spermidine solution (Sigma Aldrich),
0.05% Tween20, protease inhibitor cocktail (Sigma Aldrich) with 4 ul/ml 0.5
M EDTA). For K562 cells 3 plates were sorted for each modification. For BM
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we sorted 19, 17, 18, and 17 plates for H3Kyme;, H3Kyme3, H3K;7mes3, and
H;Kgmes, respectively.

Cell preparation: nuclei

Cells were washed once in 1 ml wash buffer (47.5 ml H20 RNAse free, 1
ml 1M HEPES pH 7.5 (Invitrogen), 1.5 ml SM NaCl, 3.6ul pure spermidine
solution (Sigma Aldrich), 0.05% Saponin, protease inhibitor cocktail (Sigma
Aldrich) with 4 pl/ml 0.5 M EDTA). Nuclei were isolated by further Saponin
incubation overnight in parallel to the antibody staining. For BM we sorted 9
plates each for H3Kyme;, H3K4ymes, and HzKomes.

Antibody staining

Cells were pelleted at 500g for 4 min and resuspended in 200 pul Wash Buffer
(+EDTA) per 1 million cells and were aliquoted into 0.5 ml protein low binding
tubes containing the primary histone mark antibody (1:200 dilution for H3K4-
me; and H3Kymes and 1:100 for H3Kgmes and H3Ky7me3) diluted in 200 pl
Wash Buffer (+EDTA). Cells were incubated overnight at 4 °C on a roller, be-
fore they were washed once with 500 pl Wash Buffer. In the case of double
labeling experiments, cells were incubated with antibodies against H3Kyme;
and H3Kgomes together at the same concentrations as for the single mark ex-
periments. We sorted four plates incubated simultaneously with H;Kyme; and
H3K9me3.

Afterwards cells were resuspended in 500 pl Wash Buffer containing PAMN
(3 ng/ml) and Hoechst 34580 (5 png/ml) and incubated for 1h at 4 °C on a roller.

Finally, cells were washed an additional 2 times with 500 pl Wash Buffer
before passing it through a 70 um cell strainer (Corning, 431751) and sorting
G1 cells based on Hoechst staining on an Influx FACS machine into 384 well
plates containing 5 pl sterile filtered mineral oil (Sigma Aldrich) per well, al-
ways leaving eight wells empty of cells as a negative control. For bone marrow
we sorted with the help of the indicated surface marker stainings unenriched
(only using G1 gate), lineage negative, and LSK cells into separate parts of 384
well plates. We sorted 28, 26, 18, and 26 plates for H3K4yme;, H3Kymes3, H3-
Kjy7mes, and H3Kgmes, respectively. Of these, three plates were sorted with
nuclei for unenriched cells only, three for lineage negative only, and three for
LSK cells only for H3Ksme;, H;K4mes, and H;K9mes. For lineage negative
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Vol. per well (nl)
Klenow large (NEB, M0210L) | 2.5
T4 PNK (NEB, M0201L) | 2.5
dNTPs 10 mM (Promega, U1515) | 6
ATP 100 mM (part of Thermo Fisher Scientific, R0441) | 3.5
MgCI2 25 mM (part of Thermo Fisher Scientific, 4398828) | 10
PEG8000 50% (Promega, V3011) | 7.5
PNK buffer 10X (NEB, B0201S) | 35
BSA 20 ng/ml (NEB, B9000S) | 1.8
Nuclease-free water (Invitrogen, AM9932) | 81.3
Total | 150

Supplementary Table 4: end repair mix

only and LSK cells only, cell populations were enriched by FACS before nu-
clei isolation. Five plates were sorted for both unenriched and lineage negative
together. All remaining plates included a mixture of unenriched, lineage nega-
tive, and LSK sorted cells. The following small volumes were distributed using
a Nanodrop II system (Innovadyme) and plates were spun for 2 min at 4 °C and
2000g after each reagent addition.

Protein A-MN activation

100 nl of Wash Buffer (-protease inhibitor), containing 2 mM CaCl,, were
added per well to induce Protein A-MN mediated chromatin digestion that was
performed for 30 min in a PCR machine set at 4 °C. Afterwards the reaction
was stopped by adding 100 nl of a stop solution containing 40 mM EGTA
(chelates Ca>* and stops MN, Thermo, 15425795), 1.5% NP40 and 10 nl 2
mg/ml proteinase K (Invitrogen, AM2548) and incubated for further 20 min at
4 °C. Chromatin is subsequently released and PaAMN permanently destroyed by
proteinase K digestion at 65 °C for 6h followed by 80 °C for 20 min to heat
inactivate proteinase K. Afterwards plates can be stored at -80 °C until further
processing.

Library preparation

DNA fragments are blunt ended by adding 150 nl of the following mix per well
and incubating for 30 min at 37 °C followed by 20 min at 75 °C for enzyme
inactivation.
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Vol. per well (nl)
AmpliTaq 360 (Thermo Fisher Scientific, 4398828) | 1
dATPs 100mM (part of Promega, U1335) | 1
KCI1 1 M (Thermfisher, AM9640G) | 25
PEG8000 50% | 7.5
BSA 20 ng/ml | 0.8
Nuclease-free water | 114.8
Total | 150

Supplementary Table 5: A-tailing mix

Blunt fragments are subsequently A-Tailed by adding 150 nl per well of
the following mix and incubate for 15 min at 72 °C. Through AmpliTaq 360’s
strong preference to incorporate dATP as a single base overhang even in the
presence of other nucleotides, a general dNTP removal is not necessary.

Next fragments are ligated to T-tail containing forked adaptors.
Top strand

GGTGATGCCGGTAATACGACTCACTATAG
GGAGTTCTACAGTCCGACGATCNNNACACACTAT

Bottom strand
TAGTGTGTNNNGATCGTCGGACTGTAGAACTC
CCTATAGTGAGTCGTATTACCGGCGAGCTT

Sequence features from left to right on the top strand: Bases written in bold
form a fork to prevent adaptor dimer- or multimerization. Bases in green rep-
resent T7 polymerase binding site for IVT based amplification. Bases in blue
are the binding site (RAS) for the TruSeq Small RNA indexing primers (RPIx).
The 3 random nucleotides underlined are the unique molecular identifier used
for read deduplication and the 8 bases afterwards in italics represent the cell
barcode which is different each of the 384 wells. For a full list of adaptors see
Supplementary Table 3.

For ligation 50 nl of 5 pM adaptor in 50 mM Tris pH7 is added to each well
with a Mosquito HTS (ttp labtech). After centrifugation 150 nl of the following
mix are added before plates are incubated for 20 min at 4 °C, followed by 16 h
at 16 °C for ligation and 10 min at 65 °C to inactivate ligase.

Ligation products were pooled by centrifugation into oil coated lids of
pipettip boxes at 200g for 2 min and the liquid face was transferred into 1.5
ml eependorf tubes and was purified by centrifugation at 13000g for 1 min and
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Volumes per well (nl)
T4 ligase (400K Units/ml, NEB, M0202L) | 25
MgCl, 1 M (ThermoFisher, AM9530G) | 3.5
Tris 1 M pH 7.5 (ThermoFisher, 15567027) | 10.5
DTT 0.1M (Invitrogen, 15846582) | 52.5
ATP 100 mM | 3.5
PEG8000 50% | 10
BSA 20 ng/ml | 1
Nuclease-free water | 44
Total | 150

Supplementary Table 6: Adaptor ligation mix

transfer into a fresh tube twice. DNA fragments were purified using Ampure
XP beads (Beckman Coulter - prediluted 1 in 8 in bead binding buffer — 1 M
NaCl, 20% PEG8000, 20 mM TRIS pH=8, 1 mM EDTA) at a bead to sample
ratio of 0.8. Beads were washed twice with 1 ml 80% ethanol resuspending the
beads during the first wash and resuspended in 8 pl Nuclease-free water and
transferred into a fresh 0.5 ml tube. The cleaned DNA is then linear ampli-
fied by invitro transcription adding 12 pl of MEGAscript™ T7 Transcription
Kit (Fishert Sc, AMB13345) for 12 h at 37 °C. Template DNA is removed by
addition of 2 pl TurboDNAse (IVT kit) and incubation for 15 min at 37 °C.
The produced RNA is further purified using RNA Clean XP beads (Beckman
Coulter) at 0.8 beads to sample ratio, followed by RNA fragmentation for 2
min at 94 °C. After another bead cleanup, 40% (5 pl) of the RNA is primed for
reverse transcription by adding 0.5 ul dNTPs (10 mM) and 1 pl randomhex-
amerRT primer 20 uM (GCCTTGGCACCCGAGAATTCCANNNNNN) and
hybridizing it by incubation at 65 °C for 5 min followed by direct cool down on
ice. Reverse transcription is performed by further addition of 2 ul first strand
buffer (part of Invitrogen, 18064014), 1 ul DTT 0.1M (Invitrogen, 15846582),
0.5 1l RNAseOUT (Invitrogen, LS10777019) and 0.5 ul Superscriptll (Invit-
rogen, 18064014) and incubating the mixture at 25 °C for 10 min followed by
1 h at 42 °C. Single stranded DNA is purified through incubation with 0.5 ul
RNAseA (Thermo Fisher, EN0531) for 30 min at 37 °C and PCR amplification
to add the Illumina smallRNA barcodes and handles by adding 25 pl of NEB-
Next Ultra IT Q5 Master Mix (NEB, M0492L), 11 ul Nuclease free water and 2
ul of RP1 and RPIx primers (10 uM). PCR cycles depended on the abundance
of the histone modification assayed (8-10 for H3K9mes and H3K,;me; 10-12
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for H3K4yme; and H3Kymes3). Abundance and quality of the final library are
assessed by QUBIT and bioanalyzer.

Data preprocessing

Fastq files were demultiplexed by matching to an 8 nt cell barcode found in
read 1 (R1). The 3 nt UMI was placed into the fastq header. To every read pair
a MNase cut site is assigned to a genomic location. The cut site is defined as
the genomic mapping location of the second base in R1. The ligation motif is
defined as the two bases flanking the MNase cut site.

Assignment of read pairs to molecules is performed by pooling all read
pairs that share the same UMI, cell barcode, and MNase cut site in a window
of 1 kb.

We discarded read pairs if reads have:

* mapping quality scores (MAPQ) below 40,

e alternative hits at a non-alternative locus,

» mapped to separate locations beyond the expected insert size range,
* soft clips,

e more than 2 bases that differed from the reference,

¢ indels,

* mapping to a blacklist region (http://mitra.stanford.edu/k
undaje/akundaje/release/blacklists/).

We selected cells with more than 500 total unique cuts for H3K4me; and
H;K4mes, and more than 1000 total unique cuts for H3K27me and H3;Kgmes.
Cells also needed to have more than 50% of their cuts occur in an “AT” context.
We also counted cut fragments that map in 50 kb nonoverlapping bins genome-
wide, and calculated the fraction of bins that contains exactly zero cuts. Cells
with a small fraction of zero cuts relative to other cells are more likely to have
unspecific cuts. For each mark, we removed cells with a fraction of zero cuts
that was below 2 standard deviations from the mean across all cells.

