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Abstract
Presenting novices with examples and problems is an effective and efficient way to acquire 
new problem-solving skills. Nowadays, examples and problems are increasingly presented 
in computer-based learning environments, in which learners often have to self-regulate 
their learning (i.e., choose what type of task to work on and when). Yet, it is questionable 
how novices self-regulate their learning from examples and problems, and to what extent 
their choices match with effective principles from instructional design research. In this 
study, 147 higher education students had to learn how to solve problems on the trapezoidal 
rule. During self-regulated learning, they were free to select six tasks from a database of 
45 tasks that varied in task format (video examples, worked examples, practice problems), 
complexity level (level 1, 2, 3), and cover story. Almost all students started with (video) 
example study at the lowest complexity level. The number of examples selected gradually 
decreased and task complexity gradually increased during the learning phase. However, 
examples and lowest level tasks remained relatively popular throughout the entire learn-
ing phase. There was no relation between students’ total score on how well their behavior 
matched with the instructional design principles and learning outcomes, mental effort, and 
motivational variables.

Keywords Example-based learning · Self-regulated learning · Self-efficacy · Mental effort · 
Problem solving

 * Milou van Harsel 
 m.vanharsel@avans.nl

1 Learning and Innovation Centre, Avans University of Applied Sciences, PO Box 90116, 
4800 RA Breda, The Netherlands

2 Department of Education, Utrecht University, Utrecht, The Netherlands
3 Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, 

Rotterdam, The Netherlands

http://orcid.org/0000-0003-4883-7494
http://crossmark.crossref.org/dialog/?doi=10.1007/s11251-022-09589-2&domain=pdf


704 M. van Harsel et al.

1 3

Introduction

Problem solving is important in many curricula, especially in the domains of science, 
technology, engineering, and mathematics (STEM; Van Gog et  al., 2020). Most prob-
lems students encounter in (the initial years of) STEM curricula are well-defined (algo-
rithmic) problems, in which students have to learn to perform the procedure to get from 
an initial state to a described goal state (Newell & Simon, 1972). Problem solving is 
happening more and more in (online) computer-based learning environments in which 
different tasks are often embedded (e.g., Roll et  al., 2011), such as video modeling 
examples (i.e., a model demonstrating and possibly explaining the solution procedure 
step by step on video), worked examples (i.e., a written step-by-step explanation of a 
full and correct solution procedure of how to solve a problem), and practice problems 
that students have to try to solve themselves. A popular example of such an environment 
is Khan Academy (www. khana cademy. org), where students can decide for themselves 
which type of tasks to work on (i.e., examples or problems), for how long, and in which 
order.

When acquiring problem-solving skills in computer-based learning environments 
where little support or guidance is available, it is important that students can adequately 
self-regulate their learning from examples and problems. Although there are different 
theoretical models of self-regulated learning (see Panadero, 2017), these models all 
agree that self-regulated learning requires students to plan, monitor (i.e., track), and 
control their learning (e.g., Nelson & Narens, 1990; Winne & Hadwin, 1998; Zimmer-
man, 1990). Monitoring and control are very important factors in self-regulated learn-
ing, also of problem-solving skills, as research has shown that learners who accurately 
monitor and control their learning show higher learning outcomes (e.g., Kostons et al., 
2012). The processes of monitoring and control during self-regulated learning are illus-
trated by the model of Nelson and Narens (1990). In their model (see Fig. 1), an object 
level (the actual learning process) and a meta level (representation of the learning pro-
cess) are represented. The object-level informs the meta-level (i.e., monitoring), and in 
turn, the meta-level can change (i.e., control) the object-level. Translating this model to 
self-regulated learning of problem-solving tasks, it requires students to monitor their 
progress while performing the task they have selected during the planning phase and 
judge their performance after the task is completed (monitor), and to use this as input 
for deciding what subsequent task to work on (i.e., control; decide which task suits their 
learning needs best, e.g., De Bruin & Van Gog, 2012; Van Gog et al., 2020).

Fig. 1  The relation between 
monitoring and control (Nelson 
& Narens, 1990)

http://www.khanacademy.org
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However, little is known about how students regulate their learning of problem-solving 
tasks, that is, about when they choose examples or practice problems, and why (i.e., what 
reasons underlie their choices; e.g., Van Gog et al., 2019, 2020). Moreover, it is an open 
question how well students’ choices align with what we know to be effective, efficient, and 
motivating principles for acquiring new problem-solving skills from many years of instruc-
tional design research. Therefore, the present study addresses those questions.

Learning from examples and problems at different complexity levels

Instructional design research has uncovered several principles on how to optimize the 
acquisition of new problem-solving skills for novices (i.e., students with little, if any, prior 
knowledge). These principles are concerned with how to ensure that novices work on tasks 
that provide an optimal level of instructional support and complexity given their current 
level of knowledge (4C/ID Model; Van Merriënboer, 1997; Van Merriënboer & Kirschner, 
2013). With regard to instructional support, the worked examples principle (Renkl, 2014; 
Sweller et al., 2011; Van Gog et al., 2019) states that for novices studying several examples 
(possibly alternated with solving practice problems) leads to better test performance (i.e., 
is more effective) attained with less time and/or effort investment (i.e., is more efficient) 
than practice problem solving only. Since this applies not only to worked examples (i.e., 
a written step-by-step explanation of how to solve a problem) but also to video modeling 
examples (i.e., a person demonstrating and/or explaining a problem-solving procedure on 
video), we call this the example-based-learning-principle.

A second robust finding is the example-first-principle, which says that novice learners 
should not only study several examples while learning, but also start the learning phase 
with an example instead of practice problem solving, because research has consistently 
shown that sequences of example study only or example-problem pairs –but not problem-
example pairs– are more effective and efficient for learning than solving practice problems 
only (e.g., Kant, et al., 2017; Van Gog et al., 2011; Van Harsel et al., 2020). Recent stud-
ies have also shown that example study only, or example study alternated with problem 
solving, is also more beneficial for motivational aspects of learning (i.e., self-efficacy and 
perceived competence) than problem solving only (e.g., Coppens et  al., 2019; Van Har-
sel et al., 2019, 2020). We must note, though, that learners do not need the instructional 
support provided by examples anymore when their knowledge increases. From that point 
onwards, they learn more from solving problems than from example study (i.e., the exper-
tise reversal effect; Kalyuga et al., 2003).

