
NEXT: Generating Tailored ERP Applications
from Ontological Enterprise Models

Henk van der Schuur1(B), Erik van de Ven1, Rolf de Jong1,
Dennis Schunselaar2, Hajo A. Reijers2, Michiel Overeem1, Machiel de Graaf1,

Slinger Jansen3, and Sjaak Brinkkemper3

1 Department of Architecture and Innovation, AFAS Software,
Leusden, The Netherlands

hwschuur@gmail.com, {e.vdven,r.dejong,m.overeem,m.degraaf}@afas.nl
2 Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

{d.m.m.schunselaar,h.a.reijers}@vu.nl
3 Department of Information and Computing Sciences, Utrecht University,

Utrecht, The Netherlands
{s.jansen,s.brinkkemper}@uu.nl

Abstract. Tailoring Enterprise Resource Planning (ERP) software to
the needs of the enterprise still is a technical endeavor, often requir-
ing the (de)activation of modules, modification of configuration files or
even execution of database queries. Considering the large body of work
on Enterprise Modeling and Model-Driven Software Engineering, this is
remarkable: Ideally, one models one’s own enterprise and, at the press of
a button, ERP software tailored to the needs of the modeled enterprise
is generated. In this paper, we introduce NEXT, a novel model-driven
software generation approach being developed with precisely this goal
in mind. It uses the expressive power of ontological enterprise models
(OEMs) to generate ERP cloud applications. An OEM only describes
the real-world phenomena essential to the enterprise, using terms and
customizations specific to the enterprise. We present our considerations
during development of the OEM modeling language, which is designed
to capture the specifics of enterprise phenomena in a way that technical
details can be derived from it. We expect NEXT to drastically shorten
the time-to-market of ERP software, from months–years to hours–days.

Keywords: Ontological Enterprise Modeling · Model-driven software
development · Software generation · Enterprise Resource Planning

1 Introduction

ERP software has become fundamental in the day-to-day operation of enter-
prises. Although most ERP applications provide functionality to tailor the soft-
ware to the specific needs of the enterprise, generally, customization possibilities

This work is a result of the AMUSE project. See www.amuse-project.org.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Poels et al. (Eds.): PoEM 2017, LNBIP 305, pp. 283–298, 2017.
https://doi.org/10.1007/978-3-319-70241-4_19

http://www.amuse-project.org


284 H.W. van der Schuur et al.

are limited and require technical knowledge from the end-user. As an example,
a fixed number of free input fields, input records or modules can be activated or
deactivated, for instance through advanced management tools, specific configu-
ration files or by executing particular database queries. As a result, enterprises
have to tailor their processes to the software, instead of the software being tai-
lored to the enterprise. This is surprising given the comprehensive bodies of
work on Enterprise Modeling and Model-Driven Software Engineering. Ideally,
one models one’s own enterprise and, at the press of a button, ERP software
tailored to the needs of the modeled enterprise is generated.

In this paper, we show preliminary results obtained during the ongoing devel-
opment of NEXT. NEXT is a novel software generation approach using onto-
logical enterprise models (OEMs) to generate ERP cloud applications. With
NEXT, functional application requirements are separated from the applica-
tion logic and the technical foundations of the application: all enterprise-specific
requirements are expressed in the OEM through one modeling language, allow-
ing for generation of a functionally tailored ERP application. This work is a first
effort to describe the many aspects and ideas encompassing our approach (see
Fig. 1). First, we introduce NEXT’s declarative OEM Language and present our
considerations during its development. The OEM Language allows the modeler
to reason and model in terms of real-world enterprise concepts, without having
to consider technical implementation details (arrow 1 in Fig. 1). The language is
designed such that an OEM forms the basis for generating an integrated ERP
cloud application (arrow 2). As a result, the generated application is tailored to
the needs of the modeled enterprise by definition (arrow 3).

Fig. 1. The NEXT software generation approach

This paper is structured as follows: in Sect. 2, NEXT’s OEM Language is
outlined. In Sect. 3, we illustrate the model transformation and software gen-
eration processes through three concrete models, and show the generated ERP
cloud application for each of these models. Finally, we compare our approach
with similar enterprise modeling and model-driven software generation initia-
tives in Sect. 4, and present conclusions and future work in Sect. 5.



Generating Tailored ERP Applications from Ontological Enterprise Models 285

2 The Ontological Enterprise Modeling Language

In this section, we describe the OEM Language as well as our considerations
during the development of the language.