More details on the preprocessing pipeline can be found in the wiki page
pipeline:

https://github.com/BuysDB/SingleCellMultiOmics/wiki.
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Calculating reads falling in peaks in sortChIC for K562 cells

For each histone modification, we merged K562 single-cell sortChIC data, and
used the resulting pseudobulk as input for hiddenDomains [166], with mini-
mum peak length of 1000 bp. We estimated 40574, 58257, 28499, and 28380
peaks for H3Kyme;, H3K4ymes, H3Ky7mes3, and H3Komes, respectively. For
each histone modification, we counted the fraction of total reads that fall within
each set of peaks.

Dimensionality reduction based on multinomial models

We counted the number of cuts mapped to peaks across cells and applied the
Latent Dirichlet allocation (LDA) model [27]], which is a matrix factorization
method that models discrete counts across predefined regions as a multinomial
mixture model. LDA can be thought of as a discrete version of principal com-
ponent analysis (PCA), replacing the normal likelihood with a multinomial one
[35]. LDA models the genomic distribution of cuts from a single cell using a
hierarchy of multinomials:

1. VkDirichlet((S ) to specify the distribution over genomic regions for each
topic k (length G genomic regions).

2. U;Dirichlet () to specify the distribution over topics for a cell i (length
K topics).

To generate the genomic location of the jth read in cell i:
1. Choose a topic z; jMultinomial (U}-, 1)
2. Choose a genomic region w; ;Multinomial (f/’zi’j, 1)

We used the LDA model implemented by the topicmodels R package [81]],
to infer the cell-to-topic matrix (analogous to the scores matrix in PCA) and
topic-to-region matrix (analogous to the loadings matrix in PCA) using Gibbs
sampling with hyperparameters o =50/K, § =0.1, where K is the number of
topics. We used K=30 topics for all of our analyses.
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Defining eight sets of blood cell type-specific genes for cell typing

We defined cell type-specific genes for cell type calling by counting reads at +/-
5 kb centered at annotated transcription start sites (T'SS). We applied LDA to
the resulting count matrix for H3Kyme;, H3K4mes, and H3K;7me3 (we ignored
H3;Kgmes here because H3Kgmes; marks mostly AT-rich, gene-poor regions).
We found eight topics that defined the eight cell types in the data. For each
topic, we took the top 150 TSS loadings to make eight sets of genes defining
the cell types in the data. To compare this set of TSSs to publicly available
scRNA-seq data [72], we took each TSS and assigned it to the corresponding
gene.

Defining genomic regions for dimensionality reduction

We initially defined regions based on 50 kb windows genome wide, applying
LDA, and using the Louvain method to define clusters to merge single-cell bam
files. These merged bam files were then used to call significantly marked re-
gions using hiddenDomains [166] with minimum bin size of 1 kb. We merged
the regions across clusters and generated a new count matrix using the hid-
denDomains peaks as features. This new count matrix was used as input for
dimensionality reduction.

Batch correction in dimensionality reduction

Initial LDA of the count matrix revealed batch effects in H3K4me; and Hjs-
Komes between cell types of plates that contained only one sorted type (i.e.,
entire plate was either unenriched, lineage-negative, or LSK cells, referred to
as “single-type”) and cell types from plates that contained a mixture of unen-
riched and non-mature cells (referred to as “balanced”). We corrected batch
effects in H3K4me;, H3K4mes3, and H3Komes. Since H3Ky7mes did not have
single-type plates, we did not correct batch effects in H3K,7me3;. We consid-
ered balanced plates as the reference for differences between cell types, and
corrected deviations in single-type plates to match the balanced plates. We
used the imputed sortChIC-seq signal inferred from LDA as a denoised signal
Y for each genomic region g for every cell c:
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K
Yy =logo (Z Vg,kUk,c>

k=1

We modeled the cell type-specific batch effect using a linear model for each
genomic region. The model infers the effect of a cell ¢ belonging to batch b and
cell type d:

J
Yo (b,d) = Bo+ Bils (b) + > Ba;l; (d) + B3 (1 (d) - 15 (b)) + e
j=1
Where:

15 () is an indicator variable equal to 1 if the cell is from a single-type plate
(batch s), otherwise 0.

1, (d)is equal to 1 if cell belongs to cell type j, otherwise 0.

Bo is the intercept of the model.

(1 is the global effec from a cell being from batch s (single-type plate).

Ba,; is the effect from a cell belonging to cell type j.

B3, is the interaction effect from a cell belonging to cell type j and being
from batch s.

e is Gaussian noise.

We inferred the effects for each genomic region using Im() in R with the for-
mula syntax:

Y1 + batch + celltype + batch: celltype

and estimated the batch-corrected signal:

v Y if cell from complete plate
Yy =5 — B3 if cell from single-type plate
For cells that belong to complete plates, 15 (b) = 0. Therefore, this batch-
correction only corrects signal from cells belonging to single-type plates. In
the bone marrow analysis this corresponds to nine plates for H3Kyme;, H3Ky-
mes, and H;Kgmes.

!(i.e., independent of cell type)
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The corrected signal is used to refine the cell-to-topic and topic-to-region
matrix by GLM-PCA [[171]. We applied SVD to the batch-corrected matrix to
use as initializations for U and V, and included batch ID as cell-specific covari-
ates (in glmpca R package: glmpca(), with fam="poi”, minibatch="stochastic”,
optimizer="avagrad”, niterations = 500). The batch-corrected U matrix is then
visualized with uniform manifold approximation and projection (UMAP).

Differential histone mark levels analysis

To calculate the fold change in histone mark levels at a genomic region between
a cell type versus HSPCs, we modeled the discrete counts Y across cells as a
Poisson regression. We fitted a null model, which is independent of cell type,
and a full model, which depends on the cell type and compared their deviances
to predict whether a region was “changing” or “dynamic” across cell types.

We used the glm() implementation in R with the formula syntax for the full and
null model:

Fullmodel : counts1 + batch + celltype + offset(log(totalcounts))
Nullmodel : counts1 + batch + offset(log(totalcounts)).

We used G as a deviance test statistic:
G = Dy — Dyt

where the deviance is two times the log-likelihood, which for Poisson is:
D =237 {Yilog (Yi/pi) — (Yi — i)}

For the full model, the logarithm of the expected value y is:
log (1) = Bo + Buls + 37—y Pajly,

While for the null model, it is:
log (1) = Bo + B1ls,

We fitted the model such that the estimated log, fold change of a cell type j,
BQJ

log(2)°
Under the null hypothesis, G is chi-squared distributed with degrees of free-
dom equal to the difference in the number of parameters in the two models.
We use this test statistic to estimate a p-value and infer whether a 50kb bin
is “changing” or “dynamic” across cell types. For H3Kyme;, H3K4me3, and
H3K»7me3, we used a Benjamini-Hochberg adjusted p-value of q<10”°. For

is always relative to HSPCs.
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H3Komes, where fold changes were generally smaller, we used q<10. This
separate cutoff for H3Kgmes; allowed comparable number of differential bins
for downstream analysis.

Defining bins above background levels for each mark

For each mark, we counted fragments falling in 50 kb bins summed across all
cells. We then plotted this vector of summed counts as a histogram in log scale,
which shows a bimodal distribution. We manually defined a cutoff for each
mark as a background level, and took bins that were above this cutoff. This
cutoff resulted in 22067, 12661, 18512, and 19881 bins for H3K4me, H3K4-
mes, H3Ky7mes, and H3Komes respectively.

Calculating bins that change independent of cell type

We defined “changing bins” or “dynamic bins” using the deviance test statistic,
detailed above in “Differential histone mark analysis”, using a q-value<10°
for H3K4me;, H3K4mes, and H3K,7mes, and q< 107 for H3Kgmes. We defined
these bins to be changing in a cell fate-independent manner if the estimated cell
type effect, Bgd, was either greater than O for all cell types (gained relative to
HSPCs) or less than 0 for all cell types (lost relative to HSPCs).

Predicting Activities of Transcription Factors in Single Cells

We adapted MARA (Motif Activity Response Analysis) described in [9] to ac-
commodate the sortChIC data. Briefly, we model the log imputed sortChIC-seq
signal as a linear combination of TF binding sites and activities of TF motifs:

}7970 = Z%:l Ng,mAm,c +€

Where ffg,c is the batch-corrected sortChIC-seq signal in genomic region g in
cell ¢; Ny, is the number of TF binding sites in region g for TF motif m; A, .
is the activity of TF motif m in cell ¢; € is Gaussian noise.

The single-cell motif activity, A,, ., is then overlaid onto the UMAP to
show cell type-specific activities.
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For H;K4me;, we defined genomic regions based on peak calling from hid-
denDomains. For repressive marks, where domains can be larger, we used 50
kb bins that were significantly changing across cell types as genomic regions.

Creating the TF binding site matrix

We predicted the TF binding site count occurrence under each peak using the
mm10 Swiss Regulon database of 680 motifs. We used the Motevo method
to predict transcription factor binding sites. Posterior probabilities < 0.1 are
rounded down to zero.

Joint H;Kyme; and H;Kome; analysis by double incubation

To simultaneously infer the H3Kyme; and H3Kgmes cluster from single-cell
double-incubated cuts, we focused on regions that were most informative to
distinguish between clusters in H3Kyme; and in H3Kgmes. For H3Kgmes, we
used 6085 statistically significant changing bins (q< 10, Poisson regression).
For H3K4me;, we used regions near cell type-specific genes that were used to
determine cell types from the data (811 regions). Since H;Kyme; had strong
signal at both the TSS and gene bodies, we defined regions for each gene from
transcription start site (TSS) to either its end site or 50 kb downstream of the
TSS, whichever is smaller. We counted cuts mapped to these 6896 regions for
H;K4me;, H3Kgmes, as well as H3;Kyme+H3Kgomes cells.

For a single cell, we assumed that the vector of H3K4yme;+H3Kgomes; counts
i was generated by drawing N reads from a mixture of two multinomials, one
from a cell type ¢ from H;Kyme; (parametrized by relative frequencies p,) and
one from a lineage / from H3Kgmes (parametrized by relative frequencies G;):

JV e, l,w ~ Multinomial (wp. + (1 —w) g, N),
where w is the fraction of H3K me; that was mixed with H3Kgmes.

Genomic region probabilities p.. and ¢; were inferred by the single-incubated
data by averaging the imputed signal across cell types:

1

DV E v, LUk
Dl\/zdilzhl 9.kUk,d

dl,g =
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where D is the set of cells that belong to lineage [. V and U are estimated
from LDA.

The log-likelihood for the H3K4me;+H3Kgmes counts coming from cluster
pair (c, [), can be defined as:

G
() X Z Yglog (wpe g (1 —w) quq),
g=1

where g is a genomic region.

To assign a cluster pair to a double-incubated single cell, we calculated the
log-likelihood for each possible pair (we had four lineages from H3;Kgmes and
eight clusters from H3K4me;, creating a 32 possible pairs) and selected the pair
with the highest log-likelihood. We used the Brent method implemented in R
(optim) to infer w that maximizes the log-likelihood for each pair.

