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Pure dephasing of magnonic quantum states
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For a wide range of nonclassical magnonic states that have been proposed and demonstrated recently, a new
time scale besides the magnon lifetime—the magnon dephasing time—becomes important, but this time scale
is rarely studied. Considering exchange interaction and spin-phonon coupling, we evaluate the pure magnon
dephasing time and find it to be smaller than the magnon lifetime at temperatures of a few kelvins. By examining
a magnonic cat state as an example, we show how pure dephasing of magnons destroys and limits the survival of
quantum superpositions. Thus it will be critical to perform quantum operations within the pure dephasing time.
We further derive the master equation for the density matrix describing such magnonic quantum states taking
into account the role of pure dephasing. This methodology can be generalized to include additional dephasing
channels that experiments are likely to encounter in the future. Our findings enable one to design and manipulate
robust quantum states of magnons for information processing.
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Introduction. Rapid advancements in control and manip-
ulation of magnons—spin excitations of ordered magnets—
have witnessed the experimental generation of their nonclas-
sical states [1–4]. Strong magnonic coupling to superconduct-
ing qubits [3,5], photons [6–9], and phonons [10–13] has been
demonstrated. This has triggered a wide range of theoretical
proposals suggesting the use of magnonic nonclassical states
in providing a resource of entanglement and memories for
quantum communication and information processing [4,14–
23].

One of the key motivators driving this young field of
quantum magnonics is the low magnon relaxation rates in
several magnetic insulators. However, in considering non-
classical states of magnons, such as single-magnon [2,24],
squeezed [25–28], and cat states [20,29] (Fig. 1), a new time
scale emerges—the magnon dephasing time. This is because
nonclassical states are comprised by a nontrivial quantum
superposition of the various magnon number states [30].
This superposition is expected to be destroyed by dephasing
(Fig. 1) [31–33]. This time scale is the magnon equivalence of
the well-known T ∗

2 for qubits. Considering, for example, that
T ∗

2 of semiconductor-based spin qubits [34–36] is orders of
magnitude smaller than their relaxation time T1, we anticipate
that the magnon dephasing time will become the limiting
factor in the generation and usefulness of magnonic quantum
states. Understanding magnon dephasing time is thus critical
for progress in quantum magnonics [4].

In the context of magnon spin transport [37,38], the role of
various scattering processes that cause magnon relaxation has
been investigated in great detail [39–41]. The spin-conserving
nature of the exchange interaction—the strongest energy scale
in the magnet—reduces its relative importance for many of the

transport and relaxation phenomena [40,41]. To understand
dephasing, qualitatively different processes which leave the
magnon in its original state become important [33]. These
channels do not affect magnon relaxation or transport and
thus have been largely overlooked so far. A class of these
dephasing phenomena is mediated by the strong exchange
interaction, as we find here, giving them an important role.

In this Letter, we provide a derivation of the master equa-
tion for the density matrix describing the magnonic system
duly taking into account pure dephasing. We focus on two
microscopic mechanisms. First, the four-magnon processes
mediated by exchange interaction are shown to underlie
magnon dephasing caused by coupling all magnonic modes.
The resulting dephasing rate is found to scale quadratically
with temperature and exceeds the typical relaxation rate of
magnetic insulators at around 1 K. Second, we consider
the two-magnon-one-phonon processes due to spin-phonon
coupling. The dephasing rate due to this mechanism scales
linearly with temperature and is comparable to the relaxation
rate at a few kelvins. Our methodology based on master equa-
tion can be extended to address other dephasing mechanisms
relevant for near-future experiments.

Pure dephasing of a magnonic cat state. Before delving
into the master equation derivation and the dephasing rates,
as an example, we examine the effect of pure dephasing
on a magnonic cat state [20,29,42,43], schematically de-
picted in Fig. 1. This serves to bring out the quantum nature
of the dephasing process clearly. Dephasing is expected to
strongly influence the coherence of various quantum states
of magnons comprising nontrivial superpositions, including
antibunched magnons, squeezed states, and cat states. Here,
as an example, we examine how an odd-parity cat state
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FIG. 1. Schematic depiction of a magnonic cat state and loss
of its quantum superposition due to dephasing. The cat state has
a left-tilting magnetic moment state (alive cat) superposed with its
right-tilting state (dead cat). The magnetic moment thus points in
two directions at the same time, a possibility not allowed in classi-
cal magnetization dynamics. Dephasing results in the extinguishing
of such a quantum superposition and brings the system to one of
its classically permitted states, with the magnetic moment pointing
along a unique direction.