During the past decade, being ignorant of existing Enterprise Modeling (EM)
languages, the OEM Language has been developed within AFAS. Recently, we
have started evaluating existing EM approaches for their applicability to auto-
matically generate ERP software and none sufficed [1]; also see Sect. 4. Next to
this, from a pragmatic side, by developing our own language we have full flexi-
bility to (re)define the language to best fit our needs (see Fig. 1 and Sect. 2.2).
At the same time, we acknowledge that a more thorough analysis is required to
further justify the existence of another EM language; this analysis is subject of
future work.

In the remainder of this section, we start with an exemplifying model to famil-
iarize the reader with the language and its main constructs. Next, we present
our considerations during development of the language.

2.1 EnYoi: An Example Enterprise

Within this example, we suppose there is an enterprise named EnYoi. EnYoi’s
core business is selling shaving products. Its main customers are hotels. Prod-
ucts are sold both ad hoc and through subscriptions. From time to time, EnYoi
sends free trial products to its customers to find out if there is substantial inter-
est in the products to bring them to market. Already from the description of
EnYoi, we can identify concepts that are relevant within EnYoi, e.g., selling,
products, subscriptions, customers. For particular concepts, one would expect
specific application functionality, e.g., when an enterprise sells physical prod-
ucts, the enterprise needs an application to register orders, maintain stock lev-
els, and obtain actual insights in the (historical) economical performance of the
enterprise. The identified enterprise concepts of EnYoi map onto the four main
stereotypes in the OEM Language: Entity, Role, Event, and Agreement. Using
our example enterprise EnYoi, we elaborate on each of them.

Fig. 2. A simple OEM used by EnYoi

In Fig. 2, we have the OEM of EnYoi. The hotels EnYoi is delivering to
are denoted with the block organization. Similarly, what EnYoi is delivering are
goods (denoted by the block good). The organization block and good block are
both of the type entity. Entities are things in the real world around us, e.g.,



286 H.W. van der Schuur et al.

time, locations, people, organizations. Furthermore, entities have a set of uni-
versal, constant properties, i.e., all physical things (goods, persons, etc.) take
up space, are tangible and have weight. To capture the semantics of an entity,
each entity is of a particular type. Currently, the three most mature types of
entities for which we have implemented specific functionality in the application
are: organization, person, and good. Using the type of an entity, we deduce
common-sense1 functionality. For instance, for the organization type, we gen-
erate functionality to administer, i.a., contact persons, date of establishment,
date of closing down, email address (all common-sense in our ERP domain).
Analogously, the entity type person entails functionality related to, i.a., date of
birth, sick leave, scheduling. Finally, for the entity type good, functionality is
generated related to, i.a., physicality (size, location, weight), value, ownership.
All common-sense functionality comes for free, i.e., without the need to model
this explicitly2. At the time of writing, we already have additional types in scope
such as location, time, room and country, which will be detailed in future work.

Next to entities, we have roles. Roles allow the modeler to denote in what
way entities are considered from within the enterprise. For instance, for EnYoi,
hotels perform the role customer. Analogously, some goods perform the role of
product. Note that not all goods within EnYoi need to be products, e.g., forklift
trucks used to move pallets with shaving products will typically not be a product
but it is a good. Entities can perform multiple roles from the perspective of an
enterprise, e.g., some organizations might be both customer and supplier.

As mentioned, EnYoi delivers products to its customers. The delivery of
products is modeled using an event. Events are used to abstract real-world
business activities that are relevant for the enterprise to administer. Although
at design-time an event is a static, timeless component, during run-time, an
event is executed at a particular moment in time. The potential run-time effects
of an event (e.g., stock level decrease) are encoded using characteristics. By
combining characteristics, we know what an event means, i.e., the meaning of
an event is determined by the combination of the meanings of the individual
characteristics. Based on the characteristics of an event, we add common-sense
to the model. Using the characteristics subject and party of an event, depicted on
the edges between events and roles, we know how these roles and their entities
are involved in the event. For instance, the subject denotes what this event is
about, e.g., what is being delivered, and the party is another stakeholder in this
event. Again, within EnYoi, products are delivered to customers.

Some enterprises sell goods, and some purchase goods. To distinguish between
selling and purchasing, we have introduced a characteristic direction on the
events. By setting the direction to in (out respectively), we indicate that some-
thing of value enters (leaves respectively) the enterprise. Next to selling and
purchasing goods, enterprises can also rent (or rent out) goods. In the former

1 We use the term ‘common-sense’ in line with the work of Fox [2], i.e., information
that is deduced from the semantics of the model.

2 Every stereotype can also have modeled (non-semantic) attributes, e.g., description,
number of employees, wedding date, margin, or attachment.