Materials

Antibodies

H3;K4me;, ab8895 (Abcam), Lot: GR3206285-1

H3K4mes, 07-473 (Merck), Lot: 3093304

H3;Komes, ab8898 (Abcam), Lot: GR3217826-1

H;K>7mes, 9733S (NEB), monoclonal

Public K562 data

H;K4me;, Peggy Farnham, ENCSROOOEWC, pAb-037-050 (Diagenode)
H3;K4mes, Peggy Farnheim, ENCSROO0EWA, 97518 (Cell Signaling)
H;Kgmes, Bradley Bernstein, ENCSRO0O0APE, ab8898 (Abcam)
H3;K,7mes, Peggy Farnheim, ENCSROOOEWB, 9733S (Cell Signaling)
Public bone marrow scRNA-seq: Pseudobulk estimates merged from scRNA-
seq data from Giladi et al 2018 [72]

3.6 Supplementary figures
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Supplementary Fig. 1: sortChIC generates high-resolution maps of his-
tone modifications in single cells. (a) FACS plots for sorting individual K562
cells in G1 phase. (b) Fraction of cuts starting with TA (reflecting the prefer-
ence of MNase to cut in an AT context) versus number of cuts mapped to the
K562 genome. Cells below horizontal dotted lines and left of vertical lines are
excluded from the analysis. (c) Distribution of fraction of cuts mapped to loca-
tions within peaks across cells. (d) Correlation between pseudobulk sortChIC
and bulk ChIP signal using 50 kilobase (kb) bins for H3K4me;, H3K4ymes, Hs-
Ky7mes, and H3Kgmes. (e) Pearson correlation between pseudobulk sortChIC
and bulk ChIP signal using 50 kb bins across the four histone marks. (f) Three
tracks of H3Kgmes; ChIP-seq bulk data, one for H3Kgmes without normaliza-
tion (H3Kgmes), one for the input (Input), and one where H3Kgmes is normal-
ized to the input (H3Kgmes/input). Fourth track is H3Kgmes sortChIC pseudob-
ulk, showing that H;K9mes ChIP-seq requires normalizing by input to resemble
sortChIC. (g) Comparison of specificity (fraction of cuts in peaks, top panel)
and sensitivity (number of unique reads, bottom panel) for three alternative high
throughput single cell chromatin methods with sortChIC of H3K;7me3 in K562
cell lines. Fraction of cuts in peaks and number of unique reads was taken from
comparative analysis of H3K,7;mes from Bartosovic et al 32, Boxplots show
25th percentile, median and 75th percentile, with the whiskers spanning 97%
of the data.l cell type information, while dynamics in heterochromatin regions
marked by H;Kg9mes reveal lineage information.
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Supplementary Figure 2
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Supplementary Fig. 2: H3Kyme; and H;Ksme; in HSPCs prime for different blood cell
fates, while H3K;7me; in differentiated cell types silences genes of alternative cell fates.
(a) FACS plot for sorting G1 cells of whole bone marrow (unenriched), lineage negative (Lin’),
and Lin",Scal*, cKit" (LSK) populations. (b) Fraction of cells in each cell type labeled by the
sorted population: whole bone marrow (unenriched), lineage negative (Lin"), and Lin"Scal*cKit"
(LSK). (c) Cell type-specific mRNA abundances for genes associated with regions in Fig. 2E
using pseudobulk analysis of the Giladi et al. 2018 dataset (Methods). (d) H3Ksme; fold changes
of different cell types relative to HSPCs at cell type-specific regions. Each panel corresponds to
a set of cell type-specific regions defined by the rows of one color in the heatmap of Fig. 2e.
Regions are defined by +/- 5 kilobase windows centered at transcription start sites of cell type-
specific genes. (e) Same as (d) but for H3Ksme;. (f) Same as (d) but for H3K;7mes. Boxplots
show 25th percentile, median and 75th percentile, with the whiskers spanning 97% of the data.
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Supplementary Figure 3
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Supplementary Fig. 3: Lineage-specific loss of H;Komes correlates with cell type-specific
increase in H3Kyme,. (a) Statistically significant 50 kb regions (adjusted p-value < 10°, de-
viance goodness-of-fit test) identified for H3Komes, showing distribution of distances from cen-
ter of 50 kb region to nearest gene. All bins are identified as 50 kb regions that have pseudobulk
(counts summed across all cells) signal above background levels (Methods). Dotted line repre-
sents 25 kb, meaning the bin would overlap with a TSS. (b) Fold change in H;Komes relative
to HSPC:s for four sets of 150 regions: regions depleted in erythroblasts, lymphoid, myeloid, or
HSPCs. Each region is 50 kb wide. (c) The same four sets of regions but showing fold change in
H3Ksme;, showing upregulation of H3Ksme; specifically in cell types that are depleted in Hs-
Kome;. Boxplots show 25th percentile, median and 75th percentile, with the whiskers spanning
97% of the data. (d) Heatmap of the four regions in single cells across the four marks. Rows are
regions, color coded as in top of (b). Columns are cells, color coded as in bottom.
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Supplementary Figure 4
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GO biological process GO number P-value Enrichment {log2)
complement activation, classical pathway G0:0006958 5.68E-28 5.91
phagocytosis, recognition G0:0006910 1.86E-28 6.06

B cell receptor signaling pathway G0:0050853 3.58E-27 5.66
phagocytosis, engulfment GO:0006911 1.25E-26 5.46
positive regulation of B cell activation G0:0050871 4.69E-25 4.86
defense response to bacterium G0:0042742 2.33E-19 3.26
innate immune response G0:0045087 5.08E-11 2.24
immunoglobulin production G0:0002377 8.09E-08 3.13

H3K27me3 regions unique to HSPCs

GO bioclogical process GO number P-value Enrichment {log2)
locomotory behavior G0:0007626 9.29E-09 k

central nervous system neuron differentiation G0:0021953 5.14E-07 3.19
regulation of nervous system process GO0:0031644 1.74E-06 3.31
positive regulation of neuron differentiation G0:0045666 2.10E-05 3.88
developmental growth involved in morphogenesis G0:0060560 4.64E-04 3.33
neuromuscular process GO0:0050905 3.76E-04 3.28
memory G0:0007613 2.81E-04 3.19
sensory perception of sound G0:0007605 1.37E-04 3.16

Supplementary Fig. 4: Features of active and repressive chromatin dynamics during hema-
topoiesis. (a) Dimensionality reduction from GLMPCA (Methods) showing the two main latent
factors explaining the sortChIC data for each mark. Dim 1 contains 8.2%, 8%, 7%, and 9.5%
of the total L2 norm for H3Kyme;, H3Kumes, H3Ky;me3, and H3Komes, respectively. Dim 2
contains 7.9%, 6.8%, 6.8%, and 6.8% of the total L2 norm. (b) Distribution of log, fold changes
(FC) at statistically significant changing bins (null model: a bin has constant signal across all
cell types, full model: a bin has signal that depends on cell type, deviance goodness-of-fit test)
between pseudobulk of non-HSPCs versus HSPCs. Bimodal distribution highlights differences
originate mainly between HSPCs and non-HSPCs. (c¢) GC content of dynamic 50 kb bins for
the four histone marks. (d) Distance to nearest TSS measured from the center of each dynamic
50 kb bin. Dotted horizontal line represents 25 kb, meaning the bin would overlap with a TSS.
Boxplots show 25th percentile, median and 75th percentile, with the whiskers spanning 97%
of the data. (e) Gene ontology (GO) terms of HSPC-specific H3Komes (top) and H3zK;;me;3
(bottom) regions. P-value and enrichment from Fisher’s exact test.
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Supplementary Fig. 5: Penalized regression model reveals transcription
factor motifs underlying cell type-specific chromatin dynamics.

(a) Schematic of the transcription factor (TF) activity model. The penalized
regression model takes the imputed sortChIC signal in a peak as the response
variable and the TFbinding motifs predicted under each peak as the explana-
tory variable (Method). The penalized multivariate regression infers the TF
motif activity driving cell type-specific sortChlIC signal. (b) UMAP of H3K4-
me; chromatin states in single cells, colored by cell type. (c-f) UMAP where
each cell is colored by the TF activity inferred from the model. Four cell type-
specific TF motifs are shown.
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Supplementary Figure 6
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Supplementary Fig. 6: Single-incubated data from H; K me; and H;Kome; builds
a model for inferring cluster-pairs in double-incubated data. (a) Heatmap of H3Ky-
me; signal across clusters for 811 cell type-specific regions (Methods). These regions
come from cell type-specific genes used in Fig. 2e. (b) Heatmap of H3;Kome; signal
across clusters for 6085 cluster-specific regions (50 kb genomic window). These re-
gions come from the statistically significantly dynamic regions of H3K9mes; defined
in Supplementary Fig. 3A. (c¢) Schematic of how a cluster-pair is inferred from each
double-incubated cell. Each double-incubated cell has a vector of counts across 6896
regions (811 regions come from H;Ksme;, while 6085 come from H3Kgmes). We cal-
culate the log-likelihood (Methods) of the observed double-incubated cell counts for
each cluster-pair (32 cluster-pairs from 8 clusters in H3K4me; and 4 clusters in H3Kg-
mes). From the 32 log-likelihoods estimates, we assign the cell to the cluster-pair with
the highest probability. (d) Examples of the 32 log-likelihood estimates from eight rep-
resentative cells, shown as a 4-by-8 heatmap. Each of the four rows is a cluster from
Iil(«sggmey each of the eight columns is a cluster from H3;Kyme;.



Supplementary Table 2

ChIP based pA-MNase based PA-Tn5 based
Rotem Qrossel Aetal Hainer Ku et Lim Ku This Harada Kaya- Wang Baﬂoso Jansse Wu et
Reference etal. inetal. 2019 etal. al. 2019 etal. work etal. Okur et etal vicet |nsetal al. 2021
2015 2019 2019 : 2021 2018 al. 2019 | 2019 al. 2021 2020 B
ht
single= | jichip- | uicuTa | scchic- | iscohic- | Sort- CUT&Ta | CoBATC | scCut&T | autoCUT | scCut&T
Method Sc-ChiP Cﬁg, seq RUN seq seq chic | Chib-sea g H ag &TAG ag
seq
Hoech
Integrated with FACS st, Lin,
sorting scal,c-
kit
'\‘C‘;’Iflll’:;s")f cells profiled | 7558 0 1869 | 172 | 387 | 2810 | 4136 | 15 1764 | 2161 | 8745 | NA | 2794
N‘:g’f’ ‘c’feﬁ:;'s profiled 0 7465 200 0 285 | 19000 | 12208 0 0 3998 | 47340 | 6000 | 1311
4500
Approximate throughput (384
(cells/run) 100 1000 200 low low 10000 per low 1000 2000 4000 2500 2794
plate)
Approximate average 453- 10000- | 11000- 15000- 7525- 3900-
number of reads/cell 773 | 1630 | 9000 | NA ] 45000 | 45000 | 5000 | 350000 | NA | 12000 | 48453 | 13000 | 1729
TFs and other non- ,\C‘;r%:' Pol2 Olig2,
histone proteins 9. Rad21
Sox2
H3K4me1 (active) X X
4me?2 (active) X X X
H3K4me3 (active) X X X X X X
| H3K36me3 (active) X X X
| H3K27ac (active) X X X X
| H3K27me3 (repressive) X X X X X X X X X
H3K9me3 repressive) X

Supplementary Table 2: Comparison of studies on single-cell histone mod-
ification mapping.