Finally, problem-solving tasks that are presented in school curricula (either via online 
computer-based environments or in textbooks/workbooks) often span multiple complexity 
levels. Task complexity is determined by the number of elements in a learning task and the 
interaction between those elements (e.g., Sweller & Chandler, 1994). Simple learning tasks 
consist of a few information elements and a small number of interactions between elements 
that need to be processed simultaneously in working memory. With increasing numbers 
of information elements and interactions between elements, task complexity (and working 
memory load) increases (e.g., Pollock et al., 2002; Van Zundert et al., 2012).

When tasks span multiple complexity levels, learners should not only be working on 
tasks that provide optimal support given their current level of knowledge, but also on tasks 
that are at an optimal level of complexity (see the 4C/ID model; Van Merriënboer, 1997; 
Van Merriënboer & Kirschner, 2013), as learning outcomes and motivation might suffer 
when tasks are too complex (Van Merriënboer et al., 2003). Therefore, novices should start 
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with a task at the lowest complexity level (i.e., lowest-level-first-principle) and build up 
tasks in such way that the level of complexity gradually increases (i.e., simple-to-complex-
principle). When the choice is made to move up a complexity level, learners often need 
instructional support again (cf. 4C/ID model). Therefore, it becomes important to start each 
new complexity level with example study (i.e., start-each-level-with-example-principle).

Self‑regulated learning from examples and problems

These instructional design principles provide clear guidelines on what works best when 
learning from examples and problems at different complexity levels. However, the question 
is whether students would spontaneously apply these principles when selecting examples 
and problems at different complexity levels during self-regulated learning in a computer-
based learning environment. As mentioned earlier, for effective self-regulated learning of 
problem-solving tasks, students need to be able to self-assess their performance on a task 
just completed and then select a next task with the right level of support and complexity 
(e.g., De Bruin & Van Gog, 2012). There are, however, both empirical and theoretical rea-
sons to believe that learners will engage in suboptimal task selection when they are left to 
their own devices (e.g., Azevedo et al., 2008; Niemiec et al., 1996).

Firstly, self-regulated learning research has shown that learners’ estimation of their own 
task performance (or knowledge) is often not in line with their actual performance (e.g., 
Bjork, 1994, 1999; Kostons et al., 2010, 2012; Rawson & Dunlosky, 2007), particularly for 
novices (e.g., Dunning et al., 2004; Koriat & Bjork, 2005). Inaccurate self-assessments are 
a major problem when learners are in control of task selection, because for learning to be 
effective and efficient, learners need to select a task at an optimal level of instructional sup-
port and complexity given their current level of performance. Novices who overestimate 
their performance might select a task that is too complex and/or does not provide the nec-
essary instructional support, while those who underestimate their performance might select 
a task that is too easy (e.g., Dunlosky & Rawson, 2012). As a result, learners will end up 
working on tasks that are not aligned with their learning needs, which might negatively 
affect their performance on domain specific knowledge or skills and motivation.

Secondly, research has shown that novices often experience difficulties discerning which 
task aspects are relevant for learning when selecting their own learning tasks (e.g., Quilici 
& Mayer, 2002), probably because they lack domain knowledge and/or task-selection skills 
(i.e., knowing about relevant task-selection aspects and combining this with characteristics 
of available learning tasks; e.g., Van Merriënboer et al., 2006). As a consequence, novices 
might select tasks based on surface features used to exemplify the problem-solving proce-
dure (e.g., cover story) rather than structural features that are (more) relevant for learning 
(e.g., the level of complexity and instructional support; Corbalan et al., 2008).

A recent study conducted by Foster et al. (2018) provided some evidence for the idea 
that learners also show suboptimal behavior when they can select their own task format 
in the form of examples and practice problems. In their study, university students (nov-
ices) learned how to solve probability calculation problems in an (online) computer-based 
learning environment. Students received 12 (Experiment 1) or 24 (Experiment 2 and 3) 
probability problems and could decide whether they wanted to study it in the form of a 
worked example or a practice problem or opt for completion problems (Experiment 2 and 
3), which are partially worked-out examples that provide a medium level of support but 
require learners to complete some steps themselves (e.g., Paas, 1992; Renkl & Atkinson, 
2003; Van Merriënboer et al., 2002). One would expect that novices learn most when they 
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select more examples than problems and start the learning phase with a worked example 
rather than a (completion) problem. However, results of all experiments showed that prob-
lems were selected more frequently on average than examples (at odds with the example-
based-learning-principle), and that students rarely chose a worked example as a first task.

In sum, little research has been conducted on how learners regulate their learning from 
examples and problems (at different complexity levels) and how well their selection behav-
ior matches with evidence-based principles from instructional design research. The few 
studies available, suggest that learners’ task-selection behavior does not align with these 
principles (Foster et al., 2018). It is important to get more insight in what learners do (and 
why) when they can determine themselves how to learn new problem-solving skills and 
to what extent there decisions align with principles that are effective for learning, as self-
regulated learning of problem-solving skills in computer based learning environments 
is becoming more common. Having this information can help teachers and instructional 
designers to determine whether and what instructional support or advice novices might 
need to optimally self-regulate their learning from examples and practice problems (at dif-
ferent complexity levels).

The present study

This study investigated how higher education students (novices on the to-be-learned topic) 
regulate their learning in a computer-based learning environment when they select their 
own learning tasks from a task database comprising video modeling examples, worked 
examples, and practice problems of varying levels of complexity and with different cover 
stories. We decided to provide the option of worked examples and video modeling exam-
ples because both are widely used in computer-based learning environments, yet it is 
largely unclear which example types students prefer (at which phase in the learning pro-
cess). For example, Hoogerheide et  al. (2014) compared the effects of worked examples 
to video modeling examples with two samples of secondary education students. Although 
they found no differences between the two example formats on cognitive (i.e., test per-
formance, mental effort) and motivational aspects of learning (i.e., self-efficacy, perceived 
competence), there was an effect on the degree to which students preferred to receive 
instruction in a similar manner in the future. When only one example was studied (Experi-
ment 2), the video modeling example condition gave a higher preference rating (at least 
numerically; p = .07), but when two examples were studied (Experiment 1), the worked 
example condition gave a higher preference rating (p = .03).