Generating Tailored ERP Applications from Ontological Enterprise Models 287

case, there is a change of ownership, and in the latter there is not. This resulted
in a change of ownership characteristic. Next to administering that an enterprise
obtained the ownership of a good, the enterprise also differentiates in what capac-
ity they own something, which is supported in the ownership type characteristic;
currently trade item and asset are supported. The direction, change of owner-
ship, and ownership type characteristics specify the (financial) effects on stock
and the general ledger accounts, e.g., if the enterprise obtains the ownership of
an asset (direction in), then periodic deprecations of the asset is journalized in
the general ledgers. Furthermore, if the enterprise loses the ownership of a trade
item (direction out), then the stock levels will be decreased. In the EnYoi exam-
ple, for some deliveries a payment was expected and some were free of charge.
This can be indicated using the payment characteristic on an event, i.e., is there
a monetary claim created to the party after executing this event. By setting
the payment characteristic to optional, the generated application will give the
user the run-time choice to create a monetary claim for every event instance.
Based on the payment characteristic, we deduce common-sense that includes,
i.a., accounting functionality to give insights into the ledger accounts and trial
balance (see Sect. 3).

The last model element in Fig. 2 is the subscription which has type agree-
ment. This indicates that deliveries can be performed within the context of
an agreement. An agreement in itself only represents the fact that there is an
agreement with a second party. The contents of the agreement are represented
by events that are connected to the agreement (e.g., delivery for EnYoi).

2.2 Language Considerations

As shown in Fig. 1, an enterprise modeler models the OEM using the OEM
Language (1). This OEM prescribes an ERP cloud application (2). In its turn,
this application supports the enterprise (3). For each of these arrows, we present
our challenges in the form of questions we posed ourselves and our considerations
in development of the OEM Language in the remainder of this section.

(1) An Enterprise Modeler models an OEM
What is our target audience? Current ERP software requires people with sub-
stantial technical knowledge to configure and tailor the software towards the
enterprise needs. Often these people are less familiar with the enterprise itself. As
a result, considerable communication is required between people familiar with
the enterprise and the more technical application managers. Within NEXT,
we have targeted the enterprise modeler familiar with the enterprise as pri-
mary audience for the OEM Language. Enterprise modelers are not necessary
familiar with technical concepts like foreign keys, database tables, and valida-
tions, but are familiar with the people, products, processes, and other concepts
within the enterprise. To better connect to the target audiences, we have stereo-
types and characteristics in the OEM Language that are named after the real
world phenomena they are representing, e.g., agreement, or payment. Please note
that the models we are showing are a possible visualization. The usability of



288 H.W. van der Schuur et al.

language by end users is still subject of future investigation. For the first release
of NEXT, all the OEMs for enterprises will be created by modelers from AFAS.

What should be expressible within our language and how? As mentioned in
the introduction, we want to separate the functional application requirements
from the technical foundation of the application. As a result, our OEM Language
should only contain enterprise concepts; it should not contain IT artifacts. To
determine which enterprise concepts should be part of the OEM Language, we
continuously analyze AFAS’ current ERP application named Profit, which is
currently used by more than 1.3 million end-users of 10.000 customers. By ana-
lyzing the (usage of) functionality provided by Profit, we verify that all enterprise
aspects of the current set of customers can actually be expressed in the OEM
Language. This analysis is conducted by processing all fields, screens, database
tables, etc. of Profit. For each field, screen, database tables, etc., we determine
with which functional reason it was introduced. Furthermore, we determine if
there is variability of the particular functionality between enterprises, i.e., which
functionality is used differently by the customers, e.g., the moment an order
is considered finalized differs per enterprise. If functionality is used differently
between customers, we investigate what the reason behind this is. Depending on
the reason, the level of variation, and the number of customers using a particular
variation, we decide whether to encode this variability in the OEM Language
by means of characteristics. Finally, based on this analysis, we determine if, and
how, the functionality the screen, database table, etc. represents should be part
of the OEM Language. We determine this as follows: If there is no variabil-
ity in a particular part of the functionality among enterprises, then this is not
explicitly represented in the OEM Language (this part of the functionality will
be generated without modeling it). If there is variability, then we try to map
this onto real world phenomena. If such a mapping exists, then the real world
phenomenon will be part of the languages, e.g., change of ownership, agreement.
So far, we did not encounter any variability in functionality where this mapping
to the real world phenomena did not exist. Using this mapping onto real world
phenomena, we have created our characteristics and stereotypes.

If all functionality provided by Profit can be modeled using the OEM Lan-
guage, then the first version of the OEM Language is considered complete. As a
result, the OEM Language will, initially, be scoped to the current functionality
of Profit. In later phases, this scope is widened for every new release of Profit.
Also, when required, the OEM Language will be extended with additional con-
cepts to support functionality (currently) not supported within Profit.