Supplementary Table 1: Fold change estimates relative to HSPCs for
different cell types. Estimates of log, fold change between a cell type relative
to HSPCs for H3;Kyme;, H3K4me3;, H3K>7mes, and H3Kgmes (one tab for each
mark). P-values estimated from deviance goodness-of-fit test from Poisson re-
gression. (Omitted, too large for print, can be found on the bioRxiv preprint)

Supplementary Table 3: List of barcode adaptors used in this study.
(Omitted, too large for print, can be found on the bioRxiv preprint)

109






Chapter 4

scChIC-TAPS reveals histone
modification specific DNA
methylation dynamics during
the cell cycle

In preparation

Christoph Geisenberger!”, Buys Anton de Barbanson'", Jeroen de Ridder? and
Alexander van Oudenaarden’

'Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sci-
ences), Utrecht, The Netherlands.

2Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht,
The Netherlands.

*These authors contributed equally

4.1 Abstract

Epigenetic mechanisms regulate transcriptional output and play a vital role
in cell fate decisions. While multi-omics techniques have started to provide
insights into how these processes are coordinated, single-cell measurements
are required to delineate correlations between epigenetic marks at the level of
individual genes. In this work, we propose scChIC-TAPS , a novel method
which simultaneously measures post-translational histone modifications and
DNA methylation at the single-cell level. Our approach combines bisulfite-free
conversion of methylated cytosines and targeted MNase digestion and resolves
the local correlations of different histone modifications and DNA methylation
states at base-pair resolution. Applying scChIC-TAPS in a Fucci reporter line
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allows us to track epigenetic changes and their genome-wide interplay across
the full cell cycle. Our data provides the first direct evidence that kinetics of
replication-coupled maintenance methylation are influenced by the local chro-
matin environment.

4.2 Introduction

Eukaryotes package their DNA into chromatin to coordinate a number of cru-
cial processes such as transcription, DNA repair and silencing of repetitive ele-
ments. Two of the most well-studied epigenetic marks involved in this regula-
tion are post-translational histone modifications and the methylation of cytosine
bases. Deregulation of epigenetic processes is commonly observed in a number
of diseases, most notably in cancer.

In order to guarantee stable phenotypes over time, intricate mechanisms
are involved in the inheritance of histone marks and DNA methylation. Dur-
ing every replication of the genome, old histones are disassembled in front of
the replication fork and re-integrated into the leading and lagging strands in
roughly equal proportions. At the same time, DNMTT1 travels with the replica-
tive machinery and copies methylation patterns from the template strand onto
the newly synthesized strand. This maintenance methylation occurs in the con-
text of symmetrical CpG dinucleotides. After DNA synthesis, methylated CpGs
in the template strand are paired with unmodified CpGs in the nascent strand.
DNMT1 recognized these hemimethylated sites, thereby providing a mechanis-
tic basis for methylation inheritance.

There is sufficient evidence to suggest that the enzymatic properties of
DNMT1 are reflected in genome-wide methylation patterns. For example,
in-vitro experiments show that average DNA methylation is correlated with
DNMT s flanking site preference [2]. However, there is little understanding of
how DNMT1 activity might be impacted by the local chromatin environment.
DNMT1 itself is recruited by a number of different mechanisms, including the
recognition of ubiquitin marks on histone H3, a mark placed by its partner
UHRF1. Since methyltransferases cannot access nucleosome-bound DNA, it
has been proposed that nucleosome insertion and DNMT1 accessibility might
compete in newly synthesized regions of the genome [133]]. In addition, mod-
eling of kinetic rates of re-methylation after DNA replication has revealed large
variability [[37]. This suggests that the local chromatin environment might im-
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pact the type and timing of methylation maintenance [[133]]. Further evidence
in this direction comes from the discovery of Partially Methylated Domains
(PMDs). These large regions tend to become hypomethylated in cancer and ag-
ing and were found to co-localize with repressive, H3;Kgmes-marked chromatin
[33,[146].

However, most evidence is correlative and there is no method to measure
the epigenetic interplay in a time-resolved manner. Here, we address this short-
coming and present scChIC-TAPS , which allows read-out of histone modifi-
cations and DNA methylation from the same molecule at base-pair resolution
in single cells. In addition to a thorough technical validation, we use our novel
approach to measure the kinetics of DNA methylation in different chromatin
contexts across the full cell cycle.

4.3 Results

Our approach builds on single-cell chromatin cleavage (scSortChIC) [195]] and
is outlined in Fig. 1A. Histone modification-specific antibodies are used to tar-
get MNase and the resulting fragments are ligated with barcoded adapters. Af-
ter single-cell tagging, material is converted using Tet-assisted pyridine borane
sequencing (TAPS) [[107]. This two-step process combines enzymatic oxida-
tion and incubation with a chemical to convert SmC to dihydroxyuracil (DHU).
DHU is subsequently replaced by thymidine during amplification. Of note, due
to the specific conversion of SmC, TAPS is compatible with regular, i.e., un-
methylated sequencing adapters. Illumina sequencing allows the extraction of
multiple pieces of information for each read: (i) single-cell identity (barcode se-
quence), (ii) genomic location of histone modification (mapping position) and
(iii) the methylation state of the original molecule (C to T transitions). Impor-
tantly, our data provide single-molecule in addition to single-cell resolution.

Technical validation of scChIC-TAPS in K562 cells

For technical validation, we produced scChIC-TAPS data for three different
histone modifications in K562 cells (H3K9mes, H3K>7me; and H3K3¢mes).
Mapping rates ranged from 90.5% to 98.8% (Supplementary Table 1), about
four times higher than single-cell bisulfite sequencing data [45[]. Cells were
filtered based on the number of unique cut sites, TA fraction (MNase bias) and
average methylation. Between 79 % (H3Komes) and 92% (HzK,7mes) of cells
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Figure 1 (A-B): scChIC-TAPS enables multiplexed profiling of histone
modifications and DNA methylation in single cells A, Schematic of scChIC-
TAPS . Specific antibodies coupled to MNase are targeted to the corresponding
histone modifications. Single nuclei are sorted into 384-well plates and subse-
quent steps performed using a robotic liquid handler. First, MNase digestion
is initiated through addition of Ca2+. Then, Proteinase K digestion, blunt-
ing, A-tailing and adapter ligation create barcoded fragments. Material from
one plate is pooled, followed by conversion of methylated cytosines to DHU.
After sequencing library amplification, DHU is replaced by thymidine (T). B,
Heatmaps showing data for histone modifications (left) and DNA methylation
(right) obtained from the same K562 single cells across a 60 Mb region on chro-
mosome 1. Colored traces above heatmaps correspond to the averaged signal
across cells and are accompanied by reference profiles (ENCODE ChIP-Seq
and WGBS, respectively). Tick marks under the heatmaps indicate locations of
genes.
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Figure 1 (C-E): scChIC-TAPS enables multiplexed profiling of histone
modifications and DNA methylation in single cells C, Heatmap visualiz-
ing nucleosome spacing in single cells. Pairwise distances between cut sites
(mapping position of Read 1) are calculated per single cell and z-score nor-
malized. The striped vertical pattern corresponds to cuts located roughly one
nucleosome distance away. D, Similar to C, this figure shows the probability of
detecting another MNase cut site given a specific genomic distance aggregated
across cells within the same histone modification. Oscillations show periodici-
ties of approximately 180 to 190 bp with slight differences in peak location and
signal decay between histone modifications. E, As described in D but taking
advantage of the multiplexed nature of scChIC-TAPS , methylation levels (beta,
fraction methylated) are plotted with respect to the cut site position.
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passed our quality control criteria. TAPS conversion efficiency estimated based
on fully methylated spike-ins ranged from 81% to 91% (Supplementary Table
1). We extracted histone and methylation profiles for the same single cells, Fig-
ure 1B shows the corresponding heatmaps for a 60 Mb region of chromosome
1. A more detailed zoom-in is provided in fig. [ST} In addition to single-cell
heatmaps, we aggregated signals into pseudo-bulk measurements, which we
compared to bulk data published by ENCODE. The number of MNase cuts in
non-overlapping genomic bins of 100 kb were compared to normalized ChIP
signal, which revealed high concordance between the data sets (fig. A).
Genome-wide correlation (Pearsons r) ranged from 0.72 (H3K3gme3) to 0.78
(HsKy7me3), equivalent to stand-alone measurements obtained with single-cell
CUT&RUN [95]] and single-cell CUT&TAG [89]. Methylation values obtained
by TAPS were compared to Whole Genome Bisulfite Sequencing (WGBS) data.
For each histone mark, we assessed CpGs with at least 5x coverage in both data
sets. Pseudobulk correlations were in the range of 0.98 to 0.99 (fig. [S2] B),
comparable to technical replicates of WGBS.

To further validate our approach, we assessed nucleosome spacing patterns
resulting from MNase digestion. Figure 1C shows the relationship between cut
site spacing and genomic distance as a single-cell heatmap. Figure 1 D aggre-
gates these data per histone mark, which reveals oscillatory patterns relating
to nucleosome occupancy. While phase (around 190 bp) and frequency are
similar across marks supporting previously published data in K562 cells [|135],
spacing and signal decay show subtle differences across histone marks. Lastly,
we investigated methylation values for the different histone marks. Here, av-
erage methylation within H3Ky7mes and H3Kgmes fragments (8 to 10%) is
much lower than compared to H3K3¢mes (50%). Again, these findings are in
line with previously published reports on the high methylation of gene bodies
[113]]. Taken together, our data for K562 cells are well correlated with bulk ref-
erence data and thus accurately represent the underlying histone modification
and DNA methylation landscapes. Of note, the quality of our measurements is
comparable to other single-cell single-omics techniques.

Using scChIC-TAPS to measure epigenetic dynamics during the cell cycle

Next, we apply scChIC-TAPS in a setting with epigenetic dynamics. To this
end, we profiled three histone modifications (H3;Ksgmes, H3Ky7mes and H3Ko-
mes) paired with DNA methylation during cell cycle progression. In addition
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to the regulation of many genes, methylation patterns are maintained during
S Phase. We therefore reasoned that our combined measurements might not
only provide insights into epigenetic regulation of gene expression, but also the
interplay of maintenance methylation and chromatin organization. To obtain
high-resolution data, we resorted to the RPE-FUCCI reporter system. This cell
line expresses an orange fluorophore during G1 phase and a green fluorophore
during G2 phase, with a short window of concomitant expression of both mark-
ers in early S phase [[145]]. Of note, fluorophores are retained in the nucleus,
which allowed the recording of FACS parameters during sorting. Cells were
profiled with scChIC-TAPS in FACS space, and the cell cycle progression tra-
jectory (pseudotime) fitted by using Wanderlust (Figure [S3). The cell cycle
progression trajectory is used to order cells across the cell cycle and is used as
a shared manifold which allows comparing between histone modifications and
previously published transcriptome data [[18].

