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A B S T R A C T   

Air pollution from livestock farms is known to affect respiratory health of patients with chronic obstructive 
pulmonary disease (COPD). The mechanisms behind this relationship, however, remain poorly understood. We 
hypothesise that air pollutants could influence respiratory health through modulation of the airway microbiome. 
Therefore, we studied associations between air pollution exposure and the oropharyngeal microbiota (OPM) 
composition of COPD patients and controls in a livestock-dense area. 

Oropharyngeal swabs were collected from 99 community-based (mostly mild) COPD cases and 184 controls 
(baseline), and after 6 and 12 weeks. Participants were non-smokers or former smokers. Annual average 
livestock-related outdoor air pollution at the home address was predicted using dispersion modelling. OPM 
composition was analysed using 16S rRNA-based sequencing in all baseline samples and 6-week and 12-week 
repeated samples of 20 randomly selected subjects (n = 323 samples). A random selection of negative control 
swabs, taken every sampling day, were also included in the downstream analysis. 

Both farm-emitted endotoxin and PM10 levels were associated with increased OPM richness in COPD patients 
(p < 0.05) but not in controls. COPD case-control status was not associated with community structure, while 
correcting for known confounders (multivariate PERMANOVA p > 0.05). However, members of the genus 
Streptococcus were more abundant in COPD patients (Benjamini-Hochberg adjusted p < 0.01). Moderate corre
lation was found between ordinations of 20 subjects analysed at 0, 6, and 12 weeks (Procrustes r = 0.52 to 0.66; 
p < 0.05; Principal coordinate analysis of Bray-Curtis dissimilarity), indicating that the OPM is relatively stable 
over a 12 week period and that a single sample sufficiently represents the OPM. 

Air pollution from livestock farms is associated with OPM richness of COPD patients, suggesting that the OPM 
of COPD patients is susceptible to alterations induced by exposure to air pollutants.   

1. Introduction 

Living in livestock dense areas has been associated with health ef
fects in epidemiological studies worldwide. Particularly livestock- 
related air pollution at the residential level is suggested to be relevant 
for public health (Borlée et al., 2018, 2017a,2017b,2015; de Rooij et al., 
2019; Douglas et al., 2018; Elliott, 2004; Mirabelli et al., 2006; Pavilonis 
et al., 2013; Radon et al., 2007; Rasmussen et al., 2017; Schinasi et al., 
2011; Schulze et al., 2011; Sigurdarson and Kline, 2006; Simões et al., 

2022; Smit et al., 2014; van Kersen et al., 2020). Adverse health effects 
reported in relation to livestock farm emissions such as ammonia (NH3) 
and particulate matter (PM) include lung function deficits, as well as 
increased respiratory symptoms like coughing and wheezing (Borlée 
et al., 2017a; Radon et al., 2007; Schulze et al., 2011). Several studies 
have linked increased ambient NH3 levels with lung function deficits in 
non-farming residents (Borlée et al., 2017a; Loftus et al., 2015; van 
Kersen et al., 2020). People with chronic obstructive pulmonary disease 
(COPD) were found to be especially vulnerable to livestock-related NH3 
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levels (van Kersen et al., 2020). Similarly, increased respiratory symp
toms in COPD patients living near livestock farms have been reported 
(Borlée et al., 2015). Recently, exposure to livestock farm emitted PM 
was found to be associated with respiratory health effects, indicating 
endotoxin as a plausible etiologic agent (Beentjes et al., 2022; de Rooij 
et al., 2019; Farokhi et al., 2018) However, mechanisms behind adverse 
respiratory health effects in COPD patients associated with livestock 
farm emissions remain poorly understood. A biological mechanism that 
could play a role is alteration of the airway microbiota composition. 
Livestock operations are a potential source of microbes and air pollut
ants, both of which could act on the microbial composition of the 
airways. 