(2) An OEM prescribes an Application
How to ensure every OEM is complete and valid input for generating exactly one
application? The goal of an OEM is to prescribe an application tailored towards
the needs of an enterprise. As a result, given an OEM, it should always be com-
plete and valid input for generating an application. Furthermore, there cannot be
two functionally different applications adhering to one and the same OEM. This
would mean that the enterprise modeler cannot anticipate what functionality is
provided in the generated application, which is highly undesirable for obvious



Generating Tailored ERP Applications from Ontological Enterprise Models 289

reasons. To ensure that there cannot exist two functionally different applications
based on one and the same OEM, we are formalizing the language. This way,
there cannot be any ambiguity with respect to which functionality should be
generated based on a particular OEM. To ensure that every OEM is complete
and valid input for generating an integrated, fully-functioning application, every
stereotype is allowed to exist independently within a model, i.e., an OEM that
consists of one stereotype in isolation is already complete and valid input for gen-
erating the application. Furthermore, stereotypes can only be composed if the
composition maintains the completeness and validity of the OEM. As a result,
every OEM is complete and valid by construction.

How to keep the language maintainable when concepts change over time?
The environment around an enterprise is always evolving, e.g., rules and regula-
tions change, distribution channels change, more innovative competitors appear.
As a result, the OEM Language also needs to evolve, e.g., maternity leave,
sick leave, holiday, etc. are concepts that did not always exist. When concepts
change, or are introduced, one ideally only changes the stereotypes representing
these concepts in the language, i.e., ideally the changes are local. We attempt to
achieve these local changes by requiring that the composition of stereotypes only
adds behavior and does not change existing behavior. As a result, if a concept
changes, we only need to change the stereotypes and compositions represent-
ing the concept. Would we not have local changes, then a change of a concept
would require a change to the stereotypes and compositions representing the
concepts, as well as, stereotypes and compositions affecting the stereotypes and
compositions representing the concepts.

(3) An Application supports the Enterprise
How to support variability within enterprises? Not a single enterprise is exactly
identical to another enterprise. To capture the variability between enterprises, we
have introduced the characteristics on events (Sect. 2.1). Also variability exists
within an enterprise, e.g., in the case of EnYoi, some deliveries require a payment
and some are for free. This internal variability is encoded within the OEM
Language by offering the enterprise modeler the possibility to postpone setting
characteristics till run-time. This means that for every new run-time instance,
the characteristics can be set differently.

How to provide the same run-time support as Profit? Profit provides run-
time support related to: workflow, rules, Key Performance Indicators (KPIs),
authorization, customer portals, etc. All this run-time functionality should be
provided using the OEM. After all, the OEM prescribes the applications. In
current approaches, these KPIs are defined by hand. Often they also need to
be tailored towards a particular enterprise. In order to automate this manual
endeavor, we have created deduction rules, which, given an OEM, automatically
can deduce the KPIs and present them and their values during run-time. The
other functionality, e.g., workflow, is still under investigation. Particularly, if and
how the functionality can be deduced from an OEM and which information is
still missing in the OEM Language to automatically deduce this functionality
with its possible variability.



290 H.W. van der Schuur et al.

3 From Design-Time to Run-Time

How NEXT cloud applications are to be generated and deployed is depicted in
Fig. 3 (arrows labeled with numbers correspond to the arrows in Fig. 1). Starting
on the ontological layer, the real-world enterprise is abstracted by anOEM.OEMs
are expressed in theOEM Language using our modeling tool called Studio. Studio
understands the OEM Language as well as the common-sense (see Sect. 2) that is
part of it. The resulting OEM serves as input for the cloud application generation
process,which is orchestratedby theNEXTCloudManager.TheCloudManager’s
responsibilities are fourfold:

Fig. 3. Model-Driven Software Generation with NEXT

First, the Cloud Manager reads the OEM and transforms it to a Platform-
Independent Model (PIM), which contains high-level application constructs that
establish the required run-time functionality. Next, it uses the PIM to create a
Platform-Specific Model (PSM) that forms the basis for the actual software gen-
eration process. Secondly, the Cloud Manager configures the cloud infrastruc-
ture. The cloud infrastructure consists of (1) a cloud computing platform such
as Microsoft Azure, Amazon Web Services or Google Cloud Platform and (2)
cloud services on top of the cloud computing platform such as application host-
ing services, event buses or database services. The Cloud Manager determines
the type and amount of services required. Thirdly, the Cloud Manager deploys
the runtime environment in which the tenant ERP cloud application is executed.
For example, generic frontend and backend framework code used by the cloud
application is deployed. Also, generic runtime services such as an authentication
service and logging service are deployed. Finally, the tenant ERP cloud applica-
tion itself is generated. The application is generated based on the PSM, which
was created earlier from the PIM (and indirectly, the OEM). After the Cloud
Manager has completed its task, a fresh NEXT ERP cloud application tailored



Generating Tailored ERP Applications from Ontological Enterprise Models 291

to the modeled enterprise is generated and ready for use by that enterprise.
Many technical details involving our software generation approach are omitted
to conserve space, and are detailed elsewhere3.