These findings might suggest that students would prefer video modeling examples at the 
beginning of a learning phase and worked examples later in the training phase. A possible 
explanation for why students would prefer to start with a video modeling example instead 
of a worked example could be that in video modeling examples, information is demon-
strated in a step-by-step manner and that the combination of dynamic visual information 
and the model’s narration take the learner by the hand. Worked examples can be over-
whelming because all the information is presented simultaneously, and it might be easy 
to ignore written text. However, because all the information is presented simultaneously, 
worked examples do allow for efficiently looking up difficult problem-solving steps more 
easily than video modeling examples (in which the information is presented in succession).

This study had three research questions. First, it was explored what tasks techni-
cal higher education students select and why, when learning from examples and prob-
lems at different complexity levels? Second, it was explored to what extent students’ task 
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selections match with instructional design principles derived from research on optimizing 
the acquisition of new problem-solving skills for novices. Given the paucity of research on 
what learners do when they are in charge of learning a new problem-solving skill with the 
help of (different) examples and problems at different complexity levels, we refrain from 
formulating explicit hypotheses and consider this study as exploratory in nature. Third, 
we investigated whether there is a positive relation between the extent to which students 
choices match with the instructional design principles and their scores on learning out-
comes, mental effort, and motivational variables. Given how much evidence there is for 
the instructional design principles, one would expect a positive relationship between the 
extent to which learners’ choices match with these principles and scores on learning out-
comes (i.e., isomorphic tasks, procedural transfer task, and conceptual questions) and moti-
vational aspects of learning (i.e., self-efficacy, perceived competence, and topic interest), 
and a negative relationship with mental effort during the learning phase.

Method

Participants and design

Participants were 180 Dutch higher education students enrolled in the first year of an 
electrical and electronic mechanical engineering program (Mage = 19.00, SD = 1.64; 169 
male, 11 female). All participants were assigned to a computer-based learning environ-
ment in which they had to learn a mathematical problem that required them to approxi-
mate the region under a graph using the trapezoidal rule. The trapezoidal rule is an integra-
tion method that can be used to approximate the area under a curve by dividing that area 
into trapezoids or “strips” (rather than using rectangles). By adding up the surface of the 
"strips", one can approach the total area under that curve (for more information, see https:// 
en. wikip edia. org/ wiki/ Trape zoidal_ rule). The environment consisted of three phases: (1) 
pretest, (2) self-regulated learning phase, (3) and posttest. We excluded 10 participants 
who did not finish the isomorphic (and transfer) items on the posttest on time, and seven 
participants of whom (part of the) learning phase data was missing due to a programming 
error. Because we were interested in the task-selection behavior of novice learners, we also 
excluded 16 participants who had too much prior knowledge, indicated by a score of 5 or 
more (out of 10) on the prior knowledge test. Therefore, the final sample consisted of 147 
participants (Mage = 18.90, SD = 1.64; 139 male, 8 female). Participants gave their informed 
consent in the learning environment. The experiments were scheduled as regular math 
classes, because integration is one of the math topics in the curriculum of first year electri-
cal and electronic mechanical engineering students and therefore the trapezoidal rule was 
of direct use to these students in their study programs. However, attendance was optional. 
Students who did attend received study credits. Moreover, students’ participation in the 
study was voluntary, so they could opt out of having their data used for research purposes.

Materials

The materials were based on the materials developed by Van Harsel et al. (2019, 2020) and 
presented in a web-based learning environment.

https://en.wikipedia.org/wiki/Trapezoidal_rule
https://en.wikipedia.org/wiki/Trapezoidal_rule
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Learning tasks

The task database contained 45 learning tasks. These tasks varied in complexity level, task 
format, and cover story (for an overview, see Fig. 2).

Complexity level Tasks could be selected at three levels of complexity. Level 1 tasks 
required participants to use the trapezoidal rule in problems that always contained a poly-
nomial degree of 2 (i.e., quadratic function). These problems also required participants to 
calculate more than two intervals and calculate with fractions and positive numbers only. 
Level 2 tasks were more complex than Level 1 tasks, because participants were asked to 
calculate with negative numbers. The negative number changes the relation between infor-
mation elements. That is, calculating with negative numbers requires students to take into 
account an additional rule (i.e., relation between elements) compared to calculating with 
positive numbers (i.e., subtracting a negative number from a positive number, turns the two 
signs into a plus sign; 5 − 7 = 12). Moreover, in more complex calculations with negative 
numbers (i.e., large functions using brackets, exponents, different arithmetic operations), the 
order of the arithmetic operations is important. Level 3 tasks were, in turn, more complex 
than Level 2 tasks, because students had to calculate with a cubic polynomial (i.e., cubic 
function) instead of a quadratic polynomial. A cubic polynomial has a term more than a 
quadratic polynomial, which increases the number of information elements and relations 
students have to calculate with.

Task format Within each complexity level, participants could choose from three task for-
mats, namely, video modeling examples, worked examples, and conventional practice prob-
lems (see Fig. 2). Each video modeling example displayed a computer screen recording of 
a female model who demonstrated (with handwritten notes) and verbally explained how to 
solve a mathematical problem step-by-step, using the trapezoidal rule. The screen record-
ing started with a brief introduction on the trapezoidal rule and an explanation of a specific 
problem state. Subsequently, the model explained how to interpret the information that was 
given to solve the problem (i.e., the graph of a function, the left border and right border of 
the area, the number of intervals, and the formula of the trapezoidal rule). Finally, she dem-
onstrated and explained how to solve the problem by undergoing four steps: (1) ‘compute 
the step size of each subinterval’, (2) ‘calculate the x-values’, (3) ‘calculate the function 
values for all x-values’, and 4) ‘enter the function values into the formula and calculate the 

Fig. 2  Screenshot of the task database
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area’. The written information on previously completed steps remained visible on the screen 
while the model worked on and explained the next step.