To start with, we show that H;K3¢mes is mainly found on expressed gene
bodies, while H3K,7mes3 is found on repressed gene bodies supporting
previous research. In Figure 3 a comparison of the three histone marks across
the cell cycle is shown. Briefly, the genome was divided into 10kb bins and
the number of counts per cell per bin counted. Then the cell cycle was divided
by using a sliding window across the estimated cell cycle progression trajec-
tory, where each window contains 5% of the cells. This results in a matrix of
genomic bin x cell cycle progression bin, which is normalized to counts per
million. We concatenated the matrices of the 3 marks (Figure[S5)), and created
an UMAP [19] from this matrix (Figure [3). The UMAP has 4 main protru-
sions, one for each histone mark and one for regions which do not have any
of the marks. The protrusions are caused because H3Ksgmes, H3Ky7mes and
H3;Komes are mostly non-overlapping (Figure 3).

Overall, dynamics of H3K3¢mes, H3Ky7me3; and H3Kgmes during the cell
cycle are subtle, with the strongest changes in H3K3¢mes signal.

Next, we use results generated by using scRepli-seq [[167] to split our 10kb
genomic bins into two classes: early and late replicated. H3K3¢mes domains
are mostly located in early replicated regions, while H3Ky7me3; domains are
found in both early and late replicated regions. Finally, most H3;Kg9mes domains
are late replicated Figure[2]

When the genome is being replicated, not all methylated CpGs are immedi-
ately maintained, resulting in a slight drop of mean CpG methylation. In order
to study CpG maintenance dynamics near H3Ksgmes, H3K>7mes and H;Kgmes
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Figure 2: Replication timing of histone modified regions. A. Distribution
of the amount of cuts detected per bin in counts per million. The vertical lines
indicate the thresholds used to classify a region as covered by the mark. B,
The total amount of 10kb bins with a histone covered domain which are early
and late replicated. H3K3¢mes domains are mostly early replicated, and H3Ko-
mes are mostly late replicated. H3Ky7mes3 can be found on both early and late
replicated regions.

across the cell cycle for the early and late replicated regions, we calculated the
mean difference of CpG methylation for all bins over the cell cycle. We expect
that regions covered by H3Ksgmes are early replicated during S phase, there-
fore resulting in an early drop in DNA methylation. Indeed, we show that bins
which are covered by H3Kj3smes are early replicating and are the bins which
first drop in CpG methylation, and which are also earliest maintained back to
their original CpG methylation level (Figure |§]) Then H3K,7me; covered do-
mains are replicated, followed by H;Kgmes domains. A small subset of H3Ko-
mes domains are early replicated, but most of these early replicated H;Kgmes
bins are also covered by H3K3gmes ( Figure E[)

scChIC-TAPS allows to not only to calculate the mean DNA methylation
level for regions across the cell cycle, but can also be used to study the dynam-
ics at near single base resolution around nucleosomes which contain a histone
modification of interest. MNase can only cut in-between nucleosomes, in the
linker-DNA [124]]. This means that on average the scChIC-TAPS reads cover
first, a small section of linker, then cover nucleosome core-DNA, and then again
linker-DNA (Figure[5]A).

We calculated the CpG methylation level for the 350bp window near the
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Figure 3: UMAP of 10kb bins, resampled along the cell cycle progression
trajectory. Each dot represents a genomic location of 10kb, the location of the
dot represents the density of H3K3gmes, H3Ky7me3; and H3Kgmes and at a more
fine scale the dynamics of these marks across the cell cycle. In the first column
the mean amount of detected MNase cuts in counts per million across the cycle
is shown for H3K3¢mes, H3Ky7mes; and H3Komes. This indicates little overlap
between the marks, a small set of bins contains both H;K3¢me3; and H3Kgmes.
In the second column the same UMAP is shown, but colors indicate the cell
cycle progression time where the most counts are detected. Bins marked in
grey do not contain enough counts to accurately determine the peak time. The
last column shows the mean CpG methylation level detected for each bin.
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MNase cut sites across the cell cycle, and normalized this signal to the max-
imum methylation level found across the cell cycle for that position. This
reduces trends caused by limits caused by nucleosome positioning as DNA
methylation reduces the flexibility of the DNA which reduce the chance for a
nucleosome to form, this is likely one of the reasons the linkers are more highly
methylated than the core-DNA [43]]. The normalization results in a ’fraction
peak methylation level’ or maintenance ratio, which reflects the DNA methy-
lation maintenance status (a value of 1 reflects a completely maintained CpG
and a 0 a completely unmaintained and unmethylated CpG). We plotted the
maintenance ratio for various positions on the cell cycle progression trajectory
(Figure[5| A). We find that the mean CpG methylation level and thus the mainte-
nance ratio drops significantly after replication. The linker-DNA shows fewer
dynamics relative to the core-DNA, which might be indicative of slower main-
tenance by DMNT1 due to reduced DNA accessibility due to the presence of
the nucleosomes. The derivative of the maintanance ratio over the cell cycle
is informative about the rate of change of the DNA-methylation levels and is
plotted for H3K3¢mes3 (early replicated), H3K,7mes (early and late replicated)
and H3Komes (late replicated) (Figure[5]| B). This shows, that for all marks the
linker region has fewer dynamics, while the core-DNA has the largest dynamic
range.

4.4 Discussion

We developed scChIC-TAPS , which allows measuring DNA methylation in the
vicinity of histone modifications of interest. We profiled scChIC-TAPS in K562
cells, which showed that the resulting data quality is comparable to measuring
the modalities separately, and both the histone and methylation measurements
correlate well to representative bulk datasets. Technically, scChIC-TAPS can
be further improved by more thorough degradation of DNA-linker molecules
to get more accurate DNA methylation information relative to the position of
the core-DNA. Currently, quite a large fraction of the cells is lost during quality
control, especially the correlation analysis which removes cells which show
over-digestion by the MNase protein. Improvements to the protocol in order to
more precisely control the MNase digestion will lead to less QC-failed cells.
While here we used FACS information for cell cycle manifold, we envision
that scChIC-TAPS will be extended to include transcriptome information in
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the future, which allows cell types or differentiation to be used where FACS
information is not available. Further, we suggest that scChIC-TAPS will be
useful to investigate DNA methylation levels of transcription factor binding
sites to study regulation of DNA methylation near histone modifications.

We used scChIC-TAPS in a cell cycle progression system where we pro-
file 3 histone modifications, DNA methylation and cell cycle stage. In general,
H;Ksemes is replicated first, followed by H3Ky7mes and H3Kgomes. There is
a small set of H3Kgme3; domains which overlap with are H;K3¢mes and are
replicated early. Our results provide insights into the open question of why
linker DNA is more methylated than core-DNA. It has been suggested that
if DNA is methylated too much this could hinder nucleosome formation, and
DNTMI1 might not be able to reach all nucleosome-bound core-DNA. We show
that DNA methylation in the core-DNA has a larger dynamic range than DNA
methylation in linker-DNA, indicating that DNA maintenance is indeed slower
in the core-DNA. Our results support the hypothesis that DNA methylation
maintenance is slower for nucleosome-bound core DNA. DNA methylation in-
fluences the stiffness of the DNA, and this in turn influences nucleosome forma-
tion. Thus, scChIC-TAPS might be a useful tool to identify cases where DNA
methylation is used to dynamically influence the position of the nucleosome
[202].

4.5 Materials and methods

Cell Culture

K562 cells (ATCC® CCL-243TM) were cultured in RPMI 1640 GlutaMAX ™
medium (Gibco, cat. no. 61870036), supplemented with 5% fetal bovine
serum (Gibco, cat. no. A3382001), non-essential amino acids (Gibco, cat. no.
11140050) and Pen/Strep (Gibco, cat. no. 15140122). hTERT-RPE1-FUCCI
cells were grown in adherent culture with DMEM/F12 GlutaMAX™ medium
(Gibco, cat. no. 10565018) supplemented with Pen/Strep and 10% fetal bovine
serum. TrypLE™ Express Enzyme (Gibco, cat. no. 12605010) and PBS were
used for passaging of RPE1-Fucci cells.
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Single-cell histone profiling

Buffer composition

Component | Manufact. | Cat. No. WB 1 WB 2 WB 3
H,0 Invitrogen AM9932
HEPES Gibco 15630080 | 20 mM 20 mM 20
mM
NaCl Invitrogen | AM9760G | 150 mM | 150 mM 150
mM
Spermidine Sigma S$2626-5G | 0.5 mM | 0.5 mM 0.5
mM
Tween-20 Sigma P1379- 0.05% 0.05% | 0.05%
100ML
Protease Roche 5056489001| 1 tablet 1 tablet
inhibitor (per 50 (per 50
ml) ml)
EDTA Invitrogen | 15575020 2 mM

* all values correspond to final concentrations

Fixation, cell permeabilization and long-term storage

All steps were performed in Protein LoBind tubes (Eppendorf, cat. no. 0030108094
and 0030122216). Cells were harvested in 15 ml tubes and washed twice with
PBS. Fixation was performed by resuspending the pellet in 300 ;1 PBS per 10°
cells. Then, 700 pl ice-cold absolute ethanol per 10° cells was added while
vortexing gently. Cells were fixed at -20°C for two hours, washed twice with
WB 1 and transferred to 0.5 ml tubes. Cells were stored at -80°C in WB 1
supplemented with 10% DMSO.

Antibody binding, Pa-MNase incubation and FACS

Protein A-MNase fusion protein (Pa-MNase) was expressed in bacterial culture
and purified as outlined in Zeller et al. [195]. Cells were thawed, washed
twice with WB 1 and resuspended in WB 1. Histone modification-specific
antibodies were added to the reaction (see below for details). Incubation was
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performed overnight at 4°C with gentle agitation, effectively stripping the cell
membrane and releasing nuclei through the presence of Tween-20. Nuclei were
washed once and resuspended in 500 pl of WB 2. Pa-MNase (3 ng/ml final)
and Hoechst 34580 (5 pg/ml final), were added to each sample, followed by
incubation for 60 min at 4°C with gentle agitation. Cells were washed twice
with WB 2, resuspended in 500 ul of WB 3 and filtered through a 70 pm strainer
(Corning, cat. no. 431751) and transferred to FACS tubes .

Fluorescence-assisted nuclei sorting

Ahead of sorting, 384-well hard-shell plates were prepared for sorting by adding
10 pl of sterile filtered mineral oil (Sigma Aldrich, cat. no. 69794-500ML) per
well using a Tecan Freedom EVO® liquid handler. Nuclei in WB 3 were sorted
into 384-well plates on a BD Influx™ cell sorter. Hoechst signal was used to
select for K562 cell in G1 phase. Four gates were used for RPE1-Fucci cells to
sample evenly from early G1, late G1, S and G2 phase, respectively. Four to
eight wells were left empty as controls in all plates. After sorting, cells were
spun down for one minute at 2,000 g.