The remainder of this section describes how an OEM transforms to a corre-
sponding PIM and onwards to a PSM. In three steps, we build the OEM of the
EnYoi example enterprise from Sect. 2. See Fig. 4. Each of the columns depicts
one particular OEM (top ‘OEM’ layer), as well as the transformation to the cor-
responding PIM and PSM (‘PIM’ and ‘PSM’ layers). We will start with a simple
OEM on the left and expand the model as we go from left to right. This is done
in such a way that a model in a particular cell c is a fragment of the model in
the cell to the right of c. Every OEM is self-contained: an OEM in itself is suffi-
cient to generate an application from. The cells in the PIM and PSM rows are
complementary, i.e. PIM/PSM elements in cell c should also be considered to be
part of every cell to the right of c. The colors of the blocks with black text in the
OEM and PIM layers denote a causal relationship: colored rectangular blocks in
a particular column’s cell c are the result of the rectangular blocks with the same
color(s) in the cell above c. For example, the green elements Organizations and
Goods in columns 1 and 3 in the PIM layer result from the green organization
and good entities in the OEM layer, respectively. Below, the transformations in
each of the columns 1 – 3 are described in more detail.

1 An Organization Performs a Customer Role. . .
The first OEM is composed of a customer role which is performed by an orga-
nization entity. The design-time entity organization results in functionality to
create, read, update, and delete (CRUD) organization instantiations in the PIM.
As mentioned, the fact that organizations can have contact persons is consid-
ered common-sense in our ERP domain. CRUD is therefore also generated for
contact persons. In addition, functionality is generated to assign contact persons
to organizations. Similarly, because of the customer role in the OEM, the role
customer can be assigned to an organization. Furthermore, generic application
functionality is generated irrespective of the source OEM. This is represented
by the PIM level Runtime Framework block. The runtime framework establishes
basic navigation (including pages, lists, forms, etc.), search, and reporting func-
tionality for each application.

Next, all PIM blocks (CRUD, Runtime Framework) and their elements are
transformed into technical counterparts in the PSM. The PSM consists of code
generator templates for both the front end and back end of the NEXT run-
time4. For example, the CRUD block is translated into code generator templates
to accommodate the run-time creation, presentation, revision and deletion of

3 For example, NEXT uses Event Sourcing [3] to ensure that all changes to the applica-
tion state are stored as an event sequence. Using this sequence of events, application-
wide features such as auditing, logging of in-the-field software operation and usage [4]
as well as application rollbacks are implemented [5,6].

4 At the time of writing, we have front end code generator templates for HTML,
Javascript, and CSS. The back end generator templates currently generate C# code.



292 H.W. van der Schuur et al.

Fig. 4. Three OEMs and their transformations to corresponding PIMs and PSMs.
Each OEM cell is independent, whereas the PIM and PSM cells also implicitly include
the cells to the left. All OEMs result in a functioning cloud application (see Fig. 5).

organizations. Using the same techniques, the Navigation, Search and Reporting
functionality of the Runtime Framework are transformed to the PSM level.

2 . . . in a Delivery Event. . .

In column 2 , the OEM is further extended with three elements. First, the
delivery event is added. Secondly, by assigning a role to the event’s subject char-
acteristic, one models what is going to be delivered by the modeled enterprise.
In the OEM of column 2 , goods that perform the product role can be subject
of the delivery event.



Generating Tailored ERP Applications from Ontological Enterprise Models 293

The extension of the OEM with the delivery event, the product role, and
the good entity results in additional PIM elements. First, CRUD functionality
specific to the good entity is added, including functionality to assign the product
role to existing goods. Furthermore, CRUD functionality is added specific to the
delivery event so that new deliveries of products to customers can be created.