|ψ0〉 = (|β〉 − | − β〉)/
√

2 dephases, where |β〉 is a coherent
state of magnons with amplitude β, defined as â|β〉 = β|β〉
with â being the annihilation operator of a particular magnon
mode. To characterize the coherence of the state [44], we em-
ploy the unnormalized first-order coherence function g(1)(t ) =
〈â(t )â(0)〉. By numerically solving the master equation (5),
derived below, we find it decays monotonically with time
[see Fig. 2(a)]. On account of the pure magnon dephasing
considered here, the coherence of magnons (red line) is found
to gradually decay with time without any relaxation of the
magnon number (blue line). This decoherence process is also
observed in phase space as shown in Fig. 2(b). At time t = 0,
the Wigner function of the magnonic cat state shows a clear
two-blobs feature of quantum superposition between the two
coherent states, each representing the cat in a different state.
As the time goes by, the two distinct blobs merge into each
other resulting in a thermal state devoid of the quantum super-
position characteristic of the cat state.

Dephasing due to magnon-magnon interaction. We now
derive the master equation that describes the time evolution
of the magnon density matrix, starting from the microscopic
Hamiltonian for a Heisenberg ferromagnet. To this end, we
consider

Ĥ = −J
∑
〈i, j〉

Ŝi · Ŝ j − μ0geμBH
∑

i

Ŝiz, (1)

where J parametrizes the exchange interaction between neigh-
boring spins, Ŝi is the spin operator on the ith site with spin
number S, μ0 is the vacuum magnetic permeability, ge is the
Landé g factor, μB is the Bohr magneton, and H is an external
magnetic field oriented along the z axis. The ground state of
the system is a ferromagnetic state 〈Ŝi〉 = Sez. Employing the
Holstein-Primakoff (HP) transformation [45], the magnon ex-
citations are related to the spin raising and lowering operators

as S+
i =

√
2S − â†

i âiâi, S−
i = â†

i

√
2S − â†

i âi, Siz = S − â†
i âi,

where âi (â†
i ) is the magnon annihilation (creation) opera-

FIG. 2. Pure dephasing of a magnonic cat state. (a) The coher-
ence (red line) decreases with time while the magnon number (blue
line) remains constant. This shows that pure dephasing does not
cause relaxation of energy or magnon number, but it kills the quan-
tum coherence of a state. (b) Wigner distributions of the magnonic
state at ωrt = 0, 50, 100, 500, starting from an odd-parity cat state at
t = 0. The two separable blue blobs visible at time t = 0 represent
the macroscopically distinct alive and dead cat. At large times, the
blobs have merged into one annulus and the quantum superposition
of the cat state has been removed, resulting in a mixed state. Param-
eters are T = 1 K, μ0H = 1 T, γ /ωr = 0.002, and β = 2.

tor on the ith site which satisfies the commutation relation
[âi, â†

j ] = δi j and S±
i ≡ Six ± iSiy. Employing these relations,

the Hamiltonian (1) is written in Fourier space up to the fourth
order in the magnon ladder operators as

Ĥ =
∑

k

h̄ωkâ†
kâk +

∑
k,k′,q

C(k, k′, q)â†
k+qâ†

k′−qâk′ âk, (2)

where h̄ is the reduced Planck constant, h̄ωk = 2JS d2k2 +
μ0geμBH is the magnon dispersion, d is the lattice constant,
and C(k, k′, q) is the scattering amplitude that is proportional
to exchange coefficient J and depends on the structure factor
of lattice. Focusing on the dynamics of a specific mode with
the wave vector k0, we can simplify the four-magnon term in
(2) and rewrite the Hamiltonian as

Ĥ = h̄ωr â†â +
∑
k �=k0

h̄ωkâ†
kâk + â†â

∑
k �=k0

g(k)â†
kâk, (3)

where we have dropped the subscript k0 of â to keep
the notation simple, ωr ≡ ωk0 , and g(k) ≡ C(k0, k, q = 0) +
C(k, k0, q = k0 − k) is the coupling strength between mode
k0 and other magnon modes. To consider how the scattering
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of the k0 mode with other magnon modes influences the
dynamics of the k0 mode, we treat all the other magnons as
a bath [33].