The predominant determinants of the lung microbiota are thought to 
be explained by immigration and elimination processes of bacteria from 
the upper respiratory tract (URT) (Dickson et al., 2016, 2015). In 
contrast, the microbiota of diseased lungs is suggested to be determined 
by regional growth conditions like nutrient availability, competition and 
activation of host inflammatory cells. While disruptions of the airway 
microbiota have mainly been linked to severe disease, signs of functional 
distortion have been shown in the microbiota of mild COPD patients 
while the community composition remained indistinguishable from 
healthy volunteers. This indicates that the airway microbiota may be 

relevant in the earlier stages of COPD as well (Dickson et al., 2016). 
Therefore, studying changes in the airway microbiota in relation to the 
living environment, especially in patients with a respiratory condition, 
could help to explain the associations between environmental exposures 
and respiratory health. A similar mechanism of dysbiosis in airway 
microbiota was suggested to play a role by studies in the Netherlands 
and United States where exposure to air pollution from livestock farms 
was associated with an increased risk of pneumonia (Poulsen et al., 
2018; Smit et al., 2017). 

The goal of this explorative study is to investigate whether the 
oropharyngeal microbiota (OPM) of COPD patients differs from con
trols, and whether residential exposure to air pollution from livestock 
farms is associated with microbial community composition. We per
formed 16S rRNA gene amplicon sequencing of oropharyngeal samples 
from 99 COPD patients and 184 healthy controls living in an area with a 
high density of intensive livestock (mainly poultry, pig, cattle, goat and 
mink (Borlée et al., 2017a)) farms in the Netherlands. In analysing the 
resulting OPM compositions, we were particularly interested in differ
ences associated with residential exposure to livestock farm-emitted 
endotoxin and particulate matter with a nominal aerodynamic diam
eter of 10 µm or less (PM10). Lastly, we analyzed reproducibility of the 
individual OPM composition by sequencing samples collected 

Fig. 1. Flowchart of the study population of 99 COPD cases and 184 control subjects.  

W. van Kersen et al.                                                                                                                                                                                                                            



Environment International 169 (2022) 107497

3

repeatedly from the same individuals over a 12-week period. 

2. Materials and methods 

2.1. Study population and design 

Study participants were selected from 2,369 participants of the cross- 
sectional Dutch Livestock Farming and Neighbouring Residents’ Health 
study (VGO) population, of which the design, enrollment, and medical 
examination have been described (Borlée et al., 2017b, 2015). The se
lection procedure for the present case-control study is shown in a 
flowchart (Fig. 1). First, all COPD patients were selected by a lung 
function specialist, based on their spirometry values and curves. COPD 
was defined as a post-bronchodilator (BD) measurement of FEV1/FVC 
below the lower limits of normal. We also invited subjects if they had a 
pre- or post- BD FEV1/FVC below 0.7 in combination with at least one 
self-reported respiratory symptom (wheeze, shortness of breath) or if 
they reported doctor-diagnosed COPD. Current smokers were excluded. 
Control subjects were randomly selected from all non-smoking, non- 
asthmatic and non-COPD subjects with normal lung function. Both cases 
and controls were excluded post-enrollment when a smoking habit 
became apparent during home visits. The study protocol (no. 13/533) 
was approved by the Medical Ethical Committee of the University 
Medical Centre Utrecht. All participants signed informed consent. 

2.2. Sampling procedure 

Between February 2015 and July 2016, during home visits, 
oropharyngeal samples were collected from 99 COPD cases and 184 
controls. In addition to the baseline (t0) sample, participants were 
sampled again after 6 (t1) and 12 weeks (t2). Samples were collected 
using Copan Eswabs and stored on ice in 1 ml liquid Amies Medium 
(483CE, Copan Diagnostics Inc., CA) during transport. DNA extraction 
and sequencing was done for all baseline (t0) samples, and for a random 
selection of t1 and t2 samples from 10 COPD cases and 10 controls. A 
random selection of field blanks (air swabs), taken every sampling day, 
together with unused swabs and laboratory controls was included in the 
downstream analysis. 