Processing of single-cell plates

All pipetting steps outlined below were performed using an Innovadyne Nan-
odrop II robotic liquid handler. After each dispension step, plates were sealed
with aluminium sealers and spun down for one minute at 2,000 g to fuse droplets.

Pa-MNase activation and Proteinase K digest

MNase digestion was initiated by adding 100 nl of WB 3 supplemented with 2
nM CaCl, to each well. Plates were incubated for 30 min at 4°C. Digestion was
stopped by dispensing 100 nl of the following solution (final concentrations):
nuclease-free water; 40 mM EGTA (Thermo Fisher, cat. no. 15425795); 1.5%
NP-40 and 2 mg/ml Proteinase K (Invitrogen, AM2548). Plates were incubated
in PCR machines: 20 min at 4°C; 6 hours at 65°C; 2 min at 80°C; hold at 4°C.
Plates were kept at -80°C until further processing.
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Blunting

100 nl of the following mix was added to each well (volumes per well): 2 nl
Klenow, large fragment (NEB, cat. no. M0210L); 2 nl T4 PNK (NEB, cat. no.
MO201L); 5 nl ANTP solution (Promega, cat. no. U1515); 30 nl ATP 10 mM
(NEB, cat. no. P0756S); 30 nl PNK Buffer 10x (NEB, cat. no. M0201L);
10 nl MgCl, 25 mM (Thermo Fisher, cat. no. 4398828); 5 nl PEG8000 50%
(Promega, cat. no. V3011); 1.5 nl BSA 20 mg/ml (NEB, cat. no. B9000S);
14.5 nl nuclease-free H,O. Incubation: 30 min at 37°C; 20 min at 75°C; hold
at 4°C.

A-tailing

200 nl of the following mix was added to each well (volumes per well): 1 nl
AmpliTaq 360 DNA Polymerase (Applied Biosystems, cat. no. 4398818); 2
nl T4 PNK (NEB, cat. no. M0201L); 1 nl dATP (Promega, U1205); 10 nl
DTT 0.1 M (part of Invitrogen cat. no. 18064022); 14 nl Tris 1 M pH 8.0
(Invitrogen, cat. no. 15568025); 20 nl ATP 10 mM (NEB, cat. no. P0756S); 25
nl KCI 2M (Invitrogen, cat. no. AM9640G); 1 nl MgCl, 1M (Invitrogen, cat.
no. AM9530G); 10 nl PEG8000 50% (Promega, cat. no. V3011); 1 nl BSA 20
mg/ml (NEB, cat. no. B9000S); 115 nl nuclease-free H,O. Incubation: 15 min
at 37°C; 10 min at 72°C; hold at 4°C.

Dispension of barcoded adapters

Per well, 50 nl of 5 uM barcoded adapter was added using a Mosquito HTS
Nanolitre Liquid handler (ttplabtech). Adapters were manufactured by IDT,
see below for an example sequence. Adapters contain the following features:
forked sequence to prevent adapter-adapter ligations (underlined, dotted), T7
promoter (underlined, solid), RAS Illumina primer binding site (italic), 3 ran-
dom nucleotides as UMI, an 8 bp cell-specific barcode (bold) and a single-base
T overhang.

Top Strand:
5’-GGTGATGCCGGTAATACGACTCACTATAG
GGAGTTCTACAGTCCGACGATCNNNACACACTAT
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Bottom Strand.:
5-pTAGTGTGTNNNGATCGTCGGACTGTAGAACTCCC
TATAGTGAGTCGTATTACCGGCGAGCTT

Adapter Ligation

150 nl of the following mix was added to each well (volumes per well): 25 nl
T4 Ligase 400,000 U/ml (NEB, cat. no. M0202L); 3 nl MgCl, 1M (Invitrogen,
cat. no. AM9530G); 45 nl DTT 0.1 M (part of Invitrogen cat. no. 18064022);
20 nl ATP 10 mM (NEB, cat. no. P0756S); 5 nl PEG8000 50% (Promega, cat.
no. V3011); 1 nl BSA 20 mg/ml (NEB, cat. no. B9000S); 51 nl nuclease-free
H,O. Incubation: 20 min at 4°C; 16 hours at 16°C; 10 at 65°C; hold at 4°C.

Pooling of plates

Plates were inverted and placed in pooling plates (Clickbio VBLOK?200) pre-
coated with 3 ml of sterile filtered mineral oil. Plates were spun for two minutes
at 500 g and the liquid phase transferred to fresh 1.5 ml Eppendorf tubes. Carry-
over mineral oil was removed with the following washing procedure: 500 ul of
n-Butanol were added, tubes inverted multiple times and spun down for one
minute at 5,000 g. The butanol phase containing mineral oil was taken off with
a P1000 pipette. This procedure was repeated for a total of three times. Then,
500 pl of ether were added. Tubes were vortexed and spun down using a table-
top centrifuge. After removal of ether with a P1000 pipette, tubes were left
open briefly at room temperature to allow evaporation of left-over ether. Next,
DNA was purified by incubating for 10 minutes with 0.8x volumes of Ampure
XP beads (Beckman Coulter, cat. no. A63881) pre-diluted 1:4 in bead binding
buffer (1 M NaCl, 20% PEGS8000, 20 mM Tris pH 8.0, 1 mM EDTA). Beads
were pelleted and washed twice with 80% ethanol . Beads were air-dried and
resuspended in 19 ul of nuclease-free H,O. The supernatant was transferred
to a fresh 0.5 ml Eppendorf tube. Material was stored at -20°C until further
processing.
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Methylation profiling

Preparation of spike-ins

To produce fully methylated lambda phage DNA, the following reaction was as-
sembled in 0.5 ml DNA lo-bind Eppendorf tubes: 1 pg of unmethylated lambda
phage DNA (Promega, cat. no. D1521); 5 ul NEB Buffer 2 10x (NEB, cat. no.
MO0226S); 1 ul SAM 32 mM (NEB, cat. no. M0226S); 2 ul M.SssI 4,000
U/ml (NEB, cat. no. M0226S); topped up to 50 ul with nuclease-free H,O.
Incubation: 2 hours at 37°C. After 2 hours an additional 1 ul of SAM and 0.5
w1 of M.Sssl were added followed by further incubation for 2 hours at 37°C.
DNA was cleaned with 1x volume of Ampure XP beads. The above reaction,
including the top-up of enzyme and SAM, was repeated with the purified ma-
terial as input, followed by a final 1x volume Ampure XP bead cleanup and
elution in 20 pl of nuclease-free H,O. Next, methylated DNA was subjected to
NIallI restriction with the following reaction: 1 pl Nlalll 10,000 U/ml (NEB,
cat. no. R0O125S); 5 ul CutSmart Buffer 10x (NEB, cat. no. R0125S); 24
ul of nuclease-free H,O. Incubation: 2 hours at 37°C; 20 min at 65°C; hold
at 4°C. Material was cleaned up with 1x volumes of Ampure XP beads and
the concentration was measured with a Qubit 3 Fluorometer (Invitrogen). Pre-
annealed adapter (see below for sequence) was added to the sample in a ratio
of 10:1 (based on the measured concentration and assuming full digestion to
180 bp fragments). Next, ligation was performed by addition of the following:
2.5 ul T4 DNA ligase 400,000 U/ml (NEB, cat. no. M0202L); 5 ul T4 DNA
ligase buffer 10x (NEB, cat. no. M0202L); volume topped up to 50 ul with
nuclease-free H>O. Ligation was performed for 20 minutes at room tempera-
ture followed by heat inactivation for 10 min at 65°C. Material was cleaned up
twice with 0.8x volumes of Ampure XP beads. Fully methylated and adapter-
ligated spike-ins were diluted to a concentration of 7 pg/ul.

Nlalll adapter top Strand:
5’-GGTGATGCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGAT
CNNNACACACTACATG

Nlalll adapter bottom Strand:

5-pTAGTGTGTNNNGATCGTCGGACTGTAGAACTCCC
TATAGTGAGTCGTATTACCGGC
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TET1 enzyme production

Catalytic domain of mouse Ten-eleven translocation methylcytosine dioxygen-
ase 1 (mTETICD) was expressed as outlined by Liu et al. [107]. Briefly,
FLAG-tagged protein was expressed in Expi293F cells (Gibco, cat. no. 13479756).
After lysis, protein is bound with Anti-Flag M2 Affinity Gel (Sigma, cat. no.
A2220) and purified on gravity chromatography columns (Bio-Rad, cat. no.
7321010) according to the manufacturer’s specifications. Protein is concen-
trated on Amicon® Ultra-4 Centrifugal Filter units (Merck, cat. no. UFC803024)
followed by buffer exchange with Bio-Spin® P-30 Gel Columns (Bio-Rad, cat.
no. 7326231). Protein was stored at -80°C in 20 mM HEPES pH 8.0, 150 mM
NaCl, 1 mM DTT and 30% Glycerol

TAPS conversion and clean-up

Reaction buffer for TAPS consists of (final concentrations): 167 mM HEPES
(Gibco, cat. no. 15630080); 333 mM NaCl (Invitrogen, cat. no. AM9760G);
3.3 mM alpha-Ketoglutarate (Sigma-Aldrich, cat. no. K3752-5G); 6.67 mM
L-ascorbic acid (Sigma-Aldrich, cat. no. 95210-50G); 4 mM ATP (part of
Thermo Fisher Scientific, R0441); 8.33 mM DTT (part of Invitrogen cat. no.
18064022). The following reaction was assembled on ice: 19 ul of pooled ma-
terial, 1 ul of methylated lambda spike-in, 15 pl of TAPS reaction buffer, 3.33
pl of 1.5 mM Fe?* solution, 12 ;1 of mTET1CD. Samples were incubated for
80 min at 37°C. Then, 1 ul of Proteinase K 20 mg/ml was added per reaction,
followed incubation for 15 min at 55°C. Next, samples were cleaned up with
2x volumes of Ampure XP DNA beads and eluted in 19.67 ul of nuclease-free
H,O. The above reaction and Proteinase K digest were repeated once followed
by a clean-up with 2x volumes of Ampure XP DNA beads and elution in 33.75
pl. Sample was transferred to fresh 1.5 ml Eppendorf tubes. Then, 10 ul of
NaAc 3M pH 4.3 (produced in-house) and 6.25 ul of pyridine borane solution
10 M (Sigma Aldrich, cat. no. 179752-5G) were added to the reaction mix.
Samples were incubated for 16 hours at 37°C in a thermal shaker set to 850
rpm.

After pyridine borane incubation, reactions were cleaned up with oligo
clean & concentrator columns (Zymo, cat. no. D4060) according to the manu-
facturer’s protocol with the following adaptations: samples were topped up to
200 pl with nuclease-free H,O and 400 pl of oligo-binding buffer and 800 ul
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of ethanol were used per column. Samples were eluted twice with pre-warmed
(60°C), nuclease-free H,O. Then, volumes were reduced to 9.6 pl in a Speed-
Vac chamber. Cleaned-up samples were kept at -20°C until library preparation.