The total magnonic system is Hermitian and the density
matrix thus satisfies the Schrödinger equation in the interac-
tion picture as dρ̃T /dt = −i/h̄[H̃int, ρ̃T ], where ρ̃T is the total
density matrix of the system, H̃int = â†â

∑
k �=k0

g(k)â†
kâk is

the interacting Hamiltonian, and the tilde decorates an oper-
ator in the interaction picture. The density matrix of the k0

mode is obtained by tracing all the other degrees of freedom,
i.e., ρ̃ = trR(ρ̃T ). Within the Born-Markov approximation,
the evolution of ρ̃ is written as [46]

dρ̃

dt
= − 1

h̄2

∫ t

0
dt ′trR([H̃int (t

′), [H̃int (t
′), ρ̃(t ) ⊗ R̃0]]), (4)

where R̃0 refers to the initial density matrix of the bath.
We notice that the characteristic relaxation/dephasing rate of
magnon mode k0 close to ferromagnetic resonance is much
smaller than that of the higher energy magnons in the bath,
and further the coupling strength g(k) as we evaluate below
is much smaller than the lowest magnon frequencies, both
of which minimize the memory effects of the bath and thus
validate the Born-Markov approximation. For large k modes,
non-Markovian effects are expected to be relevant and should
be investigated in the future. By substituting (3) into the
master equation above, after a tedious but straightforward cal-
culation, we obtain the dynamical equations for the magnon
mode of interest in the Schrödinger picture as

d ρ̂

dt
= i

h̄
[ρ̂, Ĥs] + γLn̂n̂(ρ̂), (5)

where ρ̂ is the density matrix describing the mode k0, Ĥs =
h̄ωr â†â, and the Liouville superoperator Ln̂n̂(ρ̂) ≡ 2n̂ρ̂n̂† −
n̂†n̂ρ̂ − ρ̂n̂†n̂ with n̂ = â†â. The parameter γ characterizes the
decoherence/dephasing rate and is given by

γ = 1

h̄

∫ ∞

0
dω D2(ω)|g(ω)|2nth[nth + 1], (6)

where nth = [exp(h̄ω/kBT ) − 1]−1 is the Bose-Einstein dis-
tribution, kB is Boltzmann constant, and D(ω) is the magnon
density of states.

Employing the master equation (5), we immediately see
that the average magnon number 〈n̂〉 = tr(ρ̂n̂) does not
change with time since it commutes with the Hamiltonian Ĥs,
i.e., there is no magnon number relaxation. On the other hand,
employing Eq. (5), the first moment 〈â〉 evolves as

d〈â〉
dt

= −i(ωr − iγ )〈â〉. (7)

The solution of this equation is 〈â(t )〉 =
〈â(0)〉 exp (−iωrt − γ t ), which implies that the coherence of
the system g(1)(t ) will be lost with a time scale of T ∗

2 = 1/γ

[see Fig. 2(a)]. Since this process is not accompanied by
magnon number relaxation [Fig. 2(a)], we call it a pure
magnon dephasing process.

An intuitive understanding of this magnon dephasing pro-
cess is achieved by contrasting it with pure dephasing in
a qubit [47]. According to Eq. (3), the scattering of mode
k0 with other magnons adds a random fluctuation ζ to the
eigenfrequency ωr , while the amplitude of the magnon mode

FIG. 3. (a) Magnon dephasing rate γ normalized by the mode
frequency ωr as a function of temperature. The solid and dashed
lines represent the results of full integration (6) and approximate
analytical formula (8), respectively. μ0H = 1 T. (b) Normalized
magnon dephasing rate as a function of the external magnetic field at
temperatures T = 0.3 K (red line), 0.7 K (blue line), and 1 K (black
line), respectively. The full integration of (6) is performed to evaluate
the dephasing rate. For a comparison, the uniform magnon mode
relaxation rate in yttrium iron garnet around 10−4ωr is plotted as a
horizontal dashed line.

is not changed. After a sufficiently long time, even though
the average frequency is still ωr , the phase fluctuations of the
magnon mode will vary with time as δϕ ∝ √

t according to
the central limit theorem. This is similar to the random walk
of a Brownian particle [48]. When the phase uncertainty δϕ

exceeds 2π , the magnon mode has dephased. Note that the
extrinsic sources of phase noise are studied using classical
coherent states in various resonators [49–51], which is dif-
ferent from the intrinsic dephasing taking a special role in the
magnonic system.