2.3. DNA Extraction, 16S rRNA gene amplification and sequencing 

The DNA isolation procedure was performed as previously described 
and can be found in the supplementary methods (Wyllie et al., 2014). A 
469-bp (base pair) amplicon, encompassing the V3 and V4 hypervari
able regions of the 16S rRNA gene, was amplified and sequenced using 
the Illumina MiSeq Reagent Kit v3 (600-cycle) on an Illumina MiSeq 
instrument according to Fadrosh et al. (Fadrosh et al., 2014). More de
tails can be found in supplementary methods. 

2.4. Bioinformatics 

Sequencing primers and heterogeneity spacers were removed using 
cutadapt version 2.8 (Martin, 2011). Output sequences were processed 
in R version 4.0.2 using the dada2 package version 1.16, resolving the 
sequences into amplicon sequence variants (ASVs)(Callahan et al., 2016; 
R Core Team, 2020). For the sequence filtering step, forward and 
backward reads were truncated to high-quality regions at 200 and 250 
base pairs respectively. After inspection of the read quality profiles, the 
maximum expected errors (maxEE) was set to 3. Taxonomy was assigned 
using the Silva reference database and the naïve Bayesian classifier, 
version 138 (Quast et al., 2013). Species level annotation was confirmed 
using BLASTnt against the REFSEQ targeted loci database at the Na
tional Center for Biotechnology Information (“Database resources of the 
National Center for Biotechnology Information,” 2018). Further filtering 
steps are described in the supplemental methods. 

2.5. Data analysis 

Associations involving beta-diversity, measured by Bray-Curtis 
dissimilarity, were visualized using Principal Coordinates Analysis 
(PCoA) and tested by multivariable PERMANOVA. To explore which 
taxa drive the overall compositional differences between COPD cases 
and controls, or individuals with high or low livestock-emitted endo
toxin concentrations (tertiles T3 vs T1) (de Rooij et al., 2019), differ
ential abundance analysis was performed at ASV, genus, family and 
phylum level using DESeq2 version 1.28.1 and MaAsLin2 version 1.2.0 
(Love et al., 2014; Mallick et al., 2021) (see supplemental methods). 

Differences in alpha-diversity between COPD cases and controls were 
assessed using linear models. As response variables, species richness and 
the Shannon diversity index were used. Explanatory variables included 
case-control status, sex, age (continuous), education level (low, me
dium, high), lung medication (yes/no), antibiotic use (yes/no), COPD 
GOLD stage, former smoker (yes/no) and season (Winter Dec-Feb, 
Spring Mar-May, Summer Jun-Aug, fall Sep-Nov). To assess relations 
between OPM composition and livestock exposure, we included pres
ence of a poultry farm within 1 km of the home address (Smit et al., 
2017), and annual-average concentrations of livestock-emitted PM10 
and endotoxin at home addresses (predicted by dispersion modelling as 
described in the supplementary methods; continuous variables) (de 
Rooij et al., 2019). Relationships were first explored in univariable an
alyses. Consecutively, predictors that yielded p-values < 0.2 were used 
in multivariable models to identify independent drivers while correcting 
for known confounders. To determine whether a single sample is 
representative for an individual’s OPM and if its composition can be 
reproduced over a short period of time, multiple robustness analyses 
were performed as described in the supplemental methods. 

3. Results 

3.1. Study population 

A detailed overview of participant characteristics, stratified by cases 
and controls, can be found in Table 1. Overall, 48.1 % of the participants 
were female, and mean age was 58.2 years. Cases were found to be 
slightly older with a mean age of 61.4 years compared to 56.5 years in 
controls (p < 0.001). Cases differed from controls in terms of smoking 
history with a mean difference of 6.1 pack-years (p < 0.001). The ma
jority of cases were classified as mild COPD patients with 45 (45.5 %) 
and 30 (30.3 %) participants assigned to GOLD stage 1 and 2 respec
tively. The remaining 24 (24.2 %) cases were classified with GOLD stage 
0. One third (33.3 %) of the cases used lung medication during the 
sampling period. Besides mono- or combination therapies with inhaled 
corticosteroids, bèta 2-sympathicomimetics and parasympatholytics, 
monotherapy with oral leukotriene antagonists also occurred. 