Sequencing library preparation
In-vitro transcription (IVT)

TAPS-converted and cleaned up samples were subjected to in-vitro transcrip-
tion (IVT) by adding 14.4 ul of IVT reaction mix (2.4 ul UTP, 2.4 pl TTP, 2.4 ul
GTP, 2.4 ul ATP, 2.4 pl Buffer 10x, 2.4 pl Enzyme; all part of MEGAscriptTM
T7 Transcription Kit, Invitrogen, cat. no. AMB13345) followed by incubation
for 14 hours at 37°C (with lid temperature set to 70°C). Next, 6 ul of H,O
and 3 pl of Turbo DNAse (part of MEGAscriptTM T7 Transcription Kit) were
added and samples incubated for 15 min at 37°C to digest template DNA. Am-
plified RNA (aRNA) was fragmented by adding 7.88 ul of fragmentation buffer
(200 mM Tris-Acetate, pH 8.1; 500 mM KaOAc; 150 mM MgOAc) followed
by incubation for 90 s at 94°C. Samples were immediately chilled on ice and
4.13 pl of 0.5 M EDTA pH 8.0 (Invitrogen, cat. no. 15575020) was added to
capture Mg?*. Then, aRNA was cleaned with 0.8x volumes of RNAClean XP
beads (Beckman Coulter, cat. no. A63987) and eluted in 6 ul of nuclease-free
H,0. In order to assess RNA yield and quality, 1 ul of aRNA was run on a
Bioanalyzer (Agilent RNA 6000 Pico Kit, cat. no. 5067-1513).

Reverse transcription and library amplification

After quality control, 5 ul of aRNA were combined with 0.5 pl of 10 mM dNTP
solution (Promega, cat. no. U1515) and 1 ul of random hexamer RT primer 20
uM (sequence: GCCTTGGCACCCGAGAATTCCANNNNNN, IDT). Sam-
ples were heated to 65°C for 5 minutes and then immediately chilled on ice.
6.5 pl of primed sample were combined with 2 pl First Strand Buffer 5x, 1 pl
DTT 0.1 M, 0.5 pl of SuperScriptll 200 U/ul (all part of Invitrogen cat. no.
18064022) and 0.5 ul of RNAseOUT (Invitrogen, cat. no. 10777019). Incu-
bation: 10 min at 25°C; 60 min at 42°C; hold at 4°C. Then, 2 ul of barcoded
RPIx primer (see below for example) was added to each sample. Library PCR
is performed by adding 11 ul nuclease-free H,O, 25 pl of NEBNext Ultra IT Q5
Master Mix 2x (NEB, cat. no. M0492L) and 2 pl of 10 uM RP1 primer (see
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below for sequence). Samples are amplified with 10 to 13 cycles of PCR, de-
pendent on histone modification and aRNA yield. PCR settings: 30 s at 98°C;
10 to 13 x [10 s at 98°C, 30 s at 60°C, 30 s at 72°C]; 10 min at 72°C; hold at
4C. Amplified DNA was cleaned with two subsequent 0.8x AMPure XP bead
cleanups and eluted in 15 pl of nuclease-free H,O. Concentration and size dis-
tribution were measured on a Qubit 3 Fluorometer and Bioanalyzer (Agilent
High Sensitivity DNA Kkit, cat. no. 5067-4626), respectively. Samples were
pooled and sequenced on the Illumina NextSeq2000 platform.

Barcoded RPIx primer (IDT):

5’-CAAGCAGAAGACGGCATACGAGAT-[6bp]
GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

RP1 library PCR primer (IDT):
5’- AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA

Trimming, Demultiplexing, Mapping and deduplication

The scChiC mapping and counting workflow used is identical to to the one used
in Zeller et al. [[195]], and additional steps are performed to perform molecule
consensus and methylation calling.

Sequenced reads were demultiplexed using SingleCellMultiOmics demux.py.
Next remaining adapter sequences were removed using cutadapt. A custom ref-
erence was prepared by combining the following assemblies:

Assembly Comment

Human Ensembl assembly version 97 | K562 and RPE cell lines are hu-
(Hg38) man derived

Escherichia Lambda phage acc. | used as methylation detection
J02459.1 spike-in

Cutibacterium acnes KPA171202 cell culture contaminant
Escherichia coli strain RHB09-C15 cell culture contaminant
Escherichia coli str.  K-12 substr. | MNase protein production con-
MG1655 taminant

The trimmed reads were paired-end mapped using BWA mem with default
parameters. The resulting mapped reads were quality filtered and deduplicated
using SingleCellMultiOmics using the following command:
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bamtagmultiome.py -method chic sorted.bam -o tagged.bam —--
— multiprocess —--one_contig_per_process

Molecule consensus calling

In the molecule consensus calling step, the information from reads derived from
the same original DNA-template is aggregated. See fig. [S4] for a schematic
overview. Aggregation starts by clustering reads with the same UMI, starting
coordinate, strand and haplotype. These clusters are assumed to be derived
from the same template molecule. The information contained in these reads
are aggregated in a single consensus alignment and base-calls for each covered
base. The aggregated alignment and base-calls will be referred to as consensus
molecule from here on.

The generation of a consensus molecule starts by merging the information
of the two mates of a paired end read, then the PCR and IVT duplicates are
merged resulting in a final consensus molecule.

Paired end reads are merged, for positions where both mates overlap the
base call with the highest phred score is selected For dovetailing alignments,
the overhanging ends are not considered. Bases with a base calling confidence
phred score of 15 are not considered at all.

Finally, the information for each IVT and PCR duplicates are merged. For
each covered position the most common base is selected using majority voting
over all reads (IVI/PCR duplicates) which cover a location, resulting in a base-
call for each covered position of the consensus molecule. Ties are resolved by
inserting an ambiguous base call ((N)).

Methylation calling

Methylation calling was performed on the generated consensus base-calls by
an extension module of the SingleCellMultiOmics package, which performs
methylation calling on consensus molecules. For every covered cytosine (C)
of the consensus molecule, a methylation call is performed. When a molecule
consensus base call is a C the site is considered unmethylated and for a T the
site is considered methylated. A G, A or N base-call result in an ambiguous
methylation-call. To avoid incorrect methylation calls due to the presence of
SNVs, genomic locations with known C—T variants in the cell-line were not
taken into account during methylation calling.
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Methylation calling, distance to cut aware and feature annotation

To generate methylation calls relative to the cut location of the consensus molecule,

SingleCellMultiOmics was extended with a script tapsTabulator.py which gen-

erates methylation calls which include the location of the MNase cut.
tapsTabulator.py tagged.bam -context Z -method chic -

— features annotations.gtf -min_phred_score 15 | gzip
— > Z.annot.tsv.gz

TAPs conversion efficiency estimation

The conversion efficiency rate is estimated. This is the ratio of converted CpGs
vs total covered CpGs on the lambda-phage genome.
estimateTapsConversionEfficiency.py ./sorted.bam -o

— conv_efficiency -ref [reference_fasta_path] -method
— chic

The full source-code for SingleCellMultiOmics is available at
https://github.com/BuysDB/SingleCellMultiOmics
Additional code with code specific to this manuscript is available at
https://github.com/cgeisenberger/taps-analysis

4.6 Supplementary Figures
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Figure S1: Binning CpG Methylation in large bins results in a higher mean
methylation level for H3K3smes relative to repressive marks H3;Komes; and
H3Kj7me3. IGV screenshot of a region of chromosome 11 with tracks showing
the mean methylation level for H3K3gmes, H3Komes; and H3Ky7mes. The beta
values range between zero and one, values above one are colored red. An 250kb
example bin is depicted with a rectangle.

Cell line Modification TAPsconv. Mapping Rate Unique

K562 H3;Komes 90.9% 98.81% 66.54%
H3;K>7me3 87.0% 93.95% 72.64%
H3;K3smes 81.0% 90.47% 26.92%
RPE H3;Komes 93.7% 88.33% 43.99%
H;Kj7mes 93.8% 93.26% 39.94%
H3;K3smes 94.7% 91.14% 36.01%

Table S1: TAPs conversion rates estimated using lambda phage spike-
in molecules, the mapping rate (total mapped / demultiplexed reads) and the
fraction of unique reads.
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Figure S2: Comparisons of scChIC-TAPS to ENCODE. A, scatterplots
comparing scChIC-TAPS MNase cuts (H3K3¢mes, H3Ky7mes and H3Kgmes)
to ENCODE ChIP. B, scatterplots comparing scChIC-TAPS CpG methylation
beta values near H;K3¢mes, H3Ky7me3 and H3;Kgmes to ENCODE WGBS.
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Figure S3: FACS trajectory of cell cycle. Each dot represents a single cell.
The position of the cell relates to the measured FACS properties which are
influenced by the FUCCI reporter. The color of each cell shows the estimated
cell-cycle progression timing of the cell.
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Figure S4: Schematic overview of consensus and methylation calling pro-
cess. Sequence and alignment information from molecules with the same cell
barcode, UMI, starting coordinate, strand (and optionally haplotype) is pooled
in order to obtain high confidence consensus base calls from which methylation
information can be extracted.
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Figure S6: H3K3;sme3; and H3;K;;me; distributions on expressed and not
expressed genes. The mean count per million reads per cell per base around
transcription start sites (TSS), intron/exon boundaries and transcription end
sites (TES). Counts are separated into two classes: expressed and not expressed.
This class is based on the Battich 2020 dataset [[18]], genes with at least 20 total
transcripts are classified as expressed. A depletion of histone modifications is
visible at the transcription start site (TSS), while intron exon boundaries show
an enrichment of H3K3gme3;. Expressed gene bodies show an enrichment for
H;K3emes in comparison to not-expressed genes. Inversely for H3K,7mes.
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ing. Clusters consisting of a mixture of histone modifications are classified as
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Chapter 5

Discussion

Novel biological discoveries are often linked to technological advancement.
In this thesis, we demonstrate the application of single cell multi-omics pro-
tocols in the context of colorectal carcinoma organoids, blood formation and
cell cycle. Apart from technical developments required to measure the here
presented modalities from a single cell, data analysis is needed to leverage the
information generated during such a multi-omics experiment. Through data
integration of three independent lineage measurements from single cell Whole
Genome Sequencing (WGS), we can reconstruct highly structured events dur-
ing clonal evolution of colorectal carcinoma organoids (chapter 2). Joint pro-
filing analysis of the interplay between histone modifications marking active
chromatin or heterochromatin during blood formation suggests a hierarchical
chromatin regulation program, wherein heterochromatin states define lineages,
while euchromatin states establish cell types (chapter 3). Integrated data anal-
ysis of methylation and histone modifications during cell cycle shows a direct
link of local chromatin environment influencing replication-coupled methyla-
tion maintenance (chapter 4). In summary, single multi-omics data analysis
can aid in providing insights into the order of chromatin changes, expression
changes and phenotype and vice versa.