Each worked example was presented on one page. The worked examples also started 
with a short description of the problem state and participants received some additional 
information that was needed to solve the problem (i.e., the graph of a function, the left bor-
der and right border of the area, the number of intervals, and the formula of the trapezoidal 
rule). This was followed by the written out solution procedure that showed students how 
to solve each step of the problem (the problem state, additional information, and written 
explanations and correct answers on all steps were simultaneously visible on the screen).

The practice problems were presented on one page and consisted of the problem state 
and some additional information on how to solve the problem (i.e., the graph of a function, 
the left border and right border of the area, the number of intervals, and the formula of the 
trapezoidal rule), with by the following assignment: “Approach the area under the graph 
using the information that is given. Write down all your intermediate steps and calcula-
tions”. Participants did not receive any feedback on their answers. A screenshot of a prac-
tice problem, video modeling example, and worked example are given in online Appendix 
A, B, and C.

Cover story In addition to selecting a complexity level and instructional format, students 
could also choose their own cover story. At each complexity level, participants could choose 
between five different cover stories (see Fig. 2). For example, they could approximate how 
many liters of beer is tapped within a certain amount of time (i.e., drinking beer) or approxi-
mate how often the circular platform of a carousel rotates in a given period of time (i.e., 
carousel). The cover stories were similar for each task format that was provided within a 
complexity level (e.g., drinking beer could be selected as video modeling example, worked 
example, and practice problem), yet the numbers used differed per task format.

Dependent variables

Test tasks

The pretest was a conceptual prior knowledge test that consisted of five questions (i.e., 
multiple choice questions with explanation part) that aimed to measure participants’ under-
standing of the trapezoidal rule. Cronbach’s alpha in the current sample was 0.33. Each 
multiple-choice question had four answer options (i.e., a, b, c, and d) and an ‘explanation’ 
part where participants had to explain their answer. The posttest consisted of five tasks. 
The first three tasks were isomorphic to the tasks in the self-regulated learning phase (i.e., 
a level 1, 2, and 3 task). Cronbach’s alpha in the current sample was 0.74. The fourth task 
was a procedural transfer task that required participants to use the Simpson rule (instead 
of the trapezoidal rule) to approximate the definite integral under a graph. Simpson’s rule 
is also a numerical integration method to approximate the integral of a function. Although 
both procedures look almost similar, Simpsons’ rule uses quadratic polynomials (instead 
of the straight line segments). The fifth task consisted of five open-ended conceptual ques-
tions that aimed to measure participants’ understanding of the trapezoidal rule, and these 
were isomorphic to the questions in the pretest. Cronbach’s alpha in the current sample was 
0.44. An example of a conceptual pretest item, an isomorphic posttest task, a procedural 
transfer task, and a conceptual posttest item is shown in Online Appendix D.
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Mental effort

Participants rated their mental effort on a 9-point mental effort rating scale (Paas, 1992), 
with answer options ranging from (1) “very, very low mental effort” to (9) “very, very high 
mental effort”. Mental effort was rated after each task in the self-regulated learning phase 
and the posttest phase, except for the five conceptual posttest questions (where it was rated 
only once after the last question).

Self‑efficacy

After the pretest, during the self-regulated learning phase (i.e., after each learning task), 
and before the posttest, participants were asked to rate to what extent they were confident 
that they could approximate the definite integral of a graph using the trapezoidal rule. A 
9-point rating scale was used, ranging from (1) “very, very unconfident” to (9) “very, very 
confident” (Van Harsel et al., 2020; adapted from Hoogerheide et al., 2016).

Perceived competence

Perceived competence was measured using the Perceived Competence Scale for Learning 
(Van Harsel et al., 2019, 2020; based on Williams & Deci, 1996; Williams et al., 1998). 
This perceived competence scale consisted of three items: “I feel confident in my ability to 
learn how to approximate the definite integral of a graph using the trapezoidal rule”, “I am 
capable of approximating the definite integral of a graph using the trapezoidal rule”, and 
“I feel able to meet the challenge of performing well when I have to apply the trapezoidal 
rule”. Participants were asked to rate on a scale of (1) “not at all true” to (7) “very true” to 
what degree these three items applied to them. Cronbach’s alpha in the current sample was 
0.93.

Topic interest

Finally, participants’ interest in the topic was measured with a topic interest scale, com-
prised of seven items (Van Harsel et  al., 2020; adapted from the topic interest scale by 
Mason et al., 2008, and the perceived interest scale by Schraw et al., 1995). Participants 
were asked to rate to what degree each of the items applied to them on a 7-point scale (1: 
totally disagree, to 7: totally agree). Cronbach’s alpha in the current sample was 0.82. All 
items are shown in online Appendix E.

Task‑selection questionnaire

To shed light on why participants selected the learning tasks that they did, we developed 
a questionnaire. This questionnaire consisted of five questions, each with a multiple-
choice (mc) and open-answer part, namely: (1) What was the format of the first task you 
chose (mc: video modeling example, worked example, practice problem) and why (open 
answer)?, (2) What was the level of complexity of the first task (mc: level 1, level 2, level 
3) and why (open answer)?, (3) What was the format of the second task you chose (mc: 
video modeling example, worked example, practice problem) and why (open answer)?”, 
(4) What was the level of complexity of the second task and why (open answer)?, and (5) 
Which task format did you choose most often and why (open answer)?
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Procedure

The study was run in sixteen sessions with 7 to 28 participants per session. The sessions 
lasted 116 min on average and took place in a computer classroom at participants’ higher 
education institute. Each participant received a headset, pen, and scrap paper to write down 
their calculations. The session started with the experimenter explaining the aim and proce-
dure of the study. Participants were told that they were going to learn a mathematical task 
in the learning environment by selecting their own learning tasks. Participants were also 
instructed that they could work at their own pace (with a maximum of 135 min). Moreover, 
they received the instructions to write down as much as possible and to write an “X” if they 
really did not know what to answer.