As mentioned in Sect. 2.1, run-time event instantiations are temporal by def-
inition, i.e. an event is always executed at a particular moment in time. Also,
events have various characteristics which can be set to configure the precise
ontological meaning and resulting run-time behavior of the event. If there is
at least one event in the OEM with {subject: good; change of ownership: yes;
direction: out} characteristics, Stock logic is generated on the PIM level: if there
are enterprise events that move goods (i.e., a physical, tangible, valuable object)
outwards, it is plausible that the enterprise would like to have insight in the
(remaining) stock levels of the particular good. Analogously, the Finance ele-
ment is generated on the PIM level if there is at least one event in the OEM
with characteristics {subject: good; payment: yes}: if one expects to receive or
perform payments, one would also like to obtain insights in financial journal
entries, revenue, profit and loss account, the enterprise’s trial balance, etc. Note
that if there is variability in the stock logic, e.g., deliveries without a change of
stock, then this variability should be reflected in the OEM Language, e.g., by
means of characteristics.

On the PSM level, for both the front end and back end, additional code gen-
erator templates are instantiated to generate the code required for the additional
Stock and Finance functionality from the PIM level.

3 . . . According to a Subscription Agreement

Finally, in column 3 , a subscription agreement is added to the OEM. The
delivery event can now be part of an agreement: as opposed to delivering in an
ad hoc and impromptu fashion (column 2 ), the delivery event can now be the
consequence of, and governed by, a subscription agreement. The subscription
forms an agreement in which delivery concerns such as the delivery frequency,
the amount to be delivered, subscription duration, etc. are established. A single
agreement can govern multiple events, e.g. delivery, invoicing, and payment.

Again, the addition of a new OEM element results in an extension of the
PIM. First, CRUD functionality specific to the subscription agreement is added,
including functionality to assign subscriptions to existing customers. Also, the
Finance block that was added to the PIM in column 2 , is extended in the PIM
of column 3 because of the addition of the subscription element in the OEM.
Since the delivery can now be governed by the subscription, both the outgoing
value and the expected revenue can be calculated within the subscription context
and period. Additional financial overviews, such as an operations overview and
operations forecast, are generated in the PIM.

On the PSM level, no additional elements are introduced: all PIM elements
from column 3 are expressed with the PSM elements in columns 1 and 2 .



294 H.W. van der Schuur et al.

Current State of the Runtime
To show the current state of the NEXT runtime, Fig. 5 shows run-time screen-
shots of generated NEXT cloud applications for each of the OEMs in Fig. 4. The
application of 1 is rather basic and straightforward: organizations can be cre-
ated and listed, and they can be assigned a customer role (note that already with
application 1 , basic functionality such as navigation and search is available).
With the application generated from 2 , good deliveries can be created. Based
on run-time deliveries, stock mutations, a stock overview as well as ledger bal-
ances are automatically derived. Finally, with the application based on OEM 3 ,
delivery subscriptions can also be created. Note that the start and end date, as
well as the subscription duration are automatically derived.

Fig. 5. Screenshots of NEXT applications based on the three OEMs in Fig. 4. UI ele-
ments are annotated with the color of the particular stereotype(s) causing generation of
the elements, i.e., green: entity (organization, person), blue: role (customer, product),
yellow: event (delivery), red: agreement (subscription). Purple indicates generic appli-
cation functionality that is generated irrespective of the underlying OEM. Full-size
versions can be downloaded from www.amuse-project.org/portal-amuse/nextruntime.
(Color figure online)

http://amuse-project.org/portal-amuse/nextruntime


Generating Tailored ERP Applications from Ontological Enterprise Models 295

At the time of writing, NEXT itself consists of more than 580 KLOC and
the most substantial OEMs currently generate 1.2 MLOC.

4 Related Work

With NEXT, we connect the worlds of enterprise modeling (EM) and model-
driven software engineering. Next to this, work has been done on creating models
of ERP functionality. We provide related work from all three domains.

4.1 Enterprise Modeling

In our previous work [1], we compared EM approaches on their applicabil-
ity for automatically generating ERP Software. These approaches included,
among others: ArchiMate [7], ARIS [8], CIMOSA [9], DEMO [10], MEMO [11],
MERODE [12], and UEML [13]. We show some of the highlights of [1] in the
context of this paper. We do so, by going through the steps listed in Fig. 1 and
show the requirements on the EM approach. We omit step (3) since none of the
approaches are applicable to automatically generate ERP software [1].