Technological improvements will ease data analysis

While single cell multi-omics data allows for direct measurements of relation-
ship between modalities, the techniques are still in an early stage and improve-
ments in sequencing quality and experimental protocols are going to ease data
analysis and yield even more biological insights. Higher quality and longer read
sequencing, for example, would greatly improve variant calling and resolve
more complex copy number aberrations due to the possibility to phase variants
over longer distances. Longer read sequencing additionally enables to phase
methylation information over longer distances and allows for the discovery of
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more allele specific differences. Single cell sequencing protocols currently rely
on strong amplification, but reducing amplification bias would improve methy-
lation and variant calling as well as detecting barcode bleed-through, which is
often a problem in single cell experiments. Further technical advancement will
be focused on the integration of more measurements, such as multiple histone
modifications from the same histone to study bi-valency.

Hierarchial analysis and clustering

In chapter 2, hierarchical multi-modal lineage tracing is discussed. Before es-
tablishing a lineage hierarchy, clustering of single cells provides useful insights
into the clonal events. Resolving the lineage questions with the techniques at
hand relies on, however, on biological meaningful clustering of the measured
modalities, such as lineage, SNVs, indels, and structural variants. This kind of
multi-modal hierarchical analysis is still in early development and can be much
improved upon. Currently, the confidence of individual measurements and lack
of a measurement are rarely taken into account. Allowing sparse measurements
is currently only possible when analyzing a single modality at a time. To obtain
a relevant clustering, biological meaningful distances in both, the copy num-
ber space and in SNV space, are required. However, these are currently not
available. Especially unexplored is tuning the weights of the various modalities
when combining distance matrices of multiple modalities. Biologically plausi-
ble distance metrics are also important for histone mark analysis, as clustering
is usually used to identify groups of cells with the same epigenetic state. For
each of these groups, the corresponding pseudobul is analyzed. When cells
are not assigned to a biologically meaningful group, the subsequent pseudob-
ulk is not biologically relevant and could potentially lead to invalid conclusions.
These wrong assignments can happen when cells are clustered on a technical
artifact, for example, over-digestion or amplification bias. Additionally, hav-
ing the same cell type in two different clusters or two cell types in one cluster
can lead to wrong lineage conclusions. More research is required, to estimate
and correct these biases properly, for example by modeling and correcting for
MNase digestion efficiency.

Solving hierarchical analysis and simultaneously clustering multiple modal-
ities can not only be applied to lineage questions, but also to establish causal

'sum of all the data of the cells assigned to a cluster
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relationship between modalities, such as the order of epigenetic modifications
leading to transcription. Does deposition of H3K4mes precede the decrease of
DNA methylation at promoters? Questions about causality are interesting to
ask when many combinations of modalities are measured, allowing to further
unravel the relationship between various epigenetic marks and transcription and
ultimately transcriptional regulation.

Internal validation through
complementary measurements

In order to obtain a reliable clustering, it is beneficial to use complementary
measurements, which ensure that biological claims and results are supported
by multiple lines of evidence. Apart from applying this internal control scheme
to copy number and lineage, as shown in chapter 2, this is also applicable when
other modalities have been measured. For example, in the scChIC-TAPs project
in chapter 4, the FACS parameters provide an additional modality which is
complementary to the manifold created using the single cell ChIC data. In the
sortChIC analysis in chapter 3, the FACS parameters provide an extra layer of
evidence regarding bone-marrow cell-typing. Complementary measurements
are most powerful when their technical biases are unrelated, and allow tuning
model parameters by using a complementary measurement for cross-validation.

Future implementations of complementary measurements could for exam-
ple include a protocol allowing to measure sortChIC and transcriptome, allow-
ing the cell typing to be performed on both the transcriptome, histone modifi-
cation level and FACS properties.

Overcoming data sparsity

A lot of the difficulties in single cell multi-omics data analysis arise from noisy
measurements. The most prevalent is dropout, resulting in missing data-points.
Less sparse data allows for the detection of more subtle dynamics/changes (e.g.
cell cycle). With development of sophisticated analysis most measurement
problems can potentially be overcome, technical improvements are the main
contributor to reduce data sparsity. Reducing material clean-up and handling
before amplification could decrease measurement dropout. Progress made in
reducing dropouts in multi-omics protocols will be a big step in boosting single
cell measurements to quantitative measurements. Such improvements, together
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with more sensitive DNA sequencing and less material amplification, would
lead, for example, to higher lineage mark recovery rates.

Using negative measurements positively

Some techniques collect negative measurements besides only positive ones. Ex-
amples of such protocols are bisulfite sequencing and the TAPs protocol, pre-
sented in chapter 4. For TAPs sequencing, both, methylated and unmethylated
bases are read out, which allows for the calculation of methylation ratios (beta
values). Another example is genotyping of gSNV-phased somatic variants. The
negative readout is the detection of the wild type allele, which allows genotyp-
ing even when only a single allele is covered. In this line, a negative ChIC
read-out would be very beneficial for pointing to locations where a measured
histone mark is not present. For the ChIC-TAPS integration, this will allow
methylation to be read out in regions where the histone mark of interest is not
present, simplifying the generation of a background model (methylation profile
for regions where the histone mark is not present).

Quantitative single cell measurements

Nearly all genomic single-cell protocols generate relative measurements, with
the readout being a relative signal for each genomic location. Such a relative
readout is limited in the information it carries. For example, it is not possible to
retrieve information about genome wide changes, such as the doubling of the
genome (in copy number analysis), or the genome wide loss of a histone mark.
In order to compare absolute difference between cells a quantitative readout is
required which is able to capture an absolute signal, like the number of copies
of DNA in a cell, the absolute amount of modified nucleosomes etc. One of the
ways to obtain an absolute signal is to normalize a relative signal to a reference
signal, for example, by spiking in a molecule with known concentration, which
is also done in various bulk protocols. So far this has been difficult to implement
as the spike-ins need to be subjected to the exact same procedure (and thus
biases) as the genomic DNA. Novel efforts aim at determining scaling factors
for global changes without the need for spike-ins [87].
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Integrating biological knowledge
into data-driven science

All projects discussed in this thesis rely heavily on data-driven science, and less
on overarching models of molecular cell biology. While a data-driven approach
is less biased, it might be beneficial to integrate more prior knowledge into the
data-driven algorithms to speed up the scientific lead discovery process. Im-
plementing a-priori biological information was successfully implemented for
the scChiC-TAPs analysis in [chapter 4] where the known methylation patterns
around histones allowed us to tune the methylation caller. Additionally, in-
tegration of known cell cycle replication data allowed us to show differences
between early and late replicating regions. However, biological knowledge
integration does not always yield additional insights. The integration of, for
example, pathway analysis with copy number aberrations in chapter 2, did not
yield insightful cancer related results. The rapidly advancing field of (trans-
former based) artificial intelligence algorithms will advance data driven science
by fast and precise embedding of experimental results into huge databases of
existing knowledge, allowing for faster lead finding and hypothesis generation.
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Chapter 6

Addendum

6.1 Samenvatting

Voor zowel eencellige als complexe meercellige organismen geldt dat er geen
enkele individuele cel gelijk aan een ander is. Bij de mens en andere dieren zijn
weefsels samengesteld uit een verscheidenheid van celtypes met verschillende
functies, die op hun beurt zijn samengesteld uit cellen die van elkaar verschillen
op meerdere moleculaire niveaus. Onderzoek naar enkele cellen bestudeert de
verschillen in feno- en genotype en de drijvende krachten achter de verschillen
tussen afzonderlijke cellen. In alle cellen wordt voortdurend variatie geintro-
duceerd, waardoor cellen steeds meer van elkaar gaan verschillen, en elke cel
unieker wordt. Variatie tussen cellen kan geintroduceerd tijdens celdelingen in
de vorm van onder andere DNA-mutaties, veranderingen in DNA-methylering
en door middel van histon modificaties. Ziekten zoals kanker kunnen beginnen
in een enkele cel die door celdelingen snel divergeert van zijn voorouderlijke
cel en aanleiding geeft tot een heterogene tumor.

Dit proefschrift bevat drie onderzoeks-hoofdstukken. De technologische
basis voor elk hoofdstuk is het meten van meerdere modaliteiten in enkele
cellen door middel van enkele cel sequencing technieken.

In het eerste hoofdstuk bestuderen we klonale dynamica in colorectale kanker
door een colonkanker organoide model systeem te laten evolueren gedurende
een periode van 26 weken, waarbij we simultaan de klonale grootte, veran-
deringen in het aantal chromosomen, en enkelvoudige nucleotide varianten in
individuele cellen in kaart brengen. De geintegreerde metingen maken het
mogelijk de volgorde van gebeurtenissen waarin chromosomale afwijkingen
optreden te reconstrueren en maken het mogelijk veranderingen te vinden die
meerdere malen in parallel binnen dezelfde populatie cellen zijn ontstaan. We
observeren een terugkerend verlies van chromosoom 4, dat alleen voorkomt na
verlies van chromosoom 18 en we laten zien dat dit overeenkomt met klinische
waarnemingen in dikkedarmkanker-pati€nten.
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In het tweede hoofdstuk wordt een nieuwe techniek scSort-ChIC geintro-
duceerd. Deze techniek kan worden gebruikt om histon modificaties te meten
in enkele cellen, en dit kan worden gekoppeld aan FACS-informatie waarmee
het celtype van individuele cellen kan worden bepaald. scSort-ChIC wordt ge-
bruikt om actieve en repressieve histon modificaties in kaart te brengen in het
proces waar bloed gevormd wordt (hematopoése). scSort-ChIC wordt toegepast
op zowel bloedstamcellen als volwassen bloedcellen in het beenmerg van de
muis. Tijdens de differentiatie verwerven bloedstamcellen verschillende ac-
tieve chromatine toestanden die afthankelijk van de bestemming van de cel
wordt geregeld door celtype specifieke transcriptie factoren. De meeste regio’s
op het genoom die tijdens de differentiatie repressieve histon-markeringen krij-
gen of verliezen, doen dit onafthankelijk van de celtype- bestemming van de cel.
Het simultaan meten van de histon modificaties H;K4me; en H3Kgmes; toont
aan dat celtypes binnen de myeloide lijn verschillend actief chromatine hebben,
maar gelijkaardig repressief chromatine dat specifiek is voor de myeloide lijn.
Dit suggereert hiérarchische chromatine regulatie tijdens hematopoése: het re-
pressieve chromatine definieert differentiatie trajecten en afstamming, terwijl
actief chromatine de celtypen bepaald.

In het derde hoofdstuk wordt een nieuwe techniek geintroduceerd om zowel
histon markeringen, DNA-methylatie en FACS-eigenschappen simultaan in een
enkele cel te meten. Deze combinatie van metingen is nog nooit eerder uit-
gevoerd. De methode wordt grondig gevalideerd, en toegepast op een systeem
waarbij de positie van elke cel in de celcyclus precies kan worden gemeten.
Deze cel-cyclus informatie wordt gebruikt om gegevens van meerdere histon-
markeringen te integreren en hun gedrag gedurende de celcyclus te vergelijken.
We vinden dat DNA-methylering in gebieden die bedekt zijn met nucleosomen
langzamer hersteld wordt dan gebieden die vrij zijn van nucleosomen.
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