Let us now quantify the dephasing rate in typical
magnets. The density of states in Eq. (6) is D(ω) =
2πV/(2JSd2)3/2√h̄ω − μ0geμBH�(h̄ω − μ0geμBH ),
where the step function �(x) = 1 for x > 0 and 0 when
x < 0. The coupling coefficient g(ω) has a complex wave
vector dependence, especially when dipolar interaction is
included in the Hamiltonian [39,40,52]. The order of g(ω),
however, is J/N , where N is the number of spins in the
system. At low temperatures, the Bose-Einstein distribution
is approximated by nth(nth + 1) ≈ exp(−h̄ω/kBT ). With
these approximations, we analytically evaluate the integral in
Eq. (6) and obtain the dephasing rate

γ = (2πkBT )2

(2S)3h̄Jeμ0geμBH/kBT
. (8)

The dipolar interaction will modify the dephasing strength
as [1 + (4πμ0geμBMs)2/J2]γ with Ms being the saturation
magnetization. As long as the saturation field is much smaller
than the exchange field, the role of dipolar interaction may be
neglected.

Figure 3(a) plots the dephasing rate showing it to increase
with temperature using the parameters of yttrium iron garnet
(YIG) with J = 1.59 K and S = 14.2 [11]. This trend is well
reproduced by both the numerical integration of Eq. (6) and
our analytical formula (8). At higher temperatures (T > 2 K),
the analytical result deviates considerably from the full inte-
gral [Fig. 3(a)]. Figure 3(b) shows the decrease of the magnon
dephasing with the increase of external field. This is because
an external magnetic field enhances the precessional motion
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of the spins and makes the system more robust against the fre-
quency perturbations caused by coupling to the bath. A typical
value for the dephasing rate at T = 1 K, μ0H = 0.1 T eval-
uated as γ = 8.4 × 10−3ωr is much larger than the magnon
relaxation rate of ∼10−4ωr in the widely used YIG sphere.
Hence magnon dephasing is expected to play an important
role in the evolution and stability of magnonic quantum states,
even at low temperatures.

Dephasing via magnon-phonon interaction. Magnons can
also dephase due to their coupling with the phonon bath,
which exists in all materials. Assuming a cubic crystal, the
magnetoelastic interaction reads [11,53–55]

Ĥint = h̄
∑

r

∑
pq

[bpqŜp(r)Ŝq(r) + b′
pq∂pŜ(r) · ∂qŜ(r)]ε̂pq,

(9)

where p, q = x, y, z, the strain tensor ε̂pq is defined in terms
of the lattice displacements û as ε̂pq ≡ (∂qûp + ∂pûq)/2, and
bpq and b′

pq are the magnetoelastic coupling coefficients. As
a specific case, we consider pure dephasing of the uniform
magnon mode in a one-dimensional (1D) spin chain. By
considering the case that atoms significantly vibrate in one
dimension (z axis), the only nonvanishing term in Eq. (9) is
Ĥint = ∑

i bzzŜ2
iz ε̂zz. The atom displacement field is quantized

as ûz = ∑
k (2ρωkV/h̄)−1/2(b̂k + b̂†

k )eikz, where ρ and V are
respectively the mass density and volume of the magnet,
b̂k (b̂†

k ) is the annihilation (creation) operator of a phonon state
with wave number k and frequency ωk , and ωk = c|k| is the
dispersion of acoustic phonons with c being the longitudinal
phonon speed. By substituting the quantized form of magnons
and phonons into the interaction Hamiltonian Ĥint, we obtain

Ĥint = â†â
∑

k

g(ωk )(b̂k − b̂†
k ), (10)

where g(ωk ) = −2ih̄Sbzzk/
√

2ρωkV/h̄ is the frequency-
dependent coupling coefficient. Here we have released the
requirement of momentum conservation. This may be caused
by impurities, grain boundaries, and other inhomogeneities in
the system [56,57]. Finally, we obtain the total Hamiltonian as