(1) An Enterprise Modeler Models an OEM
One aspect on which NEXT sets itself apart from existing EM approaches is the
ontological aspect [1]. With this, we do not mean that existing approaches do
not have ontologies, but that the NEXT ontology is on a different level; it has
more detail. For example, within DEMO [10], there are so-called transactions.
The ontological characteristics of a transaction is that it represent a set of steps,
i.a., request, promise, and accept. Within DEMO, the transaction itself only has
a label associated to it. In NEXT, we aim to add more information, e.g., within
events (Sect. 2.1), we have characteristics to detail the semantics of a particular
event and not only the steps every event goes through. If we would translate
the ideas from NEXT to DEMO, this would mean that more information is
known about transactions, e.g., whether it entails the sale of an item, or borrow-
ing a book. Similarly, in the MEMO approach [11], there are processes. These
processes do have an ontological distinction between automatic, semi-automatic,
and manual. But apart from this, processes have a label with no further seman-
tics for the application. Another differentiating aspect between NEXT and some
EM approaches is the targeted audience. Within some approaches, information
needs to be provided in a programming-like style. In NEXT, we take the business
user as a target audience. This target audience is usually not familiar with pro-
gramming. If we take the DEMO approach again [10], then within DEMO there
is a so-called action model. The action model specifies the action rules that serve
as guidelines for the actors. The specification of an action model is syntax-wise
very close to the syntax of a programming languages. Other approaches where
some aspects of the approach require a user with programming skills include [1]:
ARIS [8], CIMOSA [9], and MERODE [12].



296 H.W. van der Schuur et al.

(2) An OEM Prescribes an Application
One of the most essential parts for describing the application from an enterprise
model is formal (execution) semantics. After all, without clear semantics, either
functionally different applications would adhere to the same enterprise model, or
it is not possible at all to generate an application. Most of the EM approaches
have formal (execution) semantics [1]. Some, like ArchiMate [7], CIMOSA [9],
DEMO [10], and UEML [13], are not completely formally defined with respect
to (execution) semantics [1].

4.2 Model-Driven Software Engineering

Kulkarni [14] reflects on decades of experience in delivering large business appli-
cations using a model-driven development approach, and concludes that mod-
els with a higher level of abstraction and expressive power lead to many advan-
tages such as (a) more significant operational involvement of functional experts,
(b) early determination and elimination of errors, (c) application-wide imple-
mentation of design decisions and policies, and (d) separation of the functional
application specification from technology concerns. The NEXT ontological enter-
prise models encompass a high level of abstraction and we pursue these advan-
tages. Since the OEM Language abstracts from technical elements such as
window types, forms, and batch functionality (see Sect. 2), we believe it provides
a higher level of abstraction than the high-level language Q++ developed by
Kulkarni [14]. Existing model-driven enterprise engineering solutions such as Men-
dix, Servoy, or Betty Blocks5 are not based on ontological models; these require
technical knowledge from the modeler to enable and influence architectural aspects
such as storage, business logic, and frontend behavior [15]. While the aforemen-
tioned solutions allow for the creation of generic business applications which sup-
port communication, collaboration, and content creation between business func-
tions,NEXT is specifically designed tomodel, understand and generate integrated
ERP applications. The model-driven enterprise engineering solutions from IBM6

and OpenText7 specifically allow for the creation of business process manage-
ment (BPM) applications and are often used on top of legacy software. Contrar-
ily, NEXT is not designed to be used on top of legacy software; with the NEXT
approach, integrated, fully-functioning ERP applications are generated.

4.3 ERP Modeling

Work has been done on creating models of ERP systems with the goal to config-
ure an ERP system to the requirements an enterprise, e.g., [16]. Within these
approaches, an abstraction is made of an existing ERP system by means of a
model, a model is created of the customer requirements, and manually a map-
ping is made between both models to see how to configure the ERP system.

5 www.mendix.com, www.servoy.com, www.bettyblocks.com.
6 www.ibm.com/software/products/en/business-process-manager-family.
7 www.opentext.com/what-we-do/products/business-process-management.

https://www.mendix.com
https://www.servoy.com
https://www.bettyblocks.com
https://www-03.ibm.com/software/products/en/business-process-manager-family
https://www.opentext.com/what-we-do/products/business-process-management


Generating Tailored ERP Applications from Ontological Enterprise Models 297

Our approach sets itself apart from these approaches in a number of ways: (1)
similar to existing EM approaches, the ontological aspect is limited, (2) we are
aiming for an automated approach; no manual mapping, and (3) NEXT is not
intended to be used on existing software systems.

5 Conclusions and Future Work

The paper is a first effort to describe the many aspects and ideas that encompass
our NEXT software generation approach. We show that ontological enterprise
models can form the basis for generating integrated, fully-functioning Enterprise
Resource Planning (ERP) cloud applications.

We have presented the NEXT Ontological Enterprise Modeling Language,
a language specific to the ERP domain. The language is being designed to
provide sufficiently powerful semantics for modeling real-world enterprises, i.e.,
express concepts such as an enterprise’s people, products, and business processes.
Every model created with the language forms the basis for an integrated, fully-
functioning ERP cloud application, tailored to the needs and requirements of
the modeled enterprise. The OEM Language is being designed for the modeler
to easily comprehend and maintain the enterprise model, while requiring mini-
mal technical knowledge. Apart from the language itself, we have presented our
considerations during development of the language.