3.2. Sequencing 

Approximately 5,411,000 reads were generated with an average of 
14,000 reads per sample, ranging from 430 to 54,000. Processing the 
raw data resulted in 2,705 ASVs. Compositional analyses were per
formed using 1,092 taxa that remained after filtering, as detailed in the 
supplemental methods. 

3.3. Oropharyngeal microbiota composition 

An overview of the taxonomic composition at family level can be 
found in Fig. 2. To summarise, relative abundance was dominated by 
Streptococcaceae (mean 47 %; range 5–91 %), Veillonellaceae (mean 16 
%; range 0–44 %) and Prevotellaceae (mean 10 %; range 0–37 %). A 
comparison of the top 10 most abundant genera per sample type 
(including negative controls) can be seen in Supplementary Fig. 1. We 
explored whether the OPM composition differed between COPD cases 
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and controls in a multivariable analysis adjusting for age, gender, 
smoking history, season and antibiotic use (Supplementary Table 1). No 
compositional differences were shown in this analysis related to case- 
control status (PERMANOVA p = 0.26, R2 = 0.004) or livestock- 
emitted endotoxin (PERMANOVA p = 0.31, R2 = 0.012). Community 
composition differed slightly between males and females (PERMANOVA 
p < 0.01, R2 = 0.007). Season (PERMANOVA p = 0.07;R2 = 0.014) and 
farm childhood (PERMANOVA p = 0.09;R2 = 0.005) were found to have 
a borderline significant effect. 

3.4. Differential abundance analysis 

As the compositional analysis revealed little biological variation, we 
chose to focus on the more abundant taxa in the differential abundance 
analysis. To this end, we removed taxa which accounted for <0.1 % 
relative abundance in <25 % of the samples. The remaining dataset 
consisted of 74 ASVs belonging to 26 genera, 19 families and 7 phyla. 
Using DESeq2, we found that the genus Streptococcus was significantly 
more abundant in COPD cases compared to controls (log2 fold change 
[LFC] = 0.68; Benjamini Hochberg [BH] adjusted p = 0.001). This as
sociation was confirmed by testing for differences in normalized counts 
using the Kruskal-Wallis test (Fig. 3). At species level, Streptococcus 
salivarius, Streptococcus parasanguinis and another undefined Strepto
coccus species were associated with COPD, although not statistically 
significant (Supplementary Fig. 2). In comparison to DESeq2, MaAsLin2 
did not return any significant associations. It did, however, show a 
similar, but statistically non-significant association between Strepto
coccus abundance and COPD (Supplementary Table 2 β = 0.03, BH 
adjusted p = 0.38). Differential abundance analysis in relation to 
livestock-related endotoxin exposure revealed slight differences in Fir
micutes and Actinobacteriota abundance between low and high exposed 
individuals (Supplementary Fig. 3). However, these associations were 
no longer statistically significant after adjusting for multiple testing. 

3.5. Alpha-diversity 

Differences in within-subject diversity were analysed using data 
rarefied at 5,000 sequences per sample, maintaining 177 controls and 94 
cases in the dataset (96 % of all samples). Rarefaction curves of all 
samples can be found in Supplementary Fig. 4 We used multivariable 
linear models, adjusting for sex, smoking history, education level, sea
son, and antibiotic use, after variable selection with univariable models. 
Univariable analysis of observed richness and Shannon indices did not 
show an association with COPD status (Supplementary Table 3). 

Table 1 
Study population characteristics of COPD cases and healthy controls sampled for 
oropharyngeal microbiota analysis.   