After the instructions, participants entered the learning environment. In the environ-
ment, tasks and questionnaires were presented on a separate page, and participants were 
unable to go back to the previous pages or to look forward to the next page before com-
pleting the current task or questionnaire. Time was logged for each task. Participants were 
first presented with, in order, a short demographic questionnaire (e.g., age, gender, and 
prior education), the pretest, and the self-efficacy, perceived competence, and topic interest 
questionnaire. Then, participants entered the self-regulated learning phase. To ensure that 
participants had some knowledge of the task database and how to select their own tasks, 
they first received an explanation of the task database. A picture of the task database was 
presented on the screen. Participants were instructed to select six learning tasks of their 
own choice from a task database containing 45 tasks that differed in format (video mod-
eling examples, worked examples, and practice problems), complexity level (level 1, 2, and 
3) and cover story. They were also told that each task could only be selected once, and that 
there was a maximum of 10 min to watch, study, or solve each task.

After the self-regulated learning phase, participants completed the self-efficacy, per-
ceived competence, and topic interest questionnaires again. Participants were instructed to 
turn their scrap paper upside down and given a new scrap paper to use during the posttest. 
After each task on the posttest, participants rated their mental effort. Lastly, participants 
completed the task-selection questionnaire.

Data analysis

What tasks do technical higher education’s students select and why?

To shed light on participants’ task-selection behavior, we counted the task format (video 
modeling example, worked example, practice problem) and complexity level (1, 2, or 3) 
of the six learning tasks each participant had selected and converted these scores into per-
centages. Then, we counted the task formats and complexity levels participants said they 
selected on the first and second learning task, and the task format participants said they 
selected most often during the entire learning phase. We used Chi-Square Tests to analyze 
whether there was a significant relation between task format or complexity level and the 
order of the learning tasks.

To evaluate participants’ answers on the task-selection questionnaire, we coded their 
explanations (open coding) and grouped these codes into categories (axial coding). Two 
coders scored about 20% of the data and the interrater reliability of their scores was 
assessed by calculating Cohen’s Kappa (Cohen, 1960). A Kappa value of 0 would mean no 
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agreement, values between 0.01 and 0.20 slight agreement, values between 0.21 and 0.40 
fair agreement, values between 0.41 and 0.60 moderate agreement, values between 0.61 
and 0.80 substantial agreement, and values between 0.81 and 1.00 almost perfect agree-
ment (Landis & Koch, 1977). The agreement between the coders was moderate to almost 
perfect: Cohen’s Kappa was 0.65 for question 1, 0.82 for question 2, 0.59 for question 3, 
0.84 for question 4, and 0.95 for question 5.

How do novices’ task selections match with instructional design principles?

We scored for each participant whether their task-selection behavior matched with the 
instructional design principles (i.e., example-based-learning-principle, example-first-prin-
ciple, simple-to-complex-principle, lowest-level-first-principle, and start-each-complex-
ity-with-example-principle). For each of these principles, participants could earn 1 point 
in total. More specifically, for the example-based-learning-principle, simple-to-complex-
principle, and start-each-complexity-with-example-principle, 1 point was awarded when 
students’ choices matched the principle entirely, 0.5 points when their choices matched 
the principle only partially, and 0 points when their choices did not match the principle 
at all. For the example-first-principle and lowest-level-first-principle, 1 point was awarded 
when students’ choices matched the principle entirely and 0 points when their choices did 
not meet the principle at all. For each participant, a total score was computed (maximum: 
5 points). For an extended version of the scoring protocol and an example, see Online 
Appendix F. Two coders scored about 20% of the data and the interrater reliability of their 
scores was assessed by calculating a two-way mixed, consistency, single-measures intra-
class correlation (ICC; McGraw & Wong, 1996). According to Cicchetti (1994), ICC val-
ues that are below 0.40 are classified as poor, values between 0.40 and 0.59 are classified 
as fair, values between 0.60 and 0.74 are classified as good, and values between 0.75 and 
1.0 are classified as excellent. With a score of 0.96, the ICC was in the good and excellent 
range for the principles.

Is there a positive relation between the extent to which students choices match 
with the instructional design principles and their scores on learning outcomes, mental 
effort, and motivational variables?

Lastly, we explored the extent to which students choices match with the instructional 
design principles correlated with cognitive (i.e., performance on the isomorphic posttest 
tasks, procedural transfer task, and conceptual questions, and mental effort) or motivational 
aspects of learning (i.e., self-efficacy, perceived competence, and topic interest).

We computed averages for the perceived competence and topic interest measurements 
before and after the learning phase, as well as for the reported effort invested in the learn-
ing tasks and the isomorphic posttest tasks. Test performance was scored by the first author 
and the third author based on a scoring protocol that was developed in collaboration with 
higher education mathematics teachers by Van Harsel et al. (2019). On the conceptual pre-
test and conceptual posttest items, participants could earn a maximum of 9 points. One 
point could be earned for the first open-ended question (1 point for the correct answer, 
0 points for an incorrect answer) and 2 points for the other open-ended questions. Par-
ticipants were rewarded with the maximum of 2 points when they got the answer right and 
provided correct explanations. Only 1 point was awarded if the answer was correct, but 
the explanation was incorrect or missing, and 0 points were given when both the answer 
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and explanation were incorrect. On the isomorphic posttest items, a maximum of 8 points 
could be earned for each task (i.e., three tasks, max. score = 24 points), with 2 points for 
calculating each step correctly: (1) the step size of each subinterval, (2) all x-values, (3) 
the function values for all x-values, and (4) using the correct formula for the area under the 
graph and providing the correct answer. In step two, three, and four, one point was granted 
if half or more of the solution steps were correct and zero points were granted if less than 
half of the solution steps were correct. The same scoring standard was used to score the 
procedural transfer task (i.e., max. score = 8 points). Again, two coders scored about 20% 
of the data and the interrater reliability of their scores was assessed by calculating a two-
way mixed, consistency, single-measures intra-class correlation (ICC; McGraw & Wong, 
1996). According to Cicchetti (1994), all our ICCs were all in the excellent range, with a 
score of 0.77 for the conceptual pretest tasks, 0.95 for the conceptual posttest tasks, 0.99 
for the isomorphic posttest tasks, and 0.91 for the procedural transfer task.