Ĥ = h̄ωr â†â +
∑

k

h̄ωkb̂†
kb̂k + Ĥint. (11)

Following the same methodology as employed in treating
magnon-magnon interactions above, we arrive at the same
master equation (5), but now with the dephasing rate

γ ′ = 1

h̄2

∫ ∞

0
dω D(ω)|g(ω)|2(2nth + 1)δ(ω). (12)

In the one-dimensional case, the phonon density of states
D(ω) = 2V/(cd2) with d being the lattice constant, we ana-
lytically evaluate the integral as

γ ′ = 8(Sbzz )2kBT

ρd2c3
. (13)

The dephasing rate thus obtained depends linearly on the
temperature, which is different from the dephasing caused
by magnon-magnon interaction. This may help experiments
discriminate between the two dephasing channels considered
here. Similar to our considerations above, we interpret this
dephasing mechanism as due to the phase broadening caused

by a randomly fluctuating phonon-mediated contribution to
the magnon frequency. For YIG [11], bzz = 994 GHz, c =
7209 m/s, d = 1.2376 nm, ρ = 5172 kg/m3, and the de-
phasing rate at T = 1 K is evaluated as γ ′ = 6.7 × 10−5ωr for
μ0H = 0.1 T. This value is smaller than the contribution from
the exchange interaction, but it is still comparable to the re-
laxation rate of the uniform magnon mode in millimeter-sized
YIG spheres [58]. Note that the magnetoelastic anticrossing
near the frequency matching of magnons and phonons [59]
does not contribute significantly because of its small occupa-
tion of phase space.

Discussion and conclusion. We have studied pure de-
phasing channels of magnons through magnon-magnon and
magnon-phonon interactions, and identified their temperature
dependencies. The three-particle and four-particle interactions
considered in the two channels should be sufficiently gen-
eral to cover a large class of dephasing processes, where the
methodology presented here can be readily applied to other
situations. In realistic systems, additional mechanisms, such
as nuclear spin bath, multidomain structures, dimensional
resonances, and optical phonons, will make the dephasing
even more important. Our work paves the way to study such
mechanisms in the future.

A measurement of the magnon dephasing time requires
examining the decoherence of magnonic nonclassical states,
such as a single-magnon state. However, relaxation, on top of
pure dephasing, also contributes to the decoherence of a quan-
tum state [47,60], which indicates that the total decoherence
time T2 < T ∗

2 , T1, with T1 the relaxation time of magnons. We
outline a possible method for determining the pure magnon
dephasing rate when it is comparable to the relaxation rate.
First, we can calibrate the absorption linewidth of a magnetic
sphere by the technique of ferromagnetic resonance, through
which we deduce the relaxation time T1 = 2/(αωr ) with α

being the Gilbert damping of the system [60,61]. Then we
prepare a quantum state of magnons and detect its decoher-
ence time T2 by entangling the magnons with cavity photons
or qubits and preforming measurements on the cavity output
or qubits [2,4,20,29,62,63]. On the other hand, by combining
the influence of magnon relaxation and pure dephasing on
magnon coherence, we may derive the approximate relation
of T1, T2, T ∗

2 as [60]

1

T ∗
2

= 1

T2
− 1

T1
. (14)

This relation resembles the spin decoherence in nuclear spin
resonance [64] as well as considerations of qubits, and can
help us to extract the contribution of the pure dephasing rate.
Here the time scales of dephasing and relaxation are discussed
in quantum superposition dynamics, which is distinct from
classical magnetization dynamics [65].

In conclusion, we have shown that the processes conserv-
ing magnon number contribute to dephasing of magnonic
quantum states, while not affecting their relaxation. By ac-
counting for these processes in the density matrix dynamics,
we have demonstrated that they play an important role in
extinguishing quantum superpositions of magnonic nonclassi-
cal states. Our estimates of the dephasing rate resulting from
exchange and spin-phonon interactions show that they exceed
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the relaxation rate in the low temperature regime, and thus
performing quantum operations within the dephasing time of
magnons will be critical for information processing. Further,
it would be meaningful to study dephasing in antiferromag-
nets, and in particular its influence on the entanglement of
sublattice magnons, as well as magnon dephasing in ultrafast
processes before magnon relaxation prevails.
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