Case Control Overall p-value 
a  

(N = 99) (N = 184) (N = 283)  

Sex, female 42 (42.4 
%) 

94 (51.1 
%) 

136 (48.1 
%) 

0.205 

Age (y) 61.4 
[28.9, 
71.8] 

56.5 
[28.7, 
71.7] 

58.2 
[28.7, 
71.8] 

<0.001 

BMI* 26.8 
[18.1, 
48.9] 

27.3 
[17.2, 
48.1] 

27.1 
[17.2, 
48.9] 

0.368 

Education level     
low 24 (24.2 

%) 
40 (21.7 
%) 

64 (22.6 
%) 

0.738 

medium 48 (48.5 
%) 

86 (46.7 
%) 

134 (47.3 
%)  

high 27 (27.3 
%) 

58 (31.5 
%) 

85 (30 %)  

Pack-years of cigarettes 
smoked†

13.9 [0, 
54.6] 

7.74 [0, 
127] 

9.91 [0, 
127] 

0.001 

COPD grade, GOLD     
0 24 (24.2 

%) 
184 100 
%) 

208 (73.5 
%) 

<0.001 

1 45 (45.5 
%) 

0 (0.%) 45 (15.9 
%)  

2 30 (30.3 
%) 

0 (0 %) 30 (10.6 
%)  

Pre-BD measurements     
FEV1 (l) 2.51 

[0.88, 
4.62] 

3.23 
[1.49, 
5.12] 

2.98 
[0.88, 
5.12] 

<0.001 

FVC (l) 4.00 
[1.66, 
8.02] 

4.16 
[2.09, 
7.21] 

4.10 
[1.66, 
8.02] 

0.236 

FEV1/FVC (l) 0.63 
[0.26, 
0.90] 

0.78 
[0.66, 
0.92] 

0.73 
[0.29, 
0.92] 

<0.001 

Post BD measurements     
FEV1 (l) 2.67 

[1.03, 
4.79] 

3.34 
[2.26, 
5.39] 

3.11 
[1.03, 
5.39] 

<0.001 

FVC (l) 4.10 
[1.90, 
7.87] 

4.17 
[2.61, 
7.16] 

4.15 
[1.90, 
7.87] 

0.616 

FEV1/FVC 0.65 
[0.31, 
0.92] 

0.80 
[0.71, 
0.90] 

0.75 
[0.31, 
0.92] 

<0.001 

Uses lung medication 33 (33.3 
%) 

1 (0.5 %) 34 (12.0 
%) 

<0.001 

Atopy 30 (30.3 
%) 

51 (27.7 
%) 

81 (28.6 
%) 

0.711 

Childhood on farm 36 (36.4 
%) 

59 (32.1 
%) 

95 (33.6 
%) 

0.592 

Respiratory symptoms 
during sampling 

20 (20.2 
%) 

48 (26.1 
%) 

68 (24.0 
%) 

0.337 

Antibiotic use within 4 
weeks prior to sampling 

13 (13.1 
%) 

5 (2.7 %) 18 (6.4 %) 0.002 

Residential exposure to 
livestock farm emitted 
endotoxin (EU/m3)Ŧ 

0.23 
[0.032, 
1.26] 

0.25 
[0.032, 
0.93] 

0.24 
[0.032, 
1.26] 

0.428 

Residential exposure to 
livestock farm emitted 
PM10 (µg/m3) Ŧ 

0.29 
[0.041, 
1.22] 

0.30 
[0.036, 
1.07] 

0.30 
[0.036, 
1.22] 

0.482 

N farms within 500 m, 
tertiles     

no farms 33 (33.3 
%) 

62 (33.7 
%) 

95 (33.6 
%) 

0.984 

1 or 2 farms 36 (36.4 
%) 

65 (35.3 
%) 

101 (35.7 
%)  

>2 farms 30 (30.3 
%) 

57 (31 %) 87 (30.7 
%)  

N farms within 1000 m, 50 
% quantiles     

0–16 farms 0.904  

Table 1 (continued )  

Case Control Overall p-value 
a  

(N = 99) (N = 184) (N = 283)  

87 (87.9 
%) 

164 (89.1 
%) 

251 (88.7 
%) 

>16 farms at 1 km 12 (12.1 
%) 

20 (10.9 
%) 