Results

To answer our research questions on what tasks students selected and why (i.e., question 
1) and how well their behavior matched with evidence-based principles from instructional 
design research (i.e., question 2), we report descriptive statistics. Regarding the correla-
tional analyses (i.e., question 3), the effect size of Pearson r correlation is reported with 
values of 0.10, 0.30, and 0.50 representing a small, medium, and large effect size, respec-
tively (Cohen, 1988). We must note, though, that we used an uncorrected significance level 
(p < .05) for the correlational analyses reported in this paper and that significant findings 
should be regarded with caution as we could not control the false-positive rate in the pre-
sent study.

What tasks do technical higher education’s students select and why?

Participants’ task-selection behavior during the learning phase was explored. The percent-
ages of selected formats are presented in Fig. 3, and the percentages of selected complexity 
levels in Fig. 4. The results of the Chi-Squared Tests are presented in the text.

Fig. 3  Percentages of selected examples and problems in the self-regulated learning phase
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Examples and problems

On average, participants selected more examples to study (64.3%) than practice problems 
to solve (35.7%). The large majority of participants started the learning phase with an 
example instead of a practice problem. However, there was a strong decrease in the number 
examples selected from task 1 to task 2, and a strong increase in the selection of practice 
problems. Surprisingly, example study remained the preferred task format on task 2, 3, 4, 
and 5 (55% or higher). Only on the last learning task (i.e., task 6) did more participants 
select a practice problem than an example. Chi-Squared Tests revealed that the propor-
tion selected examples depends on the order of the tasks, χ2 (5) = 92.48, p < .001. This 
suggests that students selected fewer examples (and more problems) as the learning phase 
progressed.

Example format

Results showed that participants, on average, selected more video modeling examples 
(36.9%) than worked examples (25.8%) during the learning phase. The majority of the 
participants selected a video example as the first learning task. However, the percentage 
of selected video modeling examples dropped considerably on the second learning task. 
This percentage remained relatively stable up to and including the fifth learning task, but 
decreased further on the last learning task. The percentage of selected worked examples 
increased from the first to the second learning task and stayed relatively constant during the 
rest of the learning phase. Chi-Squared Tests revealed that the proportion selected video 
modeling examples depends on the order of the tasks χ2 (5) = 52.48, p < .001, meaning 
that students selected fewer video modeling examples (and more worked examples) as the 
learning phase progressed.

Complexity level

The results showed that the many participants started the learning phase with a task at the 
lowest complexity level. The complexity of the selected tasks seemed to increase as the 

Fig. 4  Percentages of selected complexity levels in the self-regulated learning phase
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learning phase progressed. That is, the percentage of level 1 tasks was highest on the first 
and second learning task, but declined from the third learning task onwards. The percent-
age of selected level 2 learning tasks, on the other hand, was relatively low on the first and 
second learning task, was highest on the third and fourth learning task and declined again 
on the fifth and sixth learning task. Level 3 tasks were selected seldomly during the first 
half of the learning phase, and were selected most often on the last two learning tasks. 
Surprisingly, results also showed that during the second half of the learning phase (i.e., 
learning task 4, 5, and 6), almost one third of the total sample still selected tasks at the low-
est complexity level. Chi-Squared Tests revealed that the proportion selected lowest level 
tasks (i.e., level 1) depends on the order of the tasks χ2 (10) = 285.92, p < .001, suggesting 
that students selected fewer level 1 tasks (and more level 2 or level 3 tasks) as the learning 
phase progressed.

Reasons for task selections

We also analyzed participants’ answers to the questions that asked them which tasks they 
selected and why. As shown in Tables 1 and 2, participants reported that they predomi-
nantly started the learning phase with a video modeling example, because this format was 
most comfortable for them or provided the most support. The reason why it was common 
to start with tasks of the lowest complexity level is that participants believed that this could 
help them build up their level of expertise or that this suited their current level of expertise. 
Note that these were also the most common reasons why participants chose the lowest com-
plexity level as a second learning task. Regarding the format of the second learning task, 
participants selected practice problems most often, followed by worked examples. They 
mentioned that these formats helped them to assess their level of expertise or provided the 
most support (this reason was especially mentioned by those who selected worked exam-
ples). Finally, video modeling examples (followed by practice problems) were preferred 
most on average during the learning phase. Student often said it was the most comfort-
able way of learning (especially for video modeling examples because this format was 
most familiar, suited their learning preference, was most clear, etc.) or said they learned 
most from these format (especially for practice problems because participants felt practice 
helped them master the procedure). Note that participants’ memory regarding what format 
and level they selected for the first task matched their actual choice, but for the second task 
participants only correctly remembered the task format and not the complexity level.

Do novices’ task selections match with the instructional design principles?

Thirdly, we analyzed how well students’ behavior matched the principles known to be 
effective and efficient based on instructional design research. Results showed that students’ 
choices matched with many of the principles when selecting their own learning tasks. As 
shown in Table 4, the majority of the students (80.9%) had a total score of 4 or higher (out 
of 5), which means that their choices matched with (almost all of) the principles. When 
exploring how well participants’ task selections matched with the individual principles 
(see Table 3), results showed that most of participants’ choices matched with the example-
based-learning-principle, example-first-principle, and lowest-level-first-principle. Moreo-
ver, the majority of the students started each complexity level with an example and another 
21.1% did this only partially. Finally, only half of participants’ choices aligned with the 
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simple-to-complex-principle entirely, and more than a quarter of participants’ choices 
aligned with this principle only partially (Table 4).

Is there a positive relation between the extent to which students choices match 
with the instructional design principles and their scores on learning outcomes, 
mental effort, and motivational variables?

Participants’ scores on the cognitive and motivational aspects of learning are presented 
in Table 5. We explored how whether the degree of spontaneously applying the instruc-
tional design principles correlated with cognitive or motivational aspects of learning. 