Through three exemplifying OEMs, we have illustrated the OEM transfor-
mation process, and how we are able to generate sophisticated run-time ERP
application functionality and behavior from (the composition of) basic modeling
language stereotypes. More complex OEMs will be subject of future work.

As NEXT is under development, its OEM Language and software generation
approach are further enriched, refined and evaluated continuously. Also, many
technical aspects that encompass NEXT, such as (partial) code generation tech-
niques, blue green deployment, and real-time monitoring, are considered out of
the scope of this paper and are or will be detailed elsewhere [6].

NEXT is designed to allow for creation of tailor-made software using one
toolset and modeling language. We expect NEXT to drastically shorten the aver-
age time-to-market of ERP software, from months–years to hours–days. Despite
the developmental stage of NEXT, we hope that this paper sheds new light on
the potential of (ontological) enterprise modeling.

Acknowledgements. This paper was supported by the NWO AMUSE project (628.
006.001): a collaboration between Vrije Universiteit Amsterdam, Utrecht University, and
AFAS Software in the Netherlands.



298 H.W. van der Schuur et al.

References

1. Schunselaar, D.M.M., Gulden, J., van der Schuur, H., Reijers, H.A.: A Systematic
evaluation of enterprise modelling approaches on their applicability to automati-
cally generate ERP software. In: CBI 2016. IEEE Computer Society (2016)

2. Fox, M.S.: The TOVE project towards a common-sense model of the enterprise.
In: Belli, F., Radermacher, F.J. (eds.) IEA/AIE 1992. LNCS, vol. 604, pp. 25–34.
Springer, Heidelberg (1992). doi:10.1007/BFb0024952

3. Fowler, M.: Event Sourcing (2005). https://martinfowler.com/eaaDev/
EventSourcing.html. Accessed 9 Nov 2017

4. van der Schuur, H., Jansen, S., Brinkkemper, S.: Reducing maintenance effort
through software operation knowledge: an eclectic empirical evaluation. In: CSMR,
pp. 201–210. IEEE Computer Society (2011)

5. Overeem, M., Spoor, M., Jansen, S.: The dark side of event sourcing: managing
data conversion. In: SANER, pp. 193–204 (2017)

6. Overeem, M., Jansen, S.: An exploration of the it in it depends: generative versus
interpretive model-driven development. In: MODELSWARD (2017)

7. Open Group: Archimate 2.1 Specification. Van Haren Publishing, December 2013
8. Scheer, A.W.: Aris-Business Process Modeling, 2nd edn. Springer, Heidelberg

(1999)
9. Vernadat, F.: The CIMOSA languages. In: Bernus, P., Mertins, K., Schmidt, G.

(eds.) Handbook on Architectures of Information Systems. International Hand-
books on Information Systems, pp. 251–272. Springer, Heidelberg (1998). doi:10.
1007/3-540-26661-5 11

10. Dietz, J.L.G.: Enterprise Ontology - Theory and Methodology. Springer, Heidel-
berg (2006)

11. Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects
and future research challenges. SoSyM 13(3), 941–962 (2014)

12. Snoeck, M.: Enterprise Information Systems Engineering - The MERODE App-
roach. The Enterprise Engineering Series. Springer, Switzerland (2014)

13. Vernadat, F.: UEML: Towards a unified enterprise modelling language. Int. J.
Prod. Res. 40(17), 4309–4321 (2002)

14. Kulkarni, V.: Model driven development of business applications: a practitioner’s
perspective. In: ICSE Companion, pp. 260–269 (2016)

15. Fortuin, S.: Model Driven Engineering: Incipient Environments with Imperative
Views. Master’s thesis, Utrecht University (2016)

16. Rolland, C., Prakash, N.: Matching ERP system functionality to customer require-
ments. In: 5th IEEE International Symposium on Requirements Engineering, pp.
66–75 (2001)

http://dx.doi.org/10.1007/BFb0024952
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
http://dx.doi.org/10.1007/3-540-26661-5_11
http://dx.doi.org/10.1007/3-540-26661-5_11

	NEXT: Generating Tailored ERP Applications from Ontological Enterprise Models
	1 Introduction
	2 The Ontological Enterprise Modeling Language
	2.1 EnYoi: An Example Enterprise
	2.2 Language Considerations

	3 From Design-Time to Run-Time
	4 Related Work
	4.1 Enterprise Modeling
	4.2 Model-Driven Software Engineering
	4.3 ERP Modeling

	5 Conclusions and Future Work
	References