32 (11.3 
%)  

Poultry exposure     
nearest poultry at > 1 km 41 (41.4 

%) 
76 (41.3 
%) 

117 (41.3 
%) 

1 

poultry farm within 1 km 58 (58.6 
%) 

108 (58.7 
%) 

166 (58.7 
%)  

Data are presented as mean [range] or n (%). Definition of abbreviations: BD =
bronchodilator; COPD = chronic obstructive pulmonary disease; EU: endotoxin 
unit; FEV1 = forced expiratory volume in 1 s; FVC = forced vital capacity; Ed
ucation levels: low—lower secondary school or less; medium—intermediate 
vocational education or upper secondary school; high—higher vocational edu
cation or university. *BMI = mass(kg)/(height (m))2. †Mean pack-years for 
former smokers. Ŧ Annual average concentration at the home address estimated 
by dispersion modelling. a Two sample t-test or Chi2 test across cases and 
controls. 

W. van Kersen et al.                                                                                                                                                                                                                            



Environment International 169 (2022) 107497

5

Fig. 2. Relative abundances at family level, showing taxa accounting for at least 0.5% (mean relative abundance) of the oropharyngeal microbiota.  

Fig. 3. DESeq2 normalized counts of differentially abundant taxa at phylum (LFC = 0.47), family (LFC = 0.53) and genus level (LFC = 0.68) between COPD cases 
and controls. P-values calculated using the Kruskal-Wallis test. 
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Table 2 
Determinants of alpha-diversity indices of the oropharyngeal microbiota of COPD cases and controls in a multivariable linear model.   

Richness Shannon diversity 

Variable β 95 % CI p value β 95 % CI p value 

COPD case vs control  − 2.20 − 8.1:3.7  0.46  − 0.041 − 0.18:0.1  0.57 
Gender female vs male  − 0.76 − 6.11:4.6  0.78  − 0.002 − 0.13:0.13  0.97 
Education level       
Medium vs low  6.63 − 0.09:13.35  0.05  0.21 0.04:0.37  0.01 
High vs low  0.78 − 6.56:8.11  0.84  0.10 − 0.08:0.28  0.27 
Smoking history former vs never  − 0.35 − 5.87:5.17  0.90  − 0.05 − 0.18:0.08  0.46 
Residential exposure to livestock farm emitted endotoxin (EU/m3)Ŧ  4.91 − 0.1:9.92  0.06  0.081 − 0.04: 0.2  0.19 
Season       
Spring (Mar-May) vs winter (Dec-Feb)  0.15 − 6.96:7.25  0.97  0.09 − 0.08:0.26  0.29 
Summer (Jun-Aug) vs winter  4.10 − 3.02:11.21  0.26  0.17 − 0.01:0.34  0.06 
Fall (Sep-Nov) vs winter  − 7.16 − 17.23:2.9  0.16  − 0.16 − 0.4:0.08  0.19 
Antibiotics within 4 weeks prior to sampling  − 2.65 − 13.47:8.18  0.63  0.16 − 0.1:0.42  0.23  

Ŧ Annual average concentration at the home address by dispersion modelling, scaled to the 10-90th percentile range. EU: endotoxin unit. 

Fig. 4. A: Procrustes errors comparing ordinations (PCoA – Bray-Curtis) of the 20 individuals that had their oropharyngeal microbiota sampled at t0, t1 (after 6 wks) 
and t2 (after 12 wks). B: Within vs between individual Bray-Curtis distances over timepoints. 
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Likewise, in the multivariable linear model, COPD status, gender, 
smoking history, and antibiotic use were not associated with alpha di
versity (Table 2). In the multivariable analysis, medium education level 
(vs low) was associated with both higher richness (β = 6.63;p = 0.05) 
and increased Shannon diversity (β = 0.21;p = 0.01). Shannon diversity 
appeared higher in samples taken during summer (Jun-Aug) compared 
to winter (Dec-Feb)(β = 0.17;p = 0.06). Similarly, we found an associ
ation between residential exposure to livestock-emitted endotoxin and 
increased richness (β = 4.91; p = 0.06). When stratifying the model for 
COPD case-control status, the positive association of residential expo
sure to livestock-emitted endotoxin with richness is shown to be driven 
by the COPD cases (Supplementary Table 4, β = 10.02;p = 0.02). Res
idential exposure to livestock-emitted PM10 showed a similar relation
ship with increased richness (Supplementary Table 5, β = 5.58;p = 0.08) 
and COPD status (Supplementary Table 6, β = 13.11;p = 0.01). 