Table 2  Students’ answers to the open questions regarding the selection of complexity levels in the self-
regulated learning phase

What was the level of the 
first task you chose and 
why?

What was the level of the 
second task you chose and 
why?

Complexity level
 Level 1 87.1% 57.1%
 Level 2 9.5% 30.7%
 Level 3 2.7% 10.2%
 No answer 0.7% 2.0%

Reason
 This way of learning is (most) comfortable – –
 This way of learning is (most) effective – –
 This way of learning is (most) supportive 0.7% 1.4%
 This way, I can assess my level of expertise 9.5% 18.4%
 This way, I can build up the level of complex-

ity
33.3% 21.7%

 It fits my current level of expertise 35.4% 21.8%
 It fits the order in the task database 1.4% 2.7%
 Unclear reason 4.7% 12.2%
 No reason 15.0% 21.8%

Table 3  Percentages of principles from example-based learning research applied in the self-regulated learn-
ing phase

X = not a scoring option for this principle

Total sample

Fully (%) Partially Not at all (%)

Example-based learning principle 89.8 9.5% 0.7
Example first principle 95.9 X 4.1
Lowest level first principle 88.4 X 11.6
Simple-to-complex principle 49.0 26.5% 24.5
Start each level with example principle 76.9 21.1% 2.0
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As shown in Table 6, total scores of how well students task selections matched with 
the principles did not correlate with any of the cognitive or motivational variables. 
However, some of the individual principles did correlate with some of the cognitive 
or motivational variables. Firstly, there was a positive relation between spontaneously 
applying the example-first-principle and average scores on self-efficacy in the learning 
phase (r = .183). Secondly, spontaneously applying the lowest-level-first-principle neg-
atively correlated with average scores of self-efficacy in the learning phase (r = − .257) 
and self-efficacy (r = − .268) and perceived competence (r = − .219) after the learning 
phase. The − lowest-level-first-principle also negatively correlated with the scores on 
the procedural transfer task (r = − .235). A positive correlation was shown, however, 
between the lowest-level-first-principle and average ratings of mental effort invested in 
the conceptual questions in the posttest (r = .232). Finally, spontaneously applying the 
simple-to-complex-principle positively correlated with average scores of mental effort 
invested in the learning (r = − .180) and isomorphic posttest tasks (r = − .183). We 
must note, though, that the strength of these correlations can be referred to as small 
(because the absolute values of r are below .30; Cohen, 1988) and that significant find-
ings should be regarded with caution as we could not control the false-positive rate in 
the present study.

Table 5  Mean (M), standard 
deviation (SD), and median 
(Med) of conceptual questions 
(range 0 to 9), isomorphic tasks 
(range 0 to 24), procedural 
transfer task (range 0 to 8), 
mental effort (range 1 to 9), self-
efficacy (range 1 to 9), perceived 
competence (range 1 to 7), and 
topic interest (range 1 to 7)

Total sample

M SD Med

Pretest
 Conceptual questions 1.71 1.40 2.00
 Self-efficacy 2.35 1.70 2.00
 Perceived competence 2.04 1.41 1.33
 Topic interest 4.26 0.096 4.43

Learning phase
 Mental effort 4.03 1.32 4.00
 Self-efficacy 5.76 1.43 6.00

Posttest
 Conceptual questions 3.05 1.94 3.00
 Isomorphic tasks 8.07 6.30 8.00
 Procedural transfer task 2.07 2.89 0.00

Mental effort
 Conceptual questions 4.44 1.89 5.00

Mental effort
 Isomorphic tasks 5.56 1.99 6.00

Mental effort
 Procedural transfer task 6.36 2.40 7.00
 Self-efficacy 6.12 1.65 6.00
 Perceived competence 5.08 1.27 5.33
 Topic interest 3.98 1.02 4.14
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Discussion

The aim of this study was to explore the task-selection choices of first year higher edu-
cation students (i.e., novices to the learning materials) when engaging in self-regulated 
learning in a computer-based learning environment. Students had to learn how to solve 
problems using the trapezoid rule and could select learning tasks from a database com-
prising different task formats (i.e., video modeling examples, worked examples, and 
practice problems), levels of complexity (i.e., three levels), and cover stories. We were 
particularly interested in which tasks students would choose and why (Research Ques-
tion 1) and how students’ task-selection decisions would adhere to the robust principles 
from instructional design research (Research Question 2). Finally, we were interested in 
whether there is a positive relation between the extent to which students choices match 
with the instructional design principles and their scores on learning outcomes, mental 
effort, and motivational variables (Research Question 3).

With regard to Research Question 1, results showed that the selection of video mod-
eling examples significantly decreased and the selection of worked examples and prob-
lems significantly increased during the learning phase. In addition, the selection of low-
est level tasks significantly decreased, whereas the selection of level 2 and level 3 tasks 
increased. Also, findings showed that students’ choices matched quite well with the 
principles derived from instructional design research on the effectiveness and efficiency 
of different fixed sequences of examples and problems (Research Question 2). The vast 
majority of students selected many examples during the learning phase (i.e., example-
based-learning-principle) and started the learning phase with an example instead of a 
problem (i.e., example-first-principle). Although the choices of approximately half our 
sample aligned with the simple-to-complex principle, almost all participants started 
the learning phase with a task at the lowest complexity level (i.e., lowest-level-prin-
ciple). Moreover, most participants started each complexity level with example study 
(i.e., start-each-level-with-example-principle). There was a lack of correlations between 
spontaneously applying the instructional design principles and cognitive or motivational 
aspects of learning (Research Question 3).

That students spontaneously applied almost all of the instructional design principles 
(with the exception of the simple-to-complex-principle) is surprising. Although there 
is relatively little research on this issue, the available evidence suggested that novices 
underutilize example study with respect to the amount (i.e., about 40% worked exam-
ples versus 60% practice problems) and timing (i.e., students rarely started the learning 
phase with example study) of their use (e.g., Foster et al., 2018).