3.6. Oropharyngeal microbial community stability over time 

Procrustes analysis of 20 randomly selected subjects sampled at 0, 6, 
and 12 weeks showed moderate but significant within-individual cor
relation (r = 0.50–0.66, p < 0.05). This correlation was lost when the 
sample identifiers were randomized, resulting in a between-individual 
comparison (r = 0.15–0.23; p > 0.6; Fig. 4A). Repeating the analysis 
with randomized sample identifiers over 1,000 Monte Carlo iterations 
showed that this was not due to chance. Likewise, comparing Bray- 
Curtis dissimilarity of the repeated samples within and between in
dividuals revealed significantly higher between (vs within) individual 
dissimilarity (Fig. 4B). Therefore, we could conclude that the individual 
OPM community is relatively stable, at least over a 12-week period. 

4. Discussion 

The aim of our study was to investigate whether the URT microbiota 
composition of community-based COPD patients differed from adults 
without COPD living in the same geographic region. Subsequently, we 
explored the potential role of residential exposure to livestock-emitted 
air pollution in shaping the OPM in subjects with and without COPD. 
We found evidence suggesting that residential exposure to livestock- 
emitted endotoxin and PM10 is associated with increased species rich
ness in COPD patients. While the overall OPM composition did not differ 
between mild and non-exacerbating COPD cases and subjects with 
normal lung function and no diagnosis of asthma or COPD, Streptococcus 
spp. was more abundant in the OPM of COPD patients. However, the 
exploratory nature of our epidemiological study precludes further con
clusions about direction of associations, causality, or underlying 
mechanisms. 

We did not find differences in overall bacterial community compo
sition related to COPD status or livestock exposure. This might be 
explained by the relative stability of the OPM compared to that of the 
nasopharynx which is known to be more susceptible to environmental 
exposures like pig farming (Flynn and Dooley, 2021). A study in Iowa 
(United States) reported significantly higher alpha-diversity in the nasal 
microbiome of 33 livestock workers compared to 26 non-livestock 
workers, though this was not observed for the oropharyngeal micro
biome (Kates et al., 2019). Likewise, the OPM community structure in 
our study did not differ between former and never smokers. Although 
previous studies reported differences in URT microbiota due to smoking 
(Charlson et al., 2010; Morris et al., 2013), these studies included cur
rent smokers which were excluded in the present study. 

Differential abundance analysis revealed that three ASV’s, annotated 
to the genus Streptococcus, were more highly represented in subjects 
with COPD, compared to the controls. A BLAST search revealed that 
these belonged to Streptococcus salivarius, Streptococcus parasanguinis and 
an undefined Streptococcus spp. Streptococcus (especially Streptococcus 
pneumoniae) has been associated with COPD exacerbations and disease 
severity (Lee et al., 2016; Toraldo and Conte, 2019). In addition both 

S. salivarius and S. parasanguinis are opportunistic pathogens and have 
been associated with COPD and smoking (Turek et al., 2021). In an 
endotoxin-induced lung inflammation mouse model the lung microbiota 
shifted towards endogenous opportunistic pathogens, suggesting an 
immunological mechanism behind our observed results. (Poroyko et al., 
2015). Thus, studying OPM may help to provide an explanation why 
COPD patients living in a livestock-dense area are at increased risk of 
wheezing, exacerbations and a lower lung function (Borlée et al., 2015; 
van Dijk et al., 2016). This, however, needs to be confirmed by longi
tudinal studies. Likewise, further experimental studies are needed to 
elucidate which taxa of the OPM could be influenced by air pollution 
exposure. 

We report increased richness related to residential exposure to live
stock farm-emitted endotoxin and PM10, but only among COPD patients. 
We speculate that the airways of COPD patients are more susceptible to 
irritation by air pollutants, resulting in an environment that promotes 
bacterial growth. The similarity between the effect of endotoxin and 
PM10, is explained by the fact that endotoxin was modeled as a fraction 
of the livestock farm-emitted PM10. Our results suggest that the impact 
of mild COPD and residential livestock exposure on the microbial 
community of the oropharynx is subtle. However, it has been shown that 
in mild COPD patients the largely normal microbiome may still be dis
torted due to subtle changes in the presence or absence in rare key 
members and is therefore less able to react to and mediate changes in 
host inflammation (Dickson et al., 2016). These subtle changes in mi
crobial community of COPD patients are different from changes in other 
respiratory diseases. Notable changes in the respiratory microbiota have 
been detected early on in asthma, whereas in COPD distortion of the 
microbiota is mainly associated with advanced disease (Dickson et al., 
2016). While advanced COPD has been associated with a shift in 
microbiota composition from Bacteroidetes to Proteobacteria, a phylum 
known for its opportunistic pathogenic members like Pseudomonas and 
Haemophilus, shifts towards a Firmicutes dominant community have also 
been reported (Dickson et al., 2016). In combination with our reported 
association between mild COPD and increased Firmicutes abundance 
this suggest that changes in the respiratory microbiome in COPD pa
tients occur more gradually than previously thought. This is also sup
ported by a recent multi-omic meta-analysis which showed that 
Proteobacteria, Actinobacteria, and Firmicutes are main contributors to 
the biosynthesis of pro-inflammatory agents in COPD patients (Mallick 
et al., 2021). 

Limitations of the present study include its exploratory nature. While 
this is one of the largest microbiome studies performed in COPD pa
tients, further increasing the sample size might lead to identifying more 
associations, especially those with smaller effect sizes. The mainly mild, 
population-based COPD patients we included, probably do not show as 
much variation in their OPM compared to healthy controls as one might 
expect in more severe patients recruited from a clinical setting. 
Furthermore, given that the microbiota of diseased lungs is thought to be 
determined by regional growth conditions, traditional sampling tech
niques might be preferred. However, it has been shown that oropha
ryngeal swabs are an adequate proxy for traditional samples like sputum 
when studying COPD (Liu et al., 2017). In addition, oropharyngeal 
swabs are easier to standardize and less intrusive compared to sputum 
sampling. Lastly, the striking difference in output between DESeq2 and 
MaAsLin2 illustrates that these results should be carefully interpreted. 
We argue that the negative binomial model performed by DESeq2, 
compared to the linear model used by MaAsLin2, theoretically fits our 
case-control design best. More importantly, differences in abundance 
between groups were verified using a Kruskal-Wallis test on normalized 
counts. 

Strengths of this study include the use of validated models that 
predict livestock-related endotoxin levels at the home address as a 
measure for livestock exposure of microbial origin (de Rooij et al., 
2019). Further, our analysis of repeated samples confirmed stability of 
individual microbiota profiles within a 3-month period, although we 
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were unable to identify clear predictors that explain the between- 
subjects variability in overall community composition. Lastly, the use 
of multiple negative and community controls enabled us to minimise the 
influence of contamination which is a notorious source of bias when 
working with low-biomass samples. 

In conclusion, we showed a relationship between residential expo
sure to livestock-related endotoxin and PM10 and OPM richness of COPD 
patients, suggesting that OPM of COPD patients is susceptible to alter
ations induced by exposure to air pollutants. While we did not find 
community structural differences in the OPM of mild COPD patients 
versus controls, results do suggest increased Streptococcus spp. abun
dance in COPD patients. The implications and the underlying mecha
nisms of these associations offer multiple angles for future research 
regarding health effects from air pollution. 
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