There are several possible reasons for why students’ choices were so well aligned 
with the instructional design principles in our study compared to the study of Fos-
ter et  al. (2018). Firstly, our sample consisted of technical higher education students 
instead of a mixed group of students obtained from the university’s participant pool 
(as in the study of Foster et al., 2018). In the study programs of our sample, mathemat-
ics is an important subject and as a result, students might have already had experience 
with learning new mathematical problem-solving skills with the help of examples (since 
examples are frequently used to learn new mathematical procedures; e.g., Hoogerheide 
& Roelle, 2020). Moreover, this prior experience might have helped students decide 
how much support they needed or what complexity level they should work on (as indi-
viduals with extensive prior knowledge are better able to identify their knowledge needs 
and make their task-selections accordingly; e.g., Corbalan et al., 2006).
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Secondly, video modeling examples might be more preferred at the beginning of a 
learning phase (compared to worked examples), because information is demonstrated in a 
step-by-step manner and the combination of dynamic visual information and the model’s 
narration takes the learner by the hand. In contrast, worked examples might be preferred 
later in the learning phase, because they allow for efficiently looking up difficult problem-
solving steps. Indeed, our findings revealed that almost all students started with a video 
modeling example. However, this number rapidly decreased while the selection of worked 
examples gradually increased. These results correspond with the results of Hoogerheide 
et al. (2014) that worked examples were also more preferred than video modeling examples 
when more tasks had to be studied. In addition, students said in their answers to the open 
questions that they selected worked examples as a second task mostly because this format 
provided them the opportunity to assess their level of expertise and easily check to what 
extent they had understood the procedure.

Lastly, a more likely and more practical explanation for why our sample relied so heav-
ily on example study is that we provided the opportunity to choose between two example 
formats (i.e., video modeling examples and worked examples) next to practice problems. 
As a result, two thirds of the learning tasks were examples (i.e., 67%) and only one third 
were practice problems (i.e., 33%). This might have increased the likelihood of selecting an 
example rather than a practice problem. In the study of Foster et al. (2018), students could 
only choose between worked examples next to (completion) problems.

These possible explanations provide several interesting avenues for future research in 
self-regulated learning settings. For instance, it would be interesting to investigate in fur-
ther detail whether or not familiarity with example study in one domain would affect the 
degree to which novices opt for example study relative to practice problem solving in the 
same or in a different domain. Moreover, as comparisons between (different sequences of) 
worked and video modeling examples are scarce (e.g., Hefter et  al., 2019; Hoogerheide 
et al., 2014), future research could investigate whether starting the learning phase with a 
video modeling example and switching to worked examples is not only a more preferred 
way of learning but also more effective, efficient, and motivating than the other way 
around. Finally, although our sample already relied heavily on example study, it might be 
interesting to investigate whether the likelihood of selecting an example instead of a prac-
tice problem would further increase in this student population when using male models. 
That is, the model-observer similarity (MOS) hypothesis suggests that male learners might 
prefer and learn more from a male model, because learners who perceive themselves to be 
more similar to the model would show greater self-efficacy and learning gains. We must 
note though, that there is little evidence for the model-observer similarity hypothesis in 
recent research with video modeling examples: when content is kept equal, the gender of 
the model does not seem to affect test performance, self-efficacy, or perceived competence 
(e.g., Hoogerheide et al., 2016).

Limitations

This study also has some limitations. First, because performance on the practice problems 
was not logged, it was not possible to examine the degree to which students’ task-selections 
were adaptive to their needs. The optimal sequence (length) of examples and problems dif-
fers for each individual learner because there is variance in the speed to which students 
learn (e.g., due to differences in cognitive abilities). If we had access to practice problem 
solving performance, we could score whether students made accurate decisions following 
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a practice problem. For instance, students who just failed to solve a problem should ide-
ally select an example or another practice problem of the same complexity level, while 
students should select a more complex task after successfully solving a practice problem. 
That task-selections should ideally be tailored to individual progress could also explain 
the lack of correlations between the extent to which students’ task selections matched with 
the instructional design principles and learning outcomes (Research Question 3). Moreo-
ver, had we successfully logged performance on the practice problems, we could determine 
whether students’ knowledge during the learning phase was so high that they would benefit 
more from problem solving than example study (cf. the expertise reversal effect; Kalyuga 
et  al., 2003). However, it is unlikely that this expertise-reversal effect occurred, because 
performance on the isomorphic posttest was not that high and students were only allowed 
to select six learning tasks while having to learn three different complexity levels.

A second limitation of the present study concerns the measurement of self-efficacy and 
perceived competence. There is research showing overlap between these two constructs, 
and more specifically that perceived competence may be a common core component of 
both self-efficacy and self-concept (e.g., Marsh et al., 2019; Schunk & Pajares, 2005). The 
results of our study confirm this idea, as correlational analyses of these two constructs 
measured after the self-regulated learning phase revealed a score of r = .86. One could 
wonder to what extent both measures differ or measure the same general feeling of com-
petence regarding to what has been learned and how well someone considers him/herself 
capable of solving a similar task. Therefore, it might be sufficient for future research in this 
area to use of one of the questionnaires.

Conclusions and practical implications

In sum, our exploratory study showed that novices’ task-selection patterns corresponded 
fairly well with principles derived from instructional design research. This seems promis-
ing, because it would mean that students know quite well how to use examples and prob-
lems (at different complexity levels) when learning new problem-solving skills and there-
fore might need little support. However, given the paucity of research on self-regulated 
learning of examples and problems (at different levels of complexity), the mixed findings 
regarding the use of examples and problems (i.e., Foster et  al., 2018 vs. our study), and 
the open question of whether students’ task selections are adapted to their levels of exper-
tise, we cannot say this with absolute certainty. Moreover, regarding the task selections 
(of some of the students) and test performance scores in our study and the study of Foster 
et al. (2018), there seems to be (some) room for improvement in how novices regulate their 
learning from examples and problems. Therefore, more research is needed to gain insight 
in how and how well (novice) learners regulate their learning from examples and practice 
problems, and whether and how they can benefit from support. Moreover, future research 
should investigate to what extent the findings of this study regarding students’ task selec-
tions are problem-specific or generalizable, for example by using similar procedures but 
different problem-solving tasks.
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